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CLARK GLYMOUR*

THEORETICAL REALISM AND THEORETICAL
EQUIVALENCE

The true correlate of sensibility is not known and cannot be known...
— KANT

A great many philosophers have thought it impossible that there should
exist two distinct theories between which no possible evidence could
discriminate. This doctrine, and more rarely its denial, have often been
the cynosure of dogmas and disputes about conventions within physical
theory, about simplicity, about measurement in quantum mechanics, and
most recently, about radical translation. The list is long enough to make it
important to know whether or not the doctrine is true. I shall argue that it
is, indeed, not true.

The thesis that empirically equivalent theories are synonymous was
central to Hans Reichenbach’s philosophy of science, and especially to
his notion of ‘equivalent descriptions’ and to his account of simplicity:

There are cases in which the simplicity of a theory is nothing but a matter of taste
or of economy. There are cases in which the theories compared are logically equivalent,
i.e., correspond in all observable facts.... For this kind of simplicity which concerns
only the description and not the facts co-ordinated to the description, I have proposed
the name descriptive simplicity. It plays a great role in modern physics in all those
places where a choice between definitions is open to us. This is the case in many of
Einstein’s theorems.... Thus the choice of a system of reference which is to be called
the system in rest is a matter of descriptive simplicity. It is one of the results of Einstein’s
ideas that we have to speak here of descriptive simplicity, that there is no difference of
truth-character such as Copernicus believed. The question of the definition of simul-
taneity or of the choice of Euclidean or non-Euclidean geometry are also of this type.l

Reichenbach’s views on theoretical equivalence have been retained by
Professor Putnam, who has suggested that empirically equivalent theories
are ‘thoroughly intertranslatable’,2 and even more emphatically by
Professor Salmon.3 Adolf Griinbaum,* a philosopher who has written a
great deal about empirically equivalent geometrics, quotes with approval
from the passage of Experience and Prediction given above, and claims the
correctness of Reichenbach’s doctrine of ‘equivalent descriptions’, which
is no other thesis than that empirically equivalent theories always do say
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276 CLARK GLYMOUR

the same thing.5 The view against which I shall argue is, therefore, fre-
quent if not common, and even its few critics have been apostates.5

The argument is best begun by giving its point and, in outline, the whole
of it. The view I deny is the conjunction of the following theses:

1. The sentences of scientific theories are either true or false; they are not
simply ‘instruments’ for inferring observation statements.

2. If two theories are empirically equivalent, i.e., if any possible piece of
evidence for one is likewise evidence for the other, and any possible piece
of evidence against one is likewise evidence against the other, then the
two theories say the same thing.

There seem to be only two initially plausible ways of defending the
conjunction of these claims, and both defenses, I shall argue, must be
rejected:

A. The set of all sentences which are statements of possible evidence
for a theory form the truth conditions for that theory. Which is to say that
atheory is true if and only if all of the observation statements which would
be evidence for it are true.

B. The criteria for what is required of a body of sentences in order for
it to count as a theory are in fact so strong that it is not possible for there
to exist two different, empirically equivalent theories.

These are very different lines of defense; the first proposes a novel seman-
tics for the language of science, the second presupposes the usual seman-
ticsand, based uponit, a criterion of synonymy for collections of sentences.
Against A T shall argue that it makes true what is false and by making
logic - in a traditional sense of ‘logic’ — impossible also makes important
aspects of scientific reasoning unintelligible. Against B I shall offer a very
weak necessary condition for the synonymy of theories in formalized
languages and using it show by counter-examples that reasonable criteria
for what is to count as a scientific theory do not suffice to eliminate the
possibility of distinct but empirically equivalent theories. Finally I shall
mention an example of two geometries which can be interpreted so as to
be empirically equivalent but which, I contend, cannot be understood to
say the same thing.

What is and what is not a possible piece of evidence for a theory is
intolerably fuzzy. The way to keep it clear for our analysis is by dogma
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rather than by argument. Assume that our scientific theories can be for-
malized in a first-order language, and that all of the evidence given us by
our senses and by our apparatus can be stated using only part of the non-
logical vocabulary of the language. It is, for our purposes, of no con-
sequence how this distinction between ‘observation terms’ and the rest is
drawn and justified. Two theories will be empirically equivalent just when
every observation statement which is evidence for or against one is,
accordingly, evidence for or against the other. We shall assume this is to
be the case whenever two theories have the same set of observational
consequences, and grasp a palsied justification for this assumption in our
ignorance of any organon which would discriminate such theories.

We thus have a crude but usable representation of empirical equiva-
lence. The language of science is a first-order formalized language divided
in two by the distinction between observational predicates and the rest.
A theory is, at least, a deductively closed collection of sentences in this
language, and two theories are empirically equivalent just if they have the
same observational consequences. Evidently, this description of empirical
equivalence could be given — although not justified — purely syntactically,
that is, without using notions of truth, meaning or reference. It is trivial
that there can be different deductively closed collections of sentences
which contain the same observation sentences, but our obligation is to
consider arguments which purport to show that it is nonetheless not true
that there are empirically equivalent theories which say different things.
Argument A does so by proposing that any two sentences which have the
same observational consequences are synonymous, and Argument B
reaches the same conclusion by denying that most deductively closed
collections of sentences are theories.

The usual semantics for a first-order language gives conditions for the
truth of a sentence in a structure for the language, and necessary and
sufficient conditions for two sentences of the language to say the same
thing. A structure for a language is simply a non-empty set, and for every
n-place predicate of the language an n-ary relation on the set. I shall
assume your familiarity with what it means for a sentence of the language
to be true in a structure, and remind you that two sentences are semanti-
cally equivalent just if they are true in exactly the same structures. The
semantics ‘fits’ the logical syntax of the language in a well-known way:
a sentence, 4, is provable from a sentence, B, just if A is true in every
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structure in which B is true. It is evident that with the usual semantics
there can be empirically equivalent sentences which do not say the same
thing.

Reichenbach’s remark that empirically equivalent theories are ‘logi-
cally equivalent’ suggests a radical rejection of the usual semantic analysis.
It suggests, rather, that we should accept the usual account of truth in a
structure only for observation sentences. But, more generally, a sentence
will be true in a structure if and only if all of the observation sentences
provable from it are true in that structure. Any two sentences, or collec-
tions of sentences, from which exactly the same observations sentences are
provable will then have the same truth conditions; empirically equivalent
theories will be synonymous. This seems a fair account of the tacit
semantics in both Reichenbach’s and Salmon’s accounts of theoretical
equivalence, and perhaps also of the semantical views of those philoso-
phers who have been greatly taken with the reaxiomatization theorem of
William Craig.

The truth conditions just sketched guarantee the truth of any claim
which has no observational consequences other than observational
tautologies. This result seems clearly unsatisfactory since there are theo-
ries, such as Newton’s laws, which we think false but which by themselves
have no testable consequences. And there are further difficulties. First
order proof theory is a representation of the principles of mathematical
reasoning and therefore also of the principles of an important part of
scientific reasoning. It is, if you like, an idealized theory of the inference
behavior of mathematicians. The importance of the proof theory is
evidenced by the natural and enlightening ways in which mathematical
theories have been given first-order formalizations. The usual semantics
for first-order logic is both an explanation and a partial justification of
those principles of inference. If one accepts A and sentence B is provable
from A then we accept B, and there is good reason. For if 4 is true then
B is true. Conversely, if B is certainly true when A is true then there is a
proof of B from A. This important function of a formal semantics is lost
if one takes seriously the new truth-conditions just outlined. The new
semantics provides an interpretation of classical logic which is not com-
plete: any formula having only observational tautlogies as consequences
is valid but not necessarily provable. Nor is the proposed semantics sound
with respect to arguments. Every sentence is provable from a sentence A
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and its negation but it is not necessarily the case that every sentence is
semantically entailed by such a pair.

Perhaps such considerations only show that classical proof theory is
no more tenable than classical semantics. A new account of truth, it
might be thought, deserves and requires a new account of proof. Aside
from the unlikelihood that a theory of proof agreeing with the proposed
semantics would also agree with mathematical inference, there is an im-
portant difficulty with such a suggestion. Traditionally, the notion of
proof has been required to be effective: there must be a recursive proce-
dure for deciding what strings of formulae are and are not proofs. But
the new semantics is not adequate for any proof theory employing an
effective notion of proof. A demonstration is given in the appendix.

I shall not pursue argument A any further, for its handicaps seem in-
superable. The development of argument B requires conditions for theo-
retical equivalence which are so framed as to accord with first-order
syntax and semantics. For theories expressed within the same language we
already have a sufficient condition for theoretical equivalence, namely
logical equivalence. But we have heard too much of ‘meaning variance’
and the like to be comfortable in the assumption that different theories
can reasonably be represented in the same language. For generality, then,
whenever I mention a pair of theories I will assume their theoretical
vocabularies to be disjoint.

The natural necessary condition for the equivalence of two theories
framed in different languages is that they be intertranslatable. What that
means, at least, is that the two theories have a common definitional ex-
tension. For the equivalence of theories 7 and Q we require a set of de-
finitions Dy of the predicates of Q in terms of open formulas of the
language of 7, and similarly a set D, of definitions of the predicates of T
in terms of open formulas of the language of Q. Moreover, the theories
and definitions must be such that when Dy is added to T'and Dy, to Q the
two resultant theories are logically equivalent. Such a criterion guarantees
that all and only theorems of T are translated as theorems of Q, and
conversely; if T and Q can be axiomatized as single sentences, it is also
guaranteed that the translation (into the language of T') of the translation
(into the language of Q) of T is logically equivalent to 7. Stronger neces-
sary conditions — for example that the composition of translations from
the language of T to that of Q and back to T should take every formula
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into a logically equivalent formula — might conceivably be required, but
weaker conditions do not seem likely.

Nonetheless, it is clearly to the advantage of those who like argument B
to weaken the necessary conditions for theoretical equivalence; and an
argument can be made for weakening the condition just given. Informal
number theory is about a specific structure, the natural numbers. But
formal number theory has a great many non-standard models; a plethora
of statements about the natural numbers which are not provable in
formalized number theory are truths of number theory nonetheless. In
short, there is more to number theory than its axioms and their models;
there is, in addition, an intended model. The same might be said for for-
malizations of empirical theories; they too may have intended models
which are not uniquely characterized by their axioms. But should not
two theories with the same intended model be thought equivalent even
though they are not intertranslatable?

I grant the objection although I am not sure that I agree with it. Let
us take it as sufficient for the equivalence of two theories that they have
the same intended model; but to have the same intended model two theo-
ries must have at least one model in common, namely the intended one.
We muststill say whatitis for theories in different languages to have a mode
in common since the usual notion of a model is relative to a language.
Again, however, there is a natural account available. We shall say that
two theories, 7T"and Q, have a model in common just if there are models
My and M,, of T'and Q respectively such that the set DT of all sentences in
the language of 7" which are true in My and the set D? of all sentences in
the language of Q which are true in M, are intertranslatable in the sense
given previously. In brief, two theories have a model in common just if
they have models whose diagrams have a common definitional exten-
sion.”

The justification for this account of what it is to have a model in com-
mon is straightforward. It follows from the definition that two theories,
T and Q, have a model in common just if they have complete consistent
extensions which in turn have a common definitional extension, call it TQ.
Since TQ is consistent it has a model M, intuitively one of the models
which T and Q have in common. The model M is a set with relations
corresponding to the predicates in the language of T and relations corre-
sponding to the predicates in the language of Q. The structure My, got by
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dropping the relations corresponding to predicates of Q, is a model of
T; similarly, the structure M, is a model of Q. But M can be regenerated
from either My or M, by defining the relations which were dropped in
terms of the relations which remain.

We have a clear and mathematically useful necessary condition for
theoretical equivalence; it is, moreover, a condition which does not beg
important questions about the comparability of terms in different theo-
ries. Using this condition we have to examine the thesis of argument B,
namely that the restrictions on what a collection of sentences must be
to be a theory are so strong that all empirically equivalent theories are
alsoequivalent. Sinceit is trivially possible to give examples of empirically
equivalent collections of sentences having no model in common, the claim
of B needs arguing. In order for a restriction on what theories are and are
not to lend any support to the claim, the restriction must have formal
implications. Unless they are of a patently trivial kind, historical, sociol-
ogical, or psychological restrictions will, of themselves, not limit the
variety of structurally different theories which it is possible to construct;
neither will material restrictions on the interpretation of the theoretical
predicates be of help. It will not advance the case to require, for example,
that theories refer only to entities that have a spatio-temporal location, or
that for a claim to be a theory it must be possible for someone to believe it,
and so on. For such demands, justifiable or not, place no evident restric-
tion on the structure of theories, and if it is to be shown that empirically
equivalent theories always have a model in common then some structural
restrictions are necessary.

Philosophical papers contain very few formal criteria for a theory, and
it is clearly a hopeless task for me to attempt to invent and to study all of
the criteria which could conceivably be proposed. What I shall do is to
study a criterion which has been explicitly proposed by William Kneale,8
and tacitly used by a great many others. It is this:

A theory must be finitely axiomatizable, but its collection of observational consequences
must not be finitely axiomatizable.

It is not because I think this principle is true that I shall examine it, for it
is evidently not true. There are perfectly good theories which appear to
have no observational consequences, and there are other, equally good,
theories which are not finitely axiomatizable. But the proposed restriction
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on theories is worth investigating just because, besides being simple, it
is too strong in important respects.

The requirement does not suffice to eliminate the possibility of empiri-
cally equivalent theories having no models in common. Indeed we have
the following result:

If T'is any theory in a first-order predicate language (with identity) and every complete,
consistent extension of T is decidable, and the collection of observational consequences
of T has, up to isomorphism, at most a finite number of finite models, then there is a
finitely axiomatizable theory Q which is observationally equivalent to T but has no
models in common with 7.

A proof of thisclaim isimmediate from work of Kleene, Craig and Vaught
and is given in the appendix. Their proofs show, in effect, how to construct
such a theory, Q, given the observational consequences of theory 7. The
theories they construct meet Kneale’s criterion whenever the theory T
does, but they are perverse theories nonetheless. In effect, the theories
which Kleene, Craig and Vaught construct are truth theories for the
observation language which say, in addition, that a specified set of
observation statements are true. Although Kneale’s criterion does not
eliminate such systems as theories, it seems entirely reasonable to do so,
for they evidently explain nothing. Just what we prohibit by refusing to
to regard truth theories as theories is not entirely clear. To show that the
requirements still do not eliminate the possibility of empirically equivalent
theories, we must, therefore, settle for giving examples where the theories
involved are clearly not truth theories. Such examples can easily be given.

Suppose the relevant evidence can all be stated with the identity predi-
cate, and suppose, when all the evidence is in, what it says is that there are
an infinite number of objects. Here are two explanations of the evidence
which meet all of the required conditions.

T1 Vx ~ L(x, x)
Vx, y, z((L(x, y) & L(y, 2)) > (x, 2))
¥x, y(L(x,y) v (x=y) v L(y, x))
Vx, y3z(L(x, y) = (L(x, 2) & L(y, 2)))
VydxL(x, y)
Vy3xL(y, x)
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T2 Vx ~ B(x, x)
Vx3yB(x, y)
IxVy(~ B(y, x) & (VzVs(~ B(s, z)) > z = x))
Vx, y, z((B(x, y) & B(x, 2)) > z = y)
Vx, y, z((B(x, z) & B(y, z)) > x = y)

T'1 is the theory of dense order; it is complete and obviously has no finite
models.? T2 is a fragment of the theory of the successor relation ;10 there
are no finite models for the theory, and moreover, no finitely axiomatiza-
ble extension of T2 is complete. It follows immediately that 71 and T2 have
no model in common. Many other examples of a like kind could be given.

I see no possible fault with either of these explanations, aside from the
fact that what they explain is rather trivial. Of course, such examples
provide no demonstration that empirically equivalent theories having no
model in common can always, or even often, be found, but then no such
demonstration can be given until philosophers provide a precise account
of what is to qualify as a theory and what is not.

Thus far nothing has been said about simplicity, and that is all to the
good. Criteria for simplicity are irrelevant to the issue unless they restrict
what can be a theory. Thus it might be required that a theory not have
eliminable predicates, that is, predicates such that the theory contains an
empirically equivalent sub-theory which does not use these predicates. But
that is a rather trivial requirement and one which our counter-example
already meets. Still, in keeping with Kneale’s criterion, one might hope
that, for a given non finitely axiomatizable collection of observation state-
ments, there exists a simplest explanation. If such a simplest explanation
did exist, it might be taken as the one and only theory explaining the given
body of observation statements. No philosopher has to my knowledge,
proposed such a canon of simplicity, nor have I succeeded in divising one.
Nonetheless, I shall mention a simplicity criterion which may occur to
some, but which does not work.

Let us say that, within a given language, one sentence A is simpler
than another, B, if A4 entails B but not conversely. The simplest explana-
tion in a fixed language of a body of observation statements would, then
be that sentence entailing the observation statements and entailed by
every other sentence entailing the observation statements. Such an account
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could easily be extended to provide simplicity comparisons of theories
with different theoretical vocabularies, e.g., by taking theories to be
equi-simple just if they have common definitional extensions. In a fixed
language with only one binary predicate besides identity, the simplest
explanation of the existence of an infinite number of objects would, then,
be that sentence having only infinite models which is entailed by every
other sentence having only infinite models. A proof that no such theory
exists is given in the appendix. More generally, it is as a reasonable conjec-
ture that given any first order language L, with identity, and any recursively
enumerable but not finitely axiomatizable collection 4 of sentences in a
proper sub-language of L, there is no sentence A in L such that 4 entails
all sentences in 4 and every sentence B which entails all sentences in 4
entails A.

Kneale’s criterion and modifications of it provide no support for the
claim of argument B. Neither does there seem any point in working
through other possible restrictions on theories one by one, all the while
manufacturing toy counter-examples. What is needed in order to lay the
geist of the doctrine is an example of two actual theories which are empiri-
cally equivalent but have no model in common. We can lay aside, as well,
the dubious premise that there is an observation language. Most will, I
hope, admit that physical geometries are actual theories. They are also
theories which have been formalized and the metamathematics of which
have been studied. Hans Reichenbach has argued, very convincingly I
think, that almost any pair of geometries can be interpreted so as to be
empirically equivalent.!! In particular he has argued that, by changing
his views about identity, a person who lives in a topologically compact
space can consistently maintain a geometry which requires a non-com-
pact topology. The example Reichenbach gives concerns a torus-space
interpreted as Euclidean. However, completely analogous arguments
can be given for any pair of geometries, one compact the other not, so
long as the compact topology is homeomorphic to a quotient topology
obtained from the non-compact topology. In particular, Reichenbach’s
argument can be straightforwardly reproduced for the case of elliptic and
Euclidean (or hyperbolic) geometries. The elementary first-order frag-
ments — that is, everything that can be said without set theoretic devices —
of elliptic and Euclidean geometries have been formalized and studied.
They have no model in common. (See Appendix.)
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The argument I have made is not so complete as I should like, nor is its
epistemic significance so clear. It is an objection, and a good one, that
elementary geometry is only part of geometry not the whole of it. The in-
troduction of set-theoretic devices brings with it, we know, a great ex-
plosion in the variety of structures which are models for a geometry. The
argument would only be complete if it could be shown that reasonable
formalizations of elliptic and Euclidean geometries (or some other pair),
based on set theories with geometric points taken as ur-elements, have no
model in common. My guess is that the argument can be completed in
this way. For those who are realists but not Platonists, the argument is
perhaps already good enough.

There are philosophers who find Reichenbach’s arguments concerning
the empirical equivalence of geometries convincing enough, but only so
long as the geometries have the same topology. Professor Grunbaum
seems to hold this view, although it is difficult to be sure. For them it
would be pleasant to show that elementary Euclidean and hyperbolic
geometries have no model in common, but I have no such demonstration.
Still, since each of these theories is complete, and therefore has up to
elementary equivalence only one model, it would indeed by surprising if
they had a model in common.

It may well be that the discussion in this essay presupposes what is
false, namely that there is an intelligible notion of empirical equivalence.
But if the presupposition is correct, then the admission that there are
empirically equivalent theories which are not synonymous seems to entail
either that the true theory is sometimes unknowable or that, more simply,
even all possible evidence can sometimes have more than one correct
explanation.

APPENDIX

1. The claim is that the semantics proposed does not admit a proof theory
with an effective notion of proof. To show this it is sufficient to show that
the consequence relation generated by the proposed truth conditions is not
recursively enumerable (r.e.); thus:

Let L be a first-order predicate language (with identity), ¥ a proper
sub-language of L such that there is at least one binary predicate (other
than identity) which is in L but not in V. Let Cn be a relation on L such
that for all sentences 4, B in L, Cn (4, B) holds if and only if for every
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sentence C of V, C is provable from A only if C is provable from B. Then
Cn (x, y) is not r.e.

Proof: Let T be a sentence of L which is undecidable and such that the
consequences of T expressible in ¥ alone are complete in V. A sentence Q
of L is then refutable from T just if Cn (4 & 74, T & Q) is true. Again, a
sentence Q of L is irrefutable from T just if Cn (T & Q, T'). Assuming that
Cnisr.e., it follows that both the set of sentences refutable from T and the
set of all sentences irrefutable from T are r.e. Since each of these sets is the
complement of the other, both are recursive. Hence the set of all sentences
refutable from T is recursive so T is decidable, which is a contradiction.
This argument is essentially due to Richard Grandy.

2. The claim is that, given an axiomatizable theory T in a first-order
language L (with identity and a finite number of predicates) with a proper
sub-language ¥, if all of the completions of T are decidable and the set of
consequences of T expressible in ¥ alone has at most a finite number of
non-isomorphic finite models, then there is a theory Q, in a language &
having V as a proper sub-language but otherwise disjoint from L, which
has the same V-consequences as T but no models in common with 7.

Proof: By Craig’s reaxiomatization theorem, the V-consequences of
T are recursively axiomatizable. Craig and Vaught!2 have established the
following: Let 4 be a recursively axiomatizable collection of sentences in a
language ¥ having at most a finite number of predicates. Further assume
that 4 has at most a finite number of non-isomorphic finite models. Then
there is a finitely axiomatizable extension Q of 4 in a language % got by
adding a single binary predicate to ¥. Moreover Q is essentially undecida-
ble. Let T be as in the claim above and Q the Craig-Vaught extension of
the ¥ consequences of T. Then Q and T have no model in common. For,
supposing the contrary, then there exists a completion T* of T and a
completion Q* of Q, having a common definitional extension. The
intertranslation provides a recursive mapping ¢:% — L such that for
every sentence 4 in £LQ*+ A4 if and only if T*+¢(A). Since T* is, by
hypothesis, decidable, O* is therefore also decidable. But this is impossible
since Q is essentially undecidable.

3. The claim is that in a language with identity plus a binary predicate
there is no sentence which has only infinite models and which is entailed
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by every sentence having only infinite models. For suppose there were
such a sentence, 4. Thenif an arbitrary sentence S had only infinite models
we could effectively find that it had only infinite models by searching
through proofs from § for a proof of 4 from S. Hence the set of all
sentences having only infinite models would be recursively enumerable.
By a theorem of Vaught’s!3 this set is not r.e. I am indebted to Andrew
Adler for this argument.

4. That elementary elliptic and Euclidean geometry have no model in
common is an immediate consequence of a theorem due to R. Robinson.14
Robinson shows that elementary elliptic geometry can be expressed in a
language with a single binary predicate, besides identity, whereas elemen-
tary Euclidean and hyperbolic geometry cannot be. Since they are com-
plete, to have a model in common elliptic and Euclidean geometry would
have to be intertranslatable. Robinson’s result is essentially a proof that
they are not.

Princeton University
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of British Columbia, and to my colleague Dr Richard Grandy, for many hours of
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this essay.
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