
A Synthetic Data Experiments

Here we provide further details about the synthetic datasets considered for the experiments.

A.1 5 Models

We provide details about the 5 PGEMs in Figure 1. In what follows, the windows corresponding to
the parents are listed in the same order as parents. We use binary vectors to indicate parental states,
again in the same order as listed parents. For instance, if a node A has parents [B,C] then windows
[15, 30] represent information that the windows from B and C to A respectively are 15 and 30. The
binary parental state [0, 1] implies that only C has occurred in its window, whereas [1, 1] represents
the case where both B and C have occurred in their respective windows.

Model 1

• parents = {’A’: [], ’B’: [], ’C’: [’B’], ’D’: [’A’, ’B’], ’E’: [C’]}
• windows = {’A’: [], ’B’: [], ’C’: [15], ’D’: [15, 30], ’E’: [15]}
• lambdas = { ’A’: {[]: 0.2}, ’B’: {[]: 0.05}, ’C’: {[0]: 0.2, [1]: 0.3}, ’D’: {[0, 0]: 0.1, [0,

1]: 0.05, [1, 0]: 0.3, [1, 1]: 0.2}, ’E’: {[0]: 0.1, [1]: 0.3}, }

Model 2

• parents = {’A’: [’B’], ’B’: [’B’], ’C’: [’B’], ’D’: [’A’], ’E’: [’C’]}
• windows = {’A’: [15], ’B’: [30], ’C’: [15], ’D’: [30], ’E’: [30]}
• lambdas = { ’A’: {[0]: 0.3, [1]: 0.2}, ’B’: {[0]: 0.2, [1]: 0.4}, ’C’: {[0]: 0.4, [1]: 0.1}, ’D’:
{[0]: 0.05, [1]: 0.2}, ’E’: {[0]: 0.1, [1]: 0.3} }

Model 3

• parents = {’A’: [’B’, ’D’], ’B’: [], ’C’: [’B’, ’E’], ’D’: [’B’], ’E’: [’B’]}
• windows = {’A’: [15, 30], ’B’: [], ’C’: [15, 30], ’D’: [30], ’E’: [30]}
• lambdas = { ’A’: {[0,0]: 0.1, [0,1]: 0.05, [1,0]: 0.3, [1,1]: 0.2}, ’B’: {[]: 0.2}, ’C’: {[0,0]:

0.2, [0,1]: 0.05, [1,0]: 0.4, [1,1]: 0.3}, ’D’: {[0]: 0.1, [1]: 0.2}, ’E’: {[0]: 0.1, [1]: 0.4} }

Model 4

• parents = {’A’: [’B’], ’B’: [’C’], ’C’: [’A’], ’D’: [’A’, ’B’], ’E’: [’B’, ’C’]}
• windows = {’A’: [15], ’B’: [30], ’C’: [15], ’D’: [15, 30], ’E’: [30, 15]}
• lambdas = { ’A’: {[0]: 0.05, [1]: 0.2}, ’B’: {[0]: 0.1, [1]: 0.3}, ’C’: {[0]: 0.4, [1]: 0.2},

’D’: {[0, 0]: 0.1, [0, 1]: 0.3, [1, 0]: 0.05, [1, 1]: 0.2}, ’E’: {[0, 0]: 0.1, [0, 1]: 0.02, [1, 0]:
0.4, [1, 1]: 0.1} }

Model 5

• parents = {’A’: [’A’], ’B’: [’A’, ’C’], ’C’: [’C’], ’D’: [’A’, ’E’], ’E’: [’C’, ’D’]}
• windows = {’A’: [15], ’B’: [30, 30], ’C’: [15], ’D’: [15, 30], ’E’: [15, 30]}
• lambdas = { ’A’: {[0]: 0.1, [1]: 0.3}, ’B’: {[0,0]: 0.01, [0,1]: 0.05, [1,0]: 0.1, [1,1]: 0.5},

’C’: {[0]: 0.2, [1]: 0.4}, ’D’: {[0, 0]: 0.05, [0, 1]: 0.02, [1, 0]: 0.2, [1, 1]: 0.1}, ’E’: {[0,
0]: 0.1, [0, 1]: 0.01, [1, 0]: 0.3, [1, 1]: 0.1}, }

A.2 20 Randomly Generated Models

PGEMs were randomly generated similar to the approach described in the supplementary material in
Bhattacharjya et al. [2018]. For a PGEM over label set L, for each node, the number of its parents K
are chosen uniformly from the parameters Kmin = 0, · · · ,Kmax = b|L|/2c in integer increments.
A random subset of size K from L is then chosen as its parent set. Windows for each edge are
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generated uniformly from wmin = 15 to wmax = 30 in increments of �w = 5. For the conditional
intensity rates, we assume that each node’s parent either has a multiplicative amplification or damp-
ing rate beyond a baseline rate of r/|L|, where r is generated uniformly between rmin = 0.05 and
rmax = 0.2. Nodes that always increase occurrence rate for their children are obtained by randomly
choosing a subset LA of size KA = b|L|/2c from L. Nodes in the sets LA and L\LA have an
amplification and damping rate of �A = 1.5 and �D = 0.25 respectively. These numbers are chosen
to roughly keep the number of events N generated by each model to be commensurate with T , but
this is not enforced rigorously, allowing the dataset sizes to vary across models.

A.3 Threshold Grid and Baseline Information

The PGEM BIC learner was run with window increment ✏ = 0.001 for window search.

CPCIM was deployed with the following hyper-parameters. The structural prior  was set to 0.1. For
conjugate prior pseudo-count ↵ and pseudo-duration � for each label, we used identical values for
all labels. We compute ratio ⇢ of the total number of all arrivals over all labels to the total duration
for all labels (the product of the number of labels and the horizon T under consideration) which
provides an empirically based estimate of the arrival rate. We ran experiments using ↵ = K⇢,
� = K, for various values of K = 10, 20, . . . , where higher values of K increase the prior’s
influence. K = 20 was chosen. Intervals of the form [t � t⇤, t) are the basis functions, where we
chose t⇤ 2 {1, 2, 3, 4, 5, 6, 7, 15, 30, 45, 60, 75, 90, 180}.

Tester threshold parameters for training were chosen from:

• NI Tester: {0.3, 0.25, 0.2, 0.15, 0.1, 0.05, 0.03}
• LR Tester: {0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5}

B Proofs

B.1 Proof for Lemma 4

This follows from the definition of a GEM. For a PGEM, if a node X has parent nodes U, then
at any time with parent condition u (as determined by recent historical occurrences in the corre-
sponding windows), the rate at which X occurs is �x|u. Additional information about historical
occurrences of any non-parent has no effect on the conditional intensity rate at any time, therefore
process independence is true for any non-parent given the history of parent event labels.

B.2 Proof for Theorem 7

The global Markov property is satisfied when any �⇤-separation statement for valid X , Y , Z implies
process independence Y 6! X|Z. The separation itself is defined based on a graph that cuts outgoing
edges, except self-loops, from X . We refer to this graph as G̃D

X ; the superscript indicates the graph
is directed. Consider an undirected graph formed from G̃D

X by taking the subgraph over ancestors of
X , Y , Z, and connecting edges between any parents with common children if they are not already
connected (this operation is known as ‘moralizing’). We denote this as G̃U

X .

Suppose X is �⇤-separated from Y given Z in G̃D
X . We consider a node to be a blocker in a path if it

prevents a path from connecting X and Y given Z for the separation criterion under consideration.
Note that if a path is being blocked by a non-collider in G̃D

X , it will also be blocked by that non-
collider in the undirected version G̃U

X . Consider a path that is blocked by a collider in G̃D
X . In this

path, X must have an incoming edge in G̃D
X as outgoing edges have been removed. Furthermore,

the collider must not be an ancestor of Z as it is a path blocker. There must be a path in G̃U
X from

the corresponding collider node to either X or Y . It can be shown that a violation occurs for the
assumption of X being �⇤-separated from Y given Z; some other non-blocking path must exist
between X and Y as this path cannot include Z, otherwise the collider would be an ancestor of Z,
which is not possible. The original path must be blocked by the collider in G̃U

X . The result follows
from applying Theorem 3.4 in Didelez [2008] which uses graphical separation in G̃U

X .
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B.3 Proof for Theorem 9

The PC algorithm for GEMs is a variation on PC for Bayesian networks with the additional point of
simplification that a step for orienting edges to adhere to acyclicity constraints is not needed. Note
that the global dynamic Markov property applies to a PGEM from a prior theorem. Together with
the causal dependence assumption, this implies that the independencies in the underlying marked
point process are the same as those that can be determined from �⇤-separation in the graph. The ar-
gument that a perfect process independence tester with the GEMs PC algorithm results in sound and
consistent learning follows the argument for the PC algorithm for Bayesian networks. The equiva-
lence of independencies ensures that PC produces no false positives, while the causal dependence
assumption ensures no false negatives.
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