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Assumptions

(conditional) probabilistic dependence
implies (conditional) d-connection

(conditional) probabilistic independence
implies (conditional) d-separation

there are no unmeasured common causes
of two or more measured variables.

the causal structure contains no cycles

the causal relation is described by a
particular functional form.

y = flpa(y)) + €,




Where | ended In 2013:

https://www.youtube.com/watch?v=PpY7Slo57XQ&t=2098s
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Exploiting the iIndependence structure
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Exploiting the iIndependence structure
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How do indep-structure-based algos differ?
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Discovery guarantees

Given the true (conditional) independence and dependence
relations [the algorithm] identifies all there is to discover about the true
underlying graph, namely, its Markov equivalence class.



Causal Discovery Over Three Variables
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Discovery guarantees

Given the true (conditional) independence and dependence
relations [the algorithm] identifies all there is to discover about the true
underlying graph, namely, its Markov equivalence class.

For the causally sufficient, acyclic case,
simulations suggest that on average there are
about 4-5 DAGs per Markov equivalence class,

l.e. that the underdetermination is independent of
the number of variables (Gillispie & Perlman,
2002; He et al., 2015; Radhakrishnan et al, 2018).
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Discovery guarantees

Given the true (conditional) independence and dependence
relations [the algorithm] identifies all there is to discover about the true
underlying graph, namely, its Markov equivalence class.

point-wise consistency, i.e. as sample size tends to infinity,
the Markov equivalence class of thj true graph can be identified

@ Very weak convergence
\ fy) guarantee

close to Robins et al (2003): Tough luck, this is

unfaithful graph as g_ood as it gets (for any method)
given the set of assumptions.
X1Y

true graph




Using faithfulness
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Sparse Permutation Search

Given the true (conditional)
independence and dependence relations (greedy)
sparse permutation search identifies all there is to
discover about the true underlying graph, namely, its
Markov equivalence class.
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* Point-wise consistency with an assumption strictly weaker than
faithfulness (“unique frugality” / “sparsest Markov representation’)

* Uniform consistency with a slight strengthening of faithfulness

Adjacency Arrowhead

20 40 060 &0 100 20 40 60 80 100
Measured Variables Measured Variables

GRaSP; & GRaSP; —©— GRaSPy —&—
fGES —— PC

Lam et al., 2022
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Exploiting the parametric form
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Linear Non-Gaussian Models (LinGaM)

® | inear causal relations:
Tj = E DijTj + €
2

® Assumptions:
= causal Markov
= causal sufficiency
= acyclicity



Linear Non-Gaussian Models (LinGaM)

Regression of Y given X: Y =b0X + ¢ Regression of X given Y: X =byY + ¢y

Case 1:

® | inear causal relations: Gavesien
L = E 6@] T T €
ajj EPCL(ZEZ Case 2: YA "

Uniform

® Assumptions:
= causal Markov
= causal sufficiency

Case 3: A "
- acyclicity Super-Gauss.i.e;?.::::' ..X
® |f ¢, ~ non-Gaussian and independent,
then the true graph IS uniquely (correct) forward model (false) backward model
identifiable from the joint distribution. x 1 € y M E

Shimizu et al, 2006
(figure from Glymour et al. 2019)



Linear Non-Gaussian Models (LinGaM)

® | inear causal relations:

Xr; = Z Bijfj + € Confounding
r;ic€Pa(x;)
® Assumptions:
= causal Markov @)’-}@
meausalsuieleney—— ® The residual of a linear regression of
- acyclicity the effect on the cause will be

dependent with the cause |IFF there is
confounding of the cause and effect.

x M€,

Tashiro et al, 2014



Independent Noise
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» Confounded forwards model y X% €,
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Is there an underlying
motivation or justification

why an independence
between cause and noise
on the effect is desirable?
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Independent Noise

Linear Non-Gaussian (Lingam):
o forwards model y=ax+e, xleg,

» backwards model. x=by+€, y K€,

Confounding in Lingam
« Unconfounded forwards model x 1L €,

y AL €

 Confounded forwards model

GIN-condition in Lingam with latents (Xie et al 2020):

» Two variable sets Y, Z satisfy GIN iff £y, AL Z,

where Ey, 7 is a “cleaned up” version of Y.

= Satisfaction of GIN permits remarkable
discovery of latent variable structure

Is there an underlying
motivation or justification
why an independence
between cause and noise
on the effect is desirable?

But that violates the
functional assumption
of the Lingam model.

Suggestion: Searching for the independence
between cause and noise is, within the Lingam
model, an application of the Principle of
Independent Mechanisms.

see Besserve et al, 2018, Sec 4.3



Principle of Independent Mechanisms

* The causal generative process of a system'’s @ @
variables is composed of autonomous modules
that do not inform or influence each other. P(X) is “uninformative” of P(Y|X)

(Peters et al. 2017, Janzing et al. 2008)




Principle of Independent Mechanisms

* The causal generative process of a system'’s @ @
variables is composed of autonomous modules
that do not inform or influence each other. P(X) is “uninformative” of P(Y|X)

(Peters et al. 2017, Janzing et al. 2008)

ann
" T,
. .
o -
* .
D .
[ ) 4 .
. .
* : ‘EE:' -
= .
- L]
. .
. 0
o.' o
G *
“apant®

()

* In the Lingam model, assessing whether P(X) is
CJD informative about P(Y|X) amounts to assessing

whether P(X) is informative about P(¢)




Principle of Independent Mechanisms

* The causal generative process of a system'’s @ @
variables is composed of autonomous modules
that do not inform or influence each other. P(X) is “uninformative” of P(Y|X)

(Peters et al. 2017, Janzing et al. 2008)

How to assess PIM for more general model classes:

* Group Invariance for Causal Discovery (Besserve et al 2018)

= Use generic group transformations of X to assess whether
the observed relation between P(X) and P(Y|X) is expected

* |ndependent Mechanism Analysis (Gresele et al 2022)
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Approaches using Independent Mechanisms

Extraordinary results on what can
and cannot be identified, including about latent causal

structure.

The connection to
approaches based on the principle of independent
mechanisms raises the hope that maybe the strong
parametric assumptions can be made much more
generic.

Using rather strong

assumptions about the

functional form.

Likely to be
computationally very
Intensive and it remains
unclear what sorts of
statistical guarantees

may be forthcoming.

Mechanisms that have been subject to evolutionary
pressures, are unlikely to exhibit the independence
required by PIM; presumably a similar argument
applies for social settings.

If the search for
iIndependent noise in the
Lingam setting is an
application of PIM, then
these concerns may carry
over to Lingam-based
methods.
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Zheng et al, 2018
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NOTEARS

Zheng et al, 2018

i<tont (wgighted) differentiable function that
consistern adjacency is 0 iff W represents a DAG
score matrix
. . continuous
NOTEARS: min S(W) subject to h(W) =0 optimization
we RdXd A

In the linear case: h(W) = tr(e""") — d

matrix exponential of
Why does this function have a gradient towards being a DAG!? Hadamard product

e Matrix exponential e? is a geometric series of ever higher B

e In a linear system X = BX + €, BX represents the paths of length k
* The trace sums the weighted paths from a node to itself

* The Hadamard product ensures that the sum is over positive quantities



NOTEARS

Zheng et al, 2018

i<tont (wgighted) differentiable function that
consisten adjacency is 0 iff W represents a DAG
score matrix
. . continuous
NOTEARS: min S(W) subject to h(W) =0 optimization
we RdXd A

In the linear case: h(W) = tr(e""") — d

matrix exponential of
Hadamard product

Derivative is simple = OPTIMIZE!

Non-convex, so use
your tricks!
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ML joins the discovery game: NOTEARS

non-linear
additive SAT

sparse
PC/ GES permutation NOTEARS| FC| |CCD|LINGaM IvLiNGaM
search
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causal
sufficiency v v v X The optimization cc_)ns’Fraint requires v
a model parameterization, and there
o are several for linear models. But of
acyclicity v v v v course other methods also need a v
score or type of independence test.
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zltbssum fion X X 4 X X non- non- non- additive ~ special case
P Gaussian  Giaussian  Gaussian noise f;;gnnﬁisvs tobe
NOTEARS returns a DAG, but cvolon 1S
: the results are still limited to : “* there are
Markov equivalence DAG . of unique
output ’ RAC_D Markov equivalence. uery based| approaches that
P class but... q ohs DAG [1"¢"7 weaken
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NOTEARS and its variants

Change the score.

NOTEARS: min S(W) subject to h(W) =0
WeR®>

Change the constraint _ WoW
that describes acyclicity In the linear case: (W) = tr(e )—d

Derivative is simple = OPTIMIZE!

Change how the
optimization is done.



NOTEARS and its variants

Method Year Data Acycl. Interv. Output
Change the score. CMS [152] 2014 low : no Bi
NO TEARS [267] 2018  low yes no DAG
CGNN [75] 2018  low yes no DAG
Graphite [83] 2019  low/medium no no UG
SAM [122] 2019  low/medium yes no DAG
DAG-GNN [262] 2019  low yes no DAG
GAE [177] 2019 low yes no DAG
NO BEARS [142] 2019  low/medium/high vyes no DAG
N OT E A RS . ° S . h W —_— O Meta-Transfer [19] 2019 Bi yes yes Bi
: IMin ( [/[/ ) SU bl ect to ( ) — DEAR [214] 2020 high  yes no .
dxd CAN [167] 2020  low/medium/high vyes no DAG
WE R NO FEARS [251] 2020 low yes no DAG
GOLEM [176] 2020 low yes no DAG
ABIC [20] 2020 low yes no ADMG/PAG
DYNOTEARS [178] 2020 low yes no SVAR
! SDI [124] 2020 low es es DAG
Change the constraint i WoW AEQ [64] 2020  Bi ?’ 3,10 direction
that describes acyclicity In the linear case: h(W) - tr(e ) —d léLRﬁl[?z[SZ]ﬁ] gggg igz zz: ;lzs gﬁg
ACD [151] 2020 low Granger no time-series DAG
V-CDN [145] 2020  high Granger no time-series DAG
CASTLE (reg.) [138] 2020 low/medium yes no DAG
GranDAG [139] 2020 low yes no DAG
MaskedNN [175] 2020 low yes no DAG
CausalVAE [257] 2020  high yes yes DAG
CAREFL [126] 2020 low yes no DAG / Bi
Varando [244] 2020 low yes no DAG
. . o o ’ NO TEARS+ [268] 2020 low yes no DAG
Derivative is simple = OPTIMIZE! (CL (250 2020 low yi om0 DAG
LEAST [271] 2020 low/medium/high vyes no DAG

Continuous optimization-based approaches to

causal discovery (Vowels et al. 2021)
Change how the

optimization is done.
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I nfl atl O n (for discrete finite probability spaces) Wolfe, 2017; Navascués & Wolfe 2020

.....

P(X.Y.Z)

If the observed variables have finite
PX,Y,7Z) = E
(X, 1, 2) L= PUDPU)PU)PX| Uy, UDPY U, UDPZI U, U) cardinality, then the distributions P
1»~2>%3

compatible with G form a semi-
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P(X,Y,Z) = 2 P(U)P(U,)P(U)P(X| Uy, Uy)P(Y| U, U)P(Z| Uy, U,) If the observed variables have finite

cardinality, then the distributions P
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compatible with G form a semi-
It follows that the set of distributions

algebraic set.

_ o = Inflation is a technique that iteratively
can be characterized by a finite set of

polynomial inequalities.

identifies all these constraints.
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* Include inequality constraints in causal discovery
* Technique for testing latent variable models
* Potential to advance causal discovery in the categorical setting.

* Important connections to questions in quantum mechanics.



Inflation

* Include inequality constraints in causal discovery
* Technique for testing latent variable models
* Potential to advance causal discovery in the categorical setting.

* Important connections to questions in quantum mechanics.

* | did not say it was efficient.

* Interesting questions about how to test for the inequalities in practice.



Comments

Causal discovery needs:

* contributions to address foundational challenges,
such as reliable and fast non-parametric
conditional independence tests

* Well-maintained code bases that are easily A huge shout-out to the
) pcalg group at ETH and
manlpulable the Tetrad group at CMU.

* More users who actually apply the methods to a
real scientific problem and publish the results in
that scientific discipline
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Other resources:
* Simons Institute Causality program bootcamp: https://simons.berkeley.edu/workshops/causality-boot-camp/videos#simons-tabs (note especially the causal discovery
tutorials by Daniel Malinsky)
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