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The Dorsal Visual Pathway Represents Object-Centered
Spatial Relations for Object Recognition
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Although there is mounting evidence that input from the dorsal visual pathway is crucial for object processes in the ventral
pathway, the specific functional contributions of dorsal cortex to these processes remain poorly understood. Here, we
hypothesized that dorsal cortex computes the spatial relations among an object’s parts, a process crucial for forming global
shape percepts, and transmits this information to the ventral pathway to support object categorization. Using fMRI with
human participants (females and males), we discovered regions in the intraparietal sulcus (IPS) that were selectively involved
in computing object-centered part relations. These regions exhibited task-dependent functional and effective connectivity with
ventral cortex, and were distinct from other dorsal regions, such as those representing allocentric relations, 3D shape, and
tools. In a subsequent experiment, we found that the multivariate response of posterior (p)IPS, defined on the basis of part-
relations, could be used to decode object category at levels comparable to ventral object regions. Moreover, mediation and
multivariate effective connectivity analyses further suggested that IPS may account for representations of part relations in the
ventral pathway. Together, our results highlight specific contributions of the dorsal visual pathway to object recognition. We
suggest that dorsal cortex is a crucial source of input to the ventral pathway and may support the ability to categorize objects
on the basis of global shape.
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Significance Statement

Humans categorize novel objects rapidly and effortlessly. Such categorization is achieved by representing an object’s global
shape structure, that is, the relations among object parts. Yet, despite their importance, it is unclear how part relations are
represented neurally. Here, we hypothesized that object-centered part relations may be computed by the dorsal visual path-
way, which is typically implicated in visuospatial processing. Using fMRI, we identified regions selective for the part relations
in dorsal cortex. We found that these regions can support object categorization, and even mediate representations of part rela-
tions in the ventral pathway, the region typically thought to support object categorization. Together, these findings shed light
on the broader network of brain regions that support object categorization.

Introduction
A central organizing principle of the brain is that the visual sys-
tem is segregated into a ventral visual pathway for recognizing
objects and a dorsal visual pathway for locating and interacting
with objects (Mishkin et al., 1983; Ungerleider and Haxby, 1994).
However, research increasingly shows that the dorsal pathway
computes some of the same object properties as the ventral path-
way (Farivar, 2009; Freud et al., 2016, 2020), and may even play a
functional role in object recognition (Holler et al., 2019; Freud et

al., 2020). Despite these findings, the dorsal pathway is rarely
included in conceptual or computational models of visual recog-
nition (Gauthier and Tarr, 2016; Zhuang et al., 2021). Indeed,
artificial neural network models (ANNs) trained for object rec-
ognition are almost exclusively modeled on ventral cortex proc-
esses (Kubilius et al., 2019; Blauch et al., 2022). One potential
reason for this exclusion is that the specific functional contribu-
tions of the dorsal pathway to object recognition are poorly
understood.

The primary function of the dorsal pathway has long been
considered to be the computation of visuospatial information in
the service of coordinating actions (Mishkin et al., 1983; Goodale
and Milner, 1992). However, dorsal cortex, particularly the pos-
terior parietal cortex (PPC), also computes object properties rele-
vant for recognition. For instance, many studies find robust
sensitivity to shape information in the PPC (Georgieva et al.,
2008; Bracci and Op de Beeck, 2016; Freud et al., 2017a), akin to
ventral object regions such as the lateral occipital complex (LOC;
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Grill-Spector et al., 2001; Kourtzi and Kanwisher, 2001). As in
LOC, dorsal shape representations are seemingly robust to
changes in size and orientation, as well as format (i.e., 3D vs 2D;
Konen and Kastner, 2008; Vaziri-Pashkam and Xu, 2019).
Object representations in the dorsal pathway also appear to be
relatively abstract, such that the multivariate responses in PPC
corresponds to perceived semantic similarity among objects,
even when controlling for low-level visual properties (Bracci and
Op de Beeck, 2016; Jeong and Xu, 2016).

Although these studies highlight the similarities between dor-
sal and ventral pathways, object representations in dorsal cortex
are not simply redundant with those in the ventral cortex (Bracci
and Op de Beeck, 2016; Freud et al., 2017b; Vaziri-Pashkam and
Xu, 2019). What, then, are the unique contributions of the dorsal
pathway to object recognition? One possibility, consistent with
its role in visuospatial processing (Mishkin et al., 1983; Kravitz
et al., 2011), is that dorsal cortex computes the spatial relations
among an object’s component parts, that is, the object’s topologi-
cal structure, but not the form of object parts themselves, and
then propagates this information to the ventral pathway to sup-
port object recognition.

Many studies have demonstrated that a description of part
relations is crucial for forming invariant “global shape” repre-
sentations (Biederman, 1987; Hummel, 2000), which may be
key for recognizing objects across variations in viewpoint or
across category exemplars (Hummel and Stankiewicz, 1996;
Ayzenberg and Lourenco, 2019). Indeed, an inability to repre-
sent the part relations results in marked deficits in object rec-
ognition (Behrmann et al., 2006). Such a representation may
be particularly important for basic-level object categorization
because members of a category typically have similar spatial
structures, but vary in regards to their component parts
(Rosch et al., 1976; Barenholtz and Tarr, 2006; Ayzenberg and
Lourenco, 2019).

Surprisingly, few studies have investigated whether the dorsal
pathway represents object-centered part relations, with most,
historically, focusing on allocentric spatial coding (Haxby et al.,
1991), and even fewer have examined the relation between such
coding in the dorsal pathway and object recognition processes in
the ventral pathway (cf. Zachariou et al., 2017). Thus, in the cur-
rent study, we tested whether the dorsal visual pathway repre-
sents the relations among component parts and whether this
information may support object recognition processes in the
ventral pathway.

To this end, in a first experiment, we tested whether
regions of dorsal cortex exhibit selectivity for part relations,
and examined the extent to which coding in these regions are
independent of allocentric relations and other object proper-
ties represented by the dorsal pathway, such as 3D shape and
tools. We also examined whether regions that represent part
relations exhibit task-dependent functional connectivity with
ventral cortex. We used effective connectivity analyses to
test the directionality of these interactions, and, specifically,
whether dorsal cortex predicts the response of ventral cortex,
rather than the other way around. In a second experiment, we
investigate whether these dorsal regions can support object
categorization and whether they do so by representing the
relations among parts. Using a decoding approach, we meas-
ured the ability of dorsal regions to classify naturalistic objects
and tested whether their response profile to these objects was
best characterized by a computational model that computes
the spatial relations among parts. Finally, as in experiment 1,
we examined the degree to which dorsal and ventral cortex

interact during object perception, as well as the directionality
of their interactions.

Materials and Methods
Participants
Sample sizes and procedures for experiment 1 (https://aspredicted.org/
WSV_W7L) and experiment 2 (https://aspredicted.org/49C_D4C) were
preregistered following pilot testing. We recruited 12 participants (three
female, nine male; Mage = 27.50, SD=3.61) for experiment 1, in which
functional regions of interest (ROIs) were identified, and 12 participants
(six female, six male; Mage = 26.83, SD=3.7) for experiment 2, in which
the ROIs’ contributions to object recognition were explored. Where pos-
sible, the same participants completed both experiments 1 and 2, so that
their predefined functional ROIs could be used for analysis. In total,
eight participants from experiment 1 also participated in experiment 2.
The four new participants in experiment 2 were scanned in a second ses-
sion (following the scanning procedure of experiment 1).

Sample sizes were determined on the basis of prior studies which typ-
ically recruited between 10 and 15 participants (Bracci and Op de Beeck,
2016; Jeong and Xu, 2016; Freud et al., 2017a). Nevertheless, to ensure
that our chosen sample size did not influence the results, all analyses
were replicated with a larger sample. Specifically, for experiment 1, we
included data from the four new participants (three female; one male)
initially tested for experiment 2 and scanned two more participants (one
female; one male) thereby bringing the total sample size to 18 partici-
pants. For experiment 2, we scanned two additional participants (one
female; one male), bringing the total sample size to 14. However, in
keeping with the spirit of open science practices, we focus our analyses
on the preregistered sample sizes. Analyses of the extended sample can
be found at the end of each experiment's results section.

All participants were right-handed and had normal or corrected-to-
normal visual acuity. Participants were recruited from the Carnegie
Mellon University community, gave informed consent according to a
protocol approved by the Institutional Review Board (IRB), and received
payment for their participation.

Experimental design and statistical analysis
MRI scan parameters and analysis
Scanning was done on a 3T Siemens Prisma scanner at the CMU-Pitt
Brain Imaging Data Generation & Education (BRIDGE) Center. Whole-
brain functional images were acquired using a 64-channel head matrix
coil and a gradient echo single-shot echoplanar imaging sequence. The
acquisition protocol for each functional run consisted of 48 slices, repeti-
tion time= 1 s; echo time= 30ms; flip angle = 64°; voxel size = 3� 3 � 3
mm. Whole-brain, high-resolution T1-weighted anatomic images (repe-
tition time= 2300ms; echo time= 2.03ms; voxel size = 1� 1� 1 mm)
were also acquired for each participant for registration of the functional
images.

All images were skull-stripped (Smith et al., 2004) and registered to the
Montreal Neurologic Institute (MNI) 2-mm standard template. Before sta-
tistical analyses, images were motion corrected, de-trended, and intensity
normalized. To facilitate functional and effective connectivity analyses, 18
additional motion regressors generated by FSL were also included. All data
were fit with a general linear model consisting of covariates that were con-
volved with a double-g function to approximate the hemodynamic
response function (HRF). Data used to define ROIs was spatially smoothed
using a 6 mm Gaussian kernel. All other data were unsmoothed. All data
were analyzed using the peak 100 voxels within a region (as defined by the
functional localizer) or using a 6-mm sphere (;120 voxels) centered on the
peak voxel. Qualitatively similar results were found for all analyses when
ROI sizes were varied parametrically from 100 to 400 voxels (the size of the
smallest ROI). Analyses were conducted using FSL (Smith et al., 2004), and
the nilearn, nibabel, and Brainiak packages for in Python (Abraham et al.,
2014; Kumar et al., 2020).

Experiment 1: localization of object-centered part relations
Participants completed four localizer scans to measure voxels activated
by object-centered part relations, allocentric relations, 3D shape, and

4694 • J. Neurosci., June 8, 2022 • 42(23):4693–4710 Ayzenberg and Behrmann · Object-Centered Relations in Dorsal Cortex

https://aspredicted.org/WSV_W7L
https://aspredicted.org/WSV_W7L
https://aspredicted.org/49C_D4C


tools. The allocentric relations localizer was included to test whether
ROIs are sensitive to part relations specifically, or to spatial relations
more generally. Although dorsal regions are sensitive to many spatial
properties (e.g., orientation), we chose to measure allocentric relations
because of their conceptual similarity to object-centered part relations.
Similarly, the 3D shape localizer was included to test whether these ROIs
are sensitive to shape information as defined by part relations, or by
shape properties more generally. We specifically chose to test 3D shape
because extensive research has shown that dorsal cortex is particularly
sensitive to the depth properties of objects (Gillebert et al., 2015; Van
Dromme et al., 2016), and may transmit this information to ventral cor-
tex to support recognition (Freud et al., 2020). Finally, the tool localizer
was included to test whether ROIs that represent part relations do so for
objects more generally, or exclusively for objects that afford action.

We used a ROI approach to define regions in parietal cortex that
represent part relations. Then, we used independent data to test the se-
lectivity of these ROIs to part relations or to other visual properties rep-
resented by the dorsal pathway, namely, allocentric relations (Haxby
et al., 1991), 3D shape (Georgieva et al., 2008), and tools (Mahon et al.,
2007). Furthermore, we conducted conjunction analyses to examine the
degree of overlap between dorsal ROIs sensitive to part relations and the
other dorsal properties (allocentric relations, 3D shape, tools). Finally,
we conducted task-dependent functional and effective connectivity anal-
yses to examine the degree to which dorsal ROIs sensitive to part rela-
tions are correlated with ventral regions, and whether part-relation
coding in dorsal ROIs precedes, and even predicts, object processing in
ventral ROIs.

For each localizer, we defined posterior and anterior parietal ROIs by
overlaying posterior intraparietal sulcus (pIPS) and anterior IPS (aIPS)
binary masks and selecting voxels within those masks that survived a
whole-brain cluster-corrected threshold (p, 0.001). Broad pIPS and
aIPS masks were created by combining IPS0 with IPS1 and IPS2 with
IPS3 probabilistic masks, respectively, from the L Wang et al. (2015)
atlas. For comparison of the activation profiles from dorsal regions, an
object-selective ROI in the ventral stream was defined similarly within
the LOC probabilistic parcel (Julian et al., 2012).

Object-centered part relations localizer. Participants completed six
runs (320 s each) of an object-centered part relations localizer consisting
of blocks of object images in which either the spatial arrangement of
component parts varied from image to image (part-relations condition),

while the parts themselves stayed the same; or the features of the compo-
nent parts varied from image to image (feature condition), while the spa-
tial arrangement of the parts stayed the same (Fig. 1A). Objects could
have one of 10 possible spatial arrangements, and one of 10 possible part
features. Spatial arrangements were selected to be qualitatively different
from one another as outlined by the recognition-by-components (RBC)
model (e.g., end-to-end; end-to-middle; Biederman, 1987). The compo-
nent parts were comprised of qualitatively different features as outlined
by the RBC model (e.g., sphere, cube). Because many dorsal regions are
particularly sensitive to an object’s orientation and axis of elongation
(Sakata et al., 1998), objects were presented in the same orientations and
were organized around the same elongated segment, ensuring they have
identical principal axes. Stimuli subtended;6° visual angle on screen.

Each block of the part relations localizer contained 20 images,
displaying each spatial arrangement or part feature twice per block
depending on the condition. Each image was presented for 800ms with a
200-ms interstimulus interval (ISI) for a total of 20 s per block. To mini-
mize visual adaptation, the location of object images on the screen varied
by ;2° every trial. The image order within the block was randomized.
Participants also viewed blocks of a fixation cross (20 s). Participants
viewed five repetitions of each block per run, with blocks presented in a
pseudorandom order under the constraint that all three block types (rela-
tions, feature, fixation) were presented once before repetition. To maintain
attention, participants performed an orthogonal one-back task, in which
they responded via key press when detecting the repetition of an image on
consecutive presentations.

Object-centered part relations ROIs in pIPS and aIPS were defined
in each individual using four out of the six MRI runs as those voxels that
responded more to the part-relations than the feature condition.
Selectivity was measured for each voxel in an ROI by extracting standar-
dized parameter estimates for each condition (relative to fixation) in left
out runs (two out of six).

Allocentric relations localizer. Participants completed two runs
(368 s each) of the allocentric relations localizer wherein some blocks
they judged whether displayed objects had the same allocentric relations,
in this case the same distances between objects (distance condition), or
had the same brightness (brightness condition; Zachariou et al., 2017). A
nearly identical display was shown in both conditions, consisting of
two diagonally arranged displays, each containing a line and circle (Fig.
1B). In the distance condition, the allocentric relations (i.e., distances)

Figure 1. Example stimuli from the (A) object-centered part relations, (B) allocentric relations (C) depth, (D) and tool localizers used in experiment 1.
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between the line and circle, either matched across the two displays or dif-
fered. In the brightness condition, the brightness of the circles across the
two displays either matched or differed. On each trial, participants were
required to indicate whether the two displays were the same or different
(according to distance or brightness). Each display subtended;4° visual
angle on screen. Before the start of the scan, participants’ individual sen-
sitivity to distance and brightness (blocked) was measured using an
adaptive task where the distances and brightness of the stimuli was
titrated until accuracy on each of the tasks was ;75%. We specifically
used this allocentric localizer task because it has been well validated in
human neuroimaging studies (Haxby et al., 1991; Zachariou et al., 2014).

Each block contained 10 distance or brightness trials, in which five
trials had matching displays and five trials had different displays. Each
trial was presented for 1700ms with a 300-ms ISI for a total of 20 s per
block. The trial order within the block was randomized. Participants also
viewed blocks of fixation (20 s). Participants viewed six repetitions of
each block per run, with blocks presented in a pseudorandom order
under the constraint that all three block types (distance, brightness, fixa-
tion) were presented once before repetition.

Allocentric relation ROIs were defined in each individual as
those voxels that responded more to the distance than the bright-
ness condition. Selectivity was measured for each voxel in an ROI
by extracting standardized parameter estimates for each condition
(relative to fixation).

Depth localizer. Participants completed two runs (308 s each) of a
depth localizer wherein they viewed blocks of object images that con-
tained 3D shapes as defined from depth shading cues (3D condition), or
2D shapes with comparable low-level properties (2D condition; Fig. 1C).
Each condition was comprised of 10 3D or 2D object images from
Georgieva et al. (2008). All stimuli were;6° visual angle on screen. Each
block contained 20 images, displaying each possible 3D or 2D image
twice per block. Each image was presented for 700ms with a 100-ms ISI
for a total of 16 s per block. The image order within the block
was randomized. Participants also viewed blocks of fixation (16 s).
Participants viewed six repetitions of each block per run, with blocks
presented in a pseudorandom order under the constraint that all three
block types (3D, 2D, fixation) were presented once before repetition. To
maintain attention, participants performed an orthogonal one-back task,
responding to the repetition of an image on consecutive presentations.

Depth ROIs were defined in each individual as those voxels that
responded more to the 3D than the 2D condition. Selectivity was meas-
ured for each voxel in an ROI by extracting standardized parameter esti-
mates for each condition (relative to fixation) in left out runs.

Tool and object localizer. Participants completed two runs (340 s) of
a tool localizer wherein they viewed blocks of object images that con-
tained tools (tool condition), manipulable nontool objects (nontool con-
dition), or box-scrambled object images (scrambled conditions; Fig. 1D).
Following previous work (Mahon et al., 2007), we define tools here as
manipulable objects whose physical form is directly related to their func-
tion (e.g., a hammer). By contrast, manipulable nontool objects are those
that can be arbitrarily manipulated, but whose form is not directly
related to their function (e.g., a carrot). Each condition was comprised of
10 instances each of tools, nontools, or scrambled object images from
(Q. Chen et al., 2016, 2018). Each block contained 20 images, displaying
each possible tool, nontool, or scrambled image twice per block. All
stimuli subtended;6° visual angle on screen. Each image was presented
for 700ms with a 100-ms ISI for a total of 16 s per block. The image
order within the block was randomized. Participants also viewed blocks
of fixation (16 s). Participants viewed five repetitions of each block per
run, with blocks presented in a pseudorandom order under the con-
straint that all four block types (tool, nontool, scrambled, fixation) were
presented once before repetition. To maintain attention, participants
performed an orthogonal one-back task, responding to the repetition of
an image on consecutive presentations.

Tool ROIs were defined in each individual as those voxels that
responded more to the tool than the nontool condition. Object ROIs in
LOC were defined as those voxels that responded more to objects (tool
1 nontool) than scrambled. Selectivity was measured for each voxel in
an ROI by extracting standardized parameter estimates for each condi-
tion (relative to fixation).

Task-dependent functional connectivity. We conducted psychophy-
siological interaction (PPI; Friston et al., 1997) analyses to examine
whether there is task-dependent functional connectivity between dorsal
regions involved in computing part relations, and ventral regions
involved in object recognition (Friston et al., 1997). A contrastive psy-
chological task covariate was created from the part relations localizer by
assigning timepoints corresponding to part-relations blocks a value of 1
and assigning timepoints corresponding to feature blocks a value of �1,
then convolving the covariate with a standard HRF. Physiologic covari-
ates were generated from each participant’s cleaned residual timeseries
by extracting the timeseries from a 6-mm sphere centered on the peak
voxel in dorsal ROIs that respond more to the relations than feature con-
dition in the part relations localizer. Finally, a PPI covariate was created
for each participant by multiplying the psychological and physiological
covariates.

For each participant, four runs (randomly selected) of the part rela-
tions localizer were used to identify the peak voxel that responded more
to the part-relations than feature condition in pIPS and aIPS parcels.
The cleaned residual timeseries from the left-out two runs were extracted
then normalized, concatenated, and then further regressed on the psy-
chological and physiological covariates generated for those runs. A seed-
to-whole-brain functional connectivity map was generated by correlating
the residual timeseries of every voxel with the interaction covariate, and
applying a fisher transform on the resulting map.

Data were analyzed in a cross-validated manner, such that every pos-
sible permutation of localizer (four runs) and left-out runs (two runs)
was used to define the seed region separately, and then analyze connec-
tivity. An average map was created by computing the mean across all
permutations and a final group map was created by computing the mean
across subjects. Significant voxels were determined by standardizing the
group map and applying FDR-correction (p, 0.05). Together, this pro-
cedure ensures that any correlation between regions is driven by the
task-dependent neural interaction, and not by the baseline correlation
between regions or shared task activation.

Effective connectivity analyses. We conducted hypothesis-driven
Granger causality analyses (Roebroeck et al., 2005; Seth et al., 2015) to
examine the directionality of dorsal and ventral functional connectivity,
namely, whether the responses in dorsal regions predict those of LOC.
The premise underlying Granger causality analyses is as follows. Dorsal
cortex will be said to predict the response of ventral cortex if incorporat-
ing past responses of dorsal cortex (i.e., t-1) improves the prediction of
current responses of ventral cortex over above ventral’s own past
responses. Although the low temporal resolution of fMRI precludes
strong conclusions about directionality, simulation studies have shown
that temporal delays as low as tens of milliseconds can be resolved from
the hemodynamic response using Granger causality analyses (Katwal et
al., 2009; Deshpande et al., 2010). Thus, by describing the temporal order
of events we may gain insight regarding the directionality of information
flow between dorsal and ventral cortices.

Cleaned residual timeseries were extracted from a 6-mm sphere
centered on the peak voxel in dorsal ROIs that responded more to the
relations than feature condition in the part relations localizer. We meas-
ured effective connectivity in a task-dependent manner by conducting
Granger causality analyses separately on the timeseries from the relations
and feature blocks of the part relations localizer.

For each participant, four runs (randomly selected) of the part
relations localizer were used to identify the peak voxel that re-
sponded more to the relations than feature condition in pIPS and
aIPS parcels. The cleaned residual timeseries from the left-out two
runs were extracted separately from relation and feature blocks, and
then concatenated. A single null value was inserted between every
block’s timeseries to prevent prediction of temporally discontinuous
timepoints. For each dorsal seed region, Granger causality analyses
were conducted twice, once with dorsal cortex as the predictor and
once with ventral cortex, namely, LOC, as the predictor. Following
prior work (Roebroeck et al., 2005), effective connectivity between
the areas was calculated by subtracting the dorsal ! ventral F statis-
tic from the ventral ! dorsal F statistic. A one-time point (i.e.,
1 TR) lag was used in all analyses.
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Data were analyzed in a cross-validated manner, such that every pos-
sible permutation of localizer (four runs) and left-out runs (two runs)
was used to define the seed region separately, and then analyze connec-
tivity. An average statistic was created by computing the mean F-differ-
ence for each participant across all permutations. Following previous
work, a group analyses were conducted using a Wilcoxon signed-rank
test comparing F-difference values to 0.

Experiment 2: basic-level object categorization in parietal ROIs
We tested whether the multivariate pattern in parietal ROIs that repre-
sent object-centered part relations can support basic-level object catego-
rization. We further used representational similarity analyses (RSAs), to
examine the visual contributions of these ROIs to object recognition.
Finally, we used multivariate functional and effective connectivity analy-
ses to examine the degree to which the part relation ROIs in the dorsal
pathway interact with the ventral pathway and the degree to which dor-
sal object responses predict those in ventral cortex.

To this end, participants completed eight runs (330 s each) during
which they viewed images of common objects. The object set was com-
prised of five categories (boat, camera, car, guitar, lamp) each with five
exemplars. Objects were selected from the ShapeNet 3D model dataset
(Chang et al., 2015) and rendered to have the same orientation, texture,
and color. The original texture and color information was removed to
ensure that similarity among objects was on the basis of shape similarity,
rather than other features. All stimuli subtended ;6° visual angle on
screen (see Fig. 2). To maintain attention, participants performed an or-
thogonal target detection task wherein they were required to press a but-
ton anytime a red box appeared around the object.

Objects were presented in an event-related design with the trial order
and ISI optimized to maximize efficiency using Optseq2 (https://surfer.
nmr.mgh.harvard.edu/optseq/). Each stimulus was presented for 1 s,
with a jittered ISI between 1 and 8 s. Participants viewed four repetitions
of each object per run. For each participant, parameter estimates for
each object (relative to fixation) were extracted for each voxel. Responses
to the stimuli in each voxel were then normalized by subtracting the
mean response across all stimuli.

Representational similarity analyses. A 25� 25 symmetric neural
representational dissimilarity matrix (RDM) was created for each ROI and
participant by correlating (1-Pearson correlation) the voxel-wise responses
for each stimulus with every other stimulus in a pairwise fashion. Neural
RDMs were then Fisher transformed and averaged across participants sep-
arately for each ROI. Only the upper triangle of the resulting matrix
(excluding the diagonal) was used in subsequent analyses.

Neural RDMs were compared with RDMs created from a model that
approximates the spatial relations among component parts, namely, a
model based on the medial axis shape skeleton. Shape skeletons provide
a quantitative description of the spatial arrangement of component parts
via internal symmetry axes (Blum, 1973), and are tolerant to variations
in the parts themselves (Feldman and Singh, 2006; Ayzenberg et al.,
2019). Accumulating research has shown that humans representations
of global form are well described by a skeletal model (Lowet et al., 2018),

explaining more variance in human responses than conventional ANNs
(Ayzenberg and Lourenco, 2019; Ayzenberg et al., 2022) and other
descriptors of shape, such as the principal axis (Firestone and Scholl,
2014; Ayzenberg et al., 2019). For our skeletal model, we used a flux-
based medial axis algorithm (Dimitrov et al., 2003; Rezanejad and
Siddiqi, 2013) which computes a “pruned” skeletal structure tolerant to
local variations (Feldman and Singh, 2006). Skeletal similarity between
objects was computed as the mean Euclidean distance between each
point on one object’s skeleton structure with the closest point on a sec-
ond object’s skeleton structure.

We also compared neural RDMs for models of low-level and high-
level vision, namely, the Gabor-jet (GBJ) model, a model of image-simi-
larity that approximates the response profile of early visual regions
(Margalit et al., 2016), and the penultimate layer of CorNet-S, a recur-
rent ANN designed to approximate the response profile of the ventral
visual pathway in monkeys (Kubilius et al., 2019). Object similarity for
both GBJ and CorNet-S were computed as the mean Euclidean distance
between feature vectors for each object image.

Multivariate connectivity analyses. We conducted multivariate pat-
tern dependence (MVPD) analyses (Anzellotti et al., 2017) to examine
whether dorsal ROIs involved in computing part relations interact with
ventral object regions during object viewing. MVPD tests the degree to
which the multivariate activation timeseries of a seed region accounts for
the variance of the multivariate activation timeseries of a target region.

For each participant, data were split into a training (six runs) and
test (two runs) set. A multivariate timeseries was generated from each
participant’s cleaned residual timeseries training data by extracting the
timeseries of each voxel from a 6-mm sphere centered on the peak voxel
in dorsal ROIs that responds more to the part-relations than feature
blocks in the object-centered relations localizer. The dimensionality of
the voxel timeseries was then reduced by applying principal components
analysis (PCA) and selecting the components that explain 90% of the
variance. The same procedure was then repeated for a target region
using a searchlight with 6-mm sphere. Next, using the training data, a
linear regression was fit separately on each component of the target
region using the components from the seed region as predictors. This
procedure results in a series of b weights describing the linear mapping
between the principal components of the seed region to each individual
principal component of the target region. For computational efficiency,
the searchlight was conducted within an extended visual cortex mask
created using an atlas from L Wang et al. (2015) comprised of occipital,
dorsal, and ventral visual cortices.

The b weights from the training data are then used to generate a
predicted multivariate timeseries for left-out runs of the target region,
which is then correlated (Pearson) with the actual observed timeseries of
the target region. A final fit value is computed as the weighted mean of
correlations across target region principal components, with the weight-
ing of each correlation determined by the proportion of variance
explained by each target component. A single map for each participant
is created by averaging the weighted correlations following 5-fold cross-
validation, and then Fisher transforming the correlations. A final group

Figure 2. Object stimuli presented in experiment 2. Participants viewed five exemplars from five categories in an event-related design.
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map is created by computing mean across participants. Significant voxels
were determined by standardizing the group map and applying FDR-
correction (p, 0.05).

Multivariate effective connectivity. We conducted hypothesis-driven
multivariate Granger causality analyses to examine the directionality of
functional connectivity between dorsal and ventral pathways. Like its
univariate counterpart, multivariate Granger causality tests whether past
responses of one multivariate timeseries (e.g., dorsal cortex) predict the
current responses of a second multivariate timeseries (e.g., LOC) over
and above their own past timepoints.

For each participant, the entire cleaned residual timeseries (eight
runs) was extracted from a 6-mm sphere centered on the peak voxel in
dorsal ROIs that responds more to the part-relations than feature blocks
in the object-centered relations localizer. The dimensionality of the voxel
timeseries was then reduced by applying PCA and selecting the compo-
nents that explain 90% of the variance. The same procedure was then
repeated for LOC. To conduct multivariate Granger causality, the total
number of components for each ROI was matched to the ROI with fewer
components.

For each dorsal seed region, multivariate Granger causality was con-
ducted twice, once with dorsal seed region as the predictor and once
with LOC as the predictor. As in univariate Granger causality, effective
connectivity between the two regions was calculated by subtracting the
dorsal ! ventral F statistic from the ventral ! dorsal F statistic. A 1-
time point (i.e., 1 TR) lag was used in all analyses. Group analyses were
conducted using a Wilcoxon signed-rank test comparing F-difference
values to 0.

Data availability
Data, stimuli, and tasks are available at https://doi.org/10.1184/R1/
19543819.v1.

Code availability
Analysis and modeling scripts are available at https://github.com/
vayzenb/dorsal-part-relations.

Results
Experiment 1: selectivity for object-centered relations in the
dorsal pathway
ROI definition
See Table 1 for a summary of significant group-level clusters
from every localizer. The part relations localizer (four runs) iden-
tified significant clusters in pIPS and aIPS in the right hemi-
sphere (rpIPS, raIPS) of every participant and in 10 out of 12
participants in the left hemisphere (lpIPS, laIPS; see Fig. 3A).
Likewise, a group averaged map created using two runs (left out
to measure selectivity) from every participant also revealed sig-
nificant clusters in pIPS and aIPS, although these were found
exclusively in the right hemisphere (see Fig. 3B).

Selectivity for part relations
To test whether these ROIs are selective for object-centered part
relations, we examined the response in this region (relative to fix-
ation; see Material and Methods) to (1) activation in the relations
blocks of the part relations localizer (independent runs), as well
as the other dorsal conditions, namely; (2) distance as deter-
mined from the allocentric relations localizer; (3) 3D shape from
the depth localizer; and (4) tools from the tool localizer.

A repeated-measures ANOVA with ROI (pIPS, aIPS), hemi-
sphere (left, right), and condition (part relations, distance, 3D
shape, tools) as within-subjects factors revealed that there was a
significant main effect of condition, F(3,24) = 8.26, p, 0.001, hp

2 =
0.53. There were no other main effects or interactions (ps.
0.102). Post hoc comparisons (Holm–Bonferroni corrected)
revealed that activation to the part-relations condition was

higher than distance (t(11) = 4.64, p, 0.001, d= 1.55), 3D
shape (t(11) = 4.16, p = 0.002, d = 1.39), and tool (t(11) = 4.48,
p = 0.008, d = 1.16) conditions. Thus, these analyses suggest
that the dorsal pathway represents object-centered part rela-
tions, and that this representation is independent of allocen-
tric spatial relations and other object properties represented
by the dorsal pathway.

Although these analyses did not reveal a significant difference
between left and right hemisphere ROIs, examination of the
group map suggests that the part relations may be more strongly
represented in the right hemisphere. To explore these possible
differences, we also analyzed each ROI separately. Note, because
of the exploratory nature of this analysis, these results should be
interpreted with caution.

Separate repeated measures ANOVAs were conducted for
participants’ left and right pIPS and aIPS which revealed main
effects of condition in all four regions (lpIPS: F(3,33) = 3.92,
p= 0.021, hp

2 = 0.33; rpIPS: F(3,33) = 8.70, p, 0.001, hp
2 = 0.44;

laIPS: F(3,33) = 4.69, p= 0.009, hp
2 = 0.34; raIPS: F(3,33) = 12.57,

p, 0.001, hp
2 = 0.53), with the response to part relations numeri-

cally highest in each region (see Fig. 4). However, post hoc com-
parisons (Holm–Bonferroni corrected) revealed that activation
to part relations was statistically highest only in the right hemi-
sphere parietal regions, but not the left hemisphere parietal
regions. Namely, in the right hemisphere, the activation to part
relations was significantly higher than distance (rpIPS:
t(11) = 4.66, p, 0.001, d= 1.34; raIPS: t(11) = 4.18, p, 0.001,
d=1.21), 3D shape (rIPS: t(11) = 3.47, p= 0.006, d=1.00; raIPS:
t(11) = 5.77, p, 0.001, d=1.67), and tools (rpIPS: t(11) = 4.05,
p= 0.001, d=1.17; raIPS: t(11) = 4.52, p, 0.001, d=1.31). By con-
trast, in the left hemisphere, pIPS responses to part relations
were higher than distance (t(11) = 3.21, p= 0.023, d=1.07), but
not 3D shape or tools (ts, 2.65, ps. 0.071, ds, 0.88). In left
aIPS, responses were higher than distance (t(11) = 3.51, p=0.010,
d=1.1) and 3D shape (t(11) = 2.87, p=0.039, d=0.91), but not
tools (t(11) = 2.39, p=0.097, d=0.75). In combination with the
group statistical map (Fig. 3), these results suggest that object-

Table 1. Significant group level clusters for the object-centered part relations,
allocentric spatial relations, and tool localizer

Localizer Region

MNI coordinate

x y z

Object part relations
1 R posterior intraparietal sulcus (IPS0) 26 �76 44
2 R ventral intraparietal complex (VIP) 22 �58 64
3 R middle temporal area (MT) 42 �78 12
4 R temporal parietal junction (TPJ) 52 �60 �2

Allocentric spatial relations
1 L intraparietal sulcus (IPS1) �26 �72 24
2 L ventral intraparietal complex (VIP) �16 �68 58
3 R ventral intraparietal complex (VIP) 16 �62 56
4 L secondary somatosensory Cortex (S2) �38 �38 48
5 R secondary somatosensory Cortex (S2) 45 �40 63
6 R V3A/V3B 34 �78 16
7 L middle temporal area (MT) �48 �72 2
8 L fundal superior temporal (FST) �48 �66 �6

Tools
1 L lateral interparietal area (LIP) 24 �58 64
2 R ventral intraparietal complex (VIP) �22 �54 58
3 L middle temporal area (MT) �46 �76 6
4 L temporal parietal junction (TPJ) �58 �72 0
5 R temporal parietal junction (TPJ) 56 �68 4

MNI coordinates correspond to the peak voxel within each cluster. The depth localizer is not listed because
there were no significant clusters at the group level.
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centered part relations may be represented more strongly in the
right than left hemisphere parietal regions.

Conjunction analyses
To explore further the degree to which parietal regions involved
in computing part relations overlap with regions computing
other dorsal properties, we conducted whole-brain conjunction
analyses. First, group-averaged statistical maps were created for
every localizer and a cluster-correction threshold applied (p,
0.001; see Table 1). The resulting statistical maps were consistent
with prior research on the neural basis of the allocentric relations
(Zachariou et al., 2017) and of tool representations (Gallivan et
al., 2013; Q. Chen et al., 2016). No significant clusters were found
for the activation profiles on the depth localizer (Georgieva et al.,
2008).

Next, we calculated the proportion of independent and over-
lapping voxels by converting the thresholded statistical map
from each group-averaged localizer into binary masks and over-
laying them with the thresholded statistical map from part rela-
tions localizer. Binomial tests revealed that, in right pIPS, there
were significantly more independent than overlapping voxels
that responded to part relations. Here, the allocentric relations
ROI had the greatest amount of overlap with part relations ROI
in pIPS (overlapping voxels: 42%, p, 0.001). There were no
overlapping voxels from the depth or tool ROIs above the cluster
corrected threshold. By contrast, in right aIPS, there were signifi-
cantly more voxels that overlapped with the allocentric relations

ROI than were independent (overlapping voxels: 65%, p,
0.001). There was also overlap with the tool ROIs (overlapping
voxels: 43%, p, 0.001), but there were significantly more inde-
pendent voxels than overlapping ones. There were no overlap-
ping voxels with the depth localizer (0%). Together, these
results suggest part relations may be represented along a
gradient within the dorsal pathway, with both distinct and
overlapping components.

Finally, to visualize this gradient better, statistical maps
were converted into proportions, such that, for each voxel, a
value closer to 1 indicates a greater response to part relations
and a value closer 0 indicates a greater response to one of the
other dorsal properties (e.g., allocentric relations; see Fig. 5).
Consistent with the analyses above, these maps reveal the
least overlap between part relations and other dorsal ROIs in
pIPS and the most overlap in aIPS.

Task-dependent functional connectivity
If the role of the dorsal pathway in object recognition is to com-
pute object-centered part relations, then a prediction is that pIPS
and aIPS will also be functionally connected to the ventral path-
way, the nexus of object recognition processing. More specifi-
cally, the prediction is that functional connectivity between right
and left pIPS or aIPS with ventral cortex will depend on the
task demands, such that connectivity would be greatest when
perception of part relations is needed, as in the relations, but not
feature, condition of the localizer. To test this prediction, we

Figure 3. Significant activation to part relations (vs features) condition from the object-centered part relations localizer displayed (A) for each individual participant and in (B) a group aver-
age map inflated (above) and flattened (below). Values reflect the standardized parameter estimate.
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conducted PPI analyses to examine whether
there was task-dependent functional connec-
tivity between left and right pIPS and aIPS
regions involved in computing object-cen-
tered part relations, and ventral regions
involved in object recognition (see Materials
andMethods).

Examination of the group map (Fig. 6)
revealed significant connectivity between
right hemisphere pIPS and aIPS with bilat-
eral ventral pathway regions. Interestingly,
there was relatively little connectivity with
other dorsal regions, suggesting that the
function of right hemisphere pIPS and
aIPS may be specifically in the service of
object recognition processes in the ventral
pathway rather than action processes in
other dorsal regions. There was no signifi-
cant connectivity with left pIPS or aIPS
that survived FDR correction.

To further examine the specificity of
task-dependent connectivity to these regions,
we reanalyzed the data from the part rela-
tions localizer using the peak voxel from the
allocentric relations ROI in the left hemi-
sphere as our seed region. This ROI was
chosen because it does not overlap with part
relations ROIs, but nevertheless has a con-
ceptually similar representation. These anal-
yses revealed no significant connectivity
between allocentric relations ROIs in the
left hemisphere and the ventral visual
pathway. Moreover, a direct comparison
between regions (Holm–Bonferroni cor-
rected), revealed that task-dependent
connectivity with LOC, a ventral object
region, was significantly stronger with
right pIPS (lLOC: t(11) = 3.41, p = 0.005,
d = 0.99; rLOC: t(11) = 3.28, p = 0.007, d =
0.95) and aIPS (lLOC: t(11) = 4.36, p,
0.001, d = 1.26; rLOC: t(11) = 4.56, p, 0.001, d = 1.32) than left
allocentric relations ROIs. There were no differences in con-
nectivity between the other pIPS and aIPS regions (ps.
0.217). Together, these findings suggest that dorsal regions
involved in computing object-centered part relations, particu-
larly in the right hemisphere are preferentially connected to
the ventral pathway to support object recognition.

Task-dependent effective connectivity
If dorsal regions propagate information about object-centered
part relations to the ventral pathway for recognition, then one
should expect that representations of part relations in pIPS and
aIPS will temporally precede and will predict those in ventral
cortex. More specifically, the prediction is that the past time-
points of pIPS or aIPS will predict current timepoints of ventral
cortex over and above ventral’s own past time points. Moreover,
this effect should be strongest for the relations condition of the
localizer, not the feature condition. To test this prediction, we
conducted Granger causality analyses to examine the effective
connectivity between left and right pIPS and aIPS regions
involved in computing object-centered part relations and LOC
involved in object recognition (see Materials and Methods).

A Wilcoxon signed-rank comparison to 0 revealed significant
effective connectivity during the relations blocks between left
pIPS with right LOC (W= 74, p= 0.002, d=0.90), but not left
LOC (W= 57, p=0.088, d= 0.46), and between right pIPS with
right LOC (W= 66, p=0.017, d=0.70), but not left LOC
(W= 45, p= 0.339, d=0.15; see Fig. 7). There was positive effec-
tive connectivity between right aIPS with left (W=60, p=0.055,
d=0.54) and right (W= 59, p= 0.065, d=0.51) LOC during the
relations blocks, although these effects did not reach the criteria
for significance. There were no significant effects for left aIPS for
the relations blocks in either left or right LOC (Ws, 46,
ps. 0.311, ds, 0.18), nor any of the ROIs in the feature blocks
(Ws, 56, ps. 0.102, ds, 0.44).

Separate repeated-measures ANOVAs were further con-
ducted to analyze effective connectivity as a function of ROI
(pIPS, aIPS), hemisphere (left, right), and condition (relations,
features). As hypothesized, these analyses revealed a significant
main effect of condition, such that effective connectivity was
overall higher for the relations than feature blocks in left LOC,
F(1,11) = 7.45, p= 0.020, hp

2 = 0.40, although right LOC did not
meet criteria for significance, F(1,11) = 3.60, p=0.084, hp

2 = 0.25.
Moreover, there was a significant ROI � hemisphere interaction
in both left LOC, F(1,11) = 5.46, p=0.039, hp

2 = 0.33, and right
LOC, F(1,11) = 7.26, p=0.019, hp

2 = 0.41, such that effective

Figure 4. Activation to the part relations (left-out runs), allocentric distance, 3D shape, and tools conditions in (A) left
pIPS and (B) right pIPS, (C) left aIPS, and (D) right aIPS. Activation values reflect the standardized parameter estimate. Error
bars reflect SEM.

4700 • J. Neurosci., June 8, 2022 • 42(23):4693–4710 Ayzenberg and Behrmann · Object-Centered Relations in Dorsal Cortex



connectivity was higher in right aIPS than left aIPS. However,
none of the post hoc comparisons were significant following
Holm–Bonferroni correction (ps. 0.066). Together, these find-
ings suggest that pIPS and aIPS transmit information about
object-centered part relations to the ventral pathway, rather than
the other way around.

Analysis on larger sample
All findings from experiment 1 were replicated successfully with
a larger sample (n= 18). The part relations localizer (four runs)
identified significant clusters in pIPS and aIPS in all 18 partici-
pants in the right hemisphere, but 14 participants exhibited left
pIPS ROI and 16 exhibited left aIPS ROI. We found selectivity
for object-centered part relations in right pIPS and aIPS, with
responses greater than allocentric relations, 3D shape, and tools
(ps, 0.006). Moreover, we found significant task-based func-
tional connectivity between right pIPS and aIPS with both left
and right LOC, which was greater than a control region defined
using allocentric relations (ps, 0.008). Finally, we found signifi-
cant effective connectivity between right pIPS with right LOC

(p=0.048) during the relations, but not feature blocks of the
part-relations localizer. Importantly, there was a main effect of
condition in left LOC (p= 0.010), such that there was overall
greater effective connectivity during the relations blocks than the
feature blocks.

Experiment 2: dorsal contributions to object recognition
Category decoding
To test whether dorsal regions that compute object-centered
part relations contribute to object recognition, we examined
whether multivariate pattern within these regions could be
used to classify objects (see Fig. 2). Using a 20-fold cross-val-
idation procedure, a support vector machine (SVM) classifier
was trained on the multivariate pattern for three exemplars
from each category, and then tested on the category of the
two left out exemplars.

One-sample comparisons to chance (0.20) revealed that cate-
gory decoding was significantly above chance in right pIPS,
M=32.7%, t(11) = 3.15, p=0.009, d=0.91, but not in right aIPS,
left pIPS or left aIPS ROIs defined on the basis of part relations

Figure 5. Conjunction maps illustrating areas of distinct and overlapping coding for object-centered part relations and (A) allocentric relations, (B) depth, and (C) tools. A value closer 1 indi-
cates a greater response to part relations; a value closer to 0 indicates a greater response to the control localizer. Maps are zoomed in on the visual cortex for easier inspection.
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(Ms, 23.4%, ps. 0.110, ds, 0.72; Fig.
8). To further examine the specificity of
category decoding in dorsal regions, we
also tested how well a left hemisphere
allocentric relations ROI can decode
object categories. These analyses revealed
that decoding was not above chance
in the left allocentric ROI, M=18.7%,
t(11) = �0.82, p=0.780, d= 0.23. Direct
comparisons between right pIPS and the
other regions (Holm–Bonferroni cor-
rected) further confirmed that, cate-
gorization accuracy was significantly
higher in right pIPS than left allocentric
regions (t(11) = 3.88, p = 0.004, d= 1.23
and left aIPS (t(11) = 4.32, p = 0.001,
d = 1.37), although not right aIPS (t(11) =
2.65, p=0.096, d=0.837) nor left pIPS
(t(11) =2.48, p=0.127, d=0.78). Next, we
examined how category decoding in
the dorsal pathway compares to ventral pathway object rec-
ognition regions, namely, LOC. As would be expected, cate-
gorization accuracy was above chance in left and right LOC
(lLOC: M = 26.0%, t(11) = 3.56, p = 0.004, d = 1.03; rLOC:

M = 26.7% t(11) = 2.30, p = 0.042, d = 0.66), with the neither
region differing significantly from right pIPS (ts, 1.62,
ps. 0.357, ds, 0.42). Thus, regions in right pIPS involved
in computing object-centered part relations can support
categorization of object exemplars.

Figure 6. Task-based functional connectivity results. A, B, Functional connectivity map (zoomed in on the visual cortex) for (A) right pIPS and (B) right aIPS. Seed regions are displayed as
white circles. There was no functional connectivity above the cluster corrected threshold in left pIPS, left aIPS, or the left allocentric ROI. C, Plots comparing the connectivity between pIPS, aIPS,
and the other ROIs in left LOC and right LOC ROIs. Error bars reflect SEM.

Figure 7. Plots comparing the task-based effective connectivity between left and right pIPS and aIPS with left LOC and right
LOC ROIs. Error bars reflect SEM.
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Representational content of dorsal ROIs
The results above show that a region in pIPS defined on the
basis of part relations can be used to decode the category of
objects. Yet, despite the fact that this region was defined
using a part relations localizer, it is possible that categoriza-
tion was accomplished using other visual properties.
Indeed, it is well known that pIPS retains a retinotopic or-
ganization (L Wang et al., 2015) and is tightly connected to
early visual cortex (Greenberg et al., 2012). Thus, it is possi-
ble that the categorization performance of right pIPS may
have been achieved on the basis of low-level image-level
similarity. Moreover, it is unclear to what degree categori-
zation in right pIPS is accomplished using high-level visual
representations distinct from those in the ventral pathway.

To examine whether right pIPS accomplished object cat-
egorization on the basis of object-centered part relations,
we used RSA. Specifically, we tested whether a skeletal
model, which approximates object-centered part relations,
explains unique variance in pIPS over and above other
models of vision (see Materials and Methods). Like the rep-
resentation measured by the part relations localizer, skeletal
models describe the spatial arrangement of object parts
while ignoring variations in the parts themselves (see Fig.
9). Indeed, skeletal models explain more variance in partici-
pants judgments of part relations than other models of
vision (Lowet et al., 2018; Ayzenberg and Lourenco, 2019).

As a comparison, we also tested whether ROIs are well
described by GBJ, a model of low-level image similarity
(Margalit et al., 2016; see Fig. 9), as well as CorNet-S a neural net-
work model whose upper layers approximate the response profile of
high-level ventral regions in monkeys (Schrimpf et al., 2018;
Kubilius et al., 2019; see Fig. 9).

To test whether the skeletal model explained unique variance
in right pIPS, we conducted linear regression analyses with the
neural RDM from pIPS as the dependent variable and the different
models of visual similarity as predictors (Skeleton | GBJ |
CorNet-S; see Fig. 9). Consistent with the localizer results of
experiment 1, these analyses revealed that only skeletal model
explained unique variance in right pIPS (b = 0.33, p, 0.001), not
the other models (GBJ: b = 0.04, p=0.493; CorNet-S: b = �0.02,
p=0.839). The skeletal model also explained the most variance
in right aIPS, although it approached but did not meet the crite-
ria for statistical significance (skeleton: b = 0.14, p= 0.068;

GBJ: b = 0.00, p= 0.968; CorNet-S: b =
�0.07, p= 0.376). The skeletal model did
not explain significant unique variance
in any other dorsal ROI (b , 0.12,
ps. 0.113; see Fig. 10A,B). These find-
ings are consistent with the results of
experiment 1, which suggest that pIPS
and aIPS ROIs, particularly those in the
right hemisphere, represent objects in
terms of their object-centered part rela-
tions. Moreover, these results suggest
that categorization in right pIPS was
accomplished by representing part rela-
tions, not other low-level or high-level
visual properties.

Unique contributions of dorsal ROIs to
ventral processing
Next, we examined whether right pIPS
represents distinct visual information from
ventral object regions such as LOC. We

repeated the linear regression analyses, except here we used neu-
ral RDMs from left and right LOC as the dependent variable.
These analyses revealed that, the skeletal model explained unique
variance in left (b = 0.17, p=0.023), but not right LOC (b =
0.04, p= 0.582; see Fig. 10C).

Although in experiment 1 we found that coding of part
relations in the dorsal pathway precedes the ventral pathway,
this finding nevertheless raises the question: do regions of
dorsal cortex compute object-centered part relations and
then transmit that information to ventral cortex for object
recognition? Or, are part relations computed in the ventral
pathway, as previously proposed (Behrmann et al., 2006;
Ayzenberg et al., 2022) and transmitted to dorsal regions
such as right pIPS? Alternatively, part relations may be coded
in parallel in both pathways. To investigate these possibil-
ities, we examined whether multivariate response in pIPS
mediates the relation between the skeletal model and the
neural RDM in LOC. In other words, we tested whether skel-
etal coding in LOC is represented independently or by way of
right pIPS.

To test these possibilities, we first repeated the linear regres-
sion analyses in left LOC, but this time we included the neural
RDM from right pIPS in addition to the skeleton, GBJ, and
CorNet-S models as predictors. With right pIPS included as
a predictor, the skeletal model no longer explained unique

Figure 8. Object categorization accuracy for pIPS, aIPS, the left allocentric ROI, and LOC.
Error bars reflect SEM.

Figure 9. RDMs and a schematic illustration of the (left) the skeletal model, (middle) GBJ model, and (right)
CorNet-S.
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variance in left LOC (b = 0.07, p=
0.345), only right pIPS (b = 0.31,
p, 0.001) and CorNet-S (b = 0.14,
p = 0.053) explained unique variance.
By contrast, when linear regression
analyses are conducted on right pIPS
with the left LOC RDM as a predictor
in addition to the skeleton, GBJ, and
CorNet-S models, both the skeleton
model (b = 0.28, p, 0.001) and left
LOC RDM (b = 0.30, p, 0.001) explain
unique variance. Finally, a mediation
analysis (with GBJ and CorNet-S as
covariates) confirmed that right pIPS
fully mediated the relation between the
skeletal model and left LOC (b= 0.10,
95% CI [0.05, 0.16]). There was no
direct relation otherwise (b= 0.07, 95%
CI [–0.074, 0.21]). By contrast, when left
LOC is used as a mediator between the
skeletal model and right pIPS, there
continues to be a direct relation between
the skeletal model and right pIPS (b=
0.28, 95% CI [0.14, 0.42]). Here, left LOC
acts as only a partial mediator (b=0.05,
95% CI [0.00, 0.10]). Subsequent analy-
ses revealed that other dorsal ROIs
(e.g., right aIPS) did not act a mediator
between the skeletal model and left
LOC. Together, these results suggest
that object-centered part relations, as
approximated by a skeletal model, are
computed in right pIPS independently
of ventral regions. Moreover, represen-
tations of part relation in ventral
regions such as left LOC may arise via
input from right pIPS.

Multivariate connectivity
Thus far, we have documented that an
ROI in pIPS, particularly in the right
hemisphere, is sensitive to object-cen-
tered part relations, able to categorize
objects, and account for the representa-
tion of part relations in the ventral path-
way. Together, these results suggest
that this region interacts with ventral
regions in support of object recognition. To provide converg-
ing evidence for this result, we used MVPD analyses to test
whether right pIPS also exhibits functional connectivity with
ventral pathway regions during object viewing (see Materials
and Methods).

Examination of the group map (Fig. 11B) revealed broad con-
nectivity between both right pIPS with bilateral dorsal and ven-
tral regions. To examine the specificity of this interaction
between right pIPS and ventral regions, we also examined the
multivariate connectivity patterns of left pIPS and bilateral aIPS
defined on the basis of part relations. Like right pIPS, these
regions also showed broad connectivity with bilateral dorsal and
ventral regions (see Fig. 11). Direct comparisons between these
ROIs (Holm–Bonferroni corrected), revealed that connectivity
between right pIPS and bilateral LOC was stronger than both left
aIPS (lLOC: t(11) = 3.09, p= 0.028, d=0.97; rLOC: t(11) = 3.77,

p= 0.005, d=1.19) and right aIPS (lLOC: t(11) = 2.62, p= 0.072,
d=0.83; rLOC: t(11) = 3.16, p= 0.019, d=1.00). There were no
differences between left and right pIPS (ps. 0.312, ds, 0.70),
nor among the other ROIs (ps. 0.130, ds, 0.71) Together,
these findings suggest that right pIPS regions involved in com-
puting object-centered part relations are connected to the ventral
pathway.

Multivariate effective connectivity
If right pIPS transmits information about part relations to LOC
for object recognition, then object information should also be
processed in right pIPS before ventral ROIs. To test this possibil-
ity, we conducted multivariate granger causality analyses to test
the effective connectivity between IPS regions and LOC (see
Materials and Methods).

A Wilcoxon signed-rank comparison to 0 revealed significant
effective connectivity between left pIPS with left LOC (W=50,

Figure 10. Results of the representational similarity analyses. A–C, Standardized coefficients (b s) from the linear regression
analyses examining the fit of the skeletal, GBJ, and CorNet-S models for left and right (A) pIPS, (B) aIPS, and (C) LOC.
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p=0.010, r= 0.82), but not right LOC (W= 38, p= 0.161, r=
0.38; see Fig. 12). Importantly, there was also significant
effective connectivity between right pIPS and left LOC
(W = 61, p = 0.046, r = 0.56), as consistent with the media-
tion analyses presented previously. The effective connectiv-
ity between right pIPS and right LOC did not reach
significance (W = 59, p = 0.065, r = 0.51). Finally, there was
also significant effective connectivity between left aIPS with
left LOC (W = 68, p = 0.010, r = 0.74), although not right
LOC (W = 59, p = 0.065, r = 0.51), as well as between right
aIPS and both left LOC (W = 60, p = 0.055, r = 0.54) and
right LOC (W = 71, p = 0.005, r = 0.82). Separate repeated-
measures ANOVAs were conducted to analyze effective

connectivity as function of ROI (pIPS, aIPS) and hemi-
sphere (left, right). These analyses revealed a significant
main effect of hemisphere, such that effective connectivity
between right hemisphere IPS ROIs and right LOC were
overall higher than left hemisphere IPS ROIs, F = 5.37,
p = 0.046, hp

2 = 0.37. There were no other significant effects
or interactions (ps. 0.451). Thus, as in experiment 1, these
results show that object processing in dorsal cortex precedes
and predicts object processing in ventral cortex. Importantly,
that pIPS exhibited significant effective connectivity with left
LOC is consistent with the hypothesis that pIPS propagates in-
formation about part relations to the ventral pathway for object
recognition.

Figure 11. Multivariate functional connectivity results. A–D, Functional connectivity map for (A) left pIPS, (B) right pIPS, (C) left aIPS, and (D) right aIPS. Seed regions are displayed as a
white circle. E, Plots comparing the connectivity between ROIs in left LOC and right LOC ROIs. Error bars reflect SEM.
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Analysis on larger sample
All findings from experiment 2 were repli-
cated successfully with a larger sample
(n=14). Object category information was
successfully decoded from right pIPS (p=
0.006), as well as left and right LOC (ps,
0.030), but not any of the other ROIs.
There was no significant difference in
decoding performance between right pIPS
with either left or right LOC (ps. 0.264).
RSA further showed that objects in right
pIPS were best represented by a skeletal
model, which approximates the spatial rela-
tions among an object’s parts (p=0.001),
rather than the GBJ model or CorNet-S
(ps. 0.493). We also found that a skeletal
model explained significant variance in left
LOC alongside CorNet-S (ps, 0.001).
Follow-up analyses revealed that the
relation between the skeletal model and
left LOC was partially mediated by right
pIPS (p=0.003). Next, multivariate func-
tional connectivity analyses revealed significant functional connec-
tivity between right pIPS with both left and right LOC. In left LOC,
this connectivity was significantly greater than left aIPS (p, 0.021),
and in right LOC was significantly greater than both left and right
aIPS (ps, 0.019). Finally, multivariate effective connectivity analy-
ses revealed significant effective connectivity between right pIPS
with both left and right LOC (ps, 0.050).

Discussion
Here, we examined the contribution of the dorsal visual pathway
to object recognition. Given its sensitivity to spatial information
and its contribution to object perception (Freud et al., 2020), we
hypothesized that dorsal cortex may compute the relations
among an object’s parts and transmit this information to ventral
cortex to support object recognition. We found that regions in
pIPS and aIPS, particularly in the right hemisphere, displayed se-
lectivity for part relations independent of allocentric spatial rela-
tions and other dorsal object representations, such as 3D shape
and tools. Importantly, these regions also exhibited task-depend-
ent functional and effective connectivity with ventral regions,
such that connectivity increased when part relations differed.

Next, we found that object category could be decoded suc-
cessfully in right pIPS, with categorization performance com-
parable to ventral object regions. Similarity analyses further
confirmed that decoding in right pIPS was supported by a rep-
resentation of part relations, as approximated by a skeletal
model, and not by low-level or high-level image properties.
Crucially, we found that the multivariate response in right
pIPS mediated representations of part relations in ventral cor-
tex, with pIPS also exhibiting higher multivariate functional
and effective connectivity with ventral cortex. Together, these
findings highlight how object-centered part relations, a prop-
erty crucial for object recognition, are represented neurally,
and validate the strong link between dorsal and ventral visual
cortex in accomplishing object recognition.

Neural representations of object-centered part relations
Many studies have examined how allocentric spatial information
is represented neurally, but few have explored the representa-
tions of object-centered part relations. Lescroart and Biederman

(2013) decoded the spatial arrangements of object parts in both
ventral and dorsal cortices, but did not test whether these were
independent of other dorsal representations nor whether other
visual properties influenced decoding. Ayzenberg et al. (2022)
identified ventral regions that coded for part relations (as
approximated by a skeletal model) independent of other visual
properties, with strongest coding in left LOC, a finding consist-
ent with the RSA results of the current study. However, they did
not investigate whether such representations also exist in dorsal
cortex and could account for their effects. Finally, Behrmann et
al. (2006) reported that patients with LOC damage and object
recognition deficits were impaired in perceiving part relations,
but not the features of object parts, suggesting a ventral locus for
object-centered relations.

Consistent with these studies, we, too, found that part rela-
tions are represented in ventral cortex. However, our data sug-
gest that this information arises via input from dorsal cortex. We
documented functional connectivity between IPS and LOC and
showed that right pIPS mediates the representation of part rela-
tions in ventral regions, and not the other way around. Indeed,
across both experiments, effective connectivity analyses revealed
that part relations may be first processed in IPS and then trans-
mitted to ventral object regions. This finding is compatible with
research showing that visual object information reaches PPC
100–200ms earlier than ventral regions (Regev et al., 2018), as
well as with studies showing that topological object properties
may only become represented in the ventral pathway through
top-down connections (Bar et al., 2006; W Wang et al., 2020).
Crucially, studies also show that temporary inactivation of poste-
rior parietal regions impairs ventral object processing (Van
Dromme et al., 2016; Zachariou et al., 2017). Altogether, our
results in combination with these studies suggest a causal role for
dorsal cortex in ventral object processing in which dorsal cortex
transmits object information to the ventral pathway to support
object recognition.

An interesting facet of our work is that our results differed by
hemisphere. Specifically, we found that coding of object-centered
part relations was strongest in the right hemisphere across almost
all analyses. This finding mirrors the classic global precedence
effect of the right hemisphere (Wasserstein et al., 1987; Van
Kleeck, 1989; Brighina et al., 2003), wherein global shape proper-
ties are most often represented by the right hemisphere and local

Figure 12. Plots illustrating the multivariate effective connectivity between pIPS and aIPS with left LOC and right LOC
ROIs. Error bars reflect SEM.
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shape properties by the left. Although the reasons for this effect
remain controversial (Kimchi, 1992; Seghier and Vuilleumier,
2006), one explanation suggests that the right hemisphere may
be more sensitive to low spatial frequencies (Iidaka et al., 2004;
Peyrin et al., 2004). Consistent with this possibility patients with
damage to PPC show a deficit in perceiving low spatial frequency
information, and, as a result, global form (Kinsbourne and
Warrington, 1962; Warrington and Taylor, 1973; Thomas et al.,
2012). Other studies suggest that the right hemisphere global
precedence may be related to lateralization of object-based atten-
tion to the right hemisphere (Shomstein and Behrmann, 2006),
such that manipulating the focus of attention can enhance or dis-
rupt the global precedence effect in the right hemisphere
(Kimchi and Merhav, 1991; Van Vleet et al., 2011).

Our results also uncovered a posterior-to-anterior gradient,
especially evident in experiment 2. Although selectivity for part
relations was found in both pIPS and aIPS, only right pIPS was
able to decode object category. Moreover, right pIPS exhibited
the highest multivariate functional connectivity with LOC, and
its representation of object similarity was most consistent with a
model of part relations (i.e., medial axis skeleton). This gradient
may reflect a common organizing principle of the dorsal path-
way. Regions of PPC exhibit greater sensitivity for object proper-
ties in the service of recognition (Gillebert et al., 2015; Van
Dromme et al., 2016; Freud et al., 2017a), and greater connectiv-
ity to ventral object regions (Webster et al., 1994; Takemura et
al., 2016; Janssen et al., 2018). By contrast, anterior parietal cor-
tex shows greater sensitivity to object properties that afford
action, such as elongated axes (Chao and Martin, 2000; Culham
et al., 2003; Q. Chen et al., 2016; J. Chen et al., 2018). Whereas
right pIPS may be more involved in computing part relations for
the purpose of recognition, right aIPS may be more involved in
computing part relations to help coordinate grasping behaviors.
Relatedly, we found greater overlap between right aIPS and
regions involved in representing allocentric relations and tools,
which are both critical for coordinating action. However, it is im-
portant to note that right aIPS did show significant functional
and effective connectivity with ventral regions. Given the
research described above, it is possible that that right aIPS may
contribute to categorization for objects that afford action, such as
tools. Unfortunately, none of the objects used in experiment 2
consisted of tools, and only two of the object categories (out of
five) could be considered manipulable. Thus, future research
should explore the degree to which dorsal cortex may differen-
tially contribute to object categorization for manipulable and
nonmanipulable objects.

Object-centered relations and other dorsal representations
We found that IPS regions responded more to object-centered
part relations than allocentric relations, 3D shape, and tools, sug-
gesting selectivity in these regions. However, our conjunction
analyses also revealed that object-centered relations may be rep-
resented along a continuum in parietal cortex, with varying
degrees of overlap with other dorsal properties, particularly, with
allocentric spatial relations. The overlap between object-centered
and allocentric relations in parietal cortex may reflect a broader
organizing principle for spatial coding in dorsal cortex in which
reference frames are organized topographically. Recent evidence
suggests that the dorsal pathway represents visual information at
different spatial scales ranging from single objects to large, multi-
object perspectives (Josephs and Konkle, 2020). This possibility
is also consistent with a rich literature on hemi-spatial neglect, in
which right parietal damage impairs object perception on the left

side of space (Heilman and Valenstein, 1979; Caramazza and
Hillis, 1990; Tipper and Behrmann, 1996; Behrmann and Tipper,
1999; Corbetta and Shulman, 2011). Depending on the scope of
the damage, multiple reference frames are often affected simulta-
neously, further suggesting that the representations overlap or
abut (Halligan et al., 2003; Medina et al., 2009). However, our
data are also consistent with studies showing distinct representa-
tions of object-centered reference frames (Vannuscorps et al.,
2021a,b). These representations are crucial for object perception
and are most likely mediated by the dorsal pathway (Freud and
Ahsan, 2022; Taylor and Xu, 2022). Altogether, we suggest that
such representations are situated within a broader topographic
map for spatial coding.

We found relatively little overlap between regions involved in
representing part relations and those involved in representing
tools, with overlap occurring exclusively in aIPS. This finding is
consistent with the hypothesis formulated earlier, that coding of
part relations in aIPS may be in support of coordinating grasping
behaviors. It is important to note that here we used a particularly
stringent definition of tool ROIs, wherein tools were contrasted
with other manipulable objects (Q. Chen et al., 2018), and this
decision may have minimized the degree to which we observed
activity related to object action affordances (since all stimuli
afforded action). Moreover, by using objects with elongated axes
in the part-relations localizer (an important indicator of action
affordance; J. Chen et al., 2018), we may have further suppressed
the degree to which regions representing part relations over-
lapped with those representing tools. Future work may use a
more direct object affordance localizer (Snow et al., 2011; Freud
et al., 2018) and a more variable stimulus set to localize part
relations.

Finally, extensive pilot work (V. Ayzenberg, J. Kubert, D. D.
Dilks, and S. F. Lourenco, unpublished data) suggested that
depth regions in parietal cortex could be reliably localized with
the 3D and 2D shape stimuli used here. However, we were
unable to do so in the current study – precluding conjunction
analyses. Two runs of the depth localizer may have been insuffi-
cient to identify regions involved in processing 3D shape, and/or
depth from shading (as used here) may be less consistently repre-
sented than depth from texture or disparity (Georgieva et al.,
2008). Given that the computation of depth structure in the dor-
sal pathway is critical for object recognition (Farivar, 2009; Van
Dromme et al., 2016; Welchman, 2016; Freud et al., 2020), future
work is required to explore the link between regions subserving
part relations and 3D shape.

The role of object-centered part relations in object
recognition
Representations of object-centered part relations are thought to
be critical for object recognition because they describe an object’s
global shape structure, a key organizing feature of most basic-
level categories (Mervis and Rosch, 1981; Hummel, 2000;
Barenholtz and Tarr, 2006). Such a representation may even sup-
port rapid object learning in infancy when experience with
objects is minimal (Rakison and Butterworth, 1998;Kraebel and
Gerhardstein, 2006; Ayzenberg and Lourenco, 2021). Yet, ANNs,
the current best models of human object recognition, are largely
insensitive to the relations among object parts and require exten-
sive object experience to categorize novel objects (Baker et al.,
2018, 2020). One potential reason for this deficit is that most cur-
rent ANNs exclusively model ventral cortex processes (Yamins
et al., 2014; Schrimpf et al., 2020; Blauch et al., 2022). Indeed, the
few ANNs that model dorsal cortex focus on action or motion
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related processes (Güçlü and van Gerven, 2017; Mineault et al.,
2021). Here, we propose that the dorsal pathway may play a key
role in object recognition by computing object-centered part
relations and propagating these signals to ventral object regions.
Right pIPS, in particular, may be important for object recogni-
tion, in that its multivariate response was sufficient to decode
object category and it was well explained by an object recognition
model that computes part relations (i.e., a skeletal model).
Importantly, we consistently found connectivity between right
pIPS regions and regions in ventral cortex, along with evidence
that right pIPS may even mediate the representation of part rela-
tions in LOC. Thus, by incorporating the dorsal pathway along
with the ventral pathway, we may gain a better understanding
of the broader network that supports object recognition and
the relative contributions of each pathway.
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