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Neural silences can be localized rapidly using
noninvasive scalp EEG
Alireza Chamanzar 1,2✉, Marlene Behrmann2,3 & Pulkit Grover 1,2✉

A rapid and cost-effective noninvasive tool to detect and characterize neural silences can be

of important benefit in diagnosing and treating many disorders. We propose an algorithm,

SilenceMap, for uncovering the absence of electrophysiological signals, or neural silences,

using noninvasive scalp electroencephalography (EEG) signals. By accounting for the con-

tributions of different sources to the power of the recorded signals, and using a hemispheric

baseline approach and a convex spectral clustering framework, SilenceMap permits rapid

detection and localization of regions of silence in the brain using a relatively small amount of

EEG data. SilenceMap substantially outperformed existing source localization algorithms in

estimating the center-of-mass of the silence for three pediatric cortical resection patients,

using fewer than 3minutes of EEG recordings (13, 2, and 11mm vs. 25, 62, and 53 mm),

as well for 100 different simulated regions of silence based on a real human head model

(12 ± 0.7 mm vs. 54 ± 2.2 mm). SilenceMap paves the way towards accessible early diagnosis

and continuous monitoring of altered physiological properties of human cortical function.
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An ongoing challenge confronting basic scientists, as well as
those at the translational interface, is the ability to access a
rapid and cost-effective tool to uncover mechanistic

details of neural function and dysfunction. For example, identi-
fying the presence of stroke, establishing altered neural dynamics
in traumatic brain damage, and monitoring changes in neural
profile in athletes on the sidelines all pose major hurdles. In this
paper, using scalp electroencephalography (EEG) signals with
relatively little data, we provide theoretical and empirical support
for a method for the noninvasive detection of neural silences. We
adopt the term silences or regions of silence to refer to the areas
of brain tissue with little or no neural activity. These regions
reflect ischemic, necrotic, or lesional tissue, resected tissue (e.g.,
after epilepsy surgery), or tumors1,2. Dynamic regions of silence
also arise in cortical spreading depolarizations (CSDs), which are
slowly spreading waves of silences in the cerebral cortex3–5.

There has been growing utilization of EEG for diagnosis and
monitoring of neurological disorders such as stroke6, and con-
cussion7. Common imaging methods for detecting brain damage,
e.g., magnetic resonance imaging (MRI)8,9, or computed tomo-
graphy10, are not portable, are not designed for continuous (or
frequent) monitoring, are difficult to use in many emergency
situations, and may not even be available at medical facilities in
many countries. However, many medical scenarios can benefit
from portable, frequent/continuous monitoring of neural silences,
e.g., detecting changes in tumor or lesion size/location and CSD
propagation. Noninvasive scalp EEG is, however, widely accessible
in emergency situations and can even be deployed in the field with
only a few limitations. It is easy and fast to setup, portable, and of
lower cost compared with other imaging modalities. Additionally,
unlike MRI, EEG can be recorded from patients with implanted
metallic objects in their body, e.g., pacemaker11.

Source vs. silence localization. An ongoing challenges of EEG is
source localization, the process by which the location of the
underlying neural activity is determined from the scalp EEG
recordings. The challenge arises primarily from three issues: (i) the
underdetermined nature of the problem (few sensors, many pos-
sible locations of sources); (ii) the spatial low-pass filtering effect of
the distance and the layers separating the brain and the scalp; and
(iii) noise, including exogenous noise, background brain activity, as
well as artifacts, e.g., heart beats, eye movements, and jaw
clenching12,13. In source localization paradigms applied to neu-
roscience data14–16, e.g., in event-related potential paradigms17,18,
scalp EEG signals are aggregated over event-related trials to average
out background brain activity and noise, permitting the extraction
of the signal activity that is consistent across trials. The localization
of a region of silence poses additional challenges, of which the most
important is how the background brain activity is treated: while it
is usually grouped with noise in source localization (e.g., authors
in16 state: “EEG data are always contaminated by noise, e.g., exo-
genous noise and background brain activity”), estimating where
background activity is present is of direct interest in silence loca-
lization where the goal is to separate normal brain activity
(including background activity) from abnormal silences. Because
source localization ignores this distinction, as we demonstrate in
our experimental results below, classical source localization tech-
niques, e.g., multiple signal classification (MUSIC)19,20, minimum
norm estimation (MNE)15,21–23, and standardized low-resolution
brain electromagnetic tomography (sLORETA)24, even after
appropriate modifications, fail to localize silences in the brain
(“Methods” details our modifications on these algorithms).

To avoid averaging out the background activity, we estimate
the contribution of each source to the recorded EEG across all
electrodes. This contribution is measured in an average power

sense, instead of the mean, thereby retaining the contributions of
the background brain activity. Our silence localization algorithm,
referred to as SilenceMap, estimates these contributions, and then
uses tools that quantify our assumptions on the region of silence
(contiguity, small size of the region of silence, and being located
in only one hemisphere) to localize it. Because of this, another
difference arises: silence localization can use a larger number of
time points (than typical source localization). For example, 160 s
of data with the sampling frequency of 512 Hz provides
SilenceMap with around 81,920 data points to be used, boosting
the signal-to-noise ratio (SNR) over source localization techni-
ques, which typically rely on only a few tens of event-related trials
to average over and extract the source activity that is consistent
across trials.

Further, we confront two additional difficulties: lack of
statistical models of background brain activity, and the choice
of the reference electrode. The first is dealt with either by
including baseline recordings (in absence of silence; which we did
not have for our experimental results) or utilizing a hemispheric
baseline, i.e., an approximate equality in power measured at
electrodes placed symmetrically with respect to the longitudinal
fissure (see Fig. 1b). While the hemispheric baseline used here
provides fairly accurate reconstructions, we note that this baseline
is only an approximation, and an actual baseline is expected to
further improve the accuracy. The second difficulty is related: to
retain this approximate hemispheric symmetry in power, it is best
to utilize the reference electrode on top of the longitudinal fissure
(see Fig. 1a). Using these advances, we propose an iterative
algorithm to localize the region of silence in the brain using a
relatively small amount of data. In simulations and real data
analysis, SilenceMap outperformed existing algorithms in locali-
zation accuracy for localizing silences in three participants with
surgical resections using only 160 s of EEG signals across 128
electrodes (see “Results” for more details on finding the minimum
amount of EEG data for localizing silences using SilenceMap).

Results
SilenceMap localizes the region of silence in two steps: (1) The
first step finds a contiguous region of silence in a low-resolution
source grid with the assumption that, at this resolution, the
sources are uncorrelated across space. In this low-resolution grid,
given that the sources are sufficiently separated, a reasonable
approximation is to assume they have independent activity (see
“Methods” for more details). We defined a measure for the
contribution of brain sources to the recorded scalp signals (β), i.e.,
the larger the β, the greater the contribution of the brain source to
the scalp potentials. However, β is not a perfect measure of the
contribution since it is defined based on an identical distribution
assumption on the non-silent sources, which does not hold in the
real world. Therefore, using β does not reveal the silent sources,
i.e., the smallest values of β (yellow regions in Fig. 1d) may not be
located at the region of silence. However, looking closely at the
values of β in the inferior surface of the brain (Fig. 1d) reveals a
large hemispheric color difference at the region of silence (right
occipitotemporal lobe). This motivated us to use a hemispheric
baseline, i.e., instead of using β, we use ~β, which is the ratio of β
values of the mirrored sources, e.g., for source pair of (AL, AR),
which are remote from the region of silence, ~β is close to 1 (red-
colored sources), while for (BL, BR), where BR is located in the
region of silence (see Fig. 1d), this ratio is close to zero (yellow-
colored sources). A contiguous region of silence is localized based
on a convex spectral clustering (CSpeC) framework25–27 in the
low-resolution grid. (2) The second step of SilenceMap adopts the
above localized region of silence as an initial guess in the high-
resolution grid. Then, through iterations, the region of silence is
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localized based on the estimated source covariance matrix Cs,
until the center-of-mass (COM) of the localized region of silence
converged (see “Methods” and Fig. 1e for more details). All steps
of SilenceMap, along with the intermediate results for patient UD,
are summarized in Fig. 1. We have included similar overview
figures for patients SN and OT in Supplementary Fig. 1 and
Supplementary Fig. 2, respectively.

We validated the performance of SilenceMap through rigorous
experiments, based on simulated and real datasets. We tested the
robustness of SilenceMap with and without baseline (see
“Methods” for more details), in different scenarios, e.g., different
sizes and locations of region of silence, different EEG reference
electrodes, and based on both visual and rest EEG datasets (see
Fig. 1a). Finally, we used a real dataset to explore the validity of
our hemispheric symmetry assumption.

Localization performance metrics. For all experiments, we used
three performance metrics for determining the accuracy of the
silence localization task: (i) center-of-mass (COM) distance
(ΔCOM), (ii) Jaccard Index (JI), and (iii) size error (Δk).

(i) COM distance is simply defined as the Euclidean distance
between the center-of-mass of the localized and actual region of
silence, i.e.,

ΔCOM ¼ 1
jSj
X
i2S

f i �
1

jSGT j
X
i2SGT

f i

�����
�����

�����
�����
2

; ð1Þ

where fi is the three-dimensional (3D) location of source i in the
brain, S and SGT are the set of source indices of the localized
region of silence and its ground truth, respectively. ΔCOM

Fig. 1 SilenceMap with baseline algorithm overview. a The EEG recording protocol and the locations of scalp electrodes. One of 10 reference electrodes
(shown in red) is chosen along the longitudinal fissure for rereferencing against. b Average power of scalp potentials for different choices of reference
electrodes. c Symmetric brain model of a patient (UD) with a right occipitotemporal lobectomy. d Steps of SilenceMap in a low-resolution source grid.
A measure of the contribution of brain sources in the recorded scalp signals (~β) is calculated relative to a hemispheric baseline. In the brain colormap,
yellow indicates no contribution. A contiguous region of silence is localized based on a convex spectral clustering (CSpeC) framework in the low-resolution
grid. e Steps of SilenceMap in a high-resolution source grid. The source covariance matrix (Cs) is estimated through an iterative method, and the region of
silence is localized using the CSpeC framework. f Choosing the best reference electrode to reference against (Cz in this example), which results in
minimum scalp power mismatch (ΔPow). The localized region of silence for this patient (UD) has 13 mm COM distance (ΔCOM) from the original region,
with more than 38% overlap (JI= 0.384), and it is 32% smaller (Δk= 0.32).
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basically measures how far the localized region of silence is from
the ground truth.

(ii) JI, first defined by Jaccard in ref. 28, is a widely used
performance measure for the 2D image segmentation tasks29. In
the silence localization task, since we are segmenting the region of
silence in 3D space, we can calculate the JI based on the nodes/
sources in the discretized brain as follows:

JI ¼ jS \ SGT j
jS ∪SGT j ; ð2Þ

which measures how well the localized region of silence overlaps
with the ground truth region in the brain, and it assumes values
between 0 (no overlap) and 1 (perfect overlap). If there is minimal
overlap and/or there is a large mismatch between the size of these
two regions, JI has a small value.

(iii) Size error measures the error in estimation of the size of
the region of silence, and is simply defined as follows:

Δk ¼ jk� k̂j
k

; ð3Þ

where k̂ is the estimated number of silent sources in the localized
region of silence.

Simulations. We simulated the EEG data of regions of neural
silence, following the assumptions we made in “Methods: Pro-
blem statement”, and quantified the performance of SilenceMap.

Simulation results. We simulated scalp differential recordings for
100 different regions of silence, with the size of k= 50, on a high-
resolution source grid with p= 1744 sources, and at varying
locations on the cortex. The simulated regions of silence lie in
only one hemisphere (see the assumptions in “Methods: Problem
statement”), and are located no deeper than 3 cm from the surface
of scalp, which covers the entire thickness of the gray matter30–32,
while excluding deep sources located in the longitudinal fissure.
In the longitudinal fissure, the source dipoles are located deep
inside the brain, and mostly oriented tangential to the surface of
the scalp, making it difficult for EEG to record their electrical
activity13. The non-silent sources are assumed to have an iden-
tical distribution and correlation across space, and identical dis-
tribution over time. To explore the effect of different assumptions
for the time-frequency characteristics of neural sources on the
silence localization task, we considered two scenarios in the
simulations: (i) a flat power spectral density (PSD) profile for
the activities of non-silent sources, and (ii) a “Real PSD” profile,
which is extracted from an open-source electrocorticography
(ECoG) dataset used in33 and available through the open-source
library in ref. 34. The detailed steps for the simulation are avail-
able in “Methods: Simulated Dataset”. For SilenceMap, we tried
the 10 different reference electrodes located along the longitudinal
fissure, i.e., Fpz, AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz, and Iz, and
chose the one with the minimum power mismatch ΔPow defined
in Eq. (39). We reported the performance measures, i.e., ΔCOM,
JI, and Δk under the average signal-to-noise ratio (SNRavg) level
of 9 dB (see “Methods” for definition of SNRavg). For SilenceMap,
we also reported the convergence rate (CR), which is the ratio of
the number of converged cases over the total number of simu-
lated regions of silence in the simulation experiment. The results
of the simulations are summarized in Table 1, where ΔCOM, JI,
and Δk are reported in the format of mean ± standard error (SE).
Based on the results, SilenceMap outperformed (modifications
on) state-of-the-art source localization algorithms: it has 42 mm
smaller average COM distance, 41% more average overlap (JI),
and 253% smaller size error, compared to the best performing
modified source localization algorithms. In addition, SilenceMap

showed very similar performance for the flat and Real PSDs, as
revealed by examining the effect of changing the (temporal) PSD
on the spatial correlation for the simulated brain sources (detailed
discussion of this is in “Methods: Simulated dataset”). Our
simulations assume identical distribution of brain sources. Noting
that SilenceMap with baseline performs substantially better
compared to SilenceMap without baseline (see the results in
“Results: Real Data”), it appears to us that this assumption is far
from accurate. The list of all parameters and their values used in
the implementation of SilenceMap is available in Supplementary
Note A (see Supplementary Table I).

Comparison of SilenceMap with source localization algorithms.
We also compared the performance of SilenceMap under differ-
ent simulated scenarios, as well as real experiments, with state-of-
the-art source localization algorithms, modified for the silence
localization task (details of modified MNE, MUSIC, and sLOR-
ETA algorithms for silence localization are explained in “Meth-
ods”). For all modified source localization methods, we chose Cz
scalp electrode as the reference electrode but, for fair comparison
with SilenceMap, also considered the effect of the reference
electrode in the modified MNE, MUSIC, and sLORETA (see
“Methods”). Based on the simulation results in Table 1, among
the modified source localization algorithms, sLORETA shows the
minimum average COM distance of 54mm, and MUSIC shows
the maximum average overlap of 9% (JI= 0.09), and the mini-
mum average size error of 284% (Δk= 2.84). This performance is
still poor for the silence localization task, while SilenceMap shows
good performance based on the simulation results in Table 1
(ΔCOM= 12 mm, JI= 0.50, Δk= 0.31). As evident, source
localization algorithms, even after modification, perform poorly
in localizing the neural regions of silence.

Real data. We also compared the performance of SilenceMap
with the modified source localization algorithms, based on a real
dataset of patients who have undergone lobectomy surgery, and
have a clearly defined resected region in their brain.

Dataset. We recorded EEG signals using a BioSemi ActiveTwo
system (BioSemi, Amsterdam), with a sampling frequency of
512 Hz, using a 128-electrode cap with electrodes located based
on the standard 10-5 system35. In addition, we used four elec-
trodes around the eyes, specifically, a pair on the top and bottom
of the right eye to detect the vertical eye movements and blinks,
and a pair at the outer canthi of each eye to monitor horizontal
eye movements. One electrode was placed on the left collar bone
to monitor heart beats, and two electrodes were placed on the
mastoids. All electrodes were differentially recorded relative to the
standard common-mode-sense and driven-right-leg electrodes.
We monitored the electrode-gel-scalp contact quality through the

Table 1 Simulation experiment results (SNRavg= 9 dB,
k= 50).

Algorithms ΔCOM (mm) JI Δk CR

Modified MUSIC 60 ± 3.5 0.09 ± 0.012 2.84 ± 0.067 -
Modified MNE 82 ± 2.2 0.01 ± 0.002 6.08 ± 0.036 -
Modified
sLORETA

54 ± 2.2 0.04 ± 0.002 9.62 ± 0.124 -

SilenceMap
(flat PSD)

12 ± 0.7 0.50 ± 0.017 0.31 ± 0.023 0.98

SilenceMap
(Real PSD)

13 ± 0.5 0.52 ± 0.015 0.28 ± 0.022 0.99

Bold numbers are the best performance in each column.
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data acquisition period using the Electrode Offsets option in the
ActiView data acquisition software, which calculates the direct
current (DC) potentials generated at the junction of the skin and
electrolyte solution (gel) under the electrodes. This DC potential
results in a voltage at the amplifier inputs (i.e., DC offset)36.
Electrodes with larger than 20 mV offset were marked for
removal and interpolation in the preprocessing step, and more
conductive gel was added to the electrodes with high offset. This
is important as the change in electrode impedance can alter the
distribution of artifacts (e.g., eye blinks and eye movements)
across the scalp and make it harder to detect and remove them
using the preprocessing methods37. During data acquisition, the
participant viewed a screen, located roughly 1 m away. A grating
pattern of black and white bars was displayed at the center of the
display along with a fixation cross for 2 s, followed by a rest state
of 1–1.5 s, where a fixation cross was displayed on a gray-colored
background (see Fig. 1a). We repeated this sequence 80 times
during the recording session. We used the Rest and Visual sec-
tions of the recorded signal separately for the localization and
compared the results from these analyses in this section. The
steps for data analyses and preprocessing are available in
“Methods: Data analysis”.

Participants. Three male pediatric patients were recruited for this
experiment. Two patients (SN and OT) had resections in the left
hemisphere and one (UD) had a resection in the right hemi-
sphere. In two of these patients (OT and UD), lobectomy surgery
was performed to control pharmacoresistant epilepsy, and, in the
third patient (SN), surgery was performed for an emergent eva-
cuation of a cerebral hematoma at day one of life. More infor-
mation about these patients is included in Table 2.

OT and the parents of SN and UD provided consented for
participation. SN and UD provided assent. All procedures were
approved by the Carnegie Mellon University Institutional Review
Board. The MRI scans of these participants are shown in Fig. 2,
where the resected sections can be seen as large asymmetric dark
regions38–40. The ground truth regions of silence are extracted
based on these MRI scans (see “Methods” for more details). The
first row in Fig. 3 shows the extracted ground truth regions of
silence in the symmetric brain models of the three participants.
The intact hemisphere is mirrored across the longitudinal fissure
to construct these brain models (see Fig. 1c and “Methods” for
more details). These patients have different sizes of regions of
silence: UD has a region of silence with k= 60 sources/nodes out
of total p= 1740 sources in the brain, SN has k= 120 out of
p= 1758 sources, and OT has k= 55 out of p= 1744 total
sources. Despite the relatively large sizes of the resected regions in
these three pediatric patients, there is rather minimal, if any,
observable effect of the resection on performance, indicative of
substantial plasticity in the children’s brain41. This suggests that
we cannot characterize the site or size of the resected areas with
any precision using standard neuropsychological testing (see
Supplementary Table II for neuropsychological test results for
these patients, and Supplementary Note B for detailed discussion).

Results of real dataset. We applied SilenceMap, along with the
modified source localization algorithms, i.e., MNE, MUSIC, and
sLORETA, on the preprocessed EEG recordings of the three
participants, and the performance of silence localization is cal-
culated by comparing against the extracted ground truth regions
from the post-surgery MRI scans of these patients (see Fig. 2).
The visual illustration of localized regions of silence (shown in
red on the gray-colored semi-transparent brains), along with their
ground truth regions and their corresponding performance
measures are all shown in Fig. 3. Based on the Rest dataset,
SilenceMap with hemispheric baseline outperforms the modified
source localization algorithm: it reduces the COM distance by
12 mm, 46 mm, and 42 mm for UD, SN, and OT respectively,
compared to the best performance among the source localization
algorithms. It also improves the overlap (JI) by 22%, 49%, and
37%, and the size estimation by 122%, 42%, and 59% for UD, SN,
and OT, respectively. SilenceMap with baseline performs well
with values of ΔCOM= 2mm, JI= 0.570, and Δk= 0.25 based
on the Rest set, and ΔCOM= 3 mm, JI= 0.654, and Δk= 0.09
based on the Visual set. Comparing the results of Visual and Rest
datasets for SilenceMap with baseline shows that, as expected, the
localized regions of silence remain largely the same. This suggests
that for each participant, the algorithm can localize the region of
silence, regardless of the type of the task performed (Visual or
Rest) by the participants during the EEG recording. In Silence-
Map with baseline, based on the minimum value of the power
mismatch (ΔPow defined in Eq. (39) in “Methods”), the best
reference electrodes for UD, SN, and OT were Cz, Cz, and CPz,

Table 2 Surgery history of patients38.

Patient Surgical procedure Age at
resection

Time between
resection and
MRI scan

Time between
resection and EEG
recording

UD Right occipital and posterior temporal lobectomy with resection of inferomesial
temporal dysembryoplastic neuroepithelial tumor (DNT)

6 years,
9 months

4 years, 3 months 5 years, 10 months

SN Evacuation of left temporal hematoma 1 day 12 years, 6 months 13 years, 1 month
OT Left temporal lobectomy with preservation of mesial structures, gross total

resection of left mesial temporal DNT
13 years,
4 months

4 years, 3 months 5 years, 11 months

Fig. 2 Structural MRI scans of the three participants in the real dataset.
UD with right occipitotemporal lobectomy, SN and OT with left temporal
lobectomy (resected regions are highlighted with arrows). We have
stripped away facial features to ensure anonymity of participants (de-faced
regions are highlighted with arrows).
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respectively, for the Rest set, and Cz, Pz, and CPz for the Visual
set. Based on the results of the Visual set, participant OT shows
the poorest localization performance, which might be due to the
participant’s repetitive jaw clenching during the recording, even
after appropriate preprocessing of the data. Jaw clenching is
recognized as one of the most severe artifacts adversely impacting
the signals of most EEG electrodes42.

Unlike the simulation results, without baseline, SilenceMap
failed to localize the region of silence on the real dataset. One
explanation for this is the assumption of the identical distribution
of sources in designing the algorithm, which does not hold in the
real data. Clearly, using the algorithm with hemispheric baseline
is advantageous for better localization.

Validity of hemispheric symmetry assumption in SilenceMap
with baseline. The hemispheric baseline approach used in
SilenceMap is based on an approximate hemispheric symmetry
assumption of the brain source activities in the healthy parts of
the brain. To further explore the validity of this assumption, we
quantified this hemispheric symmetry based on the scalp average
power of a neurologically healthy control participant (DH, male,
25 years) whose EEG data were collected using the same protocol
used for the patients (see Fig. 1a for the EEG recording protocol).

DH provided informed consent. Excluding the ten electrodes on
the longitudinal fissure (red electrodes in Fig. 1a), we calculated
the mean absolute difference (MAD) of average power of pairs of
scalp electrodes, which are symmetric with respect to the long-
itudinal fissure, e.g., (C1,C2), (T7,T8), and so on, as follows:

MAD ¼ 2
n� 10

Xn�10
2

i¼1

jdVarðyRi Þ �dVarðyLi Þj ð4Þ

where, dVarðyRi Þ is the estimated variance of the recorded EEG
signals referenced to the Cz electrode, preprocessed, and denoised
signal yRi at the electrode i in the right hemisphere (see “Methods”
for noise removal steps), and yLi is the signal of the corresponding
electrode in the left hemisphere, and n= 128 is the total number
of electrodes. Based on Fig. 4, MAD for the control participant is
calculated based on the Rest set as 4.1 (μV)2, while for the UD,
SN, and OT patients with regions of silence MAD is 23.3, 14.2,
16.5 (μV)2, respectively. The control participant had a sub-
stantially smaller hemispheric difference of scalp power compared
to the patients, confirming that using the hemispheric baseline is
helpful in localization of regions of silence in either hemisphere.
There are two main reasons that the MAD of the healthy control
is not perfectly symmetric: (i) brain sources have non-identical

Fig. 3 Performance of SilenceMap on a real EEG dataset. The first row shows the extracted ground truth regions of silence (red regions) overlaid on the
resected cortical region of three patients based on their symmetric brain models extracted from the structural MRIs (see the MRI scans in Fig. 2); the second,
third, and fourth rows show the performance in localization of the silent region using modified source localization algorithms (MNE, MUSIC, and sLORETA),
through both visual illustration (red regions) and using performance metrics of center-of-mass (COM) distance (ΔCOM), Jaccard Index (JI), and size error (Δk).
The fifth row shows the performance of SilenceMap without baseline, and the last two rows show the localization performance of SilenceMap with baseline,
based on the Rest and Visual recordings respectively. p is the total number of sources in each brain model, and k is the size of ground truth region of silence.
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brain activities43,44, and this asymmetry is affected by factors such
as age45, and (ii) the structure of the brain and the head (scalp,
skull, cerebrospinal fluid (CSF), and brain) is not perfectly sym-
metric (see “Discussion” for more discussion), which results in a
non-symmetric reflection/transformation of brain activities to the
scalp potentials. The latter issue is addressed in SilenceMap, by
normalization of the measure of source contribution (β in Eq.
(35), in “Methods”) based on the head structure asymmetry. To
improve the performance of SilenceMap, one might take into
account the non-identical distribution of sources in the brain
(and perhaps use a more realistic model for the source covariance
matrix Cs) and normalize the source contribution measure
accordingly. Another approach to address this might be to use an
asymmetric baseline obtained during the recording of the brain
without any region of silence.

SilenceMap can localize the regions of silence with relatively
little EEG data. As we showed earlier in this section, SilenceMap
successfully localized the regions of silence based on only 160s of
EEG data. Although this is already quite small, how does Silen-
ceMap perform if we reduce this timespan. To understand this,
we did a search for the timespan for [20, 40, 80, 120, 160]s,
quantifying the performance for each timespan. For UD, 80 s of
data showed almost the same performance as 160s
(ΔCOM= 17mm, JI= 0.382, Δk= 0.30), while 40 s showed
substantial reduction. For SN, the minimum possible amount of
data, without compromising the localization performance, is only
40 s (ΔCOM= 9 mm, JI= 0.440, Δk= 0.20), while for OT, this is

160 s, potentially due to the noisy EEG recording of OT. Never-
theless, the 160 s upper limit is still a relatively short amount of
signal acquisition time.

In clinical applications, rapid recording and localization of
neural silences might be required. The time-consuming steps for
EEG installation—namely, the placement of electrodes and
applying conductive gel (~30 min for the high-density EEG we
used), electrode impedance monitoring and corrections, and the
multistep and offline data preprocessing—may make it difficult to
use the system in practice. There has been progress in recent years
in developing portable and quick-to-administer EEG systems
(e.g., dry, active, low-impedance electrodes, conductive sponge
and hydrogel interfaces46–48), along with fast and real-time
preprocessing and artifact removal techniques (e.g., in ref. 37).
These developments along with SilenceMap (<3 min of EEG
recording), and access to sufficient computational power (see
“Methods” for computation-complexity analysis of SilenceMap),
can enable rapid silence localization.

Introduced error in silence localization by using symmetric
brain models. Morphological studies of the human brain have
shown cortical asymmetry, and how it is affected by factors such
as age, sex, and neurological disease49,50. Here, we used sym-
metric brain models of the patients with resection, since the pre-
surgery MRI scans of these patients were not available
(which may not even have been symmetrical in the first instance).
Figure 5 shows the symmetric brain models along with the ori-
ginal models of the three patients. To quantify the introduced
error in silence localization by using symmetric models, instead of
the original model, we calculated the average distance of sources/
nodes of the intact part of the resected hemisphere to the cor-
responding sources/nodes of the the structurally preserved
hemisphere, mirrored across the longitudinal fissure (see Fig. 5).
Following the 3D shape matching approach in ref. 51, for a spe-
cific source/node in the hemisphere with the region of silence, the
corresponding source in the preserved hemisphere is defined as
the node with the minimum distance to that specific source.
Based on our calculations, the defined average distance between
the symmetric brain model and the original brain model is 2.41 ±
0.055 mm, 2.50 ± 0.043 mm, and 2.03 ± 0.044 mm, for UD, SN,
and OT, respectively. We excluded the resected parts of the brain
in calculating the average distance between the symmetric
brain model and the original brain model. To ensure that this
average distance is not affected by excluding the resected regions,
we also calculated the hemispheric distance in three healthy
controls (intact brains) using an open-source MRI database
(OASIS-152). The average distance between the symmetric and
the original brain model was 2.33 ± 0.012 mm, 2.78 ± 0.016 mm,
and 2.35 ± 0.012 mm, for OAS1_0004_MR1 (male, 28 years),
OAS1_0005_MR1 (male, 18 years), and OAS1_0034_MR1 (male,
51 years), respectively (see Fig. 5). In fMRI studies, an acceptable
motion and voxel displacement, especially in scans of children
and adolescents, is typically up to 3 mm53. Since the average
distance of the symmetric and the original brain models is
<3 mm, using the symmetric brain model seems to be a reason-
able choice for silence localization.

Effect of error in the structural segmentation of MRI. Seg-
mentation of structural MRI scans for patients with brain injuries
is complicated54–56, and standard structural segmentation tech-
niques (e.g., for example, FreeSurfer) may introduce error in
silence localization. Standard segmentation methods use anato-
mical priors extracted from manually or semi-automatically
annotated atlases of the healthy brain56. However, the anatomy of
the damaged brain, especially following severe injury or large

Fig. 4 Quantification of hemispheric symmetry of scalp average power.
Mean absolute difference of scalp average power (MAD) is reported for a
healthy control participant (DH), in comparison to the three patients who
have resected brain regions (UD, SN, and OT). The control participant
shows substantially smaller MAD compared to the three patients with
cortical regions of silence.
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resection, diverges substantially from the anatomy of a healthy
brain54. To address this, we used an open-source software,
AFNI57,58, which is designed to improve the segmentation of the
scans in patients with brain lesions and/or tumors. Additionally,
we used specifically designed scripts, provided to us by Dr. Daniel
Glen (Computer Engineer, NIH), to segment the structural MRI
scans of the patients in our dataset57,58. We compared the per-
formance of SilenceMap for the patients in our study with the
ground truth regions of silence extracted using AFNI vs. the
extracted ground truth using FreeSurfer (Supplementary Fig. 3
contains the results using AFNI). Based on these results, there is a
small reduction in the silence localization performance using AFNI
in comparison with results from FreeSurfer (Fig. 3 in “Results” and
Supplementary Fig. 3 in Supplementary Note C). This suggests that
standard techniques (used in FreeSurfer) perform reasonably well
in MRI segmentation for our participants, and do not contribute
substantially to the silence localization error.

Effects of brain-to-skull conductivity ratio. We also explored
the effect of different assumptions for the brain-to-skull con-
ductivity ratio on the performance of SilenceMap. Our results
(Supplementary Fig. 4 includes results and further discussion is

available in Supplementary Note D) confirm the robustness of
our algorithm to imprecise knowledge of brain-to-skull
conductivity ratio.

Discussion
In this paper, we introduced SilenceMap, an algorithm that
localizes contiguous regions of silence in the brain based on
noninvasive scalp EEG signals. The key technical ideas intro-
duced here include ensuring that background brain activity is
separated from silences, using hemispheric baseline, careful
referencing, and utilization of a convex optimization framework
for clustering. We compared the performance of SilenceMap in
stimulations as well as real data comprising structural MRI scans
of three patients with cortical resection. SilenceMap substantially
outperformed appropriately modified state-of-the-art source
localization algorithms, such as MNE, MUSIC, and sLORETA,
and reduced the distance error (ΔCOM) by 46 mm, requiring
<3 min of EEG signal acquisition time. We also explored potential
errors introduced into the algorithmic calculations, e.g., due to
our hemispheric baseline assumption, imprecise segmentation of
the structural MRI data, or through inaccurate assessment of
brain-to-skull conductivity. Our further analyses reveal the

Fig. 5 Average distance of the symmetric brain model from the original brain model. The average brain distance is shown in patients with lobectomy, i.e.,
UD with right occipitotemporal lobectomy, SN with left temporal lobectomy, and OT with left frontotemporal lobectomy, as well as in three healthy
controls, namely, OAS1_0004_MR1, OAS1_0005_MR1, and OAS1_0034_MR1. The average distance for all patients and healthy controls are <3 mm, which
makes the symmetric brain model a reasonable choice for the silence localization task, as it does not introduce substantial error.
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robustness of SilenceMap to these challenges. Altogether, the
findings indicate that SilenceMap has considerable potential that
permits more general adoption and this EEG-based silence
localization method can be used in cases where common imaging
modalities such as MRI and computed tomography are not
applicable and/or unavailable.

Limitations and future directions. As promising as it appears,
SilenceMap has its own limitations, which can serve as the focus
of future investigations: (i) We used the electrode locations in
SilenceMap in multiple steps of the algorithm, including in the
estimation of the forward matrix, which is a function of the
electrode locations. In placing the EEG cap for each patient,
we manually adjust the cap’s location so that the electrodes are
placed in the standard 10-5 arrangement. This could be improved
by using new methods for guided EEG cap placement59. (ii) As
mentioned in “Methods: Problem statement”, SilenceMap
assumes that there is one region of silence in the brain, as is the
case for the individuals in our real and simulated dataset. One can
modify the algorithm to localize multiple regions of silence in the
brain, either located in one or both hemispheres. (iii) SilenceMap
showed substantial improvement in estimation of size of region of
silence, compared to the state-of-the-art modified source locali-
zation algorithms. This size estimation in SilenceMap is based on
the minimization of scalp average power error, as defined in
Eq. (27) in “Methods”, which shows an average error of about
30% based on the real dataset in our paper. For applications
where more precise estimation of the size of the regions of silence
is needed, SilenceMap needs to be improved. (iv) We plan to
examine silence localization in individuals with etiologies other
than resection. We believe that further improvements and mod-
ifications might be needed to use SilenceMap for smaller and
deeper regions of silence. (v) We do not consider the effect of the
boundary between the intact and the resected brain tissue. In our
analysis, the boundary or penumbra is considered to be active and
healthy brain tissue. This is a reasonable assumption in surgical
removal, and perhaps in other cases where there is a sharp
boundary between the affected and the healthy tissue. However,
this is not true in diffuse lesions and/or tumors in the brain, and
investigation of the boundary effect in these cases requires further
consideration. (vi) SilenceMap localizes stationary regions of
silence. Extending the algorithm to localize evolving regions of
silence, e.g., for CSD propagation, tumor or lesion expansion, will
be important. (vii) Finally, there may be changes in the neural
functional connectivity because of the region of silence. Esti-
mating these changes are important for, for example, predicting
diaschisis (remote effects of a resection) or other, wide-scale
changes in signal propagation between regions of cortex.

Methods
Notation. In this paper, we use non-bold letters and symbols (e.g., a, γ, and θ) to
denote scalars; lowercase bold letters and symbols (e.g., a, γ, and θ) to denote
vectors; uppercase bold letters and symbols (e.g., A, E, and Δ) to denote matrices,
and script fonts (e.g., S) to denote sets.

Problem statement. Following the standard approach in the source localization
problems, we use the linear approximation of the well-known Poisson’s equation to
write a linear equation, which relates the neural electrical activities in the brain to
the resulting scalp potentials60,61. This linear equation is called forward model62. In
this model, each group of neurons are modeled by a current source or dipole,
which is assumed to be oriented normal to the cortical surface15.

The linear forward model can be written as below:

Xn ´T ¼ An ´pSp´T þ En ´T ; ð5Þ

where A is the forward matrix, X is the matrix of measurements where each row
represents the potentials recorded at one electrode, with reference at infinity, across
time. S is the matrix of source signals, E is the measurement noise, T is the number
of time points, p is the number of sources, and n is the number of scalp sensors.

In practice, we do not have the matrix X, since the reference at infinity cannot
be recorded. Only a differential recording of scalp potentials is possible. If we define
a (n− 1) × n matrix M with the last column to be all−1 and the first n− 1
columns compose an identity matrix, the differential scalp signals, with the last
electrode’s signal as the reference, can be written as follows:

Yðn�1Þ ´T ¼ Mðn�1Þ ´nXn ´T

¼ Mðn�1Þ ´nAn ´pSp´T þMðn�1Þ ´nEn ´T ;
ð6Þ

where Y is the matrix of differential signals of scalp, M is a matrix, which
transforms the scalp signals with reference at infinity in the matrix X to the
differential signals in Y. Equation (6) can be rewritten as follows:

Yðn�1Þ ´T ¼ eAðn�1Þ ´pSp´T þ eEðn�1Þ ´T ; ð7Þ

where eA ¼ MA, and eE ¼ ME.

Objective. Given M, Y, and A, estimate the region of silence in S.
For this objective, we consider two different scenarios: (1) there are no baseline

recordings for the region of silence, i.e., no scalp EEG recording is available where
there is no region of silence, (2) with baseline recording, i.e., we consider the
recording of the hemisphere of the brain, left or right, which does not have any
region of silence, as the baseline for the silence localization task. Note that the
location of the baseline hemisphere (left or right) is not assumed to be known a
priori. Rather, locating the region of silence is the goal of this approach.

We make the following assumptions: (i) A and M are known, and Y has been
recorded. (ii) eE is additive white noise, whose elements are assumed to be
independent across space. Thus, at each time point, the covariance matrix is Cz

given by:

czij ¼ σ2zi ; for all i ¼ j;

czij ¼ 0; for all i≠ j;
ð8Þ

where σ2zi is the noise variance at electrode i, and it is assumed to be known (to see
how this might be estimated see Supplementary Note E and Supplementary Fig. 5).
(iii) k rows of S correspond to the region of silence, which are rows of all zeros. The
correlations of source activities reduces as the spatial distance between the sources
increases. We assume a spatial exponential decay profile for the source covariance
matrix Cs, with identical variances (σ2s ) for all non-silent sources, whose signals
model the background brain activities:

csij ¼ σ2s e
�γkf i�f jk22 ; for all i; j =2 S;

csij ¼ 0; for all i; j 2 S:
ð9Þ

where fi is the 3D location of source i in the brain, γ is the exponential decay
coefficient, and S is the set of indices of silent sources (S :¼ fijsit ¼ 0 for all
t 2 f1; 2; � � �Tgg). We assume that the elements of S have zero mean, and follow a
wide-sense stationary (WSS) process. (iv) M is a (n− 1) × n matrix where the
last column is �1n�1´1 and the first n− 1 columns form an identity matrix
(I(n−1)×(n−1)). (v) We assume p− k≫ k, where p− k is the number of active, i.e.,
non-silent sources, and k is the number of silent sources. (vi) Silent sources are
contiguous. We define contiguity based on a z-nearest neighbor graph, where the
nodes are the brain sources (i.e., vertices in the discretized brain model). In this z-
nearest neighbor graph, two nodes are connected with an edge, if either or both of
these nodes is among the z-nearest neighbors of the other node, where z is a known
parameter (see “Methods” to learn what values of z can be used). A contiguous
region is defined as any connected subgraph of the defined nearest neighbor graph,
i.e., between each two nodes in the contiguous region, there is at least one
connecting path. (vii) For simplicity, we assume that silence lies in only one
hemisphere (as is the case for the three individuals examined in the Results).
However, the location of this hemisphere is not assumed to be known (see
“Methods: SilenceMap with baseline recordings” for the details of SilenceMap with
baseline).

With baseline recordings. In the absence of baseline recordings, estimating the
region of silence proves difficult. In order to exploit prior knowledge about neural
activity, we use the approximate symmetry of power of neural activity in the two
hemispheres of a healthy brain (see the “Results” for more details on the hemi-
spheric symmetry of scalp potentials, along with examples from the real dataset).
(viii) As an additional simplification, we assume that even when there is a region of
silence, if the electrode is located far away from the region of silence, then the
symmetry still holds. For example, if the silence is in the occipital region, then the
power of the signal at the electrodes in the frontal region (after subtracting noise
power) is assumed to be symmetric in the two hemispheres (mirror imaged along
the longitudinal fissure). This is only an approximation because (a) the brain
activity is not completely symmetric, and (b) a silent source affects the signal
everywhere, even far from the silent source (see Fig. 4 in the “Results”). Never-
theless, as we will see, this assumption enables more accurate inferences about the
location of the silence region in real data using SilenceMap with baseline, in
comparison to SilenceMap without baseline. The simplification assumptions in this
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section are summarized in Table 3, where we discuss the effect of each assumption,
along with possible ways to relax them.

We first provide the details of this two-step algorithm under the condition
where we do not have any baseline, and then with a hemispheric baseline.

SilenceMap without baseline recordings. If we do not have any baseline
recording, we design the two-step silence localization algorithm as follows:

Low-resolution grid and uncorrelated sources. For the iterative method in the sec-
ond step, we need an initial estimate of the region of silence to select the electrodes
whose powers are affected the least by the region of silence. We coarsely discretize
the cortex to create a very low-resolution source grid with sources that are located
far enough from each other, so that the elements of S can be assumed to be
uncorrelated across space:

csij ¼ σ2s ; for all i ¼ j & i; j =2 S;
csij ¼ 0; for all i≠ j or i; j 2 S: ð10Þ

Under this assumption of uncorrelatedness and identical distribution of brain
sources in this low-resolution grid, we find a contiguous region of silence through
the following steps:

(i) Cross-correlation: Eq. (7) can be written in the form of linear combination of
columns of matrix eA as follows:

yt ¼
Xp
i¼1

eaisit þ eϵt ; for t ¼ f1; 2; � � �Tg; ð11Þ

where sit is the ith element of the tth column in S, Y ¼ ½y1; � � � ; yT � 2 Rðn�1Þ ´T ,
S ¼ ½s1; � � � ; sT � 2 Rp´T , eA ¼ ½ea1; � � � ;eap� 2 Rðn�1Þ ´ p , and eE ¼ ½eϵ1; � � � ;eϵT � 2
Rðn�1Þ ´T .

Based on Eq. (11), each column vector of differential signals, i.e., yt, is a
weighted linear combination of columns of matrix eA, with weights equal to the
corresponding source values. However, in the presence of silences, the columns ofeA corresponding to the silent sources do not contribute to this linear combination.
Therefore, we calculate the cross-correlation coefficient μqt, which is a measure of
the contribution of the qth brain source to the measurement vector yt (across all

electrodes) at the tth time-instant, defined as follows:

μqt ¼ eaTq yt ¼Pp
i¼1
eaTqeaisit þ eaTqeϵt ; for all q ¼ f1; 2; � � � pg;

for all t ¼ f1; 2; � � �Tg:
ð12Þ

This measure is imperfect because the columns of the eA matrix are not
orthogonal. The goal here is to attempt to quantify relative contributions of all
sources to the recorded signals, and use that to arrive at a decision on which
sources are silent because their contribution is zero.

(ii) Estimation of variance of μqt: In this step, we estimate the variances of the
correlation coefficients calculated in the step (i). Based on Eq. (12) we have:

VarðμqtÞ ¼ Var
Xp
i¼1

eaTqeaisit þ eaTqeϵt
 !

¼ðaÞ Var
Xp
i¼1

eaTqeaisit
 !

þ VarðeaTqeϵtÞ
¼ðbÞ
Xp
i¼1

VarðeaTqeaisitÞ þ VarðeaTqeϵtÞ
¼ð c Þ
Xp
i¼1
i=2S

ðeaTqeaiÞ2σ2s þ eaTqCzeaq;

ð13Þ

where S is the indices of silent sources. In (13), the equality (a) holds because of
independence of noise and sources, and the assumption that they have zero mean,
(b) holds because the elements of S, i.e., sit’s, are assumed to be uncorrelated and
have zero mean in the low-resolution grid, and (c) holds because sit’s are assumed
to be identically distributed. It is important to note that σ2s in (13) is a function of
source grid discretization and it does not have the same value in the low-resolution
and high-resolution grids. We estimate the variance of μqt using its power spectral
density, as is explained in detail in the Supplementary Note F.

Based on Eq. (13), the variance of μqt, excluding the noise variance, can be
written as follows:

gVarðμqtÞ ¼ VarðμqtÞ � eaTqCzeaq ¼Xp
i¼1
i=2S

ðeaTqeaiÞ2σ2s ð14Þ

wheregVarðμqtÞ is the variance of μqt without the measurement noise term, which is
a function of the size and location of region of silence through the indices in S.

Table 3 List of simplification assumptions and their effects on silence localization.

Assumption number in
“Methods: Problem
statement”

Assumption Effect Possible ways to relax these
assumptions

(ii) Spatio-temporal independence of
additive noise eE It affects the noise variance estimation

(see Supplementary Note E)
Using more realistic assumptions on the
general shape of noise PSD (non-flat
PSD), and the spatial correlation profile
(non-diagonal Cz), noise variance
estimation can be improved.

(iii) Spatial exponential decay profile for
the source covariance matrix Cs,
with identical variances (σ2s ) for all
non-silent sources

It affects the source covariance estimation
in SilenceMap (see Eq. (34))

Using more realistic and data-driven
assumptions on the spatial correlation
profile of brain sources, as well as
estimation of non-identical source
variances based on baseline recordings
of silences.

(vi) Contiguity of silent sources as a
single region of silence

It affects the design of the CSpeC
framework proposed in SilenceMap (see
Eqs. (36) and (18))

With the assumption of multiple regions
of silence, with different sizes, using
methods such as the extension of CSpeC
method for multiple clusters in a graph
can be used in SilenceMap64.

(vii) Silence lies in only one hemisphere Based on this assumption, we use the
hemispheric baseline for silence
localization.

This assumption can be relaxed if we
have a baseline recording for the regions
of silence (e.g., recording of the brain
without any silence).

(vii) Hemispheric symmetry of scalp
potentials for regions far from
silence

Based on this assumption, we use
hemispheric baseline and select a subset
of scalp electrodes to estimate the source
covariance matrix (see Eqs. (32) and
(33)).

This assumption can be relaxed if we
have a baseline recording for the regions
of silence (e.g., recording of the brain
without any silence), and use a non-
identical distribution model for the non-
silent source activities (see assumption
(iii) and its relaxation).
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However, this variance term, as is, cannot be used to detect the silent sources, since
some sources may be deep, and/or oriented in a way that they have weaker
representation in the recorded signal yi, and consequently have smaller Var(μqt)
and gVarðμqtÞ.

(iii) Source contribution measure (β): To be able to detect the silent sources and
distinguish them from sources, which inherently have different values of gVarðμqtÞ,
we need to normalize this variance term for each source by its maximum possible

value, i.e., when there is no silent source (gVarmaxðμqtÞ ¼
Pp

i¼1 ðeaTqeaiÞ2σ2s ):
VarðμqtÞ ¼

gVarðμqtÞgVarmaxðμqtÞ
¼

gVarðμqtÞPp
i¼1 ðeaTqeaiÞ2σ2s ; ð15Þ

where VarðμqtÞ is the normalized variance of μqt, without noise, and it takes values
between 0 (all sources silent) and 1 (no silent source). Note that it does not only
depend on whether q 2 S, where S is the set of indices of silent sources. In general,
this normalization requires estimation of source variance σ2s , but under the
assumption that sources have identical distribution, they all have identical
variances. Therefore, σ2s in the denominator of Eq. (15) is the same for all sources.
We multiply both sides of Eq. (15) by σ2s and obtain:

σ2sVarðμqtÞ ¼
gVarðμqtÞPp
i¼1 ðeaTqeaiÞ2 ¼

VarðμqtÞ � eaTqCzeaqPp
i¼1 ðeaTqeaiÞ2 ; ð16Þ

Therefore,

βq :¼ σ2sVarðμqtÞ ¼
VarðμqtÞ � eaTqCzeaqPp

j¼1 ðaTq ajÞ2

�
dVarðμqtÞ � eaTqcCzeaqPp

j¼1 ðeaTqeajÞ2 ;

ð17Þ

where βq is called the contribution of the qth source in the differential scalp signals
in Y, which takes values between 0 (all sources silent) and σ2s (no silent sources). In

Eq. (17), dVarðμqtÞ is an estimate of variance of μqt, and cCz is an estimate of noise
covariance matrix (see Supplementary Note E and Supplementary Note F to see
how these estimates might be obtained).

(iv) Localization of silent sources in the low-resolution grid: In this step, we find
the silent sources based on the βq values defined in the previous step, through a
convex spectral clustering (CSpeC) framework as follows:

g?ðλ; kÞ ¼ argmin
g

βT ð1� gÞ þ λð1� gÞTLð1� gÞ;
s:t: gi 2 ½0; 1�; for all i 2 f1; 2; � � � pg

kgk1 ≤ p� k:

ð18Þ

where βT= [β1,⋯ , βp] is the vector of source contribution measures, g ¼
½g1; � � � ; gp�T is a relaxed indicator vector with values between 0 (for silent sources)
and 1 (for active sources), k is the number of silent sources, i.e., the size of the
region of silence, λ is a regularization parameter, and L is a graph Laplacian matrix
defined in Eq. (23) below. Based on the linear term in the cost function of Eq. (18),
the optimizer finds the solution g? that (ideally) has small values for the silent
sources, and large values for the non-silent sources. The ℓ1 norm convex constraint
controls the size of region of silence in the solution. To make the localized region of
silence contiguous, we have to penalize the sources, which are located far from each
other. This is done using the quadratic term in the cost function in Eq. (18) and
through a graph spectral clustering approach, namely, relaxed RatioCut
partitioning25–27. We define a z-nearest neighbor undirected graph with the nodes
to be the locations of the brain sources (i.e., vertices in the discretized brain model),
and a weight matrix W defined as follows:

wij ¼ e�
kf i�f jk22

2θ2 ; for all i 2 z-nearest neighbor of j

OR j 2 z-nearest neighbor of i;

wij ¼ 0; for all i =2 z-nearest neighbor of j

AND j =2 z-nearest neighbor of i;

ð19Þ

where the link weight is zero (no link) between node i and j, if node i is not among
the z-nearest neighbors of j, and node j is not among the z-nearest neighbors of i.
In Eq. (19), we choose z to be equal to the number of silent sources, i.e., k, and θ is
an exponential decay constant, which normalizes the distances of sources from
each other in a discretized brain model, by their variance as follows:

θ2 ¼ Varðk f i � f jk2Þ �
1

N � 1

Xp
i¼1

Xp
j¼iþ1

ðk f i � f jk2 � δfÞ2; ð20Þ

where N ¼ pðp�1Þ
2 is the total number of inter-source distances, and δf is an

estimated average of these inter-source distances, given by:

δf ¼ 1
N � 1

Xp
i¼1

Xp
j¼iþ1

k f i � f jk2; ð21Þ

The degree matrix of the graph (D) is given by:

D ¼ ½dij�jdij
n

¼Pp
l¼1

wil ; for all i ¼ j; and

dij ¼ 0; for all i≠ j
o ð22Þ

Using the degree and weight matrices defined in Eqs. (19) and (22), the graph
Laplacian matrix, L in Eq. (18), is defined as follows:

L ¼ D�W ð23Þ
Based on one of the properties of the graph Laplacian matrix63, we can write the

quadratic term in the objective function of Eq. (18) as follows:

ð1� gÞTLð1� gÞ ¼ 1
2

Xp
i;j¼1

wijðgi � gjÞ2: ð24Þ

where g 2 Rp . This quadratic term promotes the contiguity in the localized region
of silence, e.g., an isolated node in the region of silence, which is surrounded by a
number of active sources in the nearest neighbor graph, causes a large value in the
quadratic term in Eq. (24), since wij has large value due to the contiguity, and the
difference (gi− gj) has large value, since it is evaluated between pairs of silent (small
gi)-active (large gj) sources.

For a given k, the regularization parameter λ in Eq. (18), is found through a
grid-search and the optimal value (λ⋆) is found as the one which minimizes the
total normalized error of source contribution and the contiguity term as follows:

λ?ðkÞ ¼ argmin
λ

ðβT ð1� g?ðλ; kÞÞÞ2

max
λ1

ðβT ð1� g?ðλ1; kÞÞÞ
2

þ ðð1� g?ðλ; kÞÞTLð1� g?ðλ; kÞÞÞ2

max
λ2

ðð1� g?ðλ2; kÞÞTLð1� g?ðλ2; kÞÞÞ
2 :

ð25Þ

In addition, the size of region of silence, i.e., k, is estimated through a grid-
search as follows:

k̂ ¼ argmin
k

Xn�1

i¼1

��������ðeACsðkÞeAT Þii þ bσ2zi �dVarðyiÞ
��������2
2

; ð26Þ

where (.)ii indicates the element of a matrix at the intersection of the ith row and
the ith column, dVarðyiÞ is the estimated variance of the ith differential signal in Y,
and bσ2zi is the estimated noise variance at the ith electrode location (see
Supplementary Note E and Supplementary Note G to see how these might be
estimated). In Eq. (26), Cs(k) is the source covariance matrix, when there are k
silent sources in the brain. The estimate k̂ minimizes the cost function in Eq. (26),
which is the squared error of difference between the powers of scalp differential
signals, resulting from the region of silence with size k, and the estimated scalp
powers based on the recorded data, with the measurement noise power removed.
Under the assumption of identical distribution of sources, and lack of spatial
correlation in the low-resolution source grid, and based on Eq. (10), we can rewrite
Eq. (26) as follows:

k̂ ¼ argmin
k

Xn�1

i¼1

Xp
j¼1
j=2S

ea2ijσ2s þ bσ2zi �dVarðyiÞ
�������

�������
2

2

¼ argmin
k

Xn�1

i¼1

Pp
j¼1
j=2S
ea2ij

max
l

Pp
j¼1
j=2S
ea2lj �

dVarðyiÞ � bσ2zi
max
m

ðdVarðymÞ � bσ2zm Þ
������

������
2

2

ð27Þ

where eaij is the element of matrix eA at the intersection of the ith row and the jth

column, and S is the set of indices of k silent sources, i.e., indices of sources
corresponding to the k smallest values in g⋆(λ⋆, k), which is the solution of Eq. (18).
The second equality in Eq. (27) normalizes the power of electrode i using the
maximum power of scalp signals for each i. This step eliminates the need to
estimate σs in the low-resolution.

Finally, the region of silence is estimated as the sources corresponding to the k̂
smallest values in g?ðλ?; kÞ. The 3D coordinates of the center-of-mass (COM) of
the estimated contiguous region of silence in the low-resolution grid, i.e., f lowCOM, is
used as an initial guess for the silence localization in the high-resolution grid, as
explained in the next step.

Iterative algorithm based on a high-resolution grid and correlated sources. In this
step, we use a high-resolution source grid, where the sources are not uncorrelated
anymore. We try to estimate the source covariance matrix Cs based on the spatial
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exponential decay assumption in (9). In each iteration, based on the estimated
source covariance matrix, the region of silence is localized using a CSpeC
framework.

(i) Initialization: In this step, we initialize the source variance σ2s , the
exponential decay coefficient in the source covariance matrix γ, and the set of
indices of silent sources S as follows:

γð0Þ ¼ 1; σ2
ð0Þ
s ¼ 1;

Sð0Þ ¼ ij k f i � f lowCOMk22 ≤ k f j � f lowCOMk22
n

;

for all j ¼ 1; 2; � � � p
o
:

ð28Þ

where Sð0Þ is simply the index of nearest source in the high-resolution grid to the
COM of the localized region of silence in the low-resolution grid, i.e., f lowCOM.

For r= 1, 2,⋯ R, we repeat the following steps until either the maximum
number of iterations (R) is reached, or COM of the estimated region of silence

fhigh
ðrÞ

COM has converged, where fhigh
ð0Þ

COM is the location of the source with index Sð0Þ in
the high-resolution grid. The convergence criterion is defined as below:

k fhigh
ðjÞ

i;COM � fhigh
ðj�1Þ

i;COM k2 ≤ δ; for j 2 fr � 1; rg; r ≥ 2: ð29Þ
where δ is a convergence parameter for COM displacement through iterations, and

fhighCOM 2 R3´ 1.
(ii) Estimation of σ2s and γ: In this step, we estimate the source variance σ2s , and

the exponential decay coefficient of source covariance matrix γ, based on their
values in the previous iteration and the indices of silent sources in Sðr�1Þ. We
define Cfull

s as the source covariance matrix when there are no silent sources in the
brain, and use it to measure the effect of region of silence on the power of each
electrode. The source covariance matrix in the previous iteration (r− 1) is
calculated as follows:

Cðr�1Þ
s ¼ ½csij �jcsij ¼ σ2

ðr�1Þ
s e�γðr�1Þkf i�f jk2

n
;

for all i; j =2 Sðr�1Þ; and csij ¼ 0; if i or j 2 Sðr�1Þ
o
;

ð30Þ

and Cfull
s is given by:

Cfullðr�1Þ
s :¼

n
½csij �jcsij ¼ σ2

ðr�1Þ
s e�γðr�1Þkf i�f jk2 ;

for all i; j ¼ 1; 2; � � � p
o
;

ð31Þ

where there is no zero row and/or column, i.e., there is no silence. To be able to
estimate σ2s and γ based on the differentially recorded signals in Y, we need to find
the electrodes, which are the least affected by the region of silence. Based on the
assumption (v) in “Methods: Problem statement”, the region of silence is much
smaller than the non-silent brain region and some electrodes can be found on
scalp, which are not substantially affected by the region of silence. We find these
electrodes by calculating a power-ratio for each electrode, i.e., the power of
electrode when there is a silent region, divided by the power of electrode when
there is not any region of silent in the brain, as follows:

hðrÞ ¼ ½hi�jhi ¼
ðeACðr�1Þ

s
eAT Þii

ðeACfullðr�1Þ
s

eAT Þii

(
; for all i ¼ 1; 2; � � � n� 1

)
; ð32Þ

where h is a vector with values between 0 (all sources silent) and 1 (no silent
source). Using this power-ratio, we select the electrodes as follows:

SðrÞ
elec ¼ fij indices of the ϕ maximum values in hðrÞg; ð33Þ

where Selec is the indices of the top ϕ electrodes, which have the least power
reduction due to the silent sources in S. Based on the differential signals of the

selected ϕ electrodes in Eq. (33), γ(r) and σðrÞs are estimated as the least-square
solutions in the following equation:

ðγðrÞ; σðrÞs Þ ¼ argmin
γ;σs

X
i2SðrÞ

elec

��������ðeACfull
s ðγ; σsÞeAT Þii

þ bσ2zi �dVarðyitÞ
��������2
2

:

ð34Þ

(iii) Localization of silent sources in the high-resolution grid: Based on the
correlatedness assumption of sources in the high-resolution grid, we modify the
source contribution measure definition (from Eq. (17)) as follows:

βhigh
ðrÞ

q :¼ VarðμqtÞ � eaTqCzeaqeaTq ðeACfull
s
eAT Þeaq �

dVarðμqtÞ � eaTqcCzeaqeaTq ðeACfullðrÞ
s

eAT Þeaq ; ð35Þ

where βhigh
ðrÞ

q takes values between 0 (all sources silent), and 1 (no silent source in

the brain). The only difference between βhigh
ðrÞ

q in the high-resolution grid and βq in
the low-resolution grid is in their denominators, which are essentially the variance

terms in the absence of any silent source (gVarmaxðμqtÞ in Eq. (15)). In βq, the

denominator is divided by the source variance σ2s , to be able to calculate βq without

estimation of σ2s . However, in the high-resolution grid, the denominator of βhigh
ðrÞ

q is

simply gVarmaxðμqtÞ, which is calculated under the source correlatedness

assumption and using the estimated CfullðrÞ
s . Using the definition of source

contribution measure βhigh
ðrÞ

q in the high-resolution grid, at iteration r, the
contiguous region of silence is localized through a CSpeC framework, similar to the
one defined in Eq. (18). However, we use the estimated source covariance matrix in
each iteration to introduce a new set of constraints on the powers of the electrodes,

which are less affected by the region of silence, i.e., the electrodes in SðrÞ
elec, as defined

in Eq. (33). Based on these power constraints, we obtain a convex optimization
framework to localize the region of silence in the high-resolution brain model as
follows:

g?ðrÞðλ; k; ζÞ ¼ argmin
g

βhigh
ðrÞT ð1� gÞ þ λð1� gÞTLð1� gÞ;

s:t: gi 2 ½0; 1�; for all i 2 f1; 2; � � � pg
kgk1 ≤ p� k;

ð1T ð�AiC
fullðrÞ
s

�AT
i Þgþ bσ2zi �dVarðyiÞÞ2 ≤ ζ i;

for all i 2 SðrÞ
elec:

ð36Þ

where βhigh
ðrÞT ¼ ½βhighðrÞ1 ; � � � ; βhigh

ðrÞ
p �, g ¼ ½g1; � � � ; gp�T , ζ ¼ ½ζ1; � � � ; ζϕ�T , λ and ζi

are regularization parameters, and �Ai is a diagonal matrix, with the elements of ith

row of eA on its main diagonal, defined as below:

�Ai ¼ f�aqvj�aqv ¼ eaiq for all q ¼ v; �aqv ¼ 0 for all q≠ vg: ð37Þ
In Eq. (36), ζi is chosen to be equal to the square of the residual error in (34), for

each i 2 Selec, i.e.,

ζ i ¼ ððeACfullðrÞ
s ðγðrÞ; σðrÞs ÞeAT Þii þ bσ2zi �dVarðyiÞÞ2: ð38Þ

In each iteration r, values of λ and k are found in a similar way as they are found
in the low-resolution grid (see Eqs. (25) and (26)). However, to estimate k based on
Eq. (26), in the high-resolution grid we use CsðkÞ ¼ CðrÞ

s , as is defined in Eq. (30).
After each iteration, the set of silent indices in SðrÞ is updated with the indices of
the k̂ smallest values in the solution of Eq. (36), i.e., g?ðrÞðλ?; k̂; ζÞ.

After convergence, i.e., when the convergence criterion is met (see Eq. (29)), the
final estimate of region of silence is the set of source indices in SðrfinalÞ .

Choosing the best reference electrode. the final solution SðrfinalÞ may change as we
choose different EEG reference electrodes, which changes the matrix of differential
signals of scalp Y and the forward matrix eA in Eq. (7). The question is how to
choose a reference electrode, which gives us the best estimation of region of silence?
To address this question, we use an approach similar to the estimation of k̂, i.e., we
choose the reference electrode, which gives us the minimum scalp power mis-
match. We define the power mismatch ΔPow as follows:

ΔPow ¼
Xn�1

i¼1

ðeACsðk̂ÞeAT Þii
max

i
ðeACsðk̂ÞeAT Þii

�
dVarðyiÞ � bσ2zi

max
i

ðdVarðyiÞ � bσ2zi Þ
�������

�������
2

2

; ð39Þ

where both eA and yi are calculated based on a specific reference electrode. ΔPow is
the total squared error between the normalized powers of scalp differential signals,
resulting from the region of silence with size k̂, and the estimated scalp powers
based on the recorded data with a specific reference.

SilenceMap with baseline recordings. If we consider a hemispheric baseline or,
more generally, have a baseline recording, the 2-step SilenceMap algorithm
remains largely the same. In an ideal case where we have a baseline recording of
scalp potentials, we simply compare the contribution of each source in the recorded
scalp signals when there is a region of silence in the brain, with its contribution to
the baseline recording. This results in a minor modification of SilenceMap. The
definitions of source contribution measures in Eqs. (17) and (35), need to be
changed as follows:

~βq ¼ min
βq

βbaseq

; 1

( )
; for all q 2 f1; 2; � � � ; pg ð40Þ

where βq is defined in Eq. (17) for the low-resolution grid, and in Eq. (35) for the
high-resolution grid, and βbaseq is the corresponding contribution measure of source
q in the baseline recording. However, if the baseline recording is not available for
the silence localization (as it was not available in our dataset used in the Results),
based on the assumption of hemispheric symmetry in “Methods: Problem state-
ment” (see assumption (viii)), one can use a hemispheric baseline. The source
contribution measure is defined in a relative way, i.e., each source’s contribution
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measure is calculated in comparison with the corresponding source in the other
hemisphere, as follows:

~βq ¼
min

βq
βqm

; 1
n o

; for all q 2 SLH ∪SRH

1; for all q =2 SLH ∪SRH

8<: ð41Þ

where SLH is the set of indices of sources in the left hemisphere and SRH is the set
of indices of sources in the right hemisphere, and source indices, which are not in
SLH ∪SRH, are located across the longitudinal fissure, which is defined as a strip of
sources on the cortex, with a specific width zgap. The index qm in Eq. (41) is the
index of the mirror source for source q, i.e., source q’s corresponding source in the
other hemisphere.

Equation (41) reveals the advantage of having a baseline for the silence
localization task, i.e., we can relax the identical distribution assumption of sources
in the source contribution measure, which makes ~β robust against the violation of
the identical distribution assumption of sources in the real world. The rest of the
algorithm remains the same, as is explained in “Methods: SilenceMap without
baseline recordings.”

To find the solution of the CSpeC optimization in Eqs. (18) and (36), CVX, a
MATLAB package for specifying and solving convex programs64,65, is used. In
addition, MATLAB nonlinear least-square solver is used to find the solution of
Eq. (34).

Time complexity of SilenceMap. The bottleneck of time complexity among the
steps in our algorithm is the high-resolution convex optimization (see Eq. (36)).
This is classified as a convex quadratically constrained quadratic program. However,
the quadratic constraints in Eq. (36) are all scalar and each can be rewritten in forms
of two linear constraints. This reduces the problem to a convex quadratic program,
which can be solved either using semidefinite programming66 or second-order cone
programming (SOCP)67. However, it is much more efficient to solve the QPs using
SOCP rather than using the general solutions for SDPs68,69. Following the steps in69,
we can write our problem in Eq. (36) as a SOCP with ν= 2p+ 2ϕ+ 1 constraint
of dimension one, and one constraint of dimension p+ 1, where p is the number
of sources in the brain and ϕ is the number of selected electrodes in Eq. (33).
Using the interior-point methods, the time complexity of each iteration is
Oðp2ðν þ pþ 1ÞÞ � Oðp3Þ, where the number of iterations for the optimizer is
upper bounded by Oð ffiffiffiffiffiffiffiffiffiffiffi

ν þ 1
p Þ ¼ Oð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pþ 2ϕþ 2
p Þ69. Therefore, the CSpeC fra-

mework for high resolution (see Eq. (36)) has the worst case time complexity of
Oðp3:5Þ. Similarly, the low-resolution CSpeC framework (see Eq. (18)), has the same
time complexity of Oðp3:5Þ, since it only has 2ϕ less linear constraints, in com-
parison with the quadratic program version of Eq. (36). It is important to mention
that this time complexity is calculated without considering the sparsity of the graph
Laplacian matrix (L) defined in Eq. (23). Exploiting such sparsity may reduce the
computational complexity of solving the equivalent SOCP for our CSpeC frame-
work70. The other steps of SilenceMap have lower degrees of polynomial time
complexity (e.g., the least-square solution in Eq. (34) with time complexity of
Oð22ϕÞ, where ϕ≪ p). Therefore, the general time complexity of SilenceMap is
Oðitrref ðp3:5 þ itrconv:itrk:itrλðp3:5ÞÞÞ � Oðitrref :itrconv:itrk:itrλðp3:5ÞÞ, including the
number of iterations for finding the optimal regularization parameters (itrλ itera-
tions for finding λ⋆ in Eq. (25), and itrk iterations for finding k⋆ in Eq. (26)), the
required number of iterations for convergence of SilenceMap to a region of silence
in the high-resolution step (itrconv), and the number of iterations to find the best
reference electrode (itrref). It is worth mentioning that time required to run Silen-
ceMap depends on the resolution of the search grids for the parameters used in the
algorithm (see Supplementary Table I in Supplementary Note A), the resolution of
the cortical models used, and the convergence criterion defined (see Eq. (29)). We
acknowledge that there is room for improvement of the implementation and the
algorithm itself to obtain a faster silence localization tool, e.g., by exploiting the
sparsity of the graph Laplacian matrix in solving Eq. (36), parallelizing the iterations
of the algorithm, and exploring lower-cost clustering methods, and this is left for the
future work.

Modification of source localization algorithms for comparison with Silence-
Map. To compare the performance of SilenceMap with the state-of-the-art source
localization algorithms, namely, MNE, MUSIC, and sLORETA, we modified them
for the silence localization task. These modifications largely consist of adding
additional steps to select the silent sources based on the estimated source locali-
zation in each algorithm. These modifications only make for a fairer analysis and
answer the question of whether small modifications on existing source localization
algorithms can localize silences. The details of these modifications are explained in
this part.

Modified minimum norm estimation (MNE). MNE is one of the most commonly
used source localization algorithms15,21,22. In this algorithm, the brain source
activities are estimated based on a minimal power assumption, and through the
following regularization method:

bS ¼ argmin
S

k Y� eASk2F þ λ k Sk2F ; ð42Þ

where bS is the estimated matrix of source signals, eA ¼ MA, Y is the matrix of scalp
differential signals defined in Eq. (6), λ is the regularization parameter, and
∥.∥F∥.∥F denotes the Frobenius norm of a matrix. Equation (42) has the following
closed form solution:

bS ¼ eAT ðeAeAT þ λIðn�1Þ ´ ðn�1ÞÞ
�1
Y; ð43Þ

where I is the identity matrix, and λ is obtained using a grid-search and based on
the L− curve method71. The MNE algorithm is kept unchanged until this point. bS,
the estimated localization across time, is used to localize silences. For a fair com-
parison, we do so by using the two-step approach used in SilenceMap, i.e., we start
from a low-resolution source grid and localize the region of silence, which is used
as an initial guess for source localization in a high-resolution grid.

Low-resolution grid: In a low-resolution source grid, we localize the region of
silence through the following steps: (i) We initialize the number of silent sources
as k̂ ¼ k0; (ii) The squares of the elements in bS (̂s2ij; 8 i ¼ f1; 2; � � � pg; 8 j ¼ f1;
2; � � � tg) are calculated for source power comparison; (iii) For each time point j, sort
the estimated source powers ŝ2ij in the ascending order and choose the first k̂
corresponding sources, which are the sources with the minimum power at time j. We
name the set of indices of these sources as Sj

MNE; (iv) Based on the repetition of sources
in Sj

MNE, we calculate a histogram. Then this histogram is normalized and sorted in the
descending order (the source with the largest population of 1 has the first index). The

normalized population of source q is shown as ~β
MNE
q ; (v) In this step, we find an

estimate of the size of region of silence (k̂). This is done by finding the knee point in

the curve of ~β
MNE
q vs. q (see Fig. 6a). In a curve, the knee point is defined as the point

where the curve has maximum curvature, i.e., the point where the curve is substantially

different from a straight line72–74. To find the knee point in the curve of ~β
MNE
q vs. q, we

define a measure of distance to the origin (q ¼ 0; ~β
MNE
q ¼ 0) as follows:

doriginq ¼ ð~βMNE
q Þ2 þ q

p

� �2

; ð44Þ

where doriginq is the defined distance of point (q ¼ 0; ~β
MNE
q ¼ 0) on the curve to the

origin, and p is the total number of sources in the descritized brain model. Fig. 6b
shows the calculated doriginq for the curve in Fig. 6a. We choose the closest point to the

origin as the knee point (q ¼ k̂), where the index of this knee point k̂ is an estimation
for k (see Fig. 6b).

(vi) In this step, we exploit the knowledge of contiguity of the region of silence
and estimate the region based on the estimated number of silent sources k̂. First we
choose the 2k̂ sources with the minimum power over time, i.e., the 2k̂ sources,

which have maximum ~β
MNE
q . Then we calculate the COM of the 2k̂ selected sources

in the low-resolution grid (f lowMNE), and choose the k̂-nearest neighbors of f lowMNE as
the estimated region of silence in the low-resolution grid.

High-resolution grid: We use the COM of the estimated region of silence in the
low-resolution grid (f lowMNE), as an initial guess and try to improve the localization
performance in a high-resolution source grid. The steps are mainly the same as the
steps used in the low-resolution grid, except in the last step (vi), where we use
the COM of the estimated region of silence in the low-resolution grid, and choose
the k̂-nearest neighbors of f lowMNE as the estimated region of silence in the high-
resolution grid, where k̂ is the estimated size of region of silence in the high-
resolution grid based on the knee point detection method in step (v).

Fig. 6 Estimation of the size of the region of silence (k) in the modified
MNE algorithm based on the knee point detection. a ~β

MNE
q is the

normalized and sorted histogram of sources in a descending order, which
captures the frequency of a source to being among the k̂ sources with the
minimum power over time. In this curve, a Knee point is defined as the
point with maximum curvature, i.e., the point where the curve is
substantially different from a straight line; b Distances of points on the
curve in a from the origin (q ¼ 0; ~β

MNE
q ¼ 0). The index of the point with

the minimum distance from the origin (k̂) is chosen as an estimation of k.
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Modified multiple signal classification (MUSIC). MUSIC is a source localization
algorithm, which is based on a sequential search of sources, rather than finding all
sources at the same time19,20. In MUSIC, the singular value decomposition (SVD)
of the matrix of scalp recording signals Y(n−1)×T (¼Uðn�1Þ ´ ðn�1ÞΣðn�1Þ ´TV

T
T ´T ) is

used to reconstruct an orthogonal projection to the noise space of Y to quantify the
contribution of each source in the recorded signal Y15. The MUSIC algorithm
follows these steps for source localization: (i) We select the left singular vectors
(columns of U), which correspond to the large singular values up to ρ% of the total

energy of the matrix (
Pðn�1Þ

i¼1 Σ2
ii), where ρ is a constant. These selected singular

vectors (Us) form a basis for the observation data; (ii) We construct an orthogonal
projection matrix to the noise space of Y as P? ¼ Iðn�1Þ ´ ðn�1Þ � UsU

T
s . Using this

matrix the MUSIC cost function is written as15:

βMUSIC
q ¼ k P?eaqk22

k eaqk22 ; ð45Þ

where eaq is the qth columns in eA, and βMUSIC
q is a measure of contribution of source

q in the noise space of the recorded scalp potentials in Y. The MUSIC algorithm is
kept unchanged until this point. The next steps of the modified MUSIC algorithm,
in both low-resolution and high-resolution grids closely follow the last two steps in
the Modified MNE algorithm, and we use the measure of source contribution in

MUSIC (βMUSIC
q ) instead of eβMNE

q , where the source with no contribution in the

differential measured signal Y has βMUSIC
q ¼ 1. Therefore, the main difference

between the MUSIC algorithm and the modified MUSIC, is that in the MUSIC, the
measure of contribution of source βMUSIC

q is used to fined the active sources, i.e., the

sources with small βMUSIC
q values, while for the silence localization the sources with

large βMUSIC
q values are selected based on the contiguity assumption of the region of

silence and using the knee point thresholding mechanism (step (v) in the
modified MNE).

Modified standardized low-resolution brain electromagnetic tomography
(sLORETA). We modify the source localization sLORETA algorithm, introduced in
ref. 24, in the same way that we modified the MNE algorithms for the silence
localization. However, the minimum-norm solution requires an additional step of
normalization by the estimated source variances. Since we assume that the
orientations of dipoles in the brain are known, i.e., they are normal to the surface of
the brain, following equation (22) in ref. 24, the estimated power of source activities
in the brain based on the sLORETA algorithm is given by the following equation:

ŝ2it ¼
~s2it

ðCsLORETA
s Þii

; for all i ¼ f1; 2; � � � pg;

for all t ¼ f1; 2; � � �Tg:
ð46Þ

where ~sit is the ith element of the tth column in the minimum-norm solution eS,
which is given by Eq. (43), and CsLORETA

s is defined as24:

CsLORETA
s ¼ eAT ðeAeAT þ λIðn�1Þ ´ ðn�1ÞÞ

�1eA; ð47Þ

bS in Eq. (46) is used for the silence localization task, following the steps mentioned
for the modified MNE algorithm. The minimum-norm solution in the sLORETA
algorithm, as is defined in ref. 24, is based on an average reference for the scalp
potentials. However, we rewrite the minimum-norm solution as eS in Eq. (43) based
on a specific reference electrode, rather than the average reference electrode. The
parameters used in the implementation of these modified source localization
algorithms are available in the Supplementary Table I.

Data analysis
Prepossessing steps. We preprocess the recorded EEG signals using EEGLAB75

toolbox in MATLAB. First, we bandpass filter the EEG data in the frequency range
of [1,100]Hz using a Hamming windowed sinc finite impulse response (FIR) filter.
Then, we visually inspect the noisy channels, remove and spatially interpolate
them. In the next step, we calculate two differential channels based on the pairs of
eye electrodes, one for vertical and one for the horizontal eye movements, and
along with the heart channel and all scalp electrodes, an independent component
analysis is applied to remove the eye artifacts and heart beats from the EEG signals.
After removing the artifact components from the EEG signals, we examine the
channels one more time using the channel statistics, where a normal distribution is
fitted to the data of each channel and based on the standard deviation, skewness,
and kurtosis, channels with substantially different statistics are removed and
interpolated. Finally, the signals are epoched into 2-s intervals and epochs with
abnormal trends, values, and/or abnormal power spectral densities are removed,
using the EEGLAB toolbox.

Ground truth regions and MRI scans. The ground truth regions of silence are
extracted based on the MRI scans of patients (see Fig. 2) following these steps: (i)
3D models of descritized cortex are extracted by processing the MRI scans using
the FreeSurfer software76–82, and removing the layers of the head, namely, CSF,

skull, and scalp using the MNE open-source software83, (ii) the sources/nodes of
the intact hemisphere, i.e., the hemisphere without any missing part, are mirrored
along the longitudinal fissure, (iii) the smallest distance of the mirrored sources are
calculated from the sources in the hemisphere with the resected part, (iv) N sources
with the largest distance are selected as the region of silence, where N is determined
by visual comparison of the extracted ground truth in the 3D model, and its
corresponding MRI scan.

Displayed figures in this paper are generated using MATLAB, Microsoft
PowerPoint, and FreeSurfer software.

Simulated dataset
Flat PSD simulations. We simulate EEG signals at 128 electrodes, located at the 10-
5 standard system of scalp locations35, as follows: (i) First, we use a high-density
source grid, extracted by discretizing a real brain model, and randomly choose a
node along with its k nearest neighbors, as the region of silence with size k, (ii) then
we simulate the source signals using a multivariate Gaussian random process with
independent time points (flat PSD), and a zero-lag covariance matrix Cs defined in
Eq. (9), where S is the set of indices of silent sources specified in the first step, the
source variance is σs= 1 a.u., where a.u. is an arbitrary unit for amplitude, and the
exponential decay coefficient is γ= 0.12 (mm)−2, (iii) the measurement noise in
Eq. (7), i.e., eE, is simulated using a multivariate gaussian random process with a
covariance matrix Cz defined in Eq. (8), where σzi is chosen randomly from a
uniform distribution in the range of ½0; σmax

z �, and σmax
z is chosen so that the

baseline EEG signals, i.e., without any region of silence, have a specific average
SNR, defined as below84–86:

SNRavg ¼ 10log 10
1

n� 1

Xn�1

i¼1

ðeACfull
s ðγ; σsÞeAT Þii

σmax
z

 !
ð48Þ

(iv) In the next step, the forward matrix A in Eq. (5) is calculated based on a
real head model, which is obtained from MRI scan of patient OT in the real
database (Fig. 2). In this paper, we use the FreeSurfer software76–82 to process the
MRI images, and use MNE open-source software83 to extract different layers of the
head, i.e., CSF, skull, and scalp. Then having these layers of head, and using the
boundary element method, the forward matrix A is computed, where a free
MATLAB toolbox, FieldTrip87, is used. In the boundary element method model,
volume conductivity ratios of [1,0.067,5,1] are used for scalp, skull88, CSF, and
brain, respectively. We take the intact hemisphere (the one without any missing
parts) and mirror it across the longitudinal fissure to form a symmetric brain
model, which is used as the source grid in our algorithm. In “Results” we discuss
and quantify the localization error we introduce by using this symmetric brain
model. (v) Finally, the calculated forward matrix A is used to simulate the scalp
EEG signals following the Eq. (7).

Real PSD simulations. To explore the effect of PSD profile of the non-silent neural
sources on the performance of SilenceMap, we simulate source activities with Real
PSD following these steps: (i) First, we extract a general shape of PSD for the
normal brain activities based on a real recorded electrocorticography (ECoG)
dataset used in ref. 33 and available through the open-source library in ref. 34. This
general shape of PSD results from averaging over the PSDs of the ECoG recordings
of an epileptic patient in ref. 34 (see Supplementary Fig. 6 and more details on the
reprocessing and the average PSD extraction in Supplementary Note H). (ii) In the
next step, we design a linear phase FIR filter (Supplementary Fig. 7 in Supple-
mentary Note H), with the magnitude equal to the square root of the noiseless
average PSD shown in Supplementary Fig. 6. (iii) Following the steps (i) and (ii) in
the previous section (Flat PSD simulations), we simulate non-silent source activ-
ities with a flat PSD (instead of the 1/f behavior observed in practice, see Sup-
plementary Fig. 8), and then apply the designed filter on them. This results in
simulated signals, which have PSDs similar to the PSD extracted from the real
recorded ECoG signals in the brain, called Real PSD hereinafter (see Supplemen-
tary Fig. 9). We assume the signals have identical distribution over the cortical
space, but with spatial and temporal dependency profiles extracted from the real
recordings of the brain. Following the steps (iii) to (v) in the previous section (Flat
PSD simulations), we obtain the electrical signals of scalp EEG electrodes based on
the Real PSD simulated signals in the brain. The general shape of PSD for the
simulated EEG signals based on the Real PSD (see Supplementary Fig. 10) is close
to the PSD of a real recorded EEG signal from a patient with a region of silence in
the brain (see Supplementary Fig. 11, showing the PSD of Rest recordings for
patient OT in this study, bandpass filtered in the [1,100]Hz interval).

The effect of different PSD profiles on the silence localization performance. Based on
these results presented in Table 1, SilenceMap shows almost the same performance
for the flat and Real PSDs. Why do the results not change substantially? To
understand this, we looked at the effect of changing the (temporal) PSD on the
spatial correlation for the simulated brain sources. We observe that it is indeed
expected that changing this PSD does not affect the spatial correlations (as we next
discuss), and hence the localization, which only depends on spatial correlations
(with sufficient data) is unaffected.

We assume an exponential decay profile for the source covariance matrix (see
Cs defined in Eq. (9)), which is consistent with our assumption in the flat PSD
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simulations. In section “Real PSD simulations”, the cross-correlation coefficients of
the neural source activities are being changed through the filtering step (see step
(iii) in section “Real PSD simulations”). This change can be explored by looking at
the filtering process in the time domain. Let’s assume Si(t) is the simulated signal,
using the flat PSD, at the ith source and time point t, and h(t) is an FIR filter:

S0iðtÞ ¼ ðh � SiÞðtÞ ¼
XNh

q¼1

hðqÞSiðt � qÞ; ð49Þ

where S0iðtÞ is the filtered signal with the Real PSD at the ith source, and Nh is the
length of the FIR filter h. The cross-correlation function of S0iðtÞ at lag l is as
follows:

RS0i S
0
j
ðlÞ ¼ E½S0iðtÞS0jðt þ lÞ�

¼ E
XNh

q¼1

hðqÞSiðt � qÞ
XNh

r¼1

hðrÞSjðt þ l � rÞ
24 35

¼
XNh

q¼1

XNh

r¼1

hðqÞhðrÞE Siðt � qÞSjðt þ l � rÞ
h i

¼
XNh

q¼1

XNh

r¼1

hðqÞhðrÞRSiSj
ðqþ l � rÞ;

ð50Þ

where RSiSj
ðqþ l � rÞ is the cross-correlation of simulated signals at the ith and jth

sources with flat PSDs, which implies independence over time points:

RSiSj
ðlÞ ¼ csijδðlÞ; ð51Þ

where δ(l) is the unit sample function with value 1 at l= 0 and value 0 elsewhere,
and csij is the zero-lag cross-correlation of brain activities at the ith and jth sources

defined in Eq. (9). Based on the equality in Eq. (51), we can rewrite the Eq. (50) as
follows:

RS0i S
0
j
ðlÞ ¼

XNh

q¼1

hðqÞhðl þ qÞRSiSj
ð0Þ ¼ ρhðlÞRSiSj

ð0Þ; ð52Þ

where, ρh(l) is the autocorrelation of the FIR filter h(t) with lag l. Based on the Eq.
(52), after filtering the flat PSD signals S 2 Rp´T with the covariance matrix of
Cs 2 Rp ´ p , the resulting signals S0 2 Rp´T have a covariance matrix at zero lag,
which is only a scaled version of Cs by a constant ρh(0). In addition, some non-
zero-lag (l ≠ 0) correlations show up in S0 , which means that unlike the flat PSD
signals, the simulated signals using the Real PSD are not independent over time. In
designing SilenceMap, we do not assume temporal independence for the brain
source signals, which explains why there is no silence localization performance
reduction in the Real PSD experiments. However, due to the temporal correlations
in section “Real PSD simulations”, a larger number of time points are required for
the variance and covariance estimations in our algorithm to achieve the same
performance as the flat PSD results. In Table 1, we have used T= 100,000 time
points for all of the simulations.

Statistics and reproducibility. We recruited three participants with different
resections against whose data we could run the various analytic comparisons. A
spatial resolution of 128 scalp EEG electrodes was used for each participant. We
recorded 320 s of EEG data (160 s for Rest state and 160 s for the Visual task), with
a sampling frequency of 512 Hz, which results in a total number of 81,920 data
points over time (for each task), which is considered to be a large enough sample
for the statistical estimations in this study (i.e., mean, covariance, power spectral
density (PSD), and noise). In addition to the recordings from the participants in
this study, we simulated 100 regions of silence at 100 different random locations on
a real brain model extracted from the MRI scans. This sample size of 100 regions of
silence was large enough to keep the reported standard errors (SE) small. Last, we
included a single control individual for further evaluation of the hemispheric
assumptions.

The silence localization was repeated based on the Visual dataset for each
participant, and the performance was compared to the silence localization based on
the Rest dataset. The results remained largely the same, which verifies the
reproducibility of the experimental findings. In addition, we repeated the silence
localization for different temporal lengths of the EEG data, for each participant,
and the results are compared in the Result section.

Ethics oversight. All procedures were approved by the Carnegie Mellon University
Institutional Review Board (IRB HS13-666 for the controls, and IRB HS14-607 for
the patients, “Visual recovery after severe brain injury or visual pathway
disturbance”).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The anonymized raw EEG dataset and MRI scans (shown in Fig. 2) of the participants in
this research are made available online on KiltHub, Carnegie Mellon University’s online
data repository (https://doi.org/10.1184/R1/1240241689).

Code availability
SilenceMap was developed in MATLAB, using standard toolboxes, and the CVX
MATLAB package64,65. All MATLAB code is made available online on GitHub (https://
doi.org/10.5281/zenodo.389218590).
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