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Abstract Our primary interest is in determining how many gene 
perturbation experiments are required to determine the 
network of regulatory relations among any given set of 
genes, ignoring questions of uncertainty in statistical 
decisions. Secondarily, we are interested in whether it is 
feasible to compute which further experiments will be most 
informative. And, finally, since the sample sizes (number of 
expression measurements per gene) in such experiments are 
typically small, we are concerned with the stability of 
statistical decisions about differential expression given 
different statistical tests.  

Various algorithms have been proposed for learning 
(partial) genetic regulatory networks through 
systematic measurements of differential expression 
in wild type versus strains in which expression of 
specific genes has been suppressed or enhanced, as 
well as for determining the most informative next 
experiment in a sequence. While the behavior of 
these algorithms has been investigated for toy 
examples, the full computational complexity of the 
problem has not received sufficient attention. We 
show that finding the true regulatory network 
requires (in the worst-case) exponentially many 
experiments (in the number of genes). Perhaps more 
importantly, we provide an algorithm for 
determining the set of regulatory networks consistent 
with the observed data. We then show that this 
algorithm is infeasible for realistic data (specifically, 
nine genes and ten experiments). This infeasibility is 
not due to an algorithmic flaw, but rather to the fact 
that there are far too many networks consistent with 
the data (1018 in the provided example). We conclude 
that gene perturbation experiments are useful in 
confirming regulatory network models discovered by 
other techniques, but not a feasible search strategy. 

The answers we find are far more pessimistic than has 
previously been suggested in the literature (e.g., [Onami et 
al., 2001; Ideker et al., 2000]). We show that, while 
perturbation experiments can eventually eliminate possible 
regulatory relations, they do not efficiently eliminate them. 
We give an anytime algorithm for computing weakly 
monotonically increasing lower bounds on the number of 
alternative network explanations for the results of any set of 
gene perturbation experiments. The lower bound is typically 
astronomical. We illustrate the point by computing a lower 
bound—1018—on the number of networks for 9 genes that 
are consistent with a recent series of gene perturbation 
experiments [Ideker et al., 2001]. Finally, we argue that the 
computation of the most informative experiments can only 
be heuristic. 

1 Introduction 
2 Graphical Representation 

Techniques for the simultaneous measurement of mRNA 
transcripts from thousands of genes has led to the 
development of a wide range of machine learning 
techniques for searching for genetic regulatory networks in 
an automated fashion. In a large subset, the learning is based 
on comparisons between the gene expression in “wild type” 
cells and that in strains in which expression of particular 
genes has been deliberately suppressed or enhanced. This 
strategy essentially follows the logic of standard causal 
inference from experimental interventions and controls, 
though supplemented with algorithms that attempt to extract 
maximal information from the data.  

Regulatory networks have often been represented as 
directed acyclic graphs. However, since feedback is 
ubiquitous in gene regulation, either a time series or a 
directed cyclic graph representation is more appropriate, and 
we will use the latter. An edge X  Y in a regulatory 
network indicates that gene X directly regulates gene Y 
(relative to the other variables in the network). We can put 
the idea more precisely in terms of idealized experiments: X 
directly regulates Y relative to variables V iff there are two 
distinct experimentally producible values, x1, x2 of X, such 
that, if the expression levels of all genes other than X, Y (V \ 

 



{X,Y}) are held fixed, the expression levels of Y are distinct 
for the two values of X.   

In practice, we do not have experimental techniques to 
hold gene expression levels at arbitrary values, only 
techniques to suppress or overexpress a gene or genes.  We 
cannot even force a gene to have its wild-type expression 
level if we experimentally suppress or overexpress other 
genes. We therefore focus on the problem of discovering the 
networks that can be revealed by experiments that suppress 
or overexpress specific genes, singly or in combination, 
while measuring expression levels of other genes. Networks 
discovered in this way necessarily may be incomplete; for 
example, if gene X regulates gene Z only when gene Y has a 
wild-type value, and under or over expression of X also 
drives Y away from its wild-type level, the influence of X on 
Z may not be discovered. 

3 Counting Experiments 
Suppose we have n different genes. In the mathematically 
worst case (when no gene regulates any other gene), we 
must perform n × (n–1) × 3 × 3n–2 different experiments to 
learn the true network—so much as it can in principle be 
learned from such experiments. The first two terms measure 
the number of different ordered pairs of genes we must 
consider. The third term measures the different possible 
interventions on the potential regulator gene  (left alone, 
knocked out, overexpressed). The final term measures the 
number of different possible experimental “settings” for the 
other variables in our system (left alone, knocked out, 
overexpressed). If future experimental technology enables 
us to set variables at more than two levels, the last two terms 
will increase exponentially. 

An immediate consequence is that any generally correct 
algorithm for determining the graphical models consistent 
with a collection of experimental results must, in the worst-
case, consider exponentially many different experiments. 
Thus, any such algorithm must have exponential worst-case 
computational complexity, since (at the very least) every 
experimental result must be read once. Even for a relatively 
small case such as the yeast data discussed below in which n 
= 9, there are (worst-case) 472,392 experiments to be 
performed.  

Of course, expected or real-world cases are often easier 
than the worst case. We must perform the full 2 × 3 × 3n–2 
experiments for a particular pair of genes only if neither 
actually regulates the other. If we can determine that X 
directly regulates Y, then no more experiments are needed 
for that ordered gene pair (at least if network topology is all 
that concerns us). The computational complexity thus 
decreases as the density of the regulatory network increases. 
Three questions about complexity are suggested by these 
considerations: Given a collection of experimental results, 
(i) what is the class of network structures that are consistent 
with the data; (ii) what is its cardinality; and, since that 
cardinality is apt to be very large, (iii) is there a way to 
generate a smaller class containing the “minimal” graphs, at 

least one of which must be true in view of the data? To 
answer these questions we need a formal representation of 
the data and of the notion of a network structure being 
“consistent” with the data. 

4 Formal Representation of Data 
Suppose the expression of n genes is measured in m 
experimental conditions, with l repetitions of each 
experimental condition. Experimental conditions may differ 
in the genes that are deliberately enhanced or suppressed, in 
environmental factors such as temperature or nutrient, or 
both. After normalizing the distributions of each gene in 
each condition, we obtain an estimate of the mean 
expression mij of gene i in experimental condition j. We will 
assume that, using some simultaneous hypothesis test, we 
obtain a test of the hypothesis that mij = mik, for each gene i, 
and each pair of distinct experiments j and k, in neither of 
which gene i is directly manipulated. We construct a ([gene 
& exogenous factor] × experiment × experiment) symmetric 
matrix A and set: 

aijk = M, if gene i is the target of an experimental 
manipulation in at least one of experiment j or k, and 
it is not the same manipulation in both experiments; 

aijk = 1, if the hypothesis is rejected (i.e., expression of 
gene i is significantly different in j and k); 

aijk = 0, otherwise. 
For each exogenously controlled environmental factor h we 
set:  

ahjk = 1, if h’s value differs in experiments j and k 
ahjk = 0, otherwise. 

We require a definition of the conditions under which an 
edge is ruled out by the observed data. Specifically, an edge 
X  Y is incompatible with observed data A if and only if 
for all combinations of possible intervention states 
(including no intervention) for the genes except X and Y, the 
expression level of Y does not change regardless of the 
intervention state of X. In other words, for every way of 
setting the values of the other genes (including not doing 
anything at all), genome perturbations in X never lead to 
variations in Y. Note that we must in fact perform every 
possible experiment that leaves Y unmanipulated (i.e., 3n–1 
experiments) to determine whether an X  Y edge is 
incompatible. In practice we will almost never have 
sufficient experiments to declare an edge incompatible with 
the data. Nevertheless, it is a useful definition, if only 
because it emphasizes just how difficult it is to rule out 
regulatory dependencies. 

Now define a graph G to be consistent with a set of 
experimental results A if and only (i) G does not contain 
any edges incompatible with E, in the sense of 
“incompatible” just defined; and (ii) for all aijk in E such that 
aijk = 1, there exists a gene vertex Xq such that there is a 
directed path from Xq to Xi, and either aqjk = 1 or M. In plain 
language, the first clause of the definition requires that G 
does not include any impossible (relative to the data) edges, 

 



However, we say that a graph G is minimally consistent 
with E if and only if G is consistent with E, but if we 
remove any edge from G, then it is no longer consistent. We 
can prove that the output of the IG algorithm, while leaving 
out some consistent graphs, includes every minimally 
consistent graph. 

and the second clause requires that every significant 
expression difference in the data can be explained by G.  

5 Finding Minimally Consistent Graphs 
Given the matrix A, we define the IG Algorithm (Initial 
Graphs): Theorem 1: (A) Every graph in InitialGraphs for A is 

consistent with A, and (B) InitialGraphs contains all 
graphs minimally consistent with A. 

(i) For each gene i, and for all j, k such that aijk = 1, let Lijk 
be the set of l (genes and exogenous factors) such that aljk = 
1, or M. Given the Lijk, determine Ci: the collection of 
minimal covering sets for these Lijk; 

Note that InitialGraphs may contain graphs that are not 
minimal for the experimental data; an example is given, in 
another context, in the “Previous Work” section below.  (ii) Construct the collection G of all possible directed 

graphs in which the parent nodes of each gene i form one of 
the minimal covering sets from Ci. 

We can extend the IG algorithm to include unobserved 
common causes. For each pair of gene nodes j, k correlated 
in some experimental condition, and for each graph G in 
InitialGraphs, if there is no directed path between j and k 
and there is no pair of directed paths from any third node to 
j and k, add a bidirected edge (i.e., ‘↔’) to G between j and 
k. Unfortunately, the signal-to-noise ratio in gene expression 
measurements does not allow reasonable estimates of 
expression correlations [Chu, 2003]. 

(iii) For each pair of experiments, j, k, form the set I of all 
i such that aijk = M. For each r such that arjk = 1 and G in G, 
if there is no directed path from a member of I to r, replace 
G (in G) with all extensions of G that add a directed edge 
from some member of I to r. 

(iv) return G (henceforth, InitialGraphs)  
The algorithm allows the generation of cyclic graphs, which 
have a straightforward semantics: e.g., if X, Y form a two-
cycle, then for some fixed values of other genes, a 
perturbation of X changes the expression of Y, and vice 
versa. Step (iii) of the algorithm is not redundant, and is 
required by the normal experimental method. However, this 
step can yield multiple copies of the same graph when 
applied to different members of InitialGraphs, and 
checking for these redundancies adds enormous 
computational complexity.  

6 The Exact Number of Consistent Graphs 
Recall that we earlier defined the notion of an X  Y edge 
being incompatible with data A. These edges are the only 
ones that never appear in a graph consistent with the data. 
More formally, we can prove the following theorem about 
the generation of consistent graphs.  

Theorem 2: If G is consistent with E and X  Y is not 
incompatible with E, then G*, the supergraph of G 
formed by adding X  Y, is consistent with E. 

As an example, assume our expression data are: 
Gene 1  Gene2  Gene 3 
wt1  wt2  wt3 These two theorems enable us to determine the regulatory 

connections that appear in every consistent graph: X is a 
regulator of Y in every consistent graph if and only if X is in 
every minimal covering set of Y. We can also directly 
(though usually not feasibly) calculate the exact number of 
graphs consistent with the observed data: (i) Let G = 
InitialGraphs; (ii) iteratively add to G all graphs that can 
be formed by adding a compatible edge to some graph 
currently in G; and (iii) calculate the cardinality of G. This 
procedure is quite inefficient, since many duplicate graphs 
will be generated by this procedure, and checking for 
duplication is generally infeasible for large sets. A more 
modest aim is to calculate directly the exact number of 
consistent graphs.  

deleted  wt2  wt3 + ε 
wt1  deleted   wt3 - δ 
 
a112 = M a212 = 0 a312 = 0 
a113 = 0 a213 = M a313 = 0 
a123 = M a223 = M a323 = 1 

For both genes 1 and 2, the only significant changes occur 
between experiments in which the gene was the subject of 
an intervention. Therefore, for these two genes, there are no 
sets to be covered. For gene 3 there is a significant change 
in expression level (i.e., a ‘1’) between experiments 2 and 3 
(the last row of the matrix). Genes 1 and 2 both change 
significantly between experiments 2 and 3 (see the third row 
of the matrix) and therefore {gene 1} and {gene 2} are the 
minimal covering sets for gene 3. Hence, the IG procedure 
outputs two different graphs: “G1  G3   G2”; and “G1   G3 

 G2”. Step 3 of the algorithm, path checking, produces no 
changes. 

The most obvious procedure would be to calculate the 
number of supergraphs of each graph in InitialGraphs, and 
then subtract out the overlap (i.e., those supergraphs that 
appear multiple times). It is easy to calculate the number of 
supergraphs of any one graph: if the graph has n nodes and k 
edges, and there are q incompatible edges, then there are 
2n(n–1)–k–q supergraphs. For every ordered pair of variables 
(X,Y), the edge can either be present or absent, unless it is 
already in the initial graph or is incompatible. Hence, the 
number of supergraphs is the number of Boolean 

In our example, the “ground truth” was that genes 1 and 2 
co-regulate gene 3, but the procedure tells us only that gene 
1 regulates gene 3 or gene 2 regulates gene 3, where the 
“or” is inclusive. In general, the procedure leaves out many 
consistent graphs. 

 



Suppose we have performed L experiments to this point. 
Then there are R = 3n–L experiments that have not been 
performed, and R! possible sequences. Systematic 
exploration of this sequence space is clearly intractable. 

combinations of edges whose presence or absence is not yet 
determined.  

The size of the overlap between the supergraphs of G and 
H can also be straightforwardly computed: determine the 
graphical union of G and H (i.e., the graph with an X  Y 
edge iff at least one of G, H contains X  Y), and calculate 
its number of supergraphs. But the general strategy is 
equivalent to calculating the cardinality of the union of 
multiple overlapping sets. The above algorithm thus 
requires, for m initial graphs, calculating the size of 2m–1 
sets (including the various overlaps), and so is clearly 
intractable for any large InitialGraphs. 

The computational complexity is actually worse than this 
factorial of an exponential. Suppose we could enumerate 
these possible sequences. For any particular sequence I = 
i1,…,iR, we need to determine all of the possible outcomes 
after each experiment in the sequence. Let W(E,F) to be the 
number of genes that receive no intervention in either 
experiment E or F. If S is the sequence of experiments 
already performed (both actually and hypothetically), then 
for some unique outcome of S, the number of possible 
outcomes after S+i is Oi =

( )∑
∈Ss

siW ,2 . Calculating the total 

number of possible outcomes for a particular sequence I 
requires determining this branching structure (where there 
are Oi branches at the i-th stage). 

This result suggests a more general conjecture: there is no 
procedure to calculate the exact number of graphs consistent 
with E in polynomial time. If this conjecture is true, as we 
suspect, then the most a tractable algorithm can do is 
calculate a lower bound. As we shall see, a lower bound will 
prove sufficient for assessing the feasibility of gene 
perturbation as a search strategy. For each of these possible outcome sequences, we need to 

compute the number of graphs consistent with the (observed 
+ hypothetical) data after each experiment. We can then 
calculate the expected reduction in uncertainty after each 
stage in this experiment sequence. Note that we must 
compute the exact number of consistent graphs at each 
stage; simply finding a lower bound is insufficient. 

We can determine a lower bound on the number of graphs 
consistent with the observed data by calculating the number 
of supergraphs of some subset of InitialGraphs. We can 
thus calculate this lower bound for one graph, then two 
graphs, then… until we have calculated the lower “bound” 
for all of InitialGraphs, which is just the exact number of 
consistent graphs. This algorithm is more efficient than it 
might appear, since the terms used for the lower bound 
computation for n initial graphs can all be used for the 
computation for n+1 initial graphs. Moreover, by starting 
with the sparsest graph(s), we can quickly reach a 
reasonable bound. The computed lower bound increases 
(weakly) monotonically with each stage. We can stop the 
algorithm at any time after the first stage and receive useful 
output. Furthermore, there is some finite (though 
exponentially far away) time at which the algorithm will 
return the exact number of consistent graphs. If 
InitialGraphs is sufficiently small or we have sufficient 
time, then this algorithm will yield an exact answer. 

Hence, determining the globally optimal sequence of 
experiments requires: (i) enumerating the factorial of an 
exponential number of sequences; (ii) for each sequence, 
constructing a tree of depth R with exponential branching 
structure; and (iii) for each branch-point and leaf in the tree, 
performing a probably exponential time calculation of the 
number of consistent graphs. This problem is clearly 
hopelessly intractable, probably even for very small 
numbers of genes. 

Alternately, we might try to choose the best next 
experiment, even though this procedure may lead to a highly 
sub-optimal sequence of experiments. A straightforward 
algorithm is: For each novel experiment E, determine the Oi 
= ( )∑

∈Ss

siW ,2  possible data tables resulting from that 

experiment. For each possible outcome o, determine So, the 
cardinality of the set of graphs of interest, whether 
InitialGraphs or the set of consistent graphs. The score for 
an experiment is then just: 

7 Planning Experiments 
Given the very small sample sizes in microarray and SAGE 
experiments, the confidence intervals for estimates of 
expression levels may be quite large, in which case the best 
experiment might be a replication of an earlier experiment 
to narrow this confidence interval. We have found that 
experiments using another method to detect expression of 
particular genes (e.g., Northern blots rather than 
microarrays) in order to confirm the effect of a treatment 
(e.g., applying a drug to a cell sample) are often the most 
urgent. We set these issues aside for the remainder of this 
section. 

∑
∈

=
Oo

oE S
O

H 1  

Finally, the algorithm chooses the experiment with minimal 
HE as the next experiment. This algorithm is greedy, and so 
will possibly pick out a sub-optimal (from a global 
perspective) series of experiments. It does, however, 
provide intuitively correct guidance for toy examples. Given some set of graphs consistent with the observed 

data, we want to choose the best experiment to perform. We 
first focus on the problem of determining the globally 
optimal sequence of experiments (i.e., the sequence that 
most rapidly determines the correct regulatory network). 

The formula can be weighted with prior probabilities on 
experiment outcomes, and weights on the experiment 
scores. Hence, it can accommodate prior beliefs about the 
likelihood that gene X regulates gene Y, as well as 

 



differential experiment cost (e.g., if experiments with more 
simultaneous interventions are more expensive than 
experiments with fewer). 

For illustration, suppose we have only measured the wild 
type, and consider two experiments: E1 = {knockout G1}, 
and E2 = {knockout G1 & knockout G2}. The possible 
outcomes of the experiments, and the corresponding sizes of 
the set of all graphs consistent with each outcome of each 
experiment are: 
E1: G1 G2 G3 |Consistent Graphs| 
 – 0 0 64 
 – 0 1 32 
 – 1 0 32 
 – 1 1 36 
E2: G1 G2 G3 |Consistent Graphs| 
 – – 0 64 
 – – 1 48 
We find that HE1 = 41, and HE2 = 56; E1 is selected as the 
better experiment 

Throughout the above discussions, we have assumed that 
the variables not intervened upon in some novel experiment 
could possibly be significantly different (or not) from some 
other arbitrary experiment. This assumption does not always 
hold. For example, suppose we have three experiments E1, 
E2, and E3. If we then consider some fourth experiment E4

 

and a gene G not intervened upon in one of these four 
experiments, this assumption implies that there are no 
restrictions as to whether G is differentially expressed 
between E4 and any of E1 – E3. However, suppose that the 
expression level of G in E1, E2, and E3 is α1, α2, and α3, 
respectively. If the α values are sufficiently far apart, then 
α4 (the expression level in E4) must be determined to be 
significantly different from at least one of the other α’s (by 
whatever statistical test we are using). Hence, G must be 
differentially expressed between E4 and at least one of E1 – 
E3, violating the assumption of our procedure for evaluating 
the informativeness of further experiments. Furthermore, we 
cannot compute in advance when the distribution of 
experimental values will “force” further differences, 
because certain data table completions can only be ruled out 
given information not present in the data table: namely, the 
extent of the differential expression between two 
experiments. The condition in the above example that the α 
values be “sufficiently far apart” is necessary, but not 
determinable from the input to the procedure for choosing 
the next experiment.  

8 Statistical Tests for Real-World Data 
Ideker et al. [2001] performed a series of experiments to 
investigate the galactose metabolism cycle in yeast 
(Saccharomyces cerevisiae). They focused on nine genes 
(gal1, gal2, gal3, gal4, gal5, gal6, gal7, gal10, and gal80) that 
prior work had identified as integral to the metabolization of 
galactose. They performed ten experiments (wild-type and 
single knockouts of each of the target genes) in two 
different environmental conditions (the presence and 

absence of galactose). We consider here only the 
experiments performed in the presence of galactose. The 
expression levels of approximately 5000 genes were then 
measured in each experiment, which consisted of four 
replications of both wild-type (control) and knock-out strain 
measurements, as illustrated in Table 1. We have reanalyzed 
the data from several statistical perspectives. The results of 
the analyses illustrate the complexity considerations 
described above, and they also indicate the fragility of 
statistical decisions with such small samples of so many 
variables. 

Due to space constraints on the chips, the measured genes 
were divided into two subgroups, H1 and H2. There are thus 
two sets of chips: those that contain two spots for each gene 
in H1 (left side and right side), and those that contain two 
spots for each gene in H2 (left side and right side). The four 
measurements are distributed across four chips: two for the 
genes in H1, and two for the genes in H2. For a given gene 
in H1, for both spots on one of the two chips used for H1 
genes, the controls are dyed red and the experimental 
condition is dyed green; for both spots on the other chip 
used to measure genes in H1, the controls are dyed green, 
and the experimental condition is dyed red. The same 
arrangement is used for the chips used to measure genes in 
H2.  

For each gene and each experimental condition 
measurement, there is a control measurement of the same 
gene on the same spot on the same side of the same chip, 
using the opposite color – we will call the difference 
between two such measurements (or the difference of the 
logs of two such measurements) a matched difference. For 
each gene in H1, and each experiment, there are four 
matched differences; similarly for each gene in H2, and 
each experiment, there are four matched differences.  
 

 Side 
Chip Left Right 
1 H1: Green Exp. &  

Red Control 
Difference 1 

H1: Green Exp. &  
Red Control 
Difference 2 

2 H1: Red Exp. &  
Green Control 
Difference 3 

H1: Red Exp. &  
Green Control 
Difference 4 

3 H2: Green Exp. &  
Red Control 
Difference 5 

H2: Green Exp. &  
Red Control 
Difference 6 

4 H2: Red Exp. &  
Green Control 
Difference 7 

H2: Red Exp. &  
Green Control 
Difference 8 

Table 1: Chip Setup for Ideker, et al. 
 
This setup produces some complex relationships among the 
measurement errors. In one of the experiments (henceforth 
referred to as the null experiment), both the control and the 
experimental condition are wild type in the presence of 
galactose (abbreviated as wt+gal). In this case, the average 

 



of the log differences between the green and the red 
measurements on the same spot should just be due to 
measurement noise. However, the measurements are 
correlated as shown in Table 2. Note that difference 1 and 
difference 2 are from the same chip, and are highly 
positively correlated; also difference 3 and difference 4 are 
from the same chip, and are also highly positively 
correlated. In contrast, difference 1 and difference 3 come 
from different chips, where the colors for the experimental 
conditions and the control conditions were reversed, and are 
negatively correlated.  
 
 Diff. 1 Diff. 2 Diff. 3 Diff.4 
Diff. 1 1.000 0.551 -0.499 -0.265 
Diff. 2 0.551 1.000 -0.282 -0.553 
Diff. 3 -0.499 -0.282 1.000 0.466 
Diff. 4 -0.265 -0.553 0.466 1.000 

Table 2: Correlations Among the Matched Differences in 
the Null Experiment 

The FDR Procedure. Standard statistical tests control the 
probability of getting a false positive. If multiple tests are 
performed, unadjusted statistical tests produce incorrect 
results. Adjusted (e.g. by the Bonferroni adjustment which 
divides the p-value by the number of tests) procedures 
control the probability of getting some false positive out of 
any of the tests, but typically lead to tests of extremely low 
power. In contrast, the FDR (False Discovery Rate) 
procedure [Benjamini and Hochberg, 1995; Genovese and 
Wasserman, 2001] controls the percentage of positives that 
are false (in a distribution free manner) and produces tests 
that have much higher power. The FDR procedure takes as 
input a set of p-values, and a significance level. The 
significance level represents the maximum expected 
percentage of positives that are false positives. The FDR 
method chooses a threshold for the p-value that is between 
the Bonferroni threshold and the unadjusted threshold 
(alpha). All p-values less than this threshold are rejected. 
We have somewhat arbitrarily chosen a significance level of 
0.05. The major problem is to produce a null distribution, 
which can generate the input p-values to the FDR 
procedure. 

Application of FDR to the Data. For each of the nine 
genes involved in galactose metabolism, and for each pair of 
knock-out experiments, we performed a test to determine 
whether the hypothesis that the gene had the same 
expression level in the two experiments could be rejected. 
We here describe two different tests, both of which had the 
following features in common. 
1. For each pair of experiments A and B, and each gene X, 
we compared the matched differences of gene X in 
experiment A (i.e. the expression level of gene X in the 
experimental condition on a given chip minus the 
expression level of gene X in the control condition on the 
same chip) to the matched difference of gene X in 

experiment B. Comparing the matched differences removes 
chip to chip variations in measured gene expressions.  
2. Each test procedure that we ran produced 324 p-values (9 
genes × (9 experiments choose 2)). The only difference 
between the procedures was in the tests that were run to 
produce the p-values, including differences in choice of null 
distributions for each hypothesis that there is no difference 
in the expression of a gene in two conditions. 
3. The set of 324 p-values was given as input to the FDR 
procedure with a significance level of 0.05 to produce the 
final judgment about whether a particular gene was 
differentially expressed between two experiments.  

Test #1: Constructed gene-pooled null distribution. In the 
Ideker et al. [2001] null experiment, both the experimental 
condition and the control condition on the same chip were 
from the wild type. We used this null experiment to derive 
the null distribution by the following procedure: 
1. Put the matched differences for all the genes from each 

of the 4 replications of the null experiment into a single 
list.  

2. Take 1000 samples of 8 matched differences from the 
list. 

3. For each sample of 8, calculate the t-statistic for the 
first 4 of the 8 versus the second 4 of the 8. This gives a 
distribution of t-statistics for two samples of four 
differences from two distributions that are known to be 
the same.  

4. Set the p-value for the test of the hypothesis that for a 
given gene the 4 matched differences from experiment 
A have the same mean as the 4 matched genes from 
experiment B to be the percentage of the 1000 t-
statistics from the null that have absolute larger than the 
absolute value of the actual t-statistic.  

The disadvantage of using these measurements for the null 
distribution is that all of the genes are pooled together to 
obtain the null distribution, which is therefore not specific to 
a given gene. The p-values generated in this way were 
passed into the FDR procedure, which found a number of 
significant differences. Substituting the Wilcoxon p-value 
for the t-statistic in the procedure described above produces 
the same results in 90% of the cases. 

Test #2: Constructed gene-specific null distribution. 
There are a total of 40 measurements of the wt+gal control 
available for a null distribution for a given gene (ignoring 
the one experiment where wt+gal was both control and 
experiment), so it is possible to construct a null distribution 
for each gene using the following procedure for a given 
gene X and a fixed pair of experiments A and B.  
 
1. Take all pairs of differences between the 40 different 

measurements of gene X in the control condition. 
2. From the list of all pairs of differences, take a sample of 

8 differences 1000 times. 
3. For each sample of 8, calculate a t-statistic for the first 

4 of the 8 versus the second 4 of the 8, and store the t-
statistic. This provides a null distribution of 1000 t-
statistics. 

 



4. For gene X in experiment A and experiment B, 
calculate the actual t-statistic of the hypothesis that the 
4 matched differences from experiment A have the 
same mean as the 4 matched statistic from experiment 
B. 

gal1 gal2 gal3 gal4 gal5 gal6 
10 
2,6,7 
2,7,80 

7 
10 

7 
10 
1,2 
1,6 
1,80 
4,6 
2,5,6 
5,6,80 

1 
3 
5 
7 
10 

1,3 
1,4 
3,6 
2,4,6 
4,6,7 
4,6,10 

1,2 
2,7 
2,10 
5,7 
5,10 
1,3,5 
1,5,80 
2,3,5 
2,5,80 

5. Set the p-value equal to the percentage of the 1000 t-
statistics whose absolute value is greater than or equal 
to the absolute value of the actual t-statistic. 

The disadvantage of using the 40 measurements of the 
control for the null distribution is that a difference between 
two arbitrary controls varies different factors than the 
factors that are varied in each of the experiments. In 
particular, each of the elements in the null distribution 
comes from a difference between measurements on different 
chips, while the matched differences for experimental 
comparison come from within the same chip. These results 
agree with Test #1 89% of the time. The results of test 
procedures #1 and #2 are given in tables at:  

                                                              
gal7 gal10 gal80 
10 
1,3 
1,2 
1,6 
1,80 

1,6 
1,2,80 
1,2,5 
2,3,6 
2,7,80 
2,6,7 
4,6,7 
2,3,5,80 

4,5 
4,6 
4,10 
5,7 
6,7 
7,10 

 
Table 3: Output of the IG Procedure 

http://www.phil.cmu.edu/projects/genegroup/tables/ 
10 Previous Work danks2002_tables.pdf 

At least two algorithms for learning gene regulation 
networks from gene perturbation experiments [Onami et al. 
2001; Ideker et al., 2000] have been previously proposed, 
and some of the algorithms described above were inspired 
by the Ideker et al. paper. It is important to consider them 
because they suggest very optimistic conclusions about gene 
perturbation experiments as a search strategy. Both 
proposals assume the data are projected to binary values, an 
assumption unfaithful to the statistics. Specifically, one 
cannot just compare the wild-type expression of gene Y with 
its expression level in experiments in which X is knocked 
out or overexpressed. Suppose three experiments yield the 
following data table, where wti denotes the level of 
expression of the wild type for gene i, and ε, δ are positive 
quantities. 

9 Application of Algorithms to Yeast Data 
The Ideker et al. [2001] data seem to be close-to-ideal for 
the algorithms considered in this paper, since we have 
expression data for all ten experiments (so we can perform 
all pairwise comparisons). Since all networks (cyclic or 
otherwise) are initially possible, there are 272 ≈ 4 × 1021 
possible genetic regulatory networks for these nine genes.1 
Clearly, any search over this space must either be automated 
or relatively arbitrary guesswork. 

We applied the first two steps of the InitialGraphs 
algorithm to the data on expression differences between 
experiments derived from the Wilcoxon test using pooled 
genes (Test #1). The results are shown in table 3, where 
each row in each column gives the “gal numbers” for a 
minimal cover for the gene in that column. Gene X  Gene Y  

This table describes 3,110,400 different graphs (some of 
which are cyclic). Using t-tests in Test #1 results in a 
comparable number of graphs. Step (3) of the IG procedure 
cannot be feasibly carried out (chiefly because of the cost of 
checking for redundant graphs), but running step 3 of the IG 
procedure on a sample of 2000 DAGs from step 2 yields an 
estimate of 1,185,062,400 total graphs from all three steps 
of the procedure. 

wtX   wtY 
knocked out  wtY + ε 
overexpressed wtY - δ 

The differences ε and δ may not be statistically significant, 
but ε + δ may very well be statistically significant. Suitable 
variations in the expression of gene X may produce 
variations in the expression of gene Y, but comparisons with 
the wild-type alone may not reveal it. Regulatory networks 
seem not to be Boolean networks. Binarizing the data can 
thus obscure significant expression differences. Whatever 
threshold is chosen to divide the expression of a gene 
between high and low, there can be significant differences 
between values on the same side of the threshold, and 
insignificant differences between variables on opposite 
sides. 

Applied to the sparsest graph in InitialGraphs, the lower 
bound calculation described previously yields a lower bound 
on the order of 1018 graphs on 9 vertices consistent with the 
experimental data. These ten experiments have thus reduced 
the hypothesis space by (at most) three orders of magnitude. 

The Difference-Based Regulation Finding (DBRF) 
method of Onami et al. [2001] is as follows: Start with 
measurements of n genes in k experiments, each of which 
has one gene (or none – i.e., wild type) enhanced or 
suppressed. Then form a directed graph with one node per 

                                                 
1 Since there can (independently) be an edge or not between any of 
the n*(n–1) ordered pairs of genes. 

 



gene, and a directed edge from node X to node Y if and only 
if the expression level of gene Y is different from wild-type 
when gene X is knocked out or overexpressed. Mark each 
directed edge with a ‘+’ if overexpression produces 
overexpression or if suppression produces suppression, and 
‘–’ otherwise.  

D := 1 if and only if A = B = C. 
That is, the true regulatory graph is: 
 
 BA C

D

 

 This graph will include edges corresponding to both direct 
and indirect regulation. To remove the edges due to indirect 
regulation, consider the set of all (presumably acyclic) paths 
from X to Y for all X, Y. Define the parity of each path be the 
ordinary sign of the product of signs over all of the directed 
edges in the path. For each parity, eliminate all of the paths 
from X to Y except the longest one(s). 

                        Figure 1 
 
And the data table E is: 
 
 A B C D 
wt 1 1 1 1 
E1 -  0 1 0 Because the DBRF algorithm keeps only the longest 

paths, it can only find the correct structure if all 
upregulatory and downregulatory pathways from gene X to 
gene Y are of the same length (i.e., involve the same number 
of intermediate genes). Furthermore, the restriction to single 
knockouts amounts to an assumption that no gene’s 
regulation is masked by the influence of another gene. For 
example, there cannot be disjunctive dependencies in which 
gene Z is expressed if either gene X or Y is. The authors 
suggest that their algorithm can be extended to multiple 
knockouts, but it is unclear how this can be done without 
introducing further errors. Thus, the DBRF method is 
provably incorrect: there are (biologically plausible) 
regulatory networks it cannot learn. 

E2 1 - 1 0 
E3 1 1 - 0 
E4 1 1 1 - 
 
Except when exogenously manipulated, A never changes, so 
its minimal set is empty. The same is true of C. Every time 
B changes non-exogenously, A changes as well and there is 
a pair of experiments for which only B and A change. 
Therefore, the minimal set for B is {A}. When D changes, 
then either B changes or else C changes, and there is a pair 
of experiments for which only B, D change and another pair 
for which only C, D change. Hence, the minimal covering 
set for D is {B, C}. Since each gene has exactly one 
minimal set of parents, there is a unique graph, which is: 

Ideker, Thorsson, and Karp [2000] (henceforth, ITK) 
assume the true regulatory structure determines an acyclic 
Boolean network, in which the values for each node are 
“high” and “low” expression, coded as 1 and 0 respectively, 
and the expression level of each node of positive indegree is 
a Boolean function of its parents. Arrange the binarized 
values in an (experiment × [gene & exogenous factor]) 
matrix E, replacing the 0/1 with a – or + for any matrix 
entry (j, k) in which gene k has been exogenously 
suppressed or enhanced in experiment j.  

 
 BA C

D

 

 
                                 Figure 2 
 
And the truth tables determining B and D, so far as they can 
be estimated from the data, are: 
 

 
A 

B  B C D 

1 1  1 1 1 
0 0  0 1 0 
   1 0 0 
   0 0 * 

For each gene Y, consider all pairs of rows in E in which 
there is no manipulation of Y in either row, and Y’s 
expression differs between the two rows. For each pair (A, 
B) of rows, let CAB be the set of genes whose expression 
level also differs between rows A and B. Define Cmin to be 
the smallest covering set of all of the CAB: (i) for each CAB, 
at least one element of Cmin is in CAB; and (ii) if we remove 
any element from Cmin, property (i) no longer holds. Note 
that there may be multiple Cmin. The set of possible network 
structures then contains all possible graphs formed by 
choosing one Cmin for each gene Y and including edges from 
the variables in Cmin to Y. The Boolean function for a gene Y 
in a particular network is then determined by filling in the 
truth table for Y using the values in E. Values not 
determined by E are encoded with an ‘*’. 

 
ITK also provide an algorithm for choosing the best next 

experiment, given some set of N possible regulatory 
networks. For each possible experiment p, we first 
determine the outcome of the experiment predicted by each 
given network. If a variable value is not predicted by a 
network (because of an ‘*’ in a truth table), then we 
randomly choose a value for that variable. This procedure 
will generate S (≤ N) distinct predictions s, and define Ns to 
be the number of networks that make prediction s. We then 
choose the experiment p that maximizes the entropy score: 

To illustrate, suppose the regulatory network 
dependencies are as follows, with the dependent variables 
on the left: 

∑
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The experiment chooser is often unhelpful (or even 
misleading). Applied to data table E, if the value of a 
random choice of the single ‘*’ is 0, we obtain D := B & C. 
If the value of a random choice of ‘*’ is 1, we obtain D := 1 
if and only if B = C. In either case, every possible 
experiment determines a unique resulting state, and so the 
entropy scores for all experiments are the same. In general, 
the experiment chooser offers no guidance whenever only 
one network is provided. Even when multiple graphs are 
provided, they may not include the true graph, and so the 
sequence of experiments determined by the entropy formula 
above may constitute a very sub-optimal route to the truth. 

Note that neither of these two graphs is minimally 
consistent with the data.  

11 Conclusion 
The vague but important difference between search methods 
and confirmatory methods is this: search methods start with 
a very large set of possible hypotheses, and attempt to locate 
a much smaller set of hypotheses containing the truth (or 
whatever is an acceptable approximation to the truth), while 
confirmatory methods start with a very specific hypothesis 
and attempt to establish or refute it. The vast hypothesis 
space of possible regulatory networks requires trustworthy, 
feasible search methods. Covariational methods are feasible, 
but not trustworthy with present measurement technologies. 
The results in this paper argue that experimental differences 
from gene perturbations do not constitute a feasible search 
method.  

ITK restrict their procedure to acyclic graphs, but of 
course feedback systems are ubiquitous in gene regulation. 
There are special problems for a minimal covering set 
procedure (such as ITK) if cyclic networks are allowed. For 
example, suppose the true structure is 

 
 A  

B  C  
 

At the same time, search for genetic regulatory networks 
often (in practice) brings together a wide range of 
information and models. These results demonstrate the 
ineffectiveness of gene perturbation experiments by 
themselves, but they may prove useful in combination with 
other sorts of data. For example, immuopreciptiation/gene 
location methods [Lee et al., 2002] now offer the ability to 
identify genes regulated directly by known regulators, and 
the next major improvement in the combinatorics of gene 
regulation may well adapt these techniques to the 
simultaneous measurement of direct effects of all regulators. 
Gene perturbation experimentation can be expected to 
remain an important strategy for confirming the results of 
these and other search strategies. 

Figure 3 
 
where C := A & B and A := B, and the (binarized) data E’ 
are: 
 A B C 
wt 1 1 1 
E1 - 1 0 
E2 0 - 0 
 
The minimal cover for B is the empty set, the minimal cover 
for C is {A}, but A has two minimal covers, namely {B} and 
{C}. Thus the minimal cover procedure alone produces two 
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              Figure 4                                    Figure 5 
 
But inferences from the data table ought to eliminate the 
second of these graphs, since manipulation of B alters both 
A and C, which is not predicted in Figure 5. Thus, if cyclic 
graphs are allowed, the minimal cover set procedure needs 
to be supplemented with the principle that if an intervention 
(as in our clause (iii) for the IG algorithm) on a set S of 
variables changes a variable Y, then there must be a directed 
path from some member of S to Y. With this 
supplementation, the data table is consistent with Figure 4, 
as well as the graphs: 
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