Causal Discovery for fMRI data: Challenges, Solutions, and a Case Study
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Abstract

Designing studies that apply causal discovery re-
quires navigating many researcher degrees of free-
dom. This complexity is exacerbated when the
study involves fMRI data. In this paper we (i)
describe nine challenges that occur when apply-
ing causal discovery to fMRI data, (ii) discuss the
space of decisions that need to be made, (iii) review
how a recent case study made those decisions, (iv)
and identify existing gaps that could potentially
be solved by the development of new methods.
Overall, causal discovery is a promising approach
for analyzing fMRI data, and multiple successful
applications have indicated that it is superior to tra-
ditional fMRI functional connectivity methods, but
current causal discovery methods for fMRI leave
room for improvement.

1 INTRODUCTION: FMRI BRAIN DATA
AND EFFECTIVE CONNECTIVITY

Functional Magnetic Resonance Imaging (fMRI) offers
the highest-currently-available spatial resolution for three-
dimensional images of real-time functional activity across
the entire human brain [Glasser et al., [2016]. For this rea-
son, enormous resources have been spent to collect fMRI
data from hundreds of thousands of individuals for research
purposes [Volkow et al., 2018} [Elam et al., 2021} |/Alfaro{
Almagro et al.,[2018]]. This data is collected and analyzed
with the purpose of answering a large variety of scientific
questions, such as understanding drivers of adolescent sub-
stance use initiation [[Volkow et al.,[2018]].

In this paper we focus on questions related to how activity
in different areas of the brain may causally influence ac-
tivity in other areas of the brain [Friston, 2009]. This can
serve a variety of purposes, such as guiding medical inter-

ventions like non-invasive brain stimulation (NIBS) [Horn
and Fox| 2020]. For example, deep-brain stimulation targets
the subthalamic nucleus (STN), however current NIBS tech-
nologies cannot directly manipulate activity in STN [Horn
et al., 2017]. The area could potentially be indirectly ma-
nipulated through other brain areas, however this requires
learning, either for the population or for each individual,
which other brain areas have the greatest causal influence
on STN. Standard fMRI analysis unfortunately eschews
estimating causal effects.

Current standard practice in fMRI analysis is to describe the
connections between brain areas with empirical correlations
[Biswal et al., [1995]. Partial correlation methods such as
glasso [Friedman et al.| [2008]] are also used but are less
common [Marrelec et al., 2006]]. The connections learned
by such methods are called “functional connections”. This
term is used to distinguish them from “effective connections”
where one area is described as causally influencing another
[Friston, 2009, Reid et al.| 2019, [Pearl, 2000]. Despite the
overtly non-causal nature of functional connectivity, it is
still used by the larger fMRI research community to iden-
tify brain areas that should be targeted with interventions,
and more generally to describe how the brain functions.
A small but growing community of fMRI researchers are
adopting causal discovery analysis (CDA) instead [Spirtes
et al.,|2000, (Camchong et al.}|2023| [Sanchez-Romero and
Cole, 2021, [Rawls et al., 2022]]. These papers have demon-
strated that CDA is capable of recovering information from
fMRI data above and beyond what is possible with tradi-
tional fMRI connectivity methods, however the details of
their approaches vary substantially.

In any project involving CDA, the researcher faces many
choices (degrees of freedom). Using CDA requires navigat-
ing a wide range of algorithms, properties, assumptions, and
settings. Previous fMRI CDA studies have often differed in
their specifics, but share a number of common strategies. We
focus this paper’s discussion on the decisions made during
one project: the development and application of the Greedy
Adjacencies with Non-Gaussian Orientations (GANGO)
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method to data from the Human Connectome Project (HCP)
[Rawls et al., [2022].

The aim of Rawls et al.| [2022]] was to describe the struc-
ture of effective connectivity in the brain commonly found
in healthy individuals while at rest, a.k.a. the resting-state
causal connectome. This model could then be used to iden-
tify causal connectome alterations that may be responsible
for psychopathology in people suffering from mental health
disorders, as well as to predict the clinical severity of le-
sions in different brain areas in terms of its impact on the
larger causal connectome. To construct this model, however,
numerous decisions were made regarding both how to per-
form the CDA itself and how to clean and process the raw
fMRI data. The need for such decisions comes from several
challenges that are universal to CDA fMRI studies, which
we describe next.

2 PRACTICAL CHALLENGES OF
APPLYING CDA TO FMRI DATA

Any research study where CDA is applied to fMRI data will
have to confront numerous study design challenges. Here
we enumerate 9 challenges that apply to all CDA fMRI
studies.

C1: Preprocessing. Raw fMRI data contains numerous
artifacts due to a wide variety of physical, biological, and
measurement technology factors. For example, there are
many artifacts resulting from the fact that the brain is not
a rigid, stable object: head motion will obviously impact
which locations in space within the scanner correspond
to which parts of the brain, but many other less obvious
factors such as blinking, swallowing, and changes in blood
pressure due to heartbeats, all apply pressure to the brain
and causes it to move and change shape. There is a large
space of methods for cleaning and preprocessing fMRI data,
and these can have a large impact on any fMRI analysis
[Parkes et al., 2018, Botvinik-Nezer et al., [2020]. Further,
there is an interaction between how the fMRI data is cleaned
and preprocessed and what CDA methods are viable. Many
popular fMRI preprocessing methods produce Gaussian
data, but some popular causal discovery methods require the
data to be non-Gaussian [Ramsey et al.|[2014]. As such, we
can not choose the fMRI preprocessing method and CDA
method independently of each other: they must be chosen
jointly.

C2: Cycles. Brains are known to contain both positive and
negative feedback cycles [Sanchez-Romero et al., 2019} |Gar{
rido et al.;|2007]]. CDA methods that are capable of learning
cyclic relationships will thus be preferable, ceteris paribus,
to CDA methods that can not learn models with cycles.
Further, the CDA methods that can accurately learn cycles
primarily operate outside the space of Gaussian distributions.
However, as already mentioned, many fMRI cleaning meth-

Figure 1: Using CDA on parcellated fMRI data is com-
plicated by the likely presence of both cycles and latent
variables. This figure illustrates a toy example of parcels
P1, P2, and P3, with unmeasured confounding of P1 and P2
from the peripheral nervous system (PNS). P1 has a cycle
of length 1, as activity in P1 directly impacts further activity
in P1 (for example, the firing of interneurons in a brain area
will suppress the firing of other neurons). There is a 2-cycle
between P1 and P2, as each directly causes the other. There
is also a 3-cycle between P1, P2, and P3. Many methods
capable of learning causal cycles are limited to learning
only cycles with length greater than 2, however cycles of all
lengths are likely present in brain parcellations.

ods force the data to be Gaussian, thus making it essentially
unusable for those methods.

C3: Undersampling. The sampling rate of fMRI imaging is
much slower than the rate at which neurons influence each
other. That is, typical image acquisitions only sample the
brain about every 1-2 seconds [Daranyi et al.| [2021] and the
Blood Oxygen Level Dependent (BOLD) response does not
peak for approximately 5-7 seconds following activation of
neurons [Buckner, [1998]]. Meanwhile, pyramidal neurons
can fire up to 10 times per second and interneurons may fire
as many as 100 times per second [Csicsvari et al., [1999].
Some recent CDA research has focused on undersampled
time series data [Hyttinen et al.| 2016} [2017} |Cook et al.|
2017, |Solovyeva et al., 2023]], however the application of
these approaches to parcellated fMRI data remains largely
unexplored.

C4: Latents. It is plausible that our measured variables are
influenced by some unmeasured common causes, such as
haptic or interoceptive feedback from the peripheral nervous
system, or even inputs from small brain regions that are not
included separately in parcellations but typically lumped
together, such as the raphe nucleus (serotonin), the locus
coeruleus (norepinephrine), and the ventral tegmental area
(dopamine).



CS5: Spatial smoothing. fMRI is subject to poorly charac-
terized spatial smoothing resulting from the scanner itself
and also from standard preprocessing that typically includes
spatial smoothing with a Gaussian kernel [Mikl et al.,[2008].
This induces correlations between nearby brain areas. Since
these correlations are due only to the measurement and stan-
dard preprocessing technologies, they do not reflect causal
processes inside the brain. However, current CDA methods
will universally attempt to explain these correlations with
conjectured causal mechanisms. Performing analysis at the
level of parcellations of voxels — biologically interpretable
spatially contiguous sets of voxels — is the typical approach
that fMRI researchers use to ameliorate this problem.

C6: High Dimensionality. At present, the smallest brain
areas that are commonly used for full-brain connectivity
analysis are parcellations [Glasser et al., 2016} [Schaefer|
et al.,[2018]]. These are smaller than most Regions of Inter-
est (ROIs) or other spatially defined “brain networks” (e.g.
the “Default Mode Network™), but much larger than vox-
els. Individual parcels typically comprise 100-200 voxels or
more [Glasser et al.,[2016]]. Voxels are in turn much larger
than neurons, containing around 1 million neurons in an 8
mm? voxel [Ip and Bridge, 2021]]. There are multiple dif-
ferent whole-brain parcellations, but they typically include
hundreds of parcels. Some examples include the recent mul-
timodal parcellation of the human cortex into 360 parcels
by |Glasser et al.|[2016], and the multiscale parcellation of
Schaefer and colleagues that includes between 100 and 1000
parcels [Schaefer et al.,2018]|. The analysis algorithm must
therefore scale to hundreds or several hundreds of variables,
which excludes many CDA methods.

C7: High Density. Brain networks are densely connected.
On average, the nodes of parcellated fMRI networks are
typically connected to at least 10 other nodes [Rawls et al.,
2022]]. With some recent exceptions, most CDA methods
have reduced performance and greatly increased computa-
tional cost on models with such high density [Lam et al.,
2022a].

C8: Scale-free structure. Brain networks are scale-free at
many different resolutions, including at the resolution of
fMRI parcellations [Watts and Strogatz,|1998| [Rawls et al.}
2022]). This small-world type of connectivity is character-
ized by having a small number of extremely well-connected
nodes, aka hubs. These hubs play critical roles in organizing
complex brain functions where multiple regions interact
[van den Heuvel and Sporns, [2013| |Crossley et al., [2014].
For example, the anterior cingulate cortex (ACC) is densely
interconnected with other subcortical and cortical regions,
receiving information about emotion and valuation from
subcortical brain systems and sending information about the
need for control to other brain regions. The extremely high
connectivity of these nodes may make them more difficult
for some CDA methods to learn, especially as many meth-
ods encode sparsity biases that prefer models with more

distributed connectivity (like Erdos-Renyi models) [Erdos
et al., |1960, [Karonski and Rucinski, [{1997].

C9: Limited Samples. fMRI brain data from a single ses-
sion typically has sample sizes (number of images/frames)
that range from several hundred to two thousand [[Volkow
et al., 2018} [Elam et al.||2021} |Alfaro-Almagro et al., 2018].
Modern imaging protocols involve imaging at a rate of about
1 capture per second, and the participant is required to stay
extremely still. This includes not swallowing and not blink-
ing too much. This is not a comfortable experience, making
the total duration of scanning, and thus the total sample
size from a single session, necessarily limited. Methods that
require more than a few thousand data points are thus not
feasible for fMRI, unless they are intended for analyzing
multiple sessions or subjects (and thus not focused on our
goal of modeling an individual person’s causal connectome
at a point in time).

To summarize, the ideal analysis will (1) preprocess the data
in a way that cleans as many artifacts as possible while en-
abling the chosen CDA method, (2) be able to recover causal
cycles, (3) be relatively unaffected by or explicitly model
temporal undersampling, (4) allow for the possibility of un-
measured confounding, (5) not become biased by spatial
smoothing, (6-7) scale to, and retain strong performance on,
data with hundreds of densely-connected (average degree
10 or more) variables, (8) retain strong performance for hub
nodes in scale free models, (9) achieve all of the above on
data with between hundreds and two thousand samples.

3 CDA AND EFFECTIVE
CONNECTIVITY METHODS FOR
FMRI

When selecting a CDA method for fMRI analysis, the large
number of algorithms developed over the last thirty years
can be intimidating. However, the majority of CDA meth-
ods do not meet the minimum requirements for analyzing
parcellated fMRI data. For example, many CDA methods
do not scale to problems with hundreds of variables (C6).
Moreover, methods that rely on the cross-temporal relation-
ships in the data, such as Granger causality [Granger, |1969,
Friston et al.| 2014]], will not produce meaningful results due
to undersampling [Barnett and Seth| [2017]] (C3). In practice,
researchers usually treat fMRI data as if it were independent
and identically distributed while applying CDA methods to
avoid this issue. Below, we review popular CDA methods
that are appropriate for analyzing parcellated fMRI data.
Table [T| compares these methods relative to the 9 challenges.

Greedy Equivalent Search (GES) is a two-phase greedy
search algorithm that moves between equivalence classes
of Directed Acyclic Graphs (DAGs) by adding or removing
conditional independence relations. Fast Greedy Equivalent
Search (fGES) is an efficient implementation of GES capa-
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Table 1: A comparison of the discussed CDA methods relative to the 9 challenges where (v') denotes the challenge is
addressed, (~) denotes the challenge is partially addressed, and ( X) denotes the challenge is not addressed. Note that while
the same challenge may be addressed by multiple algorithms, it is still possible that some algorithms address have better
performance on this challenge than others. For example, GES, GRaSP, Direct LINGAM, and GANGO appear to have better

accuracy on low samples (C9) than FASk and Two-Step.

ble of scaling up to a million variables (C6). It does not have
any special preprocessing requirements (C1), and has good
model performance on limited samples (C9). However, this
algorithm is intended for sparsely connected networks and
suffers in terms of performance and scalability on densely
connected problems (C7) [Chickering) 2002, [Ramsey et al.}
2017].

Greedy Relaxations of the Sparsest Permutation
(GRaSP) is a hierarchy of greedy search algorithms that
move between variable orderings. For brevity, we will use
the GRaSP acronym to refer to the most general algorithm
in the hierarchy. Starting from a random order, GRaSP re-
peatedly iterates over pairs of variables that are adjacent
in the DAG constructed by applying the Grow Shrink (GS)
[Margaritis and Thrunl |1999]] in a manner consistent with
the order, modifying the order in a way consistent with flip-
ping the corresponding edge in the DAG. GRaSP does not
have any special preprocessing requirements (C1), and has
good model performance on limited samples (C9). However,
unlike fGES, GRaSP retains its good performance on high
density models (C7) but only scales to one or two hundred
variables (C6) [Lam et al., [2022b].

Direct Linear Non-Gaussian Acyclic Model (LINGAM)
is a greedy algorithm that constructs a variable ordering
based on a pairwise orientation criterion [Hyvirinen and
Smith, |2013]]. Starting from an empty list, the order is con-
structed by adding one variable at a time, the one that maxi-
mizes the pairwise orientation criterion, until a full ordering
is constructed. Once the order is constructed, it is projected
to a DAG. The pairwise orientation criterion uses measures
non-Gaussianity so some preprocessing techniques cannot
be used (C1). Moreover, LINGAM cannot learn cycles (C2).
That being said, the method scales fairly well and has not
problem learning scale-free structures (C6), (C7), and (C9)
[Shimizu et al., 2011]].

The next three methods broadly fall into the same class of
algorithms. These approaches are two stepped approaches
where the first step learns a graph using an existing CDA
method and the second step augments and (re)orients that

edges of the graph learned in the first step; this general
approach was pioneered by |[Hoyer et al. [2008]]. All three
of these methods use non-Gaussianity and thus some pre-
processing techniques cannot be used (C1). Moreover, the
properties of these methods are impacted their algorithm
choice in the first step, for example, if the chosen fails to
scale in some aspect, then so will the overall method (C6 -
C9).

Greedy Adjacencies with Non-Gaussian Orientations
(GANGO) uses fGES [Ramsey et al.,|2017] as a first step
in order to learn the adjacencies and then uses the RSkew
pairwise orientation rule [Hyvéarinen and Smith} 2013]], also
referred to as robust skew, for orientations. This method
allows for cycles (with the exception of two-cycles) and
scales well [Rawls et al.,|[2022]].

Fast Adjacency Skewness (FASK) uses fast adjacency
search (FAS), which is the adjacency phase of the PC algo-
rithm, as a first step in order to learn the adjacencies and
then uses a series of tests to add additional adjacencies,
orient two-cycles, and orient directed edges. This method
allows for cycles and scales well [Sanchez-Romero et al.|
2019].

Two-Step uses adaptive lasso or FAS as a first step in order
to learn the adjacencies and then uses independent subspace
analysis (ISA) or independent component analysis (ICA)
if no latent confounders are identified. This method allows
for cycles and latent confounding, and scales well [[Sanchez{
Romero et al.,[2019].

4 INTERDEPENDENCIES AMONG CDA
AND FMRI PROCESSING METHODS

This section briefly covers some of the more important ways
in which choice of CDA method and choice of fMRI pro-
cessing methods interact, and how these complexities can
be successfully navigated.

First, as discussed above, the better CDA methods for learn-
ing cycles reliably requires using non-Gaussian statistics,



however many preprocessing methods force the fMRI data
to conform to a Gaussian distribution. While the Cyclic
Causal Discovery (CCD) algorithm [Richardson}|1996| can
recover causal graphs with cycles from Gaussian data, this
algorithm performs poorly on finite samples and is rarely
used. Methods exploiting non-Gaussian structure in BOLD
data achieve higher precision and recall with simulated
BOLD data [19]. Fortunately, there are approaches to pre-
processing fMRI that do not completely remove the non-
Gaussian signal. Those approaches are thus recommended
for using CDA on fMRI data.

Preprocessing removes artifacts and recovers physiologi-
cal brain signals via some combination of temporal filter-
ing, spatial smoothing, independent components analysis
(ICA), and confound regression [Glasser et al.,|2013]]. Some
of these steps, particularly temporal filtering, can drasti-
cally modify the data distribution. For example, [Ramsey
et al., |2014]] demonstrated that certain high-pass temporal
filters made parcellated fMRI time series more Gaussian.
This effect was particularly strong for Butterworth filters,
which were applied in [Smith et al., 2011]]. As such, it is
likely that the results of [Smith et al., 2011] were unreal-
istically pessimistic with regards to methods that assume
non-Gaussianity. This effect holds true for the filter built
into the Statistical Parametric Mapping (SPM) software,
while being negligible for the filter built into the fMRIB
Software Library (FSL) software. Thus, high-pass filtering
including the specific software and filter used is a critical
point of attention during data preparation for CDA.

For filtered data that maintain non-Gaussianity in the BOLD
signal, it’s crucial to confirm the data meet distributional as-
sumptions. A recent cortex-wide human causal connectome
analysis discovered that minimally preprocessed cortical
BOLD signal was non-Gaussian for all subjects [Rawls
et al.,[2022]]. In that same dataset, however, the subcortical
parcel time series are not non-Gaussian. This could stem
from Gaussian noise corrupting non-Gaussian BOLD ac-
tivity, especially since subcortical regions typically display
low signal-to-noise ratios. There is potential for enhanc-
ing BOLD data’s compatibility with CDA methods by em-
ploying newer techniques that eliminate Gaussian noise,
like the NORDIC method [Moeller et al.l 2021} |Vizioli
et al., [2021]], which suppresses Gaussian thermal noise from
high-resolution scan parameters. However, to date we are
unaware of any studies that pursue this combination of pre-
processing methods and CDA.

S ADDITIONAL COMPLICATIONS OF
CDA ON FMRI

Regarding the challenges of high dimensionality and limited
samples, this area fortunately has numerous causal discovery
solutions. All of the methods discussed in Section [3] are
capable of scaling to the number of parcels found in the

most widely used parcellations, while maintaining good
performance (although both runtime and performance can
vary substantially across these methods).

The structural challenges of high-density and scale-free
models also have some solutions. In particular, recently
developed permutation-based methods such as GRaSP and
BOSS both retain their high performance as model density
increases. These methods have increased computational cost
compared to faster methods like fGES, but can still scale
comfortably to hundreds of parcels, even on a personal
computer. Most other methods appear to have substantial
drops in performance as density increases, so using one
of the few methods that tolerates high density models is
recommended.

Since fMRI preprocessing may leave non-Gaussian
marginal distributions, it’s worth considering whether the
CDA methods that assume a linear-Gaussian model still
perform well. In general, such methods retain their perfor-
mance for edge adjacencies [Smith et al., 2011]], while their
performance on edge orientations has mixed results. There
are known cases where the orientations become essentially
random [Smith et al., 2011]], while we have observed other
cases where the orientations only exhibit a slight drop in
accuracy.

Collectively, the challenges and available tools point to-
wards a particular approach:

1. to ensure sample size is not too small (C9), analyze data
from study protocols that allow for adequate scanner
time for each individual session;

2. for preprocessing (C1), remove as many fMRI artifacts
as possible while retaining as much non-Gaussianity
in the marginals of the parcellated time-series data as
possible;

3. for undersampling (C3) and spatial smoothing (C5),
use a cross-sectional approach to analyze parcelations;

4. due to high dimensionality (C6), high density (C7),
and scale-free brain structure (C8), use a scalable high-
density-tolerant method to learn the skeleton (adjacen-
cies) of the parcels;

5. in order to learn cycles (C2) use a non-Gaussian orien-
tation method to re-orient edges;

6. In consideration of possible latent confounding (C4),
one can either

(a) use a scalable CDA method capable of learning
both cycles and latent confounding, or

(b) focus the primary results on aggregate features of
the model, such as connections among multiple
parcelations in shared networks, rather than on
individual edges.

The next section reviews a project where this general ap-
proach was taken.



6 CASE STUDY: APPLICATION OF THIS
APPROACH TO THE HUMAN
CONNECTOME PROJECT (HCP)

A previous project can serve as an example of the above
thought process [Rawls et al., [2022]]. In that project, the
authors made the following considerations with respect to
the 9 challenges.

Challenge 1 (preprocessing): The minimal HCP processing
pipeline [Glasser et al.l [2013]] was used, to conserve as
much non-Gaussian signal as possible and enable the use
of non-Gaussian CDA methods for learning cycles. Non-
Gaussianity of data were statistically verified by simulating
surrogate Gaussian data for comparison.

Challenge 2 (cycles): RSkew was used to re-orient
edges [Hyvirinen and Smith, |2013]] after confirming non-
Gaussianity of the preprocessed cortical parcellations, en-
abling discovery of cycles involving three or more variables.

Challenge 3 (undersampling): The time series element
of the data was ignored, and the parcellated time series
were instead analyzed as cross-sectional data. While this
approach does not make use of the available time-order
information, it avoids relying on the heavily undersampled
time dimension of the data.

Challenge 4 (latents): No effort was made to directly model
or account for latent variables. Findings were reported at an
aggregate level rather than individual edges.

Challenge 5 (spatial smoothing): These data were only
minimally smoothed (2 mm in surface space) [Glasser et al.,
2013]], thus excessive smoothing was not introduced in the
data. In addition, the parcellated time series was analyzed
rather than voxels, which further reduced the impact of
smoothing.

Challenge 6 (high dimensionality): A 360-node cortical
parcellation was used [Glasser et al.;, 2016]]. FGES was used
for the more computationally intensive adjacency search,
which is among the most scalable methods for CDA [Ram+
sey et al., [2017]].

Challenge 7 (high density): The study used fGES, which
scales well but can have lower performance for extremely
dense graphs. Better performance for dense brain graphs
could potentially be achieved by applying a high-density-
tolerant algorithm such as GRaSP [Lam et al.}2022a].

Challenge 8 (scale free): Rawls et al.|[2022] reported the
existence of nodes that were more highly connected than
expected under chance, which is characteristic of scale-free
networks. See Figure [3] However, for especially highly-
connected hub regions, some methods such as GRaSP might
provide higher precision for assessing scale-free structure
in future studies.

Challenge 9 (limited samples): The HCP collected two

runs of fMRI per day of 1200 images per run. The study
applied CDA to concatenated standardized time series from
these two runs, thus the number of samples was extremely
high (2400 total). The CDA methods that were selected are
also known to have good finite-sample performance.

Overall: This recent large-scale application of CDA for
deriving individualized causal connectomes addressed many
of the challenges we identified. However, the challenges of
high density and scale-free connectivity could potentially
be better addressed by applying newer permutation-based
CDA methods [Lam et al., 2022b]]. Several challenges, such
as limited samples, spatial smoothing, and preprocessing,
were partially or entirely solved by the specific data set the
method was applied to, and might pose problems in other
data sets.

6.1 RESULTS FROM THE HCP CASE STUDY

Here we briefly review the findings from the HCP case study
by Rawls et al.|[2022]. This study developed the GANGO
causal connectivity method, which was applied to n=442
resting-state fMRI data sets. The connectomes produced
were extremely sparse (2.25% edge density) compared to
Pearson correlation connectomes, which are often thresh-
olded to an edge density of 5-50%. Nevertheless, graphs
produced by GANGO were fully connected in nearly all
cases, which was not the case for standard Pearson correla-
tion graphs.

The GANGO method produced graphs with a scale-free
degree distribution. More specifically, the degree distribu-
tions were skewed by existence of hub nodes with very
high connectivity (some with total degree exceeding 20).
See Figure[3] These hub nodes were disproportionately con-
centrated in brain networks tied to attention and executive
control, while Pearson correlations instead emphasized hub
connectivity of early sensory regions. Graphs produced by
the GANGO method also show small-world connectivity,
with global efficiency nearly as high as random graphs but
local efficiency much higher than random graphs. Overall,
this case study showed that a causal discovery algorithm
specifically designed to meet the unique challenges of fMRI
data recovers physiologically plausible connectomes with
small-world and scale-free connectivity patterns characteris-
tic of biological networks.

7 RESEARCH GAPS AND PROMISING
FUTURE DIRECTIONS

We have outlined nine challenges researchers will face when
attempting to apply CDA to parcellations of fMRI data, as
well as some available CDA technologies and their ability
to overcome those challenges. The case study discussed in
Section [6] attempted to use a mixture of strategies to over-
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come those challenges, but many challenges remained only
partially addressed, or were even largely ignored. In this
section, we review the current research gaps as we perceive
them, and point towards future directions to empower future
applications of CDA to better elucidate the brain’s causal
connectome for both scientific and medical purposes.

Gap 1: CDA methods for high-dimensional, high-density,
scale-free models. Previous work [[Lam et al.,[2022al] has
shown that many popular CDA methods unfortunately do
not perform well when nodes have larger numbers of connec-
tions to other nodes. The only currently published method
that appears to overcome this limitation is limited to about
100 variables, which is substantially fewer than most parcel-
lations [Glasser et al., 2016 |Schaefer et al.,[2018]]. We are
aware of research on new algorithms and CDA implementa-
tion technologies that may overcome this gap, however that
work has not yet been published. However, such methods
could be used as a replacement for methods like fGES in
future fMRI studies.

Gap 2: Reliance on skewed data. While it is the case for
some fMRI data that minimal preprocessing is able to retain
statistically significant skew, we are also aware of other
fMRI data where even after only minimal preprocessing
the data are not significantly skewed. One possible future
direction would be to incorporate additional information
from higher moments such as kurtosis to ensure that the
non-Gaussian orientation methods can be used as much as
possible. Another approach would be to distill as much non-
Gaussian signal as possible using a method like independent
components analysis (ICA) [[Comon, [1994]] to construct a
new set of features from the parcellated time series, and then
perform CDA on the maximally non-Gaussian components
of each parcel instead.

Gap 3: Latent variables. While there exist CDA methods
that do not assume causal sufficiency, and thus can tolerate
and even identify unmeasured common causes, they gener-
ally have significant difficulties with other challenges. For
example, the standard methods for handling latent variables,
like FCI and GFCI, do not allow for cycles, have limited
scalability, and perform poorly for high-density models. The
Two-Step algorithm [Sanchez-Romero et al.,[2019] can in
theory incorporate unmeasured confounding in its models,
however we are not aware of any theoretical or practical
evaluation of its performance in the presence of unmeasured
confounding.

Gap 4: Extension to other brain imaging technologies.
Future exploration should expand CDA methodology to
neural temporal data beyond BOLD signals (fMRI data).
For example, electroencephalography (EEG) provides a dy-
namic view of brain activation with exceptional temporal
resolution. Current EEG causal connectivity analysis tech-
niques, such as Granger causality, are fruitful yet limited.
These current methods do not differentiate brain oscillations

from aperiodic activity, which is critical given recent ev-
idence that aperiodic activity sometimes wholly explains
group differences in power spectral density [Merkin et al.|
2023|]. Techniques have recently emerged separating ape-
riodic and oscillatory contributions to EEG power spectra
[Donoghue et al.,|2020], even extending to time-frequency
domain for time-resolved separation [Wilson et al., 2022]].
However, these haven’t been incorporated into neural con-
nectivity analyses. EEG data also present challenges in iden-
tifying effective connectivity patterns due to volume con-
duction — instant, passive electricity conduction through the
brain separate from actual neural interactions, resulting in
non-independent EEG sensor-level estimates [Nunez and
Srinivasan, 2006]. This non-independence hampers CDA,
necessitating volume conduction removal from data before
connectivity estimation (EEG preprocessing). We suggest
these obstacles could be mitigated by first removing volume
conduction from EEG data, then separating aperiodic and
oscillatory spectral contributions. Applying CDA to isolated
EEG oscillatory power estimates could potentially reveal
effective connectivity patterns unhindered by aperiodic ac-
tivity.

8 CONCLUSION

Here we have outlined nine challenges that will be faced
by researchers attempting to use CDA for fMRI effective
connectivity analysis, and presented a recent case study that
attempted to resolve at least some of these challenges. We
have also discussed challenges that remain following this
case study, such as the continuing search for CDA methods
that can discover densely connected graphs and hub nodes
with especially high connectivity resulting from scale-free
connectivity profiles.

In summary, there are a number of decisions faced by re-
searchers who hope to use CDA for fMRI analysis. By
openly discussing these researcher degrees-of-freedom and
a recent attempt to resolve these decisions, we hope to fos-
ter continued interest in and engagement with the idea that
CDA can provide a data-driven method for reconstructing
human causal connectomes.
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