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A B S T R A C T

Humans are generally thought to be experts at face recognition, and yet identity perception for unfamiliar faces
is surprisingly poor compared to that for familiar faces. Prior theoretical work has argued that unfamiliar face
identity perception suffers because the majority of identity-invariant visual variability is idiosyncratic to each
identity, and thus, each face identity must be learned essentially from scratch. Using a high-performing deep
convolutional neural network, we evaluate this claim by examining the effects of visual experience in untrained,
object-expert and face-expert networks. We found that only face training led to substantial generalization in an
identity verification task of novel unfamiliar identities. Moreover, generalization increased with the number of
previously learned identities, highlighting the generality of identity-invariant information in face images. To
better understand how familiarity builds upon generic face representations, we simulated familiarization with
face identities by fine-tuning the network on images of the previously unfamiliar identities. Familiarization
produced a sharp boost in verification, but only approached ceiling performance in the networks that were
highly trained on faces. Moreover, in these face-expert networks, the sharp familiarity benefit was seen only at
the identity-based output probability layer, and did not depend on changes to perceptual representations; rather,
familiarity effects required learning only at the level of identity readout from a fixed expert representation. Our
results thus reconcile the existence of a large familiar face advantage with claims that both familiar and un-
familiar face identity processing depend on shared expert perceptual representations.

1. Introduction

Faces are perhaps the most important class of visual stimuli for
humans, and adult humans have developed substantial expertise for
their perception (Diamond & Carey, 1986), performing effortless re-
cognition and recall of associated identity-specific semantic informa-
tion for a very large number of known individuals. However, the nature
of this expertise has been the subject of multiple substantive debates.
Researchers have long argued as to whether human expertise for faces
is supported by a modular neural and cognitive mechanism dedicated to
face recognition (Kanwisher, McDermott, & Chun, 1997; Kanwisher &
Yovel, 2006; Tsao & Livingstone, 2008) or whether it arises through
domain-general learning rules which could equally be applied to other
categories such as artificial “Greeble” stimuli (Gauthier & Tarr, 1997;
Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999b), or birds and cars
(Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999a; Gauthier,
Skudlarski, Gore, & Anderson, 2000) under appropriate task demands

(Tarr & Gauthier, 2000). The disagreement is not whether humans are
experts at face recognition, it is whether this expertise is domain-gen-
eral or domain-specific.

In addition to this ongoing debate, an even more basic claim has
recently been called into question, challenging the tenet that humans
are experts at face recognition. Young and Burton (2018) argued that
expertise for face recognition is restricted to familiar faces, and that
perceptual performance with unfamiliar faces does not meet the qua-
lifications for expertise. The evidence they offer for this proposition
comes from a body of research showing that humans perform more
poorly at processing the faces of unfamiliar versus familiar individuals.
For example, across four experiments requiring participants to match
unfamiliar faces, performance was highly error prone, especially when
matches varied in viewpoint and expression (Bruce et al., 1999). As
illustrated in Fig. 1, it can be quite difficult to determine whether two
images of unfamiliar individuals are of the same identity (Fig. 1A), but
if we are familiar with them, the task becomes substantially easier
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(Fig. 1B). Beyond verification, when asked to sort photographs of two
individuals into identity-specific piles, participants familiar with the
identities correctly sorted the photos into two piles, whereas individuals
unfamiliar with the identities used an average of seven piles; whereas
images of different identities were rarely confused as the same identity,
images of the same identity were frequently separated into multiple
piles, reflecting the failure to group highly variable images of the same
identity together (Jenkins, White, Van Montfort, & Mike Burton, 2011).
Finally, in addition to demonstrating that unfamiliar face identity
processing was less robust than that of familiarized faces, Megreya and
Burton (2006) demonstrated that upright unfamiliar and familiar face
matching accuracy correlated only weakly and non-significantly
(r=.277, p> .05), whereas the correlation between performance on
upright unfamiliar face matching and inverted familiar face matching
was strong and highly significant (r=.673, p< .01), leading the au-
thors to title their article Unfamiliar faces are not faces. Together, these
results indicate that unfamiliar and familiar face perception may be
quite different, and perhaps recruit qualitatively different perceptual
mechanisms.

To account for these results, Kramer, Young, Day, and Burton
(2017) and Kramer, Young, and Burton (2018) developed a computa-
tional model of face recognition of unfamiliar and familiar faces. This
model falls within the class of Active Appearance Models (Cootes,
Taylor, Cooper, & Graham, 1995; Cootes, Edwards, & Taylor, 1998) in
which the goal is first to account for variations in face landmark posi-
tion, and then to derive and analyze a shape-free appearance re-
presentation. Specifically, their model requires human input for a semi-
automated assignment of landmarks to positions along key facial lo-
cations (i.e., locating the outline of the lips, nose, and eyes). Images are
then linearly aligned to the average shape representation, and the re-
sulting aligned images are analyzed for “shape-free” texture/appear-
ance. To simulate unfamiliar recognition, Kramer and colleagues per-
formed principal components analysis (PCA) on the texture
representations of a set of familiar individuals, and projected images of
unfamiliar individuals into this space. In order to simulate familiar

recognition, they performed a linear discriminant analysis (LDA) on the
PCA representation, yielding a PCA + LDA space. Intriguingly, whereas
the PCA + LDA space separated familiar individuals well, the PCA
space alone did a very poor job at separating unfamiliar individuals
(Kramer et al., 2018). In contrast, the PCA space was shown to capture
non-identity attributes such as race and gender (Kramer et al., 2017),
which humans robustly perceive in unfamiliar individuals. The re-
searchers argued that this model helps explain why human observers
struggle at unfamiliar face recognition, but are robust at familiar face
recognition: the majority of within-identity face variability is idiosyn-
cratic and must be learned for each individual separately. Taking all of
this into consideration, Young and Burton (2018) claimed that the re-
cognition of unfamiliar faces does not meet the criteria for expertise,
which is characterized by high accuracy and by relative automaticity of
performance.

The claim that human face expertise is limited to familiar faces has
been met with sharp disagreement from researchers who view face
perception broadly as a specific instance of developed visual expertise.
For example, Sunday and Gauthier (2018) argued that humans are
experts at unfamiliar face recognition when compared to the appro-
priate baseline of general object recognition, and that expertise is not
determined by performance level per se but by the extent of develop-
ment of the perceptual skill. Such development can be induced for
novel stimuli in the laboratory (e.g. Greebles; Gauthier et al., 1999a),
and is associated with characteristic error patterns, such as the inver-
sion effect assumed to indicate configural processing which is greater
for learned than unlearned stimulus categories. Rossion (2018) further
argued that humans are expert at all forms of visual face recognition,
also pointing to key error patterns found for unfamiliar faces—in-
cluding the inversion effect (Valentine, 1988), the other race effect
(Bothwell, Brigham, & Malpass, 1989), and the composite face illusion
(Young, Hellawell, & Hay, 2013)—as well as neuropsychological evi-
dence, where the substantially better performance of normal adults
compared to that of individuals with prosopagnosia (both congenital
(Behrmann & Avidan, 2005) and acquired (Damasio, Damasio, & Van

Fig. 1. Verifying the identity of images of unfamiliar faces can be much harder than doing so for familiar faces. Most American readers will be familiar with the
American celebrities on the right, but not with the Australian celebrities on the left. The face verification task requires the participant to determine whether pairs of
images are of the same or a different identity. The top row shows difficult identity matches, and the bottom row shows difficult identity non-matches.
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Hoesen, 1982)) demonstrates that unfamiliar face recognition is a
highly and specifically developed skill. To explain the relative im-
provement for familiar faces, Rossion (2018) suggested that the ad-
vantage “may be based on associated semantic, affective, and lexical
(rather than visual) processes/representations” (p. 471). Finally,
Abudarham, Shkiller, and Yovel (2019) demonstrated that the same
critical features (Abudarham & Yovel, 2016) are used for both un-
familiar and familiar face recognition, suggesting that the difference
between unfamiliar and familiar face recognition may be conceptual
rather than perceptual.

In the current work, we attempt to combine many aspects of these
various accounts in simulations that clarify the extent of human ex-
pertise in unfamiliar and familiar face recognition, and the reason why
a strong advantage is seen for the latter over the former. Although
Kramer et al. (2018) claimed that much of the variability of face images
is idiosyncratic, we argue that they substantially underestimated
human performance on unfamiliar face recognition, thereby over-
estimating the share of idiosyncratic variability in face recognition.
Moreover, given that their model requires human input at the align-
ment stage—a process which obscures the representations required to
perform such landmarking—the model does not provide a good eva-
luation of the expertise underlying human unfamiliar face recognition.

Given recent successes in deep learning for classification of object
and face images (Cao, Shen, Xie, Parkhi, & Zisserman, 2018;
Krizhevsky, Sutskever, & Hinton, 2012; Parkhi, Vedaldi, & Zisserman,
2015; Simonyan & Zisserman, 2015), we hypothesized that a deep
convolutional neural network (DCNN) trained on faces would be cap-
able of achieving human-level performance on both unfamiliar and
familiar face recognition. Testing performance on ambient images from
Labeled Faces in the Wild (Huang, Ramesh, Berg, & Learned-Miller,
2007), we find that a DCNN trained on thousands of face identities
substantially outperforms a fully automated Active-Appearance Model
conceptually similar to that used by Kramer et al. (2017) and Kramer
et al. (2018). We go on to analyze the aspects of visual experience that
are necessary to achieve high performance in the network. If the ne-
cessary visual experience is both extensive and face-specific, it would
suggest that unfamiliar face recognition, like familiar face recognition,
is a specific learned expertise (Sunday & Gauthier, 2018).

To determine the extent to which human-level face verification
performance depends on extensive experience with faces per se, and not
just with general object categories, we manipulated the pretraining
conditions—both the extent and domain of visual experience—of the
DCNN before testing it on a new set of unfamiliar faces. To understand
the extent to which idiosyncratic visual experience with specific iden-
tities is critical, we fine-tuned the network on a training set of images of
the previously unfamiliar face identities, and then tested verification on
the same images for which we calculated unfamiliar verification per-
formance. To examine the perceptual level at which successful perfor-
mance emerges, we tested verification performance using representa-
tions at several layers throughout the network. We also examined the
extent to which familiarity effects depend on perceptual comparisons,
as opposed to learning to map fixed perceptual features to identity re-
presentations. Finally, we compared the performance of our network
directly with data obtained from humans performing a difficult face
verification task in order to confirm that our conclusions about the role
of prior experience, the extent of expertise for unfamiliar recognition,
and the computational role of familiarity apply to the typical human
observer.

2. Methods

2.1. A fully-automated shape-free linear texture analysis model

We performed a conceptual replication of the model used by Kramer
et al. (2017) and Kramer et al. (2018). Rather than determine land-
marks for thousands of images by hand, we opted for a fully automated

approach. We used a pretrained dense feature-based active appearance
model to compute shape-free appearance representations. This mod-
el—implemented in the menpofit toolbox (Antonakos, Alabort-I-
Medina, Tzimiropoulos, & Zafeiriou, 2015)—was fit on 3283 manually-
landmarked images across multiple databases. In training, the model
learns an alignment based on the Lucas-Kanade algorithm. The exact
pretrained model can be found at https://menpofit.readthedocs.io/en/
stable/api/menpofit/aam/load_balanced_frontal_face_fitter.html. Un-
familiar face representations were obtained directly from the appear-
ance representation of the model, defined as the principal component
scores of a PCA solution taken over post-aligned pixels in the training
images. Familiar face representations were obtained as the linear pro-
jection along the normal vector of an optimally separating hyper-plane
obtained through linear discriminant analysis (LDA) trained on a set of
training images of the familiarized identities, as in Kramer et al. (2017)
and Kramer et al. (2018).

2.2. A deep convolutional neural network model of visual recognition

Convolutional neural networks (CNNs) are a broad class of machine
learning models producing state-of-the-art performance in both com-
puter vision (Krizhevsky et al., 2012) and in predicting brain responses
in macaque (Yamins et al., 2014) and human visual cortex (Khaligh-
Razavi & Kriegeskorte, 2014), as well as in predicting human beha-
vioral similarity ratings. Rather than being hand-coded, CNNs learn
representations from data, and most commonly, from associating data
with appropriate labels through supervised learning. The defining
characteristic of a CNN is the convolutional layer, which contains a set
of filters with a fixed, restricted spatial receptive field, which are ap-
plied to all locations in the input (i.e., convolved with the input) to
produce a set of feature maps (one per filter). The restricted spatial
receptive field was inspired by this well-known property of V1 neurons
first discovered by Hubel and Wiesel (1959) (LeCun, Bottou, Bengio, &
Haffner, 1998; Zeiler & Fergus, 2014). While there is no known me-
chanism by which the brain explicitly computes convolution, the con-
volution operator has proven to be useful compared with non-con-
volutional locally-connected layers, due to a massive reduction in
model complexity through an inductive bias (i.e., prior) that image
features found in one location may be found in other locations. Most
CNNs contain a pooling operation following each convolution that in-
duces some spatial invariance to local shifts of the input data. Similarly
to convolution, the pooling operation was inspired the discovery of
"simple" and "complex" cells in primary visual cortex, where complex
cells respond to the preferred stimulus over a larger range than simple
cells, appearing to implement an OR operator over simple cells in
nearby regions (Hubel & Wiesel, 1962). However, pooling is not a de-
fining characteristic of CNNs and many state-of-the-art models forego
pooling (Springenberg, Dosovitskiy, Brox, & Riedmiller, 2015), instead
using stride> 1 in convolutional layers to progressively downsample
feature maps as network depth increases (He, Zhang, Ren, & Sun,
2016). Deep convolutional neural networks (DCNNs) are simply CNNs
constrained to contain at least two “hidden” (learned) layers of features
between input and output layers. The hierarchical organization of
DCNNs containing multiple hidden layers is broadly inspired by the
hierarchical organization of the visual cortex (see, e.g. Felleman & Van
Essen, 1991; Yamins & DiCarlo, 2016).

2.2.1. Architecture
We used the VGG-16 DCNN architecture in all of our simulations

(Simonyan & Zisserman, 2015), shown in Fig. 2. This architecture
achieved state-of-the-art performance in ImageNet object recognition at
the time of its publication, and has also been demonstrated to be a
highly effective architecture for face recognition (Parkhi et al., 2015).
As seen, the network contains 5 convolutional “blocks”, containing 2, 2,
3, 3, and 3 convolutions per layer, respectively, following by max
pooling and positive rectification. For simplicity, we refer to the output
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of the nth convolutional block as convn. The convolutional layers are
followed by 3 fully-connected layers, where the first two (fc6 and fc7)
are subject to rectification, and the last (fc8) is subject to a softmax
operation, converting unit activations into an explicit probability dis-
tribution over known categories/identities. For simplicity, we refer to
the rectified output of the first two fully-connected layers as fc6 and fc7,
the pre-softmax output of the last fully-connected layer as fc8, and the
post-softmax probability distribution as prob.

2.2.2. Pretraining
As a means of assaying the nature of pre-existing expertise needed

for face recognition, we simulated three initial states of the network: 1)
randomly initialized, 2) pretrained on objects, and 3) pretrained on
faces. For pretraining on objects, we used a subset of 584 categories
from the ImageNet large-scale image categorization challenge
(Russakovsky et al., 2015) for which entry-level labels were available
(although not used here) (Ordonez, Deng, Choi, Berg, & Berg, 2013).
The images were divided into a training set (for adapting the network
weights) and a validation set (for adapting the learning rate to avoid
overfitting) as provided by the 2012 ImageNet Large Scale Visual Re-
cognition Challenge (ILSVRC2012). For pretraining on faces, we used
the VGGFace2 database (Cao et al., 2018), and selected a subset of
identities that resulted in a close match in total number of images with
our ImageNet database, and that did not overlap with the other data-
bases we used for verification experiments. We manually created a
validation set using 10% of the training data, such that the total images
in the training and validation sets closely matched the numbers for the
ImageNet set.

For each network, we used back-propagation to perform stochastic
gradient descent in cross-entropy error, adapting the network weights
to minimize the discrepancy between the identity activation generated
by the network when presented with each image in the training set
(using minibatches of 256 images sampled randomly without replace-
ment each epoch) and the correct identity label for that image. An in-
itial learning rate of 0.01 was allowed to decrease 4 times by a factor of
10 upon reaching a stable plateau in performance on the validation set,
before performing early stopping at the 5th plateau, up to 50 epochs of
training. All models converged within 50 epochs.

Pretraining was performed using the PyTorch neural network
modeling package (Paszke et al., 2017). Code for setting up our image
databases from the original ImageNet and VGGFace2 databases, for

training the models, and for performing and visualizing the results of
simulations will be made available on the GitHub page for this project
(https://www.github.com/viscog-cmu/familiarity_sims).

2.3. Modeling familiarization through fine-tuning DCNNs

2.3.1. Experiments on Labeled Faces in the Wild
After pretraining, we performed fine-tuning of each network on a

new set of face identities (familiarization), using the deep-funneled
(aligned) images (Huang, Mattar, Lee, & Learned-Miller, 2012) of the
Labeled Faces in the Wild (LFW) database (Huang et al., 2007). Iden-
tities with at least 18 images were selected and 10 images were held out
for the test set. Verification was tested before, throughout, and after
fine-tuning, where verification before fine-tuning corresponds to un-
familiar performance, and verification after fine-tuning corresponds to
familiar performance. In the first epoch of fine-tuning (after testing
unfamiliar verification), we appended new identity units to the existing
ones, so that the network could learn to identify the new individuals.
Here, fine-tuning refers to stochastic gradient descent back-propagated
through the fully-connected layers only, with the weights of earlier
convolutional layers held fixed. The network was not trained on ver-
ification explicitly, but rather only on identification of the new set of
identities/categories. A fixed standard learning rate of 0.01, momentum
of 0.9, and duration of 50 epochs were used, as there were too few
images to permit the use of a validation set. As seen in Fig. 4A, the
networks converged within this training period, and did not exhibit
epoch-dependent over-fitting.

2.3.2. Experiments on VGGFace2 test set
In further experiments, we fine-tuned the face- or object-pretrained

models on a new set of face identities in the test set of VGGFace2. We
constructed several sub-databases from the set of 500 identities in order
to simulate varying forms of experience with novel identities. We cre-
ated datasets using 10, 50, or 100 identities, and set aside 100, 20, or 10
images per identity for verification testing, respectively, such that there
were always 1000 verification images, and thus 499,500 verification
pairs. We then set aside 10 images per identity for a validation set to
control the learning rate during fine-tuning. Finally, from the remaining
images available for each identity, we selected 1, 10, 50, 100, or 400
images to be trained on, such that the 100 image set contained all of the
images in the 50 image set. In contrast to experiments using Labeled

Fig. 2. Architecture of the VGG-16 deep convolutional neural network (DCNN) (Simonyan & Zisserman, 2015) (schematic produced using code at https://doi.org/10.
5281/zenodo.2526396). The DCNN takes a 224 × 224× 3 input image and transforms it in a hierarchical fashion to a set of output class probabilities. Convolutional
blocks (conv1, conv2, …, conv5) contain 2 or 3 convolutional layers which do not downsample the spatial resolution of their input (i.e., stride of 1), followed by
pooling. The convolutional blocks are following by three fully-connected layers, the last of which contains 1 unit per known identity. The activations in the last layer
fc8 are transformed with the softmax function to a probability distribution, represented in layer prob. Operations are colored as following: convolution in light
yellow, pooling in dark orange, linear transformation in light purple, rectification in dark yellow following convolution or purple following linear transformation, and
finally softmax in dark purple. Arrows indicate the flow of information. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Faces in the Wild, here we scheduled the learning rate exactly as we did
in the pretraining phase, starting from a value of 0.01, and reducing it
by a factor of 10 upon stable plateau of validation set accuracy, to a
minimum of 10e−5 after which early stopping was performed. We set
an extremely liberal maximum number of epochs of 1000 to ensure
convergence of all models. Additionally, we varied the network layer at
which fine-tuning started; whereas the LFW simulations started fine-
tuning at layer fc6, here we examined fine-tuning beginning at the start
of each convolutional block (conv1, conv2, …, conv5) and each fully
connected layer (fc6, …,fc8).

2.4. Assessing identity perception through face identity verification

To perform face verification, we adopted a threshold-free similarity-
based approach that can be applied to an arbitrary m-dimensional
feature representation, including input images, shape-free texture
components, and DCNN layer activations. First, given a set of feature
responses [x1, …, xn] over images, the cosine distances between all test-
set images were computed as Di, j = cos (xi, xj) and then normalized to a
range of [0,1]. A range of thresholds θk ∈ [0,1] was then used to
compute a matrix of same/different judgments Yk = D > θk. The Yk

matrices were then compared to the true same/different matrix to
compute true positive and false positive rates tk and fk. The vectors t and
f constitute a Receiver-Operating-Characteristic (ROC) curve, and the
area under the curve (AUC) was computed with numerical integration.
Finally, we computed ′ =d Z AUC2 ( ) where Z( ⋅ ) is the inverse cu-
mulative distribution function (CDF) of the standard normal distribu-
tion. This approach was applied to image pixels, the output of each
layer of the VGG-16 network, and the appearance representations of the
Active Appearance Model (AAM) before and after projection into an
LDA space. Outputs were taken after pooling and rectification in each
convolutional block (conv1, …,conv5), after rectification in the first-
two fully-connected layers (fc6, fc7), and before and after the softmax
operation in the final fully-connected layer (fc8, prob., respectively).

2.4.1. LFW
For LFW simulations, verification is reported across the entire set of

237,705 image pairs.

2.4.2. VGGFace2-test
For VGGFace2-test simulations, we divided the set of 499,500 image

pairs into 20 non-overlapping segments. For each segment, we com-
puted verification d′ as described above, and report the mean calculated
over segments. Error bars show 95% confidence intervals obtained from
bootstrapping the sample of 20 values.

2.5. A human behavioral experiment on unfamiliar face verification

To provide a quantitative basis for evaluating the models, we car-
ried out a behavioral experiment in which participants were presented
with pairs of images of unfamiliar individuals and rated how likely it
was that the images were of the same individual.

2.5.1. Participants
Twenty-three undergraduate students (15 female, mean age 20 yrs)

from Carnegie Mellon University provided informed consent to parti-
cipate in the experiment in exchange for course credit, in accordance
with the protocol approved by the Institutional Review Board.
Participants all reported normal or corrected-to-normal vision and were
either Caucasian or raised in environments with many Caucasian in-
dividuals.

2.5.2. Stimuli
We used a version of VGG-16 pretrained on the original VGGFace

dataset (Parkhi et al., 2015) to select difficult matching and non-
matching image pairs in a dataset of unfamiliar Australian celebrities

(Dunn, Ritchie, Kemp, & White, 2019). This dataset contains 40 iden-
tities with approximately 50 images per identity. Notably, there is no
overlap in either VGGFace or the Australian Celebrities datasets with
the VGGFace2 dataset that we used to train the DCNNs, as we explicitly
removed all overlapping identities from the VGGFace2 dataset before
any training. To select difficult image pairs, we selected the 1000
matching identity pairs with the largest cosine distance at the pe-
nultimate layer (fc7), and the 1000 non-matching identity pairs with
the smallest cosine distance at the penultimate layer. For each partici-
pant, we randomly selected 200 of these pairs for each of the matching
and non-matching conditions to yield 400 total trials per participant.

2.5.3. Procedure
Participants were seated approximately 60 cm from a computer

screen and stimulus size was computed in terms of degrees of visual
angle calibrated for either of 2 Dell LCD monitors. Participants com-
pleted a face verification experiment in which, on each trial, two face
images were shown simultaneously to the left and right of the center of
the screen for up to 10s. Participants were instructed to compare the
similarity of the perceived identity by providing a 1–7 rating using the
keyboard to indicate how similar the two faces were, where 7 indicated
that the identities were definitely the same, and 1 indicated that the
identities were definitely different. Following key press, a 500 ms in-
terval ensued before the start of the next trial. Participants completed
up to four sessions of the same 400-trial sequence, each taking ap-
proximately 15 min, performed back-to-back on the same day. No
feedback was provided and thus, no information about the face iden-
tities was given to the participants. Prior to the start of each session,
instructions were provided and the participant was given ten practice
trials to acclimate to the experimental setup.

We then tested the verification ability of the face-trained and object-
trained versions of VGG-16, as used in Methods 2.3.1 and Results
3.2–3.6, measuring unfamiliar verification performance of the pre-
trained models, before any fine-tuning on the identities used in the
behavioral experiment. Specifically, following earlier analyses, for each
participant, we computed network performance by first computing
cosine distances between fc7 representations of each pair of trials for a
given participant, extracting the area under the ROC curve, and con-
verting this area to d′ as the network performance for a given partici-
pant's set of trials.

2.6. An algorithm for combining perceptual and identity representations in
face verification

To directly model the human task of performing face verification on
images of unknown familiarity, we developed an algorithm that could
use either perceptual or identity representations depending on their
relative informativeness for a given face pair. The rationale for the rule
is that face verification can be performed trivially if the two identities
can be determined with confidence, and otherwise requires a more
detailed perceptual comparison. We thus implemented a criterion C for
determining whether to use identity or perceptual representations,
based on the sum of output probability maximums over the two images.
That is, identity representations are used if max(pID(x1)) + max (pID
(x2)) > C, and otherwise, perceptual representations are used. The
identity comparison can be made either by an explicit distance com-
putation between probability distributions for the first and second
image, or by verifying that the maximally active identity for each image
is the same. We chose to implement the latter, as it makes a weaker
commitment to the specific localist identity representation used in
DCNNs, requiring only that whatever identity representation is used, it
must be able to provide an index into the most probable identity; this
seems to be a minimal requirement of any model of human identity
representations. The criterion C was fit on a set of training images in
order to maximize the area under the ROC curve for identity verifica-
tion, for networks before and after familiarization. Fitting was
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performed with 5-fold cross-validation on the set of image pairs used in
the behavioral experiment and associated simulation. Performance was
computed before and after familiarization using the same face-trained
network as in earlier experiments.

3. Results

3.1. Humans perform better than a shape-free texture model at unfamiliar
face recognition

To get a better sense of the performance of the Kramer et al. (2018)
model's ability to verify unfamiliar and familiar faces, we reanalyzed
their main results. Given that the probabilities of hits and false alarms
were not provided, we simulated them from a normal distribution es-
timate of the face distances provided in Fig. 11 of Kramer et al. (2018).
We then performed an ROC analysis to compute d′. We estimated
d′=0.707 for the unfamiliar PCA space, and d′=3.56 for the familiar
PCA + LDA space, shown in Fig. 3A. These results demonstrate a severe
deficit for unfamiliar face verification, in contrast to reasonably accu-
rate verification of familiar face identities.

To understand whether their model accounted for human-level
performance in unfamiliar face matching, we next reanalyzed their
results for the Glasgow Face Matching Test. Notably, here the AAM
PCA + LDA model was used to compute unfamiliar face recognition,
using the LDA trained on the faces used in their previous experiment.
From provided values of hit and false alarm rates phit and pfa, we
computed d′ = Z(phit) − Z(pfa), where phit = p(saysame — same),
pfa = p(saysame — different). The results of the model, phit=.82 and
pfa=(1 − .78), yield d′=1.65. For the human data on the same task,
phit=.92, pfa=(1 − .88), we obtained d′=2.58 (Fig. 3B). Kramer et al.
(2018) did not provide analogous data for the PCA-only model; given
the results of the earlier experiment, where d′ was estimated as 0.707,
we can only assume that this model performed more poorly than the
unfamiliar PCA + LDA model. This suggests that some of the task-re-
levant (i.e., not purely statistical) variability is generic and not idio-
syncratic, as it may be learned from an LDA solution on other faces.

3.2. A face-trained DCNN performs better than a shape-free texture model
on both unfamiliar and familiar faces

We next tested an Active Appearance Model conceptually similar to
the one used by Kramer et al. (2017) and Kramer et al. (2018), however
with fully-automated (rather than semi-automated) landmark labeling;
the model is otherwise identical, with a PCA being performed on the
shape-free appearance, submitted to an LDA over training images for
familiar faces only. We compared performance with that of a DCNN
trained on either objects or faces. We assessed performance on a stan-
dard face verification baseline—Labeled Faces in the Wild (Huang
et al., 2007)—and used the deep-funneled images, which have been
computationally aligned using an approach based on deep learning
(Huang et al., 2007), providing a helpful starting point for landmark
labeling and alignment in the AAM.

As shown in Fig. 3C, both the AAM and DCNN models show a fa-
miliar face advantage. However, the face-trained DCNN performs sub-
stantially better with unfamiliar faces than the AAM model does even
with familiar faces. When the task is unconstrained, the 2D automated
AAM shows its weakness as a model of human face perception in
comparison with the face-trained DCNN. In contrast, an object-trained
DCNN performed worse at both unfamiliar and familiar face recogni-
tion, demonstrating that model complexity per se cannot account for
the increase in performance of the DCNN relative to the AAM; rather,
the specific experience of the face-trained network allows the network
to achieve higher performance on both unfamiliar and familiar faces.

3.3. Face domain experience is necessary to learn to recognize new face
identities robustly

Given that the face-trained, but not the object-trained DCNN per-
formed well on verification of both unfamiliar and familiar individuals,
we next sought to better understand how specific aspects of visual ex-
perience shaped DCNN identity perception. To do so, we pretrained two
networks on roughly the same number of objects or faces (as in the last
section), and randomly initialized a third network. We then fine-tuned
each network to recognize new identities. The training and validation
accuracy throughout learning for these three networks are shown in
Fig. 4A.

Whereas the face-trained network quickly and robustly learned to

Fig. 3. The model of (Kramer et al., 2018) underestimates human-level unfamiliar face recognition and is outperformed by a face-trained, but not an object-trained
DCNN. In A., we estimated d′ from their distance measurements. In B., we converted their reported hit and false alarm rates to d′, which notably were not reported for
the PCA model but only a PCA + LDA model fit on a separate set of identities from the ones tested. In C., we constructed an Active Appearance Model (AAM) similar
to that used by (Kramer et al., 2018) but with fully-automated labeling of landmarks, and compared its performance on face verification of deep-funneled images of
Labeled Faces in the Wild with a deep convolutional neural network model trained on faces (face-DCNN), or objects (object-DCNN), before and after familiarization.
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categorize both seen and unseen images for the new identities, the
object-trained network learned considerably more slowly, and gen-
eralization of its knowledge to held-out images was low. Despite the
poorer performance of the object-trained network, it still performed
better than the randomly initialized network. Performance plotted per
identity across a range of per-identity experience is shown in Fig. 4B.
These results demonstrate that the face-trained network learned to re-
cognize novel faces robustly based on very little identity-specific data,
achieving accuracy>=75% with as few as 10 training images per
identity, and 100% accuracy with as few as 25 training images per
identity. In contrast, the accuracy of the object-trained network de-
pended much more strongly on the amount of experience, and remained
below 90% even for the majority of individuals for which there were
over 50 unique training images. These findings support our hypothesis
that a high-fidelity featural description of faces—learned from a wealth
of experience—is necessary to be able to group together highly variable
ambient images of familiar faces for successful recognition. In other
words, idiosyncratic experience on its own is not sufficient for good
performance, especially when limited data is available for a given
identity. The findings also support the notion that some of the features
relevant to face identity recognition can be learned generically from

pretraining on objects, but that this amount is relatively small, and
object learning does not provide a sufficiently robust description for
generalizing to unseen face images based on limited experience.

3.4. Face domain experience is necessary for robust unfamiliar verification
performance

While recognition accuracy provides a good assessment of the
ability of our networks to learn new faces, a different approach is
needed to examine unfamiliar face processing abilities, and to compare
them with familiar face processing abilities on the same images. We
adopted the same approach as used in human studies: a face identity
verification task in which the goal is to determine whether two faces are
of the same identity. We computed a verification score based on the
pairwise distances in a given representation, and applied this metric to
image pixels and to each layer in the network, allowing us to determine
which layer's representation most effectively discriminates between
identities, and providing a measure of the extent to which performance
is based on image or low-level statistics.

Verification performance for face- and object-trained networks, as
well as for a randomly initialized network, are shown in Fig. 5, before

Fig. 4. Familiarizing three DCNNs with a novel set of identities. Networks pre-trained on faces, objects, or nothing (randomly initialized) were fine-tuned on novel
identities in Labeled Faces in the Wild. In A., we plot performance of each network throughout training on training and held-out testing images collapsed across all
new identities. In B., we plot accuracy for each new identity separately, vs. the number of unique training examples for each identity, shown for a representative
sample of epochs throughout the course of familiarization.
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and after familiarization. First, examining performance of the face-
trained network on a set of unfamiliar faces, shown in the dashed blue
line, we can see that identity verification performance improves with
increasing depth in the network (d′>3 in fc7) up until the final, ex-
plicit probability layer, where performance sharply drops off (d′<1 in
prob). Notably, the network does not yet have an identity representa-
tion for the images it is verifying, thus, this result implies that the
probability distribution over familiar faces is substantially less in-
formative for unfamiliar face identity perception than the network's
high-level perceptual representation in the penultimate layer. In

contrast to the face-trained network, the untrained and object-trained
networks show very little improvement with depth in the network, with
all d′<0.7. These results demonstrate that a similarity space developed
through hierarchical computations in a network which has learned to
recognize a large number of face identities naturally captures a sub-
stantial amount of identity-invariance for unfamiliar identities, placing
same-identity images closer together than different-identity images to
support good verification performance. These results challenge claims
that within-identity facial image variability is entirely idiosyncratic;
rather, the within-identity variability learned for familiar faces allows
for large improvements in verifying unfamiliar face identities.

3.5. Each fine-tuned layer shows a small familiarity advantage, but the final
identity-based representation shows a qualitatively larger advantage

One benefit of our method is that it allows us to compare unfamiliar
and familiar performance on the same images of the same individuals.
Fine-tuning was performed only on the weights into the fully-connected
and output layers, and, as shown in Fig. 5, all of these layers show a
small boost of familiarity. However, the large familiarity effect ob-
served in many studies comparing human unfamiliar and familiar face
processing is seen specifically at the output layer, which performed the
best after familiarization but performed very poorly on unfamiliar
faces. The randomly initialized and object-trained networks demon-
strated some improvement with familiarity, but neither came close even
to the unfamiliar performance of the face-trained network. These results
suggest that familiarization of a sufficiently developed representation
(i.e., one learned through prior experience with faces) allows the ver-
ification task to be performed on the basis of an identity representation,
which, in the network, approaches orthogonality in the limit of perfect
identification. In contrast, unfamiliar faces must be processed on the
basis of more overlapping perceptual representations, which none-
theless untangle a substantial amount of invariance related to the per-
ception of identity.

Fig. 5. Familiar and unfamiliar face verification by DCNNs with different
training distributions matched in total number of images. Cosine distance ma-
trices were computed over images for each layer separately, before and after
familiarization. Unfamiliar representations were computed immediately fol-
lowing pretraining, and familiar representations were computed for the same
images after 50 epochs of fine-tuning on a separate training set of images for the
novel identities. d′ was estimated with an ROC-based analysis (see Methods).

Fig. 6. Distance matrices of perceptual and identity representations in a face-trained DCNN before and after familiarization. Cosine distances were computed over
images, with images sorted by identity (10 images per identity). The top row shows distances for the highest-level perceptual representations (fc7), and the bottom
row shows distances for the softmax-probability identity representations (prob). The left-most column shows unfamiliar distance matrices, the middle column shows
familiarized distance matrices, and the right column takes the difference (familiar – unfamiliar). (For best viewing of familiarization difference plots, the reader is
referred to the online color version of the article.)
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3.6. Familiarity makes images of the same individual look more similar, but
minimally affects distances between different individuals

Another key aspect of familiarity effects in face perception is that,
when asked to sort ambient images of multiple identities into separate
groups, people are highly accurate for familiar faces, but for unfamiliar
faces they make many misses (failures to group together same-identity
images) yet few false alarms (failures to separate different-identity
images) (Jenkins et al., 2011). This suggests that the human face-si-
milarity space is largely sufficient to tell unfamiliar faces apart, but
requires experience with individuals in order to group together highly
variable images of the same person. To examine whether similar effects
are seen in the network, we plotted the cosine similarity matrices for
the penultimate fully-connected layer (fc7) and the output layer (prob)
of the face-trained network which entered the ROC analyses used to
generate d′ values in Fig. 5, for familiar and unfamiliar faces, as well as
the difference of these, shown in Fig. 6.

The unfamiliar distance matrix of fc7 shows a relatively accurate
form, with low-distance clusters near the diagonal where the identities
are the same, and mostly larger distances for different-identity pairs.
Familiarization cleans up the non-matching areas of the distance ma-
trix, resulting in greater overall uniformity across non-matching iden-
tities, despite greater overall similarity. However, familiarization does
not affect the diagonal for the most part. In contrast, the output (prob)
layer correctly places non-matching identities far apart before famil-
iarization; however, it also fails to assimilate most pairs of matching
identity images. After familiarization, this layer learns a near-perfect
representation, with virtually all of the difference emerging as the as-
similation of matching identity images. This result suggests that fa-
miliarity may provide a separate, identity-based similarity space which
more readily groups together highly variable images of the same
identity into a common representation than does the perceptual space
(e.g., that of fc7).

3.7. Increasing face experience improves both perception of unfamiliar faces
and learning of novel identities

An important aspect of the expertise account of unfamiliar (and
familiar) face recognition is that performance is dependent not only on
some experience with faces, but on substantial experience with faces. To
test this, we trained the network on 1%, 10%, or 100% of the identities
in the VGGFace2 database and tested unfamiliar and familiar verifica-
tion, as well as accuracy throughout learning. Fig. 7A demonstrates
increasing verification performance for both unfamiliar and familiar
faces when training on a larger number of face identities. Fig. 7B shows
that the increase in verification performance of unfamiliar and familiar

faces in fc7, and familiar faces in the output identity layer, is roughly
linear with the log of the fraction of identities that are pretrained.
Further, the left panel demonstrates a qualitative performance differ-
ence on novel faces with an increasing number of pretrained faces.
Specifically, whereas the network trained on all the face identities
shows a sharp increase in familiarized performance at the output
layer—the previously described recognition-based verification ad-
vantage—the networks trained on less data do not show this effect. The
right panel demonstrates that this qualitative change is explained by a
greater slope in the relationship between verification of familiar faces
in the output layer compared to that of verification of unfamiliar and
familiar faces in fc7. In sum, these results indicate that face training
alone is not sufficient to achieve both high performance in unfamiliar
face recognition, and a qualitatively large familiar face advantage at the
output layer; rather, both effects are enhanced through substantial face
experience, as present in the network trained on all the identities.

3.8. Perceptual learning is not necessary for the familiar face advantage

To determine whether the familiar face advantage depends on
perceptual learning—that is, fine-tuning of perceptual features—rather
than the mapping between perceptual features and output identity
nodes, we fine-tuned either the full network, the fully-connected layers
only (as in earlier simulations), or the output identity mapping only.
For these simulations, we used the VGGFace2-test set in order to test a
larger number of identities and images per identity. Here we used a
validation set in order to train to convergence with a learning rate that
decays upon plateau, as in pretraining, and then computed confidence
intervals of verification performance by performing bootstrapping on a
sample of non-overlapping segments of pairs of a different set of ver-
ification test images. Verification results for each network at the output
and fc7 layers are shown in Fig. 8, when pretraining on objects versus
faces, using either 10 or 100 newly familiar identities.

Examining the output layer verification performance of the face
pretrained network (top left subplot in each figure panel), for each
number of identities used in fine-tuning, the verification performance of
the network when fine-tuned starting at conv1, fc6 or fc8 did not differ
significantly (means within 95% confidence interval of fc8 perfor-
mance). In contrast, irrespective of the number of identities used in
fine-tuning, the output-layer performance of the object-pretrained
network improved with fine-tuning beginning earlier in the network,
especially for larger numbers of familiarization images per identity.
These results demonstrate that perceptual learning is not necessary for a
large advantage in verifying familiar faces. Rather, this advantage re-
quires only learning to map highly variable perceptual representations
of each identity to a common identity representation, making the

Fig. 7. Unfamiliar and familiar face verification measured in networks varying in the extent of face experience prior to familiarization. A fraction of 0.01, 0.1, or 1.0
of the total identities were used, and corresponding results for unfamiliar and familiarized face recognition are plotted as a function of layer (A) and fraction of
identities (B) for high-level perceptual and identity representations. In B, a log10 X-scale is plotted against a linear Y-scale.
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information relevant to the verification task explicit. Whether the per-
ceptual representations have actually been adapted to the newly fa-
miliar faces is therefore irrelevant to this effect.

Further, across a broad range of training conditions, we replicated
the earlier finding that prior experience with faces is necessary to
achieve high verification performance, here using up to 400 familiar-
ization images per 100 individuals. Thus, while such substantial fa-
miliarity permitted huge gains in face verification in the face expert
network (d′ ≈ 8 compared to d′<5 before familiarization; 100 iden-
tities, 400 images each, first fine-tuned layer fc8), performance of the
most heavily familiarized object network (d′ ≈ 5; 100 identities, 400
images each, first fine-tuned layer conv1) only barely surpassed the
performance of the unfamiliar face expert network, which achieved
equivalent familiarized performance with only 10 images of the same
individuals (d′ ≈ 6, identity representations, first fine-tuned layer fc8),
and achieved greater performance with 50 images per identity, without
modification to perceptual features (d′>6, identity representations,
first fine-tuned layer fc8). Thus, while familiarity may provide large
gains in verification performance through the development of a con-
fident identity representation, truly robust familiarized performance
depends on having an expert perceptual face mechanism, which may be
learned generically from other face identities.

3.9. Humans and a face-trained DCNN perform similarly on unfamiliar
verification of challenging pairs

Finally, we sought to confirm that the DCNN simulation performs
comparably to humans, to support our claim that its results are relevant
to understanding the human perceptual system. We selected a set of
challenging face pairs with an independent face-trained DCNN, and
tested both humans and the face-trained and object-trained DCNNs
used in the main LFW simulations. Human and DCNN performance is
shown in Fig. 9. Human performance was evaluated for each of 4 ses-
sions verifying the same pairs of unfamiliar face identities, whereas the
networks were evaluated only once following pretraining. In the first
session, humans showed a trend toward better performance than the
DCNN (t=1.82, p=0.0824) at this unfamiliar verification task. Humans
showed improvement over sessions even in the absence of feedback,
and performance in each of the second through fourth sessions was
significantly better than that of the DCNN (all ps<0.001). Notably, the
state of the DCNN that performed at this level of unfamiliar face re-
cognition was sufficient to learn to perfectly verify the same images
following familiarization on a separate set of images (see Fig. 10). In

demonstrating similar performance of humans and the DCNN at un-
familiar verification—and if anything, slightly better performance of
humans—these results validate our use of this model in making a claim
for perceptual expertise underlying both unfamiliar and familiar faces.

3.10. A simple cognitive rule allows for optimal combination of perceptual
and identity information in the service of identity verification of images of
arbitrary familiarity

Two potential critiques of our work thus far are 1) no single re-
presentation in the model performs similarly to humans in both un-
familiar and familiar face recognition; rather, human unfamiliar face
recognition is modeled well by the highest perceptual layer (fc7)
whereas the benefits of familiarity in verification are seen when ex-
amining the explicit probability layer (prob), and 2) it assumes a loc-
alist identity representation which seems at odds with the distributed
semantic, biographical, and episodic representation many believe
constitutes a human identity representation. Regarding the first point,
our claim is that humans have access to both forms of representations
and can easily determine the more useful one for a pair of images, a
process which is likely automated by the confidence of identity re-
cognition of each individual. We developed a simple cognitive rule-

Fig. 8. The effect of experience with familiarized identites on familiar face verification, depending on the point in the network where fine-tuning begins: conv1,
where the entire network is adapated; fc6, the type of fine-tuning used in the LFW experiment; and fc8, where only the final classifier layer is adapted. Fine-tuning on
10 identities is shown in A., and on 100 identities in B. Within both A. and B., columns vary the domain of pretraining (faces, objects), and rows vary the layer from
which verification is computed (prob or fc7).

Fig. 9. Comparing human and DCNN unfamiliar verification performance on a
challenging set of face image pairs from a dataset of Australian local celebrities.
Unfamiliar verification performance of VGG-16 DCNN pretrained on objects or
faces is shown on the left. Humans performed the same verification task 4
times, and performance is plotted for both the first totally unfamiliar session,
and each of the three repeat sessions.
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based model to demonstrate how this might be done. We performed this
analysis as a proof of concept that perceptual and identity representa-
tions can be optimally combined on the fly for human-like unfamiliar
and familiar face identity verification, and hold no strong commitment
to the specifics of the rule. As described in Methods 2.6, the intuition is
straightforward: given two images, if the system is highly confident
about the identity of either image, or relatively confident about both, it
should decide based on whether the identities match; otherwise, it
should perform the task by comparing the perceptual representations
elicited by each face. This rule also addresses the second point, as it
softens the assumption of a localist identity representation, rather re-
quiring only that whatever identity representation is used, it yields a
confidence value for and index to the most probable known identity for
a given face image.

Using the same images as in the human behavioral experiment, as
shown in Fig. 9, we implemented the cognitive rule and evaluated it
before and after familiarization. Results are shown in Fig. 10. As ex-
pected, this unitary mechanism recognizes difficult pairs of unfamiliar
faces at above-chance levels and produces a sharp benefit for familiar
faces, reaching perfect performance on the small set of images used.

4. Discussion and conclusions

The hypothesis that humans are not experts at unfamiliar face re-
cognition has gained considerable attention recently, in part due to a
host of studies demonstrating deficits on challenging face verification
tasks for unfamiliar versus familiar faces. But the question remains: Are
we as poor at unfamiliar face recognition as has been suggested by some
(Young & Burton, 2018), or are we perceptual experts for faces re-
gardless of familiarity (Rossion, 2018; Sunday & Gauthier, 2018)? Is the
majority of face variability idiosyncratic to each identity (Kramer et al.,
2018) or more generic across individual face identities? If the varia-
bility is more generic, do humans simply fail to learn this variability in
the service of unfamiliar face perception?

Kramer et al. (2018) have recently put forth a model of face per-
ception to explain both the robust human performance in recognizing
familiar faces as well the poorer performance on unfamiliar faces.
However, although this model does exhibit a familiar face advantage,

we demonstrated that it substantially underestimates human-level
performance on unfamiliar faces, and in so doing, may have led to a
false rejection of human perceptual expertise in unfamiliar face re-
cognition (Young & Burton, 2018). We showed that a conceptually si-
milar active appearance model, using fully-automated computational
face alignment, performed much more poorly than a deep convolu-
tional neural network (DCNN) at both unfamiliar and familiar face re-
cognition, but only if the DCNN was trained for face recognition
(Fig. 3). Strikingly, the performance of the DCNN on unfamiliar faces
was substantially better than the AAM model's performance on familiar
faces. In contrast, the accuracy of a face-trained DCNN on unfamiliar
and familiar face verification was comparable to that of humans
(Fig. 9). The high performance of the DCNN justified an exploration of
it in greater detail in order to better understand the experience neces-
sary for human-level unfamiliar face identity verification, and why
humans display a sharp improvement in the verification of familiar
identities.

The high performance of the face-trained DCNN on unfamiliar face
recognition suggests that a large share of the variability in face images
that is relevant to recognition is generic across faces. The boost in
performance on familiar faces confirmed the result of Kramer et al.
(2018) that an additional share of variability is idiosyncratic and must
be learned for each face. The next question is how much of the neces-
sary generic variability is specific to faces versus being potentially
learnable from other natural object categories? The answer to this
question is important for our understanding of unfamiliar face re-
cognition: if high performance is dependent on experience with faces
and cannot be achieved through generic experience with natural object
images, it reinforces the idea that unfamiliar face recognition perfor-
mance is the product of a specific learned expertise with faces per se.

To answer this question, we compared the face-trained DCNN to one
trained on a size-matched database of objects and to a randomly in-
itialized one. The object-trained DCNN performed slightly better than
the randomly initialized network at unfamiliar face recognition and
much better at familiar face recognition. However, it performed strik-
ingly worse than the face-trained network at both unfamiliar and fa-
miliar face recognition, with even familiarized recognition substantially
worse than the unfamiliar recognition of the face trained network. This
result suggests that the majority of generic identity-preserving face
variability is not also generic across a broader class of natural objects.
Further, these results demonstrate that a representation trained to
capture generic face variability through experience with face images is
important for human-level unfamiliar face verification, for learning to
recognize new familiar individuals, and for robustly verifying those
familiarized individuals.

Given strong evidence that the domain of experience is important for
developing expertise in both unfamiliar and familiar face recognition,
we next asked how performance depended on the extent of experience
recognizing faces. To do so, we varied the number of identities seen in
pretraining. We found that performance in verification of both un-
familiar and familiar faces consistently improved with experience over
an increasing number of identities. This result strengthens the expertise
account of general face recognition, and weakens the claim that faces
must be learned one at a time (Young & Burton, 2018). Lastly, we ex-
tended our simulations to a broader range of familiarization conditions,
varying both how many layers of the network were allowed to be fine-
tuned, as well as the specific number of identities and images per
identity shown to the network. In doing so, we found that the features
learned from a large set of face identities were sufficient to learn an
accurate mapping over multiple examples to arbitrary new identities,
and this mapping (learned through familiarization) produced robust
familiarity advantages regardless of whether perceptual learning took
place. Thus, we argue that perceptual learning is not necessary for the
familiar face advantage. Although, in humans, perceptual learning
(Collins & Behrmann, 2020) and associated neural changes (Collins,
Robinson, & Behrmann, 2018; Dobs, Isik, Pantazis, & Kanwisher, 2019)

Fig. 10. Verification using a cognitive rule that flexibly determines whether to
use perceptual or identity representations. Results are shown for the face-pre-
trained network before and after familiarization, evaluated on the same images
as in the behavioral experiment. We plot area under the ROC curve (ROC-AUC)
here instead of d′, as d′ = ∞ for the familiarized network on this small set of
image pairs.
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may very well occur for familiar faces, we argue that these effects are
not necessary to develop a familiar face advantage in identity percep-
tion. Rather, the ability to map an image of a familiar face to a pre-
existing identity/biographical representation provides a more effective
means of matching faces than a perceptual comparison, and this iden-
tity-based matching is possible only for familiar faces. However, we
want to be clear that it is possible that familiarization could produce
greater perceptual orthogonalization of different identities through re-
current dynamics or vector length normalization (Liu et al., 2017;
Ranjan, Castillo, & Chellappa, 2017)1; however, our findings show that
this is not necessary, likely because the same features are relevant
across a wide range of faces. This idea has been supported by
Abudarham et al. (2019) who show that the same critical perceptual
features are used by humans for recognizing familiar and unfamiliar
faces, as well as by a deep neural network. Thus, we reject the claim
that each face identity must be learned from scratch (Young & Burton,
2018); rather, a lifetime of face learning allows for new faces to be
rapidly familiarized based on little to no perceptual learning.

Finally, we devised a task to compare human performance with that
of a DCNN on challenging image pairs chosen by an independently
trained DCNN. Our results showed that the network was only slightly
worse than humans at difficult unfamiliar face recognition. Given that
DCNNs have recently been shown to perform on par with trained
human facial examiners, which both performed better than untrained
students (Phillips et al., 2018), the gap in performance seen here may
be a result of using another DCNN—albeit one trained on entirely dif-
ferent face identities—to select hard images. Given the common ar-
chitecture of the networks, it is possible that some image pairs are more
difficult for these DCNNs than for humans, and vice-versa, and that
some untested image pairs would be more difficult for humans than for
the DCNN. Further, while our approach guaranteed that unfamiliar
faces were totally unfamiliar to the network, some participants may
have had some familiarity with some of the local Australian celebrities
used as unfamiliar identities, which would give the human population a
further advantage. Finally, the ability of humans to make multiple
fixations and perform detailed featural comparisons between image
pairs provides a further advantage not available to the network, which
computed a single perceptual representation for each image, in-
dependent of the other image it was compared to. A more fine-grained
analysis of the differences between humans and DCNNs in face re-
cognition is an important open question for further research. Intrigu-
ingly, humans improved substantially over sessions of repeated trials
even without feedback, suggesting that they were able to learn about
the unfamiliar faces in the absence of any explicit cues to identity. This
result suggests that, while pre-existing identity-specific representations
are unavailable for unfamiliar individuals, they may be rapidly con-
structed without explicit cues to identity, perhaps by building episodic
representations throughout the course of the behavioral experiment,
which can be mentally clustered into a set of possible identities. In so
doing, humans may integrate guesses about identity clusters with
comparisons of perceptual representations to improve performance. An
integration of identity information with existing perceptual re-
presentations may also explain how learning new faces creates apparent
changes in an existing face space that are selective for the learned
identities (Collins & Behrmann, 2020).

Given the results of our simulations and behavioral experiments, we
return to the question of expertise in human unfamiliar face recogni-
tion. Let us consider an analogy of a professional golfer. As professional
golfers routinely play the most challenging golf courses in the world, it
is not hard to imagine that they get better at playing these courses with
experience—whether via examination of a map, engagement with
word-of-mouth advice from local experts, or experience through game-
play. In this sense, the professional golfer must learn the idiosyncrasies

of each course—just as Young and Burton (2018) argue humans must
do for novel familiar faces. Imagine now that a cognitive psychologist
interested in golf expertise asks professional golfers to play a round of
18 holes on 6 courses that they have never played, and prevents them
from seeing a map or gaining any other knowledge of the course besides
what they experience as they play it. After this first round, they are
allowed to study the course in depth, and play as many practice rounds
as they can in a week before coming in for a final test of their perfor-
mance. It would not be surprising if the pro golfers performed better
with experience, as a result of learning the course's geography and other
relevant details which were entirely unknowable in the first round.
Imagine further that untrained golfers, amateur golfers, and profes-
sional tennis players (who are not also professional golfers) are brought
in for the same experiment. It again would be unsurprising if the final,
familiarized score of these less-skilled golfers improved from the earlier
baseline, but yet, it would be surprising if their score reached even the
baseline performance of the professional golfer. Given this, is the pro-
fessional golfer a golf expert, or only an expert at familiar courses? In
our view, the golfer's expertise is evident both in their high baseline
performance level relative to other well-defined groups, as well as in
their ability to rapidly learn the idiosyncrasies of the new course in the
service of maximizing performance. We believe that the case of face
expertise parallels the case of the golfer. Like golf courses, faces have
idiosyncrasies which must be learned. But these idiosyncrasies do not
represent the dominant variability of faces (which can be learned from
other faces). By learning this generic variability, unfamiliar face per-
ception is enhanced, and idiosyncratic variability can be learned ra-
pidly in the service of familiar face perception.
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Appendix A. Supplementary data

Data from all simulations is made available at https://doi.org/10.
1184/R1/12275381, and code relevant to reproducing the simulations
and plotting the results is made available at https://github.com/viscog-
cmu/familiarity_sims. Supplementary data to this article can be found
online at https://doi.org/10.1016/j.cognition.2020.104341.
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