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A rapid and cost-effective noninvasive tool to detect and characterize suppressed neural activity can
be of significant benefit for the diagnosis and treatment of many disorders. We propose a novel algo-
rithm, SilenceMap, for uncovering the absence of electrophysiological signals, or neural “silences”, using
noninvasive scalp electroencephalography (EEG) signals. By accounting for the contributions of differ-
ent sources to the power of the recorded signals, and using a novel hemispheric baseline approach and a
convex spectral clustering framework, SilenceMap permits rapid detection and localization of regions of
silence in the brain using a relatively small amount of EEG data. SilenceMap substantially outperformed
existing source localization algorithms in estimating the center-of-mass of the silence for three pediatric
patients with lobectomy, using less than 3 minutes of EEG recordings (13, 2, and 11mm vs. 25, 62, and
53mm), as well for 70 different simulated regions of silence based on a real human head model (11±0.5mm
vs. 54±2.2mm). SilenceMap paves the way towards accessible early diagnosis and continuous monitoring
of altered physiological properties of human cortical function.

I. INTRODUCTION

An ongoing challenge confronting both basic scientists as
well as those at the translational interface is the ability to ac-
cess a rapid and cost-effective tool to uncover mechanistic de-
tails of neural function as well as the consequences of brain
damage. For example, identifying the presence of stroke, es-
tablishing altered neural dynamics in traumatic brain dam-
age, and monitoring changes in neural profile in athletes on
the sidelines all pose significant hurdles. In this paper, using
scalp electroencephalography (EEG) signals with relatively
little data, we provide theoretical and empirical support for a
novel method for the noninvasive detection of neural silences.
We adopt the term “silences” or “regions of silence” to refer to
the parts of brain tissue with little or no neural activity. These
regions reflect ischemic, necrotic, or lesional tissue (e.g., after
ischemic stroke, traumatic brain injuries (TBIs), and intracra-
nial hematoma), resected tissue (e.g. after epilepsy surgery),
or tumors [1, 2]. Dynamic regions of silence also arise in
cortical spreading depolarizations (CSDs), which are slowly
spreading waves of neural silences in the cerebral cortex [3–
5].

Common imaging methods for detecting brain damage,
e.g., magnetic resonance imaging (MRI) [6, 7], or computed
tomography (CT) [8], are not portable, are not designed for
continuous (or frequent) monitoring, are difficult to use in
many emergency situations, and may not even be available
at medical facilities in many countries. However, many med-
ical scenarios can benefit from portable, frequent/continuous
monitoring of neural silences, e.g., detecting changes in tu-
mor or lesion size/location (e.g. expansion/shrinkage), and/or
propagation of CSD in the brain. On the other hand, noninva-
sive scalp EEG is widely accessible in emergency situations
and can even be deployed in the field with only a few limita-
tions. It is easy and fast to setup, portable, and of lower cost
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compared with other imaging modalities. Additionally, un-
like MRI, EEG can be recorded from patients with implanted
metallic objects in their body, e.g., pacemaker [9].

One of the ongoing challenges of EEG is that of “source
localization”, the process by which the location of the un-
derlying neural activity is determined from the scalp EEG
recordings. The challenge arises primarily from three is-
sues: (i) the underdetermined nature of the problem (few
sensors, many possible locations of sources); (ii) the spatial
low-pass filtering effect of the distance and the layers sepa-
rating the brain and the scalp; and (iii) noise, including ex-
ogenous noise, background brain activity, as well as artifacts,
e.g., heart beats, eye movements, and jaw clenching [10, 11].
The localization of a region of silence, however, poses addi-
tional challenges. The most significant further challenge is
in how background brain activity is treated: while it is usu-
ally grouped with noise in source localization1, it is of di-
rect interest in silence localization where the goal is to distin-
guish normal brain activity from abnormal silences. Thus, in
source localization paradigms applied to neuroscientific stud-
ies [12–14], as is also the case in the Event Related poten-
tial (ERP) paradigm [15, 16], scalp EEG signals are averaged
over event-related trials to average out background brain ac-
tivity and noise, permitting the extraction of the signal activity
that is consistent across trials. Consequently, as we demon-
strate in our experimental results below, classical source lo-
calization techniques, e.g., multiple signal classification (MU-
SIC) [17, 18], minimum norm estimation (MNE) [14, 19, 20],
and standardized low resolution brain electromagnetic tomog-
raphy (sLORETA) [21], even after appropriate modifications,
fail to localize regions of silence in the brain.

In order to not average out the activity of the background
sources, we estimate the contribution of each source to the
recorded EEG outputs across all electrodes. This contribution
is measured in an average power sense, instead of the mean,
thereby avoiding canceling out the contributions of the back-
ground brain activity. Our silence localization algorithm, that

1 E.g. authors in [12] state: “EEG data are always contaminated by noise,
e.g., exogenous noise and background brain activity”.
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FIG. 1. SilenceMap with baseline algorithm overview: a) The EEG recording protocol and the locations of scalp electrodes. One of 10
reference electrodes (shown in red) is chosen along the longitudinal fissure for rereferencing against. b) Average power of scalp potentials
for different choices of reference electrodes. c) Symmetric brain model of a patient (UD) with right occipitotemporal lobectomy. d) Steps
of the SilenceMap algorithm in a low-resolution source grid. A measure of the contribution of brain sources in the recorded scalp signals
(β̃ ) is calculated relative to a hemispheric baseline. In the brain colormap, yellow indicates no contribution. A contiguous region of silence
is localized based on a convex spectral clustering (CSpeC) framework in the low-resolution grid. e) Steps of the SilenceMap algorithm in a
high-resolution source grid. The source covariance matrix (CS) is estimated through an iterative method, and the region of silence is localized
using the CSpeC framework. f) Choosing the best reference electrode to reference against (Cz in this example), which results in minimum
scalp power mismatch (ΔPow). The localized region of silence for this patient (UD) has 13mm COM distance (ΔCOM) from the original
region, with more than 38% overlap (JI = 0.384), and it is 32% smaller (Δk = 0.32).

we refer to as SilenceMap, estimates this contribution, and
then uses tools that quantify our assumptions on the region of
silence (contiguity, small size of the region of silence, and be-
ing located in only one hemisphere) to arrive at an estimate of
the region of silence.

In developing an algorithm tailored to localizing silences,
we observed two additional difficulties: lack of statistical
models of background brain activity, and the choice of the
reference electrode. The first is dealt with either by includ-
ing baseline recordings (in absence of silence; which we did

not have for our experimental results) or utilizing what we
call a “hemispheric baseline”, i.e., an approximate equality in
power measured at electrodes placed symmetrically with re-
spect to the longitudinal fissure (see Fig. 1b). While the hemi-
spheric baseline used here provides fairly accurate reconstruc-
tions, we note that this “baseline” is only an approximation,
and an actual baseline is expected to further improve the ac-
curacy. The second difficulty is related: to retain this hemi-
spheric (approximate) symmetry in power, it is best to keep
the reference electrode on top of the longitudinal fissure (see

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2020. ;https://doi.org/10.1101/2020.10.11.334987doi:bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334987
http://creativecommons.org/licenses/by-nc/4.0/


3

Fig. 1a). Using these advances, we proposed an iterative al-
gorithm to localize the region of silence in the brain using a
relatively small amount of data. Fig. 1d and e show the details
of our proposed SilenceMap algorithm. In both simulation
studies and real data analysis, SilenceMap outperformed ex-
isting algorithms, while using only a small amount of EEG
data. Only 160s of EEG signals using 128 electrodes suffice
for localizing silences in 3 participants with surgical resec-
tions for management of epileptic seizures.

II. RESULTS

Our SilenceMap algorithm localizes the region of silence
in two steps: (1) The first step finds a contiguous region of
silence in a low-resolution source grid with the assumption
that sources, at this low-resolution, are uncorrelated across
space. Steps of the SilenceMap algorithm in a low-resolution
brain grid of a patient (UD) with right occipitotemporal lobec-
tomy, are shown in Fig. 1d, with nodes serving as the brain
sources. The sources are far enough from each other in the
low-resolution grid that it maybe a reasonable approximation
to assume they have independent activities (see Methods for
more details). We defined a measure for the contribution of
brain sources in the recorded scalp signals (β ), i.e., the larger
the β , the higher contribution of the brain source to the scalp
potentials. However, β is not a perfect measure of the con-
tribution since it is defined based on identical distribution as-
sumption of non-silent sources in the brain, which does not
hold in the real world. Therefore using β , as is, does not re-
veal the silent sources, i.e., the smallest values of β (yellow
regions in Fig. 1d) may not be located at the region of silence.
But looking closely at the bottom view of the brain reveals
a significant hemispheric color difference at the region of si-
lence (right occipito-temporal lobe). This motivated us to use
a hemispheric baseline for the region of silence, i.e., instead
of using β , we use β̃ which is the ratio of β values of the
mirrored sources, e.g., for source pair of (AL, AR) which are
far from the region of silence, β̃ is close to 1 (red-colored
sources), while for (BL, BR), where BR is located in the region
of silence (see Fig. 1d), this ratio is close to zero (yellow-
colored sources). A contiguous region of silence is local-
ized based on a convex spectral clustering (CSpeC) frame-
work [22–24] in the low-resolution grid. (2) The second step
of SilenceMap algorithm takes the localized region of silence
in the first step as an initial guess, and through an alternat-
ing method, estimates both the source covariance matrix Cs
and the localized contiguous region of silence in a higher res-
olution source grid (see Fig. 1e). In each iteration, a CSpeC
framework was used to localize the region of silence based
on the estimated source covariance matrix, until the center-of-
mass (COM) of the localized region of silence has converged
(see the Methods for more details). All steps of our silence
localization algorithm are summarized in Fig. 1.

We validated the performance of our algorithm through rig-
orous experiments, based on simulated and real datasets. We
tested the robustness of our SilenceMap algorithm with and
without baseline (see Methods for more details), in different

scenarios, e.g., different sizes and locations of region of si-
lence, different EEG reference electrodes, and based on both
visual and rest EEG datasets (see Fig. 1a). In both the simu-
lated and real data, the performance of our silence localization
algorithm is compared with that of the state-of-the-art source
localization algorithms, namely, sLORETA, MNE, and MU-
SIC, which are modified appropriately for the silence local-
ization task. We use simulations and experiments to under-
stand how to choose the reference electrode, and what the ef-
fect of this choice is on the localization. Finally, we explored
the validity of our hemispheric symmetry assumption in Si-
lenceMap with the baseline based on a real dataset.

Localization performance metrics: For both simulated
and real experiments, we used three performance metrics for
determining the accuracy of the silence localization task: (i)
center-of-mass (COM) distance (∆COM), (ii) Jaccard Index
(JI), and (iii) size error (∆k)

(i) COM distance: is simply defined as the Euclidean dis-
tance between the center-of-mass of the localized and actual
region of silence, i.e.,

∆COM =

∥∥∥∥ 1
|S | ∑

i∈S
fi−

1
|S GT | ∑

i∈S GT

fi

∥∥∥∥
2
, (1)

where fi is the 3D location of source i in the brain, S and
S GT are the set of source indices of the localized region of
silence and its ground truth, respectively. ∆COM basically
measures how far the localized region of silence is from the
ground truth.

(ii) JI: was first defined by Jaccard in [25]. It is a widely
used performance measure for the 2D image segmentation
tasks [26]. In the silence localization task, since we are seg-
menting the region of silence in 3D space, we can calculate
the JI based on the nodes/sources in the discretized brain as
follows:

JI =
|S ∩S GT |
|S ∪S GT |

, (2)

which measures how well the localized region of silence
overlaps with the ground truth region in the brain, and it as-
sumes values between 0 (no overlap) and 1 (perfect overlap).
If there is minimal overlap and/or there is a large mismatch
between the size of these two regions, JI has a small value.

(iii) Size error: measures the error in estimation of the size
of the region of silence, and is simply defined as follows:

∆k =
|k− k̂|

k
, (3)

where k̂ is the estimated number of silent sources in the local-
ized region of silence.

Simulations: We simulated the scalp EEG recordings of
regions of silence in the brain, following the assumptions we
made in Section IV A, and tested the performance of the Si-
lenceMap algorithm proposed in this paper.
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Simulation results: We simulated scalp differential record-
ings for 70 different regions of silence, with the size of k = 50,
on a high-resolution source grid with p = 1744 sources, and
at varying locations on the cortex. The simulated regions of
silence lie in only one hemisphere (see the assumptions in
Section IV A), and they are located no deeper than 3cm from
the surface of scalp, which covers the entire thickness of the
gray matter [27–29], while excluding deep sources located in
the longitudinal fissure. In the longitudinal fissure, the source
dipoles are located deep inside the brain, and mostly oriented
tangential to the surface of the scalp, which makes it hard for
the EEG to record their electrical activity [11]. The non-silent
sources are assumed to have an identical distribution and cor-
relation across space. The detailed steps for the simulation
are available in the Methods (see Section IV F). For the Si-
lenceMap algorithm, we tried the 10 different reference elec-
trodes located along the longitudinal fissure, i.e., F pz, AFz,
Fz, FCz, Cz, CPz, Pz, POz, Oz, and Iz, and choose the one
with the minimum power mismatch ∆Pow defined in (39).
We reported the performance measures, i.e., ∆COM, JI, and
∆k under the average signal-to-noise ratio (SNRavg) level of
9dB (see the Methods for definition of SNRavg). For the Si-
lenceMap algorithm, we reported the convergence rate (CR) as
well, which is the ratio of the number of converged cases over
the total number of simulated regions of silence in the sim-
ulation experiment. The results of the simulations are sum-
marized in Table I, where ∆COM, JI, and ∆k are reported in
the format of “mean ± Standard Error (SE)”. Based on the
results, our proposed SilenceMap algorithm outperformed the
state-of-the-art source localization algorithms: it has 43mm
smaller average COM distance, 46% more average overlap
(JI), and 252% smaller size error, compared to the best per-
formance among the modified source localization algorithms.
The simulated dataset is based the identical distribution as-
sumption of brain sources (see Section IV F). However, this
assumption does not appear to hold in the real dataset, where
SilenceMap with baseline performs significantly better com-
pared to SilenceMap without baseline (see Fig. 3). The list
of all parameters and their values we have used in the im-
plementation of the SilenceMap algorithm is available in Ap-
pendix X D.

TABLE I. Simulation experiment results (SNRavg = 9dB, k = 50)
Algorithms ∆COM

(mm)
JI ∆k CR

modified
MUSIC

60 ± 3.5 0.09 ± 0.012 2.84 ± 0.067 -

modified
MNE

82 ± 2.2 0.01 ± 0.002 6.08 ± 0.036 -

modified
sLORETA

54 ± 2.2 0.04 ± 0.002 9.62 ± 0.124 -

SilenceMap 11 ± 0.5 0.55 ± 0.020 0.32 ± 0.027 0.91

Comparison of SilenceMap, with and without baseline,
with source localization algorithms. We tested the perfor-

mance of our silence localization algorithm under different
simulated scenarios, as well as real experiments, and com-
pare its performance with the state-of-the-art source local-
ization algorithms, modified for the silence localization task.
We have explained the details of modified MNE, MUSIC,
and sLORETA algorithms for the silence localization task in
Methods. For all of the modified source localization methods,
we choose Cz scalp electrode as the reference electrode. We
considered the effect of the reference electrode in the modified
MNE, MUSIC, and sLORETA, to have a fair comparison with
our proposed SilenceMap algorithm (see Methods). Based on
the simulation results in Table I, among the modified source
localization algorithms, sLORETA shows the minimum av-
erage COM distance of 54mm, and MUSIC shows the max-
imum average overlap of 9% (JI = 0.09), and the minimum
average size error of 284% (∆k = 2.84). This performance
is still poor for the silence localization task, while our Si-
lenceMap algorithm shows a good performance based on the
simulation results in Table I (∆COM = 11mm, JI = 0.55, ∆k =
0.32). Based on these results, source localization algorithms,
even after proper modifications, perform poorly in localizing
the regions of silence in the brain.

Real Data: We tested the performance of our silence local-
ization algorithm, and compared it with the modified source
localization algorithms, based on a real dataset of patients who
have undergone lobectomy surgery, and have a clearly-defined
resected region in their brain. It is this region of silence that
we intend to localize.

Dataset: We recorded EEG signals using a BioSemi Ac-
tiveTwo system (BioSemi, Amsterdam), with a sampling fre-
quency of 512 Hz, using a 128-electrode cap with electrodes
located based on the standard 10-5 system [30]. In addition,
we used four electrodes around the eyes, specifically, a pair
on the top and bottom of the right eye to detect the verti-
cal eye movements and blinks, and a pair at the outer can-
thi of each eye to monitor horizontal eye movements. One
electrode was placed on the left collar bone to monitor the
heart beats, and two electrodes were placed on the mastoids.
All electrodes were differentially recorded relative to the stan-
dard common-mode-sense (CMS) and driven-right-leg (DRL)
electrodes. During the acquisition of EEG data, the partici-
pant viewed a screen, located roughly 1m away. A grating
pattern of black and white bars was displayed at the center of
the display along with a fixation cross for 2 seconds, followed
by a rest state of 1-1.5 seconds, where a fixation cross was
displayed on a gray-colored background (see Fig. 1a). We re-
peated this sequence 80 times during the recording session.
We used the Rest and Visual sections of the recorded signal
separately for the localization and compared the results from
these analyses in Fig. 3. The steps for data analyses and pre-
processing are available in the Methods, part IV E.

Participants: Three male pediatric patients were recruited
for this experiment. Two patients (SN and OT) had resec-
tions in the left hemisphere and one (UD) had a resection in
the right hemisphere. In two of these patients (OT and UD),
lobectomy surgery was performed to control pharmacoresis-
tant epilepsy, and in the third patient (SN) surgery was per-
formed for an emergent evacuation of cerebral hematoma at
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FIG. 2. Structural MRI scans of the three participants in the real
dataset: UD with right occipitotemporal lobectomy, SN and OT with
left temporal lobectomy. We have stripped away facial features to
ensure anonymity of participants.

day one of life. More information about these patients is in-
cluded in Table II.

TABLE II. Surgery history of patients [31].

Patient Surgical procedure Age at
resection

Time
between
resection
& MRI
scan

Time
between
resection
& EEG
recording

UD Right occipital and
posterior temporal
lobectomy with
resection of infer-
omesial temporal
dysembryoplastic
neuroepithelial
tumor (DNT)

6y, 9m 4y, 3m 5y, 10m

SN Evacuation of
left temporal
hematoma

1d 12y, 6m 13y, 1m

OT Left temporal
lobectomy with
preservation of
mesial structures,
gross total resec-
tion of left mesial
temporal DNT

13y, 4m 4y, 3m 5y, 11m

OT signed a consent form, and the parents of SN and
UD consented to their participation as they were minors.
They both provided assent. All procedures were approved by
the Carnegie Mellon University Institutional Review Board
(IRB). The MRI scans of these participants are shown in
Fig. 2, where the resected sections can be seen as large asym-
metric dark regions [31–33]. The ground truth regions of si-
lence are extracted based on these MRI scans (see Methods for
more details). First row in Fig. 3 shows the extracted ground

truth regions of silence in the symmetric brain models of the
three participants. The intact hemisphere is mirrored across
the longitudinal fissure to construct these brain models (see
Fig. 1c and Methods for more details). These patients have
different sizes of regions of silence: UD has a region of si-
lence with k = 60 nodes out of total p = 1740 nodes in the
brain, SN has k = 120 out of p = 1758 nodes, and OT has
k = 55 out of p = 1744 total nodes.

Results of real dataset: We applied the SilenceMap algo-
rithm, along with the modified source localization algorithms,
i.e., MNE, MUSIC, and sLORETA, on the preprocessed EEG
recordings of the three participants in the real dataset, and
the performance of silence localization is calculated based on
the extracted ground truth regions from the post-surgery MRI
scans of these patients (see Fig. 2). The visual illustration of
localized regions of silence (shown in red color on the gray-
colored semi-transparent brains), along with their ground truth
regions and their corresponding performance measures are all
shown in Fig. 3. Based on the Rest dataset, our SilenceMap
algorithm with hemispheric baseline outperforms the modi-
fied source localization algorithm: it reduces the COM dis-
tance by 12mm, 46mm, and 42mm for UD, SN, and OT
respectively, compared to the best performance among the
source localization algorithms. It also improves the overlap
(JI) by 22%, 49%, and 37%, and the size estimation by 122%,
42%, and 59% for UD, SN, and OT respectively. The Si-
lenceMap algorithm with baseline performs well with values
of ΔCOM = 2mm, JI = 0.570, and Δk = 0.25 based on the
Rest set, and ΔCOM = 3mm, JI = 0.654, and Δk = 0.09 based
on the Visual set. Comparing the results of Visual and Rest
datasets for SilenceMap with baseline shows that, as expected,
the localized regions of silence remain largely the same. This
suggests that for each participant with a specific region of si-
lence in the brain tissue, the algorithm can localize the re-
gion, regardless of the type of the task performed (Visual or
Rest) by the participants during the EEG recording. In Si-
lenceMap with baseline, based on the minimum value of the
power mismatch (ΔPow defined in (39) in the Methods), the
best reference electrodes for UD, SN, and OT were found as
Cz, Cz, and CPz respectively, for the Rest set, and Cz, Pz, and
CPz for the Visual set. Based on the results of the Visual set,
participants OT shows the poorest localization performance,
which might be due to the consistent jaw clenching the par-
ticipant had during the recording session which affected the
EEG signals, even after appropriate preprocessing steps. Jaw
clenching is recognized as one of the most severe artifacts in
EEG recording which adversely impacts the signals of most
EEG electrodes [34].

Unlike the simulation results, without baseline the Si-
lenceMap algorithm failed to localize the region of silence
based on the real dataset. As mentioned before, one expla-
nation for this is the assumption of the identical distribution
of sources in designing the algorithm, which does not hold in
the real data and we need to use the hemispheric baseline to
be able to localize the region of silence.

Validity of hemispheric symmetry assumption in Si-
lenceMap with baseline. The hemispheric baseline approach
used in the SilenceMap algorithm is based on an approximate
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FIG. 3. Performance of SilenceMap on a real EEG dataset: the first row shows the extracted ground truth regions of silence (red regions)
overlaid on the resected cortical region of three patients based on their symmetric brain models extracted from the structural MRIs (see
the MRI scans in Fig. 2); the second, third, and fourth rows show the performance in localization of the silent region using modified source
localization algorithms (MNE, MUSIC, and sLORETA), through both visual illustration (red regions) and using performance metrics of center-
of-mass (COM) distance (ΔCOM), Jaccard Index (JI), and size error (Δk). The fifth row shows the performance of our SilenceMap algorithm
without baseline, and the last two rows show the localization performance of our SilenceMap algorithm with baseline, based on the Rest and
Visual recordings respectively. p is the total number of sources in each brain model, and k is the size of ground truth region of silence.

hemispheric symmetry assumption of the brain source activi-
ties in the healthy parts of the brain. To further explore the
validity of this assumption, we quantified this hemispheric
symmetry based on the scalp average power of a neurolog-
ically healthy control subject (DH, male, 25yr) whose EEG
data were collected using the same protocol as that used for
the patients (see Fig. 1a for the EEG recording protocol). DH
signed a consent form. Excluding the 10 electrodes on the lon-
gitudinal fissure (red electrodes in Fig. 1a), we calculated the
mean absolute difference (MAD) of average power of pairs of
scalp electrodes which are symmetric with respect to the lon-
gitudinal fissure, e.g., (C1,C2), (T 7,T 8), and so on, as follows:

MAD =
2

n−10

n−10
2

∑
i=1

|V̂ar(yR
i )−V̂ar(yL

i )| (4)

where, V̂ar(yR
i ) is the estimated variance of the recorded

EEG signals referenced to the Cz electrode, preprocessed, and
denoised signal yR

i at the electrode i on the right hemisphere
(see Methods for noise removal steps), and yL

i is the signal
of the corresponding electrode on the left hemisphere, and
n = 128 is the total number of electrodes. Based on Fig. 4,
MAD for the control subject is calculated based on the Rest
set as 4.1 (μV )2, while for the UD, SN, and OT patients with
regions of silence MAD is 23.3, 14.2, 16.5 (μV )2 respectively.
The control subject had significantly smaller hemispheric dif-
ference of scalp power compared to the patients with regions
of silence in their brain. This result supports the fact that us-
ing the hemispheric baseline is helpful in localization of re-
gions of silence, which are located in either the left or right
hemispheres. There are two main reasons that the MAD of
the healthy control is not perfectly symmetric: (i) the sources
in brain do not have perfectly symmetric activities and brain
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FIG. 4. Quantification of hemispheric symmetry of scalp average
power in a healthy control subject (DH), in comparison to the three
patients who have resected brain regions (UD, SN, and OT). Mean
absolute difference of scalp average power (MAD) is reported for
each subject. The control subject shows significantly smaller MAD
compared to the three patients with cortical regions of silence.

sources have non-identical brain activities, (ii) the structure of
brain and the head (scalp, skull, CSF, and brain) is not per-
fectly symmetric, which results into a non-symmetric reflec-
tion/transformation of brain activities to the scalp potentials.
The second issue is addressed in the SilenceMap algorithm,
by normalization of the measure of source contribution (β
in equation (35), in the Methods) based on the head struc-
ture asymmetry. One possible direction to improve the perfor-
mance of the SilenceMap algorithm is to take into account the
non-identical distribution of sources in brain (and perhaps use
a more realistic model for the source covariance matrix CS)
and normalize the source contribution measure accordingly.

III. DISCUSSION

SilenceMap with baseline successfully localized the re-
gion of silence of three patients who had resected brain tis-
sue with different sizes and locations, based on only 160s
of scalp EEG recordings. As the first silence localization al-
gorithm, SilenceMap significantly outperformed the state-of-
the-art source localization algorithms, which are modified for
the silence localization task, and reduces the distance error
(ΔCOM) up to 46mm. Source localization algorithms, even
after appropriate modifications, failed to localize the region
of silence, because the background brain activity is usually
grouped with noise in the source localization task, and in most
of the source localization algorithms this component is aver-
aged out across event-related trials, while including the back-
ground brain activity is a crucial component for the silence
localization task.

SilenceMap can localize the regions of silence with a tiny
amount of EEG data. As we showed in Section II, our Si-
lenceMap algorithm successfully localized the regions of si-
lence based on only 160s of EEG data. Although this is al-
ready considered as a small amount of data, we were won-
dering how our algorithm performs if we reduce the temporal
length of the data used for the silence localization task. To find
the answer, we did a grid-search for the length of the EEG
signals in the interval of [20,40,80,120,160]s, and for each
temporal length we quantified the localization performance of
SilenceMap. Based on the results, for the participant UD, us-
ing only 80s of data showed almost the same localization per-
formance as 160s (ΔCOM = 17mm, JI = 0.382, Δk = 0.30),
while 40s of data and less showed significant reduction in the
localization performance. For participant SN, the minimum
possible amount of data, without compromising the localiza-
tion performance, is only 40s (ΔCOM = 9mm, JI = 0.440,
Δk = 0.20), while for participant OT, any amount of data less
than 160s showed reduction in the performance of silence lo-
calization. This observation might be due to the noisy EEG
recording of OT, as mentioned in Section II. These sets of
results suggest that in case of having a good EEG record-
ing (without significant noise and artifacts), SilenceMap with
baseline is able to localize the regions of silence, with only a
tiny amount of data. This paves the way towards designing
a monitoring system for the moving regions of silence in the
brain such as expanding tumors and lesions, and even CSD
waves based on our SilenceMap algorithm with some modifi-
cations.

Introduced error in the silence localization by using the
symmetric brain models. In this paper, we used the sym-
metric brain models of the patients with lobectomy, since the
pre-surgery MRI scans of these patients were not available
(and these may not even have been symmetrical in the first
instance). Fig. 5 shows the symmetric brain models of UD,
SN, and OT, along with their original brain models, which
have resected regions. To quantify the introduced error in
the silence localization by using the symmetric brain, instead
of the original brain model, we calculated the average dis-
tance of sources/nodes of the intact part of the hemisphere
with a missing section to the corresponding sources/nodes of
the other hemisphere (the structurally preserved hemisphere)
mirrored across the longitudinal fissure (see Fig. 5). Fol-
lowing the 3D shape matching approach in [35], for a spe-
cific source/node in the brain hemisphere with the region
of silence, the corresponding source in the mirrored hemi-
sphere is defined as the node with the minimum distance to
that specific source. Based on the results, the defined av-
erage distance between the symmetric brain model and the
original brain model is 2.41±0.055mm, 2.50±0.043mm, and
2.03±0.044mm, for UD, SN, and OT, respectively. We ex-
cluded the resected parts of the brain in calculating the av-
erage distance between the symmetric brain model and the
original brain model in UD, SN, and OT. To make sure
this average distance is not affected by this exclusion of the
resected regions, we also calculated this hemispheric dis-
tance in three healthy controls OAS1 0004 MR1 (male, 28yr),
OAS1 0005 MR1 (male, 18yr), and OAS1 0034 MR1 (male,
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FIG. 5. Average distance of the symmetric brain model from the original brain model in patients with lobectomy, i.e., UD with right occipi-
totemporal lobectomy, SN with left temporal lobectomy, and OT with left frontotemporal lobectomy, as well as in three healthy controls, i.e.,
OAS1 0004 MR1, OAS1 0005 MR1, and OAS1 0034 MR1. The average distance for all patients and healthy controls are less than 3mm,
which makes the symmetric brain model a reasonable choice for the silence localization task, as it does not introduce significant error.

51yr), where there are no resected parts (see Fig. 5). We
used an open source MRI database (OASIS-12 [36]) to ob-
tain real brain models of these three healthy controls. Based
on the results, the average distance between the symmetric
brain model and the original brain model was 2.33±0.012mm,
2.78±0.016mm, and 2.35±0.012mm, for OAS1 0004 MR1,
OAS1 0005 MR1, and OAS1 0034 MR1, respectively. In
fMRI studies, an acceptable motion and voxel displacement
is usually up to 3mm [37], and since the average distance of
the symmetric and the original brain models is less than 3mm,
using the symmetric brain model seems to be a reasonable

2 http://www.oasis-brains.org

choice for the silence localization.

Limitations and future directions. SilenceMap has its
own limitations and shortcomings, which can serve as the
focus of future investigations: (i) as mentioned in Methods,
Section IV A, for simplicity, SilenceMap assumes that there is
one region of silence in the brain and it is located in only one
hemisphere, as is the case for the individuals in our real and
simulated dataset. One can modify the SilenceMap algorithm
so that it can localize multiple regions of silence in the brain,
including even defective regions that span both hemispheres.
(ii) Based on the results, the SilenceMap algorithm showed
significant improvement in estimation of size of region of si-
lence, compared to the state-of-the-art modified source local-
ization algorithms. This size estimation in the SilenceMap al-
gorithm is based on the minimization of scalp average power
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error, as defined in equation (27) in Methods, which shows
an average error of about 30% based on the real dataset in
our paper. For those applications where there is a need for
more precise estimation of the size of the regions of silence,
SilenceMap needs to be improved. (iii) Finally, the proposed
silence localization algorithm is designed to localize the sta-
tionary (or structural) regions of silence. Designing an algo-
rithm to track and localize the moving or functional regions of
silence, such as CSD propagation across the cortex, is a future
direction in our silence localization research.

IV. METHODS

A. Notation and Problem Statement

Notation. In this paper, we use non-bold letters and sym-
bols (e.g., a, γ, and θ ) to denote scalars; lowercase bold letters
and symbols (e.g., a, γγγ, and θθθ ) to denote vectors; uppercase
bold letters and symbols (e.g., A, E, and ∆∆∆) to denote matri-
ces, and script fonts (e.g., S ) to denote sets.

Problem statement. Following the standard approach in
the source localization problems, we use the linear approxi-
mation of the well-known Poisson’s equation to write a linear
equation, which relates the neural electrical activities in the
brain to the resulting scalp potentials [38, 39]. This linear
equation is called “forward model” [40]. In this model, each
group of neurons are modeled by a current source or dipole,
which is assumed to be oriented normal to the cortical sur-
face [14].

The linear forward model can be written as below:

Xn×T = An×pSp×T +EEEn×T , (5)

where A is the forward matrix, X is the matrix of measure-
ments where each row represents the potentials recorded at
one electrode, with reference at infinity, across time. S is the
matrix of source signals, EEE is the measurement noise, T is the
number of time points, p is the number of sources, and n is
the number of scalp sensors.

In practice, we do not have the matrix X, since the reference
at infinity cannot be recorded. Only a differential recording of
scalp potentials is possible. If we define a (n− 1)× n matrix
M with the last column to be all−1 and the first n−1 columns
compose an identity matrix, the differential scalp signals, with
the last electrode’s signal as the reference, can be written as
follows:

Y(n−1)×T =M(n−1)×nXn×T

=M(n−1)×nAn×pSp×T +M(n−1)×nEEEn×T ,
(6)

where Y is the matrix of differential signals of scalp, M is
a matrix, which transforms the scalp signals with reference at
infinity in the matrix X to the differential signals in Y. Equa-
tion (6) can be rewritten as follows:

Y(n−1)×T = Ã(n−1)×pSp×T + ẼEE(n−1)×T , (7)

where Ã = MA, and ẼEE = MEEE.
Objective: Given M, Y and A, estimate the region of silence

in S.
For this objective, we consider two different scenarios: (1)

there are no baseline recordings for the region of silence, i.e.,
no scalp EEG recording is available where there is no region
of silence, (2) with baseline recording, i.e., we consider the
recording of the hemisphere of the brain, left or right, which
does not have any region of silence, as a baseline for the si-
lence localization task.

We make the following assumptions: (i) A and M are
known, and Y has been recorded. (ii) ẼEE is additive white
noise, whose elements are assumed to be independent across
space. Thus at each time point, the covariance matrix is Cz
given by:

czi j = σ
2
zi
, for all i = j,

czi j = 0, for all i 6= j,
(8)

where σ2
zi

is the noise variance at electrode i, and it is as-
sumed to be known (to see how this might be estimated see
Section X B). (iii) k rows of S correspond to the region of si-
lence which are rows of all zeros. The correlations of source
activities reduces as the spatial distance between the sources
increases. We assume a spatial exponential decay profile for
the source covariance matrix Cs, with identical variances for
all non-silent sources (σ2

s ):

csi j = σ
2
s e−γ‖fi−f j‖22 , for all i, j /∈S ,

csi j = 0 for all i, j ∈S .
(9)

where fi is the 3D location of source i in the brain, γ is the
exponential decay coefficient, and S is the set of indices of
silent sources (S := {i|sit = 0 for all t ∈ {1,2, · · ·T}}). We
assume that the elements of S have zero mean, and follow a
WSS process. (iv) M is a (n−1)×n matrix where the last col-
umn is −1n−1×1 and the first n− 1 columns form an identity
matrix (I(n−1)×(n−1)). (v) We assume p−k� k, where p−k is
the number of active, i.e., non-silent sources, and k is the num-
ber of silent sources. (vi) Silent sources are contiguous. We
define contiguity based on a z-nearest neighbor graph, where
the nodes are the brain sources (i.e., vertices in the discretized
brain model). In this z-nearest neighbor graph, two nodes are
connected with an edge, if either or both of these nodes is
among the z-nearest neighbors of the other node, where z is a
known parameter (see Section IV to see what values of z can
be used). A contiguous region is defined as any connected
subgraph of the defined nearest neighbor graph, i.e., between
each two nodes in the contiguous region, there is at least one
connecting path. (vii) For simplicity, we assume that silence
lies in only one hemisphere (as is the case for the 3 individuals
examined in the Results).

With baseline recordings: In the absence of baseline record-
ings, estimating the region of silence proves difficult. In order
to exploit prior knowledge about neural activity, we use the
approximate symmetry of power of neural activity in the two
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hemispheres of a healthy brain (see the Results for more de-
tails on the hemispheric symmetry of scalp potentials, along
with examples from the real dataset). (viii) As an additional
simplification, we assume that even when there is a region of
silence, if the electrode is located far away from the region of
silence, then the symmetry still holds. E.g., if the silence is in
the occipital region, then the power of the signal at the elec-
trodes in the frontal region (after subtracting noise power) is
assumed to be symmetric in the two hemispheres (mirror im-
aged along the longitudinal fissure). This is only an approx-
imation because (a) the brain activity is not completely sym-
metric, and (b) a silent source affects the signal everywhere,
even far from the silent source (see Fig. 4 in the Results). Nev-
ertheless, as we will see, this assumption enables more accu-
rate inferences about the location of the silence region in real
data using the SilenceMap algorithm with baseline, in com-
parison to the SilenceMap without baseline.

We first explain the details of this two-step algorithm un-
der the condition where we do not have any baseline in Sec-
tion IV B, and then under the condition where we consider a
hemispheric baseline in Section IV C.

B. SilenceMap without baseline recordings

If we do not have any baseline recording, we design the
two-step silence localization algorithm as follows:

Low-resolution grid and uncorrelated sources: For the
iterative method in the second step, we need an initial esti-
mate of the region of silence to select the electrodes whose
powers are affected the least by the region of silence. We
coarsely discretize the cortex to create a very low resolution
source grid with sources that are located far enough from each
other, so that the elements of S can be assumed to be uncorre-
lated across space:

csi j = σ
2
s , for all i = j & i, j /∈S ,

csi j = 0 for all i 6= j or i, j ∈S .
(10)

Under this assumption of uncorrelatedness and identical
distribution of brain sources in this low resolution grid, we
find a contiguous region of silence through the following
steps:

(i) Cross-correlation: Equation (7) can be written in the
form of linear combination of columns of matrix Ã as follows:

yt =
p

∑
i=1

ãisit + ε̃εε t , for t = {1,2, · · ·T}, (11)

where sit is the ith element of the tth column in S,
Y = [y1, · · · ,yT ] ∈ R(n−1)×T , S = [s1, · · · ,sT ] ∈ Rp×T , Ã =

[ã1, · · · , ãp] ∈ R(n−1)×p, and ẼEE = [ε̃εε1, · · · , ε̃εεT ] ∈ R(n−1)×T .
Based on equation (11), each column vector of differential

signals, i.e., yt , is a weighted linear combination of columns
of matrix Ã, with weights equal to the corresponding source
values. However, in the presence of silences, the columns

of Ã corresponding to the silent sources do not contribute to
this linear combination. Therefore, we calculate the cross-
correlation coefficient µqt , which is a measure, albeit an im-
perfect one3, of the contribution of the qth brain source to the
measurement vector yt (across all electrodes) at the tth time-
instant, defined as follows:

µqt = ãT
q yt =

p

∑
i=1

ãT
q ãisit + ãT

q ε̃εε t , for all q = {1,2, · · · p},

for all t = {1,2, · · ·T}.
(12)

(ii) Estimation of variance of µqt : In this step, we estimate
the variances of the correlation coefficients calculated in the
step (i). Based on equation (12) we have:

Var(µqt) =Var(
p

∑
i=1

ãT
q ãisit + ãT

q ε̃εε t)

(a)
= Var(

p

∑
i=1

ãT
q ãisit)+Var(ãT

q ε̃εε t)

(b)
=

p

∑
i=1

Var(ãT
q ãisit)+Var(ãT

q ε̃εε t)

(c)
=

p

∑
i=1

i/∈S

(ãT
q ãi)

2
σ

2
s + ãT

q Czãq,

(13)

where S is the indices of silent sources. In (13), the equality
(a) holds because of independence of noise and sources, and
the assumption that they have zero mean, (b) holds because
the elements of S, i.e., sit ’s, are assumed to be uncorrelated
and have zero mean in the low resolution grid, and (c) holds
because sit ’s are assumed to be identically distributed. It is
important to note that σ2

s in (13) is a function of source grid
discretization and it does not have the same value in the low-
resolution and high-resolution grids. We estimate the variance
of µqt using its power spectral density, as is explained in detail
in the Appendix X A.

Based on equation (13), the variance of µqt , excluding the
noise variance, can be written as follows:

Ṽar(µqt) =Var(µqt)− ãT
q Czãq =

p

∑
i=1

i/∈S

(ãT
q ãi)

2
σ

2
s

(14)

where Ṽar(µqt) is the variance of µqt without the measure-
ment noise term, which is a function of the size and location
of region of silence through the indices in S . However, this
variance term, as is, cannot be used to detect the silent sources,

3 This measure is imperfect because the columns of the Ã matrix are not
orthogonal. The goal here is to attempt to quantify relative contributions
of all sources to the recorded signals, and use that to arrive at a decision on
which sources are silent because their contribution is zero.
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since some sources may be deep, and/or oriented in a way that
they have weaker representation in the recorded signal yi, and
consequently have smaller Var(µqt) and Ṽar(µqt).

(iii) Source contribution measure (βββ ): To be able to detect
the silent sources and distinguish them from sources which
inherently have different values of Ṽar(µqt), we need to nor-
malize this variance term for each source by its maximum pos-
sible value, i.e., when there is no silent source (Ṽar

max
(µqt) =

∑
p
i=1(ã

T
q ãi)

2σ2
s ):

Var(µqt) =
Ṽar(µqt)

Ṽar
max

(µqt)
=

Ṽar(µqt)

∑
p
i=1(ã

T
q ãi)2σ2

s
, (15)

where Var(µqt) is the normalized variance of µqt , without
noise, and it takes values between 0 (all sources silent) and
1 (no silent source). Note that it does not only depend on
whether q∈S , where S is the set of indices of silent sources.
In general, this normalization requires estimation of source
variance σ2

s , but under the assumption that sources have iden-
tical distribution, they all have identical variances. Therefore,
σ2

s in the denominator of (15) is the same for all sources. We
multiply both sides of (15) by σ2

s and obtain:

σ
2
s Var(µqt) =

Ṽar(µqt)

∑
p
i=1(ã

T
q ãi)2

=
Var(µqt)− ãT

q Czãq

∑
p
i=1(ã

T
q ãi)2

, (16)

Therefore,

βq := σ
2
s Var(µqt) =

Var(µqt)− ãT
q Czãq

∑
p
j=1(aT

q a j)2

≈
V̂ar(µqt)− ãT

q Ĉzãq

∑
p
j=1(ã

T
q ã j)2

,

(17)

where βq is called the contribution of the qth source in the dif-
ferential scalp signals in Y, which takes values between 0 (all
sources silent) and σ2

s (no silent sources). In (17), V̂ar(µqt) is
an estimate of variance of µqt , and Ĉz is an estimate of noise
covariance matrix (see Appendix X A and X B to see how
these estimates might be obtained).

(iv) Localization of silent sources in the low-resolution
grid: In this step, we find the silent sources based on the βq
values defined in the previous step, through a convex spectral
clustering (CSpeC) framework as follows:

g?(λ ,k) = argmin
g

βββ
T (1−g)+λ (1−g)T L(1−g),

s.t. gi ∈ [0,1], for all i ∈ {1,2, · · · p}
‖g‖1 ≤ p− k.

(18)

where βββ
T = [β1, · · · ,βp] is the vector of source contribu-

tion measures, g = [g1, · · · ,gp]
T is a relaxed indicator vector

with values between 0 (for silent sources) and 1 (for active

sources), k is the number of silent sources, i.e., the size of the
region of silence, λ is a regularization parameter, and L is a
graph Laplacian matrix defined in (23) below. Based on the
linear term in the cost function of (18), the optimizer finds
the solution g? that (ideally) has small values for the silent
sources, and large values for the non-silent sources. The `1
norm convex constraint controls the size of region of silence
in the solution. To make the localized region of silence con-
tiguous, we have to penalize the sources which are located far
from each other. This is done using the quadratic term in the
cost function in (18) and through a graph spectral clustering
approach, namely, relaxed RatioCut partitioning [22–24]. We
define a z-nearest neighbor undirected graph with the nodes
to be the locations of the brain sources (i.e., vertices in the
discretized brain model), and a weight matrix W defined as
follows:

wi j = e−
‖fi−f j‖22

2θ2 , for all i ∈ z-nearest neighbor of j
OR j ∈ z-nearest neighbor of i,

wi j = 0, for all i /∈ z-nearest neighbor of j
AND j /∈ z-nearest neighbor of i,

(19)

where the link weight is zero (no link) between node i and j,
if node i is not among the z-nearest neighbors of j, and node j
is not among the z-nearest neighbors of i. In (19), we choose z
to be equal to the number of silent sources, i.e., z = k, and θ is
an exponential decay constant, which normalizes the distances
of sources from each other in a discretized brain model, by
their variance as follows:

θ
2 =Var(‖fi− f j‖2)≈

1
N−1

p

∑
i=1

p

∑
j=i+1

(‖fi− f j‖2−δ f)2,

(20)

where N = p(p−1)
2 is the total number of inter-source dis-

tances, and δ f is an estimated average of these inter-source
distances, given by:

δ f =
1

N−1

p

∑
i=1

p

∑
j=i+1

‖fi− f j‖2, (21)

The degree matrix of the graph (D) is given by:

D = {[di j]|di j =
p

∑
l=1

wil , for all i = j, and

di j = 0, for all i 6= j}
(22)

Using the degree and weight matrices defined in (19)
and (22), the graph Laplacian matrix, L in (18), is defined
as follows:

L = D−W (23)
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Based on one of the properties of the graph Laplacian ma-
trix [41], we can write the quadratic term in the objective func-
tion of (18) as follows:

(1−g)T L(1−g) =
1
2

p

∑
i, j=1

wi j(gi−g j)
2. (24)

where g ∈Rp. This quadratic term promotes the contiguity
in the localized region of silence, e.g., an isolated node in the
region of silence, which is surrounded by a number of active
sources in the nearest neighbor graph, causes a large value in
the quadratic term in (24), since wi j has large value due to the
contiguity, and the difference (gi− g j) has large value, since
it is evaluated between pairs of silent (small gi)-active (large
g j) sources.

For a given k, the regularization parameter λ in (18), is
found through a grid-search and the optimal value (λ ?) is
found as the one which minimizes the total normalized error
of source contribution and the contiguity term as follows:

λ
?(k) = argmin

λ

(βββ T (1−g?(λ ,k)))2

max
λ1

(βββ T (1−g?(λ1,k)))2

+
((1−g?(λ ,k))T L(1−g?(λ ,k)))2

max
λ2

((1−g?(λ2,k))T L(1−g?(λ2,k)))2 .

(25)

In addition, the size of region of silence, i.e., k, is estimated
through a grid-search as follows:

k̂ = argmin
k

n−1

∑
i=1

∥∥∥∥(ÃCs(k)Ã
T
)ii + σ̂

2
zi
−V̂ar(yi)

∥∥∥∥2

2
, (26)

where (.)ii indicates the element of a matrix at the inter-
section of the ith row and the ith column, V̂ar(yi) is the esti-
mated variance of the ith differential signal in Y, and σ̂2

zi
is

the estimated noise variance at the ith electrode location (see
Appendix X B and X C to see how these might be estimated).
In (26), Cs(k) is the source covariance matrix, when there are
k silent sources in the brain. The estimate k̂ minimizes the cost
function in (26), which is the squared error of difference be-
tween the powers of scalp differential signals, resulting from
the region of silence with size k, and the estimated scalp pow-
ers based on the recorded data, with the measurement noise
power removed. Under the assumption of identical distri-
bution of sources, and lack of spatial correlation in the low-
resolution source grid, and based on (10), we can rewrite (26)
as follows:

k̂ = argmin
k

n−1

∑
i=1

∥∥∥∥ p

∑
j=1

j/∈S

ã2
i jσ

2
s + σ̂

2
zi
−V̂ar(yi)

∥∥∥∥2

2

= argmin
k

n−1

∑
i=1

∥∥∥∥
∑

p
j=1

j/∈S
ã2

i j

max
l

∑
p

j=1
j/∈S

ã2
l j
−

V̂ar(yi)− σ̂2
zl

max
m

(V̂ar(ym)− σ̂2
zm)

∥∥∥∥2

2

(27)

where ãi j is the element of matrix Ã at the intersection of
the ith row and the jth column, and S is the set of indices of
k silent sources, i.e., indices of sources corresponding to the k
smallest values in g?(λ ?,k), which is the solution of (18). The
second equation in (27) normalizes the power of electrode i
using the maximum power of scalp signals for each i. This
step eliminates the need to estimate σs in the low-resolution.

Finally, the region of silence is estimated as the sources cor-
responding to the k̂ smallest values in g?(λ ?, k̂). The 3D co-
ordinates of the center-of-mass (COM) of the estimated con-
tiguous region of silence in the low-resolution grid, i.e., flow

COM ,
is used as an initial guess for the silence localization in the
high-resolution grid, as explained in the next step.

Iterative algorithm based on a high-resolution grid and
correlated sources: In this step, we use a high-resolution
source grid, where the sources are not uncorrelated anymore.
We try to estimate the source covariance matrix Cs based on
the spatial exponential decay assumption in (9). In each it-
eration, based on the estimated source covariance matrix, the
region of silence is localized using a CSpeC framework.

(i) Initialization: In this step, we initialize the source vari-
ance σ2

s , the exponential decay coefficient in the source co-
variance matrix γ , and the set of indices of silent sources S
as follows:

γ
(0) = 1, σ

2(0)
s = 1,

S (0) = {i|‖fi− flow
COM‖2

2 ≤ ‖f j− flow
COM‖2

2,

for all j = 1,2, · · · p}.
(28)

where S (0) is simply the index of nearest source in the high-
resolution grid to the COM of the localized region of silence
in the low-resolution grid, i.e., flow

COM .
For r = 1,2, · · ·R, we repeat the following steps until either

the maximum number of iterations (R) is reached, or COM of
the estimated region of silence fhigh(r)

COM has converged, where

fhigh(0)
COM is the location of the source with index S (0) in the

high-resolution grid. The convergence criterion is defined as
below:

‖fhigh( j)

i,COM − fhigh( j−1)

i,COM ‖2 ≤ δ , for j ∈ {r−1,r}, r ≥ 2. (29)

where δ is a convergence parameter for COM displacement
through iterations, and fhigh

COM ∈ R3×1.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.11.334987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334987
http://creativecommons.org/licenses/by-nc/4.0/


13

(ii) Estimation of σ2
s and γ:

In this step, we estimate the source variance σ2
s , and the

exponential decay coefficient of source covariance matrix γ ,
based on their values in the previous iteration and the indices
of silent sources in S (r−1). We define C f ull

s as the source co-
variance matrix when there are no silent sources in the brain,
and use it to measure the effect of region of silence on the
power of each electrode. The source covariance matrix in the
previous iteration (r−1) is calculated as follows:

C(r−1)
s =

{
[csi j ]|csi j = σ

2(r−1)

s e−γ(r−1)‖fi−f j‖2 ,

for all i, j /∈S (r−1), and csi j = 0, if i or j ∈S (r−1)
}
,

(30)

and C f ull
s is given by:

C f ull(r−1)

s := {[csi j ]|csi j = σ
2(r−1)

s e−γ(r−1)‖fi−f j‖2 ,

for all i, j = 1,2, · · · p},
(31)

where there is no zero row and/or column, i.e., there is no
silence. To be able to estimate σ2

s and γ based on the differ-
entially recorded signals in Y, we need to find the electrodes
which are the least affected by the region of silence. Based
on the assumption (v) in Section IV A, the region of silence is
much smaller than the non-silent brain region and some elec-
trodes can be found on scalp which are not significantly af-
fected by the region of silence. We find these electrodes by
calculating a power-ratio for each electrode, i.e., the power of
electrode when there is a silent region, divided by the power
of electrode when there is not any region of silent in the brain,
as follows:

h(r) = {[hi]|hi =
(ÃC(r−1)

s Ã
T
)ii

(ÃC f ull(r−1)
s Ã

T
)ii

,

for all i = 1,2, · · ·n−1},

(32)

where h is a vector with values between 0 (all sources
silent) and 1 (no silent source). Using this power ratio, we
select the electrodes as follows:

S
(r)

elec = {i|indices of the φ maximum values in h(r)}, (33)

where Selec is the indices of the top φ electrodes which
have the least power reduction due to the silent sources in S .
Based on the differential signals of the selected φ electrodes
in (33), γ(r) and σ

(r)
s are estimated as the least-square solu-

tions in the following equation:

(γ(r),σ
(r)
s ) = argmin

γ,σs
∑

i∈S (r)
elec

∥∥∥∥(ÃC f ull
s (γ,σs)Ã

T
)ii

+ σ̂
2
zi
−V̂ar(yit)

∥∥∥∥2

2
.

(34)

(iii) Localization of silent sources in the high-resolution
grid:

Based on the correlatedness assumption of sources in the
high-resolution grid, we modify the source contribution mea-
sure definition (from equation (17)) as follows:

β
high(r)
q :=

Var(µqt)− ãT
q Czãq

ãT
q (ÃC f ull

s Ã
T
)ãq

≈
V̂ar(µqt)− ãT

q Ĉzãq

ãT
q (ÃC f ull(r)

s Ã
T
)ãq

, (35)

where β
high(r)
q takes values between 0 (all sources silent),

and 1 (no silent source in the brain). The only difference be-

tween β
high(r)
q in the high-resolution grid and βq in the low-

resolution grid is in their denominators, which are essen-
tially the variance terms in the absence of any silent source
(Ṽar

max
(µqt) in (15)). In βq, the denominator is divided by

the source variance σ2
s , to be able to calculate βq without es-

timation of σ2
s . However, in the high-resolution grid, the de-

nominator of β
high(r)
q is simply Ṽar

max
(µqt), which is calcu-

lated under the source correlatedness assumption and using
the estimated C f ull(r)

s . Using the definition of source contribu-

tion measure β
high(r)
q in the high-resolution grid, at iteration r,

the contiguous region of silence is localized through a CSpeC
framework, similar to the one defined in (18). However, we
use the estimated source covariance matrix in each iteration to
introduce a new set of constraints on the powers of the elec-
trodes, which are less affected by the region of silence, i.e., the
electrodes in S

(r)
elec, as defined in (33). Based on these power

constraints, we obtain a convex optimization framework to lo-
calize the region of silence in the high-resolution brain model
as follows:

g?(r)(λ ,k,ζζζ ) =

argmin
g

βββ
high(r)

T

(1−g)+λ (1−g)T L(1−g),

s.t. gi ∈ [0,1], for all i ∈ {1,2, · · · p}
‖g‖1 ≤ p− k,

(1T (ĀiC f ull(r)
s ĀT

i )g+ σ̂
2
zi
−V̂ar(yi))

2 ≤ ζi,

for all i ∈S
(r)

elec.

(36)

where βββ
high(r)

T

= [β high(r)
1 , · · · ,β high(r)

p ], g =

[g1, · · · ,gp]
T ,ζζζ = [ζ1, · · · ,ζφ ]

T , λ and ζi are regulariza-
tion parameters, and Āi is a diagonal matrix, with the
elements of ith row of Ã on its main diagonal, defined as
below:

Āi = {āqv|āqv = ãiq for all q = v, āqv = 0 for all q 6= v}.
(37)

In (36), ζi is chosen to be equal to the square of the residual
error in (34), for each i ∈Selec, i.e.,

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.11.334987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334987
http://creativecommons.org/licenses/by-nc/4.0/


14

ζi = ((ÃC f ull(r)
s (γ(r),σ

(r)
s )Ã

T
)ii + σ̂

2
zi
−V̂ar(yi))

2. (38)

In each iteration r, values of λ and k are found in a similar
way as they are found in the low-resolution grid (see equa-
tions (25) and (26)). However to estimate k based on (26),
in the high-resolution grid we use Cs(k) = C(r)

s , as is defined
in (30). After each iteration, the set of silent indices in S (r)

is updated with the indices of the k̂ smallest values in the so-
lution of (36), i.e., g?(r)(λ ?, k̂,ζζζ ).

After convergence, i.e., when the convergence criterion is
met (see (29)), the final estimate of region of silence is the set
of source indices in S (rfinal).

Choosing the best reference electrode: the final solution
S (rfinal) may change as we choose different EEG reference
electrodes, which changes the matrix of differential signals of
scalp Y and the forward matrix Ã in (7). The question is how
to choose a reference electrode which gives us the best esti-
mation of region of silence? To address this question, we use
an approach similar to the estimation of k̂, i.e., we choose the
reference electrode which gives us the minimum scalp power
mismatch. We define the power mismatch ∆Pow as follows:

∆Pow =
n−1

∑
i=1

∥∥∥∥ (ÃCs(k̂)Ã
T
)ii

max
i

(ÃCs(k̂)Ã
T
)ii

−
V̂ar(yi)− σ̂2

zi

max
i

(V̂ar(yi)− σ̂2
zi
)

∥∥∥∥2

2
,

(39)
where both Ã and yi are calculated based on a specific ref-

erence electrode. ∆Pow is the total squared error between the
normalized powers of scalp differential signals, resulting from
the region of silence with size k̂, and the estimated scalp pow-
ers based on the recorded data with a specific reference.

C. SilenceMap with baseline recordings

If we consider a hemispheric baseline or, more generally,
have a baseline recording, the 2-step SilenceMap algorithm
remains largely the same. In an ideal case where we have a
baseline recording of scalp potentials, we simply compare the
contribution of each source in the recorded scalp signals when
there is a region of silence in the brain, with its contribution
to the baseline recording. This results in a minor modifica-
tion of the SilenceMap algorithm. The definitions of source
contribution measures in (17) and (35), need to be changed as
follows:

β̃q = min
{

βq

β base
q

,1
}
, for all q ∈ {1,2, · · · , p}

(40)

where βq is defined in (17) for the low-resolution grid, and
in (35) for the high-resolution grid, and β base

q is the corre-
sponding contribution measure of source q in the baseline

recording. However, if the baseline recording is not avail-
able for the silence localization (as it was not available in our
dataset used in the Results), based on the assumption of hemi-
spheric symmetry in Section IV A (see assumption (viii)), one
can use a hemispheric baseline. The source contribution mea-
sure is defined in a relative way, i.e., each source’s contribu-
tion measure is calculated in comparison with the correspond-
ing source in the other hemisphere, as follows:

β̃q =

min
{

βq
βqm

,1
}
, for all q ∈S LH ∪S RH

1, for all q /∈S LH ∪S RH
(41)

where S LH is the set of indices of sources in the left hemi-
sphere and S RH is the set of indices of sources in the right
hemisphere, and source indices which are not in S LH ∪S RH ,
are located across the longitudinal fissure, which is defined as
a strip of sources on the cortex, with a specific width zgap.
The index qm in (41) is the index of the “mirror” source for
source q, i.e., source q’s corresponding source in the other
hemisphere.

Equation (41) reveals the advantage of having a baseline
for the silence localization task, i.e., we can relax the identical
distribution assumption of sources in the source contribution
measure, which makes β̃ robust against the violation of the
identical distribution assumption of sources in the real world.
The rest of the algorithm remains the same, as is explained in
Section IV B.

To find the solution of the CSpeC optimization in (18)
and (36), CVX, a MATLAB package for specifying and solv-
ing convex programs [42, 43], is used. In addition, MAT-
LAB nonlinear least-square solver is used to find the solution
of (34).

D. Modification of source localization algorithms to compare
with the SilenceMap algorithm

To compare the performance of our SilenceMap algo-
rithm with the state-of-the-art source localization algorithms,
namely, MNE, MUSIC, and sLORETA, we modified them for
the silence localization task. These modifications largely con-
sist of adding additional steps to select the silent sources based
on the estimated source localization in each algorithm. These
modifications only make for a fairer analysis and answer the
question of whether small modifications on existing source
localization algorithms can localize silences. The details of
these modifications are explained in this part.

Modified minimum norm estimation (MNE): Minimum
norm estimation (MNE) is one of the most commonly used
source localization algorithms [14, 19]. In this algorithm, the
brain source activities are estimated based on a minimal power
assumption, and through the following regularization method:

Ŝ = argmin
S
‖Y− ÃS‖2

F +λ‖S‖2
F , (42)

where Ŝ is the estimated matrix of source signals, Ã = MA,
Y is the matrix of scalp differential signals defined in (6), λ is
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the regularization parameter, and ‖.‖F denotes the Frobenius
norm of a matrix. Equation (42) has the following closed form
solution:

Ŝ = Ã
T
(ÃÃ

T
+λ I(n−1)×(n−1))

−1Y, (43)

where I is the identity matrix, and λ is obtained using a grid-
search and based on the L− curve method [44]. The MNE
algorithm is kept unchanged until this point. Ŝ, the estimated
localization across time, is used to localize silences. For a fair
comparison, we do so by using the two step approach used in
SilenceMap, i.e., we start from a low-resolution source grid
and localize the region of silence, which is used as an initial
guess for source localization in a high-resolution grid.

Low-resolution grid: In a low-resolution source grid, we
localize the region of silence through the following steps: (i)
We initialize the number of silent sources as k̂ = k0; (ii) The

squares of the elements in Ŝ (ŝ2
i j, ∀ i = {1,2, · · · p}, ∀ j =

{1,2, · · · t}) are calculated for source power comparison; (iii)
For each time point j, sort the estimated source powers ŝ2

i j

in the ascending order and choose the first k̂ corresponding
sources, which are the sources with the minimum power at

time j. We name the set of indices of these sources as S j
MNE ;

(iv) Based on the repetition of sources in S j
MNE , we calcu-

late a histogram (histMNE ). Then this histogram is normalized
and sorted in the descending order (the source with the largest
population of 1 has the first index). The normalized popula-
tion of source q is shown as β̃ MNE

q ; (v) In this step, we find an

estimate of the size of region of silence (k̂). This is done by
finding the knee point in the curve of β̃ MNE

q vs. q (see Fig. 6a).
In a curve, the “knee” point is defined as the point where the
curve has maximum curvature, i.e., the point where the curve
is significantly different from a straight line [45–47]. To find
the knee point in the curve of β̃ MNE

q vs. q, we define a measure

of distance to the origin (q = 0, β̃ MNE
q = 0) as follows:

dorigin
q = (β̃ MNE

q )2 +

(
q
p

)2

, (44)

where dorigin
q is the defined distance of point (q= 0, β̃ MNE

q =
0) on the curve to the origin, and p is the total number of
sources in the descritized brain model. Fig. 6b shows the cal-

culated dorigin
q for the curve in Fig. 6a. We choose the closest

point to the origin as the knee point (q = k̂), where the index
of this knee point k̂ is an estimation for k (see Fig. 6b).

(vi) In this step, we exploit the knowledge of contiguity
of the region of silence and estimate the region based on the
estimated number of silent sources k̂. First we choose the
2k̂ sources with the minimum power over time, i.e., the 2k̂
sources which have maximum β̃ MNE

q . Then we calculate the

COM of the 2k̂ selected sources in the low-resolution grid
(flow

MNE ), and choose the k̂-nearest neighbors of flow
MNE as the

estimated region of silence in the low-resolution grid.
High-resolution grid: We use the COM of the estimated

region of silence in the low-resolution grid (flow
MNE ), as an initial

guess and try to improve the localization performance in a

FIG. 6. Estimation of the size of the region of silence (k) in the mod-
ified MNE algorithm based on the knee point detection: a) β̃ MNE

q is
the normalized and sorted histogram of sources in a descending or-
der, which captures the frequency of a source to being among the k̂
sources with the minimum power over time. In this curve, a “Knee”
point is defined as the point with maximum curvature, i.e., the point
where the curve is significantly different from a straight line; b) Dis-
tances of points on the curve in (a) from the origin (q= 0, β̃ MNE

q = 0).

The index of the point with the minimum distance from the origin (k̂)
is chosen as an estimation of k.

high-resolution source grid. The steps are mainly the same
as the steps used in the low-resolution grid, except in the last
step (vi), where we use the COM of the estimated region of
silence in the low-resolution grid, and choose the k̂-nearest
neighbors of flow

MNE as the estimated region of silence in the

high-resolution grid, where k̂ is the estimated size of region
of silence in the high-resolution grid based on the knee point
detection method in step (v).

Modified multiple signal classification (MUSIC): Mul-
tiple signal classification (MUSIC) is a source localiza-
tion algorithm, which is based on a sequential search
of sources, rather than finding all sources at the same
time [17, 18]. In MUSIC, the singular value decomposi-
tion (SVD) of the matrix of scalp recording signals Y(n−1)×T

(= U(n−1)×(n−1)ΣΣΣ(n−1)×T VT
T×T ) is used to reconstruct an or-

thogonal projection to the noise space of Y to quantify the
contribution of each source in the recorded signal Y [14]. The
MUSIC algorithm follows these steps for source localization:
(i) We select the left singular vectors (columns of U) which
correspond to the large singular values up to ρ% of the total

energy of the matrix (∑(n−1)
i=1 Σ2

ii), where ρ is a constant. These
selected singular vectors (Us) form a basis for the observation
data; (ii) We construct an orthogonal projection matrix to the
noise space of Y as P⊥ = I(n−1)×(n−1) −UsUT

s . Using this
matrix the MUSIC cost function is written as [14]:

β MUSIC
q =

‖P⊥ãq‖2
2

‖ãq‖2
2

, (45)

where ãq is the qth columns in Ã, and β MUSIC
q is a mea-

sure of contribution of source q in the noise space of the
recorded scalp potentials in Y. The MUSIC algorithm is kept
unchanged until this point. The next steps of the modified
MUSIC algorithm, in both low-resolution and high-resolution
grids closely follow the last two steps in the Modified MNE
algorithm, and we use the measure of source contribution in
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MUSIC (β MUSIC
q ) instead of β̃ MNE

q , where the source with
no contribution in the differential measured signal Y has
β MUSIC

q = 1. Therefore, the main difference between the MU-
SIC algorithm and the modified MUSIC, is that in the MUSIC,
the measure of contribution of source β MUSIC

q is used to fined
the active sources, i.e., the sources with small β MUSIC

q val-
ues, while for the silence localization the sources with large
β MUSIC

q values are selected based on the contiguity assump-
tion of the region of silence and using the knee point thresh-
olding mechanism (step (v) in the modified MNE).

Modified standardized low resolution brain electromag-
netic tomography (sLORETA): We modify the source local-
ization sLORETA algorithm, introduced in [21], in the same
way that we modified the MNE algorithms for the silence lo-
calization. However, the minimum-norm solution requires an
additional step of normalization by the estimated source vari-
ances. Since we assume that the orientations of dipoles in the
brain are known, i.e., they are normal to the surface of the
brain, following equation (22) in [21], the estimated power of
source activities in the brain based on the sLORETA algorithm
is given by the following equation:

ŝ2
it =

s̃2
it

(CsLORETA
s )ii

, for all i = {1,2, · · · p},

for all t = {1,2, · · ·T}.
(46)

where s̃it is the ith element of the tth column in the
minimum-norm solution S̃, which is given by equation (43),
and CsLORETA

s is defined as [21]:

CsLORETA
s = Ã

T
(ÃÃ

T
+λ I(n−1)×(n−1))

−1Ã, (47)

Ŝ in (46) is used for the silence localization task, following
the steps mentioned for the modified MNE algorithm. The
minimum-norm solution in the sLORETA algorithm, as is de-
fined in [21], is based on an average reference for the scalp
potentials. However, we rewrite the minimum-norm solution
as S̃ in (43) based on a specific reference electrode, rather
than the average reference electrode. The parameters used in
the implementation of these modified source localization al-
gorithms are available in the Appendix X D.

E. Data analysis

Prepossessing steps: We preprocess the recorded EEG
signals using EEGLAB [48] toolbox in MATLAB. First,
we bandpass filter the EEG data in the frequency range of
[1,100] Hz using a Hamming windowed sinc finite impulse
response (FIR) filter. Then, we visually inspect the noisy
channels, remove and spatially interpolate them. In the next
step, we calculate two differential channels based on the pairs
of eye electrodes, one for vertical and one for the horizon-
tal eye movements, and along with the heart channel and all
scalp electrodes, an independent component analysis (ICA)
is applied to remove the eye artifacts and heart beats from the

EEG signals. After removing the artifact components from the
EEG signals, we examine the channels one more time using
the channel statistics, where a normal distribution is fitted to
the data of each channel and based on the standard deviation,
skewness, and kurtosis, channels with significantly different
statistics are removed and interpolated. Finally, the signals
are epoched into 2-second intervals and epochs with abnor-
mal trends, values, and/or abnormal power spectral densities
are removed, using the EEGLAB toolbox.

Ground truth regions and MRI scans. The ground truth
regions of silence are extracted based on the MRI scans of
patients (see Fig. 2) following these steps: (i) 3D models of
descritized cortex are extracted by processing the MRI scans
using the FreeSurfer software [49–55], and removing the lay-
ers of the head, namely, CSF, skull, and scalp using the MNE
open-source software [56], (ii) the sources/nodes of the intact
hemisphere, i.e., the hemisphere without any missing part, are
mirrored along the longitudinal fissure, (iii) the smallest dis-
tance of the mirrored sources are calculated from the sources
in the hemisphere with the resected part, (iv) N sources with
the largest distance are selected as the region of silence, where
N is determined by visual comparison of the extracted ground
truth in the 3D model, and its corresponding MRI scan.

Displayed figures in this paper are generated using MAT-
LAB, Microsoft PowerPoint, and FreeSurfer software.

F. Simulated Dataset

We simulate EEG signals at 128 electrodes, located at the
10-5 standard system of scalp locations [30], as follows: (i)
First, we use a high-density source grid, extracted by dis-
cretizing a real brain model, and randomly choose a node
along with its k nearest neighbors, as the region of silence with
size k, (ii) then we simulate the source signals using a multi-
variate gaussian random process with a covariance matrix Cs
defined in (9), where S is the set of indices of silent sources
specified in the first step, the source variance is σs = 1 mV ,
and the exponential decay coefficient is γ = 0.12 (mm)−2. (iii)
the measurement noise in (7), i.e., Ẽ, is simulated using a mul-
tivariate gaussian random process with a covariance matrix Cz
defined in (8), where σzi is chosen randomly from a uniform
distribution in the range of [0,σmax

z ], and σmax
z is chosen so

that the baseline EEG signals, i.e., without any region of si-
lence, have a specific average SNR, defined as below [57–59]:

SNRavg = 10log10

(
1

n−1

n−1

∑
i=1

(ÃC f ull
s (γ,σs)Ã

T
)ii

σmax
z

)
(48)

(iv) In the next step, the forward matrix A in (5) is cal-
culated based on a real head model, which is obtained from
MRI scan of patient OT in the real database (Fig. 2). In this
paper, we use the FreeSurfer software [49–55] to process the
MRI images, and use MNE open-source software [56] to ex-
tract different layers of the head, i.e., brain, cerebrospinal fluid
(CSF), skull, and scalp. Then having these layers of head,
and using the boundary element method (BEM), the forward
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matrix A is computed, where a free MATLAB toolbox, Field-
Trip [60], is used. In the BEM model, volume conductivity
ratios of [1,0.067,5,1] are used for scalp, skull [61], CSF, and
brain respectively. We take the intact hemisphere (the one
without any missing parts) and mirror it across the longitudi-
nal fissure to form a symmetric brain model, which is used
as the source grid in our algorithm. In Section III we discuss
and quantify the localization error we introduce by using this
symmetric brain model.

V. DATA AVAILABILITY

The anonymized raw EEG dataset and MRI scans (shown
in Fig.2) of the participants in this research are made available
online on KiltHub, Carnegie Mellon University’s online data
repository (DOI: 10.1184/R1/12402416).

VI. CODE AVAILABILITY

The SilenceMap algorithm was developed in MATLAB,
using standard toolboxes, and the CVX MATLAB pack-
age [42, 43]. All MATLAB code is made available online
on GitHub (DOI: 10.5281/zenodo.3892185).

VII. COMPETING INTERESTS

The authors have applied for a provisional patent on the
technology, assigned to Carnegie Mellon University. P.G. and
M.B. are co-founders of a medical device company that in-
tends to license the resulting patent from Carnegie Mellon
University.
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X. SUPPLEMENTARY MATERIALS

A. Estimation of sample variance of µqt

To estimate Var(µqt) in (13), average of the sample variances of
µqt cannot be used since based on the WSS assumptions in Sec-
tion IV A, the elements of S and Ẽ, and consequently µqt are cor-
related over time. However, since µqt in (12) is a linear combination
of sit and ãT

q ε̃εεt , which are both WSS and are not correlated with each
other, µqt is also WSS and its variance can be estimated numerically
using the time samples, as follows [62]:

V̂ar(µqt) = E[µ2
qt ] = Rµqµq(0) =

1
2π

∫ +∞

−∞

Ûµqµq( jω)dω, , (49)

where Ûµqµq is an estimation of power spectral density (PSD) of
correlation coefficient µqt . We have used Welch’s method to obtain
this estimate [63–65], which is implemented in Matlab. A window
size of 500ms, with 250ms overlap used in estimation of the PSD.

B. Estimation of noise covariance matrix Cz

As mentioned in Section I, the main difference between source
localization and silence localization is in the noise definition. Most
of the source localization algorithms group together the measurement
noise with the background brain activity and provide methods for
estimation of noise [12, 13]. However, the background brain activity
is crucial for the silence localization to distinguish between normal
brain activity and abnormal silence. Therefore we need to revise the
noise definition accordingly. As mentioned in Section IV A, noise is
white and bandpass filtered in a specific frequency interval of [ fL =
1, fH = 100]Hz (during the preprocessing step, see Section IV E). fL
and fH are the lower and the upper cutoff frequencies of the filter
we have used in the preprocessing step to bandpass filter the scalp
EEG signals. In addition, we assume that the noise components are
spatially uncorrelated, and the noise covariance matrix is a diagonal
matrix, as is defined in (8). Therefore, under stationary assumption
for ε̃εεt , we can estimate Ĉz as follows:

(Ĉz)ii = σ̂
2
zi
= E[ε̃2

it ] = Rε̃i ε̃i
(0) =

1
2π

∫
passband

Uiwhite( jω)dω,

for i = {1,2, · · ·n−1},
(50)

where Uiwhite( jω) is the constant power spectral density of the
white noise at the scalp electrode i in the frequency bands of [ fL, fH ]
and [− fH ,− fL], and zero outside these frequency intervals, and ε̃it

is the element of ẼEE at tth time point and ith electrode (see equa-
tion (7)). This constant power spectral density can be estimated from

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 11, 2020. ; https://doi.org/10.1101/2020.10.11.334987doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.11.334987
http://creativecommons.org/licenses/by-nc/4.0/


20

the power spectral density of the recorded signal yi,t in the high fre-
quencies (≥ fH −Δ f ), where we assume that EEG does not have any
frequency component and the noise power dominates:

Ûiwhite( jω) =
1

2π(Δ f )

∫ 2π( fH )

2π( fH−Δ f )
Uyiyi( jω)dω, (51)

where Δ f is the frequency bandwidth in which the white noise is
assumed to have the dominant energy (see Fig. 7).
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FIG. 7. PSD of differential signals in a healthy subject (DH). The
signals are bandpassed in the frequency interval of [ fL = 1, fH =
100]Hz. The highlighted region is the frequency interval, during
which the approximately white noise is assumed to have the dom-
inant energy. On average, the PSD of EEG signals drops only by

ΔPSD = 0.0148(
(μV )2

Hz ) from 90Hz to 100Hz.

where Uyiyi( jω) can be estimated from the differential signal

in the ith row of Y (see Section X C). Modeling and estimation
of EEG noise based on the PSD of the recorded signals is com-
monly used in EEG source localization studies [66–68], which we
have modified for the silence localization task. Fig. 7 shows the
PSD of the differential signals in a healthy subject (DH), which are
bandpassed in the frequency interval of [ fL = 1, fH = 100]Hz dur-
ing the preprocessing step. The frequency interval, during which
white noise is assumed to have the dominant energy is highlighted
in this figure (Δ f = 10Hz). This assumption is approximately true,
i.e., averaged over i = 1,2, · · ·n − 1, the PSD of yi drops only by

ΔPSD = 0.0148(
(μV )2

Hz ) from fH −Δ f = 90Hz to fH = 100Hz (see
Fig. 7).

C. Estimation of the variance of differential signals in Y

Similar to the estimation of the noise variance in Section X B, we
estimate V̂ar(yi) based on its PSD. An average of the sample vari-
ances of yi cannot be used since based on the WSS assumptions in

Section IV A, the elements of S and Ẽ, and consequently yi are cor-
related over time. However, since yi in (11) is a linear combination
of sit and ε̃εεt , which are both WSS and are not correlated with each
other, yi is also WSS and its variance can be estimated numerically
using the time samples, as follows [62]:

V̂ar(yi) = E[y2
i ] = Ryiyi(0) =

1

2π

∫ +∞

−∞
Ûyiyi( jω)dω, , (52)

where Ûyiyi is an estimation of PSD of the differential signal yi.
We have used Welch’s method to obtain this estimation [63–65].

D. The list of all parameters and their values used in the
SilenceMap algorithm and modified source localization

algorithms

The values of all parameters we have used to implement and test
the SilenceMap algorithm, with and without baseline, as well as the
modified source localization algorithms are summarized in Table III.
All code and datasets are freely available online in [69, 70].

TABLE III. Parameters used for implementation of the SilenceMap,
modified MNE, MUSIC, and sLORETA algorithm.

Name Value

δ (Convergence parameter in
SilenceMap)

1cm

k̂ search grid (SilenceMap) [2,7,12, · · · ,100]
λ � search grid (SilenceMap without
baseline)

[1,3.2,10, · · · ,100]×∑p
q=1 βq

λ � search grid (SilenceMap with
baseline)

[1,3.2,10, · · · ,100]×∑p
q=1 β̃q

R (Maximum number of iterations
in SilenceMap)

100

φ in (33) (SilenceMap) 90
zgap (SilenceMap with baseline) 1cm
λ search grid (modified sLORETA
and MNE)

[0.01,0.012,0.016, · · · ,100]

k0 (modified MNE and sLORETA) � p
10 �

ρ (modified MUSIC) 99
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