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The Epistemology of Geometry
CLARK GLYMOUR

THE UNIVERSITY OF OKLAHOMA

There is a philosophical tradition, going back at least to
Poincaré ([9]), which argues that the geometrical features of
the universe are underdetermined by all possible evidence, by all
of the actual or possible coincidences and trajectories of
material things, whatever they may be. Many different geomet-
rical and physical theories can encompass the phenomena, can
account for the motions of things. Poincaré supported his view
with a parable, Reichenbach ([11]) with a sort of recipe for
writing down alternative but empirically equivalent theories;
later authors have repeated their arguments or given very similar
ones. In his admirable book on space, time, and spacetime
([18]), Lawrence Sklar has tried to catalogue the possible
philosophical attitudes towards the underdetermination argu-
ments put forward by Poincaré, Reichenbach and others: One
can simply be sceptical about the possibility of knowing
geometrical truths; one can maintain that in so far as there are
any such, they are truths by convention; one can contend that
certain theories are a priori more plausible than others and so
should win any ties based on empirical evidence; one can insist
that despite appearances all empirically equivalent theories say
the same thing; or one can deny that there is any coherent
notion of empirical equivalence and so lay the entire question
aside. What one cannot do, if this catalogue of options is
complete, is to admit the notion of empirical equivalence, admit
an account of sameness of meaning which permits that different
theories may save the phenomena, deny that there are available
a priori principles about what is most likely true, and still insist
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that arguments such as Poincaré and Reichenbach give do not
establish the underdetermination of geometry. Of the options,
listed and unlisted, I think this uncatalogued view is the one
closest to the truth.

I will concentrate on Reichenbach’s argument, for it is
more explicit and more general. My thesis is that even when it is
sympathetically developed, Reichenbach’s sort of argument
does not establish the underdetermination of geometry or of
anything else. The same is true for any other arguments for the
underdetermination of geometry which use devices like those
employed by Reichenbach to generate alternative theories.
Since I do not deny that Reichenbach showed how to construct
different but empirically equivalent theories, my thesis is
perhaps a little puzzling. My idea is that the body of evidence
which distinct theories hold in common, the phenomena which
both theories save, may nonetheless provide differing support
for the two theories, more reason to believe one than the other,
more confirmation of one than the other. This is so not because
one theory is a priori more plausible or probable than the other
but, roughly, because one theory is better tested than the other
by the body of evidence in question. I think this is the case with
most of the putative examples of underdetermination in
geometry. My view, then, is that the arguments for the
underdetermination of geometry fail because they succeed only
in producing different theories which are empirically equivalent
but which the imagined body of evidence does not equally well
test or support. The particular view that evidence may
discriminate among empirically adequate hypotheses without
being inconsistent with any of them and without supposing that
some of them are a priori likelier than others is not unprece-
dented. It is a view shared, I think, by Popper and by many
Popperians; no doubt they would have little use for the rest of
what I shall have to say about confirmation.

To address the question of the underdetermination of
geometry requires several things. It requires a framework for the
statement of alternative theories; it requires at least some
necessary conditions for the synonymy of theories so expressed;
it requires a characterization, however rough, of the states of
affairs, actual or possible, which will serve as possible evidence;
and it requires a theory of confirmation which will provide
criteria for comparing and assessing competing theories. Most
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discussions of the underdetermination of geometry omit the
specification of some of these elements; I shall try to make it
clear, if not convincing, what I am supposing about these
matters.

Space-Time Theories. Since arguments for underdetermination
include relativistic theories, and since they involve geometry in
the context of physical theory, I will just assume we are
concerned with the underdetermination of features of space or
of space-time in the context of space-time theories, whether
classical or relativistic. I will assume that all such theories are
formulated covariantly using a differentiable manifold and
geometrical objects on that manifold, in order to state field
equations relating sources to field quantities (such as the metric
in general relativity or the gravitational potential in Newtonian
theory) and to state equations of motion for material systems
of various kinds. In addition there may be equations not
containing source terms but which put restrictions on geomet-
rical features of space-time. Further, the theories may contain
principles not stated as equations which establish boundary
conditions in certain situations or which establish symmetry
properties (e.g., symmetric sources have symmetric fields) and
so on. Such formulations are natural in the sense that actual
theories are sometimes stated that way, they are reasonably
clear, and we know how to write down a great many theories in
such terms.! While any theory may imply, given a coordinate
system, various coordinate dependent equations, and may
sometimes be more easily tested in such a form, it is essential
that the theory be stated covariantly; otherwise we become
enormously confused about what each theory claims, about the
synonymy of theories, and so on.

Synonomy. In dealing with formalized first-order theories there
is a natural necessary condition for synonymy. First, identify
any two theories if one can be obtained from the other simply
by adding a predicate, but no new axioms, to its language.
Second, make a lexicographic change in the theories so that no
two theories considered have any non-logical vocabulary in
common. Then count two theories as synonymous only if their
transmogrifications have a common definitional extention. That
is, we can add a set of sentences of definitional form to one
theory (or rather to its transmog) and another set of sentences
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of definitional form to the other theory (or rather its transmog)
and the two results are logically equivalent. This condition not
only catches the intuition that synonymous theories are those
that with proper substitutions say the same thing, it also
satisfies natural conditions about translation.? A much weaker
condition is that the theories have at least one model in
common: For at least one model of theory 1 it is possible to
define in this model the quantities of theory 2 so as to form a
model of theory 2, and, conversely, from the model of theory 2
so formed it is possible to define the quantities of the original
model of theory 1.

I propose to use the best analogs I can for these first-order
requirements, and especially for the second one. For the
synonymy of theories formulated as covariant equations we will
require at least that for any manifold and set of geometrical
objects on that manifold which constitute a solution to the
equations of one theory there be covariantly definable from the
geometrical objects of this solution another set of geometrical
objects which, together with the manifold, constitute a solution
to the equations of the other theory, and symmetrically. In
other words, if theory 1 is synonymous with theory 2 then
given geometrical objects 4, B, C which are distributed on
manifold M so as to satisfy the equation of theory 1, we can
write a covariant set of equations in appropriate variables, such
that for A, B, C as values of some of the variables there are
determined on M a unique set of geometrical objects, X, Y, Z as
values for the other variables, and X, Y, Z satisfy the equations
of theory 2. Furthermore, the equations which constitute the
implicit definitions must contain only variables and operations
occurring in one of the two theories. The only regard in which
this condition might seem in the least too strong is the demand
that the equations used to get one set of objects from another
set be covariant; but this demand is no less plausible than the
demand of covariance in general. To insist that non-covariant
equations may establish the determination of one set of objects
from another set is in effect to suppose that each of the theories
ascribes ‘““true” coordinates in the world. Charity forbids.

Evidence. There are a variety of objections to the supposition
that talk of empirical equivalence makes sense at all. In
discussions of space-time theories the states of affairs, actual or
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possible, that are ordinarily cited as the fundamental evidence
for theoretical claims are coincidences of material bodies and
the trajectories of bodies in space-time. The first are but a
special feature of the second. It can be objected that these
states of affairs are not ‘“observational”, that theoretical
principles of various kinds are involved somehow in their
determination. That is probably true, but irrelevant nonetheless.
It is not claimed that the body of phenomena to be saved
comprise some epistemic rock bottom, nor need it be. It is
claimed only that there are a collection of states of affairs that
can be ascertained, at least approximately, independently of the
assumption of the truth or falsity of any of the space-time
theories in question, and that these states of affairs are those for
which such theories must account. The other sort of criticism
apt to be made is that the supposed evidence is the wrong kind
of thing to be evidence. Theories, it is said, tell us nothing or
next to nothing about the trajectories of bodies subject to
specified forces, or subject to specified fields. Thus classical
physics says nothing about the motions of bodies but only
about the motions of bodies if subjected to various kinds of
forces and to no others. But, the objection continues, we
cannot infer the forces from the motions, and the forces are
most definitely theoretical quantities. So there is no theory-
independent body of evidence that can adjudicate between
space-time theories.

To reply: First of all, in special circumstances we can infer
the forces from the motions; Newton did so and so did a
number of later Newtonians. Second, there are built into our
theories various principles which establish presumptions as to
the forces acting in various situations; for example, in Newtoni-
an theory there is built the presumption that the only
significant force determining the trajectories of the major
bodies of the solar system is gravity. Such presumptions are not,
and perhaps cannot be, laws, but they are an essential part of
our theories nonetheless.

What is at issue is something like this. Bodies of various
identifiable kinds move in certain ways; Newtonian theory, say,
accounts for these motions by supposing a limited class of
forces acting on the various bodies, and providing principles
which serve as guides to which forces are working on which
bodies. We wish to know whether these motions, in turn,
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provide grounds for believing Newtonian theory as against other
possible space-time theories, and to answer the question we ask
whether there are other space-time theories, which may suppose
whatever forces and force-laws may be imagined, that account
both for the actual motions and for any other motions
Newtonian theory could account for. Now Newtonian theory
must explain any motion as the result of the action of some
finite number of kinds of fields, and any of its competitors, if
we imagine them to be field theories, must do the same. If then,
for some competitor it can be shown that for every possible
combination of Newtonian fields there is a combination of the
fields of some competing theory such that the respective
combinations of fields determine the same motions, we will be
well along in demonstrating the existence of empirically
equivalent alternatives. If, furthermore, the alternative theories
are such that Newtonian principles for determining the forces
(or fields) acting in any situation can be parodied by principles
of the alternatives, there will be nothing remaining to show.
Such a parody will be possible generally only when there is
some systematic connection between the fields of the alterna-
tive theory and the fields of Newtonian theory. However, for
the theories to be genuinely distinct, the connection must not
be so systematic that values of the Newtonian quantities are
uniquely determined by values of the non-Newtonian quanti-
ties, and conversely. Newtonian theory, of course, is just an
example; the issue is the same for any other space-time theory.

Confirmation. 1 propose to look at confirmation in the
following way.® An hypothesis in a theory is tested positively
by producing an instance of the hypothesis by a procedure that
does not guarantee than an instance rather than a counter-
instance will result. Since the quantities or states of affairs
(hereafter, simply quantities) that can be determined without
use of the theory are not all of the quantities of the theory,
many hypotheses will contain quantities whose values are not
found amongst the empirical data. Values for such quantities
are obtained by wusing other hypotheses of the theory to
compute from them values of the empirically accessible
quantities. Any hypotheses in the theory may be used in such a
capacity. So a test of an hypothesis consists of a set of values of
empirically available quantities, a set of hypotheses of the
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theory which determine from this empirical data a set of values
for various quantities of the theory, and an hypothesis of the
theory for which these values constitute either an instance or a
counter-instance. To give a trivial example, suppose we have a
theory consisting of Newton’s Second Law and Hooke’s Law,
and suppose we can measure, independently of this theory,
length, acceleration and mass. Then we can test, say, the Second
Law by measuring the mass, extention and acceleration of a
spring, using Hooke’s Law to determine the force on the spring,
and then seeing whether or not the values of mass, acceleration
and force so determined provide an instance of the Second Law.
Equally trivial but more realistic examples of this strategy are
provided by the use of data to determine arbitrary parameters
in relations such as the gas laws and then using further data plus
the parameter values to provide instances of the relations. It is
essential that the computations of theoretical quantities from
empirical ones not be so constructed that an instance of the
hypothesis to be tested would result whatever the values of the
empirical quantities might be. This does not prevent one from
using the very hypothesis to be tested to determine values of
certain theoretical quantities (one does that, legitimately, in
curve-fitting), but it does prohibit using the hypothesis itself in
certain ways.

The essentials of the strategy are ordinary enough that
many people have hit upon them,; but generally only to
conclude that something must be wrong. Sneed (cf. [14]) and,
following him, Stegmiiller, for example, describe something
very close to this strategy but claim that it cannot be correct
because it is circular. The strategy is not circular at all, though it
is a bit of a bootstrap operation. One claims that if certain
principles of the theory are true, then certain empirical data in
fact determine an instance of some theoretical relation, and
moreover if the data had been otherwise a counter-instance of
that relation would have been obtained. This is some reason to
believe the hypothesis tested, but a reason with assumptions. Of
course it is possible that the assumptions—the hypotheses used
to determine values of theoretical quantities—are false and a
positive instance of the hypothesis tested is therefore spurious,
or a negative instance equally spurious. But this does not mean
that the test is circular or of no account; it does not mean that
the strategy can have no part in genuine scientific method. On
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the contrary, it is just this feature of the strategy which explains
part of an important element of method, the demand for a
variety of evidence. The hypotheses used in testing an hypo-
thesis may themselves be in error, so that the instances or
counter-instances obtained with them are spurious. The only
means we have to guard against such error is to test the
auxillary hypotheses used in computing theoretical quantities
and to test the original hypothesis using a different combination
of auxillary hypotheses to determine values of theoretical
quantities. It is this need that determines part of what counts as
a varlety of evidence. One can see this aspect of evidential
variety exp11c1tly in some expenmental research programs, for
example in Jean Perrin’s series of experiments to test the kinetic
theory.*

The strategy is holistic in some ways and not in others.
Given a definite theory, and some particular pieces of data, it
will in general be possible to test some hypotheses of the theory
from the data but not other hypotheses. That is because the
structure of the theory may be such that there is no way to
compute values of certain theoretical quantities from the data
in such a way as to test some hypotheses of the theory. For
example, from data about the positions of a single planet, Mars
say, one can test, relative to the theory consisting of Kepler’s
three laws, Kepler’s First and Second Laws, but one cannot test
his Third Law. For using this theory, from data about one
planet it is impossible to compute, independently, the period
and orbital diameter of any other planet. Different hypotheses,
then, may be tested by different data. It may even be that for
certain bodies of possible data some hypotheses of a theory are
not tested at all. It is exactly because of this non-holistic aspect
of the strategy that the explanation just given of the demand
for a variety of evidence makes sense. But the assessment of the
hypotheses of a theory may be nearly holistic insofar as
deciding to accept an hypothesis on the basis of the instances of
it obtained involves making a decision about the truth of the
auxillary hypotheses used in testing it, which truth in turn. ...
Still, one can easily construct theories which contain hypo-
theses that are not tested at all and that are not needed to test
other hypotheses of the theory.

There are a number of features that we can use in an
inexact way to compare how well theories are supported by



THE EPISTEMOLOGY OF GEOMETRY 235

evidence. I will mention the most important and obvious ones.

First, it is better that the hypotheses of the theory be
confirmed rather than disconfirmed; if one theory contains
hypotheses disconfirmed by a given body of evidence, while
another does not, then other things being equal that is a reason
for preferring the latter.

Second, one theory may contain untested hypotheses
whereas its competitor does not; or in some appropriate sense
one theory may contain more untested hypotheses than
another. As a special case, two theories may share a common
hypothesis which is tested by the evidence with respect to one
theory but not tested by that same evidence with respect
to the other theory. (Such is the case, for instance, with
Copernican and Ptolemaic astronomies.)

Third, the evidence may be more various for one theory
than for another. One theory may, for example, contain pairs of
hypotheses, A and B, such that every test of B must use 4 (or
hypotheses that imply 4) and every test of A must use B (or
hypotheses that imply B), whereas the competing theory does
not have hypotheses so interdependent. Again, there are real
examples. Before 1680, tests of Kepler’s First Law had to use
his Second, and tests of his Second Law had to use his First,
and astronomers thought this a difficulty with his laws (cf.
[17]).

Fourth, some or all of the evidence may have the following
feature: It tests one hypothesis of one theory repeatedly,
whereas in the other theory it provides fewer tests for a larger
number of hypotheses. Informally, the body of evidence may
be explained in a uniform way in one theory but have to be
explained in several different ways in the second theory. We
prefer the first.

Fifth, not all hypotheses in a theory are of equal
importance—some are central, others peripheral. There is often
enough an historical distinction of this kind, the peripheral
hypotheses being those which have resulted from a process of
modification to fit the data, the central hypotheses being those
which are applied to the data to produce the modifications. In
many cases we might expect the historical distinction to
correspond to one or more logical distinctions. (Try, for
example, this one: Central hypotheses of the theory are the
members of the smallest deductively closed set S of hypo-
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theses such that all hypotheses of the theory, or all confirming
instances of hypotheses that can be obtained from the data are
logically entailed by S together with the set of data statements.)
In any case, if a large part of the evidence tests hypotheses that
are peripheral to one theory but tests hypotheses that are
central to another competing theory, that is reason to prefer the
second theory.

These grounds for discriminating among theories could in
principle lead us to prefer one from among several competing
theories on the basis of a body of evidence explained by all of
the theories in the group. Such preferences are not founded, or
rather need not be founded, on a priori conceptions about how
the world is or likely is; they are founded on the preference for
better tested theories, and the various modes of comparison are
only aspects of that preference. It is true that the principles of
comparison are vague, and further that there is no principle
given that determines which of these considerations take
precedence should they conflict, or how they are to be
weighted. (I doubt that there are any principles of this kind
which are both natural and explain pervasive features of
scientific practice.) I think there is rigor enough, however, to
distinguish unambiguously among candidates that are offered in
demonstration of the underdetermination of geometry.

One of the puzzling things about the literature on the
underdetermination of space-time theories is how little notice
its authors have given to the matter of how such theories have
been tested. Testing of space-time theories has typically (though
not exclusively) proceeded through planetary theory, and the
bootstrap strategy, while it can be found throughout science, is
pre-eminently a strategy for planetary theory. The differences
between Ptolemaic and Copernican theory, and the relative
advantages of the latter, are made evident by the strategy. Many
of Kepler’s arguments seem to involve it, and such elementary
facts as that his evidence for the Second Law is founded almost
entirely on observations of one planet, Mars, whereas his
evidence for the third law is founded on observations of many
planets, are explained by it. The difficulties which post-
Keplerian and pre-Newtonian astronomers found in testing his
First and Second Laws are unintelligible without it. Newton’s
argument for universal gravitation, certainly the most funda-
mental non-mathematical argument of the Principia, employs
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the strategy as a central component.® The differing values
placed on the classical tests of general relativity are difficult to
understand without the strategy. The strategy I have described
is, I maintain, not only a good strategy, it is one that has
predominated in the testing of space-time theories.

We have the elements for an assessment of arguments for
the underdetermination of geometry. To make the criteria for
theory comparison more definite and at the same time to
illustrate why alternative theories of the kind that Reichenbach
envisioned are not as good as the theories they are supposed to
undermine, imagine a situation. Suppose you find yourself
teaching high school physics, Newtonian mechanics in fact.
Suppose further that a bright and articulate student named
Hans one day announces that he has an alternative theory which
is absolutely as good as Newtonian theory, and there is no
reason to prefer Newton’s theory to his. According to his
theory, there are two distinct quantities, gorce and morce; the
sum of gorce and morce acts exactly as Newtonian force does.
Thus the sum of the gorce and morce acting on a body is equal
to the mass of the body times its acceleration, and so on. Hans
demands to know why there is not quite as much reason to
believe his theory as to believe Newton’s. What do you answer?

I should tell him something like this. His theory is merely
an extension of Newton’s. If he admits that an algebraic
combination of quantities is a quantity, then his theory is
committed to the existence of a quantity, the sum of gorce and
morce, which has all of the features of Newtonian force, and for
which there is exactly the evidence there is for Newtonian
forces. But in addition his theory claims that this quantity is the
sum of two distinct quantities, gorce and morce. However, there
is no evidence at all for this additional hypothesis, and
Newton’s theory is therefore to be preferred. That is roughly
what I should say, and I believe it is a natural thing to say; but
then I am, I admit, in the grip of a philosophical theory.

The gorce plus morce theory is obtained by replacing
“force’ whereever it occurs in Newtonian hypotheses by “gorce
plus morce”, and by further claiming that gorce and morce are
distinct quantities neither of which is always zero. In general, a
test of Newtonian hypotheses—for example the simple test of
Newton’s Second Law using Hooke’s Law described earlier—will
not be a test of the corresponding gorce plus morce hypothesis
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That is because the computations which give values for force
will not give values either for gorce or for morce, but only for
the sum of gorce and morce. Indeed, in general if we have a set
of simultaneous equations such that using these equations,
values for some of the variables in the equations may be
determined from values of other variables, if each of the former
variable are replaced systematically throughout the equations
with an algebraic combination of two or more new variables,
then values for the new variables will not be determined. If to
the gorce plus morce theory we add the hypothesis that force is
equal to the sum of gorce plus morce, then the theory, with this
addition, entails Newtonian theory and every test of Newtonian
theory is a test of the identical fragment of the expanded gorce
plus morce theory. But there are no tests of the hypothesis that
force equals the sum of gorce plus morce, nor are there any tests
of those hypotheses that contain ‘“‘gorce plus morce” in place of
“force”. The bootstrap strategy, then, gives formally what I
should say informally. No surprise there.

My thesis is that the theories advanced to demonstrate the
underdetermination of geometry bear a relation to ordinary
theories very much like the relation the gorce plus morce theory
bears to ordinary Newtonian theory, and are inferior for much
the same reason. Implicit in the discussion is a certain
articulation of the principle that we prefer a theory with fewer
untested hypotheses to one with more untested hypotheses.
Suppose there are two theories, T and Q, such that there are a
set of axioms A of definitional form and T&4 entail Q but
there is no set of axioms B of definitional form such that Q&B
entail 7. Further suppose that every test of T&4 from some
body of evidence is a test only of hypotheses in Q. Then Q is
better tested by that body of evidence than is T. Intuitively, T
has whatever untested stuff Q has plus some more. This
principle, though rather weak and applicable to only a very
limited number of cases, enables us to see how some apparent
cases of underdetermination are not that at all. Let us consider
a case that might be taken to illustrate the underdetermination
of affine geometry in the context of classical physics.

One formulation of Newtonian gravitational theory uses as
geometrical objects two scalar fields, the mass density p and the
gravitational potential ¢. In addition, there is a scalar field ¢, the
absolute time, and a (2, 0) singular tensor field representing the
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metric, and, finally, an affine connection compatible with the
metric. The field equations in component form are

X Bjus = 0 2t
2) tiy =0 where ¢; = ot
3) gip =0

4)  g*tr, =0

5)  g*¢,, = 4mkp

where the semi-colon signifies covariant differentiation with

respect to the index following it and, as usual, repeated indices
are understood to be summed over. The equation of motion is

d?xt . dx! cﬂcf

6 + I = . gif
Vo a4 870y

where the l"‘:k are the Christoffel symbols of the connection.

It is easy to prove that there are inertial coordinates in
which the time scalar functions as one coordinate, and the
components of the metric tensor are constant and the matrix of
components of the tensor are (g”) = diag (0, 1, 1, 1)—see [2].
In such coordinates, equation 5 becomes just Poisson’s equa-
tion:

v2¢ = 4nkp

Consider how how well Newtonian theory, so formulated,
is tested by the kind of evidence generally in mind. Assume
then, as part of the theory, that ordinary rigid rods determine
congruences according to the metric and that mechanical clocks
measure the absolute time function at least approximately. So
we may take as data such congruences, time intervals and the
trajectories of freely falling bodies. The question is what parts
of Newtonian theory are tested by such data. On the account of
testing given earlier, the answer depends on what other
quantities can be determined uniquely from such data by means
of the theory itself, and in what ways such determinations can
be carried out. By a model of Newtonian gravitational theory
let us mean a tuple M, g, ¢, p, ¢, I'y F) where M is a four
dimensional differentiable manifold, g a (2, 0) metric field, ¢, p,
and ¢ scalar fields, I' an affine connection and F a family of
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time-like trajectories on the manifold, such that these objects
satisfy the equations of the theory if F is taken as the collection
of free falls. Our question can be answered in part by asking
whether such quantities as the affine connection and gravita-
tional potential are uniquely determined in some models or in
every model by g, ¢, p and the family of trajectories. The answer
is that they are not so determined, not in any model. Let (M, g,
t, p, $, I'; F) be a model of the theory. Choose three linearly
independent constant vector fields , U? (k =1, 2, 3) such that
LU%t, = 0 and let f, (t) (K =1, 2, 3) be any three scalar fields
which are constant on each constant time hypersurface.
Denoting g*"¢. by ¢“, define

wa = ¢a + fk(t)kua
onc = cm B fk(t)kuatbtc

Then Trautman (see [16]) has shown that (M, g, t, p, °T', ¥, F)is
a model of the theory.

The connection and the potential are not determined by
the other quantities in the theory. Although an ordinary
Riemannian connection is determined by an ordinary Rieman-
nian metric, the metric in this case is singular and so fails to
determine a unique compatible connection. Another way to put
this indeterminacy is that the metric, time and trajectories of
free falls do not determine the class of inertial frames.

The upshot is that because the affine connection cannot be
determined from the phenomena, not even using the theory,
and functions of the connection, such as the curvature tensor,
cannot be determined either, many of the equations of
Newtonian theory cannot be instantiated in a way that tests
them; the theory can be tested in hypothetico-deductive
fashion, but that is a fashion different from the one described
above. It may occur to some that the theory contains
undeterminable quantities only because it is incomplete. Per-
haps the indeterminacy arises because, lacking boundary condi-
tions, we cannot get a unique solution of Poisson’s equation. If
one adds to the theory the natural condition that at infinite
distances from sources the gravitational potential vanishes, then
it seems the potential and hence the connection will be
uniquely determined (because, at arbitrarily large distances
from sources, Y* must vanish, so f¥(t) must vanish, but f*(¢) is
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constant throughout space). Even then, however, the most one
can say is that in some models of the theory the potential is
determined. “Full” models, those in which there is an upper
bound on the distance between particles, will not determine the
potential; in particular every non-empty model of the theory in
which the constant time hypersurfaces are compact will leave
the potential and connection undetermined.

Consider now another theory, one which permits the very
same trajectories as does the Newtonian theory. Save for the
absence of the gravitational potential, the new theory has the
same kinds of objects as does Newtonian theory, but the field
equations and equations of motion are different and some of
the objects, the connection in particular, behave differently.

%)t Ry = 0

2%) gip oRjkpl = gip oR;'pk
3*) tigy = 0

a*) =0

5%) gl =0

6%*) °R,, = -4mptjt,
are the field equations, and the equation of motion is
i ‘
gy B o dxlddt
dt? e dt  dt

°R and °T signify the curvature and Christoffel symbols of the
connection. The brackets indicate antisymmetrization with
respect to the indices between them. In this theory, the affine
connection is a dynamical object determined by the distribution
of matter through equation 6* which is just the analogue of
Poisson’s equation. The equation of motion, 7%, says that the
trajectories of free falls are geodesics of the connection. The
Newtonian gravitational potential has, in effect, been geo-
metrized away.! 3

Consider how well the new theory is tested by the same
data we considered before. Equations 3%, 4%, 5% like their
Newtonian analogues, imply the existence of inertial coordi-
nates in which spatial components of the connection vanish. So
those equations expressed by 7* which have i # 0 can be tested
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by determining features of trajectories and congruences. Fur-
ther, equation 7% says that free falls are geodesics and that the
time is an affine parameter. The geodesic spray of a connection
and an affine parameter uniquely determine the connection (cf.
[1]). The connection can therefore be determined from
trajectories by using 7* and thus various of the field equations
(e.g., equations 6* and 1*) can be instantiated in a way that
tests them.

Informally, it seems clear that the confirmation principles
described earlier imply that the second theory is better tested
than is the first. But we can here apply the more precise
principle developed in the gorce plus morce example. To the
first theory we add axioms of definitional form so that the
second theory is entailed. But the procedure is not symmetrical.
The only object of the second theory that behaves differently
from its Newtonian analogue is the connection. If to the
equations of Newtonian theory we add

oTd — T4
D = T + 0,41,

then all of the equations of the second theory follow. It does
not work in the other direction. We can show that given (M, g, ¢,
°T, p, F)satisfying the second theory, there exists a scalar ¢ and
connection I' such that (M, g, ¢, I', p, ¢, F)is a model of the first
theory, but we cannot define I" or ¢ from (M, g, t, °T, p, F). The
two theories do not say the same thing. The relations between
the Newtonian theory and the alternative theory with a
dynamical connection are exactly like the relations between the
gorce plus morce theory and the force theory. Only this time
we are dealing with rather more realistic examples. While both
theories account for the imagined phenomena, the testing
strategy described earlier provides clear reasons for preferring
one of these theories to the other on the basis of that body of
phenomena.

There are other examples of this kind of relation between
competing theories, or of something very close to it. There are
many special relativistic theories of gravitation, theories which
ascribe to space-time the Minkowski metric, unaffected by the
distribution of matter, energy, or momentum, and which treat
gravity as a field distinct from the metric field. For various
reasons, only those special relativistic gravitational theories
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which treat the gravitational field as a tensor field have a hope
of being empirically adequate. To exaggerate slightly, what many
of these flat space-time theories of gravitation do is to divide
the dynamical metric field of general relativity into a fixed
Minkowski metric and a gravitational field tensor which, of
course, is not fixed but dynamical, that is, dependent on the
distribution of matter and radiation. If that were exactly what
they did, then the relation between such theories and general
relativity would be just like the relation between the gorce plus
morce theory and the force theory. In fact, the situation is
usually a little more complicated. Such theories may, for
example, take the metric field of a particular solution or class of
solutions of the field equations of general relativity, divide the
metric into a Minkowski metric and a gravitational field tensor,
and write down new field equations satisfied by these objects.
That is just what happens in a flat space-time gravitational
theory due to W. Thirring ([15]). So far as testing is concerned,
the results are generally very much as in the Newtonian case
already considered; the special relativistic metric and the
gravitational field tensor cannot be determined uniquely, and
the field equations, unlike their general relativistic analogues,
cannot be instantiated. Thus the authors of a relativity
textbook say of Thirring’s theory:

... there exists a transformation of the potential which leaves all
observable quantities unchanged, but which changes the rate of flow
of time and the rates of clocks as expressed in terms of “absolute
time” ... .

Thus a fully developed RTGFS (Relativistic Theory of Gravita-
tion in Flat Space) which agrees with GTR (General Theory of
Relativity) in the first corrections to Newtonian theory, in order to
explain the universality of the action of gravity, is forced to employ
the unphysical hypotheses of an unobservable “absolute” time, and
of the influence of unobservable quantities—e.g., the gravitational
potential—upon all physical processes. ([18]: 69-70).

For ‘“‘unobservable” in this passage, read ‘“‘undeterminable”.
Thirring himself says much the same thing.

R. Sexl ([12]) has claimed that general relativity says the
same thing as Thirring’s theory. The, sole basis for this claim is
that a tensor satisfying Einstein’s equations for the metric
tensor can be defined from quantities in Thirring’s theory. But
this is far from sufficient, since the special relativistic metric of
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Thirring’s theory cannot be defined from general relativistic
quantities. A quantity satisfying Einstein’s equations might be
definable from Thirring’s theory even if Thirring’s theory were
inconsistent. (In fact, Thirring’s theory & inconsistent. Cf.
[7]: 186.)

Reichenbach’s argument for the general underdetermina-
tion of geometry goes like this. Suppose you have an empirical-
ly adequate physical theory in which the metric tensor is g and
bodies subject to no forces move (or would move) on geodesics
of g. Let the theory postulate whatever other fields are
necessary, and let ¢ be measured in whatever ways are
appropriate, e.g., by congruences of rigid rods. Form an
alternative theory as follows. Replace g by any metric you like,
call it A, so long as A meets certain topological constraints.
Introduce a “‘universal force” U such that 4 plus U equals g, and
specify that every body is subject, always, to the universal force
U, so that bodies subject to no other forces or fields would
move on geodesics of the tensor A plus U. Let the other fields
and forces, and the criteria for determining where they are
acting, be just as in the first theory. Then the two theories
should be empirically equivalent and the choice between them
underdetermined by all possible evidence.

It is not entirely clear whether Reichenbach meant to be
arguing in the context of classical physics, relativistic physics, or
both. I believe his arguments have been widely understood to
apply to both contexts, and to show that the geometry of space
in classical theory and the geometry of space-time in relativistic
theory are equally underdetermined. In relativistic contexts, the
“universal force” must be a “universal field” but other than
that, the argument is most clear for relativity. It tells us, for
example, that to obtain a theory equally as good as general
relativity we need only replace the general relativistic metric by
any other metric we choose and add a “universal field”, i.e., a
gravitational field tensor. We have seen already, however, that
this is exactly the strategy pursued in certain flat space-time
theories, and that the result is not a theory as well tested as
general relativity. In its most direct application, Reichenbach’s
argument simply fails if we employ the account of confirmation -
discussed earlier.

What about classical physics? In the context of Newtonian
theories it is less clear what-a universal force might be, but we
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can work backwards to arrive at an account. In Newtonian
theory with ordinary Euclidean geometry, particles subject to
no forces, were there any, would have to move on geodesics of
the connection, that is, subject to the equation

d?x* + ij dx! Elik =0
dt? dt dt

With a non-Euclidean geometry, the motion of particles must be
such that if, per impossible, they were not subject to a universal
force they would move on geodesics of the connection. The
actual covariant acceleration then, that is

d*x* . dxt dxt

+ ¥
dt? gt dt

should be equal to the universal force F* acting on them. So the
equation of motion should be

2\t k
d?x . dx dxh

+
dt? e gt dt

_Fi

Hence the universal force must be

Fi = (*® § l'\i d_xl Lix_k

= (*Ty - lk)dt dt

A universal force, then, is feature of the difference in the affine
properties of two geometries, and need not involve the metrics
directly at all. (Cf. [7]: 186.)

Looking back at the relation between the version of
Newtonian theory with a fixed affine connection and the
second version, that with a dynamical connection and no
potential, it is clear that the former theory is just the latter with
a universal force. The universal force in that case is -g"¢;r, ie.,
Just the gravitational force that enters the equation of motion
of the first version. And again, we have already seen that while
these two theories may equally save the phenomena, they are
not equally well tested or supported by the phenomena.

The examples we have already considered show that
Reichenbach’s argument is invalid, and that his strategy for
generating alternative theories need not result in pairs of



246 NOUS

theories equally well-tested by the phenomena imagined.
Considering classical theories which have, besides different
connections, different metrics, does not change things at all.
Thus if the alternative theory postulates, say, a hyperbolic
metric we should expect it to contain field equations such as
the following

'k —
KEt, = 0
Wi =0
th =0
Rabcd = K(Yad ch - Yac de)
K=-1

where 4 is the singular metric tensor and Y the metric induced

on any constant time hypersurface. For the equation of motion

of particles subject to no “differential forces” we should have
d2x¥  _. dx' dx*

1 ——

Fro R N A

where F* is the universal force. The relation between this theory
and Newtonian theory is very much the kind we have seen
before. Although the Euclidean metric cannot be defined from
this theory, the standard connection, I', can be by

Flik = rgk - F it—z _a_{k_
ox" 0x
and with this definition (and defining time by time, etc.) the
geodesic equation of motion and those field equations of
Newtonian theory that do not involve the metric all follow.

An obvious reply to the criticisms I have offered is that the
alternative theories described are incomplete, and that more
complete versions of them will be equally well tested by the
phenomena. The cause of the underdetermination of geometry,
allegedly, is that while geometry is supposed to deal with
properties of space or of space-time itself, the evidence for a
geometry must always be provided by what is material;
different assumptions about the connections between geometri-
cal quantities and material systems lead to different geometrical
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theories. What the theories described so far have left out, the
reply continues, is the new assumptions connecting universal
force with material systems, or the new metric with material
systems, assumptions which would make the universal force
term occurring in a theory determinable, and which would,
therefore, permit the testing of various equations in such
theories.

I think the reply fails, and does so because it does not take
the testing strategy described earlier seriously enough. In the
first place, if the demand of covariance be satisfied, the kinds of
principles envisioned require that the theories be made rather
more complex. Whereas ordinary rods measure, at least approxi-
mately, Euclidean congruences or distances, there are no natural
relations of material things that can be used to measure, even
approximately, distances according to an arbitrary metric. The
usual way philosophers have described an alternative metric,
therefore, is in terms of functions of some particular set of
coordinates, generally Cartesian coordinates such that coordi-
nate differences equal Euclidean distances; the procedure in
mind, apparently, for determining the non-Euclidean metric is
that one uses material systems to set up Cartesian coordinates
and then evaluates the metric as a function of the coordinate
description of position. I have no objection to this method of
determining a non-Euclidean metric, for it is often the case that
we must use some system of coordinates to test hypotheses. But
to make the statement of the theory independent of coordi-
nates one must in the theory introduce suitable scalar fields
(essentially the spatial coordinate fields) and, furthermore, one
must introduce the hypothesis that the metric is a suitable
function of these scalar fields. And one must claim that material
systems, e.g., rigid rods, measure these scalar fields or some
feature of them—just as one claims that clocks measure a
feature of the time scalar field. With these additions an
alternative theory such as the hyperbolic theory described
above is covariant and its metric is determinable.

Is such a theory really as good as the ordinary one with
ordinary geometry? Introducing a set of hypotheses that link
the metric with material systems may make testable various
equations, some of the field equations for example, involving
the metric. But the equation of motion, since it involves a
universal force term, will still not be tested, nor will any
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equation that involves covariant differentiation. To test these
hypotheses, the theory must be expanded still further, and in
such a way as to make the universal force term determinable.
Perhaps the universal force can be specified as some function of
the (coordinate) scalar fields, very much like the metric. The
result, one expects, must still be a theory that 1s less well tested
than is the ordinary theory. For while all of the equations
written down earlier should be testable in this expanded theory,
to test them we will have had to introduce an enormous body
of claims in order to permit the determination of the metric,
connection and universal force; these claims will either be
untested, or else the claims involved in the determination of the
metric, say, will only be testable by using the claims that are
involved in the determination of the connection and universal
force. The theory will be inferior, then, either by reason of
untested hypotheses, or by reason of an insufficient variety of
evidence.

Suppose it is said that, after all, there is the same kind of
interdependence of hypotheses in the ordinary theory. The
ordinary theory claims that clocks measure a function of the
time scalar, and that rigid rods measure the congruences of the
metric—aren’t these the same kind of “coordination principles”
that the non-Euclidean theory uses? The answer is that they are,
but the non-Euclidean theory requires a lot more of them and
at best will permit one of them to be tested only by using a lot
of others. The case of time is common to all theories we are
considering in a Newtonian context. The Euclidean theory must
claim that rods (or something) measure congruences; the
non-Euclidean theory must claim that there are various scalar
fields, that rods (or something) measure functions of these
fields, that the metric is a certain function of these fields and,
furthermore, that the universal force is another function of
these same fields. Nothing less will do. These are all claims
which we want tested, and tests of any of them will necessarily
involve using all of the others.

It might be said, though not quite accurately, that all I
have done is to argue that non-standard theories must have
more theoretical content than standard ones, that non-standard
theories go farther beyond the data. But if that is an objection
to the non-standard theories in comparison to the standard
theory, why isn’t it equally an objection to the descriptions of
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actual or possible trajectories and so on? Why not just say:
“The possible trajectories are such and such”? Why have
theories at all? The answer, I believe, is that actual data on
trajectories, etc., can provide better tests of, and better support
for, a theory of the possible trajectories than it does for the
simple claim that the possible trajectories are those the theory
claims to be possible. I imagine the latter “simple’” claim to be a
set of hypotheses of the form: “With such and such initial
conditions, the motions satisfy the equation > where the
blank is to be filled by some non-differential equation in
coordinate variables and time, giving the position of a body in
the system as a function of time. Clearly, the set of hypotheses
of this kind is not going to be finitely axiomatizable. Regard
this enormous set of claims as a theory to be tested like any
other, and to be compared in particular with the dynamical
theory that gives these trajectories as the possible ones. The
data, we may suppose, consist of statements as to the locations
of various bodies at various times. The data may very well test
the dynamical theory better than it tests the set of claims about
the trajectories, and for several reasons. Various principles of
the dynamical theory may be tested over and over by different
pieces of data, whereas data incorporating different sets of
initial conditions will generally test but one of the hypotheses
explicitly about trajectories. On any finite body of evidence, it
will be the case that most of the trajectory hypotheses are
untested, but that same data, while not testing every hypo-
thesis of the dynamical theory, may nonetheless test a
body of hypotheses of the dynamical theory sufficient to entail
every hypothesis of the theory. We may, then have sufficient
grounds to accept the dynamical theory even when we would
not have anything like sufficient grounds to accept merely that
the possible trajectories are those the theory permits.

What if we consider not statements about trajectories but
rather just the statements of the data itself. “Body B was at
place P at time ¢.”” Is not the body of such data claims, whatever
they may be, better warranted than the theory, and so do not
the principles I used to reject the non-Euclidean theory require
that I reject all theories? Clearly not. First, because the data
claims are not a theory and cannot serve the purposes of
theories, in particular cannot serve for prediction or retrodic-
tion. Second, because while the data as a whole may be better
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warranted; once we admit that what we call data is no
incorrigible body of claims but only claims obtained by
methods, whatever they may be, that we believe reliable, it
becomes possible that a theory be better supported, better
warranted, than some particular piece of evidence for or against
it. If data are corrigible, the theory tested and confirmed by
many pieces of evidence may sometimes reasonably be pre-
ferred to a datum that conflicts with-it. Curve-fitters make such
decisions every day.

I think, then, that the criteria by which I have denigrated
non-standard theories of space or of space-time do not require
me to denigrate all theories. The sorts of theories Reichenbach
and many others have suggested, whether they be understood in
classical or in relativistic contexts, are just not as good as the
theories they are supposed to prove to be underdetermined. It is
still possible, of course, that space-time theories are as radically
underdetermined as Poincaré, Reichenbach and others have
believed, but that the alternative theories are simply very
different from the kind Reichenbach and subsequent writers
envisioned®. Even if it is true that our space-time theories are
not radically underdetermined, there may still be features of
space-time that are underdetermined. There may be quantities
or properties which for whatever reasons we believe our theories
rightly ascribe to space-time, but which we cannot determine. I
have suggested elsewhere ([3]) that in certain cosmological
models the global topology of space-time may be such a feature.
Perhaps there are others as well; whatever may turn up, it is
bound to be more palatable than is the radical underdetermina-
tion of geometry.
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! An excellent discussion of covariant formulations of space-time theories is
available in [2].

2 An elaboration and defense of these conditions is given in [6].

3 The ideas about confirmation sketched here are given in more detail in [4].

4 An excellent history of Perrin’s work is given in [8].

A detailed discussion of how the strategy applies to Ptolemaic and Copernican
theories and to Newton’s argument for universal gravitation is given in [5].

In a preprint of [10], Hilary Putnam argues that non-standard theories can be
generated without using “universal forces” by positing an appropriate “interaction
force” between differential forces. I do not see how this suggestion can work unless
the theory to be undermined already contains two universal forces which are like
gravitation in entering the equation of motion without parameters. But a theory with
two such forces would already be objectionable for reasons discussed.



