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RELEVANT EVIDENCE

CIENTISTS often claim that an experiment or observation
S tests certain hypotheses within a complex theory but not

others. Relativity theorists, for example, are unanimous in
the judgment that measurements of the gravitational red shift do
not test the field equations of general relativity; psychoanalysts
sometimes complain that experimental tests of Freudian theory are
at best tests of rather peripheral hypotheses; astronomers do not
regard observations of the positions of a single planet as a test of
Kepler’s third law, even though those observations may test Kepler’s
first and second laws. Observations are regarded as relevant to some
hypotheses in a theory but not relevant to others in that same
theory. There is another kind of scientific judgment that may or may
not be related to such judgments of relevance: determinations of the
accuracy of the predictions of some theories are not held to provide
tests of those theories, or, at least, positive results are not held to
support or confirm the theories in question. There are, for example,
special relativistic theories of gravity that predict the same phe-
nomena as does general relativity, yet the theories are regarded as
mere curiosities.!

Prima facie, such judgments either may be conventional and
properly explained entirely by sociological factors, or else they may
have an underlying rationale and so may be explained as applica-
tions of general principles of scientific inference. At least with regard
to the first kind of judgments, that is, those which are explicitly
judgments of relevance, three different philosophical views are com-
mon: (1) the hypothetico-deductive method provides an obvious and
well-understood rationale for such discriminations; (2) one or an-
other system of inductive logic provides a rationale for such dis-

! See, for example, Ya. B. Zeldovich and 1. D. Novikov, Relativistic Astrophysics
(Chicago: University Press, 1971), pp. 66-71.
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criminations; and (3) there is no rationale for the judgments in ques-
tion, and they must really be entirely the result of convention.? All
three opinions are, I believe, quite wrong; there are principles that
explain and provide a rationale for scientific judgments of rele-
vance, but they are not exactly hypothetico-deductive principles nor
are they principles of a probabilistic kind. The principles that pro-
vide a rationale for judgments of relevance also provide a partial
rationale for other central features of scientific method; notably,
they also explain why some theories are not supported by determina-
tions of the accuracy of predictions derived from them. One con-
sequence is that, although theories may be underdetermined by all
possible evidence of a specified kind, they need not be so radically
or so easily underdetermined as some writers, including myself,?
have thought.

Consider the first of the above positions: One might suppose that
some hypotheses in a theory are, in conjunction with initial condi-
tions, essential to the deduction of a sentence that is decidable by
experiment or observation. Such hypotheses would then be tested by
the appropriate experiments or observations whereas other hy-
potheses in the theory—those not essential to the deduction—would
not be so tested. An account of this kind is satisfactory only if the
notion of an “‘essential”’ hypothesis can be made precise; and there
are good reasons to believe that such a clarification is not trivial and
perhaps not even possible, for the difficulties in making precise the
notion of essential hypotheses are exactly those which meet any
attempt to provide a criterion of cognitive significance of the kind
long sought by the positivists. The positivists proposed to divide the
predicates of a theory into two disjoint classes, one of which would
comprise the ‘‘observation terms’’ of the theory. A sentence in the
language of the theory was to be deemed significant if it was test-
able, and testability was to be defined solely in terms of the conse-
quence relation holding between, on the one hand, sentences, or
classes of sentences, in the language of the theory, and, on the other

2 For the third position, see Kaplan, 4nfra; the view is certainly suggested by
many of Quine’s remarks, but I find it nowhere explicitly in his writings. The
second position is perhaps the most popular: cf. C. 1. Lewis, An Analysis of Knowl-
edge and Valuation (La Salle, Ill.: Open Court, 1946) ; H. Reichenbach, Experience
and Prediction (Chicago: University Press, 1938); R. C. Jeffrey, ‘“Probability and
Falsification,” unpublished; I can cite no texts for the first view, but philosophers
at the University of Chicago and at Indiana University, where earlier versions of
this paper were read, urged it. I am indebted to them for their criticism, and to the
National Science Foundation for support of research. I owe special thanks to
Richard Jeffrey and to Carl Hempel for reading and criticizing drafts of this essay.

8 “Theoretical Realism and Theoretical Equivalence,” in R. Buck and R. Cohen,
eds., Boston Studies in the Philosophy of Science, vol. vii1 (Boston: Reidel, 1971).
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hand, sentences whose only nonlogical terms were observational.
Every attempt to provide such a criterion has failed, and the
catalogue of failures is familiar.* But if we could specify in precise
logical terms what it is for a hypothesis, in conjunction with initial
conditions, to be essential to the deduction of an experimentally
decidable sentence, then taking the observation terms to be those
nonlogical terms occurring in the experimentally decidable sentence
or in the statement of initial conditions, we would have an account
of testability of the kind the positivists required. We must expect
that all the technical sorts of objections that told against empiricist
criteria of cognitive significance would tell against any attempt to
give a hypothetico-deductive account of epistemic relevance. Some
of those who were themselves once part of the positivist tradition
saw this connection fairly clearly and drew very strong holist con-
clusions from the failure of significance criteria. David Kaplan®
reports that when Carnap was presented with a class of counter-
examples (devised by Kaplan) to his last attempt at a significance
criterion “‘he reflected that he had been quite wrong for about 30
years, and that his critics who had been arguing that theories must
be accepted or rejected as a whole (he mentioned at least Quine and
Hempel) were very likely correct.” And Hempel, at the end of his
negative review of attempts at empiricist significance criteria, pro-
posed that theories be evaluated in terms of their clarity and preci-
sion, and by such holist canons as simplicity, explanatory and pre-
dictive power, and the extent to which they have, as a whole, been
confirmed by experience.

Which brings us to the second position. Hempel's own qualitative
theory of confirmation® has the property that, if e is an evidence
statement and p any sentence, consistent with e, that is not a
logical consequence of a sentence all of whose nonlogical terms occur
in e, then e confirms neither p nor the negation of p. But most of the
evidence for complex theories is stated in terms that use only frag-
ments of the vocabularies of the theories. For example, the posi-
tions of the planets on the celestial sphere supports Kepler’s laws,
but this evidence is stated in terms of times, ascensions, and dec-
linations: the notions of a period of an orbit, a mean distance from
the sun, and so on, do not occur in the statement of such evidence.
Accordingly, despite the fact that his intent was to give an account

¢ Cf. Hempel, “Empiricist Criteria of Cognitive Significance: Problems and
Changes,” in Aspects of Scientific Explanation (New York: Free Press, 1965).

§ “Homage to Carnap,” in Buck and Cohen, op. cit., pp. xlvi—xlvii.

6 “Studies in the Logic of Confirmation,” in Aspects of Scientific Explanation,
op. cit.
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of epistemic relevance,” Hempel’s theory cannot explain why such
evidence provides support for the theory as a whole or for particular
hypotheses within the theory. Quantitative theories of confirmation
using logical measure functions—Carnap’s m* for example—do
better, but they share some of the limitations of Hempel's system;
for example, if a hypothesis and an evidence statement share no
nonlogical vocabulary, then the second generally cannot confirm or
disconfirm the first.

Several contemporary accounts of scientific inference suppose it to
proceed by the formation of conditional probabilities by means of
Bayes's theorem in the theory of probability. That is, it is assumed
that there are prior probabilities assigned to all hypotheses in
question, and the new or posterior probability of (or degree of
belief in) a hypothesis # on new evidence e is just the conditional
probability of % on e (and whatever old evidence there may be).
Richard Jeffrey has generalized this strategy so that it need not be
assumed that the evidence statement, e, is certain.! A test that
results in evidence e is taken to be relevant to hypothesis % if and
only if the posterior probability of %, that is, its conditional prob-
ability on e, is different from the prior probability of . Analyses of
this sort may perhaps be made consistent with the sorts of judgments
of relevance described at the outset, but I think we should doubt
that they explain such judgments or provide a rationale for them.
In order to determine the conditional probability of # on e by
Bayes’s rule we must know the prior probabilities of % and of e, and
we must know the conditional probability of e on k. Frequentists
maintain that such prior probabilities are objective frequencies;
more particularly, Reichenbach proposed that the prior probability
of a theory or hypothesis be taken as the frequency of success in a
suitable reference class of theories of the same kind as the theory in
question. He gave, unfortunately, no account of how the success of
past theories might, without circularity, be determined, nor did he
indicate with any concrete examples just how the required group-
ings might be effected. Reichenbach himself seems to have under-
stood his account as a proposal for future practice: ‘“Should we some
day reach a stage in which we have as many statistics on theories
as we have today on cases of disease and subsequent death . . . the
choice of the reference class for the probability of theories would

7 See 4bid, p. 5/6. Hempel was, of course, aware of the difficulty and entertained
remedies. One remedy, the converse consequence condition, he rightly rejected,
and subsequent attempts to revive it [cf. B. Brody, “Confirmation and Explana-
tion,”” this JOURNAL, LxV, 10 (May 16, 1968): 282-2997] have not proved fruitful.

8 The Logic of Decision (New York: McGraw-Hill, 1965), ch. 11,
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seem as natural as that of the reference class for the probability of
death.” ® Whatever the merits or difficulties with the proposal, one
thing is clear: it cannot provide a rationale for those detailed judg-
ments of relevance which scientists now make and have long been
making, nor can it explain the great agreement scientists in the
same field show about such matters. For we simply do not have
statistics of the kind Reichenbach envisioned, nor do we have any
idea of what their values would be or even of how to collect them.

Subjective probability theorists, who regard the probabilities of
hypotheses as measures of our degrees of belief in them, are not
affected by such criticism. But of course, on a strict subjectivist view,
the assignments of prior probabilities are quite arbitrary so long as
they accord with the requirements of the theory of probability. If,
then, judgments of relevance are to be explained ultimately in terms
of prior probability distributions, and those distributions are without
rationale, the judgments of relevance will also be without rationale.!
The bare subjectivist account seems to be a version of the third
position above: judgments of relevance are conventional.

The conventionalist view would presumably attribute the agree-
ment about relevance to such factors as the education of graduate
students: young scientists are told by old scientists what is relevant
to what. All relativity texts say that certain experiments do not
test certain hypotheses because that was what all relativity textbook
writers were taught. There are two difficulties; these suppositions do
not explain how judgments of relevance came to be established in the
first place, and they do not explain how it is that, with very little
controversy, judgments of relevance are made in new cases. The
latter fact, especially, suggests that, if scientific education deter-
mines scientific judgments about the relevance of evidence to theory,
it must do so by teaching, explicitly or tacitly, principles and not
merely cases. On the other hand, the conventionalist view has for
its support the fundamental consideration that no plausible prin-

9 Theory of Probability (Berkeley: Univ. of California Press, 1949). This passage
is taken from S. Luckenbach, Probabilities, Problems and Paradoxes (Encino,
Calif.: Dickenson, 1972), p. 44.

10 The standard Bayesian response to criticisms that turn on the arbitrariness
of prior probabilities is by appeal to stable estimation theorems; i.e., to proofs
that, under certain conditions whatever the prior distributions may be, the
posterior distributions will be nearly the same given sufficient evidence. [Cf.
Edwards, Lindman, and Savage, “Bayesian Statistical Inference for Psychological
Research,” Psychological Review, LxX (1963).] But 1 know of no such theorems
for the kind of case under consideration, that is, when the evidence statements are
confined to a proper sublanguage of the language in which the hypotheses may be
formulated.
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ciples are known that would warrant the discrimination in question.
I shall try to remove that support. -
I .
It is widely thought that, save in exceptional circumstances, uni-
versal hypotheses are supported or confirmed by their positive in-
stances. If the hypothesis contains anomalous predicates—‘‘grue,”
for example—then it will fail to be confirmed by positive instances,
and, likewise, if the hypothesis is entailed by some well-confirmed
theory, and a positive instance of the hypothesis is inconsistent with
that theory, then the instance may serve to reduce our reasons to
believe the hypothesis. But, barring circumstances such as these,
we expect that universal hypotheses will be confirmed by their
positive instances, and, in particular, we expect that a quantitative
hypothesis stated as an equation will be confirmed by a set of values
for the magnitudes! occurring in the hypothesis if the set is a solu-
tion to the equation. Now the trouble is that our experiments, ob-
servations, and measurements do not appear to provide us with
positive instances of the hypotheses of our theories; in the quantita-
tive case, for example, the magnitudes we determine by experiment
or observation are generally not those, or not all of those, which
occur in our theories concerning the phenomena observed.
Scientists seem to know very well how to get values of magnitudes
occurring in their theories from values of magnitudes determined
experimentally. Their strategy is to use hypotheses of the very
theory to be tested to compute values of other magnitudes from
experimentally determined magnitudes. To take a very simple
example, suppose our theory consists of the single hypothesis that,
for any sample of gas, so long as no gas is added to or removed from
the sample, the product of the pressure and volume of the gas is
proportional to the temperature of the gas. In other terms, under the

given conditions
PV = kT

where % is an undetermined constant. Suppose further that we have
means for measuring P, V, and T, but no means for measuring k.
Then the hypothesis may be tested by obtaining two sets of values
for P, V, and T, using the first set of values together with the very

11 T shall use the terms ‘magnitude’ or ‘quantity’ either to signify abstract ob-
jects, e.g., the type of the token ‘kinetic energy’, or else to signify properties under
a description. The important point is that for my purposes ‘‘mean kinetic energy”

. and ‘“temperature” must count as different quantities even though tem-
perature is mean kinetic energy.
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hypothesis to be tested to determine a value for k&

=P
k"t

and using the value %k thus obtained together with the second set of
values for P, V, and T either to instantiate or to contradict the
hypothesis.

In the example the very hypothesis to be tested was used to deter-
mine, from experiment, a value for a quantity occurring in it, and
the determination was very simple. Cases of this kind abound in
scientific literature,’? but in general the situation is considerably
more complicated. Typically, the theory in question will contain a
great many hypotheses, and a given experiment or collection of
experiments may fail to measure values of more than one quantity
in the theory. To determine a value for one of the latter quantities
the use of several hypotheses in the theory may be required, and the
determination may proceed through the computation of values for
intermediate quantities, or combinations of such. Such a determina-
tion or computation may be represented by a finite graph. The
initial, or zero-level, nodes of the graph will be experimentally deter-
mined quantities; #-level nodes will be quantities or combinations of
quantities such that, for each #-level node, some hypothesis of the
theory determines a unique value of that node from suitable values
of all the (#—1)-level nodes with which it is connected. The graph
will have a single maximal element, and that element will be a single
quantity. We permit that two connected or unconnected nodes may
correspond to the same quantity or combination of quantities. I will
call such a graph a computation.

The graph associated with the computation of the constant in the
ideal-gas law is obvious, but it may not be clear what happens in a
more complicated case. Let us consider a theory developed in a
recent psychological paper;® since our considerations are almost
entirely structural, we need not concern ourselves with much of the
detail regarding the interpretation—which happens to be compli-
cated—of the quantities occurring in the theory. The theory consists
of the following set of linear equations, together with their conse-

2 For example, some of Jean Perrin’s tests of equations of the kinetic theory are
exactly of the kind illustrated. Perrin had, for instance, to use one of the equations
to be tested to determine a value for a constant (Avogadro’s number) it contained.

13 J, Jinks and D. Fulker, “Comparison of the Biometrical, Genetical MAVA
and Classical Approaches to the Analysis of Human Behavior,” Psychological
Bulletin, Lxx111, 5 (May 1970). The equations given are taken from p. 316.



410 THE JOURNAL OF PHILOSOPHY

quences (with respect-to real algebra):

1) A=E

2) Bi=Gi1+ G2+ E;
3) A:=Ei+E;

(4) By =Gi+G:

(5) As=Gi1+ L

(6) B; = Gy + E,

The As and Bs are supposed to be quantities that we know how
to estimate experimentally. Suppose then that we do an experiment
that gives us values for the quantities 41, B1, 43, and B;. Naturally
we could use equation (1) to compute a value for E; immediately
from the experimental value of 4. But it is also possible to compute
a value for E; from the values of B;, 43, and B; in the following way:

E,
G1 Gl + El
G1+ Ga + E, G+ E, G+ E;
(2) (6) (%)
B; B As

As we have seen, a given set of data may permit the computation of
a value for a quantity in more than one way. If the data are con-
sistent with the theory, then these different computations must
agree in the value they determine for the computed quantity, but,
if the data are inconsistent with the theory, then different computa-
tions of the same quantity may give different results. Further, and
most important, what quantities in a theory may be computed from
a given set of initial data depends both on the initial data and on the
structure of the theory. In the example above we supposed given
values for 41, By, A3, and B;. These permit us to compute values for
E; and for Gy, but, as the authors of the paper from which we have
taken the equations put it, ‘“two of the parameters, Gy and E,,
occur only together in the expectations with the same coefficients,
and are therefore inseparable. We can therefore estimate only Gj,
Ey, and (Gs + Es)” (ibid., 317). That is, we cannot, with this theory,
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get values of G, and of E. with these data. Similar things happen
with other sets of possible initial values. If we have values of 44,
B, A,, B; only, then we cannot compute values for G, or for G,. If,
initially, we have values for A,, B2, A3, B; only, then we cannot
compute values for any of the quantities that appear on the right-
hand side of the preceding equations.

Itis clear, then, I hope, how scientists may use hypotheses in their
theories for the determination of values of quantities that are not in
fact measured or estimated by standard statistical methods. The
examples already given suffice, I believe, to show that the strategy
is in fact used explicitly in some cases. The question is, to what end
is this strategy used? More particularly, if experiment permits the
computation of values for all quantities occurring in a hypothesis,
and these values accord with the hypothesis, does the positive in-
stance thus obtained support or confirm the hypothesis? The answer
cannot always be affirmative. Consider the example just discussed ;
suppose we determine A; by experiment and use the hypothesis:

1 A1 =E,

to compute a value for E;. We then have values for both 4, and E;,
and these values are in accord with hypothesis (1) and provide a
positive instance of that hypothesis. But clearly it would be wrong
to think that this instance provides any support for the hypothesis.
Intuitively, the difficulty is that the value of E; has been determined
in such a way that, no matter what the value of 4;, it could not
possibly fail to provide a positive instance of the hypothesis. To test
a hypothesis we must do something that could result in presumptive
evidence against the hypothesis. So a plausible necessary condition
for a set I of values of quantities to test hypothesis % with respect to
theory T is that there exist computations (using hypothesesin T & k)
from I of values for the quantities occurring in %, and there exist a
set J of possible values for the same initial quantities such that the
same computations from J result in a negative instance of ~—that is,
the values of the quantities occurring in % which are computed from
J must contradict 4. Actually, it is not necessary that all the quanti-
ties occurring in % be computable from the initial data, for some of
them may occur vacuously. For example, to test an equation of the
form

a(@®+y)+bx—ay=0
we do not require a value for y. The quantity y is vacuous in the

equation because, given any value v of x for which there exists a
value # of ¥ such that (v, %) is a solution to the equation, then (v, 2)
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is also a solution for all possible values, 2, of y. The generalization
to cases with more quantities is obvious.

There is another useful condition which, for many theories, is
equivalent to that just given. Suppose a hypothesis is equivalent to
an equation of the form:

X(Q1---0) =0

where X is some functional form, and where it is understood that
two hypotheses are equivalent if every set of values which is a solu-
tion of one is a solution of the other and vice versa. Suppose further
that a value for every quantity occurring in the hypothesis can be
computed (by using hypotheses of a given theory T) from a set of
values for experimentally determined quantities E;- - - E;. Now for
any quantity Q; occurring in the hypothesis, the computation for Q;
specifies Q; as a single-valued function of the quantities whose nodes
are immediately connected to the Q; node in the graph of the com-
putation. Similarly, the quantities at the nth-level nodes are, each
of them, specified as single-valued functions of the quantities at the
(n — 1)-level nodes with which they are connected. Thus, ulti-
mately, by composing all these functions, Q; itself is specified as a
single-valued function f;(E;- - - Ex) of the experimentally determined
quantities E;---E; Replacing each Q; in the hypothesis by
fi(Ey- - - Ei) we obtain the equation

X(f1i(Er - -Ex), . . ., fi(E1-+-Ey))

in which the only quantities are those experimentally determined.
We shall say that this equation represents the hypothesis for this set
of computations. For example, if the hypothesis is (1) above, that is,

A1=E1

and the only computation is that of E; illustrated previously, then
the representative of the hypothesis for this computation is

A= (43 + B; — B))

Now the following is obvious: If the representative of a hypothesis
for a set of computations holds identically, that is, if every set of
possible values for the quantities occurring in the representative is
a solution of the representative, then the computations cannot test
the hypothesis, because the necessary condition given before will
not obtain. Something more is true. If the functional form X of the
hypothesis, and the functions f;, are composed of operators that
determine unique values for all possible sets of values of the quanti-
ties they operate on, then the hypothesis will be tested by a set of
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computations from initial data if the equation representing the
hypothesis is not an identity.

We have, in effect, an account of theory testing, and one that
naturally evolves from a few elementary observations: ceteris
paribus, hypotheses are supported by positive instances, discon-
firmed by negative; instances, whether positive or negative, of a
hypothesis in a theory are got by using the hypotheses of that theory
itself (or, conceivably, some other) to make computations from
values got from experiment, observation, or independent theoretical
considerations; the computations must be carried out in such a way
as to admit the possibility that the resulting instance of the hy-
pothesis tested will be negative. Hypotheses, on this account, are
not generally tested or supported or confirmed absolutely, but only
relative to a theory. The general idea is certainly not new. Herman
Weyl, for example, seems to have had it:

The requirements which emerge from our discussion for a correct
theory of the course of the world may be formulated as follows:

1. Concordance. The definite value which a quantity occurring in
the theory assumes in a certain individual case will be determined
from the empirical data on the basis of the theoretically posited con-
nections. Every such determination has to yield the same result . . .
Not infrequently a (relatively) direct observation of the quantity in
question . . . is compared with a computation on the basis of other
observations. . . .

2. It must in principle always be possible to determine on the basis
of observational data the definite value which a quantity occurring
in the theory will have in a given individual case. This expresses the
postulate that the theory in its explanation of the phenomena, must
not contain redundant parts (121/2).

Again, in “Testability and Meaning” ** Carnap proposed to regard
hypotheses as confirmed by observation statements if the hy-
potheses, or instances of them, could be deduced from premises con-
sisting of the observation statements and certain special hypotheses.
The special hypotheses—bilateral reduction sentences—were in
effect allegedly privileged hypotheses of a theory; privileged in
being immune from disconfirmation and in being analytic. But the
appeal to analytic truth is quite independent of the main idea,

13 Philosophy of Mathematics and Natural Science (New York: Atheneum,
19‘6‘31);hilosophy of Science, 111, 4 (October 1936): 419-471; IV, 1 (January 1937):

1-40; reprinted in H. Feigl and M. Brodbeck, Readings in the Philosophy of
Science (New York: Appleton-Century-Crofts, 1953).
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namely, to confirm hypotheses by deducing instances of them by
means of other hypotheses in the same theory.

111
Before turning to the questions with which we began, some objec-
tions to this account of theory testing need to be considered.

One objection is that the foregoing account is an account of
testing for quantitative theories only; it does not seem to apply to
qualitative theories or to theories construed as deductively closed,
axiomatizable sets of first-order sentences. But the account is
straightforwardly extended to first-order theories, and thereby to
qualitative theories if the logical form of their hypotheses is known.

By a “quantity” we will mean an open atomic formula. By a
‘“‘value” for a quantity we will mean an atomic sentence or its
negation containing the same predicate constant as the quantity.
It certainly must be allowed that, if initial data I (that is, a set of
values for quantities) and theory T are consistent, then I discom-
firms % with respect to T if T and I together entail ~% but T alone
does not. Conversely, if T and I are consistent and 7" and [ entail
h but T alone does not, then I must count as confirming % with
respect to T. The more typical and more complicated cases arise
when T and I together neither entail nor refute % unless T" does so
alone. For these cases we may give a quasi-Hempelian analysis:

I confirms . with respect to T if

(i) T and I are consistent with each other and with 2.

(ii) There exists a set, call it S, of values for quantities such that there
are computations from I of the values in S and, further, such that
S entails the development (in Hempel’s sense!®) of % for the in-
dividual constants occurring in members of S.

(iii) There exists a set J of possible values for the initial quantities such
that the same computations (as in ii) from J given values of the
quantities in S that entail the development of the negation of .

I disconfirms % if I confirms the negation of .

I should like briefly to note some features of this account. If I
is inconsistent with T, then I neither confirms nor disconfirms any
hypothesis with respect to 7°; but in that case I may nonetheless
confirm or disconfirm various hypotheses with respect to sub-
theories of T. Hempel’s consistency and equivalence conditions are
satisfied so long as the theory is kept fixed. The same initial data
may, however, confirm inconsistent hypotheses with respect to
different theories. Because of condition iii, Hempel’s special conse-

15 Cf, “Studies in the Logic of Confirmation,” op. cit.
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quence condition is not satisfied, and neither, of course, is the con-
verse consequence condition.

On Hempel’'s theory, ~R(a) confirms both Vx~ Rx and
Vx(Rx D Bx), but, on the account just given, it does not, because
no value of R(x) will, by itself, entail the development of the
negation of the second hypothesis, and so condition iii is not met.
The “paradox’ of the ravens arises in the new account just as in
Hempel's, but it is at least confined : if initial data Rae,Ba confirm a
hypothesis of universal conditional form with respect to theory T,
it is not always the case that ~Ra,~Ba also confirm that hypothesis
with respect to T. For example, if the hypothesis is Yx(Cx DO Dx)
and the theory is Vx(Rx D Cx) & Yx(Dx = Bx), then the first set of
initial data, Ra,Ba confirms the hypothesis, but ~Ra,~Ba does not
confirm the hypothesis.

Although I think that most of the features of the foregoing account
for first-order theories are plausible enough, I shall not defend them
now. There are a variety of ways in which the general strategy I
have outlined in the previous section might be extended to formal-
ized theories, and the quasi-Hempelian account just given is only
one of them. One can, for example, try to preserve the consequence
condition by replacing iii with a radically weaker condition, e.g.,

(iii*) If % has a representative for the set of computations in ii, the
representative is not a valid formula.

but then one will have to allow that ~Re confirms Vx(Rx D Bx).
Again, it is straightforward to adapt the general strategy to a
Popperian viewpoint, so that hypotheses of universal form may be
tested but hypotheses of existential or mixed form never are. The
point is that the account can be extended to formalized theories, and
the extension need not be much less plausible—I think not any less
plausible at all—than accounts of confirmation that are confined to
‘“‘observation’’ statements.

A serious difficulty, urged by Professor Hempel, is this: typically,
the hypotheses of a theory of themselves determine nothing about
experimental or observational data ; something definite about experi-
mental outcomes can be inferred from the theory—or values of
theoretical quantities can be inferred from the data—only if
special, empirically untested, assumptions are made. Hempel calls
such assumptions “qualifying clauses” or ‘“provisos.”’ One example,
alleged by several writers, is that no observable consequences about
the motions of heavenly bodies follow from Newton’s three laws
and the law of universal gravitation unless one makes some assump-
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tion about what forces are acting, e.g., that only gravitational
forces act between the bodies of the solar system.

There may indeed be many cases in which a theory can be applied
to a system only if it is assumed that the system has some property
of a kind that is not determined experimentally; even when that is
so, however, one must still be able to say what hypotheses in the
theory are tested by the experimental results on the supposition that
the qualifying clause is met, and our account proposes an answer to
that question. Of course, one wants to know something more about
when it is reasonable to assume that qualifying clauses are satisfied,
and what role they may play in the assessment of a whole theory,
but that is beyond our scope at present.

It is not clear to me how often such qualifying clauses are really
essential. Consider Newton again. In book 111 of the Principia
Newton uses his first two laws to deduce from Kepler’s laws that
there is a centripetal force acting on the planets in inverse propor-
tion to the square of their distances from the sun. He further shows,
using terrestrial experiments and the third law, that this centripetal
force between two bodies must be proportional to the product of
their masses. Now, as deductivists like Duhem!® have insisted, these
deductions do not result in an instance of the gravitational-force law
because that law requires that the gravitational force acting between
any two bodies be proportional to the product of the masses and
inversely proportional to the square of the distance between them;
but the total gravitational force acting on any planet must be the
sum of the forces due to the sun and to the other bodies in the solar
system, and hence the total gravitational force acting on a planet
ought not to be inversely proportional to the square of its distance
from the sun. Newton's conclusions are inconsistent with his law.
Duhem’s objection fails entirely, however, if we recognize that
Kepler's laws need not be taken as strictly correct initial data, but
rather as very good approximations subject to whatever errors there
may be in the observations of planetary positions and times. The
question then becomes whether the planetary perturbations are
sufficiently small that the deviation in the total force acting on a
planet from that calculated by Newton using Kepler's laws is less
than the error of the computed result due to error in the initial data.
Such a determination in turn requires, besides some idea of the
error of the observations, an estimate of the relative masses of the
planets to the sun. For any planet with a satellite, the ratio of the

186 Cf. The Aim and Structure of Physical Theory (Princeton, N.J.: University
Press, 1954), passim.
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planet’s mass to the sun’s can be estimated from data independent
of those used to compute the circumsolar force; Newton is thus able
to argue without circularity that the gravitational interaction of the
planets is very small in comparison with the solar force.'”

In effect, the method of testing described in this paper is Newton’s
method, save that in Newton’s case the matter is complicated by
the use of empirical laws as initial data and the use of approxima-
tions. Not only Newton, but Newtonian scientists of the eighteenth
and nineteenth centuries claimed to deduce their laws from the phe-
nomena. Perhaps they overstated their case, but they had, nonethe-
less, a case to state. The scorn heaped on their method by Duhem
is undeserved.

Another objection is that the account is, after all, just the old
hypothetico-deductive account. For, if a set of initial data confirms
a hypothesis with respect to a theory according to the preceding
account, then surely there is a valid deduction of some of the propo-
sitions in the initial data set from premises consisting of the rest of
the propositions in the initial data set, the hypothesis tested, and the
theorems of the theory that are used in the computations. Further,
if the data disconfirm the hypothesis, the negation of some proposi-
tion in the initial data set must be deducible in an analogous way.
And surely H-D theorists would agree that in some contexts only
some particular hypothesis or hypotheses from among all those
which might appear in such deductions are in fact tested.

It is true, I think, that any test can be converted into a deductive
argument in the way suggested ; but the converse is not true. Not
all deductions of singular statements from putative laws and initial
conditions can be transformed into tests. For example, suppose
hypothesis % is tested by data I with respect to theory 7. For each
predicate occurring in % or in T but not occurring in I, choose two
new, distinct predicates, and replace each occurrence of each predi-
cate, P say, by the disjunction of the two new predicates associated
with P. Then % is changed into a new hypothesis 4% and T is
changed into a new theory T*, and, further, if there is a valid deduc-
tion of a proposition in I from the rest of I, , and theorems of T,
then, by the substitution theorem, there is also a valid deduction of
that proposition in I from the rest of I, 2*, and T*. But, in general, I

17 This discussion ignores many historical niceties. Newton assumes, for example,
that the center of gravity of the solar system moves inertially, and this assump-
tion, having no experimental support, is presumably just the sort of thing Hempel
would call a “proviso.” But Newton’s argument does not in fact require the
assumption. A more careful account of Newton’s argument is given in my

“Physics and Evidence,” to appear in Pitisburgh Studies in the Philosophy of
Science.
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will not test 2* with respect to T*. That is exactly as it should be, for
no scientist would take evidence to support a theory like T* when
another like 7" was available. The H-D method has us deduce
singular statements from laws; the new procedure, in effect, has us
deduce instances of laws from singular statements and other laws.
The two are not the same. I have no doubt that H-D advocates agree
that sometimes data test certain hypotheses and not others; what I
doubt is that their principles afford any explanation of those judg-
ments.
v

We still have to consider what the account of theory testing can
contribute to the questions with which we began. What grounds can
there be for claims to the effect that one or another experiment has
no bearing on one or another hypothesis within a theory? In general
terms our answer is clear enough: depending on the nature of the
experiment or observation and the structure of the theory in ques-
tion, a given hypothesis may or may not be tested according to the
scheme outlined in previous sections. In particular cases, detailing
the application of the scheme may be very complex, and the psycho-
analytic and relativity examples mentioned at the outset are
certainly too complex to discuss here.!® It is, however, fairly easy to
see how the account of theory testing can explain the claim that
observations of a single planet do not, of themselves, provide a test
of Kepler’s third law.

Kepler’s first and second laws specify features of the motion of
any planetary body moving about the sun. The third law, however,
relates features of the orbits of any two bodies; specifically it claims
that the ratio of the periods of any two planets equals the 3/2 power
of the ratio of their mean distances from the sun. The parameters
that uniquely determine the Keplerian orbit at any time can be
estimated from several observations of the planet on the celestial
sphere; in fact, three suitably chosen observations suffice for the
computations,” and a fourth observation of a single planet permits
a test of Kepler’s first and second laws. But, however many observa-

18 For a very qualitative application of the strategy to Freudian theory, see
my “Freud, Kepler and the Clinical Evidence,” in R. Wollheim, ed., Freud (New
York: Doubleday, 1975). The explanation I should offer of why the field equations
of general relativity are not tested by measurements of the gravitational red shift
turns on the imprecision of these measurements and closely follows the account
given by John Anderson in his Principles of Relativity Physics (New York:
Academic Press, 1967), ch. 12.

19 The classic treatment is Gauss, Theory of the Motion of Heavenly Bodies Moving
about the Sun in Conic Sections. A translation from the Latin is published by Dover,
New York, 1963.
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tions we may have of the location of a single planet on the celestial
sphere, those are not, by assumption, observations of the location
of any other planet on the celestial sphere. To test Kepler’s third
law, we need estimates of the periods and mean distances from the
sun of at least two planets. But from the observations of one planet
alone we cannot compute, using Kepler's laws and their conse-
quences, the parameters of the orbit of any other planet. We can,
of course, compute under those circumstances the ratio of the square
of the period to the cube of the mean distance from the sun for any
planet whatsoever, but only by using Kepler’s third law itself. So,
even if we count such a ratio as one quantity, the representative of
Kepler’s third law (see p. 412 above) for the requisite computations
will be a trivial identity, and hence the third law will not be tested.

The account of theory testing helps to account for a good deal
more about scientific methodology. A standard methodological
principle is that a theory is better supported by a variety of evi-
dence than by a narrow spectrum of evidence. The substance of the
principle is, however, unclear so long as we lack some account of
what constitutes relevant variety. One view, which I believe is
incorrect, is that what constitutes a relevant variety of evidence for
a theory is entirely determined by what other theories happen to be
in competition with the first.2 On the contrary, if, as I have argued,
a given piece of evidence may be evidence for some hypothesis in
a theory even while it is irrelevant to other hypotheses in that
theory, then we surely want our pieces of evidence to be various
enough to provide tests of as many different hypotheses in that
theory as possible, regardless of what, in historical context, the
competing theories may be. There is a further complication. In
assessing a theory we are judging how well it is supported with
respect to itself, and this reflexive feature of theory testing makes for
certain difficulties. If a hypothesis is confirmed by observations and
computations using another hypothesis in the theory, then it is
always possible that the agreement between hypothesis and evidence
is spurious: both the hypothesis tested and some hypothesis used in
the computations of the test may be in error, but the errors in one
hypothesis may be exactly (or exactly enough) compensated for by
the errors in the other. Conversely, a true hypothesis may be dis-
confirmed by observations and computations using other hypotheses
in the theory if one or more of the hypotheses used in the computa-
tions are incorrect. The only means available for guarding against

2 For this view see, for example, Peter Achinstein, ‘“‘Inference to Scientific

Laws,” in R. Stuewer, ed., Minnesota Studies in the Philosophy of Science, vol.
v (Minneapolis: Univ. of Minnesota Press, 1970), p. 95.
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such errors is to have a variety of evidence, so that as many hy-
potheses as possible are tested in as many different ways as possible.
What makes one way of testing relevantly different from another is
that the hypotheses used in the one computation are different from
the hypotheses used in the other computation. Part of what makes
one piece of evidence relevantly different from another piece of
evidence is that some test is possible from the first that is not possible
from the second, or that in the two cases there is some difference in
the precision of computed values of theoretical quantities.

Kepler’s laws again provide a simple example. Kepler did not
determine elliptical orbits for planets as simply the best fit for the
data; on the contrary, he gave a physical argument for the area
rule—his second law—and used the area rule together with the data
to infer that the planetary orbits are ellipses. Seventeenth-century
astronomers were able to confirm Kepler’s first law only by using
his second, and they were able to confirm his second only by using
his first. Understandably, there remained considerable disagreement
and uncertainty as to whether the two laws were correct, or whether
the errors in one were compensated for by the errors in the other.
Not until the invention of the micrometer and Flamsteed’s observa-
tions of Jupiter and its satellites, late in the seventeenth century, was
a confirmation of Kepler’s second law obtained without any assump-
tion concerning the planet’s orbit.?! I doubt that this example is
singular; quite the reverse: it seems unlikely to me that the develop-
ment and testing of any complex modern theory in physics or in
chemistry can be understood without some appreciation of the way
a variety of evidence serves to separate hypotheses.

At the outset it was observed that some theories are regarded
chiefly as curiosities and rarely taken seriously, despite the fact that
they account for all the evidence accounted for by some theory
taken very seriously and are not known to be irreconcilable with any
other phenomena. In many cases this kind of scientific discrimina-
tion can plausibly be explained as the result of applying the prin-
ciples of evidential relevance that we are concerned to describe.

Some years ago Walter Thirring?? published a special relativistic
theory of gravitation. Thirring’s theory supposes that space-time
has a flat metric 7., like that of special relativity and that gravita-
tion is due to a tensor field, ¥.,, that has no effect on the metric.
Writing down equations for these quantities, Thirring was able to

21 Cf, Curtis Wilson, “From Kepler’s Laws, So-called, to Universal Gravitation:
Empirical Factors,” Archive for the History of Exact Sciences, V1 (1969): 89-170.
22 “An Alternative Approach to the Theory of Gravitation,” Annals of Physics,
xvrI (1961): 96-117. ‘
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show that his theory accounts for many of the phenomena that are
usually taken to confirm general relativity. His theory is almost
universally regarded as a curiosity; such an assessment might of
course result from mere prejudice or from any of a variety of
obscurely motivated methodological opinions, e.g., the view that a
phenomenon confirms a theory only if the theory literally predicts
the phenomenon. But I think the account of relevant evidence de-
veloped in the preceding sections best explains this assessment, and
also best explicates what physicists typically say in justifying that
assessment. What they say is that Thirring’s theory is defective
because his metric, 7., is not “observable.”” 2 A better word would
be ‘determinable’, and, if we understand the authors in that way,
then the complaint makes perfect sense. Free-falling particles do
not follow geodesics of Thirring’s metric, 7., nor do clocks measure
time according to it, nor rods distance. What, according to the
theory, such systems measure are geodesms, time, distances, as
determined by the quantity:

Nuy — f lpuv

where f is a suitable function. By making compensatory changes in
Yu, an infinite variety of different flat metrics 14, can be made
compatible with all data about rods, clocks, test particles, etc.
This is not just experimental uncertainty, or a failure to obtain
perfect accuracy in our measurements. We noted earlier that, if in
a theory a quantity A is replaced throughout by an algebraic com-
bination of new quantities B, C, D, then hypotheses formerly tested
by various initial data may be turned into hypotheses not tested by
those data, because values for B, C, D cannot be computed even
approximately. That is in effect what happens in Thirring’s theory:
the general relativistic metric, gu,, which is determinable in principle
from the behavior of material objects, is replaced by an algebraic
combination—(ny, — fYuw)—of new quantities. The result is that
values for the new quantities cannot be computed from the relevant
initial data, and so, although it might be possible to determine
evidence against Thirring’s theory, it is not possible to determine
evidence for its central hypotheses because they cannot be in-
stantiated. The physicists’ principle is that we should prefer theories
whose hypotheses are positively tested by our evidence to theories
that, even though consistent with our data and affording an explana-
tion of it, are not positively tested by it. The principle is a good one.

% Zeldovich and Novikov, loc. ctt. Thirring makes essentially the same criticism

of his own theory. More recent analyses have shown that the theory i is in fact
inconsistent.
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Theories with quantities whose values cannot be determined by
the evidence are, in an intuitive way, less simple than theories with-
out undeterminable quantities or with fewer of them. Still, it is a
mistake to see this discrimination as no more than a manifestation
of our preference for simple theories; I think we do better to try to
understand whatever rational preference there may be for simpler
scientific hypotheses as derivative from our preference for better
tested theories, and the account presented here provides at least a
partial rationale for our attachment to simplicity. Quine, for one,
seems to think differently:

Yet another principle that may be said to figure as a tacit guide of
science is that of sufficient reason. A lingering trace of this venerable
principle seems recognizable, at any rate, in the scientist’s shunning
of gratuitous singularities. If he arrives at laws of dynamics that favor
no one frame of reference over others that are in motion with respect
to it, he forthwith regards the notion of absolute rest and hence of ab-
solute position as untenable. This rejection is not, as one is tempted
to suppose, a rejection of the empirically undefinable; empirically un-
exceptionable definitions of rest are ready to hand, in the arbitrary
adoption of any of various specifiable frames of reference. [tis a rejec-
tion of the gratuitous. This principle may, however, plausibly be sub-
sumed under the demand for simplicity, thanks to the looseness of the
latter idea.

Though it is perfectly correct that we can always make deter-
minable an undeterminable quantity in a theory merely by adding
a further hypothesis, that is not enough. For it is not in the least
obvious that we can always add a hypothesis which will be tested
by the evidence available or which will not be tested negatively
either by the evidence available or by evidence easily produced. In
Newtonian theory there is no way to compute which unaccelerated
trajectories through space-time are truly at rest with respect to
absolute space. One can easily add to the theory untestable hy-
potheses about the rest frame—e.g., that the center of mass of the
universe is at rest; and one can easily add hypotheses one has every
reason to believe false or at best contingently true—e.g., that in-
ertially moving cabbages are at rest. Doing better is hard. Identi-
fication of the rest frame with the reference system in which partic-
ular physical systems—whether cabbages or the Sun—are at rest
is unsatisfactory, for such correlations cannot be even approximate
laws because the physical systems can be accelerated. The aether,
were there one, would perhaps have done the job, but there is not

2 Word and Object (Cambridge, Mass: MIT Press, 1960), p. 21.
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one, and the importance of that fact in the history of physics under-
scores the point: what theoretical magnitudes we can determine
depends on what lawlike hypotheses are available to us, and that,
in turn, depends on what kinds of things there are.

There is another kind of case where judgments often attributed
to a taste for simple things can at least partially be attributed in-
stead to a taste for well-tested things. First a word about error.
Suppose the measurements that comprise some body of evidence are
subject to error and, though the exact error of any measurement is
unknown, an upper bound to the error is known. Then each measure-
ment may be regarded as determining an interval of possible values
of the measured quantity, within which the true value must lie.
This is, I believe, a typical circumstance in scientific measurement.
Computations of theoretical quantities may proceed as before, but
what is determined from the data is a sef of values of any computed
quantity. Again, a test of a theoretical relation is understood as
before, but with the following complication: what is required for an
instance of a hypothesis is, for each quantity in the hypothesis, a set
of values for that quantity such that there can be drawn from the
respective sets a collection of precise values—one for each quantity—
satisfying the hypothesis. This is the obvious generalization of our
account when error is present.

Suppose a theorist is entertaining hypotheses about the functional
form of the relation between two quantities, X and ¥, which he can
determine experimentally. We assume that he has no well-estab-
lished theory to guide him, and we suppose his measurements of X
to be subject to some error of known bound. If getting values for X
and for Y is difficult, costly, and tedious, our theorist will doubtless
wish to draw his conclusions from but a few data points if that is
possible. Suppose he has six points and, to within the tolerable error,
they lie on a line : our theorist claims that the relation between X and
Y is linear. Why does he think the linear hypothesis better than
some other polynomial relation? In particular, the six data points
are perfectly consistent with the hypothesis that

YV =ao+ 61X + a: X% + a3 X? + a:X* + a: X5

and, because of the error, the coefficients of quadratic and higher
powers of X need not be zero. Why the linear hypothesis rather
than the fifth-degree hypothesis? Can there be any more to it than a
taste for simple things?

A Popperian answer is that the simpler, linear hypothesis can be
falsified by fewer data points than can the fifth-degree hypothesis.
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This cannot be exactly the right reason, for, given the six data points,
the linear and fifth-degree hypothesis each require the same number
of additional data points for a possible falsification, namely, one. The
reason for the preference, I suggest, is straightforward: two data
points permit a computation of intervals of values for the undeter-
mined coefficients of the linear hypothesis, and four more data points
permit four tests of that hypothesis; but the six values of X and ¥
permit only a computation of intervals of values of the constant co-
efficients in the fifth-degree hypothesis; they do not permit any test
of it. The theorist should prefer the linear hypothesis for the straight-
forward reason that he has more positive evidence for it than for any
other polynomial relation.
A%

There are two theses which have recently gained such wide assent
among empiricist philosophers that they deserve to be regarded as
new dogmas of empiricism. I have in mind the claim that our
theories may be underdetermined by all possible evidence, and the
further claim that each theory is tested as a whole. Dogmas may of
course be true, and, with suitable qualifications, these dogmas are. I
should like to conclude by saying something about the qualifications.

For some theories, at some stages of their development, a set of
quantities can plausibly be demarcated such that the evidence for
or against the theory in question consists of values for these quan-
tities for various systems. When such a demarcation can plausibly
be made, it not only makes sense to ask whether the theory is
uniquely determined by all possible evidenceof the relevant kind, but,
further, we can sometimes hope to get an answer to this question. Of
course an answer, whether affirmative or negative, says nothing
about what sorts of underdetermination may occur if novel kinds of
evidence are discovered. For example, the state of absolute rest is
undeterminable in Newtonian gravitational theory, but, had the
combination of Newtonian theory with Maxwell’s electrodynamics
proved correct, optical experiments would have permitted a deter-
mination of the rest frame.?* Again for certain models of general
relativity it can be shown that no measurements of the quantities
peculiar to that theory suffice to determine the global topology of
space-time,?® but, even if our universe is in fact one of these topo-
logically underdetermined universes, it is still possible that other
branches of physics—plasma physics for example—might provide
evidence and theory sufficient to determine a unique topology.

2 A discussion of this case is given in M. Friedman, Foundations of Space-Time
Theories, unpublished Ph.D. thesis, Princeton, 1972.

% Cf. my “Topology, Cosmology and Convention,” Synthese, Xx1v, 2 (August
1972): 195-218.
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If we confine consideration to a given kind of evidence, we can
inquire whether evidence of that kind uniquely determines a best
theory that explains it. Conceivably, all possible such evidence might
fail to determine a unique theory for either of two kinds of reasons.
First, there might occur two or more theories that are not inter-
translatable but all of whose hypotheses are tested positively by the
evidence so that every methodological demand met by one theory
is met by the other. I know of no plausible candidates for this kind
of case, but I see no reason why they should not exist. Second, there
might occur two or more theories that differ only in hypotheses that
cannot be tested, and, for some reason or other, every plausible
theory accounting for the evidence also contains such a hypothesis.
There are a great many examples of this kind of case, and analyzing
when this sort of underdetermination arises is a standard problem in
the social sciences.?®

Demonstrating underdetermination is sometimes possible, but it is
not as easy as some writers have supposed. Reichenbach,?” for ex-
ample, argued that, even in the context of classical physics, the
theory of the geometry of space is underdetermined ; for, given any
geometry, we can suppose it to be the true one and explain the co-
incidence behavior of material bodies in terms of this geometry
and the action of a “‘universal force.”” But, if one sets out actually
to write down such a theory, one quickly discovers that it is obtain-
able only by dividing the Euclidean metric of Newtonian theory into
two new quantities, just as Thirring divided the metric field of
general relativity into two new quantities. The result is a theory
which, on the same evidence, is less well tested than Newtonian
theory. We cannot demonstrate underdetermination by substituting
for one or more predicates of a theory a combination of new pred-
icates, since the result of the substitution is a theory less well
tested than the original.

Early in this century both Duhem and Frege urged that a theory
must be tested as a whole. Reductive programs, like Carnap’s
Awufbau, would have avoided holism had they succeeded, but they
did not succeed. Later, a number of philosophers, notably Carnap
and C. I. Lewis, tried to avoid holism by putting analytic truth to
work. They kept in common some version of the claim that, given
a collection of analytic truths, or truths by convention, each hypoth-
esis in a theory has its own, independent connections with experi-
ence. It is understandable that a new romance with holism should

26 Cf, Franklin Fisher, The Identification Problem in Econometrics (New York:

McGraw-Hill, 1966).
21 The Philosophy of Space and Time (New York: Dover, 1957).
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be the concomitant of estrangement from the distinction between
analytic truths and synthetic truths.

Part of what has been said or suggested on behalf of holism is
false, and part of it is true. It is true that a great part of a theory
may be involved in the confirmation of any of its hypotheses, and
it is further true that the assessment of any hypothesis in a theory
in the face of negative evidence requires the assessment of all hy-
potheses in that theory. It is false that a piece of evidence is evidence
indiscriminately for all hypotheses in a theory or for none of them,
and it is false as well that theories must be accepted or rejected as a
whole. For positive evidence may fail to provide any support for
some hypotheses in a theory—support, that is, with respect to the
theory itself—even while confirming other hypotheses. And, if the
total evidence is of sufficient variety, evidence inconsistent with a
theory may still leave us with a fragment that is best confirmed with
respect to itself. If we are lucky, in some axiomatizations of the
theory we may even be able to single out a particular axiom that
deserves the blame. A naive holism that supposes theory to con-
front experience as an unstructured, blockish whole will inevitably
be perplexed by the power of scientific argument to distribute praise
and to distribute blame among our beliefs.

CLARK GLYMOUR
Princeton University

ON THE ONTOLOGICAL STATUS OF THE METRIC
IN GENERAL RELATIVITY

CCORDING to what we can call “the thesis of the material
A metric” (MM), the metric (or metrical structure) of a gen-
eral relativistic (GR) space-time is reducible to the behavior
of material entities such as clocks, light rays, geodesic particles, etc.,
which are contained within space-time. That is, the metric of a GR
space-time is always relative to which rods and clocks we choose as
the standards of measurement (which particle trajectories we choose
as the geodesics) and the metrical relations within space-time are
always relations that essentially involve the chosen material stand-
ards of measurement. Since metrical relations are thus essentially
relations between the actual (and perhaps possible) material entities
in a space-time, the metrical relations between the material con-
tents of a space-time are not explained by the space-time metric—
rather they are constitutive of it.



