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DISCUSSION
PHYSICS BY CONVENTION*

CLARK GLYMOUR

Princeton University

“It ain’t nuthin’ until I call it.”’
Bill Guthrie, Umpire

Numerous criticisms of Adolf Griinbaum’s account of conventions in physics
have been published ([1], [2], [3], [4], [13]), and he has replied to most of them ([6],
[8]). Nonetheless, there seem to me to be good reasons for offering further criticism.
In the first place Griinbaum’s philosophy seems to me at least partly an extrapolation
of one aspect of the views on conventions developed by Reichenbach and others.
Since I think many of the issues which Reichenbach attempted to settle in his
various discussions of conventions in physics are genuine and important, and I also
think that those aspects of his views on which Griinbaum has focused are among
the least satisfactory, it seems important to suggest questions and answers about
conventions in physics which may develop more satisfactory Reichenbachian
themes. Secondly, Griinbaum’s philosophy centers on a distinction, that between
extrinsic and intrinsic properties and relations, which has never been made satis-
factorily clear either by Griinbaum or by his critics. Until it is clarified we will
remain unsure of just what he is claiming and why we should think it true or think
it false. Finally, Griinbaum’s replies to his critics, especially his most recent reply,
[9], involve unusually important claims which fail to be buttressed by the argu-
ments he gives. I have in mind such claims as that we can learn something important
about the ontological status of properties and relations by examining descriptions of
them, that on (what I take to be) the most straightforward and literal interpretation,
the general theory of relativity is inconsistent, and that the foremost advocates of
geometrodynamics, Clifford and Wheeler, were and are enmeshed in contradiction.
My own view is that all of these claims are dubious or false, but I shall be less
concerned with establishing their falsity than with discrediting the arguments offered
for them.

Reichenbach, [16], distinguished between sentences which express claims about
the world and sentences which express decisions. The latter, he claimed, are of two
kinds, “conventions” and “volitional bifurcations.” Conventions are decisions
which, in some sense, make no difference. Roughly, if either accepting or refusing to
accept a sentence will not affect the total content of our system of knowledge, then
the sentence is a convention. In such cases the results of two different alternative
decisions are said to be “equivalent descriptions.” Conventions together with

* Received August, 1971.
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empirical facts may require, for consistency, the adoption of still further conven-
tions, which Reichenbach called “entailed conventions.” Whether a sentence in our
scientific corpus is a convention zout simple or merely an entailed convention is
entirely relative to a given rational reconstruction. But whether a sentence is
conventional (in one way or the other) or empirical Reichenbach seems to have
thought an entirely objective matter, a matter of “logical fact.” One of the chief
tasks of epistemology, according to Reichenbach, is to locate the conventions
within the scientific corpus. The means he suggested derives from his “probability
theory of meaning” according to which two sentences have the same meaning if
they receive the same degree of inductive support on every physically possible
observation. A sentence can be deemed a convention if we can elaborate two
theories, one containing the sentence, the other containing instead some alternative
sentence, so that both theories (and both sentences) receive the same weight on
every physically possible observation. The evident difficulty is that Reichenbach
provided us no details regarding how, on the basis of experiment, to rationally
assign different probabilities to observationally equivalent hypotheses.* In practice,
when Reichenbach analyzed particular theories such as special relativity or
quantum mechanics, the probability theory of meaning seems to have been given
only lip service and a more robust criterion of synonymy employed: two sentences
(or theories) say the same thing if they are observationally equivalent, that is, if they
make exactly the same claim about the outcome of every physically possible
experiment. Reichenbach’s several analyses of conventions in physical theories
center on the development of such alternative empirically equivalent theories. In his
presentations, the choice from among the alternative theories pivots on the choice
of one sentence from among a class of “conventional” alternatives.

Now there are any number of philosophers who appear to think the verifiability
theory of meaning very implausible and who think both obscure and dubious the

1 The few examples he did give are unconvincing and even puzzling. For example:

Einstein demands that two watches equally regulated during a common stay at 4 and
moved in different ways and with different velocities toward B, will show at B, after their
arrival, a difference in their readings. We can imagine a world in which this is not the case,
but in which the indications of two watches are in correspondence after the different
transportations from A4 to B. In this world transported watches would define a simultaneity
which we call transport time, and we would say: If there were no upper limit to the velocity
of signals, the infinite velocity would determine with great probability, as simultaneous
to ¢, that time point #; which corresponds to the transport time. ([16], p. 128)

But it would seem that whether or not clocks which are in synchrony when together remain in
synchrony when separated is just the sort of question which on Reichenbach’s view is to be
answered only by a convention; for certainly the question here is very like the question of
whether separated rods remain congruent. And, in fact, Reichenbach himself said as much in
another place:

However, if relativistic physics were wrong, and the transport of clocks could be shown to
be independent of path and velocity, this type of time comparison could not change our
epistemological results, since the transport of clocks can again offer nothing but a definition
of simultaneity. Even if the two clocks correspond when they are again brought together,
how can we know whether or not both have changed in the meantime ? This question is as
undecidable as the question of the comparison of length of rigid rods. Again a solution can
be given only if the comparison of time is recognized as a definition. If there exists a unique
transport-synchronization, it is still merely a definition of simultaneity. ([17], p. 133)
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notion that scientific sentences can be classified, once and for all, as simply empirical
or conventional. I tend to agree, but even so I think it obvious that Reichenbach
was doing something important in his analyses of particular physical theories.
What he did, for example with special relativity, was at least to suggest how to
develop alternative theories, and to argue, often convincingly, that in spite of
apparent contradiction two such theories cannot be distinguished experimentally.
For special relativity the alternative theories he suggested involve different syn-
chronizations of distant clocks and hence different judgments of simultaneity even
within the same inertial frame. The arguments given for their empirical equivalence
are of two kinds: first, the consideration of hypothetical crucial experiments and the
demonstration that if either theory is true the experiments cannot be performed or
cannot accomplish their purpose, and second, the demonstration that the two
theories have a common body of claims which are intuitively close to observation
claims.? Reichenbach used both strategies for special relativity; more recently,
Professor Winnie, [19], has characterized, for the one-dimensional case, those
kinematic claims which are common to all of Reichenbach’s alternative special
relativity theories. Such analyses of theoretical equivalence have a value which is
independent of Reichenbach’s particular views about conventions. When a case can
be made that two or more theories can serve the same scientific functions and are
indistinguishable by any possible test, important philosophical questions arise
immediately: are the two theories really just different presentations of the same
theory ? Are they both true ? Are they contradictory ? Are there rationally grounded
methodological principles which will distinguish among them ? And so on. I do not
believe that these questions always have unambiguous answers, but sometimes they
may, and even where they do not there is something to be learned in locating the
ambiguities. Moreover, it is sometimes possible to suggest generalizations about
empirical equivalence; that is what I take Reichenbach to have been doing when he
wrote that “Topology is an empirical matter as soon as we introduce the require-
ments that no causal relations must be violated .. .” ([17], p. 80). I understand
Reichenbach to have meant that if we find two theories which are empirically
equivalent but ascribe different topologies to space, then at least one of these
theories must also postulate ‘““anomalous” causal relations. While I think this
particular claim false, and have given reasons for my skepticism in [6], the justi-
fication or refutation of such generalizations is an epistemological enterprise which
is both possible and important.

Now there is, at least implicitly, another, more metaphysical, aspect to Reichen-
bach’s views on conventions. Rather obscurely, Reichenbach suggested that conven-
tions arise because certain properties or relations are not “objective.” The result of

2 Other strategies may sometimes be available. If we look at special relativity four-dimen-
sionally—that is, take the theory to specify a topologically Euclidean differentiable manifold
together with an indefinite (Minkowski) tensor field—it becomes apparent that the alternative
synchronization rules (e.g. those of Ellis and Bowman [1]) simply express different coordinatiza-
tions of the manifold and, consequently different representations of the metric tensor, the
Lorentz group, etc. All of the geometrical invariants are the same. The “non-standard syn-
chronization rules” correspond to simple coordinate transformations. If, then, we take seriously
the principle of covariance it follows that the alternative versions of the special theory are
empirically indistinguishable.
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the analysis of conventions, he said, is to separate ‘“physical facts” from *‘sub-
jective features” of our descriptions. The idea, it appears, is that sentences which
are conventions do not describe real states of affairs, and one of the reasons they
may fail to do so is that certain properties they describe are really relations. Thus
he claimed that the analysis of conventions in physical geometry shows that when
we talk of length we are really talking about a relation between rigid rods and
point pairs, not about a property of point pairs. But nowhere in Reichenbach’s
writings have I found an unambiguous statement of the relations between conven-
tions and equivalent descriptions on the one hand, and the ontological status of
properties and relations on the other. A similar point of view is much more ex-
plicit in the writings of Poincaré [14], who maintained that the axioms of geometry
are concealed “definitions.” They are not “experimental facts” because geometric
properties of real space are in fact not properties of space itself at all, but rather
just relations among material objects: “If, then, there were no solid bodies in
nature there would be no geometry” ([14], p. 61).

Both Reichenbach and Poincaré, but the latter more explicitly, suggest an
ontological explanation of why some sentences are conventions and others not. The
explanation seems to turn on certain properties actually being relations, or certain
properties of space depending (in an unspecified sense) on material objects, or both.
The conventionalist views of Professor Griinbaum are, I think, extrapolations of the
ontological aspect of the views of these earlier conventionalists. I have suggested
that those aspects of conventionalist writings which bear on theoretical equivalence
have something right about them, and something important as well, and I wish now
to argue the contrary for the ontological aspect of conventionalism, at least as
developed by Griinbaum.

So well as I understand him, Professor Griinbaum’s view is this: A manifold,
whether space or time or space-time or something else, has certain properties
intrinsically. It would have these properties regardless of whether or not there were
people, languages, automata, or anything other than the manifold itself. Such
properties include the cardinality of pieces of space or of time or of space-time;
topological properties such as connectedness or disconnectedness; in some cases
relations of order or betweenness are intrinsic, but not always; further, causal
relations, as between space-time events, are intrinsic® and so too may be certain
qualitative properties, such as color or pitch. Other properties or relations are not
intrinsic to a manifold, but depend on the existence of special objects within the
manifold, e.g. people or rigid rods. The manifold could exist without these external
objects and still be the same manifold, but without them it would have none of these
extrinsic properties, only the intrinsic ones. A theory is conventional in a nontrivial
way just if it concerns properties which are extrinsic not intrinsic; theories may, of
course, also admit conventional alternatives in a trivial way, that is, when the two
alternatives say the same thing in different words. We may sometimes take a
variety of inconsistent views regarding the extension of a predicate signifying an

31 am not entirely sure about this; it may be that Griinbaum regards causal relations as
intrinsic to space-time with matter but not to space-time alone. The explication of “intrinsic”
which will be given below is flexible enough to accommodate such a notion.
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extrinsic property, and we may do so for at least two reasons. First because the
objects on which the extrinsic properties depend will often generate many alter-
native extrinsic properties, e.g. rigid rods in a continuous spatial manifold will
generate a great many different metric relations on the manifold. Second, because if
we ascribe an extrinsic property to a manifold, there is nothing in the manifold
itself to bear witness against what we say.* Specifically, congruence is an extrinsic
relation in a continuous, qualitatively homogeneous manifold but is intrinsic to a
discrete, denumerable space, so the geometry of the former is conventional but not
the geometry of the latter.

It should be emphasized that according to Griinbaum what is conventional are
properties and relations themselves. The conventional status of sentences is
entirely derivative. In fact, Griilnbaum maintains that there is no necessary con-
nection between the conventional status of properties and relations, on the one
hand, and the existence of alternative theories on the other. For example, a discrete
denumerable space has many different intrinsic metrics and hence there are many
alternative geometries for the space, all equally good empirically, but the geome-
tries are not conventional in any way, and that is just because the properties and
relations they describe are intrinsic.

The essential thing, then, in evaluating Griilnbaum’s account of conventions in
physics is to understand what an intrinsic relation might be, and how it is one can
know which relations are, and which relations are not, intrinsic. Griinbaum’s
published remarks on this score have been rather obscure, and consequently there
have been several attempts by others to explain what Griinbaum might mean by
‘intrinsic’. Professor Massey, [13], has tried to explicate the notion of intrinsic
properties of manifolds by those properties which are invariant under order
preserving and order inverting mappings of a manifold onto itself. Professor van
Frassen, [18], has suggested that the fundamental property Griinbaum regards as
intrinsic is not a metric but a measure, and intrinsic measures are those which are
suitably based on cardinality. Professor Griinbaum, in a recent mammoth article,
has rejected these explications and tried to put the matter straight. His fundamental
characterization of intrinsic and extrinsic properties is this:

Since our concept of an intrinsic monadic property of an interval will rely on the notions
of being a non-external and being a general property, we shall deal with these notions first.
To begin with, I should emphasize that when I speak of a monadic or polyadic “property”,
1 do so in the intensional sense of that term and nof in the extensional sense of a class . . .

(1) Given the elements of a manifold, we shall speak of an entity as being ““internal” to an
interval of the manifold (or as being an “inside” entity with respect to the interval), iff the
existence of the interval depends on the existence of the entity. Thus every element belong-
ing to an interval [a, b] is internal to [a, b] in this sense . . .

(2) Now, in a given manifold, a monadic property P is said to be “external” to an interval
passing it, iff the obtaining of P depends on entities which are not internal to the interval.

(3) Ishall take it to be antecedently understood what counts as a general property, and
I explain this notion here only to the extent of pointing out the following: If a property is
general, then its constitution does #not involve particular individuals! Thus the cardinality

4 Admittedly, these two reasons for the ““usual” concomitance between extrinsic properties
and alternative empirically equivalent theories involve an interpolation on Griinbaum’s published

remarks.
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of an interval is a general monadic property of the interval. But the disjunctive property of
being either singleton {a} or singleton {5} is not a general property of any singleton. . . .

In the preceeding three definitions I have invoked the dependence of (i) the existence of
one entity on that of another and of (ii) the obtaining of a property on there being entities
of a certain kind. I also appealed to the non-involvement of particular individuals in the
constitution of a property. The cognate relations of dependence and involvement relevant
here seem to be tantamount to the relation of logical implication (entailment) among
propositions. . . .

(4) In a given manifold, a monadic property P is said to be “intrinsic” to an interval
possessing it, iff P is a general property of the interval and not external to it. Thus, for an
arbitrary interval of a continuous P[hysical]-space, the property of being 1 meter long is
not an intrinsic monadic property. . . . ([9], pp. 525-26)

This characterization is certainly more explicit and detailed than accounts given by
earlier conventionalists. It seems clearly unsatisfactory, however, to introduce a
technical notion and compare it to a logical relation without detailing the com-
parison. So long as the account remains in such a state it is very difficult to focus the
attack upon it. I shall, therefore, try to reformulate Griinbaum’s account within an
extensional model theory.

Let us imagine we have a formalized language which, according to context, we
may take to be a first-order language, or a language for second-order logic, or even
for type theory. A structure for a first-order language is a set, the domain D, with,
for each n-place predicate letter of the language, a subset of the n-th Cartesian
power of the domain. For a second-order language the structure is again a first-
order relational structure, but we understand n-place predicate variables to range
over all subsets of the n-th Cartesian power of the domain. I assume the usual
semantics for such systems,® and I will say a finite sequence of entities in a structure
satisfies an open formula if there is an assignment of variables which assigns
entities in the sequence to the free variables of the formula and which satisfies the
formula. I shall think of the world as determining a structure of the appropriate
kind.

What sense can be given to Griinbaum’s notion of the existence of one entity
depending on the existence of another ? He makes it clear that he does not have in
mind a causal relation, e.g. the sort of dependence James Bond’s existence might
have on Dr. No’s existence if there were a bomb strapped to Bond and fixed to
explode in case No’s heartbeat should cease. The only examples we have of what
Griinbaum does mean are the more humdrum cases of intervals, manifolds, and
their elements. For such cases it seems perfectly adequate to assimilate Griinbaum’s
notion of existential dependence to the notion of membership. The entities which
are internal to an interval are just those entities which are members of the interval,
considered as a set. We are explicitly warned against construing properties ex-
tensionally, but not against reducing the existential dependence relation to set
relations. Whether or not this construal would fit what Griinbaum has in mind for
other cases, it seems perfectly satisfactory for the geometric ones. What about the
general properties? I have no reduction to propose, so instead I will just assume
them given. In addition, I shall assume that another subset of the relations in a

5 The semantics of unformalizable second-order logic is beautifully presented in chapter 15
of the forthcoming textbook by G. Boolos and R. Jeffrey.
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structure is singled out, the rea/ relations, by which I intend those relations which
really are real. What is required altogether of a structure for our language, then,
is that it be a first-order relational structure, possibly with a type hierarchy in
addition, and that among the relations of any type a subset is designated as real.

Now it is possible to say what it is for a property (or relation) to be external to a
set of entities. Remember that Griinbaum says a property is external just if its
“obtaining . . . depends on entities which are not internal to the interval.” So the
natural idea is this: Given a subset S of the domain of a structure, the properties
which are internal to the subset are just those properties which S has and which §
would have even if everything else in the domain were to cease to exist. We shall
make these ideas precise for the case of a relational structure for a first or second-
order language:

Given a relational structure M = {D, R\%..., R,*> for a language L, we
distinguish the set of all sets of ordered n-tuples on the domain; the set, R, of
relations actually belonging to the structure, R = {R,%, ..., R,'}; and the set, W,
of all sets of ordered n-tuples (relations) definable from R. We further suppose
given, along with M, a non-empty set R, < R of extensions of real relations. If
S < D, we define the real restriction of M to S to be the structure

MS = <S, RilnS,...,Rkanp>

where S7 is the j-th Cartesian power of S and all and only relations in R, occur
among R;1,..., R?.

We must determine how properties are to be represented. A first-order property
or relation is, in any structure, naturally associated with a set of n-tuples of elements
of the domain; certain such sets, those which are the extensions of properties or
relations which are expressible in the language, are naturally associated with open
first-order formulas. We will reverse this chain of connections and associate with
every first-order open formula, 4, a property P(4), and in any structure, M, the
extension of the property will be taken to be the set of all n-tuples from the domain
that satisfy 4. An open formula containing either or both individual and predicate
variables, free, is naturally associated with a property the extension of which in a
given structure is the set of n-tuples satisfying the formula. In general any such
n-tuple will have as members both elements of the domain and subsets of Cartesian
powers of the domain. Finally, it is reasonable to associate properties with sentences
of the language, as is sometimes done in English by means of such phrases as “the
property that . . .” The extension of such a property is just the set of all structures in
which the associated sentence is true.

We need some further definitions. By the second-order closure of an open
formula, 4, I shall mean the formula got by prefixing 3U to 4 for every predicate
variable, U, which is free in 4. The second-order closure of a formula containing no
free predicate variables is that formula itself. A formula is prime if it contains a
predicate constant and has none of the forms ~A4, A & B, 3U A(U), 3 x A(x) or
forms definable from these. A formula, A (or property, P(A)) is reducible in M if for
every prime formula, C, in 4, P(C) is coextensive in M with some property P(B),
where B is a formula (not necessarily prime) all of the predicate constants of which
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designate real relations in M (i.e. members of R,). By the reduct of a reducible
formula, 4, I mean the formula got by substituting in 4, for every occurrence of any
prime formula, C, the corresponding coextensive formula, B, containing only
predicate constants designating members of R, and having the same variables free
as does C.

If A is an open formula, the property P(A) is internal to a set S < D in M if

i) A is reducible in M.
ii) The second-order closure of the reduct, B, of A4 is satisfied in M.
iii) Every k-tuple of elements of S satisfying the second-order closure of B in
M also satisfies the second-order closure of B in M.
iv) Every n-tuple whose elements are members of S or subsets of Cartesian
powers of S and which satisfies B in M also satisfies B in Mj.

If A4 is a sentence, the property P(A) is internal to a set S < D in M if

v) A is reducible in M.
vi) The reduct, B, of 4 in M is true in M.

I will simply assume it specified what properties are general: a property is
intrinsic to Sin M if it is internal to S'in M and general. One way to see the motiva-
tion of the preceding account is to note that the operations of definitional expansion
and of restriction on a relational structure are not commutative. If we start with a
relational structure, M, expand it by adding all relations definable from those given
in M, and then restrict the expansion to a proper subset, S, of the original domain,
the result is a structure Mj; different from that, M}z, obtained by first restricting
M to S and then forming the definitional expansion on S. The n-tuples in S sat-
isfying (in M) 3u P(u, w) will be a relation in M3, but that relation need not occur
in M§z; the set of n-tuples in S satisfying (in M) Vu P(u, w) may be a relation in
M3z which is not in M. If all the relations in M are real, then My is the world as
it is, with our attention restricted to S. M3y is the world as it would be if everything
outside of S were to vanish.

The semantic characterization of ‘intrinsic’ seems to me in very good accord with
Griinbaum’s usage. What properties are intrinsic on our account depends on how
the world is; just so, Griinbaum says that congruence is an intrinsic relation if space
is discrete and denumerable but not if space is continuous and homogeneous.
What properties are internal depends on what set is being talked about; just so,
Griinbaum talks of properties which are internal to manifolds as a whole but not to
the intervals of the manifold. Using the account of internal properties just given,
we can see how it might be possible for congruence not to be an intrinsic property.
Suppose, for example, that our domain consists of a family of rigid rods and a
continuum of points. Suppose further that two pairs of points are congruent if and
only if there is a rigid rod whose ends can be brought into coincidence with each
pair. Suppose finally that the real relations and properties are those of being rigid
and of being capable of being brought into coincidence. Then congruence is
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reducible in M since, using C for congruence, R for being a rigid rod, and C, for
being capable of being brought into coincidence:

C(x, y, u, v) <> Iz [R(2) & C\(z, x, y) & C,(z, u, v)]

But congruence is not internal to the set of points S since its reduct is not satisfied
in M Se

Griinbaum appears to claim that cardinality properties are intrinsic. Using the
preceding account, we can show that no matter what properties are real, the
identity relation is internal to any set, and so are the properties of having exactly n
elements for any finite n, of having an infinite number of elements, of being de-
numerable and of being nondenumerable. This seems a strong indication that the
account captures the notion Griinbaum has tried to characterize. Identity is
reducible in any structure since

1 x =y YUUE) — U®B))

is valid. For any nonempty set S < D, x = y is satisfied in M and trivially for any
a in S, (a, a) satisfies x = y in M only if it satisfies the same formula in M. The
property of having exactly » elements might, for say n = 2, be expressed by

2 x#y&Vzz=xV z=Y)

or equally by the existential closure of this formula. The formula is reducible
because identity is, and for any two element set S < D, the reduct of formula 2 is
satisfied in Mg If S = D, then every pair in S satisfying the reduct of 2 in M
satisfies the reduct of 2 in My, and if § < D, there is no pair satisfying 2 in M. In
either case the property is internal. We get the same result if we express the property
by a sentence. The property of (Dedekind) infinity may be expressed by the sentence

3 3AUVX(z # U(x)) & VxVy(x # y — U(x) # U»))]

where U is a function variable. In any structure this sentence is reducible since
identity is. Moreover the sentence (and its reduct) is true in a structure if and only
if there is a denumerably infinite subset of the domain.® Hence, for any infinite
subset S < D, 3 is true in Mg and the property expressed by 3 is internal to S.
Exactly the same conclusion is obtained if we express infinity by the open formula
got by deleting the existential quantifiers in 3 and apply clauses i-iv of the definition
of an internal property. The sentence

4 AZAUVV[(V(2) & Vz(V(x) — V(U(x)))) — VxV(x)]

where U is again a function variable, is true in a structure M if and only if the
domain D is denumerable. Hence for any denumerable subset S < D, 4 is true in
M, and since formula 4 is its own reduct, the property it expresses is internal to any
such S. Again, the same result is obtained if we express denumerability by the
formula got by deleting the two existential quantifiers in 4 and apply clauses i-iv.
Undoubtedly, there are a number of other ways in which one might formalize the

8 For a proof, see Boolos and Jeffrey, op. cit., forthcoming.
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idea which motivates our semantic account of internal properties, but it seems very
unlikely the philosophical issues would be affected by whatever technical differences
might arise. In the end, all that such an account can do is to give us some idea of
what might be meant by “the obtaining of P depends on entities which are not
internal to the interval” and related remarks; thereby, the account may at least give
us some idea of what must be done in order to back up the claim that a property is,
or is not, intrinsic. Whether or not the details are exactly as Griinbaum would wish,
the semantic characterization seems a fair representation of his notions of intrinsic
and extrinsic properties, and I think the problems with his view, so construed, are
problems which would arise on any clear, reasonable construal of what he says.

The obvious question is how Griinbaum knows what he claims; how, in particular
he knows that a continuous, homogeneous manifold has no intrinsic metric, that
betweenness is intrinsic and that topological properties of manifolds are intrinsic.
In a succinct criticism, William Demopoulos [2] has raised essentially these same
questions. Griinbaum, in reply, introduces the notion of an “intrinsic description,”
to wit, a description or definition which correctly convinces someone that the
property described is intrinsic. Whether and why the Unnamed ought to be so
convinced by a description Griinbaum does not tell us for ... clearly the ex-
trinsicality of a description D is a matter of individual mentality with respect to what
D suggests to a particular person” ([9], p. 530). We may determine inductively that
a property or relation is extrinsic by examining a variety of descriptions of that
property or relation; if none of them are intrinsic descriptions, that is inductive
grounds for concluding that the property or relation is not intrinsic. Griinbaum
proceeds to give examples of several descriptions of metric relations on a continuous
physical manifold, none of which convince him that these relations are intrinsic. He
neglects to do the same for descriptions of topological properties or betweenness on
physical spaces.

The objections to Griinbaum’s argument seem obvious and insurmountable.
First, if the extrinsicality of descriptions is an entirely subjective matter, a question
solely of a person’s response to a description, how can it possibly be used as a basis
for a reasonable inductive inference to the conclusion that some property or relation
is extrinsic? Second, even if Griinbaum were to provide reasonably clear and
objective criteria for the extrinsicality of a description, his inductive inference would
still very likely be unsound. We think that if all the ravens we have seen are black,
that may be inductive evidence for the conclusion that all ravens are black. For
if all ravens not sampled are like those sampled in respect of color then it follows,
necessarily, that all ravens are black. We put some stock in our conclusion only
because we have sampled from the very collection about which our conclusion
makes some assertion. Griinbaum does not have us sample instances of a property
but rather descriptions of it. Unless the characterization of “‘extrinsic description”
is such that all descriptions of a property can be extrinsic only if the property is, or
very probably is, extrinsic, the extrinsic character of the descriptions has no
inductive bearing on the extrinsic character of the property. The word is not the
thing.

Despite these objections, I think the semantic characterization suggests how it
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might sometimes be possible to determine inductively that a property or relation is
intrinsic, or is extrinsic, and a crucial part of such a determination may involve the
logical form of sentences which “describe” the property. For if we know which
properties are real and which general, then we can determine, inductively at least,
whether or not a given property is intrinsic to a given set. That a property P(F) is
reducible in the actual world to a property P(H) we may suppose determinable
inductively; if we can find no suitable property to which P(F) is reducible, that is
evidence that it is not intrinsic to anything. Given that P(F) is reducible to P(H),
that is grounds for thinking P(F) internal to a set .S only if every n-tuple in S which
satisfies H in the real world, M, also satisfies H in M. The latter question, in turn,
can be answered provided we know the extensions of the real relations designated
by the prime formulas of H and the quantifier structure of H. If we can find no
P(H) to which P(F) is reducible and such that H meets the satisfaction criterion,
that is grounds for thinking that P(F) is not internal to S. The central question,
therefore, is how Griinbaum can know which relations are real. While he nowhere
introduces explicitly a notion corresponding to what I have called real relations,
he does write of some relations providing an “intrinsic basis” for others,” and it
seems evident that some notion analogous to what we have called ‘real relations’ is
required. A congruence relation among the point pairs of a continuous manifold is,
ideally, definable from the relations of these point pairs to undistorted rigid rods;
we can talk about congruence as a relation among point pairs, or we can talk about
the relation of rigid rods to point pairs, a relation which, ideally, permits us to
define a relation which is extensionally the same as that of congruence. The heart of
Griinbaum’s thesis, it seems, is that these relations are not ontologically on all
fours. Without the rigid rods the congruence relation would not exist. In my terms,
this amounts to the claim that congruence in such a manifold is reducible but not
real and not internal to the manifold. If congruence is not internal, then it cannot
be real in the required sense.

How, then might it be determined which relations have this ontological primacy ?
Griinbaum’s interesting claims are about the status of properties which clearly are
not reducible to identity : betweenness is intrinsic, he says, and so are the topological
properties of a manifold, but congruence is not intrinsic to a continuous space. In
terms of the explication we have given, betweenness and topological properties are
not reducible to identity, so if they are intrinsic they must either be themselves real
or reducible to real properties. Now Griinbaum treats metric properties in a
denumerable discrete space as reducible to betweenness and cardinality properties,
but he nowhere suggests that betweenness or topological properties are in turn
reducible to some ontologically prior properties. So, how does he know that these
properties are real but that congruence, under the conditions mentioned, is not
real? One might hold the view that the real properties are those assumed by our
best physical theories, but that is clearly not Grilnbaum’s opinion. Or, one might
argue that the real properties are those with some special epistemic character; but
it is not clear what epistemic character it would be, nor why what there is should

7 [71, passim.
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depend in any way on how we know it. At the crucial point, we draw a complete
blank from Griinbaum.

Griinbaum does offer an indirect argument for his theory. His account of conven-
tions, he says, “illuminates and draws support from” the general theory of relativity.
Such a claim is difficult to adjudicate but it cannot simply be dismissed. A philo-
sophical thesis which is otherwise clothed only in skimpy argument may in fact be
made more plausible if, using it, we are able to give a coherent account of some
initially obscure or puzzling subject matter. I think it might fairly be said, for
example, that verifiability theories of meaning have drawn support from the
quantum mechanics, and, again, that the thesis that logic is empirical has led to the
illumination of the quantum theory. But, I doubt that Griinbaum’s remarks on
general relativity do in fact afford much illumination or establish much support for
his account of conventions. Indeed, I think rather the opposite is true.

In general relativity the metric of space-time and the metric of space depend on
how matter and radiation are distributed in space-time. In Griinbaum’s terms, the
space metric depends on something external to the spatial manifold and that,
Griinbaum would say, is because the space of general relativity is continuous, not
discrete. In reply to Hilary Putnam, Griinbaum writes as follows:

With a suitable change in the matter distribution and hence in the metrical
field, meter sticks will coincide with different disjoint intervals under transport
in the same region of space of a given reference system. But since there is no
intrinsic metric the stick can be considered self-congruent under transport in
the given region in each of infinitely many different patterns of coincidence
behaviour under transport. And hence one can justifiably regard each one of
these alternative patterns as generating the metric geometry prevailing at the
time. . . . Thus with a suitable resulting change in the metric tensor of space,
the same sticks will alike confer a different metric geometry than before upon
the same region of physical space. And this is clearly a case of alternatively
metrizing the same spatial manifold, the alternative metrizations being
physically realized by alternative coincidence patterns of meter sticks at
different times! ([7], p. 208)

John Earman, [3], has remarked that the different spatial metrics referred to in
this passage are in no way alternative, for at any time in any cosmological model
one and only one such spatial metric would be allowed on a given space-like
hypersurface; it is not as though we had a choice as to the metric of space in such
cases, so how can such nonstatic cosmologies exemplify the conventionality of
spatial metrics ? Griinbaum’s reply, in effect, is that when he speaks of metrics as
“conventional” he is not talking about the epistemic status of theories embodying
such metrics but rather about the ontological status of the metric properties them-
selves. In the case of nonstatic cosmologies, the spatial metric cannot be intrinsic
because it changes with time:

We see that in the GTR, no less than in Newton’s physics, we can specify the
points of a three-dimensional P[hysical]-space by a suitable system of non-
intersecting time-like world lines, each of these world-lines being taken in its
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entirety in the appropriate region of space-time. Thus, as stressed by Synge, an
infinite time-like (equivalence) class of event elements of space-time. ..
corresponds to a single element of the P; in question. And the very nature of
the correspondence which generates a P; from space-time shows the following:
Intrinsically, the points of any P; space and the P; manifold constituted by
them are time-independent entities! In other words, with respect to all of its
intrinsic properties, any existing P; manifold, qua manifold of spatial points,
is a timeless entity. ([9], p. 557, italics omitted.)

Indeed the field equations of the GTR ... allow solutions in which . .. no
space interval AB will ever have the same length do at any two different times.
. .. But no S-intrinsic, let alone I(nterval)-intrinsic, reflexive, symmetric and
transitive dyadic property of space intervals could constitute the basis of this
kind of time-dependent do equality. For we saw that any and all of the intrinsic
properties of a spatial manifold P; and of any of its intervals obtain timelessly!
([9], p. 559, italics omitted.)

Part of what I object to in this passage is the claim that . . . the very nature of
the correspondence which generates a P; from spacetime shows the following:
Intrinsically, the points of any P space and the P manifold constituted by them
are time-independent entities!”” I do not see that anything of the sort has been
shown, nor do I see how it could be. Certainly, in the sense of ‘intrinsic’ developed
above, “the very nature of the correspondence” does not guarantee that the
intrinsic properties cannot change with time.

Moreover, there is at least some reason to think that if the intrinsic properties of
space and of spatial intervals in general relativity cannot change with time, then
certain cosmological models contradict Griinbaum’s views. For Griinbaum has
maintained that the topological properties of space are intrinsic, and one supposes
that the only reasonable topology to ascribe to space at a time is the topology of the
constant time hypersurface at that time. But this topology does change with time in
many cosmological models: most simply, in the model got by removing from
Minkowski space all space-time points x = constant, y = constant, z = constant,
t > t*. Many more complicated and more interesting examples occur as well.
For example, in the Elliptic De Sitter space-time there is no nonintersecting 3-
parameter time-like congruence because the space-time is not isochronous,” but
there is a self-intersecting system of world-lines, and the constant-time hyper-
surfaces orthogonal to it are the natural representatives of space-at-a-time in this
model. These hypersurfaces have, all but one of them, the topology of a 3-dimen-
sional sphere; the odd hypersurface is elliptic. Of course, there are many things that
Griinbaum might say to examples like these: he might say that the examples are not
physically possible, or that in such models the intrinsic properties of space are not
time-independent, or even that topology is sometimes not intrinsic. Indeed, it is
partly because there are so many things he might say to examples such as these that

7a (Added in proof.) The text above is incorrect. Elliptic De Sitter space-time is diffeomor-
phic to the bundle space of a fibre bundle over 3-dimensional projective space, with fibres
homeomorphic to the real line; the fibres form a system of non-intersecting time-like world
lines.
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I am unwilling to count Griinbaum’s remarks on nonstatic Robertson-Walker
metrics as any kind of illumination of general relativity. Insofar as there is a clear
notion of intrinsic properties, there is no argument or evidence that the spatial
metrics induced in “nice” cosmologies are not intrinsic; insofar as there is an
argument at all, it appears to get its conclusion ad hoc by means of an obscure
notion of “intrinsic” properties.

There is no question that, just as Griinbaum would require, the metric properties
of space-time and of space at a time are, according to general relativity, dependent
on the distribution of stress and energy in space-time. Presumably it was this sort
of agreement which Griinbaum had in mind when he claimed that his account
draws support from the general theory. I do not think this concordance warrants
any such conclusion; and that is because I think the agreement between Griinbaum
and Einstein is an entirely superficial covering for a more substantial disagreement.
The interdependence between matter and metric postulated by general relativity is
not at all of the Jogical kind Griinbaum requires. In general relativity changes in the
distribution of stress and energy can influence the space-time metric and thus any
spatial metrics, but the existence of mass and energy are not necessary for the metric
of space to change with time. De Sitter’s cosmological model is empty of matter and
radiation, but admits a spatial metric which changes with time. Since, on any
sensible reading of Griinbaum, the properties of an empty spatial manifold,
whatever they may be, are internal to the manifold, and since metric properties are
presumably general properties, general relativity is in flat contradiction with the
second paragraph quoted above.

John Earman, [3], has pointed out that in denying that a continuous space empty
of all material bodies could have a metric, Griilnbaum’s view contradicts general
relativity, since that theory includes the possibility of empty space-times having a
space-time metric and, derivatively, having spatial metrics as well. Earman’s point
seems to me an important objection to Griinbaum’s theory. The latter’s reply is that
either talk of empty space-times is no more than a facon de parler in general
relativity or else general relativity is inconsistent. Griinbaum does not detail what
talk of empty space-times might really mean if it is no more than a metaphor, and I
think he is right not to do so. I think that any survey of the scientific literature would
show that, up to the operationalism endemic to their ilk, relativity physicists are
very often entirely serious in their talk of the metric of empty space-times. Weak-
field or linearized field theory is typically discussed in terms of perturbations on
the Minkowski metric; again, the boundary conditions often used in obtaining the
Schwarzschild solution are that the metric become asymptotically Minkowski at
large distances from the source. Both of these requirements, it seems clear, are
warranted only by the belief that the Minkowski metric is the metric which space-
time would have were it empty.

On balance, Griinbaum seems obliged to illuminate general relativity by demon-
strating that it contains an implicit contradiction. Certainly, if the general theory is
tacitly self-contradictory in ascribing metrics to empty space-times, demonstration
of the contradiction would be a genuine illumination. While it is not an obligation
to be envied, and we would certainly require a very convincing case, attempts at
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such demonstrations are not unprecedented. Kochen and Specker’s, [10], argument
for the thesis that the quantum theory is inconsistent with the assumption that all
observables have, at all times, arbitrarily precise values suggests itself as a sort of
precedent. I do not think, however, that Griinbaum’s several arguments on this
score are or should be very convincing, nor do I think the insight, if any, they afford
into general relativity compares at all favourably with the insight into quantum
theory provided us of late by philosophically inclined mathematicians.
Griinbaum’s first argument is as follows:

Let us suppose with Earman that the so-called empty space-times involved
here (i.e. those for which the energy-momentum tensor of the field equations is
zero) are to be thought of as literally devoid of any of the “test particles” or
infinitesimal metrical “test” standards (light clocks, atomic clocks, rods) of
which relativity physicists are wont to speak. Then if he wishes to deny me the
philosophical invocation of these test bodies as metric standards external to the
space-time manifold, it would follow that the GTR contradicts itself by contain-
ing the following statement: A free particle of non-zero rest mass and also a
photon (which has equivalent mass) has a geodesic path in Minkowskian space
time.

For if cognizance were taken by the theory of the permanent gravitational
fields associated with these test bodies, their very presence would have to be
held to destroy the Minkowskian character of the space-time by issuing in a
nonvanishing four-dimensional Riemann tensor. And in that case, special
relativity would cease to qualify as a theory of the behavior of light rays or of
any other known physical agencies! ([9], p. 566, italics omitted)

What about the claim that “special relativity would cease to qualify as a theory of
the behavior of light rays....”? The special and general theories are different
theories; in fact, they are frequently taken to be inconsistent and if so there can be
no question of the general theory allowing the special theory as a literally correct
account of things. This does not mean that if the general theory is accepted ““special
relativity would cease to qualify as a theory of the behavior of light rays,” only that
the special theory would cease to qualify as a possibly true theory of the behavior of
anything. There is nothing shocking or novel in this inconsistency between two
closely related theories; special relativity, in turn, contradicts Newtonian theory,
statistical mechanics contradicts classical thermodynamics, and so on.?

Indeed, Griinbaum himself does not seem to think this a very serious objection
for he writes that “Even if these considerations are rendered less telling by the
pragmatic appeal to an approximately Minkowskian space-time, there is the serious
problem of individuating the elements of an empty space-time. ...” The latter
problem forms Griinbaum’s second argument against the possibility of empty
space-times:

If there are no extra-geochronometric physical entities to specify (individuate)
the homogeneous elements of space-time and/or of Pg-space, then whence do

8 This point has been frequently made by P. Feyerabend and others.
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these elements of otherwise equivalent punctual constitution derive their
individual identities? Must the world points not be individuated before the
space-time manifold can even be meaningfully said to have a metric? I see no
answer to this question as to the principle of individuation here within the
framework of the ontology of the Liebnizian identity of indiscernibles. Nor
do I know of any other ontology which provides an intelligible answer to this
particular problem of individuating avowedly homogeneous individuals.
(I91, p. 567, italics omitted)

While I can find no reasonable construal which makes this argument a good one,
with considerable labor one can construct a reasonably clear argument which
seems to parallel Griinbaum’s, is likely valid, and leads to his conclusions. It might
go like this:

Two objects are identical unless there is an ascertainable property or
relation of one which is not a property or relation of the other. To be slightly
more precise

a # b= 3RIx,...Ix,[R(a, x1...%,) & ~R(D, x;...x,) &R
is ascertainable]

In an empty space-time, the homogeneous elements would all have exactly the
same monadic properties. Since there are no physical objects in the universe,
the only relations which might serve to individuate two elements of the manifold
are their differing metric or topological relations to other elements of the space-
time. But if the topology is nice (e.g. Euclidean) then for every topological
relation R(x,y...z) with x variable over the elements of the manifold,
¥, ..., z constants, if one value of x satisfies the formula then so will every
value of x. But metric relations in a continuous homogeneous manifold are not
determinable without the use of external objects. Hence no empty space-time
can exist.

The obvious and overwhelming difficulty with the argument is not that to under-
stand it we must imagine disembodied minds who can know and ascertain and
discern certain relations but not others, although that is difficulty enough. More
important, I think, is the fact that we have no good reasons to believe the first
premise of the argument, namely that what are putatively two objects are really the
same object unless there is a discernible property or relation of one which is not a
property or relation of the other. There is nothing obviously incoherent in the
notion that two objects might differ in some property or relation which we cannot
discern; indeed, the claim seems almost obvious when we consider the resources
which might be available to us (or to us disembodied) in an otherwise empty (or
completely empty) universe. In fact, there seem actually to be objects, namely
bosons, which while different still differ in no property at all (save identity) or at
least in no discernible property. We may point out, in addition, that the argument
seems as good (or as bad) when directed against the possibility of space-times which
are perfectly homogeneous as when directed against empty space-times. Since a
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great deal of relativistic cosmology assumes, for simplicity, a uniform distribution of
matter, the argument would maintain that this enterprise is not just wrong, but
necessarily wrong and unintelligible.

The argument I have given may not be Griinbaum’s, but any other version which
comes to mind and which is clear enough that one can form some idea of its validity
seems equally shaky. If we replace the version of the identity of indiscernibles which
is used above with, say, a version which does not require that two objects differ in
some discernible property or relation, then the argument is no longer valid, since
we may then regard the entities of the manifold as individuated by their metric
relations. If metric relations are specifically excluded from the class of individuating
relations then the argument again appears valid, but we must ask for the grounds of
this exclusion. If the grounds are that such relations are not ascertainable without
external objects, then we are back to the argument given above; if the grounds are
that metric relations do not exist in the absence of material entities, then the
argument is circular when viewed, as it should be, as part of a counterargument to
Earman’s criticism. When not viewed in this context, the introduction into the
argument of the claim that metric relations do not exist in the absence of material
entities does not make the argument circular; it does, however, introduce an entirely
unfounded premise, one for which Professor Griinbaum’s “induction” on descrip-
tions is no support.

There is one final issue about general relativity which, because of its bearing on
contemporary physics, deserves discussion. Griinbaum charges the advocates of
geometrodynamics, Clifford and Wheeler in particular, with inconsistency. Since
these men have maintained that matter reduces to curved space, they must also have
thought, according to Griinbaum, that curvature is an intrinsic property of space.
Yet, Griinbaum argues, both Clifford and Wheeler deny that space has an intrinsic
metric. But this is inconsistent, Griinbaum concludes, since ... this curvature
would need to obtain with respect to a metric implicit in empty space” ([9], p. 523).
Now I do not think this claim especially important, partly because I am not at all
convinced that Wheeler would deny that space has intrinsic metric properties, and
partly because the program of geometrodynamics certainly does not require such
a denial. Even so, I doubt that Griinbaum has provided, or can provide, anything
like sufficient grounds for his conclusion. He gives no argument at all as to why we
should think curvature properties presuppose or require or “would need to obtain
with respect to” a metric. It cannot be because the curvature tensor of space does
in fact determine a unique Riemannian metric, for that is not true, as Griinbaum
himself appears to have noted ([8], pp. 89-105). Perhaps by “curvature’ Griinbaum
intends properties some of which are not determined by the curvature tensor alone;
affine properties generally, perhaps, or sectional curvatures. But a 3-dimensional
manifold fitted with a Riemannian connection does not, in general, have a unique
compatible metric, even up to similarity. The strongest result known to me ([13],
section 13) for dimensions greater than two is that if the holonomy group is every-
where transitive in a manifold then there is, up to similarity, a unique compatible
Riemannian metric. Recent work by Kulkarni, [11], has shown that for dimensions
greater than three, two Riemannian metrics on a differentiable manifold can agree



DISCUSSION: PHYSICS BY CONVENTION 339

on all sectional curvatures at every point only if they are locally isometric. Whether
the same result holds in three-dimensions is an open question and positive results
are available only for rather special cases. Even if the properties in question include
all affine properties and sectional curvatures it is not clear that they determine a
unique metric. Again, the strongest result I know is that if g and & are Riemannian
(or pseudo-Riemannian) metrics on a manifold and have the same geodesics and
sectional curvatures at all points and g = % at some point, then g = & everywhere.
(See Wolf, [20], p. 59). So interpreted, then, Griinbaum’s contention that curvature
requires metric is at best moot. Of course, Griinbaum may simply have meant that
curvature properties are just not the sort of thing that can exist unsupported. But
he has given us no shade of reason why that might be so, let alone demonstrated
that what is required for their support is a metric.

In recent critical review, Arthur Fine ([4], p. 479) has sought to place Griinbaum’s
views within a long tradition of relational theories of space and has concluded that
... Griinbaum does offer the outline of a possibly successful relational view . . .
Even a confirmed absolutist will appreciate that Griinbaum’s work provides a solid
philosophical stone against which his own axe can be ground and, no doubt,
sharpened.” My own conclusions are not so sanguine. I believe Griinbaum has
extended the ontological views of earlier conventionalists, and at the same time has
abandoned the operationalist and verifiabilist theories of meaning which were their
chief support. The result is a still rather opaque view of how things are, one for
which I find not a single plausible argument. There is certainly nothing objectionable
in offering an ontology, even one for which no good arguments are available; one
can only regret that the views in question have not been given a more precise
articulation. But Griinbaum’s attempts to apply his ontological convictions to
illuminate and criticize contemporary space-time physics seem to me to rely on
very poor arguments almost exclusively, and to make a deal of use of the inchoate
state in which he has left his notion of intrinsic properties. Not that Griinbaum’s
conclusions are always wrong; Geroch, [5], has, for example, given good (if not,
perhaps sufficient) reasons for thinking geometrodynamics incoherent, but they are
not Griinbaum’s sort of reasons. We are, I think more likely to learn something
important to physics and to philosophy if, rather than leaping into the ontological
quagmire inherited from earlier conventionalists, we turn our attention to the other,
epistemic, aspect of Reichenbach’s thought.
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