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Representing faces in 3D
How do we recognize the individual faces of our family members, friends and acquaintances across the variation 
that is common in daily life? Zhan and colleagues demonstrate the importance of three-dimensional structure in 
the representations of known individuals and argue that texture—the surface properties of faces—plays little role  
in representation.
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Most humans effortlessly recognize 
the faces of hundreds or thousands 
of individuals, but we still do not 

know precisely how this is performed. 
Because faces share a common set of parts, 
one approach that has been applied in 
artificial vision systems involves aligning 
these parts into a common space and 
analyzing faces based on the resultant 
appearance. This is the idea behind two-
dimensional (2D) active appearance 
models1, which, beyond their influence 
in computer vision, have recently been 
hailed as an explicit theory of neural 
computations underlying face perception 
in the primate brain. Examining a series 
of face-selective brain regions in the 
macaque monkey, neuroscientists have 
demonstrated that earlier cortical regions 
respond along principal axes describing 
the location of a set of facial landmarks, 
while later cortical regions respond along 
principal axes describing the appearance 
of faces after a computational alignment 
of face landmarks to a common template2. 
Does this imply that the brain literally 
aligns retinal images of faces to a generic 
2D template, followed by an analysis of the 
shape-free appearance? In Nature Human 
Behaviour, Zhan and colleagues3 provide 
an intriguing study of human three-
dimensional (3D) face perception that 
compels us to consider otherwise.

By using a database of 355 3D scans of 
human faces, varying in age, gender and 
ethnicity, with a general linear modelling 
(GLM) framework, the researchers 
developed a novel 3D face space capable of 
generating new faces along psychologically 
interpretable dimensions of age, sex, 
ethnicity, 3D rotation, and high-variance 
‘identity’ dimensions. Their modelling 
framework was performed using a 3D 
version of active appearance models4 that 
first registers faces into a common 3D 
structural mesh, retaining a description of 
how an individual face structure deviates 
from the common mesh, and then similarly 

registers their structure-free texture (the 
3D equivalent of shape-free appearance). 
The researchers then scanned 4 additional 
human faces and recruited 14 participants 
familiar with these additional individuals as 
work colleagues. The researchers used their 
generative face model to generate random-
identity faces matched to the test faces in 
terms of age, gender and race. Shown sets 
of 6 such faces at a time, participants were 
asked to rate the similarity of the face with 
the greatest similarity to a given test face. 
These ratings allowed Zhan and colleagues 
to use reverse correlation to recover maps 
of the structural and textural features 
used by the majority of their subjects in 
representing each face. With these maps, 
the researchers performed a component 
analysis to extract a small number of 
whole-face diagnostic and non-diagnostic 
components. Finally, they devised a task 
to validate the extent to which these 
components captured the information 
used by the participants to recognize their 
colleagues across various transformations, 
such as rotation or manipulation of gender 
or age, through the use of their generative 
face model. Given a certain transformation, 
the researchers added a specific amount of a 
diagnostic component, or its non-diagnostic 
counterpart, and measured its effect on the 

ability of their participants to recognize 
their colleagues across the transformation. 
They found that adding diagnostic 
information improved generalization 
across faces and tasks, suggesting that 
these components captured the mental 
representations used by their participants.

Strikingly, the generalization task was 
based entirely on a structural description 
of the faces. When assessing the role of 
structure-free texture, the researchers 
found few to no consistent patterns across 
subjects, suggesting that their texture model 
did not faithfully represent identity. The 
dominant influence of shape highlights the 
often-overlooked point that 2D shape-free 
appearance representations are not truly 
devoid of shape. This poses a challenge 
for interpreting results concerning the 
representation of face surface properties 
separate from 2D face shape5, and it 
poses a challenge for our interpretation 
of complementary shape and appearance 
representations in separate face-selective 
brain regions2. Zhan and colleagues 
suggest that the earlier 2D ‘shape-based’ 
representations may correspond to local 
structural properties, and that later 
‘appearance-based’ representations may 
correspond to combinations of local 
structural properties, akin to the modelled 
multivariate dimensions.

It is interesting to note that feedforward 
convolutional neural networks, which 
have achieved great success both in 
computer vision applications and in 
modeling biological visual representations, 
do not exhibit a similar dependence 
on 3D structure. Multiple studies have 
demonstrated that these models display 
a greater dependence on texture6,7, which 
can be partially corrected by training with 
stylized images that induce a reliance on 
shape6. Learning to extract 3D structural 
representations from 2D images may also 
benefit from signals in the temporal domain. 
Indeed some work in computational 
neuroscience has shown how smooth object 
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rotations can benefit the development of 
robust structural representations8, and 
computer vision researchers are actively 
investigating these ideas, for example 
in using temporal contiguity for action 
recognition9 and other dynamic tasks. 
Finally, a recent ‘analysis-by-synthesis’ 
model called efficient inverse graphics10 
has accounted for some aspects of human 
3D perception and primate neural activity 
by proposing that the brain stores a three-
dimensional generative model akin to  
the one used by Zhan and colleagues,  
with recognition ensuing through  
model inversion.

Zhan and colleagues provide persuasive 
evidence for the importance of 3D structure 
in human face representation. However, 
their work does not provide a definitive 
case against the role of texture. While 
textural representations were found to be 
unreliable across subjects, some textural 
patterns were found within subjects (see 
Supplementary Information for texture 
analyses). More strikingly, constant-shape 
texture morphs appear to have a strong 
impact on perceived identity. Taking 
their results at face value, however, there 

remains an important question of how 
a structural template would be derived 
biologically, as the 3D registration approach 
used by the authors is more a mechanism 
for revealing a representation than it is 
a model of the mechanism that achieves 
the representation. Finally, more general 
questions of face perception may be 
extended into the 3D domain. How can 
3D representations cope with dynamic 
aspects of faces, such as changes in 
expression? As we become familiar with 
a new face, how does learning its specific 
properties bootstrap and refine our 3D 
representations? From our perspective, 
it is clear that the approach and stimulus 
set developed by Zhan and colleagues will 
serve as an important human benchmark 
for evaluating models of the development 
and nature of representations underlying 
human face recognition and will be a 
powerful tool for studying faces in 3D. ❐
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