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This raises the question as to how we can use scientific understanding and empirical data to
construct the requisite causal model. By saying little about this specification problem, Pearl is in
danger of being misunderstood to say that it is not important. To build either a distributional or a
counterfactual causal model, we need to assess evidence on how interventions affect the system, and
what remains unchanged. This will typically require a major scientific undertaking. Given this
structure, distributional aspects can, in principle, be estimated from suitable empirical data, if only
these are available, and we can then apply the manipulations described by Pearl to address problems
of the ‘effects of causes’. But much more would be needed to address ‘causes of effects’, since
counterfactual probabilities are, almost by definition, inaccessible to direct empirical study.
Empirical data can be used to place bounds on these (Balke & Pearl, 1994), but these will usually
only be useful when they essentially determine the functions in (3). And, for this, it will be necessary
to conduct studies in which the variables ¢; are explicitly identified and observed. Thus the whole
mechanism needs to be broken down into essentially deterministic sub-mechanisms, with ran-
domness arising solely from incomplete observation. In most branches of science such a goal is quite
unattainable.

I emphasise the distinction drawn above, between inference about ‘effects of causes’ and ‘causes
of effects’, because it might be tempting to try to extend Pearl’s analysis, particularly in its formu-
lation (3), to the latter problem. For both problems serious difficulties attend the initial model
specification, but these are many orders of magnitude greater for ‘causes of effects’, and the
inferences drawn will be very highly sensitive to the specification.

On a different point, I am intrigued by possible connexions between Pearl’s clear distinction
between conditioning and intervening, and the prequential framework of Dawid (1984, 1991),
especially as elaborated by Vovk (1993). Suppose A plays a series of games, involving coins, dice,
roulette wheels, etc. At any point, the game chosen may depend on the observed history. We could
model this dependence probabilistically, or leave it unspecified. Now suppose we are informed of
the sequence of games actually played, and want to say something about their outcomes. In a fully
probabilised model, we could condition on the games played, but this would involve unpleasant
analysis, and be sensitive to assumptions. Alternatively, and seemingly very reasonably, we can use
the ‘prequential model’, which treats the games as having been fixed in advance. This is obtained
from a fully specified model, with its natural temporally defined causal model, by ‘setting’ the games,
rather than conditioning on them.
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In recent years we have investigated the use of directed graphical models (Spirtes, 1995; Spirtes,
Glymour & Scheines, 1993) in order to analyse predictions about interventions that follow from
causal hypotheses. We therefore welcome Pearl’s development and exposition. Our goal here is to
indicate some other virtues of the directed graph approach, and compare it to alternative
formalisations.
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Directed graph models have a dual role, explicitly representing substantive hypotheses about
influence and implicitly representing hypotheses about conditional independence. We can connect
the two dimensions, one causal and the other stochastic, by explicit mathematical axioms. For
example, the causal Markov axiom requires that, in the graph, each variable be independent of its
nondescendants conditional on its set of parents. The formalism allows one to hold causal hypoth-
eses fixed while varying the axiomatic connexions to probabilistic constraints. In this way, one can
prove the correctness of computable conditions for prediction, for the statistical equivalence of
models, and for the possibility or impossibility of asymptotically correct model search, all under
alternative axioms and under a variety of circumstances relevant to causal inference, including the
presence of latent variables, sample selection bias, mixtures of causal structures, feedback, etc. Thus
it is possible to derive Pearl’s Theorem 3, and other results in his paper, from the Markov condition
alone, provided one treats a manipulation as conditionalisation on a ‘policy’ variable appropriately
related to the variable manipulated. Further, two extensions of Theorem 3 follow fairly directly.
First, if the sufficient conditions in Theorem 3 for the equalities of probabilities are violated,
distributions satisfying the Markov condition exist for which the equalities do not hold. Secondly, if
the Markov condition entails all conditional independencies holding in a distribution, an axiom
sometimes called ‘faithfulness’, the conditions of Theorem 3 are also necessary for the equalities
given there.

The graphical formalism captures many of the essential features common to statistical models
that sometimes accompany causal or constitutive hypotheses, including linear and nonlinear
regression, factor analysis, and both recursive and nonrecursive structural equation models. In
many cases, these models are representable as graphical models with additional distribution
assumptions. In some cases, the graphical formalism provides an alternative parametrisation of
subsets of the distributions associated with a family of models, as, for example, for the graphical
subset of distributions from the log-linear parametrisation of the multinomial family (Bishop,
Fienberg & Holland, 1975; Whittaker, 1990). Directed graphs also offer an explicit representation
of the connexion between causal hypotheses and independence and conditional independence
hypotheses in experimental design, and, under various axioms, permit the mathematical investi-
gation of relations between experimental and nonexperimental designs.

Rubin (1974), Rosenbaum & Rubin (1983), Holland (1988) and Pratt & Schlaifer (1988) have
provided an important alternative treatment of the prediction of the results of interventions from
partial causal knowledge. As Pearl notes, their approach, which involves conditional independence
of measured and ‘counterfactual’ variables, gives results in agreement with the directed graphical
approach under an assumption they refer to as ‘strong ignorability’. For example, a result given
without proof by Pratt & Schlaifer provides a ‘sufficient and almost necessary’ condition for the
equality of the probability of Y when X is manipulated, and the conditional probability of the coun-
terfactual of Y on X. A direct analogue of their claim of sufficiency is provable from the Markov
condition and necessity follows from the faithfulness condition, which is true with probability 1 for
natural measures on linear and multinomial parameters. This offers a reasonable reconstruction of
what they may have meant by ‘almost necessary’. The Rubin approach to prediction has some
advantages over directed graph approaches, for example in the representation of circumstances in
which features of units influence other units. The disadvantages of the framework stem from the
necessity of formulating hypotheses explicitly in terms of the conditional independence of actual
and counterfactual variables rather than in terms of variables directly influencing others. In our
experience, even experts have difficulty reliably judging the conditional independence relations that
do or do not follow from assumptions. For example, we have heard many statistically trained people
deny, before doing the calculation, that the normality and independence of X, Y and e, coupled with
the linear equation Z = aX + bY + ¢, entail that X and Y are dependent conditional on Z. For the
same reason, the Rubin framework may make more difficult mathematical proofs of results about
invariance, equivalence, search, etc.

There are at least two other alternative approaches to the graphical formalism: Robins’ (1986)
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G-computation algorithm for calculating the effects of interventions under causal hypotheses
expressed as event trees, an extension of the Rubin approach; and Glenn Shafer’s (1996) more recent
and somewhat different tree structure approach. Where both are applicable, they seem to give the
same results as do procedures Pearl describes for computing on directed graphs. An advantage of
the directed graph formalism is the naturalness of the representation of influence. Questlons regard-
ing the relative power of these alternative approaches are as follows.

(i) Is the graphical approach applicable to cases where the alternatives are not, particularly
when there are structures in which it is not assumed that every variable either influences or
is influenced by every other?

(i) Is the graphical approach faster in some instances, because the directed graphs can encode
independencies in their structure while event trees cannot?
(iii) Can the alternatives, like the graphical procedure, be extended to cases in which the distri-
bution forced on the manipulated variable is continuous?
As far as we can tell, none of the approaches to date has been able to cope with causal language
associated with explanatory variables in proportional hazards models, where the nonlinear structure
does not lend itself naturally to conditional independence representations.
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Causal inference with nonexperimental data seems unjustifiable to many statisticians. For others,
the trick can be done almost on a routine basis, with the help of regression and its allied techniques,
like path analysis or simultaneous-equation models. However, typical regression studies are prob-
lematic, because inferences are conditional on unvalidated, even unarticulated, assumptions: for
discussion and reviews of the literature, see Freedman (1991, 1995).

Deriving causation from association by regression depends on stochastic assumptions of the
familiar kind, and on less familiar causal assumptions. Building on earlier work by Holland (1988)
and Robins (1989) among others, Pearl develops a graphical language in which the causal assump-
tions are relatively easy to state. His formulation is both natural and interesting. It captures
reasonably well one intuition behind regression analysis: causal inferences can be drawn from
associational data if you are observing the results of a controlled experiment run by Nature, and the
causal ordering of the variables is known. When these assumptions hold, there is identifiability
theory that gives an intriguing description of permissible inferences.

Following Holland (1988), I state the causal assumptions along with statistical assumptions that,
taken together, justify inference in conventional path models. There is an observational study with
nsubjects, i=1,. .., n. The data will be analysed by regression. There are three measured variables,
X, Y, Z. The path diagram has arrows from X to Y; then, from X and Y to Z. The diagram is
interpreted as a set of assumptions about causal structure: the data result from coupling together
two thought experiments, as specified below. Statistical analysis proceeds from the assumption that
subjects are independent and identically distributed in certain respects. That is the basis for estimat-
ing regression functions, an issue Pearl does not address; customary tests of significance would
follow too.

Random variables are represented in the usual way on a sample space Q. With notation like
Holland’s, Y; .(w) represents the Y-value for subject i at w € Q, if you set the X-value to x. The



