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is every bit as intelligible and philosophically respectable as many
other doctrines currently in favor, e.g., the doctrine that mental
events are identical with brain events; the attempt to give a
linguistic construal of this latter doctrine meets many of the same
sorts of difficulties encountered above (see Hempel, op. cit.).
Secondly, I think that evidence for universal determinism may not,
as a matter of fact, be so hard to come by as one might imagine. It
is a striking fact about our world that we never observe any genuine
cases of parallelism; it always seems possible to design some sort
of interaction between any two genuine empirical magnitudes.
If this is correct, then a true theory T can be deterministic only if
universal determinism reigns.

CONCLUDING REMARKS
After reading what I have written, I am left with the feeling that
most of what I have said is either too obvious or too obscure.
But, apart from my desire to appease my philosophical conscience,
there are two reasons for saying it. With the exception of the papers
by Montague and Hempel, I know of no place in the philosophical
literature where the problems involved in formulating the doctrine
of determinism are discussed in any depth or even explicitly rec-
ognized. Secondly, I hope that the foregoing will make possible a
more meaningful discussion of the implications of modern science
for the doctrine of determinism.

JOHN EARMAN

Rockefeller University

DETERMINISM, IGNORANCE, AND
QUANTUM MECHANICS *

T has never been entirely clear whether the indeterminacies of
quantum mechanics are the result of indeterminacies in nature
itself or merely the expression of the limits of human knowledge
about a deterministic world. I think that recent work on the
foundations of the quantum theory has partially answered this
question, and, although the answer is incomplete, we do at least
now have an idea regarding where to look for a more complete
result. The main burden of this paper is to present a simple version
of what I take to be the principal argument against the thesis that

the indeterminacies of quantum theory are entirely epistemic.
* To be presented in an APA symposium on Determinism, December 29, 1971;

co-symposiasts will be John Earman and Kent Bendall; see this JOURNAL, this
issue, pp. 729-744 and 751-761.
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It seems to me that determinism has two components, about
neither of which will I be very precise. Roughly, I think the world
deterministic in respect of a set of quantities if at every time each
quantity in the set has a single, precise value and if in addition,
given the values of all quantities prior to any time, ¢, for any time
after ¢ only one value is possible for each quantity. Determinism
requires both the determinateness of quantities and the impossi-
bility of forks in history. These two criteria are separable, but a
tradition I shall respect warrants treating them as aspects of the
same notion.! I shall regard a theory as deterministic if all the
worlds it describes are of this kind.

Given a specification of all the forces acting within and on a
system of point-masses, or given the Hamiltonian function for an
isolated system, classical mechanics provides a set of differential
equations relating derivatives of the positions and momenta of the
components of the system. Provided the functions in these equa-
tions meet certain continuity, differentiability, and boundedness
conditions, an initial data set will determine a unique solution to
the equations of motion, at least for a neighborhood of the initial
data set. It is this feature, together with the supposed determinate-
ness of all quantities occurring in the theory, which affords the
grounds for regarding classical mechanics as the paradigm deter-
ministic theory. The grounds may seem far from adequate. Earman
has pointed out? that for many systems the nonlinear differential
equations of classical celestial mechanics fail to determine a solution
after a finite period of time. Further, classical physics is consistent
with time-dependent forces and allows, mathematically at least,
that two systems may develop through exactly the same states up
to a certain time and diverge thereafter. If classical mechanics is
nonetheless regarded as the paradigm of deterministic theories,
then presumably it is because these defects are plausibly thought
to result from the incompleteness of the theory. The equations of
celestial mechanics may reasonably be thought to fail to determine
the development of celestial systems for all time just because they
omit the consideration of numerous forces that become important
at short distances. Again, one might reasonably hope that all
time-dependent forces could be reduced to forces determined solely

1 Pierce and Reichenbach, for example, seem to have regarded the notion of
determinism as compounded of these two aspects. Compare H. Reichenbach,
The Direction of Time (Berkeley: Univ. of California Press, 1956), section 11,
and C. S. Pierce “The Doctrine of Necessity Examined” The Monist (1892),
reprinted in G. Dworkin, ed., Determinism, Free Will, and Moral Responsibility

(Englewood Cliffs, N.]J., Prentice-Hall, 1970).
2 In Part Two of his symposium paper, unpublished.



746 THE JOURNAL OF PHILOSOPHY

by the relative positions and eternal properties (e.g., mass, charge)
of fundamental bodies. Certainly there are a variety of conceivable,
consistent extensions of classical mechanics that would accomplish
this internal reduction and thereby eliminate the possibility of
forks in the histories of classical mechanical systems. Unfortunately,
of course, none of them is true.

The quantum theory, too, provides a dynamical equation of
state whenever the Hamiltonian function—or rather operator—is
given, and the same sorts of apparent indeterminism that occur in
the classical case because of incomplete knowledge of the forces in
nature can also occur, for analogous reasons, in the quantum
theory. Even supposing, however, that we had available to us a
complete quantum theory in which all of the Hamiltonians for
every system were known, we would still not have a deterministic
theory. Rather than determining the values of primitive state
variables—such as position and momentum—as functions of time,
the dynamical equations of the quantum theory determine only a
probability distribution over measurable quantities, ‘‘observables”
as they are often called, as a function of time. That is, for each
observable and Borel set of values of that observable, the state
function determines the probability that a system will, on measure-
ment, give a value of the observable lying in the set. All such
probability measures show some dispersion; that is, for any state
there is some observable that does not get probability unity for all
Borel sets containing some particular value of the observable and
get probability zero for all other Borel sets. The uncertainty rela-
tions are expressions of such dispersion properties.

The quantum theory, then, does not seem to require that all its
quantities have precise values at all times. The appropriate deter-
minist attitude toward this feature of quantum mechanics is that
it, too, results from incompleteness. Determinists must hold that,
if the quantum theory is true, then its observables always do have
precise values even though the quantum theory does not tell us
what they are, and even, perhaps, though our ignorance of such
values is a necessary ignorance. There are well-known arguments
that attempt to establish this view.? I shall sketch an argument
for the contrary thesis: that, if the quantum theory is true, then
the observables of some systems cannot all have precise values at
any time.

With each Borel set of values of a quantum observablet the theory

3 The best known is Einstein, Podolsky, and Rosen, Physical Review, XLVII,
777 (1935).
4+ I assume a discrete, nondegenerate spectrum.
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associates a subspace of Hilbert space. If the state vector of a
system lies in the subspace associated with a particular set S for
an observable R, then the theory says that a measurement of R is
certain to yield a value in .S. The subspaces are partially ordered
by the inclusion relation and every subspace has an orthocomple-
ment. If R and S are, respectively, an observable and a Borel set
associated with a subspace, let us say that the proposition ‘“The
value of R lies in S” is associated with that same subspace. If
subspace M is included in subspace N then, if the probability that
an ideal measurement will accord with a proposition associated with
M is unity, so is the probability that an ideal measurement will
accord with a proposition associated with V. A proposition associ-
ated with M has probability unity if and only if the propositions
associated with the orthocomplement of M have probability zero.

If the probability of a proposition is unity, a determinist inter-
pretation of the quantum theory ought to assign truth to that
proposition, and if the probability is zero, then the proposition
ought to be false. Further, if the quantum theory requires that one
proposition have probability unity only if another does, then a
determinist interpretation ought to allow that the first is true only
if the second is. In other words, it seems entirely reasonable to
require, as a condition for any deterministic extension of the quan-
tum theory, that its complete states accord with our incomplete
probability distributions where the probabilities are zero or unity.
Assuming that every subspace is associated with a determinable
proposition, all of this requires the existence of functions from the
subspaces of any Hilbert space into [0,1] such that

(i) Every subspace receives a value in [0,1],
(ii) A subspace receives the value 1 if and only if its orthocomple-
ment receives the value 0,
(iii) A subspace receives the value 1 only if all of the subspaces which
include it also receive the value 1.

As a check on the reasonableness of our account, we can ask whether
functions satisfying these three conditions exist in sufficient number
that any state vector can be regarded as a partial specification of
the “state” given by one or more of these functions. Recent work
by Mr. Michael Friedman and myself has shown that such functions
always exist and that enough of them exist to discriminate distinct
subspaces of any Hilbert space.® For present purposes, the impor-
tance of this result is that it partially vindicates the determinist
charge that quantum mechanics is incomplete and that the state

s “If Quanta Had Logic” The Journal of Philosophical Logic, 1, 1, forthcoming.
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vectors of quantum theory do not determine all that is true of a
quantum system. One can consistently assume that the observables
of quantum mechanics have values more precise than those allowed
by the uncertainty principle. The question remains whether it is
consistent to assume that all quantities have entirely precise values.

Each observable is associated in the quantum theory with an
operator mapping the Hilbert space into itself, and for any operator
it will be recalled that there are a distinguished class of vectors, the
eigenvectors of the operator, which the operator maps onto mul-
tiples of themselves. The multiplying factor is the eigenvalue, the
value that would be obtained were the observable to be measured
on a system in the eigenstate. Every measured value for an ob-
servable of a system is an eigenvalue of the corresponding operator,
even if the system is not in an eigenstate of the operator before
measurement. For a large and fundamental class of operators, the
normalized eigenstates form an orthonormal basis for the Hilbert
space; that is, they are a set of vectors of unit length such that each
vector lies in the orthocomplement of each of the others, and every
vector in the Hilbert space can be written as a linear combination
of those in the set. If the determinist thesis were correct and every
observable possessed of a precise value, then for each orthonormal
basis of the Hilbert space there would be distinguished one vector
in the basis, namely the vector whose eigenvalue is the precise
value of the observable. Provided, of course, that every ortho-
normal basis corresponds to an observable quantity. This gives us
a fourth and final requirement for the functions from any Hilbert
space into [0,1]:

(iv) For every orthonormal basis, one and only one vector in the

basis receives the value 1.

One of the consequences of a theorem due to A. Gleason® is that
on Hilbert spaces of dimension 3 or greater there exist no functions
satisfying these four conditions. Since there are always a great
many functions satisfying the first three conditions, the assumption
of precise values for all observables should take the blame.

Our argument has assumed that, for every orthonormal basis
for a Hilbert space, there is a corresponding physical quantity
that can, somehow and in some cases, be measured or computed
from measurements. But of course this may simply be taking
mathematical pleasantries too seriously. Such quantities as are
actually measurable or computable are associated with an ortho-

6 “Measures on Closed Subspaces of a Hilbert Space,” Journal of Mathematics
and Meshanics, vi (1957): 885-894.
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normal basis in the way we have described, but only mathematical
simplicity warrants our assumption of the converse association.
So the issue is not entirely settled, because condition (iv) may be
unreasonably strong. And while we are suspecting things, we
should suspect the first condition as well; for, if it is unnecessary
that every orthonormal basis correspond to a real observable, it is
equally unnecessary that every subspace be associated with a Borel
set of values for a real observable. Revised, our four conditions
come to this:

(*i) Every subspace associated with a Borel set of values for a real

observable receives a value in [0,17].

(*ii) A subspace receives the value 1 if and only if its orthocomple-
ment receives the value 0.

(*iii) A subspace receives the value 1 only if all of the subspaces
which contain it receives the value 1.

(*iv) For every orthonormal basis corresponding to a real observable
one and only one vector in the basis receives the value 1.

Since we have no mathematical characterization of real observables,
the issue can be decided in the negative only by providing an ex-
ample of a quantum-mechanical system and actually determinable
quantities which are inconsistent with these four conditions. In
effect, Kochen and Specker have done just that.” They show that
there are 117 different observables—each a different coordinate
decomposition of the spin angular momentum of orthohelium in its
lowest orbital state—such that no function exists assigning the
value 1 to one and only one vector in each associated orthonormal
basis and O to all the rest. The quantities they use are not presently
measurable, but that seems to be entirely for technical reasons.
Altogether, I think it almost conclusively established that the
quantum theory is not compatible with that aspect of determinism
which would require that all physical quantities have precise values
at all times.8 This, of itself, does not entail anything regarding the
possibility or impossibility of forks in the history of a quantum-
mechanical world. Their impossibility is at least suggested by the
dynamical equations of the quantum theory, e.g., the Schrodinger
equation. The contrary view, that quantum-mechanical histories
contain forks, is more than suggested by the fact that, within the

78S, Kochen and E. Specker, “The Problem of Hidden Variables in Quantum
Mechanics,” Journal of Mathematics and Mechanics, xvit (July 1967): 59-88.

8 An important argument against this conclusion is implicit in S. Gudder,
“On Hidden Variable Theories,” Journal of Mathematical Physics, X1 (February
1970), and explicit in B. van Fraassen ‘‘Semantic Analysis of Quantum Logic,”
forthcoming.
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limits of measurement error, we do always obtain precise values
for any quantity we measure. Hence a system may, when measured,
move from a state in which a given quantity has no precise value
to a state in which that quantity does in fact have a precise value,
even though no such state transformation accords with the
Schrédinger equation.

A proper determinist reply is that we ought not to neglect the
effect of the measuring apparatus nor treat the system measured
as isolated when it is not. We are immediately faced with what has
come to be known as the problem of measurement in quantum
mechanics. Suppose R is a measurable quantity, O a microscopic
system of some kind, and M an apparatus for measuring R for
systems of the appropriate kind. Then if system O begins in an
arbitrary state, and M in some neutral state, the system O + M
must be carried into some state in which the component system,
M, is in an eigenstate of the ‘“‘apparatus observable,” i.e., in which
its pointer points at some definite value, and the state of the com-
ponent system, O, must be correlated with that of M. Further, the
transformation of the system O + M must accord with the dy-
namical equations of the quantum theory. Assuming they exist,’
the transformations of the state of the system O + M must leave
that system in a superposition of correlated states:

@ O+My = Zcp; @ My;  where Zici[? =1
and yet leave J/ in a mixture of pure states:
(I1) ZipiMy; where Z;p; = 1

Now the usual interpretation of the coefficients p; is that they are
epistemic probabilities; systems in mixed states are really in some
pure state or other, and the coefficients express our uncertainty
about which state it is. But this leads immediately to an incon-
sistency, since, supposing M is really in some unknown pure state,
My, then the state of the system O + M must in general really be
, y

different from (I) above.

There are several responses to this and related arguments, each
involving fundamentally different attitudes toward the quantum

9 E. Wigner answers the implicit question in the negative, and A. Fine has
given the same answer to a slightly different but related question. Both assume
that the final state of O 4+ M must be a mixture of states in each of which M is
in a pure state. Jauch answers the question affirmatively by assuming, instead,
that the final state of O + M must be one in which M is in a mixed state. See
E. Wigner, “The Problem of Measurement,” American Journal of Physics, XXXI
(1963); A. Fine, “Insolubility of the Quantum Measurement Problem,” Physical

Review D, 11 (Dec. 15, 1970); J. Jauch, Foundations of Quantum Mechanics
(Reading, Mass.: Addison-Wesley, 1968), ch. 11.
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theory. One may conclude with Fine (op. cit.) that measurement
results contradict the quantum theory or with von Neumann!® that
the theory is consistent with observations but does not apply to
human observers. But the response that is most interesting for the
issue of determinism is contained in a forthcoming paper of van
Fraassen.! Noting that the preceding argument requires the
ignorance interpretation of mixed states, he suggests an alternative
conception. The dynamical equations are viewed as determining
the time development not of the actual world, but of an ensemble
of possible worlds, one for each eigenstate of an appropriate ob-
servable. The history of any given possible world may contain
forks, points at which it splits into two or more distinct possible
worlds. The probability coefficients p; in the mixed state of the
measuring apparatus at the completion of the measurement are
just the probabilities that the corresponding possible worlds are
actual. There is no contradiction between equation (I) above and
the system having an actual state %¢; ® My ; for the former is not
the state of the actual world, but of an ensemble of possible worlds.
1 do not know whether van Fraassen's treatment of the problem
of measurement will ultimately prove adequate, but I hope so. It
would be pleasing if the quantum theory evidenced uniformity
enough to entail the failure of both aspects of determinism and if,
to reciprocate, the failure of the two aspects of determinism should
explain so many of the puzzling features of the quantum theory.
CLARK GLYMOUR

Princeton University

LAPLACIAN DETERMINISM AND OMNITEMPORAL
DETERMINATENESS *

ANY discussions of the thesis of Laplacian determinism
overlook an important component of claim within it. The
component of claim to which I refer may be phrased as

follows: The character of the actual world, the structure of the total
course of events it comprises, consists in a full temporal continuum of

1 J, von Neumann, Mathematical Foundations of Quantum Mechanics (Prince-
ton, N.J.: University Press, 1955), ch. vI.

1 B, van Fraassen, “Measurement in Quantum Mechanics as a Consistency
Problem,” forthcoming.

* To be presented in an APA symposium on Determinism, December 29, 1971.
John Earman and Clark Glymour will be co-symposiasts; see this JOURNAL, this
issue, pp. 729-741 and pp. 741-751, respectively. References to Earman and
Glymour will be to these papers.

Thanks are due to Wesleyan University for providing funds which make it
possible to publish this article at its present length.



