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Abstract. I argue that psychologists interested in human causal judgment should understand and
adopt a representation of causal mechanisms by directed graphs that encode conditional independence
(screening off) relations. I illustrate the benefits of that representation, now widely used in computer
science and increasingly in statistics, by (i) showing that a dispute in psychology between ‘mechanist’
and ‘associationist’ psychological theories of causation rests on a false and confused dichotomy; (ii)
showing that a recent, much-cited experiment, purporting to show that human subjects, incorrectly
let large causes ‘overshadow’ small causes, misrepresents the most likely, and warranted, causal
explanation available to the subjects, in the light of which their responses were normative; (iii)
showing how a recent psychological theory (due to P. Cheng) of human judgment of causal power
can be considerably generalized: and (iv) suggesting a range of possible experiments comparing
human and computer abilities to extract causal information from associations.
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1. The Puzzles

The abstract of David Shanks’ recent Experimental Psychology Society Prize
Lecture (1995) contains a hidden puzzle:

We can predict and control events in the world via associative learning. Such
learning is rational if we come to believe that an associative relationship exists
between a pair of events only when it truly does.

We get around in the world because we know what events will follow actions,
whether our own or others; we understand and can explain the world because we
know something about the processes that produce what we observe. The capacity
to learn what causes what and when, with all that implies about categorization, is
surely among the most fundamental cognitive abilities we have. How do we do it?
Shanks’ abstract, and the essay that follows it, suggests a part of an answer: we
learn about causes by learning about associations among types of events or types
of processes. Leaving aside the particulars of Shanks’ theory, his answer – we learn
about causes by observing associations – is, I believe, correct. The puzzle is how
it could possibly be the correct answer.

I am sure that, like everyone else, Shanks learned that correlation is not cau-
sation, but his second sentence collapses the distinction and confounds learning
associations with learning how to predict and control. Knowing only the association
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between A and B doesn’t usually enable us to control either A or B. The association
between yellowed fingers in youth and middle age and lung cancer in later life
doesn’t of itself provide a way to control lung cancer. Preventing yellow fingers
will do nothing to change the frequency of lung cancer unless the intervention also
changes smoking frequency – making everyone wear gloves, for example, will do
nothing to reduce lung cancer rates. ‘Prediction’ of B from A is ambiguous: we
may predict B given the occurrence of A or we may predict B given an interven-
tion to bring about A. The two are not the same, and need not issue in the same
probabilities, as a little reflection on the yellow fingers/lung cancer example will
show. So there is the puzzle, or rather the set of puzzles: how could any cognitive
system learn causal relations from associations? How do people do it? Are there
experiments that might answer the second question?

There is, of course, absolutely nothing new in these questions. The first two
have been the cynosure of philosophical accounts of inquiry since Aristotle, and
great modern philosophers – Descartes, Leibniz, Hume, Kant – each marked their
originality with an answer. The questions were the forgotten purpose of some great
works we still remember. George Boole’s The Laws of Thought, which introduced
the algebra that now describes most of digital technology, aimed above all to
provide a method of inferring causes from observed effects.

Boole’s own work provides a caution about these questions. So far as we know,
the theory of deductive inference began with Aristotle and, through two millennia
of sporadic attention, was little improved until Boole’s work in the 1850s and
Frege’s in 1879. The more or less correct normative theory that emerged in the 19th
century is complex and in many respects counterintuitive. (Lance Rips, in a lecture
at Carnegie Mellon University, reported on an experiment in which undergraduate
psychology students who had no training in formal logic and a comparison group
of students who had previously taken a logic course were given the same problems
in sentential logic. After attempting the problems, all students were given the
correct answers. On a subsequent test with similar problems, the students who
had formerly taken logic improved their performances, but the untrained students
performed worse than on the first test. Moral: the correct theory is tough to learn.).

A similar lesson can be extracted from the history of probability. Aristotle wrote
about chance, and phenomena of frequencies have been used in science at least since
Greek astronomy. Kepler complained of the absence of a theory of random errors.
But no actual probability calculations appeared until the 16th century, nothing we
recognize as real probability theory until the 17th, no statistical inference until the
19th, and no axiomatization of the theory until the 20th century. And, as a wealth
of psychological literature has shown in the last decades, people have trouble with
probability. There is no reason to expect a correct, normative theory of inference
to causes from associations to be simple, easy, or intuitive, or to expect that human
inference will accord with it except in simple problems. The universe has no key,
only a combination lock.
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In what follows I describe the elements of a representation of causal explana-
tions – a representation now almost standard in computer science and increasingly
common in statistics – that provides the basis for algorithmic solutions to these
puzzles; that is, mathematical work using the representation shows how (and what)
causal information may be reliably extracted from observed associations, and how
that usually incomplete causal information can be used in prediction and planning.

This work has at east four kinds of implications for psychology: methodological,
interpretive, analytic and substantive. The methodological issues have principally
to do with old fashioned but still relevant problems, such as the justification of
‘intervening variables,’ and with entirely contemporary issues about techniques
of data analysis and theory construction (by psychologists, not their subjects).
The interpretive issues have to do with understanding the confusions in false
dichotomies between ‘associationist’ and ‘mechanist’ accounts of causation, con-
fusions so influential they threaten to eliminate from psychology any serious work
on the subject of causation, and with the interpretation of experiments intended
to assess whether, how much, and why, human judgment of causal relations is
sub-normative. The analytical issues have to do with unfolding the hidden impli-
cations of contemporary psychological theories when they are translated into the
new representation. The substantive issues have to do with the main puzzle implicit
in Shanks’ abstract: how do humans extract the available causal information from
associations?

Of the four kinds of implications, I will ignore the methodological topics in this
paper, but I will illustrate each of the others. The substantive issue, which in my
view is the most interesting and important, I will deal with last.

2. Mystery “Mechanism”: An Answer Too Many Psychologists Like

Possibly the most popular (among psychologists: see Ahn and Bailenson, 1996;
Ahn et al., 1995; Baumrind, 1983; Schultz, 1982; White 1989, 1995; for philoso-
phers of the same opinion see; Harré and Madden, 1975; Turner, 1987) answer to
the questions I extracted from Shanks’ abstract denies their presupposition: peo-
ple don’t learn causes from associations, because causes have nothing to do with
associations, they have to do with ‘mechanisms.’ What is meant by ‘mechanism’
is rarely explained in this literature, but the examples make it relatively clear that
to specify a ‘mechanism’ for a covariation is simply to specify either a sequence of
causes that intervene between the candidate cause and effect, or causes that tend to
bring about both the candidate cause and effect, where the causal connection posit-
ed in the ‘mechanism’ are of a kind that are already familiar and acknowledged.
Baumrind (1983) gives the following illustration:

The number of never-married persons in certain British villages is highly
inversely correlated with the number of field mice in the surrounding meadows.
[Marriage] was considered an established cause of field mice by the village
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elders until the mechanisms of transmission were finally surmised: Never-
married persons bring with them a disproportionate number of cats.

Similar examples are offered by Ahn et al. (1995) and others. Mechanisms of this
kind can be represented by a causal diagram or directed graph (i.e., a network of
nodes representing features or variables and with arrows pointing from causes to
effects), for example

# unmarried persons ! # cats ! # mice

There are two sorts of probabilistic consequences to this sort of mechanism: the
mechanism implies relations among conditional probabilities, and the mechanism
implies probability relations upon various interventions. The two sorts of probabil-
ity implications will sometimes, as in this case, be equal, but they are not the same.
In Baumrind’s example, if hers is the entire mechanism behind the association, then
if we were to intervene to hold the number of cats constant in these villages, there
would be no frequency association between variations in the number of unmarried
persons and variations in the number of mice. And under the same assumption, if
we did not intervene at all, but simply computed the conditional probability of any
number of mice given any number of unmarried persons and any number of cats,
the result would approximately equal the conditional probability of that number of
mice given that number of cats. And, by almost any measure of covariation, the
(negative) covariation between married persons and mice should be weaker than
the (negative) covariation between cats and mice.

So suppose we knew nothing about the English habit of pet keeping, and we were
ignorant of the disposition of cats towards mice, but we discovered the following
associations:

# of unmarried persons is negatively associated with # of mice;

# of unmarried persons is positively associated with number of cats;

# of unmarried persons is negatively associated with # of mice;

and the single conditional independence:

# of unmarried persons is independent of # of mice given # of cats.

Assuming we have reason to believe that the observed associations are not produced
by whatever method of measurement was used, these relationships invite only a
few alternative causal explanations, which we can sketch diagrammatically:

1. #mice —-> # cats —-> # unmarried persons
2. # mice <— Something Else —-> # cats —-> # unmarried persons
3. # unmarried persons —–> # cats —-> # mice
4. # unmarried persons <—- Something Else —-> # cats —–> # mice
5. # unmarried persons <—- # cats —–> # mice
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If, separately, we knew, for example, that the number of cats does not cause the
number of unmarried persons, we could eliminate all but explanations 3 and 4.
Both of these explanations suppose that the number of cats influences the number
of mice and we could also conclude that either the number of unmarried persons
influences the number of cats, or something else influences both.

So the separation of mechanisms and associations is very odd and implausible,
and, to the contrary, it seems that an important part of learning causes might very
well be learning mechanisms from associations together with prior knowledge.
Later we will see that these inferences can be made rigorous.

Besides Baumrind’s example, consider briefly the mechanism that generates the
covariation between past occurrences of yellow fingers and the later occurrences
of lung cancer among those who grew up in the days of unfiltered cigarettes. The
mechanism behind the covariation is a common cause: smoking caused yellowed
fingers and it also caused lung cancer:

yellowed fingers smoking! lung cancer
Here again, there are two distinct kinds of probabilistic implications of the expla-
nation. First, yellowed fingers and lung cancer are independent conditional on
smoking. (More generally, when there are no other causal connections, the effects
of a common cause are independent conditional on a value of the common cause
(Simon, 1977)). Second, interventions that directly alter only the frequency of
yellowed fingers do not change the probability of lung cancer.

As these examples illustrate, there are intricate connections between mecha-
nisms and patterns of association, and a fruitful mechanistic approach to under-
standing both norms of causal inference and human judgment about causation might
try to understand those patterns and investigate the ways humans use them, or can
learn to use them, to infer causal mechanisms. But, a disconnection between mech-
anisms, on the one hand, and probabilistic patterns, on the other, puts everything
on a false footing.

There is a kind of ecological fallacy in the mechanistic literature that mistakes
the frequency of a phenomenon for its explanatory importance. For example, Ahn,
et al. (1995) claim that information on covariation is generally not necessary
for learning causal relations. With ‘rare exceptions,’ people do not learn causal
relations from covariations but from applying prior knowledge of mechanisms.
The idea is that people assess whether an association between A and B is causal
by seeing whether A and B are instances of cause and effect for some mechanism
already known to them, approximately what is called ‘explanation based learning’
in the artificial intelligence literature.

Perfectly plausible. But what about the ‘rare exceptions’? Compare language
learning: Over the history of any individual’s speech production events concerned
with learning the syntax, semantics and pragmatics of a language are ‘rare excep-
tions,’ and most of our inner searches for what to say in a particular context consist
in applying what we already know. That does not make understanding the acqui-
sition of first languages the less interesting or fundamental. Or, for that matter,
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compare terrestrial bodies. Mostly they don’t fall or move, they just stay where
they are. The intellectual ancestors of Ahn et al. would presumably have concluded
that the study of motions of bodies must be marginal.

3. Another Answer: Conditioning

Classical and operant conditioning both produce an appropriate expectation in a
learner, but they differ in what the learner discovers about control. In classical
conditioning a subject learns an association between two kinds of events, neither
of which are interventions or actions of the learner. In operant conditioning, a sub-
ject learns an association between two kinds of events, one of which is an action
of the learner. In classical conditioning, unless there is other relevant knowledge,
all that can be learned is an association, not a causal relation, because the causal
process responsible for the association is underdetermined by the association itself.
Pavlov’s dogs could not know whether the bell ringing caused dinner, or dinner
the bell ringing, or something else caused both. Neither could we in circumstances
comparably bereft of information. In contrast, in most cases the proposition describ-
ing what is learned in operant conditioning is that an action of a certain sort causes
an event of a certain kind, and the learner acquires the capacity to control, or at
least to influence, the occurrence of the relevant events.

Perhaps, outside of deliberate scientific inference, that is all the causal learning
that humans do, and all they need to do in the ordinary courses of life. But there
are at least weak reasons to think otherwise. Piaget suggests that children string
together information about actions and information about associations to identify
‘remote’ causal connections. And one can think of a variety of circumstances
in which the capacity to correctly identify causes from associations would have
promoted survival: A hunter studying a very small herd of antelope watches the
herd. From their behavior alone the hunter wants to identify the lead animal because
if the lead animal can be guided to an ambush the others will follow. Or again, a
gatherer sees that a wind, varying with time in direction and intensity, blows on
a field of tall grass. The grass moves in bunches. Is there a hidden enemy throng
moving in the grass?

Perhaps there are more or less reliable ways to make such inferences and,
for evolutionary reasons, we can do so. Or perhaps not. These are only so many
‘perhaps’ on either side. Only a systematic course of experiments comparing human
and normative performance at identifying causal structure will illuminate the issues.
But what norms? There is a normative theory, apparently entirely unknown to
psychologists, but is only a single experimental study of these questions, and none
at all in the psychological literature.
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4. Representation

A normative account of causal inference requires a representation of causal relations
general enough to include, to good enough approximation, the great majority of
causal systems we think we encounter, and a characterization of the information
about causal relations that can be extracted from observed associations, or from
observed associations and prior knowledge of various kinds. It does not require an
analysis of causation or a representation or an account of inference that covers every
imaginable case. (Much of the poverty of contemporary philosophy results from
insisting on perfect generality, thereby avoiding the effort of investigating any
unobvious consequences of any assumptions, since none are perfectly general.)
What follows in this section is not mysterious, and in many respects not even
difficult. It requires some patience with formal definitions and distinctions, and
some elementary modern mathematics. It is an abbreviated description of the
representation of causal mechanisms that has become almost standard in computer
science, and is implicitly used throughout much of applied statistics. The payoff is
astonishing.

In discussing the mechanist view, and Baumrind’s example in particular, I
introduced diagrams with nodes indicating features of a system and an arrow, or
directed edge, from one node to another indicating that the feature represented
by the node at the tail of the edge or arrow is a direct (relative to the features
represented in the diagram) cause of the feature represented by the node at the head
of an arrow or directed edge. Diagrams such as these are directed graphs, and carry
with them obvious notions – a node at the head of an arrow is the child of a node at
the tail, which is its parent; some nodes are ancestors of others, their descendants;
there are paths from ancestors to descendants, and so on.

I will say a system S of variables is causally sufficient provided that for every
pair of variables X, Y in S, if there is a variable Z from which there is a causal path
to X and also a causal path to Y, and the two paths do not intersect except at Z then
Z is in S as well. Informally, variables in a causally sufficient set have no ‘latent’
common causes.

The independence claim I made about Baumrind’s example – that it implies
that number of unmarried persons and number of mice are independent given
number of cats – assumed that intervening causes ‘screen off’ more remote causes
from their effects. The directed graph formalism permits this assumption about
the connection between causal structure and probabilities to be put much more
generally. In Baumrind’s example the nodes were variables that could take different
numerical values in different villages. The village were the units, and there was an
implicit relevant population of units.

Markov Condition: In a causally sufficient system described by a directed
acyclic graph, G, conditional on any set of values of all of its parents, every
variable is independent (in probability) of the set of its non-descendant, non-
parents in G.
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In the directed graph for Baumrind’s example, the parent set of number of mice
is fnumber of catsg and the set of all non parent, non-descendants of number of
mice is fnumber of unmarried personsg so the Markov condition gives exactly the
conditional independence I asserted.

The Markov condition is not given by God, but it is not easily avoided either.
It is a necessary feature of every causally sufficient system in which effects are
(measurable) functions of their causes, and the unexplained variables (exogenous
variables in economists’ terms; independent variables in psychologists’ terms; in
graphical terms, the variables represented by nodes without edges into them in the
directed acyclic graph) are jointly independent in probability. Almost every causal
model I have ever come across in the psychological or social science literature
conforms to it. In particular, all regression models, whether linear or logistic, with
a causal interpretation, all factor analysis models, all ‘recursive structural equation’
models or path models,2 time series models with a causal interpretation, and so on.

The three associations and the single conditional independence in Baumrind’s
example could have been explained in another way besides the five alternatives I
offered. Those phenomena could have been explained by supposing (i) that number
of unmarried persons has a direct influence on number of mice, having nothing to
do with number of cats; (ii) that both number of unmarried persons and number of
mice influence number of cats. Graphically:

How could this explain the conditional independence of unmarried persons and
mice given cats? This way: The edge marked “a” creates an association between
# unmarried persons and # mice, no matter whether # cats is only conditioned on.
But the two edges that collide at # cats create an association between # unmarried
persons and # mice only conditional on # of cats. So if the association marked
by the a edge is perfectly canceled by the conditional association produced by
the collision of the two edges marked b, c – if the two associations are equal
but of opposite signs – then # unmarried persons an # mice will be independent
conditional on # of cats. For example, if the relations are linear, and a, b, c represent
linear coefficients, as in:

# mice = a (#unmarried persons) + e1

# cats = b (#unmarried persons) + c (# mice) + e2

where e1 and e2 are independently distributed unobserved causes (‘noises’) and
observed variables are standard normal (meaning they are normally distributed
and scaled by convention to have zero means and variances of 1), then all of the
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requirements of the associations and conditional independence will be satisfied
provided a is negative, b is positive, c is negative, and a = �bc.

In the ignorance I imagined, this explanation will save the phenomena, but it
seems inordinately – even unscientifically – complex, and in the absence of prior
knowledge I think most people would reject it in preference to explanations 3 or 4
above. Notice that the conditional independence does not result from the Markov
condition applied to the causal graph just given – the Markov condition applied
to that graph gives no independencies whatsoever. And that observation leads to a
general formulation of the intuition about simplicity the example illustrates:

Faithfulness Condition: For any variables X, Y and any set of variables Z
in a causally sufficient system described by a directed acyclic graph G, X is
independent of Y conditional on Z if and only if the Markov condition applied
to G implies that X is independent of Y conditional on Z.

Faithfulness is easier to evade than the Markov condition, but not very easy. Both
for linear stems and for systems of variables each having only a finite number of
values, ‘almost all’ probability distributions that satisfy the Markov condition for
a directed acyclic graph also satisfy the faithfulness condition.3

The Faithfulness assumption seems to bitterly divide scientists, even when
they have not formulated it explicitly. The late, eminent sociologist, Hans Zeisel,
resigned from the board of supervisors of an experiment funded by the Department
of Labor when the principals of the experiment saved their favorite hypothesis by
forwarding an unfaithful explanation of the data. The principals in turn mounted a
rather vicious ad hominem attack on Zeisel. (See Glymour et al., 1987 for a review
and references). In cognitive psychology, recent disputes over unconscious mech-
anisms of recall turn exactly on whether the faithfulness assumption is accepted or
rejected. (See Jacoby et al., 1997 for a discussion and references).

The directed graph representation of causal mechanisms, with these two condi-
tions, or with various modifications of the Faithfulness condition, provides a key to
predicting the results of interventions, and thus to planning, and the basis for study-
ing causal inference both in natural and artificial systems. Before developing those
implications, we should pause to illustrate how the representation, if understood
and used, might help avoid some mistakes in the interpretation of psychological
experiments.

5. Revisiting a Psychological Experiment on Causal Judgement

In order to follow the published interpretation of the following experiment, reported
by Baker et al. (1993), the reader must understand that a received view among many
psychologists (Allan and Jenkins, 1983) who work on causal judgement is that the
correct, normative, measure of the influence of a cause c on an effect e is the
‘contingency’ measured by:

�P = Prob(ejc) = Prob(ej � c):
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This will sound ludicrous to any philosopher, statistician or social scientist
familiar with confounding, but, with exceptions to be noted later, the community
of psychologists interested in causal judgement seems approximately partitioned
into those who hold this opinion and those who hold the ‘mechanist’ view discussed
previously.

Baker, et al. report the following experiment, designed to show that in the
presence of causes with a large influence on an outcome variable, human subjects
underestimate the influence of less important variables.

Subjects played computer games in which they tried to move a tank icon through
a ‘minefield.’ Subjects had the power to camouflage or not camouflage the tank
on each trial. Sometimes an airplane icon would appear. In the first experiment
reported, the computer arranged things so that the following probabilities obtained,
where O represents getting through the minefield, C is camouflage, P is appearance
of the plane:
P ( O | P ) = 1
P ( O | � P ) = 0
P (O | C) = 0.75
P ( O | � C)= 0.25
Before, during and after each game, which consisted of 40 trials, subjects were
asked to estimate, on a scale from �100 to +100, ‘the effectiveness of the camou-
flage’ (417).

The authors write that ‘The crucial finding of this experiment concerns the
effect of the high-plane contingency on the estimates of the effectiveness of the
camouflage. A high plane contingency sharply reduced estimates of the effective-
ness of both the positive (= 0.5) and the zero camouflage contingencies.’ (418).
For example, in the experiment with the probabilities specifies above, the mean
subject assessment of the ‘effectiveness’ of camouflage was 0.06 (that is, 6 on the
�100 to +100 scale) rather than �P = 0.5 (50 on the �100 to +100 scale).

The problem that concerns me was pointed out in slightly different terms by Bar-
bara Spellman (1996a). Consider the causal process, the mechanism, in the experi-
ment. The real causal process was that, with the help of a randomizer, the subjects’
choice of camouflage/not-camouflage caused the tank icon to pass/not pass the
minefield icons, and the intermediate data structure that produced passing/not pass-
ing the minefield icons also produced, deterministically, the appearance/absence of
the plane. This set-up had consequences the authors did not note, in particular in
the experiment, camouflage/not camouflage and plane appearance/absence are sta-
tistically dependent, and camouflage/not camouflage is independent of passing/not
passing through the minefield conditional on appearance/absence of plane.

The causal process as it appeared to the subjects, initially, however, looked
something like this:
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The cover story and context made the subjects assume that the plane’s appear-
ance or absence was a cause, not an effect, of the tank passing or not passing the
minefield. By 40 trials the subjects appear to have learned that camouflage state
and passing/not passing the minefield are independent conditional on plane pres-
ence/absence. Subjects were not asked to give their picture of the causal relations,
but the only causal pictures consistent with experimental cover story and context
forced on the subject, and with the probabilities the trials exhibited, are

or more likely:

If the subjects had the second of these pictures, or if they understood ‘effectiveness
of camouflage’ to mean something like, ‘effectiveness controlling for other causes’
and had the first of these pictures, then their mean answer was nearly optimal.

Unless psychological experimenters have the right picture of the causal mech-
anism and its connection with the frequencies that subjects observe, and a correct
picture of how the problem of causal inference should appear to their subjects,
results about human deviation from ‘norms’ are apt to be nonsense.

6. Parameters, Networks and Psychological Theories

As in Baumrind’s example, the simple network representation behind models of
causal mechanisms is usually hidden by equations, or parameters, or informal
descriptions. Revealing that structure can illuminate the hypothesis and remove
confusions, as in Baumrind’s and Baker’s examples but it can also sometimes pro-
vide generalizations and reveal important implications of a theory. An interesting
illustration of the power of the graphical, or network, representation is afforded by
applying it to Patricia Cheng’s (1997) theory of human causal judgement.
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Suppose e has a cause i, and let a represent all other causes of e. Assume e does
not occur unless at least one of its causes occurs. Cheng reasons that the probability
that e occurs given that i occurs is the probability that i causes e given that i occurs,
plus the probability that a occurs given that i occurs times the probability that a
causes e given that a occurs and i occurs, minus the probability that a occurs given
that i occurs times the probability that both a and i cause e given that a and i both
occur. She assumes the probability – for reasons that will be clear later, I denote it
P(qae) – that a causes e given that a occurs is independent of whether i occurs, and
likewise the probability, P (qie), that i causes e given that i occurs is independent of
whether a occurs, and, further, that the probability P (qaie) that a and i both cause
e given that both occur equals P (qae)P (qie). Hence she derives

prob(e = 1ji = 1) =

P (qie) + P (qae)prob(a = 1ji = 1)� P (qie)P (qae)prob(a = 1ji = 1) (1)

which shows immediately that P(qie) is a conditional probability, specifically the
probability that e occurs given that i occurs and a does not occur. Cheng ’s model
of the power of a cause i to produce an effect e is, in this setting, the probability of
e given that i occurs and that no other cause of e occurs.

When i = 0

prob(e = 1ji = 0) =

P (qae)prob(a = 1ji = 0) (2)

Now if a and i are independent, she deduces

prob(e = 1ji = 1) = P (qie) + P (qae)prob (a = 1)�

P (qie)P (qae)prob(a = 1)

and

prob(e = 1ji = 0) = P (qae)prob(a = 1)

Hence

�P = prob(e = 1ji = 1)� prob(e = 1ji = 0) =

P (qie)� P (qie)P (qae)prob(a = 1) (3)

and finally

P (qie) =
�P

1� Prob(e = 1ji = 0)
(4)

Surprisingly, under these assumptions, if a and i are independent, the probability
that e occurs given that i occurs and a does not can be estimated without observing
the value of a. Cheng reviews a great deal of evidence that in problems in which
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subjects are asked to estimate the power of a facilitating (rather than inhibiting)
cause i, and they are given reason to think i and all other causes a, of e, are
independent, they estimate P(qie).4

Cheng’s is a theory, one of the few I know of, that at least for special cases –
binary variables and direct causes of an effect – addresses the subject’s model of
causal structure, the relations of that causal structure to probabilities, and the aim of
judgements of causal power. And, more to the good, it does not require of subjects
extraordinary computational powers, tacit or explicit. The aim it supposes has a
natural justification: the probability that e = 1 given i = 1 and all other causes a are
absent does not depend on the frequency of other causes a, and so does not depend
on the base rate of e, and can be extrapolated across contexts in which base rates
differ. That is a useful and interesting property. Cheng gives the following example:
suppose in an otherwise homogeneous population the probability of lung cancer
among smokers is 0.95, while the probability of lung cancer among non-smokers is
0.9. Then if�P were the measure of power of smoking to produce lung cancer, that
value would be 0.05. on a scale that goes from 0 to 1. But P (qsmoking;lungcancer) =
0.5 on a similar scale. Which is the more informative quantity? Suppose you learn
that everyone in the homogeneous population was regularly exposed to asbestos?

O.K. so what’s the connection between directed acyclic graphs and Cheng’s
model, and why is it important? No directed graphs are mentioned in Cheng’s
papers, there is nothing of the Markov condition or Faithfulness or any of that.
The connection is that Cheng’s model turns out to be a kind of directed acyclic
graphical model known in the computer science literature as a ‘noisy or gate.5

The importance of the connection is that once it is recognized, a little mathematics
enables the formulation of a considerably more general theory – or, put another
way, permits us to draw consequences and make computations for much more
complex instances of her model.

In Cheng’s model, i is a cause of e and a represents all other causes, assumed
unobserved. So there is an obvious graph in her simplest model in which i and a
are independent.

i a
qie & . qaee

The noisy or gate is given by the equation

e = iqie

M
aqae (5)

where e, i, a, qie, qae are binary variables and the
L

is Boolean addition. Assume
fi, a, qie, qaeg to be jointly independent. Then for the noisy or gate,

P (e = 1)� P (iqie
M

aqae = 1) = P (i = 1)P (qie = 1) + P (a = 1)P (qae = 1)

�P (a = 1)P (qae = 1)P (i = 1)P (qie = 1):
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The parameter P (qi = 1), for example can be estimated by

P (qie = 1) = P (e = 1ji = 1; a = 0)

or, when a is unobserved, by Cheng’s formula,

P (qie) =
�P

1� Prob(e = 1ji = 0)
(6)

Cheng’s model of human judgment of positive causation just is a directed acyclic
graph parameterized as a noisy-or-gate.

So what?

7. Generalizations and Implications

Cheng and her collaborators, her former student, Spellman, and increasingly oth-
ers as well, have emphasized the possibility that in problems with more than one
potential cause, subjects judgements of causal efficacy focus on conditional con-
tingencies, as in the Baker example. But, as Spellman and Cheng both note, to
understand what subjects are doing, and to understand what they are doing right
and what they are doing wrong, we must understand which conditional probabilities
are people assessing when they answer questions about causal efficacy, and why
they ought to assess some conditional probabilities rather than others. For example,
consider judging the power of X to influence Z in the following alternative causal
systems in which U represents unobserved causes of Z:

.

What does Cheng’s model imply about how causal power is estimated in these
cases? The graphical representation with noisy or-gate parametrization reveals
ambiguities in the question, and permits a general solution.

Consider case (ii). The noisy or gate equations are:

Z = Xqxz + Y qvz + Uquz

X = Y qyx

The causal power of to produce Z is the probability that Z = 1 given thatX = 1, Y =
0 and U = 0. But the second equation above implies that if Y = 0 then X = 0, so this
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probability is undefined. In case (ii), the parameter P (qxz) is not this probability
at all but rather the probability that Z = 1 given that Y = 0 and U = 0 and given
an intervention to bring about X = 1. An intervention that forces the value 1 on
X, regardless of the value of Y, transforms the causal structure of case (ii) into the
causal structure of case (i). In case (i) the probability (of Z = 1, etc.) conditional on
X = 1 is equal to the probability given an intervention to bring about X = 1, but in
case ii the quantities are distinct. A general theory of the transformations of causal
structures and probabilities under ideal interventions is given in Spirtes (1993) and
Pearl (1995).

Cases iv and vii pose another difficulty. Cheng’s measure of the causal power of
X to produce Y – the probability that Z =1 given (an intervention to produce) X =
1 and all other causes of Z have value 0 – is necessarily zero in case vii, because X
only influences Z through effects of X (namely W and Y), which in turn are causes
of Z. That suggests that an alternative measure of the causal power of X to produce
Z might be the probability that Z = 1 given that X = 1 and that all other causes of
X that are not effects of X are 0. Call the original measure direct causal power and
the new measure total causal power. In case iv, the two measures of causal power
are distinct, but both non-zero. In these cases any simple request for a judgment of
causal power is ambiguous. In the other cases the two measures are equal.

The noisy or gate representation permits us to estimate both the total and the
direct causal power in a broad class of cases including these seven:

Proposition: Consider any directed acyclic graph, parameterized as a noisy or
gate, representing the mechanism involving c and e, and having no unobserved
variable u with two non-intersecting paths from u respectively to c and e.
Consider each directed path (each causal pathway) from c to e. Form the
product of the q coefficients associated with the links on each path, then take
the Boolean sum of these products over all paths from c to e. The probability
of that Boolean sum is the total causal power of c to produce e, that is, the
parameter whose value is the probability of e given an intervention to bring
about c, and given that all other causes of e, that are not themselves effects
of c, are absent. That probability is given by the generalization of Cheng’s
formula (4), using on the r.h.s. probabilities conditional on the absence of all
observed causes of e that are not effects of c.

Cheng’s original estimation formula, conditionalized, remains correct for total
causal power, but then estimates an algebraic combination of noisy or gate param-
eters. The reader familiar with linear models will note the similarity between the
rule for compounded noisy or gates, and the rules for calculating effects in path
analysis.

Under the same assumptions, the direct causal power of c to produce e can be
calculated as in the Proposition, but by deleting the phrase ‘that are not effects of
c’ in the last sentence. The proposition may be clarified by computing the total
causal power for an example:
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The causes of e that are not effects of c are f, h and g. According to the proposition
the total causal power of c to bring about e is:

P (e = 1jf = 0; g = 0; h = 0; c = 1 by intervention,) = P (qcbqbe
M

qcdqde = 1)

= [P (e=1jc=1; h=0)� P (e=1jc=0; h=0)]=(1 � P (e=1jc=0; h=0)]:

The r.h.s. of this equation is conditioned on h=0 because h is an observed cause of
e but not a descendant of e. Recall that by the convention used in directed graphs,
f and g are independent of c. Here is a derivation:

e = qgg
M

qbb
M

qdd

= qgg
M

qb(qff
M

qcbc)
M

qdqhh
M

qdqcdc

= (qgg
M

qbqff
M

qdqhh)
M

C(qbqcb
M

qdqcd)

When c = 1 by intervention, and h = 0:

e = (qgg
M

qbqff)
M

(qbqcb
M

qdqcd)

When c = 0 and h = 0:

e = qgg
M

qbqff

Let �Ph=0 = P (e = 1jc = 1 by intervention, h = 0)� P (e = 1jc = 0; h = 0)
Then

�Ph=0 = P (qbqcb
M

qdqcd)� P (qgg
M

qbqff) � P (qbqcb
M

qdqcd)

= P (qbqcb
M

qcdqd)(1� P (e = 1jc = 0; h = 0)]:

Cases with unobserved causes of observed cause and effect are not covered by the
proposition given above, but the graphical, noisy or gate representation shows that
Cheng’s theory has implications for them.

.

In case (x) the causal power of X to produce Y cannot be calculated; I do not
know if it can be calculated in case (ix); in case viii it can be calculated and equals

P (Z = 1jX = 1; V = 0; U = 0) = P (qXZ) =

P (Z = 1jX = 1;W = 0)� P (Z = 1jX = 0;W = 0)
1� Prob(Z = 1jX = 0;W = 0)

where ‘X=1’ means ‘by intervention.’
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8. Still More General Generalizations

Cheng’s model assumes causes and effects have only two values: present or absent.
But in some contexts causes may have no natural ‘absent’ value: consider height
and weight of persons. When several such causes contribute to an effect, it may not
make sense to ask for the power of a particular cause, c, to produce effect e when
all other causes are absent, or even to ask for the causal power of a particular value
of c to produce a particular value of e when all other causes are absent. In these
settings, however, we can still consider the average or expected probability of e
(or a particular value of e) given an intervention to bring about c (or a particular
value of c). This measure – call it �I – does not condition on the absence of other
causes of e besides c, but instead averages over their values. Unlike Cheng’s, this
measure is obviously not invariant over contexts in which the frequencies of other
(besides c) causes of e vary, but in any context in which those frequencies are
reasonably stable, the measure, when it can be estimated, gives a more accurate
prediction of the results of an ideal intervention, and fits more closely with both
intuition and scientific practice, than the �P so nearly ubiquitous is psychology.

There is a general theory about how to compute �I (Sprites, et al, 1993; Pearl,
1995).�I can be computed for each of the causal systems illustrated above, except
for structure x. �I is not in general equal to �P conditional on any set of observed
variables. For example,�I can be computed for structure ix but is not equal to any
conditional contingency.

9. Unexamined Psychological Questions

There are distinct aspects to learning causes: on the one hand, learning the structure,
or topology of the causal graph, what causes what; and, on the other hand, learning
the parametrization associated with the causal structure. An intelligent system
learning about the world must learn both, because the parametrizations have no
sense without the causal topology. Of course the two might in fact be learned
together, or aspects of either might be already known to the learner, who needs
only a sufficient completion of the causal story, which may require more knowledge
of the causal graph and more knowledge of the parameters. A central question in
cognitive psychology therefore ought to be how humans are able to learn both the
causal structure and its parametrization, or aspects of the two together.

That question has two particular versions:

(1) Given background knowledge about the causal structure or topology, how do
people judge – and learn – the causal power or efficacy of an indirect cause –
direct or total – which may be confounded with the effect by various common
causes, and which may influence the effect through several mechanisms or
pathways in the causal graph?

(2) Given limited knowledge about the causal structure or topology, how do people
use observations of associations to expand that knowledge?
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As to the first of these questions, there are experiments that support the hypothesis
that people estimate causal power in accord with Cheng’s model in cases (i) and (ii)
above, but what happens (when the aim of judgement is disambiguated between
direct and total causal power) in cases such as (iv) through (ix) does not seem to
be known.

The second question has been addressed, but in a remarkably limited way.
The psychological literature focuses on experiments that provide the subject with
sufficient context – sufficient prior knowledge about causal structure, that only the
value of a single parameter remains to be learned. Typically, some special value of
that parameter corresponds to the absence of a single edge in the causal graph, an
edge whose direction, if it exists, is already known to the subject. This may in fact
be the only way humans extend their knowledge of causal structure, or it may not.
It is certainly not the only possible way.

Consider the following example: data are available on the associations of four
variables X, Y, Z, W. Nothing is otherwise known about the time order or causal
relations among these variables, except that the values of these variables for a unit
did not influence whether the unit was sampled. Suppose the associations show the
following pattern:

X and Y are independent

X and Y are independent of W conditional on Z

No other independencies hold

Then, under the assumptions previously discussed, it follows necessarily that Z
causes W. That is, every directed graph (and probability distribution), together
satisfying the Markov and Faithfulness conditions, and which implies the three
features just listed, contains a directed edge

Z� > W:

It doesn’t matter whether the graph does or does not contain unobserved common
causes of any pair of X, Y, Z, W, it must contain the edge from Z to W.

Or consider the following example: data are available on the associations of
four variables X, Y, Z, W. Nothing is otherwise known about the time order or
causal relations among these variables, except that for no unit did the values of
these variables influence whether the unit was sampled. Suppose the associations
show the following pattern:

X is independent of fZ,Wg

W is independent of fX,Yg

No other independencies hold

Then, under the assumptions previously discussed, it follows necessarily that there
is a common cause of Y and Z other than X or W. That is, every directed graph
and probability distribution, together satisfying the Markov and Faithfulness con-
ditions, which implies the three features just listed contains another vertex, call it
U, and a pair of directed paths from U to Y and to Z.
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These simple examples illustrate that associations alone, under appropriate
assumptions, sometimes suffice to determine causal connection, the direction of
causation, and even the presence of unobserved or unnoticed causes. With stronger
assumptions about prior knowledge, still more can be learned from the patterns
of independencies and dependencies. For example, if it is known that there are
no unobserved common causes of measured variables, then everything about the
causal graph can be learned, except that any two graphs that have all of the same
‘unshielded collider’ structures – for example,

X ! Y  Z

will be indistinguishable. For example, without the use of any prior causal infor-
mation, computer algorithms are able to infer from associations most of a model
of an emergency medical system show below (taken from Beinlich et al., 1989)

KEY:

1 – central venous pressure 20 – insufficient anesthesia or analgesia
2 – pulmonary capillary wedge pressure 21 – pulmonary embolus
3 – history of left ventricular failure 22 – intubation status
4 – total peripheral resistance 23 – kinked ventilation tube
5 – blood pressure 24 – disconnected ventilatio tube
6 – cardiac output 25 – left-ventricular end-diastolic volume
7 – heart rate obtained from blood pressure 26 – stroke volume monitor
8 – heart rate obtained from electrocardiogram 27 – catecholamine level
9 – heart rate obtained from oximeter 28 – error in heart rate reading due to low cardiac

output
10 – pulmonary artery pressure 29 – true heart rate
11 – arterial-blood oxygen saturation 30 – error in heart rate reading due to electro-

cautery device
12 – fraction of oxygen in inspired gas 31 – shunt
13 – ventilation pressure 32 – pulmonary-artery oxygen saturation
14 – carbon-dioxide content of expired gas 33 – arterial carbon-dioxide content
15 – minute volume, measured 34 – alveolar ventilation
16 – minute volume, calculated 35 – pulmonary ventilation
17 – hypovolemia 36 – ventilation measured at endotracheal tube
18 – left-ventricular failure 37 – minute ventilation measured at the
19 – anaphylaxis ventilator
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The causal graph encodes the conditional independencies that the experts spec-
ified among these variables; the search algorithms find the graphs that explain the
resulting patterns in the data.

There are a number of algorithms in the computer science literature, using a
variety of techniques, that recover causal structure from associations by taking
advantage of these relationships between causal structure and patterns of con-
straints on association. The computational complexity of the procedures depends
on the complexity of connections in the causal graph generating the data – strictly,
on how many parents each variable has, on average. For sparse graphs the proce-
dures are very fast, and with good data can recover a great deal of structure quite
reliably. Whether humans can do the same, at least in simple cases, is essentially
unknown. Only one experiment has been reported. Hashem and Cooper, 1996, gave
medical students information about associations for a variety of cases involving
two and three binary variables, described as disease or gender features. The subjects
were asked, essentially, to recover the causal graph from the associations, and their
responses were compared with those of a Bayesian inference algorithm using the
same associations. The subjects did poorly in problems with three variables, but the
result is uncertain for two reasons. First, because of sample size and the exclusive
use of binary variables, spurious near-independencies held in the data given the
subjects, so that in important cases the Bayesian search algorithm performed com-
parably poorly. Second, a lot of experience in psychological experiments suggests
that humans do much better with frequency and independence judgements when
they are not given numbers, but instead actually observe the events or can see the
frequencies displayed graphically, or both.

Besides association and short of experimental intervention, the cue to causation
most commonly available to us is the order of occurrence of events. Causes do not
come after effects. Knowledge of time order considerably speeds up algorithmic
search for structure and increases the reliability of output as well. Perhaps more
important for understanding human inference, knowledge of time order may com-
pensate for circumstances in our environment in which the Faithfulness assump-
tion does not hold. It may be that for many of the causal relations of everyday
life, relationships among observed features or variables are nearly deterministic.
Faithfulness fails to hold in many deterministic systems, for technical reasons I will
pass by. But when time order is known, the Faithfulness assumption is not needed
for inference to causal structure in systems of deterministically related observed
variables; in those contexts Faithfulness can be replaced by the weaker assump-
tion that multiple mechanisms relating two variables do not perfectly cancel one
another.

10. Conclusion

For computers anyway, there is an answer to the puzzle posed by Shanks’ claim
that causes are learned from associations. The answer–algorithms that represent
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causal structure by networks or directed graphs and infer aspects of that structure
from data about frequencies, relying on very broad assumptions connecting causal
structure with conditional probabilities–raises a host of unexamined issues for
experimental psychology. The same representation also provides a mathematical
tool for generalizing and analyzing leading theories of human Judgement of causal
power, provides the means to see and articulate important distinctions about causal
influence – distinctions that, if not recognized, easily lead to erroneous interpreta-
tions of psychological experiments – and provides a coherent norm against which
to measure human judgement.

Notes

1I thank Patricia Cheng for several months of illuminating conversation on the subject of this paper,
and Alison Gopnik for bringing Cheng’s work to my attention. Section 2 of this paper borrows from
Glymour and Cheng, in press. Most of this paper was written while I was a Fellow of the Center
for Advanced Study in the Behavioral Sciences, supported by a grant from the Andrew Mellon
Foundation.
2Without correlated errors, which typically can be treated as the effect of unobserved latents, following
Simon. Work in the last two years by Peter Spirtes and Thomas Richardson has shown that a
generalization of the Markov condition, due to Judea Pearl, also applies to ‘non-recursive’ structural
equation models.
3Further, if (i) causation is transitive (and of course irreflexive), (ii) for every value y of an effect
variable Y, there is some set of values of the causes of Y that determine the value y, and (iii) if U is
a parent of X, then for any set of values of all other parents of X, X is a non-constant function of U,
and (iv) every variable in a causally sufficient set S has a cause not in S, and the probability measure
is strictly positive, then the probability measure is faithful to the graph for S.
4Cheng provides an analogous, equally well motivated, analysis of the power of inhibiting causes
and evidence that subjects in appropriate circumstances estimate it, but I will not explore it here.
5The connection was pointed out to me by Peter Spirtes.
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