LINEAR UNIT TESTS FOR INVARIANCE DISCOVERY

Benjamin Aubin[†], Agnieszka Słowik[†], Martin Arjovsky[‡], Leon Bottou[†], David Lopez-Paz[†]

†Facebook AI Research
†INRIA - PSL Research University

Abstract

There is an increasing interest in algorithms to learn **invariant correlations across training environments**. A big share of the current proposals finds theoretical support in the causality literature, but how useful are they in practice?

We propose a benchmark of six linear unit tests that can be used to evaluate the robustness to spurious correlations. Following initial experiments, none of the recently proposed invariant learning algorithms [1, 4, 3] pass all tests.

By providing the code to replicate our experiments, we hope that our unit tests become a standard stepping stone for researchers in out-of-distribution generalization.

https://www.github.com/ facebookresearch/InvarianceUnitTests

Shared assumptions

We collect datasets $D_e = \{(x_i^e, y_i^e)\}_{i=1}^{n_e}$ containing n_e samples for n_{env} environments: $e \in \mathcal{E} = \{E_j\}_{j=0}^{n_{\text{env}}-1}$.

The input feature vector $x^e = (x_{\text{inv}}^e, x_{\text{spu}}^e) \in \mathbb{R}^d$ contains features $x_{\text{inv}}^e \in \mathbb{R}^{d_{\text{inv}}}$ that elicit invariant correlations and features $x_{\text{spu}}^e \in \mathbb{R}^{d_{\text{spu}}}$ that elicit spurious correlations such that $d = d_{\text{inv}} + d_{\text{spu}}$. The goal is to construct invariant predictors that estimate the target variable y^e by relying on x_{inv}^e , and ignoring x_{spu}^e .

To measure the extent to which an algorithm ignores the features $x_{\rm spu}^e$, we sample a train split, a validation split, and a test split per problem and environment. In the test split, the features $x_{\rm spu}^e$ are shuffled at random across examples. This way, only those predictors ignoring $x_{\rm spu}^e$ will achieve minimal test error.

Ex1: Regression from causes and effects

A linear least-squares regression problem where features contain causes and effects of the target variable [1].

To construct the datasets D_e for every $e \in \mathcal{E}$ and $i = 1, \ldots, n_e$, sample:

$$x_{\text{inv},i}^{e} \sim \mathcal{N}_{d_{\text{inv}}}(0, (\sigma^{e})^{2}), \qquad x_{i}^{e} \leftarrow (x_{\text{inv},i}^{e}, x_{\text{spu},i}^{e}), \\ \frac{\tilde{y}_{i}^{e} \sim \mathcal{N}_{d_{\text{inv}}}(W_{yx} x_{\text{inv},i}^{e}, (\sigma^{e})^{2}), \\ x_{\text{spu},i}^{e} \sim \mathcal{N}_{d_{\text{spu}}}(W_{xy} \tilde{y}_{i}^{e}, 1), \qquad y_{i}^{e} \leftarrow \frac{2}{d} \cdot 1_{d_{\text{inv}}}^{\mathsf{T}} \tilde{y}_{i}^{e};$$

Ex2: Cows vs camels

In the spirit of [2, 1], we add a binary classification problem to imitate the introductory example "most cows appear in grass and most camels appear in sand".

To construct the datasets D_e for every $e \in \mathcal{E}$ and $i = 1, ..., n_e$, sample: $j_i^e \sim \text{Categorical}(p^e s^e, (1 - p^e) s^e, p^e (1 - s^e), (1 - p^e) (1 - s^e));$

$$x_{\text{inv},i}^{e} \sim \begin{cases} (\mathcal{N}_{d_{\text{inv}}}(0, 10^{-1}) + \mu_{\text{cow}}) \cdot \nu_{\text{animal}} & \text{if } j_{i}^{e} \in \{1, 2\}, \\ (\mathcal{N}_{d_{\text{inv}}}(0, 10^{-1}) + \mu_{\text{camel}}) \cdot \nu_{\text{animal}} & \text{if } j_{i}^{e} \in \{3, 4\}, \end{cases}$$

$$x_{\text{spu},i}^{e} \sim \begin{cases} (\mathcal{N}_{d_{\text{spu}}}(0, 10^{-1}) + \mu_{\text{grass}}) \cdot \nu_{\text{background}} & \text{if } j_{i}^{e} \in \{1, 4\}, \\ (\mathcal{N}_{d_{\text{spu}}}(0, 10^{-1}) + \mu_{\text{sand}}) \cdot \nu_{\text{background}} & \text{if } j_{i}^{e} \in \{2, 3\}, \end{cases}$$

$$x_{i}^{e} \leftarrow (x_{\text{inv},i}^{e}, x_{\text{spu},i}^{e}); \qquad y_{i}^{e} \leftarrow \begin{cases} 1 & \text{if } 1_{d_{\text{inv}}}^{\top} x_{i,\text{inv}}^{e} > 0, \\ 0 & \text{else}; \end{cases}$$

Ex3: Small invariant margin

Spiral binary classification: the first two dimensions offer an invariant small-margin decision boundary. The rest of the dimensions offer a changing large-margin decision boundary. Linear version of the spiral problem [4].

To construct the datasets D_e for every $e \in \mathcal{E}$ and $i = 1, \ldots, n_e$, sample:

$$y_{i}^{e} \sim \text{Bernoulli}\left(\frac{1}{2}\right),$$

$$x_{\text{inv},i}^{e} \sim \begin{cases} \mathcal{N}_{d_{\text{inv}}}(+\gamma, 10^{-1}) & \text{if } y_{i}^{e} = 0, \\ \mathcal{N}_{d_{\text{inv}}}(-\gamma, 10^{-1}) & \text{if } y_{i}^{e} = 1; \end{cases} \qquad x_{i}^{e} \leftarrow (x_{\text{inv},i}^{e}, x_{\text{spu},i}^{e}),$$

$$x_{\text{spu},i}^{e} \sim \begin{cases} \mathcal{N}_{d_{\text{spu}}}(+\mu^{e}, 10^{-1}) & \text{if } y_{i}^{e} = 0, \\ \mathcal{N}_{d_{\text{spu}}}(-\mu^{e}, 10^{-1}) & \text{if } y_{i}^{e} = 1; \end{cases}$$

Please refer to our paper and codebase for a full list of parameters and their values.

Baseline results and analysis

We define three additional problems: "scrambled" variations. Scrambled variations build observed datasets $D^e = \{(S^{\mathsf{T}} x_i^e, y_i^e)\}_{i=1}^{n^e}$, where $S \in \mathbb{R}^{d \times d}$ is a random rotation matrix fixed for all environments $e \in \mathcal{E}$.

We evaluate ERM[5], IRM[1], IGA[3], AND-mask[4] on our six problems.

Oracle is a version of ERM where all data splits contain randomized x_{spu}^e , and therefore are trivial to ignore. The purpose of this method is to understand the achievable upper bound performance in our problems.

Fig. 1: Test error averaged across environments (E0, E1, E2) for $(d_{\text{inv}}, d_{\text{spu}}, n_{\text{env}}) = (5, 5, 3).$

Fig. 2: Test error averaged across environments for ANDMask, ERM, IGA, IRMv1 and Oracle on the unit-tests as a function of the ratio $\delta_{\text{env}} = \frac{n_{\text{env}}}{d_{\text{spu}}}$ at fixed dimensions

 $(d_{\text{inv}}, d_{\text{spu}}) = (5, 5) \text{ (top)}$ and as a function of $\delta_{\text{spu}} = \frac{d_{\text{spu}}}{d_{\text{inv}}}$ for $(d_{\text{inv}}, n_{\text{env}}) = (5, 3) \text{ (bottom)}$.

References

- [1] Martin Arjovsky et al. "Invariant risk minimization". In: arXiv preprint arXiv:1907.02893 (2019).
- [2] Sara Beery, Grant Van Horn, and Pietro Perona. "Recognition in terra incognita". In: ECCV (2018).
- [3] Masanori Koyama and Shoichiro Yamaguchi. "Out-of-distribution generalization with maximal invariant predictor". In: arXiv preprint arXiv:2008.01883 (2020).
- [4] Giambattista Parascandolo et al. "Learning explanations that are hard to vary". In: $arXiv\ preprint\ arXiv:2009.00329\ (2020)$.
- [5] Vladimir Vapnik. "Statistical learning theory Wiley". In: New York (1998).