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A B S T R A C T

The significance of shape and surface information for face perception is well established, yet their relative
contribution to recognition and their neural underpinnings await clarification. Here, we employ image recon-
struction to retrieve, assess and visualize such information using behavioral, electroencephalography and func-
tional magnetic resonance imaging data.

Our results indicate that both shape and surface information can be successfully recovered from each modality
but that the latter is better recovered than the former, consistent with its key role for face representations. Further,
shape and surface information exhibit similar spatiotemporal profiles, rely on the extraction of specific visual
features, such as eye shape or skin tone, and reveal a systematic representational structure, albeit with more cross-
modal consistency for shape than surface. More generally, the present work illustrates a novel approach to
relating and comparing different modalities in terms of perceptual information content.

Thus, our results help elucidate the representational basis of individual face recognition while, methodologi-
cally, they showcase the utility of image reconstruction and clarify its reliance on diagnostic visual information.
1. Introduction

The segregation of shape and surface information defines a funda-
mental aspect of visual processing and cortical organization (Livingstone
and Hubel, 1988; Van Essen and Deyoe, 1995) both in the human (Cant
et al., 2008; Lafer-Sousa et al., 2016; Vinberg and Grill-Spector, 2008)
and themonkey brain (Conway et al., 2007). Accordingly, this distinction
has played a prominent role in accounts of face recognition (Bruce and
Young, 1998). Extensive research has documented the importance of
both types of information in face perception (Biederman and Kalocsai,
1997; Jiang et al., 2006; O'Toole et al., 1999; Russell et al., 2007; Russell
and Sinha, 2007; Vuong et al., 2005), but the relative weight of shape and
surface properties has been heavily debated, with either the former
(Jiang et al., 2011; Lai et al., 2013) or the latter (Bruce et al., 1991; Bruce
and Langton, 1994; Hole et al., 2002; Kaufmann and Schweinberger,
2008; Russell et al., 2006) considered dominant. Arguably, this debate
arises from a lack of specificity in identifying the shape and surface
features critical for individual face processing (Burton et al., 2015). Thus,
the current research aims to uncover the nature of the information
Nemrodov).
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involved in individual face processing along with its accompanying
neural profile.

To address the challenge above, here, we appeal to neural-based
image reconstruction (Shen et al., 2018; Miyawaki et al., 2008; Nase-
laris et al., 2009; Nishimoto et al., 2011a,b; Thirion et al., 2006), namely,
the endeavor of reconstructing the appearance of visual objects from
neural activity prompted by their processing. While this endeavor has
relied primarily on functional magnetic resonance imaging (fMRI), more
recently, additional modalities have been used successfully as well. For
instance, facial image reconstruction has been carried out using
single-cell recordings (Chang and Tsao, 2017), electroencephalography
(EEG) data (Nemrodov et al., 2018) and behavioral data (Chang et al.,
2017b; Zhan et al., 2017), in addition to fMRI (Cowen et al., 2014; Lee
and Kuhl, 2016; Nestor et al., 2016). Thus, in theory, image recon-
struction can provide a powerful platform for investigating shape/surface
processing in face individuation via multiple behavioral and neuro-
imaging modalities. Concretely, image reconstruction can be used to
uncover, assess and compare facial shape and surface information
recovered from distinct modalities.
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To this end, we rely on data assessing individual face processing
gleaned from behavioral (Nestor et al., 2013), EEG (Nemrodov et al.,
2018) and fMRI data (Nestor et al., 2016). Specifically, for eachmodality,
we aim to recover the shape and surface content of a common set of face
stimuli as perceived by human observers. In addition, the same proced-
ure is conducted with an image-based theoretical observer (TO) allowing
us to compare the informational content of multiple empirical and TO
reconstructions.

To achieve these goals, we appeal to an influential approach for
analyzing face images into shape and surface properties (Craw and
Cameron, 1991; Kramer et al., 2016; Tiddeman et al., 2001; Vetter and
Troje, 1995). Specifically, this approach involves marking the positions
of a set of fiducial points (e.g., the corners of the eyes or the tip of the
nose) that deliver shape information. Then, faces are warped to a stan-
dard shape (i.e., a preset configuration of fiducial points) yielding
‘shape-free’ images that deliver surface information. To be clear, shape
derived in this manner encompasses two sources of information: con-
figural information, conceived as metric distances between different face
parts (Maurer et al., 2002; Tanaka and Gordon, 2011), and local infor-
mation associated with the geometric structure of specific face parts such
as eye shape or mouth shape (Cabeza and Kato, 2000; Gold et al., 2012;
Rakover, 2002). In contrast, surface contains information about the
reflectance properties of a face (e.g., hue, specularity, albedo) that also
play a role in individual face recognition (Hancock et al., 1996; Russell
et al., 2007; Taschereau-Dumouchel et al., 2010) – such information is
alternatively referred to as ‘texture’, ‘pigmentation’ or ‘surface
reflectance’.

The appeal to shape-surface decomposition allows us to address a
number of related questions. First, can image reconstruction separately
recover facial shape and surface information from different modalities
and, if so, how well? Second, what is the spatiotemporal profile of shape
and surface processing? Third, what specific shape/surface features are
recovered through reconstruction? And fourth, do different modalities
reveal similar or complementary information about face representations?
More generally, the present work evaluates and confirms the ability of a
novel methodological paradigm to exploit multimodal evidence in an
effort to elucidate the representational content of individual face
processing.

In summary, the current work embarks on a comprehensive investi-
gation of facial shape and surface processing by appealing to powerful
and innovative image-reconstruction methodology as applied to multi-
modal data. Accordingly, this work serves a twofold purpose by shedding
light on the psychological and neural profile of facial shape/surface
processing and by clarifying the informational content responsible for the
success of image reconstruction.

2. Materials and methods

2.1. Stimuli

A common subset of 108 stimulus images was identified across three
different studies investigating empirical and computational aspects of
unfamiliar face recognition (see 2.3 Experimental procedures). Images of
54 individuals displaying neutral and happy facial expressions were
selected from three databases: AR (Martinez and Benavente, 1998), FEI
(Thomaz and Giraldi, 2010) and Radboud (Langner et al., 2010). All
images featured young adult Caucasian males with frontal view, gaze and
illumination. The stimuli were selected so that no facial accessories, hair
or makeup obscured the internal features of the face and so that all happy
expressions displayed an open-mouth smile. These images were: (a)
scaled uniformly and aligned with roughly the same position of the eyes
and the nose; (b) cropped to eliminate background; (c) normalized with
the same mean and root mean square (RMS) contrast values separately
for each color channel in CIEL*a*b* color space, and (d) reduced to the
same size (95 � 64 pixels). Note that this procedure did not change the
aspect ratio of the images though the position of the eyes and the nose
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was roughly the same across stimuli. Thus, every effort was made to
homogenize the stimulus set both in terms of low-level and high-level
face properties preventing the potential contribution of such factors to
image reconstruction.

2.2. Participants

All participants (age range across studies: 18–34 years; 21 males, 22
females) were Caucasian adults with normal or corrected-to-normal
vision and no history of cognitive or neurological disorder. All partici-
pants provided informed consent and all experimental procedures were
approved by the Research Ethics Board at University of Toronto and/or
the Institutional Review Board at Carnegie Mellon University.

2.3. Experimental procedures

Data used for reconstruction purposes were selected from three pre-
vious studies as follows.

Behavioral data consisted of similarity ratings with pairs of faces
acquired from 22 participants (reported in Nestor et al., 2013, Experi-
ment 1). Briefly, on each trial, participants were presented with two
facial identities displaying different emotional expressions, one neutral
and one happy, side by side, for 400ms, and were asked to judge their
visual similarity on a 5-point scale. Each participant rated all possible
1431 facial pairs, corresponding to 54 facial identities - for clarity, only a
subset of the original data were considered here (i.e., 6 additional facial
identities were not used in the EEG study summarized below and, hence,
were excluded from further analyses of behavioral data).

EEG data were previously acquired from 13 participants who per-
formed a go/no-go gender categorization task (Nemrodov et al., 2018).
On ‘no-go’ trials, participants viewed the stimuli described above while,
on ‘go’ trials, they were asked to press a designated key in response to the
appearance of a female face. Each of the 108 main stimuli was presented
for 300ms and repeated across 64 trials for each participant.

fMRI data were acquired from 8 participants who performed a
continuous one-back identity task (Nestor et al., 2016). Briefly, on each
trial, participants viewed a stimulus for 900ms and responded whether
the current stimulus displayed the same individual as that presented on
the previous trial, irrespective of emotional expression. The experiment
used a wide-spaced design (8s trials) and allowed for the repetition of
each stimulus for a minimum of 10 trials across five 1-hr sessions for each
participant. Again, only a subset of the stimuli used in the original study
is considered here to enable direct comparison with data from the other
modalities.

To be clear, we note that the neuroimaging studies above (Nemrodov
et al., 2018; Nestor et al., 2016) did not separate shape and surface cues
for reconstruction purposes nor did they assess the contribution of such
cues to visual face representations. Further, the behavioral study above
(Nestor et al., 2013) did not target any form of image reconstruction and,
thus, it provides a new testing ground for reconstruction endeavors.

2.4. Representational similarity analyses

Our reconstruction procedure fundamentally relies on the structure of
representational (dis)similarity matrices (Kriegeskorte et al., 2008) to
derive facial image features and to use such features for reconstruction
purposes. Hence, the first step of our investigation is to construct such
matrices separately for each data type.

Specifically, for each modality and for each participant, a similarity
matrix was designed to store pairwise similarity estimates across 54
facial identities. In the case of behavioral data, these estimates were
readily available in the form of similarity ratings. In the case of EEG and
fMRI data such estimates were derived through one-against-one pattern
classification of different identities, separately for each expression, using
linear support vector machines (SVM). Briefly, pairwise classification
was applied across EEG spatiotemporal patterns recorded across at 12
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occipitotemporal (OT) electrodes (left: P5, P7, P9, PO3, PO7, O1; right:
P6, P8, P10, PO4, PO8, O2) during an interval spanning 50–650ms after
stimulus onset – these spatiotemporal patterns were selected based on
their ability to support face decoding (Nemrodov et al., 2018). Analo-
gously, for fMRI, classification was applied across multivoxel patterns
within areas supporting above-chance face discrimination as identified
through prior searchlight mapping. Such areas were previously identified
(Nestor et al., 2016) bilaterally in the posterior fusiform gyrus (group--
map Talairach coordinates: left FG, �39, �49, �16; right posterior FG,
39, �69, �4), the anterior fusiform gyrus (left FG, �34, �36, �14; right
anterior FG/parahippocampal gyrus, 31, �19, �9) and the inferior
frontal gyrus (left IFG, �36, 24, �9; right IFG, 46, 11, �1). Thus,
discrimination accuracy computed across neural patterns in these regions
was used to estimate the similarity of the stimuli eliciting such patterns –
a more detailed account of data preprocessing and pattern analyses can
be found in the studies above.

In addition, objectivemeasures of image similarity in CIEL*a*b* color
space were computed for the purpose of constructing a theoretical
observer (TO) exploiting low-level visual similarity. To this end, pixel-
wise Euclidean distances were computed across all pairs of facial iden-
tities separately for each expression and the results were stored in
corresponding similarity matrices. Of note, while more elaborate models
of face similarity are of interest (e.g., Carlin and Kriegeskorte, 2017), the
TO above is particularly relevant given that pixelwise similarity is also
one of the main criteria for assessing reconstruction quality. Thus, a TO
matching criteria typically used for result assessment is particularly
well-suited for estimating an upper limit of reconstruction success.

Last, similarity estimates were averaged across participants and
across expressions to deliver a single similarity matrix for each modality:
behavioral, EEG, fMRI and TO. These resulting estimates were related
across modalities via Spearman correlation to estimate the presence of a
common representational structure.

2.5. Stimulus shape-surface de/re-composition

All stimuli were tested for their ability to undergo reliable shape-
surface decomposition and recomposition. Specifically, for reconstruc-
tion purposes, all stimuli were analyzed into shapes (i.e., configurations
of fiducial points, such as the corners of the eyes and the tip of the nose,
labeled with their geometric coordinates) and shape-free surfaces (i.e.,
facial images warped to a common shape template). To this end, fiducial
points were manually marked for each stimulus using the Interface
toolbox (Kramer et al., 2016) and, then, the marked stimulus was warped
to a preset shape template. Thus, the shape of each stimulus is repre-
sented as a vector of fiducial point coordinates (82 points x 2 in-plane
coordinates) while its surface is represented by a template-warped image.

The process above was then reversed by recombining shapes and
surfaces into approximations of the original stimuli. This procedure was
carried out to estimate information loss inherent to de/re-composition
due to image (re)warping and, thus, to assess, the objective cost of
shape/surface manipulations for reconstruction. To this end, rewarped
versions of the stimuli obtained through recomposition were compared
against actual stimuli. Concretely, for each rewarped stimulus, we
computed the ratio between the pixelwise Euclidean distance relative to
its original version and the distance to every other stimulus, one at a
time; hence, ratios larger than 1 would render rewarped stimuli more
similar to other facial identities. The outcome of these computations
(mean� 1SD across 54 identities) yielded ratios of 0.333 (�0.054) and
0.329 (�0.052) for neutral and happy faces, respectively. Thus, shape-
surface de/re-composition generally preserves identity information but
it does introduce systematic image distortions likely to limit recon-
struction success.

2.6. Reconstruction procedure

The current procedure builds upon previous work (Nestor et al., 2016;
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Nemrodov et al., 2018) aimed at deriving pictorial features directly from
the structure of empirical data and to use them for facial image recon-
struction. Here, we further develop this procedure to derive separate sets
of shape and surface features frommultiple data types and we assess their
relative contribution to face representations as revealed by image
reconstruction.

For each modality, the reconstruction procedure was separately
conducted following a sequence of steps (Fig. 1). Concisely, in order to
reconstruct the appearance of any given target, the procedure involved:
(i) selecting a similarity submatrix containing the pairwise similarity of
all faces other than the target; (ii) estimating the dimensions that struc-
ture face space by applying multidimensional scaling (MDS) to the
resulting submatrix; (iii) deriving, for each dimension, shape and surface
features through a strategy akin to reverse correlation; (iv) assessing
feature significance and selecting a subset of informative features; (v)
projecting the target face into the existing face space based on its simi-
larity with the other faces; (vi) reconstructing the shape and the surface
of the target face through a linear combination of informative features,
and (vii) combining the resulting shape and surface into a single image
reconstruction of the target face.

In more detail, the leave-one-out procedure enforces non-circularity
by excluding the reconstruction target from the estimation of face
space and its underlying features. Specifically, a face space construct was
derived from the pairwise similarity of 53 facial identities and, then, its
corresponding features were used in the reconstruction of the left-out
target face. To this end, a 20-dimensional face space was estimated
through metric MDS, given that this number of dimensions accounted for
more than 90% of data variance for any modality and, also, that it agrees
with previous estimates of face space dimensionality in human recogni-
tion (i.e., 15–22) (Lewis, 2004). Then, a corresponding number of shape
and surface features were computed for each dimension through an
approach akin to reverse correlation/image classification (see Murray,
2011 for a review). Notably, this approach aims to synthesize facial
features responsible for face space topography through a linear combi-
nation of face properties (i.e., shape vectors or surface images). This
combination was computed as a sum of shapes and surfaces for all faces
weighted by the z-scored coordinates of the corresponding faces on any
given dimension. Thus, the outcome of these computations delivers, for
each dimension, one shape feature, or ‘classification vector’ (CV), and
one surface feature, or ‘classification image’ (CIM) – for clarity, each
surface feature consists in a triplet of images, one for each color channel
in CIEL*a*b*.

Further, we considered the possibility that not all face space di-
mensions encode visual information (e.g., as opposed to higher-level
semantic information or just noise). Also, it is possible that sources of
shape and surface information are differently distributed across di-
mensions and their corresponding features. Hence, it is important to
identify relevant subsets of features that can contribute meaningful in-
formation to reconstruction. To this end, each feature was assessed for
the presence of significant information. Specifically, all face space iden-
tities were randomly shuffled with respect to their coordinates on each
dimension and a corresponding feature was recomputed for a total of 103

permutations. Then, each true feature was compared to all permutation-
based features, fiducial point by fiducial point, in the case of shape, or
pixel by pixel, for each CIEL*a*b* color channel, in the case of surface
(two-tailed permutation test; FDR correction across points and pixels,
respectively; q< 0.1). Following this procedure, only features that con-
tained significant shape or surface information were selected for recon-
struction purposes.

Next, the target face was projected into the existing face space. To this
end, a newMDS solution was constructed for all 54 identities and aligned
with the original one via Procrustes analysis using the 53 common
identities between the two spaces. The resulting alignment provides us
with a mapping between the two spaces that allows us to project the
target face and to retrieve its coordinates in the original space. Then,
informative features were linearly combined proportionally to the



Fig. 1. Schematic illustration of the reconstruction procedure. Behavioral, fMRI, EEG and TO data associated with viewing face stimuli support, separately, the
estimation of a multidimensional face space (for convenience, a single example based on EEG data, indicated by the dark blue arrow, is shown, but similar results can
be achieved from other modalities). Shape information and surface information are derived from the structure of this space and combined into facial image re-
constructions (only a representative subset of fiducial points are displayed; L*, a* and b* correspond to the lightness, red-green and yellow-blue channels of color
vision as encoded in CIEL*a*b*).
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coordinates of the target face on each corresponding dimension and their
sum was added to the average shape and surface of the 53 faces used for
feature derivation. We note that face space was uniformly scaled under
the constraint that all reconstructed surfaces should have the same RMS
contrast and mean value in each color channel as the surfaces of the
experimental stimuli – these values were equated across experimental
stimuli in an effort to minimize the contribution of low-level images
differences to perception (see 2.1 Stimuli). A similar manipulation was
also conducted for shape reconstructions to ensure that the variance of
fiducial point coordinates matched that of the stimulus shapes. Last, the
shape and surface thus computed were manually combined using the
Interface toolbox into a single reconstruction to which we refer as a
‘recomposed face’.

For clarity, face space is constructed here across facial identities
irrespective of emotional expression (e.g., by averaging similarity
matrices for the two expressions). However, reconstruction proceeds by
deriving and combining features separately for neutral and happy faces
(i.e., a neutral face is reconstructed from features derived from other
neutral faces while a happy face is reconstructed from features derived
from other happy faces). Another possibility would be to consider sepa-
rate spaces for each expression; however, previous investigations eval-
uated and confirmed the invariance of neural-based face space across
these two emotions (Nemrodov et al., 2018).

Finally, to evaluate the benefit of considering separately shape and
surface information for reconstruction purposes, another set of image
reconstructions were computed without appeal to this decomposition.
Specifically, face stimuli were treated in the same manner as shape-free
surfaces above. We refer to the outcome of this procedure as ‘intact
reconstructions’.
2.7. Estimation of reconstruction accuracy

The accuracy of reconstruction results was assessed in two different
ways: by objective image-based measures and experimentally, by addi-
tional behavioral testing.

In detail, each reconstructed shape was compared to its target via the
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Euclidean distance computed across corresponding fiducial point co-
ordinates. Then, the accuracy of its reconstruction was measured as the
proportion of instances for which that distance was smaller than the
distance between the reconstruction and any stimulus shape other than
the target. This procedure was conducted for all reconstructions, sepa-
rately for each expression and each modality.

Reconstructed surface accuracy was measured similarly, except that
Euclidean distances were computed across pixel values in CIEL*a*b*
space. The same procedure was also followed for recomposed and intact
reconstructions.

Statistical significance was then assessed through permutation tests.
Specifically, the shape and the surface of each target was recomputed
based on the random shuffling of identity labels across all points in face
space (for a total of 104 permutations). Then, the accuracy of the true
reconstructions was related to that of permutation-based reconstructions
(two-tailed permutation tests).

However, this procedure was not feasible in the case of recomposed
faces (since that would require the manual recombination of shape and
surface for a prohibitively high number of permutation-based re-
constructions). For this reason, and, also, to provide a complementary
evaluation of reconstruction results, additional behavioral testing was
conducted as follows.

Reconstructed images consisting of 432 recomposed faces (54 iden-
tities X 2 expressions X 4 modalities: behavioral, EEG, fMRI, and TO)
were judged in terms of their relative similarity to the actual stimuli. To
this end, 27 new participants (seven males and twenty females, age
range: 18–25) were asked to match image reconstructions to their targets
in a two-alternative forced choice (2AFC) task. Specifically, each recon-
struction was displayed in the presence of two stimuli, one of which was
the actual target and the other another face image. Thus, on each trial, a
display was shown containing a reconstructed image, at the top, and two
stimuli side by side, at the bottom, all of which had the same expression
and the same size (see 2.1 Stimuli). Each display was presented until
participants indicated which stimulus was more similar to the top image
by pressing a designated left/right key. For each participant, any
reconstructed image was presented 4 times along with different foils so
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that, across participants, each reconstruction was presented together
with every possible foil. Stimulus order was pseudorandomized so that
no reconstruction appeared twice on consecutive trials and target stimuli
appeared equally often on the left/right side. Each participant completed
1728 trials divided equally across 9 blocks. Experimental testing was
conducted within a single 1.5-hr session.

Parametric statistical analyses were next conducted to assess recon-
struction success against chance (one-sample two-tailed t-tests against
50% chance-level participant performance) as well as the relative success
of reconstruction across modalities and expressions (2-way factorial
analysis of variance: 4 modalities X 2 expressions).

To further compare and account for the outcome of different types of
reconstruction, additional analyses were conducted as detailed below.

2.8. Evaluation of reconstruction results

First, parametric tests across items (i.e., across facial identities) were
carried out to estimate the relative success of reconstruction results.
Specifically, we conducted a three-way factorial analysis of variance (4
modalities X 2 expressions X 4 reconstruction types: shape, surface,
recomposed and intact reconstructions) along with planned comparisons
– accuracies were collapsed across expressions given the lack of evidence
for a corresponding effect from prior analyses. Of note, parametric ana-
lyses across items provide a liberal way to estimate reconstruction suc-
cess (e.g., compared to the permutation tests above); however, the goal of
the current analysis was not to estimate significance against a preset
chance level but rather to evaluate differences in reconstruction success
across modalities and reconstruction types.

We note that comparing modalities in terms of overall reconstruction
accuracy can be informative, by answering, for instance, how closely
empirical modalities can approach TO-level performance. However, such
an analysis provides an incomplete and potentially misleading picture of
the relationship across empirical modalities since any difference, or lack
thereof, can be the outcome of differences in experimental designs
separately optimized for each modality (e.g., stimulus duration, number
of stimulus presentations, task, number of participants).

Second, and aiming to address the concern above, reconstruction
results were related with each other via correlation across facial identi-
ties for each pair of modalities. Specifically, image-based accuracies were
related to each other across modalities, separately for shape and surface,
via Pearson correlation. We note that this investigation parallels repre-
sentational similarity analysis with the difference that, here, we correlate
item-specific reconstruction accuracies as opposed to pairwise item
similarity estimates. In addition, to clarify the relationship between
behavioral and neural-based results, linear regression was used to ac-
count for behavioral reconstruction accuracies in terms of their EEG and
fMRI counterparts separately for shape and surface reconstructions.

Third, to clarify the spatiotemporal profile of the information sup-
porting shape and surface reconstruction, additional analyses were con-
ducted across time, for EEG, and across different ROIs, for fMRI.
Specifically, for the former, reconstruction was conducted across smaller
10ms temporal intervals between �100 and 700ms (i.e., across 60-
dimensional vectors; 12 OT electrodes x 5 consecutive time points)
providing us with the time course of reconstruction accuracy. In the case
of fMRI, reconstruction was conducted for distinct pairs of bilateral ROIs
in the posterior FG, the anterior FG and the IFG. Image-based accuracy
was then estimated for each temporal interval and for each ROI pair and
significance was estimated by two-tailed permutation tests.

3. Results

3.1. Representational similarity

Estimates of pairwise face similarity were computed across 108 im-
ages (54 identities x 2 expressions, neutral and happy) for each of four
data types: (i) behavioral, based on similarity ratings; (ii) EEG, based on
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neural discriminability across occipitotemporal (OT) electrodes; (iii)
fMRI, based on neural discriminability across multiple fusiform gyrus
(FG) areas, and (iv) TO, based on pixelwise image similarity. In partic-
ular, we note that fMRI estimates relied jointly on patterns of activation
from four distinct FG areas (see 2.4 Representational similarity analysis) -
these areas were selected due to their ability to support face decoding in
previous work (Nestor et al., 2016). For clarity, stimulus-specific multi-
voxel patterns were concatenated here across the four areas and sub-
jected to pattern classification.

Next, Spearman rank correlations were computed for each pair of
modalities across corresponding similarity estimates (i.e., 1431 pairwise
estimates for 54 identities, averaged across expressions). Overall, we
found that all data types correlated with each other (p< 0.01,
Bonferroni-corrected) providing initial evidence for common represen-
tational structure across modalities (Fig. 2a).

3.2. Shape and surface reconstruction

Accuracy estimates of shape and surface reconstruction were sepa-
rately computed for each data type (Fig. 3). Critically, we found that all
estimates were above chance for both facial expressions (permutation
test, p< 0.05, Bonferroni correction for 24 comparisons). Overall, for
empirical modalities, surface reconstructions were more accurate than
shape reconstructions (paired-comparison permutation test, p< 0.01)
with the exception of fMRI results for happy faces where the difference
was only marginally significant (p¼ 0.085). In contrast, TO results
showed no difference in accuracy between shape and surface (p> 0.151),
suggesting that the reconstruction method can, in theory, retrieve the
two types of information with equal success from the current stimulus
sets. Further, no difference was found between neutral and happy faces
for either shape or surface for any data type (p> 0.104 for all other than
fMRI-based shapes, in which case happy faces yielded marginally more
accurate reconstructions than neutral ones, p¼ 0.079).

Given the systematic advantage of surface over shape reconstructions,
we proceeded to assess reconstruction accuracy separately for each color
channel. This assessment is particularly relevant since informative shape-
from-shading cues may be present as lightness patterns in what we refer
to as ‘facial surfaces’ (Attick et al., 1996). Hence, the surface advantage
noticed above could be due to another source of shape information rather
than to genuinely ‘shape-free’ surface information. To evaluate this
possibility, we estimated reconstruction accuracy for each color channel:
we averaged such estimates across expression, given the absence of an
expression effect above, and we compared them with each other sepa-
rately for each modality. This analysis revealed that color components
and lightness support equivalent levels of reconstruction accuracy for
every modality (Supplementary Fig. 1). More precisely, no difference was
noticed between any two components (two-tailed paired-comparison
permutation tests; p> 0.05, uncorrected) ruling out the
shape-from-shading hypothesis above.

Next, regarding the relative performance of different modalities, we
note that fMRI seemed to perform more poorly than other modalities.
However, a direct comparison of different modalities in terms of accuracy
may be misleading in that the corresponding experiments followed
different protocols suitable for the corresponding modalities (e.g.,
different experimental tasks, different numbers of trials, different
numbers of participants). At the same time, we note though that repre-
sentational similarity analysis confirmed the presence of corresponding
structure across modalities. To further explore this correspondence in
terms of shape and surface information, reconstruction accuracy, aver-
aged across expressions, was correlated for each pair of data types
(Fig. 2b and c). This analysis found, in the case of shape, that empirical
modalities all correlated with each other with the exception of fMRI and
TO. However, in the case of surface properties, behavioral re-
constructions were correlated with EEG and TO, but not with fMRI,
pointing to potentially different surface information available in fMRI
data.



Fig. 2. Correlations between different data types were based on: (a) pairwise face similarity/discriminability estimates (Spearman correlation across 1431 facial
identity pairs); (b) shape and (c) surface reconstruction accuracy (Pearson correlation across 54 facial identities). All modalities are correlated with each other in terms
of face similarity but only some in terms of shape and surface information (**p < 0.01, ***p< 0.001; Bonferroni correction across comparisons).

Fig. 3. Shape and surface reconstruction accuracies for four modalities. All accuracy estimates are above chance (all p's< 0.01, Bonferroni-corrected; two-tailed
permutation tests; confidence intervals based on 104 shuffles of identity labels in the corresponding face space). Surface information was retrieved more accurately
than shape information for empirical modalities (two-tailed paired-comparison permutation tests; *p < 0.05; **p< 0.01) but not for TO.
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To clarify the results above in the context of the relationship between
brain and behavior, multiple linear regression was employed to account
for behavioral accuracy based on all other data types. Separate analyses
for shape and surface information both yielded significant models (shape:
R2

adj¼ 0.55, p< 0.001; surface: R2
adj¼ 0.47, p< 0.001). In more detail,

for shape information, EEG (β¼ 0.41, p< 0.001), fMRI (β¼ 0.14,
p¼ 0.01) and TO (β¼ 0.39, p< 0.001) all provided significant indepen-
dent contributions in accounting for behavior. In contrast, for surface
information, only TO (β¼ 0.64, p< 0.001) and, marginally, EEG
(β¼ 0.14, p¼ 0.075), were significant predictors of behavioral accuracy.
Thus, different modalities appear to contain only partly overlapping in-
formation and to make distinct contributions in accounting for behav-
ioral performance.

Next, to pinpoint the source of recovered information, accuracy was
locally computed for each fiducial point, in the case of shape, and for
each pixel and color channel, in the case of surface properties.
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Specifically, the coordinates of each fiducial point within a reconstructed
image were compared relative to the corresponding point in the stimulus
images and point-specific accuracy was estimated as the percentage of
instances for which the Euclidean distance to the corresponding point in
the target stimulus was smaller than to that in any other stimulus. Ac-
curacy heatmaps averaged across all reconstructed shapes are displayed
in Fig. 4. This analysis revealed that the shape of the eyes was better
recovered than other information for all empirical modalities. The same
appeared to be the case for TO reconstructions; however, additional in-
formation regarding the shape of the mouth and the eyes was also
recovered relatively well here.

A similar procedure was followed for deriving surface heatmaps
except that pixel intensity values (e.g., lightness as coded in the L*
channel), rather than geometrical coordinates, were considered in this
case (see Fig. 5 and Supplementary Fig. 3 for neutral and happy faces,
respectively). Further, to clarify and to help visualize which areas of the



Fig. 4. Accuracy heatmaps for shape reconstruc-
tion across fiducial points overlaid on average
neutral and happy faces. The size of the circles is
proportional with position variance across the
face (i.e., larger circles indicate more variability
in fiducial point position across different indi-
vidual faces) while color indicates average
reconstruction accuracy across 54 facial identi-
ties. Shape information is best approximated
across the eyes though differences in both global
and local accuracy can be noticed across
modalities.

Fig. 5. Accuracy heatmaps of surface reconstruction for neutral faces across pixels and color channels. Color indicates average reconstruction accuracy across 54 facial
identities. Multiple areas of the face and multiple color channels provide accurate information for reconstruction purposes; differences in both global and local ac-
curacy can be noticed across modalities.
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face provided significant information, the accuracy of each pixel in each
map was compared to chance (one-sample t-test against 50% chance
level; FDR-corrected across pixels) – see Supplementary Figs. 2 and 4 for
neutral and happy faces, respectively. Overall, information frommultiple
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areas of the face and multiple color channels appeared to contribute to
reconstruction success. For instance, the lightness of the cheeks along
with the color of the forehead, especially as encoded in the red-green
channel, appeared to be correctly recovered. Thus, color appears to
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provide complementary information relative to luminance as it draws
upon overlapping but distinct areas of the face. Also, in agreement with
the correlation results above, heatmaps were broadly consistent across
modalities and across expressions though, as expected, fMRI heatmaps
evinced lower levels of accuracy while TO heatmaps evinced the highest
overall accuracy.

3.3. Facial image reconstruction

Shape and surface information, as retrieved separately from each data
type, was combined into recomposed image reconstructions – for ex-
amples see Fig. 6. Reconstructions appeared to capture, for any given
modality, visual properties indicative of facial identity.

To evaluate this claim, empirical data were collected from a novel
group of naïve observers who matched reconstructions against corre-
sponding stimuli. Performance (Fig. 7) was well above chance for all
modalities and expressions (p's< 0.001; one-sample two-tailed t-test
against 50% chance performance in a 2AFC task; Bonferroni correction
across comparisons). A two-way repeated measures analysis (4 modal-
ities x 2 expressions) found, as expected, a main effect of modality
(F(3,75)¼ 18.30, p< 0.001, η2¼ 0.196) but no effect of expression
(p¼ 0.140) and no interaction (p¼ 0.333). While a direct comparison of
empirical modalities in terms of accuracy may be misleading, as dis-
cussed above, it is of interest to assess how closely empirical modalities
can approach the level of TO performance. Planned comparisons between
TO and each empirical modality, collapsed across expressions, showed
that TO surpassed fMRI (p< 0.001), but not EEG (p> 0.556) or behav-
ioral data, which provided marginally better results (p¼ 0.067).

Next, we assessed whether the combination of shape and surface in-
formation provides any advantage over reconstructed shapes and surface
in isolation, as well as over a previous version of reconstruction that does
not appeal to shape-surface decomposition (Nestor et al., 2016), for short
here ‘intact reconstructions’. To this end, we considered objective esti-
mates of reconstruction accuracy (Fig. 7b): for recomposed faces, this was
computed across pixel intensities in the same manner in which surface
accuracy was derived. Since permutation tests were not feasible for
reconstructed faces, as they rely on the manual combination of shape and
surface information (see 2.6 Reconstruction procedure), parametric tests
were conducted here across items (e.g., 54 facial identities). We note that
while parametric tests are less conservative than the permutation tests
above, their goal here is not to assess performance against chance but,
rather, to explore differences across different types of reconstruction. A
three-way analysis of variance (4 data types X 4 reconstruction types X 2
expressions) found, as expected, a main effect of modality (F(3,
159)¼ 44.00, p< 0.001, η2¼ 0.160), a main effect of reconstruction type
(F(3,159)¼ 25.82, p< 0.001, η2¼ 0.054) along with an interaction be-
tween data type and reconstruction type (F(9,477)¼ 3.36, p¼ 0.016,
η2¼ 0.008). No significant effect or interactions were found for
Fig. 6. Examples of face stimuli along with their corresponding reconstructions (nu
accuracy; other image-based accuracy estimates are displayed for recomposed face
right corners).
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expression (p> 0.05). Further pairwise comparisons found that recom-
posed faces were reconstructed more accurately than shape in all in-
stances (p's< 0.001) (Fig. 7b) but only surpassed surface in the case of TO
(p< 0.001). Last, recomposed reconstructions were systematically more
accurate than intact reconstructions (Nestor et al., 2016; Nemrodov et al.,
2018); however, the difference did not reach significance for any mo-
dality (p's> 0.139).

Thus, the benefit of combining shape and surface reconstruction for
reconstruction purposes is clearly apparent only for TO. This result is
consistent with the less efficient retrieval of shape information from
behavioral and neural data noted above and suggests comparatively
higher reliance on surface information in visual face processing.

3.4. The spatiotemporal profile of shape and surface processing

To investigate in further detail the temporal dynamics of shape and
surface processing, reconstruction accuracy was computed for both types
of information across occipitotemporal (OT) electrodes using a ~10ms
sliding window - the time course of reconstruction averaged across facial
identities is displayed in Fig. 8 and an example of recomposed recon-
struction over time is shown in Movie 1. Overall, we found that surface
information was more accurately retrieved than shape information. This
difference is consistent with the results of our temporal cumulative an-
alyses for EEG data and it contrasts with TO results (Figs. 3 and 7b),
suggesting limited efficiency in the extraction of shape information. Yet,
importantly, both shape and surface evinced multiple intervals of above-
chance reconstruction (two-tailed permutation test; FDR correction over
time). Specifically, they both reached significance around 150ms after
stimulus onset and gradually declined after 300ms.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.neuroimage.2018.09.083.

To further clarify the neural locus of relevant information, recon-
struction results were computed across fMRI patterns in bilateral pairs of
FG areas. Specifically, to evaluate the posterior-to-anterior progression of
information, reconstruction results were recomputed separately for
bilateral posterior FG areas, for anterior FG areas as well as for inferior
frontal gyrus areas capable of supporting face decoding (Nestor et al.,
2016). Reconstruction results (Fig. 9) pointed to above-chance accuracy
for both shape and surface information in posterior as well as in anterior
FG areas, with equivalent levels of accuracy across regions, but not in IFG
areas (two-tailed permutation test; Bonferroni correction).

Last, to relate the temporal and the spatial profile of reconstruction-
relevant information, accuracy estimates from EEG and fMRI were
correlated across time intervals and regions separately for shape and
surface properties (Pearson correlation; FDR-correction across time
points). In the case of shape information, the results found a significant
correlation between posterior FG-based estimates and EEG estimates
around 180ms after stimulus onset (Fig. 10). Multiple time points around
mbers in the upper left indicate experimental-based estimates of reconstruction
s in the top right, for shape in the bottom left and for surface in the bottom

https://doi.org/10.1016/j.neuroimage.2018.09.083
https://doi.org/10.1016/j.neuroimage.2018.09.083


Fig. 7. Reconstruction accuracy based on (a) experimental estimates and (b) image-based estimates. The outcome of planned comparisons is shown (a) between TO
and other modalities as well as (b) between recomposed faces and other types of reconstruction (***p< 0.001). Error bars indicate �1SE (a) across participants and (b)
across items.

Fig. 8. The time course of EEG-based reconstruction accuracy for shape and
surface information estimated with a sliding ~10ms temporal window. Accu-
racy for both types of information was above chance across multiple intervals as
indicated by corresponding segments at the top of the plot (permutation test;
FDR-correction across time, q< 0.01).

Fig. 9. Reconstruction accuracy for three bilateral ROIs. Fusiform gyrus areas but not
surface (***p< 0.001, two-tailed permutation tests; Bonferroni correction).
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170ms, but also for subsequent intervals evinced significant correlations
with anterior FG estimates but not with IFG ones. A similar investigation
of surface information revealed smaller correlation values and no sig-
nificant correlation with any ROI (Supplementary Fig. 5) in agreement
with the results reported above (e.g., Fig. 2c).

4. Discussion

The present study examined the representational basis of shape and
surface information underlying individual face processing. This investi-
gation capitalized on a robust approach to image reconstruction to un-
cover and relate relevant representational structures captured by distinct
modalities of data acquisition. The ability to retrieve such information
successfully and consistently with the aid of this novel approach enabled
us to address a number of key questions as follows.

First, we examined the possibility of reconstructing both shape and
surface information from each of four data types: behavioral, EEG, fMRI
and TO. Our results confirmed that this is indeed possible while also
revealing the advantage of surface over shape for face representations.
Specifically, surface information was reconstructed more accurately than
shape information for each of the empirical modalities but not for an
image-based TO that yielded equivalent estimates of reconstruction ac-
curacy for the two. Also, surface information was recovered with
equivalent levels of success across different color channels, thereby
addressing the role of chromatic information in face representations. The
relative contribution of shape and surface properties continues to be
inferior frontal gyrus areas supported above-chance reconstruction of shape and



Fig. 10. Correlation of reconstruction accuracy for shape based on fMRI data from three ROIs and from EEG data across ~10ms temporal intervals. Results are shown
for shape. Intervals of significance are marked by corresponding segments at the top of the plot (Pearson correlation; FDR correction across time, q< 0.01).
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contested. For example, the dominant role of surface properties in face
recognition has been extensively documented for familiar faces (Burton
et al., 2005; Calder et al., 2001; Hancock et al., 1996; Kaufmann and
Schweinberger, 2008; Russell et al., 2006; Vuong et al., 2005) while such
a role has been assumed by shape properties in the case of unfamiliar
faces (Jiang et al., 2011; Lai et al., 2013). The importance of shape is also
consistent with the value of configural information for holistic face
perception (Leder and Carbon, 2006; Maurer et al., 2002; McKone and
Yovel, 2009; Piepers and Robbins, 2012; Richler et al., 2009; Tanaka and
Gordon, 2011). Yet, other evidence suggests that even for unfamiliar
faces, surface could provide dominant cues (Itz et al., 2017; Russell et al.,
2006), that configural shape information is of limited use (Tascher-
eau-Dumouchel et al., 2010) and that color is a major component of face
processing at the neural level (Chang et al., 2017a; Edwards et al., 2003).
In agreement with such evidence, we find that shape information is
relatively underrepresented compared to its surface counterpart for un-
familiar faces. As a caveat to this conclusion, we note that the present
investigation did not consider three-dimensional face shape (Jiang et al.,
2009a; Paysan et al., 2009) but only two-dimensional information –

additional 3D cues may facilitate the recovery of overall shape infor-
mation and lead to more precise representations (at least as accurately as
that of surface properties). Such an outcome would be especially relevant
for face perception in more naturalistic settings.

Second, we aimed to characterize the spatiotemporal profile of shape
and surface processing. With regard to temporal dynamics, previous
work targeting specific ERP components has yielded rather inconsistent
results. For instance, sensitivity to the shape of unfamiliar faces has been
found at the latency of the N170 ERP component (Caharel et al., 2009b)
but also earlier, for P1 (Itz et al., 2016), and, in the case of familiar faces,
later for P200 (Itz et al., 2014). Similarly, surface processing is apparent
first at the latency of the N250 component for both familiar and unfa-
miliar faces (Caharel et al., 2009a; Itz et al., 2014), yet other studies have
also found N170 sensitivity to facial surface (Balas and Nelson, 2010;
Brebner et al., 2011; Minami et al., 2015). Unlike previous work, the
present investigation used pattern analysis applied to entire epochs
rather than univariate analyses targeting specific ERP components.
Following this approach, we found that reconstruction accuracy reaches
significance for both shape and surface around 150ms and exhibited an
extended interval of above-chance performance. From a theoretical
standpoint, we note that a similar time course for shape and surface
processing could prove advantageous for the efficient integration of this
information into unified face percepts. Also, the present results are in
broad agreement with the presence of facial identity information at the
latency of N170 (Caharel et al., 2009a; Itier and Taylor, 2002; Nemrodov
et al., 2016).
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Regarding the cortical locus of shape and surface processing, previous
research has found sensitivity to shape (Gao and Wilson, 2013; Gilaie--
Dotan et al., 2010) and surface (Harris et al., 2014; Jiang et al., 2009b)
information within the fusiform face area (FFA), consistent with the
notion that this region contains unified representations of faces (Liu
et al., 2010). Also, recent research has found equivalent adaptation ef-
fects to shape and surface information in the occipital face area (OFA)
and in the FFA (Andrews et al., 2016). While our investigation targeted
regions localized through pattern analysis rather than face-selective re-
gions per se, our results also support the idea of shape and surface inte-
gration within common regions subserving facial identity
representations. Specifically, shape and surface information was recov-
ered from posterior and anterior fusiform areas able to discriminate
different facial identities. In contrast, another IFG region capable of such
discrimination was unable to support either shape or surface recon-
struction. Interestingly, a frontal area involved in face processing has
been found in the human and monkey brain (Axelrod and Yovel, 2015;
Rajimehr et al., 2009; Tsao et al., 2008). Recent research has argued that
this area subserves higher-level, view-invariant facial representations
(Guntupalli et al., 2017) facilitating access to person knowledge through
the extended system for face perception (Collins and Olson, 2014; Haxby
et al., 2000). This possibility accounts for the inability of the IFG to
support image reconstruction, as reported above, while also pointing to
the need to characterize more precisely the transformation of visual in-
formation across a hierarchy of face processing regions.

Third, we assessed the correspondence of facial information retrieved
by different modalities. A widely influential approach, representational
similarity analysis (Kriegeskorte et al., 2008), has been instrumental in
relating representational structures captured by different neuroimaging
modalities and computational models (Carlin and Kriegeskorte, 2017;
Carlson et al., 2014; Cichy et al., 2016; €Olander et al., 2017). Overall, this
approach has uncovered both commonalities and complementarity in the
visual information retrieved by different modalities (Cichy et al., 2016).
Our results agree with this conclusion while further analyzing the source
of common/distinct visual information in terms of shape and surface.
Specifically, RSA revealed overall similarity of representational structure
for faces across different modalities. However, a more detailed investi-
gation of reconstructed information showed that shape is more consis-
tently recovered across modalities relative to surface dimensions. For
instance, fMRI yielded surface reconstructions that did not match well
their behavioral and EEG counterparts. Yet, this finding could be due to
the fact that the fMRI signal considered reflects different processing
stages of facial information relative to other modalities. For instance, it is
possible that specific cortical regions are responsible for face processing
as captured by short, compact temporal windows and that such
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correspondence would pass unnoticed in the absence of more targeted
analyses.

To address the possibility above, reconstruction accuracy was sys-
tematically related across different intervals and areas. Interestingly, in
the case of shape, this analysis revealed significant correlations between
EEG-based results and their fMRI counterpart. Specifically, such corre-
lations were noted as early as 170ms after stimulus onset for both pos-
terior and anterior FG areas. However, these correlations only persisted
at later latencies for aFG areas consistent with a spatiotemporal hierarchy
of processing steps in face perception. Thus, our hypothesis above was
borne out by the correspondence of pFG and earlier neural processing
captured by EEG for shape. In contrast, in the case of surface, EEG and
fMRI yielded lower, non-significant correlations suggesting partly
different representations recovered by these two neuroimaging modal-
ities. Further, fMRI did not provide a significant independent contribu-
tion in accounting for behavioral performance as related to surface.
Hence, both EEG and behavior may reflect neural processing of facial
surface as carried out primarily by other cortical regions such as those
responsible for color processing in higher visual cortex (Chang et al.,
2017a). More generally, the divergence noted here between shape and
surface in terms of cross-modal correspondence illustrates an important
point. While a coarse assessment of representational similarity for face
processing initially showed broad correspondence across modalities, a
finer-grained examination of reconstruction results suggests such corre-
spondence is grounded primarily in facial shape processing. Thus,
reconstruction approaches can help to elucidate the nature and the extent
to which representational structures are shared across different neural
signals.

From a representational standpoint, the issues discussed above also
emphasize the need to elucidate the specific features underlying face
processing and their neural representations. An evaluation of recon-
struction heatmaps is particularly useful in this respect as it pinpoints
specific facial structures contributing to reconstruction success. In
agreement with previous work we find that reconstruction relies upon a
multitude of facial areas (Cowen et al., 2014). More importantly though,
here we attempt to provide a more fine-grained view of relevant infor-
mation by evaluating separately shape and surface as well as different
color channels. These analyses show that eye shape and color informa-
tion is especially well retrieved in agreement with the role of such in-
formation for face recognition (Ince et al., 2016; Issa and DiCarlo, 2012;
Nestor et al., 2008). Additional information regarding nose and mouth
shape could also be retrieved (Abudarham and Yovel, 2016) while
forehead and cheek colors were recovered with various degrees of ac-
curacy across different color channels. Importantly, such cues appeared
to reflect objective information content as revealed by TO re-
constructions. Further, heatmaps of lighting and color channels exhibited
different spatial patterns suggesting that chromatic information supple-
ments lighting-based representations of facial identity (Nestor et al.,
2013). Chromatic information stored in high-level visual areas may
facilitate such representations as evidenced by their overlap with
face-processing regions (Chang et al., 2017a).

While the present investigation targets the representational basis of
shape and surface processing via image reconstruction, we also note here
the converse aspect of this investigation. Specifically, we inquire into the
benefit of shape and surface decomposition for image reconstruction
purposes. Previous work has relied on the coarse alignment of facial
features to minimize the need for such decomposition (Cowen et al.,
2014; Nestor et al., 2016; but see Chang and Tsao, 2017; Zhan et al.,
2017). Hence, it is useful to assess, in the context of the present inves-
tigation, whether recomposed faces are more accurately reconstructed
than intact ones. Interestingly, decomposition appeared to provide a
systematic advantage to reconstruction across modalities, yet this
advantage did not reach significance in any given case. Clearly,
shape-surface decomposition would be required when dealing with
pronounced image variability such as that due to viewpoint. However, if
such variability is controlled across stimuli and if feature alignment is
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successfully carried out in advance it appears that shape-surface
decomposition confers, at most, a minimum advantage to reconstruction.

Of relevance here, we note that shape-surface manipulations intro-
duce a systematic loss of information due to image (re)warping and that
this loss is likely to limit reconstruction success (see 2.5 Stimulus shape-
surface re/re-composition). To address this and, also, to allow the
extension of current work to a wider, more diverse class of face images,
state-of-the-art algorithms for fiducial point detection and shape analysis
could be employed (Ahdid et al., 2016). Such methods would confer
robustness to shape-surface decomposition and facilitate the integration
of reconstruction results with algorithms for face recognition that rely on
elaborate schemas for shape/surface analysis (Zhao et al., 2003) – such
integration could also serve specific goals for translational research (e.g.,
the automatic identification of a face image reconstructed from eyewit-
ness memory).

On a related note, better control of shape and surface features through
the use of computer-generated stimuli, rather than naturalistic stimuli,
could help disentangle the respective contribution of such features in a
more stringent way. At the same time though, the artificial appearance of
computer-generated stimuli appears to compromise the behavioral and
neural efficiency of their processing (Balas and Pacella, 2015; Crookes
et al., 2015; Schindler et al., 2017). Hence, for present purposes we opted
for the use of natural face images. Of note, generating photorealistic face
stimuli is an active field of investigation (Kortylewski et al., 2017; Yu
et al., 2015). Clearly, the results of such efforts will be valuable for a
number of theoretical and methodological endeavours, including image
reconstruction as pursued here.

Regarding the unique benefits of different neuroimaging modalities,
the current success of both EEG and fMRI in elucidating face represen-
tations opens the door to more targeted endeavors. For instance, while
the reconstruction of dynamic stimuli is feasible based on fMRI (Nishi-
moto et al., 2011a,b), it is likely that the superior temporal resolution of
EEG can facilitate better recovery of dynamic information through image
reconstruction. At the same time, fMRI can help clarify the nature and the
constraints of information transfer across a network of face processing
regions hosting representations of increasing ‘depth’ (Khaligh-Razavi
and Kriegeskorte, 2014; Güçlü and van Gerven, 2015) and can be
instrumental in refining reconstruction results (Shen et al., 2018).

In summary, the present work seeks to uncover the representational
underpinnings of shape and surface processing in face perception
through the use of innovative image-reconstruction methodology. Our
results show that such information can be reliably extracted from mul-
tiple modalities, that its representational structure is partly shared across
modalities and that its spatiotemporal profile speaks to the close inte-
gration of shape and surface cues in face processing. More generally, the
present findings showcase the value of image reconstruction methodol-
ogy in elucidating the content and the neural profile of visual
representations.
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