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Abstract

There i1s an increasing interest in algorithms to
learn invariant correlations across training
environments. A big share of the current pro-
posals finds theoretical support in the causality
literature, but how usetul are they in practice?

We propose a benchmark of six linear unit
tests that can be used to evaluate the robustness
to spurious correlations. Following initial exper-
iments, none of the recently proposed invariant
learning algorithms |1, 4, 3| pass all tests.

By providing the code to replicate our exper-
iments, we hope that our unit tests become a
standard stepping stone for researchers in out-of-
distribution generalization.

https://www.github.com/
facebookresearch/InvarianceUnitTests

Shared assumptions

We collect datasets D, = {(z7,v;)}.5, con-
talning n, samples for mn.., environments:

665_{E}nem .

The input feature Vector .”L'e = (., az'gpu) e R

contains features x;,, € R% that ehmt invariant

correlations and features xspu e R™ that elicit
spurious correlations such that d = dj,, + dgp.
The goal is to construct invariant predictors that
estimate the target variable vy~ by relying on z,..

. . €
and 1gnoring Ty,

To measure the extent to which an algorithm
ignores the features xspu, we sample a train split,
a validation split, and a test split per problem
and environment. In the test split, the features

e .
Tqyy, are shulfled at random across examples. This

way, only those predictors ignoring xspu will achieve
minimal test error.
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Ex1: Regression from causes and effects

Baseline results and analysis

A linear least-squares regression problem where features
contain causes and effects of the target variable [1].
To construct the datasets D, for every e € £ and ¢ =1,...,n,, sample:

mVi - Ndmv(o (U ) )’ 37@? — (anviaxgpui)a
yz dmv( mV X ( ) ) ye g 1 y
stpu i dspu(W:Ey y’t? )7 v d dan (

Ex2: Cows vs camels

In the spirit of [2, 1], we add a binary classification problem to imi-
tate the introductory example “most cows appear in grass and most
camels appear in sand”.

To construct the datasets D, for every e € £ and 72 =1, ...

ji ~ Categorical (p's’, (1 =p')s,p (1 =s), (1 =p )(1=s5));

, N, sample:

:Efe - (~/\/’al1 (07 10_1) + :ucow) * Vanimal if ],f S {17 2}7
v, (N mV(O 10_1) + ,ucamel) * Vanimal 1 ]ze = {374}7
gje N (Ndspu(O 10 ) + ,ugrass) * Ubackground it ]7,6 = {17 4}?
P (N Spu(O 10 ) + :usand) " Phackground it ]Ze < {2’ 3}’
e o1t at, >0,
L < (minv,iaxspu,i)a Yi < 0 6186,

Ex3: Small invariant margin

Spiral binary classification: the first two dimensions offer an invariant
small-margin decision boundary. The rest of the dimensions offer a
changing large-margin decision boundary. Linear version of the spiral

problem [4].

To construct the datasets D, for every e € £ and 2 =1,...,n,, sample:
¢ (1

y; ~ Bernoulli (5) ,

¢ Ndmv("'% 10 ) if yZ = 0, ) ) )
e Ndmv( s 10 ) if yz = 1 Lj (xinv,iaxSpu,i)'
’ Nds (+,u 10 ) if y; =0,

Lspu,i ™ o
P Ndspu( 161070 iyl =1

Please refer to our paper and codebase for a full list of
parameters and their values.

We define three additional problems: scrambled” Varlatlons. Scrambled variations build

observed datasets D° = {(S ' z¢, ! )}Z . where S € R™"is a random rotation matrix fixed
for all environments e € £.

We evaluate ERM[5], IRM[1], IGA[3], AND-mask[4] on our six problems

Oracle is a version of ERM Where all data splits Contam randomized xspu, and therefore are
trivial to ignore. The purpose of this method is to understand the achievable upper bound
performance in our problems.
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Fig. 1: Test error averaged across environments (EO, E1, E2) for

(dinva dspuanenv) = (57573)
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Fig. 2: Test error averaged across environments for ANDMask, ERM, IGA, IRMv1 and

Oracle on the unit-tests as a function of the ratio 0.,, = % at fixed dimensions
spu

(diny, dsp) = (5,5) (top) and as a function of dg,, = Sp“ for (diyy, Neyy) = (5, 3) (bottom).
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