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Abstract

Information technology (IT) systems are vi-
tal for modern businesses, handling data stor-
age, communication, and process automation.
Monitoring these systems is crucial for their
proper functioning and efficiency, as it allows
collecting extensive observational time series
data for analysis. The interest in causal dis-
covery is growing in IT monitoring systems
as knowing causal relations between different
components of the IT system helps in reduc-
ing downtime, enhancing system performance
and identifying root causes of anomalies and
incidents. It also allows proactive prediction
of future issues through historical data anal-
ysis. Despite its potential benefits, applying
causal discovery algorithms on IT monitoring
data poses challenges, due to the complexity
of the data. For instance, IT monitoring data
often contains misaligned time series, sleep-
ing time series, timestamp errors and missing
values. This paper presents case studies on ap-
plying causal discovery algorithms to different
IT monitoring datasets, highlighting benefits
and ongoing challenges.

1 INTRODUCTION

Information technology (IT) systems play a crucial role
in the success of modern businesses. These systems are
utilized for data storage and processing, communication
with customers and suppliers, and the automation of
various business processes. Given their significance, it is
essential to monitor IT systems to ensure their proper
functioning and efficiency [Tamburri et al., 2020]. IT
monitoring has become increasingly valuable due to
improved storage capacity, enabling the collection of ex-

tensive observational time series data [Tamburri et al.,
2020]. Even though analyzing these large amounts of ob-
servational time series data can enhance efficiency and
optimize processes [Chatzigiannakis et al., 2009], they
also pose a significant challenge for many companies
due to their complex nature.

The interest in causal discovery [Spirtes et al., 2000,
Pearl et al., 2000, Chickering, 2002, Peters et al., 2017]
is growing within the IT monitoring community [Meng
et al., 2020, Li et al., 2022, Assaad et al., 2023b, Wang
et al., 2023], as knowing causal relations allows for
reducing downtime and enhancing the overall perfor-
mance of IT systems by optimizing their resources and
identifying areas for improvement. In addition, causal
discovery can help IT professionals to swiftly identify
actionable root causes of anomalies and incidents and
to take corrective action to eliminate them [Meng et al.,
2020, Assaad et al., 2023b]. Moreover, causal discovery
can also be used to predict and preempt future issues in
IT systems. By analyzing historical data, IT profession-
als can recognize patterns indicative of future problems
and address them proactively. By leveraging causal
discovery, IT professionals can enhance the efficiency,
performance, and reliability of IT systems, leading to
improved business outcomes.

However, analyzing IT monitoring data poses several
challenges due to its complexity. IT monitoring data
is often collected from multiple sources, resulting in
misaligned time series. Additionally, there can also be
non-informative time series. For example, there can be
sleeping time series (for a period of time) due to users’
inactivity on certain servers. Furthermore, timestamp
errors can be present, and the low sampling rate of data
in IT monitoring systems can complicate the search
for causal relationships, as the lag between causes and
effects may be relatively small.

This paper presents a case study for applying causal dis-
covery algorithms to different IT monitoring datasets.
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This study highlights the potential benefits of utiliz-
ing causal discovery techniques in IT monitoring and
emphasizes the ongoing challenges and complexities
associated with working with such data. These findings
stress on the need for further research and development
in this area to fully harness the potential of causal
discovery algorithms in analyzing IT monitoring data.

The remainder of the paper is organized as follows: Sec-
tion 2 presents preliminaries and the main algorithms
applied to the case studies. Section 3 describes the IT
monitoring dataset for each case study and discusses
the challenges related to each dataset as well as the
background knowledge and theories available to experts
at the time of the application. Section 4 presents and
discusses the results of causal discovery algorithm in
each case study. Finally, Section 5 discusses challenges
and points out some aspect of causal discovery from
time series that are not included in any of the case
studies and Section 6 concludes the paper.

2 SET UP

Causal discovery in time series aims at discovering,
from observational data, causal relations within and
between d-variate time series X where, for a fixed t,
each Xt is a vector (X 1

t , · · · , X d
t ) in which each variable

X p
t , such that p ∈ {1, · · · , d}, represents a measurement

of the p-th time series at time t.

2.1 CAUSAL GRAPHS FOR TIME SERIES

There are at least four ways to represent time series
through a causal graph. The first is called a full time
causal graph [Assaad et al., 2022a] and represents a
infinite graph of the dynamic system, as illustrated in
Figure 1a. Note that in this work, we assume that the
full time causal graph is acyclic.

Definition 1 (Full time causal graph, Assaad et al.
[2022a]). Let X be a multivariate discrete-time stochas-
tic process and Gf = (Vf , Ef ) the associated full time
causal graph. The set of vertices Vf in that graph con-
sists of the set of components X 1

t , . . . , X d
t at each time

t ∈ Z. The set of edges Ef of the graph are defined
as follows: for each t, variables X p

t−γ and X q
t are con-

nected by a lag-specific directed link X p
t−γ → X q

t if and
only if X p causes X q at time t with a time lag of 0 ≤ γ
for p ̸= q and with a time lag of 0 < γ for p = q.

It is usually not possible to infer general full time causal
graphs as there usually is a single observation for each
time series at each time instant. Thus it is common
to rely on the so-called consistency throughout time
assumption [Assaad et al., 2022a] which states that

all causal relationships remain constant in direction
throughout time. When assuming consistency through-
out time and because every causal relation has a maxi-
mal time lag γmax, the full time causal graph can be
represented through a time window by a finite graph
of size γmax + 1 which we call window causal graph
[Assaad et al., 2022a].
Definition 2 (Window causal graph, Assaad et al.
[2022a]). Let X be a multivariate discrete-time stochas-
tic process and Gw = (Vw, Ew) the associated window
causal graph with a maximal lag γmax. The set of ver-
tices Vw in that graph consists of the set of components
X 1

t−γ , . . . , X d
t−γ at each time t − γ for 0 ≤ γ ≤ γmax.

The set of edges Ew of the graph are defined as fol-
lows: X p

t−γ and X q
t are connected by a directed link

X p
t−γ → X q

t if and only if X p
t−γ causes X q

t in the full
time causal graph (in this case then there is also a
directed edge between each homologous pairs of nodes
X p

t−γ−i and X q
t−i for 0 ≤ i ≤ γmax − γ).

Figure 1b illustrates a window causal graph correspond-
ing to the full time causal graph given in Figure 1a.

In practice, it can be sufficient to know the causal rela-
tions between time series as a whole, without knowing
precisely the relations between time instants; in ad-
dition, in some applications, an expert would like to
validate a causal graph before using it, but validating
a window causal graph and its temporal lags between
causes and effects can be difficult. In these cases, one
can use an abstraction of the window graph which
usually takes the form of an extended summary causal
graph [Assaad et al., 2022b] or a summary causal graph
[Assaad et al., 2022a]. An example of these two abstract
graphs are given in Figure 1c and 1d.
Definition 3 (Extended summary causal graph, As-
saad et al. [2022b]). Let X be a multivariate discrete-
time stochastic process and Ge = (Ve, Ee) the asso-
ciated extended summary causal graph. The set of
vertices Ve in that graph consists of the set of time
slices Ve

t− and Ve
t such that Ve

t− = X 1
t−, . . . , X d

t− and
V e

t = X 1
t , . . . , X d

t . The set of edges Ee are defined as
follows:

• variables X p
t and X q

t with p ̸= q are connected by
a directed link X p

t → X q
t if and only if X p causes

X q at time t with a null time lag;
• variables X p

t− and X q
t are connected by a directed

link X p
t− → X q

t , if and only if X p causes X q at
time t with a strictly positive time lag.

Definition 4 (Summary causal graph, Assaad et al.
[2022a]). Let X be a multivariate discrete-time stochas-
tic process and G = (V, E) the associated summary
causal graph. The set of vertices V in that graph con-
sists of the set of time series X 1, . . . , X d. The set of
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Figure 1: Different causal graphs to respresent a diamond structure with self causes: full time causal graph (a),
window causal graph (b), extended summary causal graph (c) and summary causal graph (d). Note that the first
one gives more information but cannot be inferred in practice, the second one is a schematic viewpoint of the full
behavior, the third one only distinguishes between instantaneous and lagged causal relations, whereas the last
one gives an overview of the causal relationships without any reference to time.

edges E of the graph are defined as follows: variables
X p and X q are connected if and only if there exists
some time t and some time lag i such that X p

t−i causes
X q

t at time t with a time lag of 0 ≤ i for p ̸= q and
with a time lag of 0 < i for p = q.

Note that the summary causal graph can contain cycles
which is not the case for extended summary causal
graphs.

2.2 ASSUMPTIONS

Given observational data, on which one can compute
correlations and statistical independencies, it is not al-
ways possible to infer a causal graph. In addition to the
acyclicity of the full time causal graph and consistency
throughout time, all the algorithms considered in this
work rely on some of the following assumptions:

• Causal Markov condition [Spirtes et al., 2000, Pearl
et al., 2000]: every variable is independent of all
its nondescendants in the graph conditional on its
parents;

• Causal sufficiency [Spirtes et al., 2000, Pearl et al.,
2000]: all common causes, i.e., confounders, of all
observed variables are observed;

• Minimality [Spirtes et al., 2000]: all adjacent nodes
are dependent;

• Faithfulness [Spirtes et al., 2000, Pearl et al., 2000]:
all conditional independencies are entailed from
the causal Markov condition;

• Semi-parametric model [Peters et al., 2017], which
stipulates a general form for the underlying model,
as linear models or nonlinear additive noise models;

• Stationarity: the generative process does not
change with respect to time.

2.3 ALGORITHMS

Granger Causality is one of the oldest methods pro-
posed to detect causal relations between time series.
However, in its standard form [Granger, 1969], it is
known to handle a restricted version of causality that
focuses on linear relations and causal priorities as it
assumes that the past of a cause is necessary and suffi-
cient for optimally forecasting its effect. This approach
has nevertheless been improved since then [Granger,
2004, Arnold et al., 2007] through, e.g, the use of vari-
able selection tools and result of this method can be
represented in the form of a summary causal graph.
Namely, GCMVL [Arnold et al., 2007] is multivariate
Granger algorithm that use a lasso-based technique for
variable selection.

Score-based approaches [Chickering, 2002] search over
the space of possible graphs trying to maximize a score
that reflects how well the graph fits the data. Recently,
a new score-based method called Dynotears1 [Pamfil
et al., 2020] was presented to infer a window causal
graph from time series.

Constraint-based approaches, based on the PC algo-
rithm [Spirtes et al., 2000], are certainly one of the
most popular approaches for inferring causal graphs.
Several algorithms, adapted from non-temporal causal
graph discovery algorithms, have been proposed in this
family for time series, among which PCMCI is capable
of infering a window causal graph and accounts for the
effect size. Initially, PCMCI [Runge et al., 2019] was

1https://github.com/quantumblacklabs/
causalnex/

https://github.com/quantumblacklabs/causalnex/
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GCMVL S/E ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
Dynotears W ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
PCMCI+ W ✓ ✓ F ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
PCGCE E ✓ ✓ F ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

VarLiNGAM W ✓ ✓ M ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
TiMINo S ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
NBCB-w S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
NBCB-e S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
CBNB-w S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗
CBNB-e S/W ✓ ✓ M ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

D
at

as
et

s MoM S ✓ ✓ ? ? ? ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗
Ingestion S ✓ ✓ ? ? ? ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗

Web activity S ✓ ? ? ? ? ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗
Antivirus S ✓ ? ? ? ? ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✓

Table 1: Summary of the main characteristics of algorithms and different IT monitoring datasets considered
in the paper. For causal graphs, S means that the algorithm provides a summary causal graph, E means that
the algorithm provides an extended summary causal graph and W means that the algorithm provides a window
causal graph; F corresponds to faithfulness and M to minimality. An empty cell mean that the information given
in the corresponding column was not discussed by the authors of the corresponding algorithm. A question mark
means that the expert of the IT system do not know if the information given in the corresponding column is
satisfied for the given dataset.

not able to take into account instantaneous relations
but this limitation was recently surmounted with the
introduction of PCMCI+2[Runge, 2020]. Another algo-
rithm in this family is PCGCE3 [Assaad et al., 2022b]
which infers an extended summary causal graph by
restructuring the data into two slices: one vector for
each time series that represents the present and one
matrix of each time series that represents the past (up
to γmax).

In a different line, approaches based on Structural
Equation Models assume that the causal system can be
defined by a set of equations that explain each variable
by its direct causes and an additional noise. Causal
relations are in this case discovered using footprints
produced by the causal asymmetry in the data. For
time series, the most popular algorithms in this family
are VarLiNGAM4 [Hyvärinen et al., 2008, Hyvärinen

2https://github.com/jakobrunge/tigramite
3https://github.com/ckassaad/PCGCE
4https://github.com/cdt15/lingam

et al., 2010], which is an extension of LiNGAM [Shimizu
et al., 2011] through autoregressive models that infers
a window causal graph, and TiMINo5 [Peters et al.,
2013], which discovers a causal relationship in form of
a summary causal graph by looking at independence
between the noise and the potential causes.

There exist also hybrid algorithms which combine
constraint-based with semi-parametric algorithms.
Among hybrid methods, NBCB [Assaad et al., 2021]
starts by discovering the causal order between time
series through a semi-parametric strategy (which yields
a graph that contains the true graph), and then prunes
unnecessary edges using a constraint-based strategy.
Initially, this method assumes that the summary causal
graph is acyclic but this limitation was recently sur-
mounted [Assaad et al., 2023a]. In addition, in the new
generalized version, NBCB is considered more like a
framework that combines any semi-parametric strategy
and constraint-based strategy. In this paper, we con-

5http://web.math.ku.dk/~peters/code.html
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sider NBCB-w6 which combines a restricted version of
VarLiNGAM and a restricted version of PCMCI+ as
well as NBCB-e6 which combines a restricted version
of VarLiNGAM and a restricted version of PCGCE.
NBCB-w infers a window causal graph as it is based
on PCMCI+ and NBCB-e infer an extended summary
causal graph as it is based on PCGCE. Another hybrid-
based framework exists and it is called CBNB [Assaad
et al., 2023a]. It can be considered as a backward version
of NBCB. In this paper, we consider the two algorithms
CBNB-w6 and CBNB-e6 from the CBNB framework
which can be considered respectively as the backward
versions of NBCB-w and NBCB-e.

In Table 1, we classify causal discovery algorithms with
respect to the assumptions they rely on in addition to
different characteristics.

2.4 HYPER-PARAMETRES

For PCMCI+, PCGCE, NBCB-w, NBCB-e, CBNB-w,
and CBNB-e we use the linear partial correlation to find
conditional independencies and for PCGCE (as well as
for NBCB-e and CBNB-e), as the authors suggested [As-
saad et al., 2022b], we reduce the dimensionality of the
past slice to 1 using PCA. For TiMINo [Peters et al.,
2013] we use the linear time series model and the HSIC
test and for VLiNGAM, the regularization parameter in
the adaptive Lasso is selected using BIC. For Dynotears,
we set all hyperparameters to their recommended val-
ues (λW = λA = 0.05 and αW = αA = 0.01). For all
methods, we set the significance threshold to 0.05 since
according to IT monitoring experts the maximal delay
between a cause and its effect is of 15 minutes, in our
experiments we set the maximal lag γmax according
to the sampling rate and to the 15 minutes delay. For
instance, for a sampling rate of 1 minute we set γmax to
15 and for a sampling rate of 5 minute we set γmax to
3. In Appendix, we also study how the results change
by varying γmax.

2.5 PRE-PROCESSING

Time series in monitoring systems are not always ex-
actly aligned together and come in different sampling
rates as the timestamps depend on when the data was
collected. In the following we present two pre-processing
strategies that we considered for aligning time series:

• Strategy 1: Time series are analyzed in terms of
sampling rates and the lowest one is chosen. After-
wards, all the time series are re-sampled according
to this lowest sampling rate with the closest value

6https://github.com/ckassaad/Hybrids_of_CB_and_
NB_for_Time_Series

to the timestamp taken as the new value. Upon re-
sampling, missing values can be clearly observed.
If missing values are detected, they are filled using
simple linear interpolation of Pandas data frames7.

• Strategy 2: Each raw value xi is converted into
integral value si at each point i as follows: si =
xi(ti − ti−1) + si−1. Then all time series are re-
sampled such that each re-sampled value xj at
every n (the lowest sampling rate) steps is cal-
culated as follows: xj = si−si−n

ti−ti−n
. The time ti (of

value si) is the time that is after the corresponding
time to xj .

3 DATASETS DESCRIPTION

In this section, we present the summary causal graph
(the window causal graph and the extended summary
causal graph are not available) and the datasets8 for
each case study. All summary causal graphs are con-
structed either by IT monitoring experts or directly
using the system topology. Note that all data points
are collected using Nagios9, an open-source software
that monitors systems, networks and infrastructure,
and which gives the timestamp according to the col-
lection time which does not necessarily correspond to
the real time of the value. In addition, on some of the
case studies, the alignment between time series is not
guaranteed as data collection is performed by differ-
ent plugins with different starting times and different
sampling rates [Holzinger et al., 2021]. In Table 1, we
also classify datasets with respect to the different as-
sumptions needed by causal discovery algorithms and
to other different characteristics. In Appendix, we also
give additional information on the datasets.

3.1 MOM ACTIVITY DATASETS

First, we consider two Middleware oriented Message
datasets which we denote as MoM 1 and MoM 2 and
which are defined through the monitoring of an IT
pipeline which ingests incoming messages based on a
Publish/Subscribe architecture. These datasets contain
seven different time series such as MoM 1 consists of 288
timestamps, MoM 2 consists of 364 timestamps, and
they are both collected with a one-second sampling rate.
Note that there is no overlapping time between these

7https://pandas.pydata.org/docs/reference/api/
pandas.DataFrame.interpolate.html

8All datasets are available at https:
//easyvista2015-my.sharepoint.com/:f:
/g/personal/aait-bachir_easyvista_com/
ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5f0ILz6wbgoEQ?e=
OBTsUY

9https://www.nagios.org/
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https://easyvista2015-my.sharepoint.com/:f:/g/personal/aait-bachir_easyvista_com/ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5f0ILz6wbgoEQ?e=OBTsUY
https://easyvista2015-my.sharepoint.com/:f:/g/personal/aait-bachir_easyvista_com/ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5f0ILz6wbgoEQ?e=OBTsUY
https://easyvista2015-my.sharepoint.com/:f:/g/personal/aait-bachir_easyvista_com/ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5f0ILz6wbgoEQ?e=OBTsUY
https://easyvista2015-my.sharepoint.com/:f:/g/personal/aait-bachir_easyvista_com/ElLiNpfCkO1JgglQcrBPP9IBxBXzaINrM5f0ILz6wbgoEQ?e=OBTsUY
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https://www.nagios.org/
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Figure 2: Summary causal graphs for different datasets: MoM system based on Publish/Subscribe architecture
(a), Ingestion IT monitoring system (b), Web-Activity (c) and Antivirus-Activity (d). Those summary causal
graphs are constructed either by IT monitoring system experts or directly using the system topology.

datasets. The corresponding summary causal graph is
presented in Figure 2a where Pub represents the publish
rate that monitor the number of messages per seconds;
Con is the number of consumers; Mes represents the
number of messages remaining in the queue; Cpu repre-
sents the percentage of used CPU; Ram represents the
percentage of used RAM; DiskW represents the Disk
write in Kbytes/second; DiskR represents the Disk read
in Kbytes/second. There might exist additional links
between Cpu, Ram, DiskW and DiskR under extreme
conditions and abnormal behavior but these relations
are excluded from the graph since there is no incident
or clear anomaly that is detected for these datasets.
Note that, for these datasets, timestamps of different
time series are aligned.

3.2 INGESTION ACTIVITY DATASET

We also consider a dataset introduced in Assaad et al.
[2023b] which we denote as the Ingestion dataset. This
dataset contains eight time series which consist of 991
timestamps collected with a one-minute sampling rate.
The corresponding summary causal graph which is con-
structed using Storm ingestion topology that describes
the relations between the inputs and outputs of each
Bolt is provided in Figure 2b where PMDB represents

the extraction of some information about the messages
received by the Storm ingestion system; MDB refers to
an activity of a process that orients messages to other
processes with respect to different types of messages;
CMB represents the activity of extraction of metrics
from messages; MB represents the activity of insertion
of data in a database; LMB reflects the updates of the
last values of metrics in Cassandra; RTMB represents
the activity of searching to merge data with information
coming from the check message bolt; GSIB represents
the activity of insertion of historical status in database;
ESB represents the activity of writing data in Elas-
ticsearch. All values are calculated by multiplying the
number of messages executed on the specific bolt in a
given time window by the average execution latency in
the same time window, and then dividing it by the time
window which corresponds to 10 minutes. Note that,
for this dataset, timestamps of different time series are
aligned.

3.3 WEB ACTIVITY DATASET

We consider a dataset that reflects the activity in a
web server. This dataset contains ten time series col-
lected with a one-minute sampling rate. The raw data
of this case study were initially misaligned. In order to



align them, we use the two pre-processing strategies
described in Section 2.5. We denote the dataset pre-
processed using Strategy 1 as Web 1 and the dataset
pre-processed using Strategy 2 as Web 2. The two
processed datasets contains 3000 timestamps. The cor-
responding summary causal graph is presented in Fig-
ure 2c where NetIn represents the data received by the
network interface card in Kbytes/second; NetOut repre-
sents the data transmitted out by the network interface
card in Kbytes/second; NPH represents the number of
HTTP processes; NPP represents the number of PHP
processes; NCM represents the number of open MySql
connections which are started by PHP processes; CpuH
represents the percentage of CPU used by all HTTP
processes; RamH represents the percentage of RAM
used by all HTTP processes; CpuP represents the per-
centage of CPU used by all PHP processes; DiskW
represents the Disk write in Kbytes/second; CpuG rep-
resents the percentage of global CPU usage.

3.4 ANTIVIRUS ACTIVITY DATASET

Lastly, we consider a dataset which depicts the impacts
of antivirus activity in servers. This dataset contains
13 time series such that 3 of them are collected with
a one-minute sampling rate and the rest with a five-
minutes sampling rate. The raw data of this case study
were initially misaligned. In order to align them, we
use the two pre-processing strategies described in Sec-
tion 2.5, leading to the dataset Antivirus 1 for Strategy
1 and Antivirus 2 for Strategy 2. The two processed
datasets consist of 1321 timestamps. The correspond-
ing summary causal graph is presented in Figure 2d
where CUV represents the percentage of CPU usage
of antivirus processes in server V; CUGV represents
the percentage of CPU usage of the global server V;
MUV represents the percentage of memory usage of
antivirus process; MUGV represents the percentage
of global memory usage of the server; RV represents
the Disk IO read in Kbytes/second; ChIE refers to the
required duration in seconds to open an IE browser on
server V; CUP represents the percentage of CPU usage
of antivirus processes in server P; CUGP represents
the percentage of CPU usage of the global server P;
MUP represents the percentage of memory usage of
antivirus process; MUGP represents the percentage of
global memory usage of the server; RP represents the
Disk IO read in Kbytes/second; ChP represents refers
to the required duration in seconds to open a CITRIX
Portal on server P; T represents the global time in
seconds required to open a CITRIX portal and open
the IE browser.

4 RESULTS

In this section we evaluate the performance of each
causal discovery algorithm presented in Section 2 on
each dataset presented in Section 3. Since we only have
access to the true summary causal graph, we evalu-
ate the detection of oriented edges of the summary
causal graph (for algorithms that detect a window
causal graphs or an extended summary causal graph,
we start by inferring the window causal graphs or the
extended summary causal graph then deduce the sum-
mary causal graph from it) using the F1-score. Recall
that as mentioned in Section 2, γmax is set according
to the 15 seconds delay rule for MoM datasets and the
15 minutes delay rule for the other datasets.

All results 10 are presented in Table 2. GCMVL exhibits
poor performance on MoM 1, MoM 2, Web 2, Antivirus
1, and Antivirus 2 datasets. However, it shows better
performance on Ingestion and Web 1 datasets, achiev-
ing at most an F1-score of 0.2. Dynotears demonstrates
relatively better performance compared to GCMVL
across all datasets, except for the Ingestion dataset.
PCMCI+, NBCB-w and CBNB-w achieve the high-
est F1-score of 0.4 on the MoM 1 dataset along with
NBCB-w and CBNB-w. However, PCMCI+ performs
poorly on the MoM 2 dataset and on the Ingestion
dataset. On Web 1 and Web 2, it respectively achieves
better F1-scores of 0.23 and 0.3, and lower F1-scores of
0.04 and 0.11 on Antivirus 1 and Antivirus 2. PCGCE
exhibits low performance on the MoM 1 dataset but
has better performance on MoM 2, Ingestion, Web 1,
and Web 2 with F1-scores of 0.12, 0.12, 0.22, and 0.15,
respectively. Remarkably, PCGCE performs well on An-
tivirus datasets, achieving the highest F1-score of 0.45
for Antivirus 2, along with NBCB-e. VLiNGAM shows
poor performance on MoM 1 and MoM 2 datasets.
However, it shows better performance on the other
datasets and achieves the highest F1-score of 0.29 on
Web 1 dataset. TiMINo performs poorly on the major-
ity of datasets but shows better performance on MoM
2 and Ingestion datasets. For all datasets, NBCB-w
and CBNB-w (which are two hybrids methods which
comines PCMCI+ with VLiNGAM) either outperform
PCMCI+ or performs equally to PCMCI+ and they
outperform VLiNGAM for only 3 datasets. On the
other hand, for most datasets, NBCB-e and CBNB-e
(which are two hybrids methods which comines PCGCE
with VLiNGAM) outperform PCCGE and VLiNGAM
except for Web 1 and Antivirus 2. In addition, in most
datasets NBCB-e outperform CBNB-e. Notably, NBCB-
e achieves the best F1-scores in most datasets (MoM
2, Ingestion, Web 2, Antivirus 1 and Antivirus 2) and

10The code is available at https://github.com/
ckassaad/Case_Studies_of_Causal_Discovery_from_
IT_Monitoring_Time_Series

https://github.com/ckassaad/Case_Studies_of_Causal_Discovery_from_IT_Monitoring_Time_Series
https://github.com/ckassaad/Case_Studies_of_Causal_Discovery_from_IT_Monitoring_Time_Series
https://github.com/ckassaad/Case_Studies_of_Causal_Discovery_from_IT_Monitoring_Time_Series


Table 2: Results for real IT monitoring datasets where γmax is set according to the 15 seconds delay rule for MoM
datasets and to the 15 minutes delay rule for Ingestion, Web and Antivirus datasets. We report the F1-score.

MoM 1 MoM 2 Ingestion Web 1 Web 2 Antivirus 1 Antivirus 2
GCMVL 0.0 0.0 0.2 0.2 0.0 0.08 0.0

Dynotears 0.26 0.2 0.14 0.23 0.3 0.18 0.19
PCMCI+ 0.4 0.0 0.0 0.23 0.3 0.04 0.11
PCGCE 0.0 0.12 0.12 0.22 0.15 0.3 0.45

VLiNGAM 0.0 0.0 0.19 0.29 0.18 0.15 0.22
TiMINo 0.0 0.17 0.18 0.0 0.0 0.0 0.0

NBCB-w 0.4 0.0 0.13 0.23 0.3 0.14 0.24
NBCB-e 0.13 0.29 0.27 0.19 0.42 0.31 0.45
CBNB-w 0.4 0.0 0.15 0.23 0.3 0.17 0.16
CBNB-e 0 0.24 0.13 0.22 0.29 0.31 0.38

has relatively good performance on the other datasets.

Note that all algorithms, except GCMVL and TiMINo,
have better performance on the Antivirus dataset when
pre-processing Strategy 2 is applied.

Overall, according to the performance of each algo-
rithm, NBCB-e seems to be the best choice across all
datasets. However, it is important to note that the best
performance achieved (0.45 in Antivirus 2) is far from
being satisfactory.

5 DISCUSSION

As shown in the previous section, the results of causal
discovery algorithms considered in this work are not sat-
isfactory. Most probably this is due to the violation of
the assumptions that these algorithms rely on. These
algorithms typically assume Consistency throughout
time and Stationarity, yet IT systems exhibit different
states (e.g., normal, warning, critical). Transitions be-
tween these states can potentially induce changes in the
causal strengths between metrics or even completely
alter the underlying causal graph. Consequently, it will
be interesting to test methods that relax this assump-
tion such as CD-NOD [Huang et al., 2020], R-PCMCI
[Saggioro et al., 2020], LoSST [Kummerfeld and Danks,
2013], and SDCI [Rodas et al., 2021]. On top of that,
the linearity assumption is not verified in any of the
datasets, thus it would be interesting to test nonlinear
methods, for example, by using non-linear indepen-
dence test in constraint-based methods and non-linear
regression models in semi-parametric methods.

It is also assumed throughout this paper that the full
time graph is acyclic which coincides well with the
summary causal graphs of our case studies. However,
in general, considering low sampling rate challenges
the legitimacy of this assumption as there might be
two lagged causal relation with a lag smaller than the
time delay between each two collected data points. Ad-

ditionally, in this work we only focused on continuous
data, however, IT systems comprise not only contin-
uous variables but also ordinal variables (e.g., CPU
frequency) and nominal variables (e.g., device states:
normal, busy, overcharged) which can help improve
performance. To address mixed data types, it is worth
exploring independent measures and tests for mixed
data. Prominent methods include SCPC [Cui et al.,
2016], MGVI [Tsagris et al., 2018], MIIC [Cabeli et al.,
2020], LH [Marx et al., 2021], RAVK [Rahimzamani
et al., 2018], MS [Mesner and Shalizi, 2020], and CMIh
[Zan et al., 2022], as they can be integrated directly
into constraint-based algorithms. Furthermore, missing
data poses a significant challenge in determining the
causal graph. This issue could be fixed by methods
like MVPC [Tu et al., 2019] and CBR-PC [Gain and
Shpitser, 2018]. Finally, there might always be hidden
common causes in the system, so using methods based
on FCI [Spirtes et al., 2000, Gerhardus and Runge,
2020, Assaad et al., 2022b] might be useful, but in this
case, the graph will be in most cases less informative
and less interpretable by IT monitoring experts.

6 CONCLUSION

IT systems are crucial for the success of modern busi-
nesses, and monitoring them is essential to ensure their
proper functioning. Causal discovery techniques offer
powerful tools for identifying the root causes of issues,
optimizing IT systems, and predicting future problems.
However, the analysis of IT monitoring data presents
challenges due to its complexity and volume. The case
study presented in this paper shows both the poten-
tial benefits and ongoing challenges of applying causal
discovery algorithms to IT monitoring data. This area
should continue to be an active field of research and
development, with the aim of improving the efficiency
and performance of IT systems in diverse industries
and applications.
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A APPENDIX

In the following, we start by presented additional experimental results then present an examination of the datasets
we have considered.

A.1 ADDITIONAL RESULTS

Table 3: Results for real IT monitoring datasets for γmax = 15. We report the F1-score.

MoM 1 MoM 2 Ingestion Web 1 Web 2 Antivirus 1 Antivirus 2
GCMVL 0.0 0.0 0.2 0.29 0.0 0.08 0.0

Dynotears 0.26 0.2 0.14 0.24 0.34 0.19 0.25
PCMCI+ 0.4 0.0 0.0 0.22 0.31 0.1 0.13
PCGCE 0.0 0.12 0.12 0.3 0.27 0.27 0.26

VLiNGAM 0.0 0.0 0.19 0.24 0.17 0.19 0.16
TiMINo 0.0 0.17 0.18 0.0 0.13 0.0 0.07

NBCB-w 0.4 0.0 0.13 0.18 0.23 0.13 0.19
NBCB-e 0.13 0.29 0.27 0.19 0.22 0.22 0.15
CBNB-w 0.4 0.0 0.15 0.22 0.29 0.2 0.19
CBNB-e 0.0 0.24 0.13 0.23 0.33 0.28 0.22

Table 4: Results for real IT monitoring datasets for γmax = 10. We report the F1-score.

MoM 1 MoM 2 Ingestion Web 1 Web 2 Antivirus 1 Antivirus 2
GCMVL 0.0 0.0 0.0 0.32 0.0 0.09 0.0

Dynotears 0.36 0.14 0.14 0.22 0.39 0.18 0.22
PCMCI+ 0.0 0.0 0.0 0.22 0.31 0.07 0.14
PCGCE 0.0 0.0 0.11 0.27 0.24 0.33 0.27

VLiNGAM 0.27 0.09 0.27 0.22 0.18 0.19 0.16
TiMINo 0.0 0.17 0.17 0.0 0.0 0.06 0.06

NBCB-w 0.15 0.0 0.13 0.19 0.23 0.15 0.25
NBCB-e 0.13 0.2 0.18 0.25 0.22 0.26 0.21
CBNB-w 0.15 0.0 0.16 0.22 0.29 0.2 0.21
CBNB-e 0.0 0.12 0.11 0.21 0.26 0.33 0.29

Table 5: Results for real IT monitoring datasets for γmax = 5. We report the F1-score.

MoM 1 MoM 2 Ingestion Web 1 Web 2 Antivirus 1 Antivirus 2
GCMVL 0.0 0.0 0.0 0.19 0.0 0.08 0.0

Dynotears 0.27 0.21 0.14 0.22 0.3 0.18 0.17
PCMCI+ 0.0 0.15 0.0 0.17 0.32 0.04 0.11
PCGCE 0.31 0.0 0.22 0.21 0.34 0.3 0.36

VLiNGAM 0.0 0.19 0.25 0.23 0.2 0.18 0.18
TiMINo 0.0 0.0 0.18 0.0 0.0 0.0 0.0

NBCB-w 0.0 0.12 0.13 0.2 0.23 0.13 0.3
NBCB-e 0.27 0.0 0.11 0.24 0.42 0.29 0.38
CBNB-w 0.0 0.13 0.15 0.24 0.29 0.18 0.18
CBNB-e 0.31 0.0 0.13 0.15 0.38 0.33 0.27

Tables 3, 4, 5, and 6 present the F1-scores for each method using different values of γmax (15, 10, 5, and 3,
respectively). Among these methods, GCMVL performs poorly on all datasets, except for Web 1 dataset where
it achieves the highest F1-scores of 0.32, when γmax = 10. Dynotears demonstrates stable performance across
various datasets when γmax is varied. It achieves the highest F1-scores on the Web 2 dataset with a large values
of γmax, and on the MoM 2 dataset with a small values of γmax.



Table 6: Results for real IT monitoring datasets for γmax = 3. We report the F1-score.

MoM 1 MoM 2 Ingestion Web 1 Web 2 Antivirus 1 Antivirus 2
GCMVL 0.0 0.0 0.14 0.2 0.0 0.08 0.0

Dynotears 0.14 0.3 0.14 0.23 0.3 0.18 0.19
PCMCI+ 0.0 0.0 0.0 0.23 0.3 0.04 0.11
PCGCE 0.15 0.0 0.22 0.22 0.15 0.3 0.45

VLiNGAM 0.0 0.0 0.38 0.29 0.18 0.15 0.22
TiMINo 0.0 0.17 0.18 0.0 0.0 0.0 0.0

NBCB-w 0.0 0.0 0.15 0.23 0.3 0.14 0.24
NBCB-e 0.14 0.0 0.22 0.19 0.42 0.31 0.45
CBNB-w 0.0 0.0 0.16 0.23 0.3 0.17 0.16
CBNB-e 0.0 0.0 0.13 0.22 0.29 0.31 0.38

PCMCI+ exhibits poor performance on the MoM, Ingestion, and Antivirus datasets, except for the MoM 1 dataset
when γmax is set to 15, where it achieves an F1-score of 0.4. However, PCMCI+ shows better performance on
the Web datasets. PCGCE achieves the highest F1-score on the MoM 1 dataset when γmax = 3 and γmax = 5
however it F1-score drops to zero for γmax = 10 and 15. For the MoM 2 dataset, PCGCE has almost always a zero
F1-score and for the Ingestion dataset it has relatively a low performance. However, when it comes to the Web
and Antivirus datasets, PCGCE consistently exhibits good performance across all values of γmax. VLiNGAM
consistently achieves high F1-scores on the Ingestion dataset for all values of γmax except when γmax = 3, and it
performs better on the Web and Antivirus datasets compared to the MoM datasets. TiMINo performs poorly on
the majority of the datasets, but it demonstrates stable performance on the Ingestion dataset regardless of the
value of γmax. It shows a similar conclusion on the MoM 2 dataset, except when γmax is set to 5. NBCB-w and
CBNB-w achieve the best F1-score of 0.4 on the MoM 1 dataset when γmax is set to 15, and it generally performs
better on the Web and Antivirus datasets compared to the other datasets. NBCB-e tends to achieve the highest
F1-scores in most cases. It achieves the highest F1-scores on the MoM 2 and Ingestion datasets when γmax is
large, and on the Web and Antivirus datasets when γmax is smaller, meanwhile, it should be noted that as γmax

increases, its performance remains comparative on these datasets. Similarly, CBNB-e has the best F1-score in
Antivirus 1 when γmax is set to 10 and 15 and in Antivirus 2 when γmax is set to 10.

In summary, it appears that there is no single method that works well for all datasets. If the value of γmax is
unknown, NBCB-e and PCGCE are the recommended choice for the Antivirus datasets, as they consistently
performs well across these datasets for all values of γmax. Similarly, NBCB-e, PCGCE and PCMCI+ are the
recommended choice for the Web datasets (Dynotears was excluded because as shown in Figures 6 and 7, it gives
almost a fully connected graph for the Web datasets). For the Ingestion dataset, VLiNGAM is the best choice.
Lastly, Dynotears is a better option for the MoM 1 and MoM 2 datasets due to its stability across different values
of γmax.

However, it is important to note that the best performance achieved (0.45 in Antivirus 2) is far from being
satisfactory for real world application.

In Figures 3,4,5, 6, 7, 8 and 9 we also give the the inferred graphs that correspond to the results in Table 2
(where γmax is set using the 15 seconds rule for the MoM datasets and using the 15 minutes results for the rest of
the datasets). In general, we can say that there is a lot of false positives and that Dynotears tend to give a fully
connected graph while constraint-based and hybrid based methods tend to give sparse graphs.



A.2 DATA EXAMINATION

Examination and visualization of time series is useful to observe trends, patterns, and dependencies in the data.
By analyzing the data beforehand, we can identify potential behavior change, seasonality, sleeping time series,
missing values or other time-dependent effects that may influence the outcomes we are interested in. Abnormal
behavior, sleeping time series and misaligned data are a common occurrence in Monitoring data.

A.2.1 MoM datasets

Since MoM dataset was created in a controlled environment, the time series are aligned because sampling is
uniformly collected at every second. There are also no missing values in this dataset, and no completely or
partially sleeping time series.

A.2.2 Ingestion activity dataset

As mentioned before, all the data are aligned for this dataset with sampling of 1 minute. Moreover, it contained
no missing values upon inspection. Figure 12 contains a clear example of behavior change (highlighted in red).
This is particularly interesting because the behavior change occurs in all time series approximately in the same
region. There are no completely sleeping time series in this dataset, PMDB and RTMB are partially sleeping.

A.2.3 Web activity dataset

Upon examination of the 10 time series, it was observed that the timestamps were not exactly aligned. It is
noteworthy to mention that there were no sleeping time series observed in this dataset. However, NPP, NetIn
and NetOut are partially sleeping. In terms of sampling, all time series had a sampling of 1 minute. To align
all the time series and make them of the same sampling, all the time series were resampled to 5 minutes using
either Strategy 1 or Strategy 2. Upon resampling, RamH and CpuG contained missing values, the maximum
number of missing values was 1 for both. The missing values were filled using simple linear interpolation of Pandas
dataframes. It is important to mention that there were missing values in the raw data, but when sampled to a
longer sampling the number of missing values were reduced. Afterwards, they were interpolated.

A.2.4 Antivirus activity dataset

This dataset contained 13 time series in total, and the timestamps were not exactly aligned. Moreover, the raw
data contained missing values. There were no completely sleeping time series observed in this dataset, but RP,
CUP,RV,CUV and MUP were partially sleeping. In terms of sampling, ChIE, T and ChP had an original sampling
of 5 minutes and the rest were 1 minute. To align all the time series and make them of the same sampling, all the
time series were resampled to 5 minutes using either Strategy 1 or Strategy 2. Upon resampling, four metrics
contained missing values. CUGV had 5 missing values with at most 1 consecutive missing value. CUV, ChP and
MUP had 219 missing values. However, there were at most 2 consecutive missing values in these time series, so
no large block of missing values was observed. The missing values were filled using simple linear interpolation of
Pandas data frames.

Table 7: Summary of different datasets.

MoM Ingestion Web Antivirus
Number sleeping time series after pre-processing 0 0 0 0

Number of partially sleeping time series after pre-processing 0 2 3 5
Sampling rate(s) before pre-processing 1 sec 1 min 1 min 1 & 5 mins

Contained missing values before pre-processing No No Yes Yes
Resampled after pre-processing 1 sec 1 min 5 mins 5 mins

Number of time series with missing values after resampling 0 0 2 4
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Figure 3: Inferred summary graph from MoM 1 dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.
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Figure 4: Inferred summary graph from MoM 2 dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.
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Figure 5: Inferred summary graph from Ingestion dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.
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Figure 6: Inferred summary graph from Web 1 dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.
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Figure 7: Inferred summary graph from Web 2 dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.
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Figure 8: Inferred summary graph from Antivirus 1 dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.
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Figure 9: Inferred summary graph from Antivirus 2 dataset. Red edges correspond to false positive, black edges
correspond to true positives and blue edges correspond to a true positive from one side and a false positive from
another side.



Figure 10: Overview of MoM 1 dataset.

Figure 11: Overview of MoM 2 dataset.



Figure 12: Overview of Ingestion data, behavior change regions approximately highlighted inside the red box.

Figure 13: Overview of raw Web data.



Figure 14: Overview of Web data after pre-processing 1.

Figure 15: Overview of Web data after pre-processing 2.



Figure 16: Overview of raw Antivirus data.

Figure 17: Overview of Antivirus data after pre-processing 1.



Figure 18: Overview of Antivirus data after pre-processing 2.
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