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ON SOME PATTERNS OF REDUCTION*
CLARK GLYMOUR

Princeton University

The notion of reduction in the natural sciences has been assimilated to the notion of
inter-theoretical explanation. Many philosophers of science (following Nagel) have
held that the apparently ontological issues involved in reduction should be replaced by
analyses of the syntactic and semantic connections involved in explaining one theory
on the basis of another. The replacement does not seem to have been especially success-
ful, for we still lack a plausible account of inter-theoretical explanation. I attempt to
provide one.

1. The Problem of Reduction. Whether or not the notion of reduction in the natural
sciences should be assimilated to the notion of inter-theoretical explanation, it has
been. Ernest Nagel, [9], was perhaps the first to insist that the apparently onto-
logical issues involved in reduction should be replaced by an analysis of the
syntactic and semantic connections involved in explaining one theory from another,
and most philosophers of science, even his critics, have followed his lead. Thus far,
the replacement does not seem to have been especially successful, for we still lack
a plausible account of intertheoretical explanation. I shall try to provide one.
“The objective of reduction,” writes Professor Nagel, ([9], p. 301), “is to show
that the laws or general principles of the secondary science are simply logical
consequences of the assumptions of the primary science.”* Almost all contempor-
ary discussions of inter-theoretical explanation have assumed that Professor Nagel
is correct, or nearly so. Unfortunately, the stubborn fact is that if the aim of
reduction is what Nagel says it is, then reduction is nearly always impossible. The
paradigm cases of inter-theoretical explanation involve theories which are incon-
sistent; special relativity, we think, explains Newtonian mechanics, but the two
theories are inconsistent; statistical mechanics explains thermodynamics, but again
the two theories are inconsistent. The incompatibility between the aim of reduction
according to Nagel and the actual relations among scientific theories has been
brought home most forcefully by Paul Feyerabend, who concluded his criticism of
the logical empiricists with the announcement that *. .. a formal and ‘objective’
account of explanation cannot be given” ([4], p. 95). Logical empiricists themselves,
however, had noticed the difficulty. For example, after presenting a purely deductive
account of reduction Kemeny and Oppenheim ([7], p. 17) make the following rather
remarkable statement:
... the old theory usually holds only within certain limits, and even then only approxi-

mately. For example, in the reduction of Kepler’s laws to Newton’s we must restrict
ourselves to the case of a large central mass with sufficiently small masses, sufficiently far

* Received June, 1968.

1 Nagel uses “‘secondary science’ or ‘“‘secondary theory” for the theory which is explained,
“primary theory” for the theory which does the explaining. I shall generally follow this usage,
although sometimes I shall refer to the primary and secondary theories as the explanans and
explanandum, respectively.
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apart, around it. And even then the laws hold only approximately—as far as we can neglect
the interaction of the planets. While these points are of fundamental importance, there is
no way of taking them into account as long as we tacitly assume that our theories are
correct. If we abandon this (contrary-to-fact) assumption then the problem of reduction
becomes hopelessly complex.

Several writers, including Putnam [11] and Hempel [6], have dealt with the
difficulty by claiming that the aim of reduction is not the deduction of the laws of
the secondary theory from the primary theory but rather the deduction of laws
which approximate those of the secondary theory. In some sense this is doubtless
correct, but it leaves a great deal unsaid. When, for example, do one set of laws
approximate another set of laws ? Is no structural connection between two theories
required in order for one of them to explain the other? Is it possible to have two
theories each of which explains the same empirical phenomena but such that
neither theory explains the other? Certainly, the notion of an approximate deduc-
tion is not by itself an adequate reply to Professor Feyerabend’s challenge.

My intent is to show that if one gives up Nagel’s view of the aim of inter-
theoretical explanation, then it is possible to give a “formal” account of important
aspects of that enterprise. Several years ago Wilfrid Sellars ([13], p. 71), remarked
that ... theories about observable things do not explain empirical laws, they
explain why observable things obey, to the extent that they do, these empirical
laws.” Professor Sellars’ remark is incomplete, but it provides the orientation which
is essential for understanding how one theory explains another theory or law.
Inter-theoretical explanation is an exercise in the presentation of counterfactuals.
One does not explain one theory from another by showing why the first is true; a
theory is explained by showing under what conditions it would be true, and by
contrasting those conditions with the conditions which actually obtain.

There are two aspects of explanation which it is customary and useful to separate
—the syntactic, and the semantic. Syntactically, we are concerned with presenting
the structural connections between two theories which arise when one theory
explains the other. Semantically, we are concerned with the meaning relations
among terms in the two theories. My primary concern in this essay is to characterize
the structural connections arising in inter-theoretical explanation, but I will have
something to say about semantics as well.

Syntactically, inter-theoretical explanation consists of the specification of certain
conditions and the demonstration that under these conditions one theory entails a
collection of sentences which are “isomorphic” to the laws of the other theory.
How does this specification of conditions occur, and what is the nature of this
isomorphism ? I have found, in the physical sciences, two clear, and I think pre-
dominant, methods of generating sentences isomorphic to those of the secondary
theory. The first is simply to conjoin some special assumptions to the primary
theory, so that the special assumptions together with the laws of the primary theory
entail a collection of sentences isomorphic to the laws of the secondary theory.
Thus in explaining laws of physical chemistry from statistical mechanics,
one might assume that molecules have certain properties, which in fact they
generally do not have. Or, in explaining a law from Newtonian mechanics, one
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might assume that only certain special forces act, although in fact the situation
is much more complex. The special assumptions provide explicit conditions under
which the secondary law or theory would hold—and thus one of the functions of
inter-theoretical explanation is removal of ceteris paribus clauses which experience
makes us impose on our laws and theories.? The explanatory role of such special
assumptions is not, however, exhausted by the fact that they provide conditions
under which the secondary theory would hold; equally important is the fact that
these conditions are not satisfied in general. Explanation involves a contrast,
usually implicit, between the contrary-to-fact special assumptions which do entail
laws isomorphic to those of the secondary theory, and the true special assumptions
for various cases—which generally entail the negations of the isomorphs of the
laws of the secondary theory.

The second syntactic device is the taking of limits. Very often, the laws of the
primary theory are not isomorphic to those of the secondary theory, but nonetheless
contain parameters such that, in the limit as these parameters approach certain
values, the equations for the laws of the primary theory do become isomorphic to
those of the secondary theory. The explanatory function of such limiting proced-
ures is evident: the secondary theory is exhibited as an approximation which
literally holds only as a limiting case. That the secondary theory is generally false is
explained by the fact that the various parameters do not usually—and sometimes
never—have their limiting values.® These two devices, limiting procedures and
special assumptions, are not mutually exclusive; the theorist who sets about
explaining one theory from another will generally use them both in combination
with deductive inference. Nor do I claim that these are all of the syntactic devices
he will use; it is only that I have not found any others.*

One’s view of the nature of the “isomorphism” between the sentences generated
from the primary theory and the laws of the secondary theory will depend on his
view of what theories are. If one views a scientific theory as at least a collection of
sentences in principle expressible within some formalized language—and I do so
view them—then the obvious characterization of this isomorphism is in terms of a
definitional extension. Let us suppose for generality that the vocabularies of the
primary theory, T, and the secondary theory, T”, are disjoint, and let us suppose
that in attempting to explain 7" a collection of sentences, T*, is generated from 7.
T* is supposed to have some structural similarity with 7”. The structural similarity,
I suggest, consists in the possibility of introducing a collection of definitions of the
vocabulary in 7’ in terms of the vocabulary of T, such that T*, together with
the definitions, entails 7”. It should be emphasized that this is a purely syntactic
relation, although for first-order languages it has a semantic correlate via Beth’s
theorem. I will not argue for this account of the structural connection, primarily
because I would not know how to, short of attempting a formalization of several
theories.

2 For further observations on the connections between reduction and ceteris paribus clauses,
see L. Sklar, [14].

3 Leonard Nash ([10], pp. 59-60), has noted the role of limiting procedures in inter-theoretical
explanation.

4 But see the conclusion to this essay.
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In sum, the formal aspect of inter-theoretical explanation consists first, in the
connection of terms in the secondary theory with those in the primary theory by
means of syntactic definitions; and second, in the generation from the primary
theory, by means of deduction, special assumptions, limiting procedures, and
possibly other devices, of a collection of sentences which, together with the defini-
tions, entails the secondary theory.

There is not usually a unique explanation of a given secondary theory or law
from a given primary theory. Any of several special assumptions, or limiting
procedures, will often suffice to provide conditions under which the secondary
theory would hold. Generally, this plurality of explanations does no harm, but
there is one case where it is troublesome. Sometimes we can explain the secondary
theory in more than one way by changing the definitional extension used. Insofar as
reduction has any ontological significance, this latter kind of plurality is in-
admissible. If we think that the properties characterized by the secondary theory
are caused by the properties postulated by the primary theory, or if we think that
both theories are describing the relations among some of the very same properties
and things (but the secondary theory describes them incorrectly), then there
should be a unique admissible correlation of the vocabularies of the two theories.
Later in this essay I will suggest some semantic and methodological considerations
which I think play a significant role in eliminating such explanatory ambiguities.
Primarily, however, the rest of this essay is concerned with illustrating both the
conterfactual character, and the syntactic patterns, of the explanation of laws and
theories.

2. Explaining Laws: Some Examples. Rather than attempting to formalize laws
and theories in order to exhibit syntactical connections which arise when limits are
taken or when special assumptions are made, I will content myself with presenting
informal evidence for such connections. Thus instead of presenting van der Waals’
and the ideal gas laws as sentences in a first-order language and showing that
under some conditions one is derivable from a definitional extension of the other,
it seems satisfactory enough to point out that the equation for the van der Waals’

gas law

RT a
P = o e T
V—>b V?
becomes identical in form with the equation for the ideal gas law
_RT
7

when ¥V — oo, a and b constant. This “identity in form” simply consists in an
identification of combinations of symbols in one law or theory with symbols, or
combinations thereof, in another law or theory, the identification being made in
such a way that mathematical operations among symbols are preserved, as is the
equality relation. Part of the reason for this informality is that I do not want the
account of reduction I am proposing to depend on any particular attempt at a
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formalization of laws in a first-order language—or even on the assumption that a
first-order language is sufficient for expressing scientific laws.

The van der Waals’-ideal-gas-law example illustrates the explanatory role of
limiting procedures in an especially simple way. If van der Waals’ is true, then the
ideal gas law would only hold were a system to become arbitrarily dilute; the ideal
gas law fails for all actual systems because such systems are not composed of mole-
cules which are point masses and because there are forces of attraction among the
molecules of a gas. The ideal gas law, according to van der Waals, should work
rather well when the ratios V/b and V/a are very large, and rather poorly when one
or both of the ratios is small. Part of the theoretical role of the constants a and b,
which disappear on taking limits, is to help explain why the ideal gas law works
where it works and fails where it fails.

One of the most important empirical relations of classical thermodynamics is the
law of corresponding states. Given a gas system in which the temperature, pressure,
and volume can be varied, it is found that for various combinations of these
parameters the gas will be in equilibrium with its liquid ; for other combinations the
liquid disappears and the system becomes homogeneous. For each gas it is found
that there is a unique maximum pressure, P.; and maximum temperature, T, at
which the liquid and vapor can coexist. Corresponding to these values is a unique
value of the volume V.. Thus for each gas there is a set of values, P,, T,, V,, of
relevant variables. A system which has these values is said to be in a critical
state. We can define pseudo-variables, called reduced variables, by dividing the
gas variables by their critical values. Thus

@ = P|P,; T =T/T,; x = V|V,

Of course P,, T,, and V, will be different for different gases. The law of corre-

sponding states asserts that if any two gases have the same values for any two

reduced variables, then they will have the same value for the third reduced variable.
In other words the law claims that for all gases

m=f(r,x); T=8mx; x=hm1)

where f, g, h are the same functions no matter what gas is considered.

The law of corresponding states provides a challenge to any attempt at reducing
gases to other entities. If gases are collections of molecules, then a molecular
theory ought to explain why the law of corresponding states works so well, and
where its limitations are.

A formal analogue of the law of corresponding states can be derived from
statistical mechanics if it is assumed that the potential energy of interaction of the N
molecules of the system can be expressed as a sum of pair potentials and the pair
potential u(r) can be expressed as a universal function ¢, containing two scale
factors € and o, dependent on the substance in question. We have

wr) = < (2)

where r is the intermolecular distance. Now this assumption is reasonable if the
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molecules in question are either spherical, or are effectively spherical because of
rotation, and if the molecules are not polar. From other evidence we can determine
which substances have these properties, and thus can give a detailed account of
just where and why the law of corresponding states fails or succeeds ([3], pp.
333-337).

Even in the explanation of relatively simple empirical laws, there arise cases
which require the use of both special assumptions added to the principles of the
explaining theory and the use of limiting procedures. The Newtonian explanation
of Galileo’s law of falling bodies and the classical thermodynamic explanation of
of the law of mass action both require such a combination.

Let us take Galileo’s law as the claim that the acceleration of a body falling near
the surface of the earth is constant. To Newton’s law we shall add the postulates
that the only force acting on a falling body is the Earth’s gravitational attraction
and that the Earth is a sphere. Then, with these extra assumptions, we have for a
falling body at height 4 above the earth:

mM
C®RThe

where M is the mass of the earth and R is the radius of the earth. Hence in the limit
as b — 0 we have

M
8
and the expression on the right is a constant.

Thus Galileo’s law is an approximation which would approach the Newtonian
truth as a falling body comes arbitrarily close to the surface of the earth, if all
forces other than the gravitational attraction of the earth were negligible and if the
earth were spherical. Galileo’s law fails in fact because the earth is not spherical
and because forces other than the gravity of the earth are not zero and because the
gravitational force is a function of distance. In the explanation of why Galileo’s law
fails one is not simply committing the fallacy of denying the antecedent. Rather,
one is implicitly contrasting a contrary-to-fact situation in which Galileo’s law
would hold with the real situation, in which Newton’s laws entail the denial of
Galileo’s law—or at least the denial of a formal analogue of that law.

The law of mass action, whether for gases or for liquid solutions, is not a logical
consequence of classical thermodynamics. In the case of gases, for example, one
can nonetheless obtain a formal analogue of the law of mass action by first adding
the assumption that the pressure is constant and then taking the limit as the system
becomes arbitrarily dilute, so that fugacities can be replaced by partial pressures.®
Examples could be multiplied, but perhaps enough has been said to make the case
that many explanations of empirical laws are of a counterfactual kind, and do
illustrate the pattern I have outlined.

F=ma=

a=G

3. Explaining Theories. The syntactical aspect of explaining one theory from

5 For details see any text on physical chemistry, e.g., [2], Chap. 11.
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another generally consists in generating from the primary theory, by means of
special assumptions, limiting procedures, and deductive inference, a collection of
sentences which has a definitional extension which entails the secondary theory.
The only consistency condition which it seems necessary to impose on this process
is that if 4 and B are theorems of the secondary theory, and A4 entails B, then the
same procedures which generate an analogue of 4 from the primary theory be used
to generate the analogue of B. It is simply a matter of keeping our counterfactuals
consistent. There is, in general, nothing to prevent us from explaining one law of
the secondary theory from one set of special assumptions and limits and another,
logically independent, law from quite different—conceivably even inconsistent—
special assumptions and limits. Thus to a large extent, the syntactical aspect
of explaining one theory from another can be analyzed in terms of explanations
of the laws of the secondary theory. Of course, however the sentences analogous to
the laws of the secondary theory happen to be generated, a unique correspondence
must be established between quantities in the secondary theory and quantities,
or combinations of quantities, in the primary theory.

Any number of theories might be used to exhibit the roles of special assumptions
and limiting procedures in explaining one theory from another. There is, for
example, the standard textbook remark that Newtonian mechanics is a limiting
case of the special theory. The example I should like to consider, however, is the
one which seems to have been most discussed by philosophers, namely the statistical
mechanical explanation of classical thermodynamics. Since the most rigorous
presentation of classical thermodynamics of which I am apprised, Carathéodory’s
[1], is far from an axiomatization in the modern sense, there can be no question
of presenting or examining a formal explanation of the whole of thermodynamics.
Rather, I will content myself with an informal consideration of the connection
between statistical mechanics and particular phenomenological laws, a procedure
which I hope is at least partially justified by my preceding remarks. The bone of
contention among philosophers has not been the first law or the so-called zeroth law
or the third law (which can’t be obtained from classical statistical mechanics in
any case), but the statistical mechanical explanation of the phenomenological
second law.

One of the earliest and clearest modern attempts at a mechanical explanation
of thermodynamics is contained in J. Willard Gibbs’ Elementary Principles in
Statistical Mechanics. Gibbs’ book is an attempt not only to develop the statistical
mechanical ideas of Boltzman, Maxwell, and himself, in a unified way, but also
“...to find in rational mechanics an a priori foundation for the principles of
thermodynamics” ([5], p. 165). The Kantian notions aside, there can be no question
but that Gibbs was attempting a statistical mechanical explanation of classical
thermodynamics. Let us consider what he does.

Gibbs deals with mechanical systems with 2n degrees of freedom, subject to
conservative external forces which are functions of external coordinates a;. The
potential energy is assumed to be a function of the internal coordinates ¢, . . ., ¢,
and the external coordinates. He constructs a 2n-dimensional phase space in the
usual way and considers the distribution D, which he calls the “density in-phase,”
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of a space ensemble in the phase space. The systems in the ensemble are assumed
to be subject to the same force laws, and at any given instant the values of the
external coordinates a; are the same for all systems in the ensemble.®

Gibbs defines the probability of finding a system in a given volume of phase
space as

f depl... dqan

where the p; are generalized moments, P = D/N and N is the number of systems in
the ensemble. The problem of choosing an explicit function for P still remains.
Since he has already shown that for a system in statistical equilibrium—and that is
the case in which he is interested—ZP is a constant of the motion of the ensemble,
Gibbs chooses P to be a function of the energy, and writes for the canonical
ensemble

P = exp (lﬁ—;—f)
or

n=mnP= 4 6— s
where e is the energy, ¢ and 0 are constants.

To motivate the assumption that 6 is proportional to the thermodynamic
temperature, Gibbs proves a statistical analogue of the classical principle that
systems at the same temperature and at thermal equilibrium remain in thermal
equilibrium when they are coupled thermally—provided there are no forces of
interaction. That is, Gibbs shows that if two systems have the same modulus, 6,
and are in statistical equilibrium then they remain in statistical equilibrium when
coupled, provided again that the interaction forces are negligible.

To get to the second law, Gibbs defines the average value of a quantity, u, in
the usual way:

7= fj u exp [‘!’—;—E-] dpy ... dqs,

all phases

and then argues that the following relation holds:
d€_ = od(-—i_l) - Zldal - szaz e
He remarks that:

This equation, if we neglect the sign of the averages, is identical in form with the thermo-
dynamic equation. . .

de = T'dn — Ay da; — A, da; — etc.

which expresses the relation between the energy, temperature, and entropy of a body in
thermodynamic equilibrium, and the forces which it exerts on external bodies—a relation
which is the mathematical expression of the second law of thermodynamics for reversible
changes. The modulus in the statistical equation corresponds to temperature in the
thermodynamic equation, and the average index of probability with its sign reversed
corresponds to entropy ([5], p. 44).

6 Understandably, in view of the ergodic problem, Gibbs is rather vague concerning the
connection between space ensembles and time ensembles.
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Gibbs finds the analogy unsatisfactory for semantic reasons—the average value
of the energy is not the energy, and so on. Hence he attempts to find conditions
under which e will equal & To complete the connection, Gibbs argues that the
“anomaly” of the energy, i.e. the mean square deviation, is inversely proportional
to the number of degrees of freedom of the system, provided that the quantity
de,/de, (where ¢, is the potential energy due to the internal coordinates, €, the
kinetic energy) does not increase without bound as the number of degrees of
freedom increases.

In the limit, then, as the number of degrees of freedom of a system becomes
arbitrarily large, Gibbs feels justified in equating, within statistical mechanics, the
energy of a system with the average value of the energy in a canonical ensemble of
such systems, and similarly for other physical quantities. For the limiting case,
Gibbs then identifies the statistical mechanical energy and index of probability
with the classical thermodynamic energy and entropy. The semantic considerations
are important here, and I will say something about them subsequently, but for now
I am concerned only with the restrictions they impose on the syntactical connection
between statistical mechanics and the second law. Evidently, the connection,
according to Gibbs, is that the classical second law is obtained as a limiting case
from statistical mechanics. In his own words:

a very little study of the statistical properties of conservative systems of a finite number
of degrees of freedom is sufficient to make it appear, more or less distinctly, that the general

laws of thermodynamics are the limit toward which the exact laws of such systems approxi-
mate, when their number of degrees of freedom is indefinitely increased ([5], p. 166).

One can criticize Gibbs’ rigor, but there seems little question that what he was
attempting to do corresponds with the explanatory schemes I have outlined. It is
worth noting that in the most rigous presentation of classical statistical mechanics
available, A. I. Khinchin comes to the same conclusion as Gibbs. Khinchin shows,
by applying the central limit theorem, that in the limit as the number of partitions
of a system becomes arbitrarily large, one obtains a precise analogue of the classical
second law ([8], esp. Chap. 7).

Sometimes different explanations of the secondary theory can be generated from
the same primary theory by making different identifications of quantities in the two
theories and thus we are faced with the task of providing criteria for choosing
among alternative explanations. Here, however, a simple and obvious principle
comes to our aid. Let 4 and B be two explanations of a theory T from a theory 7”;
if every law of T explained by B is also explained by 4, but there are laws of T
explained by 4 and not by B, then we prefer explanation 4.

The electrodynamic explanation of physical optics illustrates the preceding
principle rather nicely. Polarization experiments show that the optical disturbance
associated with a light wave is a vector quantity and the optical vector is perpendic-
ular to the direction of propagation of the wave. Now in electrodynamics the electric
intensity vector E and the magnetic intensity H are both vector quantities associated
with an electromagnetic wave, both quantities satisfy a wave equation, and both
are perpendicular to the direction of propagation of an electromagnetic wave. It
would seem, therefore, that two different explanations of physical optics from
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electrodynamics are possible: one which identifies the optical vector with E, and
one which identifies the optical vector with H. Nonetheless, the optical vector is
always identified with E, never with H. The reason is that there are laws within
physical optics which cannot be explained if the optical vector is identified with
H, but which receive a very neat explanation if the optical vector is identified with E.

When a beam of linearly polarized light meets a surface of separation of two
transparent media, part of the beam is reflected and part refracted. It is found
experimentally that the relative intensities of the reflected and refracted beams
depends on the angle of incidence and on the angle between the plane of motion of
the optical vector and the plane of incidence. When the optical vector is parallel
to the plane of the surface, the intensity of the reflected beam is a maximum and the
intensity of the refracted beam is a minimum; the reverse holds when the optical
vector, the direction of propagation, and a normal to the surface all lie in the same
plane. In the latter case, when the optical vector lies in the plane of incidence,
there is an angle of incidence, called Brewster’s angle or the polarization angle, for
which the beam is totally refracted. The angle is given by

=

ny
where n; and n, are the indices of refraction of the two media. This relation is
called Brewster’s law.

Now let 8 be the angle of incidence, and 6’ the angle of refraction of a linearly
polarized electromagnetic wave. Then it follows from Maxwell’s equations” that
if E lies in the plane of incidence, then the amplitude of the reflected beam is
given by

_tan (0 — 6
tan (0 + 6)

where A is the amplitude of the incident beam. When § + 6’ = «/2 the denominator
goes to infinity and the amplitude of the reflected wave becomes zero. Hence when
E lies in the plane of incidence there is an angle for which the incident wave is
totally refracted, and, therefore, if E is identified with the optical vector we obtain
an explanation of Brewster’s law. No such explanation is possible if the optical
vector is identified with H.

Ernest Nagel has claimed that identification of terms across theories are synthetic
material claims. And, it would seem, one way of looking at Brewster’s law is as
empirical confirmation of the identification of E with the optical vector. The clear
moral is that an adequate explanation of a theory should not only explain the
fundamental principles of the theory, but should explain as well any and all
“empirical” relations among the quantities, objects, and processes postulated by
the theory.

All = A

4. Explanations and Analogies. Considerations of meaning are of obvious impor-
tance in inter-theoretical explanation; we have seen, for example, their importance

7 [12], Chap. 8. I am indebted to a referee for suggesting the need to treat this case.
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in Gibbs’ attempt to explain thermodynamics. The sorts of syntactical connections
I have attempted to describe are far from sufficient for explanation. After all, formal
analogies abound in physics—for example in potential theory and between mechani-
cal systems and electrical circuits—but no one thinks such analogies amount to an
explanation of anything. I very much doubt that our understanding of the semantic
aspects of explanation is furthered by grand debates about “meaning invariance”
and the like. Instead of joining the lists on one side or the other, I want to suggest,
rather tentatively, a consideration which seems to me of some help in understanding
the difference between explanations and formal analogies.

Given a theory, there are various measurements we can make, or procedures
we can carry out, to determine the value of a quantity used in the theory for some
systems, or to determine whether or not parts or aspects of a system exhibit
properties or stand in relations postulated by the theory. I will call any such pro-
cedure a measurement, even though that is a bit misleading. Now I want to dis-
tinguish two kinds of measurements associated with a theory: those which use some
of the laws of the theory and those which do not. I do not know how to make this
distinction clear except by example. Suppose we are dealing with a law, say a gas
law such as the ideal gas law, which employs the notion of temperature. We can
measure temperature by means of a thermometer, or by resistence measurements,
or by a thermocouple, and so on. None of these measurement procedures uses the
ideal gas law. By contrast we might measure the temperature of a system with a
contraption which determines the volume of the system, by means of meter rods
say, and determines the pressure of the system, perhaps with a manometer, and
then computes the temperature from these data according to the ideal gas law.
Such a procedure uses the ideal gas law in an essential way. Again, when doing
calorimetric measurements of heats of reaction, one generally makes temperature
measurements and then computes the heat of reaction by means of a thermo-
dynamic law connecting the heat of reaction with the temperature values and
empirical constants, such as the heat capacity of the calorimeter. As a measure-
ment of heat of reaction such a procedure makes essential use of the thermodynamic
law. A measurement which uses a law cannot be used to test that same law—it
cannot, just because the measurement is performed in such a way as to guarantee
that the results will accord with the law. Since I will often want to refer to measure-
ment procedures which measure a quantity occurring in a theory without using
any laws of that theory, I shall call such measurements primary for that theory.

The distinction which I am attempting to draw is not the same as the traditional
distinction between fundamental and derived measurements or magnitudes. For
one thing, fundamental magnitudes are often characterized as additive, or extensive,
so that temperature or density cannot be fundamental magnitudes; but additivity
has nothing to do with whether or not a quantity occurring in a theory admits of
measurements which are primary for that theory. Further, the distinction between
fundamental and derived measurements is usually drawn in an absolute way,
whereas a measurement is primary or not only relative to a specific theory. Thus
any measurement of a quantity occurring in thermodynamics, such as pressure,
which uses only mechanical laws is primary for thermodynamics. Pressure,
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temperature, volume, electrical work, all these are quantities which can occur in
thermodynamics and which admit of measurements which are primary for
thermodynamics. Entropy, by contrast, is a thermodynamic quantity which admits
of no primary measurement—at least I know of no way of measuring the entropy
of a system without using some law of thermodynamics. Again, in mechanics posi-
tion and time are obviously quantities which admit measurements which are
primary for mechanics. For all practical purposes the distinction can often be made
historically : measurement procedures which are primary for a theory tend to be pro-
cedures which were used prior to the introduction of the theory and the use of
which is taken over by the theory.

According to the account I have given, the explanation of one theory by another
requires that quantities in the secondary theory be identified with quantities, or
combinations of quantities, in the primary theory. In terms of the distinction just
drawn, an obvious semantic restriction on such identifications is this: The identifica-
tion must be made so that every primary measurement of a quantity in the secondary
theory is also a measurement of the corresponding quantity, or combination of
quantities, in the primary theory.

It should be evident why it is that only primary measurements of a quantity in
the secondary theory need be measurements of the corresponding quantity in the
primary theory. Measurements which are not primary for the secondary theory
use some of the laws in the secondary theory; but the laws of the secondary theory
are generally inconsistent with the laws of the primary theory, and hence measure-
ments which use the laws of the secondary theory will not be satisfactory measure-
ments of quantities in the primary theory. It is difficult to justify the preceding
analysis by considering examples, for in scientific writings semantic relations are
seldom stated explicitly. Perhaps, nonetheless, something can be done to show how
the above restriction can be used to help rationalize the moves Gibbs makes in
his attempt to explain thermodynamics.

I will assume that Gibbs intended that the modulus 6 in the canonical distribution
should be determined by the same primary measurements as determine the tempera-
ture, 7, and, moreover, that he intended that primary measurements of the
quantities of work, 4;, in thermodynamics should also be measurements of the
quantities 4, in statistical mechanics. These intentions, according to the semantic
criterion proposed, already severely limit the admissible identifications of quantities
in the two theories.

Gibbs, it will be recalled, derives an equation from statistical mechanics

d€= ed(—ﬁ) —Zldal "szaz —_ e

which is formally analogous to a theorem of classical thermodynamics combining
the first and second laws. Nonetheless he is unwilling to identify € with €, and so on;
he only allows the identification in the limit as the number of degrees of freedom of
a system approaches infinity. The identification of € with e and 7 with » is not
permissible because it forces the identification of 4; in thermodynamics with A4; in
statistical mechanics, and a primary measurement of work is #ot a measurement
of the average value of the work for a canonical ensemble. In the limit, however, as
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the number of degrees of freedom becomes arbitrarily large, the “anomaly” of the
work, just like the anomaly of the energy, becomes arbitrarily small. In the limit,
then, a measurement of work done by a statistical mechanical system will be a
measurement of the average value of the work done by systems in a canonical
ensemble, and vice versa. In this case, then, the identification of thermodynamic
energy and entropy with statistical mechanical energy and index of probablility
results in laws with the same structure.

In sum, we can rationalize Gibbs’ procedure in this way: To explain thermo-
dynamics from statistical mechanics, Gibbs had to show that, given certain identi-
fications of the quantities in one theory with those in the other, there are specifiable
conditions under which the laws of statistical mechanics entail the laws of thermo-
dynamics. He intended that primary measurements of thermodynamic temperature
and work should also be measurements of the statistical mechanical modulus and
work, respectively. In accord with the proposed semantic criterion, this intention
limited the admissible identifications of quantities in the two theories to those
which identified T with a multiple of 6 and 4; in one theory, with 4; in the other. In
particular this intention excluded the possibility of exhibiting thermodynamics as a
deductive comnsequence of statistical mechanics—without any special conditions or
limits—via an identification of thermodynamic quantities with the average values of
their statistical mechanical analogues. By contrast, the identification of the thermo-
dynamic energy and entropy with the energy and index of probability in the
canonical ensemble was compatible with Gibbs’ intent and permitted—or so Gibbs
thought—the derivation of thermodynamic laws from statistical mechanics in the
limiting case.

Conclusion. Even if everything I have had to say here is true, which is not very
likely, there still remain major aspects of inter-theoretical explanation which are
not well understood. There is, of course, the question of the meaning relations
among different theories. Here I can only urge that the counterfactual character
of inter-theoretical explanation be kept in mind in subsequent analyses. An
explanation of a theory or law does not generally proceed by showing why the
theory or law is true, but rather by arguing that the theory or law is false because
something or other is the case, or that the theory or law would be true if something
or other were the case. Equally important in understanding explanation is the no-
tion of approximation. A great many inter-theoretical arguments involve such
familiar moves as the replacement of a sum by an integral, the deletion of terms in a
power series, the separation of variables which are not separable. A detailed
account of the warrants for such moves, and of how inconsistency is avoided in
using them, is still needed.
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