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When is a statistical dependency between two variables best explained by the supposition that one 
of these variables causes the other, as opposed to the supposition that there is a (possibly 
unmeasured) common cause acting on both variables? In this paper, we describe an approach 
towards model specification developed more fully in our book Discovering Cuud Structure, and 
illustrate its application to the aforementioned question. Briefly, the approach is to determine 
constraints satisfied by the variance-covariance matrix of a sample, and then to conduct a 
quasi-automated search for the causal specifications that will best explain those constraints, 

1. Introduction 

One of the most immediate and elementary questions about causal relations 
in non-experimental or quasi-experimental data is this: when is a statistical 
dependency between two variables best explained by the supposition that one 
of these variables acts as a cause of the other, and when is such a dependency 
instead best explained by the supposition that there is a common cause acting 
on both variables? When should a common cause that is itself unmeasured (or 
‘latent’) be postulated? If the dependency is to be explained by the assumption 
that one of the measured variables has a causal influence on the other, how in 
the absence of prior information about that order can it be determined which 
of the measured variables is the cause and which is the effect? 

These questions are implicit in many theoretical and applied studies in 
econometrics. When, for example, a study of the British economy neglects 
variables that were unmeasured in British studies but were known to be 
relevant in American studies, one wonders whether such variables should not 
appear as latent in econometric models of the British case [see Klein (1961) for 
an example]. Granger’s work offers theoretical examples. He provides an 
analysis of causation for time-series data in terms of predictability [Granger 
(1969)]. For two stationary series, x(t) and y(t), and background knowledge 
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D, exclusive of the series x(t), Granger’s analysis is that x causes y if and 
only if the history of the x series together with D provides a least-squares 
predictor of the series y with smaller variance than the best least-squares 
predictor conditioned on D alone. Granger’s proposal is reminiscent of the 
notion of prima facie causality found in Suppes (1970): x is a prima facie 
cause of y if x precedes y in time and Prob( y/x) > Prob(y). Prima facie 
causality is not causality, as Suppes noted, because the statistical dependence 
of y on x may be due to the action of some third factor, z, and when 
conditioned on z, x and y may be statistically independent. Granger’s 
analysis specifically includes the background D, but if D does not include 
relevant variables, Granger causality may be as spurious as Suppes’ prima 
facie causality. Granger noted this feature of his own definition: 

‘The definition of causality is now relative to the set D. If relevant data 
has not been included in this set, then spurious causality could arise. For 
instance, if the set D was taken to consist only of the two series X, and 
Y,, but in fact there was a third series Z, which was causing both within 
the enlarged set D’ = (X,, Y,, Z,), then for the original set D spurious 
causality between X, and Y, may be found. This is similar to spurious 
correlation and partial correlation between sets of data that arise when 
some other statistical variable of importance has not been included.’ 

Evidently it would be important and useful to have statistical criteria that 
indicate when correlations or autocorrelations among measured variables are 
best explained by common causes, even by unmeasured or latent common 
causes. 

Granger did not claim that his account of causality for time series specifies 
the only context in which causal explanations are appropriate. Although he 
argues persuasively (see his contribution to this issue of the Journal of 
Econometrics) that instantaneous causality has no role in econometrics, it 
remains the case that for some bodies of economic and other social scientific 
data no time order is known. Granger’s or Suppes’ or some other account of 
causality that makes use of time order may truly describe the process that 
generates such data, but if the time order is not known, the accounts 
themselves cannot be used to determine the causal relationships among the 
variables. Even in these cases, a causal explanation is generally wanted. For 
example, questions about the direction of a causal relation arise in the use of 
regression models for data not ordered by time. In these cases regression of 
measured variables on measured variables often presupposes a causal ordering 
that is usually not tested even indirectly, and it is natural to seek strategies for 
determining the direction of causality from data and from background as- 
sumptions. The same questions arise if one rejects probabilistic analyses of 
causality altogether and instead endorses the sort of counterfactual analyses of 
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causality that have for some time been popular in the philosophical literature 
[see Lewis (1973)] and are gaining currency among statisticians [see Holland 
(1985)]. 

The aim of this paper is to describe an approach towards model specifica- 
tion that we have developed more fully in our book (with R. Scheines and K. 
Kelly, Discowring Causal Structure), a strategy that is partially implemented 
in the TETRAD program which accompanies that book and to illustrate its 
application to the kinds of questions that have just been raised. In briefest 
form, the approach is to determine constraints satisfied by the variance- 
covariance matrix of a sample and then to conduct a quasi-automated search 
for the causal specifications that will best explain those constraints. We apply 
to social scientific data and theory construction the same sensibilities about 
good scientific explanation that have contributed to the historical successes of 
the natural sciences. 

This paper describes some patterns of measured correlations or autocorrela- 
tions that indicate when apparent causal dependencies in static or longitudinal 
data may be spurious and due to neglected variables. We also describe some 
circumstances in which background information and data determine that 
statistical dependencies are best explained by direct effects among measured 
variables and determine the order of the causal relationship. The larger 
purpose of this paper is to describe a program of research aimed at searching 
for other patterns of the same kind. To that end we raise a number of central 
mathematical questions that remain open. While our illustrations are not from 
time-series models, we describe the problems and prospects for extending our 
methods to such models. 

2. Scientific explanation and latent variables 

Any theory based on the conclusion that correlations or autocorrelations of 
measured variables are due to some unmeasured cause will contain unmea- 
sured, or latent, variables other than error terms. Although latent variables 
have found a role in econometric discussions [Aigner (1977)], their value is 
often disputed by social scientists. If correlations are attributed to some latent 
variable or variables, one typically will not know what those variables are, or 
how to measure them directly or manipulate them. Models that contain such 
variables may therefore seem of limited use in forecasting or in controlling 
dependent variables. 

Nonetheless, provided there are no computational difficulties involved, one 
is always better off in forecasting and control with a correct model than with 
an incorrect one, or with a better approximation than with a worse. If 
measured correlations or autocorrelations are due to unmeasured common 
causes, one cannot be the worse off for knowing as much, or for considering 
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models that are in accord with this conclusion. In the natural sciences, the 
discovery that a regularity can be explained by introducing an unmeasured 
factor is a basis for scientific progress; the factor is investigated, methods of 
measuring it are pursued, generalizations are developed about its properties 
and relations. The same procedures deserve a place in econometrics and other 
social sciences. 

The importance of unmeasured variables in the natural sciences is in the 
first instances for explanation. Sometimes the introduction of latent or ‘theo- 
retical’ quantities enables us to explain regularities among measured variables 
in a powerful way. The history of science is full of examples. Atoms and their 
weights enabled 19th century chemists to explain empirical laws about chem- 
ical combination, about vapor densities, about specific heats, and a variety of 
other phenomena. The motions of the planets and the earth in three-dimen- 
sional space around the sun could not be observed by Copernicans, but the 
hypothesis of such motions enabled them to explain a variety of regularities 
about the apparent motion of the planets on the celestial sphere. In the long 
run, good explanation leads to good prediction. Copernican theory, introduced 
originally for its explanatory properties, led to new and correct predictions of 
the phases of Venus, the apparent motion of ‘fixed’ stars, and other phenom- 
ena. By the end of the 19th century the atomic theory had generated a wealth 
of new predictions and further explanations. 

There is nothing mysterious about ‘latent’ variables: they are simply vari- 
ables that, for whatever reason, one failed to measure. They are not necessarily 
‘unobservable’, whatever that means; they are variables that were not in fact 
observed, for whatever reason. Empirical studies in the social sciences are 
almost always confined to a restricted set of variables, and one can almost 
always think of potentially relevant variables that were not measured in any 
given study. Any policy that rejects all theories containing latent variables is a 
policy that ignores the reality of social scientific data collection and confines 
us to explanations that are often known to be erroneous. The only real 
objection to theories with latent variables is that researchers are unclear as to 
when such variables should or should not be introduced. The natural sciences 
provide some guidance about that question. 

3. Explanation and parameters 

What makes for a good scientific explanation? We suggest that one im- 
portant criterion is that a theory be able to account for patterns in the data 
and that it do so without specifying particular, accidental values of adjustable 
parameters. Such a criterion has had a powerful role in the history of the 
natural sciences. The principal argument Kepler gave for the superiority of 
Copemican to Ptolemaic astronomy was that Ptolemy’s theory requires specific 
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values of adjustable parameters to save the phenomena and Copernican theory 
does not. Arthur Eddington gave exactly the same argument for the superior- 
ity of General Relativity to Newtonian celestial dynamics. Richard Feynman’s 
autobiography describes his abandonment of a theory of his own, even though 
it saved various phenomena, because it did so only by adjusting too many 
arbitrary parameters. The same view has a long history in psychometrics; it 
was the principal methodological tool of one of the founders of the subject, 
Charles Spearman. 

A more philosophical version of the same idea is that explanation consists 
on the reduction of contingency. A good explanation is one that shows that 
feature of the data that appears arbitrary, and seems as though it could easily 
have been otherwise, could not easily have been otherwise. 

We apply this same sensibility to linear models of non-experimental data. 
The theories we consider include path analytic models, ‘structural equation’ 
models, factor models, ARMA models, and linear transfer models. We locate 
patterns of correlations or autocorrelations that can be explained by some 

models no matter what the values of the free parameters in these models. The 
patterns are in fact traditionally described in the econometrics literature as 
oueridenti@ng constraints. We claim that models that explain overidentifying 
constraints in this robust way are preferable to models that can only be fitted 
to the constraints by specifying particular values of the linear coefficients, 
variances, etc. that occur in their equations. In various cases, the models that 
robustly explain patterns in the data must contain latent variables. 

It turns out that models that robustly explain overidentifying constraints 
generate those constraints entirely from the assumption of linearity and the 
causal structure the model assumes. 

Unfortunately, our techniques do not work on non-linear models, and hence 
should only be applied after a researcher has some reason to believe that the 
relationships between variables are at least approximately linear. 

4. Linear models and directed graphs 

It is a common practice in econometrics to represent linear models by 
graphs. See, for example, Ancot and Duru (1984), Boutillier (1984) Gaberly 
and Gilli (1977), Fontela and Gabus (1974), Fontela and Gilli (1977), Gilli 
and Rossier (1981), and Warfield (1976). The methods we use to establish 
connections between latent variables and overidentifying constraints are 
graph-theoretic, and so we begin by describing the relations between directed 
graphs and linear stochastic models. We consider the ‘static’ case, which may 
contain lagged variables, but in which all variables, lags included, are treated 
as random variables from a single multivariate distribution. 
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Consider any linear model given by a simultaneous set of linear stochastic 
equations for the k th population unit by 

(1) Xi = CaOXj + ei , 

where the matrix aij is random, possibly with some components constant, and 
all components are independently distributed. Many additive statistical mod- 
els used in the social sciences are specializations of this general model, 
obtained by adding constraints of the alj matrix, the vector e,, the covariances 
of Xj. and ei, and on the distributions of these several parameters for distinct 
individuals in the population. 

We consider models that extend (I) not only by adding further distribution 
assumptions of various kinds, but also by adding a further independent 
mathematical structure, a directed graph. The vertices of the graph are vari- 
ables of the model, and a directed edge (Xi, X,) from variable X, to Xj is 
understood as the causal hypothesis that a variation in Xi, with all other 
variables (save X,) held constant, produces a linear variation in Xj that is not 
mediated by any other variable in the system. We also permit the graph to 
contain undirected edges, which signify a covariance that is given no particular 
causal interpretation. We assume classes of linear models to be paired with 
graphs in such a way that much of the structure shared by linear models of the 
class can be recovered from the directed graph alone. In particular, the pairing 
is such that the structure of the matrix aij and any zero covariances of the 
e, variables can be recovered from the directed graph. Such a pairing can 
be obtained from two simple principles that use only very elementary graph- 
theoretic ideas. 

We say that the indegree of a vertex or variable in a graph is the number of 
edges directed into it, the outdegree the number of edges directed out of it. 
Two vertices connected by a directed edge are said to be adjacent. A path is a 
sequence of directed edges such that the second vertex in the n th member of 
the sequence is the first vertex of the n + 1 member of the sequence, if there is 
an n + 1 member. The source for a path is the first vertex of the first directed 
edge in the path; the sink of a path is the second vertex in the last directed 
edge in the path. A path is cyclic if it contains a subpath whose first and last 
vertices are the same. Otherwise it is acyclic. A graph is cyclic or acyclic 
accordingly as it does or does not contain a cyclic path. A trek between x and y 
is either an acyclic path from x to y, an acyclic path from y to x, or a pair of 
acyclic paths with the same source, whose sinks are x and y, respectively, and 
which intersect only at the source. The digraph form of a graph containing one 
or more undirected edges is the graph obtained by replacing each undirected 
edge with a new vertex and a directed edge from that new vertex to each of the 
vertices connected by the original undirected edge. Two vertices in a graph are 
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trek-connected if and only if the digraph form of the graph contains a trek 
between them. 

._’ I 

Now the pairing of graphs and linear models is obtained by two principles 
that permit one to associate a class of linear models with the digraph form of a 
graph: 

1. Every variable Xi has aij = 0 and constant if and only if there is no 
directed edge from X, to X;. 

2. Two variables that are not trek-connected are statistically independent. 

These principles do not determine whether the non-zero aij are random or 
constant, they do not determine whether the error variables are heteroscedas- 
tic, nor do they determine whether a variable for one population unit is 
correlated with that variable for another population unit. Thus a graph is 
consistent with many alternative further specifications. 

Henceforth, when we speak of a ‘model’ we will mean a graph, and any 
further set of specifications consistent with the graph and the two principles 
just stated. We will consider only graphs with the following property: 

Every vertex not of zero indegree is adjacent to a vertex of zero indegree and 
unit outdegree. 

This is the graph-theoretic version of the assumption that every endogenous 
variable has a unique exogenous source of variance, or ‘error’ source. 

5. Explanation, resiliency and overidentifying constraints 

Our purpose is to describe relations between over-identifying constraints and 
the existence of latent variables. By an overidentifying constraint we shall 
mean any constraint on the population correlation or autocorrelation matrix. 
A linear model it4 implies an overidentifying constraint provided the con- 
straint is entailed by every set of values of the random coefficients in every 
model M’ differing from M at most in the values of the coefficients aij that 
are not specified to be zero and constant in M. We will say that a model 
positively implies an over-identifying constraint if it implies the constraint when 
only positive values of the coefficients are considered. 

If a model implies an overidentifying constraint that does in fact hold in the 
population, and is satisfied approximately in a sample, then the model 
provides an explanation of that feature of the population and the sample. We 
have two fundamental methodological assumptions: 

. Other things being equal, a model that implies empirically satisfied con- 
straints is preferable to a model that does not have such implications. 
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. Other things being equal, a model that does not imply (or if the coefficients 
are known to be positive, positively imply) constraints that are not satisfied 
by the data is preferable to a model that does imply (or positively imply) 
such constraints. 

Some models may yield correlations that agree with their constraints only for 
particular values of their non-zero coefficients, while other preferable models 
may imply the constraints for all values of their linear coefficients. Other 
things equal, we regard the second sort of explanation as preferable. Our view 
implies that in linear models zero coefficients, which indicate no direct causal 
connection between a pair of variables, have a special status. The justification 
of that view is natural but not rigorous. On the one hand, if zero were not 
regarded as special, then any system of linear equations would be indefinite, 
because to any equation an unbounded sequence of dependencies on other 
variables, but with zero coefficients, could be added. Physical theories are not 
regarded as having such commitments, and it therefore seems unreasonable 
and unpromising to make social theories so indefinite. Further, a zero coeffi- 
cient represents more than just a particular value on a scale; in linear causal 
models it marks an important qualitative distinction between pairs of variables 
that have a direct effect one on the other and pairs of variables that are not so 
connected. Finally, as we noted earlier, the preference is justified by a history 
of successful practice in the natural sciences. 

We will consider several kinds of overidentifying constraints on the popula- 
tion covariance matrix, including vanishing partial correlations, vanishing 
tetrad differences, positive partial correlations, and positive tetrad differences. 
(The only type of partial correlation constraints that TETRAD calculates are 
those in which only one variable is held constant, i.e., of the form p,, k. We 
will also denote the correlation of xi and x, as p,,.) 

The partial correlation of X,, X, with respect to X, is 

Pi, - pikpjk 

Pij.k = (I _ p;k)1/2(l _ p;k)1’2 ’ 

A tetrad difference is just the determinant of a 2 X 2 submatrix of the 
covariance matrix: 

Two forms of constraint on the covariance (or correlation) matrix are obtained 
by specifying either that a tetrad difference or partial correlation vanishes. 
Constraints in the form of inequalities can be obtained by specifying that a 
partial correlation or tetrad difference is positive, or that one partial correla- 
tion is greater than another, or that one tetrad difference is greater than 
another. Constraints of each of these kinds can be implied, or positively 
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implied, by appropriate linear models. There are many other forms of con- 

straint that we shall not consider here. 
Partial correlations are distributed as correlations. Fisher’s z transformation 

therefore permits an asymptotic test, based on the normal distribution, of the 
hypothesis that a partial correlation vanishes, and likewise that it is positive. 
The exact distribution of tetrad differences does not seem to be known, but the 
formula for the sampling variance of a tetrad difference was obtained by 
Wishart (1928/9). Wishart’s formula permits an asymptotic test of the hy- 
pothesis that a tetrad difference vanishes and of the hypothesis that a tetrad 
difference is positive. 

The fundamental mathematical fact upon which our methods rely is that the 
tetrad equations and vanishing partial correlations implied by a model can be 
computed from the graph of the model alone. One does not need to know the 
variances or other distributional properties of the variables in the model, only 
the causal structure hypothesized. The same is true for the positive tetrad 
differences and positive partial correlations positively implied by a model. 
Some of these facts have been known in a more or less tacit way by many 
social scientists since the twenties; the first proof and actual algorithm for 
computing the equalities is presented in Glymour et al. (1987). 

6. The basic idea 

Consider four measured variables (x1, x2, x3 and x4) and suppose the 
variables take their values at different times. Since the variables are ordered by 
time, the graph of causal relations among them cannot be cyclic. Suppose 
further that a tetrad difference vanishes, for example: 

P13P24 - P14P23 = ‘. 

Now we appeal to a mathematical fact. 

Any acylic graph of causal relations among just four variables (and their 
associated error variables) that implies a vanishing tetrad difference also implies 
a set of vanishing partial correlations. 

For example, the graph in fig. 1 implies that the tetrad difference vanishes 
and does not imply that any other tetrad difference vanishes, but it also 
implies the following set of vanishing partial correlations: 

p13.2 = p14.2 = P14.3 = P24.3 - -0. 

Now suppose that no partial correlations among the variables just listed 
does in fact vanish, and that the only tetrad difference that vanishes is 
p13p24 - p14p23 = 0. Then among models with just the four variables listed 
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Fig. 1 

above (and their associated error variables) there is no robust explanation of 
the vanishing tetrad difference that does not falsely imply that a partial 
correlation vanishes. Hence, if there is a model that does provide a robust 
explanation of the vanishing tetrad difference that holds in the data, and does 
not imply any vanishing tetrad differences or vanishing partial correlations 
that do not hold in the data, it must contain a latent variable. And as a matter 
of fact, there are models containing latent variables that do imply the 
vanishing tetrad difference that hold in the data, and do not falsely imply any 
tetrad or partial constraints that don’t hold in the data. 

7. Heuristics for model construction 

The preceding section illustrates a combination of correlation constraints 
whose respective presences and absences in the population (or sample) can 
only be explained by linear causal models that contain additional variables 
beyond those involved in the constraints. This information does not itself tell 
us much about just what sort of causal structure will imply various tetrad 
constraints but not imply various vanishing partial correlations. Fortunately, 
there are further considerations that do. 

It is easily shown that if a model implies an appropriate set of vanishing 
partial correlations, it also implies a vanishing tetrad difference. If the graph of 
a model implies that for some variable u: 

Pij.u = Pk1.u = Pik.u = Pj1.u = OT 

then the graph also implies that 

PijPk/ - PikPjl = 0. 

The converse of this claim is not true. There are models that imply a tetrad 
equation without implying a set of vanishing partial correlations that imply 
the tetrad equation. The cyclic graph in fig. 2 (in which the depiction of error 
variables is omitted for simplicity) implies a vanishing tetrad difference 
p15pz3 - pz5p13 = 0, but does not imply p+ = 0 for any distinct vertices i, j, k. 

There are also acyclic models that imply a tetrad equation without implying 
a set of vanishing partial correlations that imply the tetrad equation. The 
graph in fig. 3 implies the tetrad equation p14pz3 - pz4p13 = 0, but does not 
imply that p24,k = 0, p13,k = 0, p14,k = 0, and p23,k = 0, for any k. 
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Fig. 2. A counterexample to the converse of Theorem 4 

Note that in both of the counterexamples and in ail of the graphs that we have 
examined the following holds true: a graph G implies a tetrad equation of the 

f orm 

Pijpkl - PikPjl = 0, 

if and only if there exists a vertex q such that evety pair of treks between i and j, 
k and I, i and k, andj and 1, respectively, intersect at q. We conjecture that this 
is true for every graph. 

We have elsewhere proved the following theorem: 

In an acyclic graph, if all of the equation coe$icients are positive and every trek 
between i and j contains k, then aij,k I 0. 

If the previous conjecture is true, then every graph that implies a tetrad 
equation also implies that there exists a vertex q such that pij,q I 0, ok,,q I 0, 

oik.q 5 0, and Pj/,q 5 0. 
Thus we propose a heuristic principle, when the equation coefficients are 

known to be positive and when a tetrad difference vanishes but no measured 
partial correlations are less than or equal to 0: 

Introduce latent variables that imp& that there exists a variable q such that 

Pij.q s 0, Pkl.qj 0, Pik.q s 0, and Pjl.qs 0. 

Of course, the partial inequalities in this case will not be observed; mea- 
sured correlations occurring in the tetrad equation will be partialed on some 
latent variable. 

Fig. 3 
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8. An example 

Consider data from a longitudinal study of the performances of 799 school 
girls on the Scholastic Aptitude Test. The same cohort of students took the 
test in the 5th, 7th, 9th, and 11th grades [see Jiireskog in Magidson (1979)]. 
The variance-covariance matrix is: 

95 67.951 

97 71.01 141.578 

99 85.966 134.748 249.748 

911 97.153 151.068 218.757 300.669 

Using the TETRAD program, we compute for each possible vanishing tetrad 
difference and each possible vanishing partial correlation the probability of the 

sample difference on the hypothesis that the population difference is zero. The 
current version of TETRAD does not calculate whether a partial correlation is 
greater than zero in the population. However, since all of the sample partial 
correlations have a probability of zero given that the partial correlation in the 
population is zero, and they are all positive, we conclude that each partial 
correlation is greater than zero in the population. The relevant output is: 

Tetrad equation Residual P(diff.) 

9597, q9 qll =q5q9 ) q7qll 0.0953 0.0000 
qs 97, qll q9 = q5 qll, q7 q9 0.0917 0.0000 
q5 99, qll q7 = q5 911, q9 q7 0.0036 0.7580 

Partial 

95 97.99 
q5 q7. qll 
95 99. 97 

q5q9 . qll 
q5 qll. q7 
q5 qll. q9 

Residual P(diff.) 

0.4806 0.0000 
0.4542 0.0000 
0.2931 0.0000 

0.2655 0.0000 
0.3177 0.0000 
0.3379 0 .oooo 

97 99 .95 0.4595 0.0000 
q7 q9 . qll 0.3208 0.0000 
q7 qll. q5 0.4742 0.0000 

q7 qll. q9 0.3819 0.0000 
q9 qll. q5 0.6347 0.0000 
q9 qll. q7 0.5763 0.0000 

The discussion of the previous sections suggests that any adequate linear 
causal model for this data must contain a latent variable. If, for example, we 
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Fig. 4. Path model 

attempt to model the data by supposing that each measurement is a direct 
cause of the succeeding measurement (e.g., the path model in fig. 4) then the 
model implies the third tetrad equation and no other vanishing tetrad 
differences, but it also implies several vanishing partial correlations, for 
example, that the correlation of q.5 and qll vanishes when partialed on q9. If 
the model is modified to avoid these incorrect constraints, for example by 
correlating the error terms or by introducing further direct effects between 
earlier and later measurements, then the third tetrad equation is no longer 
implied. 

If we attribute the correlations to the action of a latent variable or variables, 
then no vanishing partial correlation among the four observed variables will be 
implied (as long as the partial correlation involves three distinct variables). 
Unless, however, the latent structure is chosen carefully, the wrong tetrad 
constraints will be implied. For example, if the data are explained by postulat- 
ing a single latent variable (‘ test-taking ability’ or whatever) and permitting it 
to have different linear effects on the several administrations of the SAT, then 
we obtain the model shown in fig. 5. This model implies all three tetrad 
equations for the four measured variable, and judged from the sample, two of 
these implications are incorrect. 

The heuristic principle tells us more about the latent variable structure. 
There must be a latent variable such every trek between q5 and q9, between q7 
and qll, between q5 and qll and between q7 and q9 passes through that 
variable. But, in the simplest case, there must be treks between q.5 and q7, and 
between q9 and qll, that do not pass through any latent variable common to 

el e2 e3 

Fig. 5. Factor model 

e4 
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Fig. 6. Single, self-lagged latent variable model 

all treks among the other pairs. An adequate model is obtained if we treat the 
latent variable as itself lagged (see fig. 6). This model implies the tetrad 
equation found to hold in the sample, and only that tetrad equation. It does 
not imply that as long as the equation coefficients are positive any partial 
correlations among the measured variables are less than or equal to 0. These 
implications are unaltered even if we specify that the linear coefficients 
connecting the latent variable lags are all equal to one another, and even if, in 
addition, we specify that the linear coefficients from the latent variable lags to 
the measured variables are all equal to one another. Note finally that a model 
with the correct implications, and none of the incorrect ones, could equally be 
obtained by using only a latent variable and one lag, although the result 
intuitively seems less plausible (see fig. 7). 

Although the example that we have discussed involved only four measured 
variables, the heuristic can be applied to models with any number of measured 
variables. 

e e e e 
5 7 9 11 

Fig. I 
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9. Causal order and correlation 

The question with which we began was: when is a statistical dependency 
between two variables, X and Y, due to a direct effect of X on Y, a direct 
effect of Y on X, or a common cause acting on both X and Y or some 
combination of these causes? In general the statistical dependency of X and Y 
alone does not provide sufficient information to answer this question. If, 
however, there is appropriate prior knowledge about the causal structure in 
which X and Y are imbedded, knowledge which itself does not answer the 
question at issue, then the statistical dependencies of X and Y on each other 
and on other variables can provide an unambiguous answer. Such prior 
knowledge may be either structural or substantive. For example, if X measures 
GNP in 1967 and Y measures GNP in 1975, clearly Y cannot cause X. Prior 
substantive knowledge might also be based on common sense; for example, 
occupation is a cause of income. 

Suppose one correctly assumes that the causal relations among six measured 
and two unmeasured variables include the relations shown in fig. 8. In this 
case it does not matter whether variables TZ and T2 are measured or latent. 
Suppose further that there is an unknown relation between x2 and x4: either 
x2 causes x4 or x4 causes x2 or there is a further common cause of both. If 
appropriate sample data are available for the xi, the unknown relation can be 
reliably discovered, because each alternative elaboration of the initial model 
above produces a model that implies a distinctive set of vanishing tetrad 
differences. 

Suppose that there is an unknown causal relation between some indicator of 
Tl and some indicator of T2, but one does not know which. Again, with 
appropriate sample data, the unknown causal relation can be identified 
unambiguously. In simulation studies with normal distributed variables and 
sample sizes of 2000, using the TETRAD program we have correctly identified 
the missing relation five times out of five. The probability of such an 
identification by chance is less than one in fourteen million. 

The technique works with real data quite as readily as with simulated data. 
McPherson et al. (1977) consider a causal model of responses to a four-item 
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scale assumed to measure ‘political efficacy’, or more exactly, the respondents’ 
judgments of their political influence. Measures of the same four (terns were 
obtained from a cohort of 978 persons at a four-year interval, onion in 1956 
and once in 1960. The initial model looks like fig. 9. After cc)nslJerable 
discussion the authors conclude that there is some other factor acturg on c6 
and CO and some other factor acting on u6 and ~0; the conclusion is based on 
the fact that the linear coefficients connecting these variables with their parent 
latent variables are the smallest of the eight, and the difference between 
estimated and empirical correlations is the largest for the u6-u0 and c6-CO 
pairs. 

The TETRAD program reaches the same conclusions automatically from a 
comparison of overidentifying constraints satisfied by the data, constraints 
implied by the initial model, and constraints implied by various modifications 
of the initial model. Moreover, the program distinguishes the preferred 
elaboration, which postulates further common causes of u6 and ~0 and of c6 
and CO, respectively, from models that postulate direct causal connections 
(which might arise if recollection of previous responses was a determinant of 
later responses) between the responses given at the two times. 

10. Alternatives to regression 

Regression methods are widely used in the causal analyses of non-experi- 
mental data, often without any consideration of alternative models. The 
analysis of overidentifying constraints can lead to the identification of alterna- 
tive models that afford a better explanation of the data, and such alternatives 
may sometimes contain latent variables. We will illustrate the point with a 
recent study of the social effects of international economic policies. 
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Timberlake and Williams (1984) claim that foreign investment in third-world 
or ‘peripheral’ nations causes the exclusion of various groups from the 
political process within a ‘peripheral’ country. Put more simply, foreign 
investment promotes dictatorships and oligarchies in third-world nations. 
They support their claim by means of a simple regression model. Timberlake 
and Williams develop measures of political exclusion, foreign investment 
penetration (in 1973), energy development, civil liberties, population, govern- 
ment sanctions in two years (1972 and 1977) and political protests in those 
same years. They correlate these measures for 72 ‘non-core’ countries. All of 
the variables, save population, have substantial positive or negative correla- 
tions with one another, with absolute values ranging from 0.123 to 0.864. It 
should be noted that their investment data concern a period preceding the 
increase in petrodollars loaned to third-world countries following the dramatic 
OPEC increases in oil prices. 

A straightforward embarrassment to the theory is that political exclusion is 
negutiuefy correlated with foreign investment penetration, and foreign invest- 
ment penetration is positiuely correlated with civil liberties and negatively 
correlated with government sanctions. Everything appears to be just the 
opposite of what the theory requires. The gravamen of the Timberlake and 
Williams argument is that these correlations are misleading, and when other 
appropriate variables are controlled for, the effects are reversed. 

Timberlake and Williams regress the political exclusion variable on foreign 
investment penetration together with energy development and civil liberties 
(measured on a scale whose increasing values measure decreases in civil 
liberties). See fig. 10. They find a statistically significant positive regression 
coefficient for foreign investment penetration and conclude that their hypothe- 
sis is supported. Their conclusion implies that the development of democracy 
and human rights would have been furthered in the early 1970s if international 
corporations, private banks and other organizations based in industrial coun- 
tries had not invested in third world nations. 

The analysis u3.rume.r that political exclusion is the effect of the absence of 
civil liberties, of energy development and of foreign investment. They further 
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Fig. 10. Foreign investment. 
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assume that these causes act independently, that their effects are additive, and 
that nothing else has an effect on any of the independent variables and on 
political exclusion. They give no particular reasons for these assumptions, and 
one might have thought otherwise. For example, one might have thought that 
unrepresentative government causes an absence of civil liberties, or each 
causes the other. 

There are some puzzling features of the data, which we might expect a good 
theory to explain. For example, there are in the data some relations among the 
correlations that hold much more exactly than we expect by chance. Using 
TETRAD we find that the following relations hold almost exactly in the 
sample data: 

(A) &PO, fi - Ppo, en PtVlJi = 0, 

(B) Pen, C” - Pm, poPp0, C” = 0. 

We find, again using TETRAD, that if the constraints (A) and (B) hold, then 
the probability of obtaining a difference at least as large as that found in the 
sample for (A) is 0.868 and the probability of obtaining a difference at least as 
large as that found in the sample for (B) is 0.800. These numbers help 
convince us that (A) and (B) are real constraints on the measured variables 
and should, if possible, be explained. 

These two equations are interesting exactly because they are the kind of 
relationship among correlations that can be explained by causal structure. The 
first equation can be explained by supposing that the only effects of political 
exclusion on foreign investment, or of foreign investment on political exclu- 
sion, of or any third factor on both political exclusion and foreign investment, 
are mediated by per capita energy consumption: one variable affects another 
only through its effect on energy consumption. More visually, the first equa- 
tion will be explained provided the causal connections between political 
exclusion and foreign investment are illustrated in fig. 11. In the same way, the 

fi 4 en b PO 

fi - b en - l PO 

Fig. 11. Causal explanations of eq. (A). 
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Fig. 12. Alternatives to the regression model 

second equation (B) can be explained by supposing that any correlations 
between energy consumption and absence of civil liberties are due to the 
effects of political exclusion, e.g., if increases in per capita energy consumption 
cause an increase in civil liberties, they do so because of their direct effect on 
totalitarianism. 

Timberlake and Williams model does not provide any causal explanation of 
relations (A) and (B), but it is easy to find assumptions that do explain these 
patterns, and explain them rather neatly. We exhibit some alternative explana- 
tions pictorially in fig. 12. Here T signifies a latent common cause. The causal 
hypotheses in all figures, under the assumption of linearity, imply that both 
(A) and (B) hold in the population, no matter what the values of the linear 
coefficients may be. 

We used the EQS program [Bentler (1985)] to estimate and test model (II). 
All linear coefficients are very significant. The coefficient giving the depen- 
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dence of ji on en is positive; the coefficient giving the dependence of po on en 
is negative; and the coefficient giving the dependence of cu on po is positive. 
The p-value for the chi-square statistic with two degrees of freedom is 0.94. 

If one accepts model (II), then the conclusion is that foreign investment in 
‘peripheral’ nations neither promotes nor inhibits the development of democ- 
racy and civil liberties, but raising the energy consumption per capita promo- 
tes both foreign investment and more representative government, and through 
representative government increases respect for civil liberties. We would not 
on this data, and given the alternatives, argue that model (II) should be 
accepted, but it, and very likely the other alternatives suggested here, are 
preferable to Timberlake and Williams’ regression model. 

11. Time series and latent transfer models 

The class of models for which the TETRAD program was designed does not 
include time-series models such as ARMA or transfer-function models. These 
classes of models play an important role in econometrics, where forecasting 
the values of variables is of major interest. It is natural to ask whether the 
techniques we have described for distinguishing direct causation from com- 
mon causation, and for determining when latent variables should be intro- 
duced, can be extended to time-series models. 

Assume that all of the models considered are stationary; that is 

PCYtv. *. 9 Yt+J = PLY,+,, *. -7 Y,+k+m ) for any t, k, m. The most general class 
of models that we will consider are transfer function models. To characterize 
them we require some additional notation: 

The backward shift operator B when applied to a variable shifts the variable 
one time period backwards; i.e., B”y, = y,_,. T(B) represents a polynomial 
function of the operator B, i.e., TUB + r2B2 + . * . +r,,Bn. 

A transfer function model relates the value of a dependent variable to lagged 
values of itself, current and lagged values of independent variables, and an 
error term. So a univariate transfer function model can be written as 

y,=u-‘(B)o(B)x,+n-‘(B)7(B)q, 

where Us is a normally distributed error term. Moving-average (MA), autore- 
gressive (AR), and moving-average autoregressive (ARMA) models are all 
special cases of transfer function models. 

There are obvious difficulties in extending the techniques that TETRAD 
uses to time-series models. For example, TETRAD was designed to calculate 
constraints on correlation matrices, not autocorrelation matrices. More funda- 
mentally, transfer function models contain infinite graphs, whereas TETRAD 



C. Glymour and P. Spirtes, Latent variables, causal models and orwidenii~ving c’onstraints 195 

represents and analyzes only finite graphs. It would be theoretically possible to 
treat time-series models within the current framework by regarding a variable 
at different times as separate variables and by approximating an infinite graph 
by some finite segment of it, but these are not practical procedures. The 
number of data points for a time-series model can easily extend into the 
hundreds, which is far beyond the number of variables that can be analyzed by 
the TETRAD program. TETRAD would ignore the repeated patt~wzs of edges 
occurring in time-series models, leading to very large numbers of redundant 
calculations. 

In order to extend TETRAD’s techniques to time-series models, the follow- 
ing four questions would have to be answered affirmatively: 

. Are there overidentifying constraints on autocorrelation matrices that can be 
explained by some models no matter what values are given to their respective 
free parameters? 

. Are these overidentifying constraints determined by the graphs alone, i.e., 
are they independent of the variances of the variables appearing in the 
model? 

. Are there representations of infinite graphs, and algorithms that can be 
performed upon such representations, that can quickly calculate which 
overidentifying constraints are implied by a graph? 

. Are there patterns of constraints on autocorrelations that can only be 
robustly explained by the introduction of latent variables? 

The following examples below will show that the first two questions can be 
answered affirmatively; the last two questions are still open. 

11.1. Existence of analogous constraints determined by graphs 

The following example shows that there are overidentifying constraints 
upon autocovariances in time-series models that are analogous to the tetrad 

constraints found among covariances, and that these constraints are de- 
termined by the graph alone. 

Consider the AR(l) model with 0 mean (see fig. 13) which has the equation 

It is well known that the autocovariance for a k-lag displacement (which we 
denote by yk) is equal to 7rkyo. Hence, 

aslongas k+j=n+m. 
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Fig. 13. AR(l) model 

This example shows that there are constraints on autocovariances, analo- 
gous to the tetrad constraints upon covariances, that are implied for all values 
of the equation coefficients. Furthermore, it is clear that this constraint is 
determined by the graph alone, since the constraint is implied regardless of the 
value of the variances of the variables. 

However, it does not seem likely that models more complex than the AR(l) 
model imply constraints among autocorrelations analogous to tetrad or partial 
correlation constraints. For example, it is easy to show that no MA model of 
any order implies a ‘tetrad’ constraint among four distinct autocorrelations. 
The general formula for pk in a moving-average process of order q is 

- 7/, + rlrk+l + . . . + rq_krq 

1+7:+72+ ... +r4’ ’ 

for k = 1,. . _, q and 0 for k > q. Hence the numerator of pup, contains a term 
equal to r,‘r,_Ur9_,. Similarly, the numerator of p,p, contains a term equal to 

rq2rq _ Jq - X. If p,p,= p,pU for all values of ‘P-U, 74-L,, rqPw and 74-x, it 
follows that r,‘r4_Urq_U = r:r4_,,,r4_X. This implies that {u, v} = {w, x}. 

We strongly suspect that, if there are robust constraints on the autocorrela- 
tion matrix of a graph, then the constraints will be implied by the graph alone. 
But whether or not there are ARMA or AR models [other than AR(l)] that 
robustly imply constraints is an open question. 

11.2. Calculation of implied constraints 

There is no problem in giving a finite representation an infinite graph as 
long as there is sufficient periodicity in the graph. In a transfer-function 
model, if the longest direct causal connection is from t - k to t, then all of the 
information in the graph is contained in the finite segment from t - k to t. 
Infinite graphs can, however, present problems for calculating covariances. 
The method that TETRAD uses to calculate covariances is based upon the 
following theorem. 

Theorem 1. In a Jinite acyclic graph the covariance of any two distinct variables 
x and y is equal to the sum of the product of the labels of edges in the treks 
between x and y times the variance of the source of the trek. 
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Fig. 14. AR(2) model 

TETRAD calculates the covariances between variables x and y by taking the 
sum of the product of the labels of edges in the treks between x and y. 

A number of examples suggest that the method of calculating covariances 
based upon the preceding theorem is correct for infinite as well as finite 
graphs, although we have no proof of this as yet. For example, in the model 
discussed above, for any k, the only trek between y,_, and yr is a path of 
length k from t,_, to y,. The product of the edge labels in such a path is 
clearly rk. Thus, the method that TETRAD uses to calculate covariances 
could be carried over virtually unchanged in this case. But this method of 
calculating covariances is not feasible in an AR(2) model, because there are an 
infinite number of treks between yr and y,_,. The equation for an AR(2) 
model is 

YI = TlY,-1 + T2Y,-z + Et. 

See fig. 14. 
In this case. 

=lYo 
Yl = 1 _ *2 . 

Once again, the formula for calculating covariances remains true in this 
particular case since the sum of the product of the treks between y,_, and yt 
is 

VlYO 
y1=yo(“1+~17r2++l?T~+ *)=- 

1 - r2 . 

So, while the formula upon which TETRAD’s method of calculating co- 
variances is based remains applicable in this case, the actual method that 
TETRAD uses to calculate covariances could not be applied, since it would 
lead to an infinite sum. It is an open question whether there is an efficient 
algorithm applicable to such a graph that can correctly calculate the autoco- 
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variances and the constraints upon covariances implied by the graph. Nor do 
we know whether there are patterns of constraints in time series models that 
can only be explained by the introduction of latent variables. The resolution of 
these questions will not only help to clarify the proper role of latent variables 
in econometric time series; it may also lead to the development of effective 
aids in model specification. 
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