Case Studies of Causal Discovery from IT Monitoring Time Series

Ali Aït-Bachir, Charles K. Assaad, Christophe de Bignicourt, Emilie Devijver, **Simon Ferreira**, Eric Gaussier, Hosein Mohanna and Lei Zan

Causal Discovery Algorithms

3 Datasets

< 67 ►

2/28

Outline

Causal Graphs and Abstractions

2 Causal Discovery Algorithms

3 Datasets

Temporal causal graphs and abstractions

Case Studies of Causal Discovery Time Series

C. K. Assaad et al. Survey and evaluation of causal discovery methods for time series. JAIR, 2022.

Temporal causal graphs and abstractions

Additional assumption: consistency throughout time γ_{max} : maximal lag between causes and their effets

C. K. Assaad et al. Survey and evaluation of causal discovery methods for time series. JAIR, 2022.

Temporal causal graphs and abstractions

Additional assumption: consistency throughout time γ_{max} : maximal lag between causes and their effets

C. K. Assaad et al. Survey and evaluation of causal discovery methods for time series. JAIR, 2022.

Temporal causal graphs and abstractions

Additional assumption: consistency throughout time γ_{max} : maximal lag between causes and their effets

C. K. Assaad et al. Survey and evaluation of causal discovery methods for time series. JAIR, 2022.

Temporal causal graphs and abstractions

Additional assumption: consistency throughout time γ_{max} : maximal lag between causes and their effets

C. K. Assaad et al. Survey and evaluation of causal discovery methods for time series. JAIR, 2022.

Case Studies of Causal Discovery Time Series

Additional assumption on causal relations

• Stationary and linear dynamic structural causal model

 $\forall Y_t \in \mathcal{V}_w$

$$Y_{t} = \sum_{X_{t-\gamma_{XY}} \in \textit{Parents}(Y_{t}, \mathcal{G}_{W})} \alpha_{XY\gamma_{XY}} X_{t-\gamma_{XY}} + \xi_{t}^{y},$$

where $\alpha_{XY\gamma_{xy}} \neq 0$ is the direct effect of $X_{t-\gamma_{xy}}$ on Y_t

Rajen D. Shah, Jonas Peters. The hardness of conditional independence testing and the generalised covariance measure.

Outline

Causal Graphs and Abstractions

Causal Discovery Algorithms

3 Datasets

Causal discovery from time series

C. K. Assaad et al. Discovery of extended summary graphs in time series. UAI. PMLR. 2022.

R. Pamfil et al. Dynotears: Structure learning from time-series data. AISTATS, 2020.

A. Hyvärinen et al. Causal modelling combining instantaneous and lagged effects: An identifiable model based on non-gaussianity. ICML, 2010.

C. K. Assaad et al. Hybrids of constraint-based and noise-based algorithms for causal discovery from time series. Arxiv, 2023

A. Arnold et al. Temporal causal modeling with graphical granger method. KDD, 2007.

J. Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. UAI, 2020.

Causal discovery from time series

C. K. Assaad et al. Discovery of extended summary graphs in time series. UAI. PMLR. 2022.

R. Pamfil et al. Dynotears: Structure learning from time-series data. AISTATS, 2020.

A. Hyvärinen et al. Causal modelling combining instantaneous and lagged effects: An identifiable model based on non-gaussianity. ICML, 2010.

C. K. Assaad et al. Hybrids of constraint-based and noise-based algorithms for causal discovery from time series. Arxiv, 2023

A. Arnold et al. Temporal causal modeling with graphical granger method. KDD, 2007.

J. Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. UAI, 2020.

Causal discovery from time series

C. K. Assaad et al. Discovery of extended summary graphs in time series. UAI. PMLR. 2022.

R. Pamfil et al. Dynotears: Structure learning from time-series data. AISTATS, 2020.

A. Hyvärinen et al. Causal modelling combining instantaneous and lagged effects: An identifiable model based on non-gaussianity. ICML, 2010.

C. K. Assaad et al. Hybrids of constraint-based and noise-based algorithms for causal discovery from time series. Arxiv, 2023

A. Arnold et al. Temporal causal modeling with graphical granger method. KDD, 2007.

J. Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. UAI, 2020.

Summary of the main characteristics

Family	Algorithm	Causal graph	Instantaneous relations	Faithfulness	Non-Gaussianity	Equal noise variances
Granger	GCMVL	SCG	X	X	X	X
Constraint-based	PCMCI ⁺	WCG	1	1	X	X
	PCGCE	ECG	1	\checkmark	X	X
Score-based	DYNOTEARS	WCG	1	X	X	1
Semi-parametric-based	VarLiNGAM	WCG	1	X	\checkmark	X
	TiMINo	SCG*	1	X	1	X
Hybrid-based	CBNB-w	WCG	1	X	\checkmark	X
	CBNB-e	ECG	1	X	\checkmark	X
	NBCB-w	WCG	1	X	1	X
	NBCB-e	ECG	1	X	1	X

Causal Discovery Algorithms

Pre-Processing

Alignment issues and missing values:

• Strategy 1: Re-sample according to the lowest sampling rate by taking the closest value.

< 67 >

Pre-Processing

Alignment issues and missing values:

- Strategy 1: Re-sample according to the lowest sampling rate by taking the closest value.
- Strategy 2: Re-sample according to the lowest sampling rate by iteratively interpolating each value from the cumulative values.

Pre-Processing

Alignment issues and missing values:

- Strategy 1: Re-sample according to the lowest sampling rate by taking the closest value.
- Strategy 2: Re-sample according to the lowest sampling rate by iteratively interpolating each value from the cumulative values.

The use case of MoM activity

Message ingestion activity based on Publish/Subscribe architecture

Two datasets of 288 and 364 timestamps with a sampling rate of 1 seconde.

The use case of Ingestion activity

Message ingestion activity based on Storm architecture

A dataset of 991 timestamps with a sampling rate of 1 minute.

The use case of Web activity

A dataset of 3000 timestamps with a sampling rate of 1 minute. The data was misaligned so the two pre-processing strategies were used.

Simon Ferreira

< 67 >

The use case of Antivirus activity

A dataset of 1321 timestamps with a sampling rate of 1 and 5 minutes. The data was misaligned so the two pre-processing strategies were used.

IT monitoring case studies: results

Estimation

- Partial correlation
- ...

Hyper-parameters

- $\gamma_{max} = 15$ for MoM and Ingestion, $\gamma_{max} = 3$ for other datasets
- Significance level = 0.05

• ...

Evaluation measure

• F1-score on orientations in the SCG.

• ...

IT monitoring case studies: results

Estimation

- Partial correlation
- ...

Results

Hyper-parameters

- $\gamma_{max} = 15$ for MoM and Ingestion, $\gamma_{max} = 3$ for other datasets
- Significance level = 0.05

Evaluation measure

• F1-score on orientations in the SCG.

	MoM 1	MoM 2	Ingestion	Web 1	Web 2	Antivirus 1	Antivirus 2
GCMVL	0.0	0.0	0.2	0.2	0.0	0.08	0.0
Dynotears	0.26	0.2	0.14	0.23	0.3	0.18	0.19
PCMCI ⁺	0.4	0.0	0.0	0.23	0.3	0.04	0.11
PCGCE	0.0	0.12	0.12	0.22	0.15	0.3	0.45
VLiNGAM	0.0	0.0	0.19	0.29	0.18	0.15	0.22
TiMINo	0.0	0.17	0.18	0.0	0.0	0.0	0.0
NBCB-w	0.4	0.0	0.13	0.23	0.3	0.14	0.24
NBCB-e	0.13	0.29	0.27	0.19	0.42	0.31	0.45
CBNB-w	0.4	0.0	0.15	0.23	0.3	0.17	0.16
CBNB-e	0	0.24	0.13	0.22	0.29	0.31	0.38

• ...

IT monitoring case studies: results

Estimation

- Partial correlation
- ...

Results

Hyper-parameters

- $\gamma_{max} = 15$ for MoM and Ingestion, $\gamma_{max} = 3$ for other datasets
- Significance level = 0.05

Evaluation measure

• F1-score on orientations in the SCG.

	MoM 1	MoM 2	Ingestion	Web 1	Web 2	Antivirus 1	Antivirus 2
GCMVL	0.0	0.0	0.2	0.2	0.0	0.08	0.0
Dynotears	0.26	0.2	0.14	0.23	0.3	0.18	0.19
PCMCI ⁺	0.4	0.0	0.0	0.23	0.3	0.04	0.11
PCGCE	0.0	0.12	0.12	0.22	0.15	0.3	0.45
VLiNGAM	0.0	0.0	0.19	0.29	0.18	0.15	0.22
TiMINo	0.0	0.17	0.18	0.0	0.0	0.0	0.0
NBCB-w	0.4	0.0	0.13	0.23	0.3	0.14	0.24
NBCB-e	0.13	0.29	0.27	0.19	0.42	0.31	0.45
CBNB-w	0.4	0.0	0.15	0.23	0.3	0.17	0.16
CBNB-e	0	0.24	0.13	0.22	0.29	0.31	0.38

Not satisfactory for real applications!

2 Causal Discovery Algorithms

3 Datasets

< 67 ►

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

• Faithfulness,

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

• Faithfulness,

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

• Faithfulness,

NBCB algorithms work best.

Consistency throughout time.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Conclusion

Causal Discovery relies on strong assumptions which are not verified in real IT monitoring data. Therefore, there is a need for robustness against violation of some assumptions.

- Faithfulness,
- Consistency throughout time.

NBCB algorithms work best.

Algorithms looking for the ECG work best.

\implies NBCB-e performs better.

Prespectives

Many things to improve for causal discovery in time series:

- non-stationarity
- regime-change
- measurement errors
- instantaneous cycles

Prespectives

Many things to improve for causal discovery in time series:

- non-stationarity
- regime-change
- measurement errors
- instantaneous cycles
- Robustness to violation of hypothesis

Prespectives

Many things to improve for causal discovery in time series:

- non-stationarity
- regime-change
- measurement errors
- instantaneous cycles
- Robustness to violation of hypothesis

Thank you for your attention, feel free to ask questions.

- C. K. Assaad et al. Survey and evaluation of causal discovery methods for time series. 2022.
- Rajen D. Shah, Jonas Peters. The hardness of conditional independence testing and the generalised covariance measure. Ann. Statist. 2020.
- A. Arnold, Y. Liu, and N. Abe. Tmporal causal modeling with graphical granger method. KDD, 2007.
- Kailash Budhathoki, Dominik Janzing, Patrick Bloebaum, and Hoiyi Ng. Why did the distribution change? AISTATs, 2021.
- A. Hyvärinen, S. Shimizu, and P. Hoyer. Causal modelling combining instantaneous and lagged effects: An identifiable model based on non-gaussianity. ICML, 2010.
- R. Pamfil et al. Dynotears: Structure learning from time-series data. AISTATS, 2020.
- J. Pearl. Causality : Models, Reasoning and Inference. Cambridge University Press, 2009.
- J. Runge. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. UAI, 2020.
- P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. Mit Press, 2000.
- C. K. Assaad et al. Hybrids of constraint-based and noise-based algorithms for causal discovery from time series. Arxiv, 2023.

Collaborators

Ali Aït-Bachir

Charles K. Assaad

Christophe de Bignicourt

Emilie Devijver

Eric Gaussier

Hosein Mohanna

Lei Zan

Thank you !

Simon Ferreira

Case Studies of Causal Discovery Time Series

04/08/23

23

21/28

Hybrid-based Methods

CBNB:

CBNB:

 Step 1: Use the first part of a constraint-based algorithm (PCMCI+ or PCGCE) to discover the skeleton.

constraint-based

CBNB:

- Step 1: Use the first part of a constraint-based algorithm (PCMCI+ or PCGCE) to discover the skeleton.
- Step 2: Use a semi-parametric-based algorithm (VarLiNGAM) on relevant vertices to orient the edges.

Hybrid-based Methods

NBCB:

Hybrid-based Methods

NBCB:

• Step 1: Use the first part of a semi-parametric-based algorithm (VarLiNGAM) an order in the vertices.

Hybrid-based Methods

NBCB:

- Step 1: Use the first part of a semi-parametric-based algorithm (VarLiNGAM) an order in the vertices.
- Step 2: Use a constraint-based algorithm (PCMCI+ or PCGCE) with the knowledge of parents to eliminate some remaining edges.

Hybrid-based Methods

CBNB:

- Step 1: Use the first part of a constraint-based algorithm (PCMCI+ or PCGCE) to discover the skeleton.
- Step 2: Use a semi-parametric-based algorithm (VarLiNGAM) on relevant vertices to orient the edges.

NBCB:

- Step 1: Use the first part of a semi-parametric-based algorithm (VarLiNGAM) an order in the vertices.
- Step 2: Use a constraint-based algorithm (PCMCI+ or PCGCE) with the knowledge of parents to eliminate some remaining edges.

Advantages:

In theory both need the same assumptions. However, CBNB algorithms are robust regarding the semi-parametric assumption and NBCB algorithms are robust regarding the faithfulness assumption.

Average F1-Score

Median F1-Score

< 67 ►

Maximal F1-Score

< 67 ►

Minimal F1-Score

