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ARTICLE INFO ABSTRACT

Keywords: Understanding the nature and extent of neural plasticity in humans remains a key challenge for neuroscience.
Plasticity Importantly, however, a precise characterization of plasticity and its underlying mechanism has the potential to
Vision enable new approaches for enhancing reorganization of cortical function. Investigations of the impairment and
Hemispherectomy

subsequent recovery of cognitive and perceptual functions following early-onset cortical lesions in humans
provide a unique opportunity to elucidate how the brain changes, adapts, and reorganizes. Specifically, here, we
focus on restitution of visual function, and we review the findings on plasticity and re-organization of the ventral
occipital temporal cortex (VOTC) in published reports of 46 patients with a lesion to or resection of the visual
cortex early in life. Findings reveal that a lesion to the VOTC results in a deficit that affects the visual recognition
of more than one category of stimuli (faces, objects and words). In addition, the majority of pediatric patients
show limited recovery over time, especially those in whom deficits in low-level vision also persist. Last, given
that neither the equipotentiality nor the modularity view on plasticity was clearly supported, we suggest some
intermediate possibilities in which some plasticity may be evident but that this might depend on the area that
was affected, its maturational trajectory as well as its structural and functional connectivity constraints. Finally,
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we offer suggestions for future research that can elucidate plasticity further.

1. Introduction

Plasticity is broadly defined as the brain's capacity to be shaped by
experience, to adapt and learn, and to reorganize and recover after
injury or lesion (Gleissner et al., 2005). This reorganization is a result of
the nervous system's ability to respond to intrinsic or extrinsic stimuli
by altering its structure and/or function and/or connections (Cramer
et al., 2011). Understanding the nature and extent of neural plasticity in
humans is of great interest from both a basic science and translational
perspective, and recent findings have whet our scientific appetite. For
example, although it is generally agreed that the capacity for learning
and memory and the opportunities for neural malleability are dis-
proportionately enhanced over the course of childhood compared with
adulthood (Bourne, 2010), research in the last few decades has revealed
extended capacity for neuroplasticity across the entire lifespan (for
review, see Pascual-Leone et al., 2005). Also, recent efforts have fo-
cused on promoting plasticity and removing the “brakes” in order to
increase circuit rewiring in the brain (Bavelier et al., 2010). Last, there
has been increased emphasis on a clearer characterization of plasticity
and its underlying mechanism as a means of developing new ap-
proaches for enhancing reorganization of cortical function both for
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clinical purposes (Cramer et al., 2011) and for improved function in the
normal population (Lindenberger et al., 2017).

The extensive and growing body of research on plasticity and its
underlying mechanisms covers a wide range of phenomena, including
dynamic shifts in the strength of existing synaptic connections (cellular
level), structural changes in cortico-cortical and cortico-subcortical
pathways and connectivity (system level), and modifications of the
mapping between behavior and neural activity (functional level) [for
recent reviews, see Chandrasekaran et al. (2015) and Ganguly and Poo
(2013)]. The focus of the current review is primarily on reactive plas-
ticity, namely, the changes in the neural response following surgical
resection or a lesion to the central nervous system (CNS) and the con-
sequences for functional outcomes. Further, because we restrict our
discussion to the findings from humans, and specifically those from
studies of children, the approach that is most able to advance our
knowledge is the detailed investigation of changes following pertur-
bation of brain structure and function, either as a result of surgery or a
lesion acquired early in life. A complementary approach is one in which
changes over time are tracked in individuals with congenital neural
abnormalities, and progress has been made in exploring plasticity in
those with congenital sensory deficits such as blindness or deafness (for
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review, see Merabet and Pascual-Leone, 2009). Our focus here is pri-
marily on the restitution of function in cases with frank damage to
cortex but we also consider plasticity related to developmental atypi-
calities.

1.1. What can we learn from such investigations?

The impact of lesions and recovery from lesions in children is a
potentially revealing means to better understand the organization of the
visual system and its capacity to recover from damage. For example,
functional neural reorganization has been reported after surgical re-
section for the treatment of pharmacologically intractable epilepsy (see
Werth, 2008 for review). Of note, in many instances, the extent of the
recovery is disproportionate relative to the magnitude of the damage —
many compromised functions are regained partly or even completely,
and so, understanding this dramatic recovery profile can shed light on
the functional architecture of the brain.

To date, unsurprisingly given their importance, most investigations
of post-resection plasticity have been concerned with the changes in
intelligence (Vargha-Khadem and Polkey, 1992), memory (Meekes
et al., 2013; Skirrow et al., 2015; Stretton et al., 2014), language (De
Koning et al., 2009), or motor function (Bernasconi et al., 2000;
Buckley et al., 2014; Hamad et al., 2013; Mullin et al., 2016). While
such investigations offer rich descriptions of the neural and behavioral
changes, many questions remain, including, what exact underlying
mechanisms support the pattern of reorganization, whether re-
organization follows a similar trajectory independent of etiology (e.g.,
stroke, resection) and domain of function (e.g., vision, language), and
to what degree other factors (such as sex, education level, premorbid
abilities, etc.) modulate the nature and extent of recovery. There are
also a host of findings that, on the surface, appear difficult to explain:
for example, whereas some children show good recovery of function in
the language domain when the perinatal lesion to the left hemisphere
occurred before age 1 (Woods and Carey, 1979) or after left hemi-
spherectomy even beyond the critical age of acquisition (age 7-14 years
at surgery) (Boatman et al., 1999), visual impairments appear to persist
years after surgery and are less amenable to change (Haak et al., 2014).
Last, because it is difficult to generalize findings from cases with dif-
ferent times of lesion onset, as well as varying times post-lesion, and to
infer patterns of recovery from one cognitive domain to another
(Dennis et al., 2014), there is a pressing need to characterize the mul-
tiplicity of patterns of recovery (or absence thereof) and discover gen-
eral principles that characterize plasticity more generally.

1.2. Need for additional studies of plasticity of visual function

Aside from a host of studies on adults with blindsight who, fol-
lowing damage to primary visual cortex (V1), show some degree of
conscious residual vision (Danckert and Culham, 2010; Georgy et al.,
2016; Tamietto et al., 2010), there has been relatively little attention to
the recovery of visual function post-cortical lesion. In particular, there
is a paucity of studies examining post-injury changes to the cortical
visual system in young patients and, in the few existing studies, the
focus is primarily on the lower levels of the visual system (occipital
lobe) (Muckli et al., 2009; Werth, 2006), leaving open many questions
about recovery of higher levels of the visual system.

This relative dearth of studies of visual plasticity is remarkable
given that vision is considered the dominant sense for perception in
humans, and over half of the cerebral cortex is dedicated to visual
processing (Felleman and Van Essen, 1991). Pressing questions specific
to the plasticity of cortical vision include, for example: Does a lesion to
different sites along the visual cortex affect functional recovery differ-
ently? Given the well-established hierarchical organization of the visual
cortex (although see Rossion et al. (2011), Weiner et al. (2016)), does
recovery of higher-order visual cortex depend strictly on the integrity of
early visual cortex? What is the microgenesis i.e. the trajectory that is
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followed during reorganization of the visual system and what is the
nature of the change in neural processes mediating such improvement?

2. Plasticity in higher-order visual cortex

Here, we review the successes and failures of restitution of function
in patients with a lesion to or resection of VOTC early in life. For
convenience, we subdivide the review into three domains of visual
pattern recognition: face recognition (see Table 1), object recognition
(see Table 2), and word recognition/reading (see Table 3). Many chil-
dren manifest perceptual deficits in more than one of these domains
simultaneously, but we assign an individual case to a subdivision based
on the primary deficit. Note that we have also restricted our review to
cases with relatively circumscribed lesions and so even though higher-
order visual deficits may be apparent in neurodevelopmental disorders
such as autism, Down syndrome, and Rett syndrome, we do not include
these cases here. Following the analysis of the cases, we summarize and
discuss factors that promote or constrain brain plasticity and describe
other core principles gleaned from the cases. Last, we consider possible
mechanisms that might underlie the plasticity and we relate these to the
patterns of change noted in the human cases.

2.1. Theoretical considerations

Beyond V1, visual processing continues through well-characterized
ventral and dorsal pathways, with functional specialization of “what”
and “where/how”, respectively (Ungerleider and Mishkin, 1982;
Kravitz et al., 2011, although see Freud et al., 2016 for a slightly dif-
ferent characterization). Within the ventral “what” pathway (projecting
through the occipitotemporal cortex to the anterior temporal lobe), the
topographic organization has been well characterized in adults, and a
host of category-selective areas have been identified, including, for
example, multiple face-selective regions such as the fusiform face area
(FFA, Kanwisher et al., 1997), occipital face area (Rossion et al., 2003)
and anterior temporal lobe (Avidan et al., 2014); multiple place- or
scene-selective areas such as the retrosplenial cortex (RSC, Aminoff and
Tarr, 2015) and parahippocampal place area (PPA, Epstein and
Kanwisher, 1998), as well as object-selective regions such as the lateral
occipital complex (LOC, Grill-Spector et al., 1999; Malach et al., 1995),
and word-selective regions such as the visual word form area (VWFA,
Cohen et al., 2000; McCandliss et al., 2003). Although most of these
regions can be identified bilaterally, complementary patterns of hemi-
spheric lateralization — greater face-selective activation in the right
hemisphere (RH) than left hemisphere (LH) and the reverse pattern for
word-selective activation — are consistently observed (Behrmann and
Plaut, 2015). Category-selective topography is highly reproducible
across individuals, but the mechanisms that give rise to this seemingly
universal organization are not well understood. The mechanisms that
determine the emergence of this topography, however, have direct
implications for any reorganization that might occur (Anderson et al.,
2011).

Theoretically, one might postulate a continuum of possible out-
comes following brain damage that affects category-selective areas,
ranging from complete reorganization and functional recovery to no
recovery or reorganization. The extreme of no reorganization is sup-
ported by the hypothesis that the functional topographic map in ventral
cortex is innately prespecified (e.g., McKone et al., 2012) and that in-
dividual regions have, to a large extent, a single assigned function (e.g.,
face processing or word processing, Kanwisher, 2010, 2017). To the
extent that the organization is innately prewired and that a single re-
gion has a singular function, restitution of function following damage
becomes less likely i.e. if the function is solely a property of a particular
area, it is less likely that another area can assume this function. Farah
et al. (2000) adopted just this view in the study of Adam who sustained
bilateral lesions to VOTC (infarction of posterior cerebral arteries) at
Day 1 of age. At age 16, Adam was profoundly impaired at recognizing
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faces. That face recognition could not be supported by other parts of the
brain (e.g., regions mediating object recognition) was taken as evidence
that the brain areas for face recognition are predetermined. The un-
resolved face recognition impairment “implies that some distinction
between face and object recognition, and the anatomical localization of
face recognition, are explicitly specified in the genome.” (Farah et al.,
2010, p. 122).

At the opposite extreme is the view that all brain areas are equi-
potential (Basser, 1962; Dennis and Whitaker, 1977), in which case,
following damage, any region might plausibly take over the function of
another region, and recovery should be complete. This view is closest to
the principle of ‘mass action’ (Lashley, 1929) which notes that the
proportion of the brain that is injured is directly proportional to the
decreased ability of a particular function, such as memory or visual
recognition. In other words, a function cannot be localized to a single
cortical area, but is instead distributed throughout the cortex. At least
under conditions in which the lesion is not so extensive, the intact parts
of cortex should be able to compensate for the damaged area.

As will be apparent when the evidence from the patient studies is
presented below, neither of these extreme views seems to hold. There
are numerous versions of views that fall intermediate along the plasti-
city continuum. In general, these views predict a flexible, dynamic and
experience-dependent, but circumscribed, topographic outcome. One
such view might predict that there are opportunities for plasticity but
that these are constrained by existing cortical (and perhaps subcortical)
connectivity (Bouhali et al., 2014; Plaut and Behrmann, 2011; Wandell
and Yeatman, 2013). As a specific example, given that the word-pre-
ferring VWFA in the LH is tethered to both visual cortex as well as
language regions (Stevens et al., 2017), damage to this area would re-
quire that a pre-requisite for the compensatory region is to have similar
connectivity to visual and language regions. A related issue that is
especially relevant for experience-dependent plasticity is that re-
organization of higher-order visual cortex may be contingent on the
quality of input from earlier regions (Fox et al., 2010). Even a brief
period of deprivation of high quality visual input can lead to long-
lasting deficits in face and holistic processing (Le Grand et al., 2004,
2003, 2001) and in object and form processing (Ostrovsky et al., 2009,
2006) as demonstrated in the studies of individuals with congenital
blindness or cataracts.

There are a host of other factors that likely affect the outcome on the
plasticity continuum. One such factor concerns the nature of the lesion:
the more acute the onset, as in cases with sudden onset of lesion (e.g.,
stroke or traumatic brain injury) with minimal opportunity to slowly
recruit other neural correlates (e.g., as in slow growing tumor), the less
likely the recovery. Another factor concerns the timing of the lesion as
well as the maturational chronology of the visual system i.e. not all
regions necessarily obey the same developmental timetable. Research
over the past two decades has indicated that cortical areal formation
follows a unique, spatiotemporal time-lapse sequence during childhood
and through early adulthood (Gogtay et al., 2004) with different ma-
turational trajectories for different areas and some regions not fully
mature until well into adolescence. For example, face-selective cortex
follows a slower developmental trajectory, not fully mature even in
early adulthood (Germine et al., 2011), compared to object-selective
cortex, which may be adult-like as early as age 5 (Gogtay et al., 2004;
Golarai et al., 2015, 2010, 2007; Haist et al., 2013; Scherf et al., 2011,
2007) or even younger (Emberson et al., 2017; Nishimura et al., 2015).
The pattern of word selectivity in the VWFA also emerges slowly over
development, as reading and writing experience accumulate (Maurer
et al.,, 2006), and orthographic representations may develop at the
expense of face representations in the LH (Cantlon et al., 2011; Dehaene
et al., 2015; Dundas et al., 2013). One prediction then is that differ-
ential patterns of maturation in the VOTC during childhood may have
potentially different trajectories for recovery of function with greater
opportunities for plasticity in later (face- or word-selective) than in
earlier (object-selective) maturing areas.
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Below, we review the 46 cases with a cortical lesion/resection in
childhood, and we report the observed effects of the lesion on face,
object recognition and/or word recognition.

2.2. Face recognition in pediatric patients

2.2.1. Early-onset cases (before 1 year of age)

One strong case of early onset of prosopagnosia, as mentioned
above, is Adam who contracted streptococcal meningitis on Day 1 of life
with lesions affecting VOTC bilaterally (Farah et al., 2000; Farah and
Rabinowitz, 2003) (see Table 1). When tested at 16 years of age, Adam
showed a profound impairment in face recognition (unable to identify a
single face from his favorite TV show) and a moderate deficit in object
recognition (Naming: nonliving things 75% correct; living things 40%
correct. Although the conclusion is that Adam's face recognition deficit
is more severe than his object recognition deficit, the deficits may not
be directly comparable given that the former was tested at the in-
dividual/exemplar level while the latter was tested at the basic level
(and is seemingly less affected).

In light of the prominent and persistent prosopagnosia, Farah et al.
(2000) stated that there is an early commitment of neural substrate to
face recognition and that, because no other region of cortex was able to
compensate for the VOTC lesions, recovery of function was not possible.
We note, however, that Adam's bilateral lesion resulted in many ele-
mentary visual deficits such as esotropia, amblyopia, reduced acuity
and visual field abnormalities, and thus the lack of reliable input, rather
than a fundamental limit on plasticity per se, may have hindered
Adam's development of face and object recognition.

KD also suffered from a bilateral occipital lesion due to meningo-
coccal meningitis and was cortically blind for a few weeks in infancy (at
14 month) (Ellis and Young, 1988; Young and Ellis, 1989). Following
this illness, KD had difficulties with face and object recognition and,
between 8 and 11 years of age, KD had deficits in both low- and high-
level vision. As with Adam, KD's low-level visual deficits included poor
visual acuity, reduced contrast sensitivity, and impaired color vision.
KD was also severely impaired in topographic orientation, copying and
drawing, and object recognition, but was disproportionately impaired
in face recognition (correct: unfamiliar faces 13/20; familiar faces 10/
20). An 18-month training program to improve face processing in KD
yielded no improvement, further cementing the hypothesis that there is
an early commitment of neural substrate and that it is immutable (Ellis
and Young, 1988).

Perhaps surprising given the low-level visual deficits, KD showed
age-appropriate reading skills (although the assessment does not eval-
uate reaction time (RT) and this may be compromised for accuracy;
Gerlach et al., 2005). There are a number of interpretations of this
pattern of prosopagnosia without concurrent alexia. One anatomical
explanation is that, even though the damage was bilateral, the lesion
was more severe in the right hemisphere, as indicated by the persistent
left-sided motor weakness. An alternative is of a dissociation between
two- and three-dimensional representations (Ellis and Young, 1988):
whereas the deficit in face and object processing might be accounted for
by the inability to form 3D visual representations, the recognition of 2D
shapes might have supported the preservation of letter and word pro-
cessing (see Table 1 for more details).

These cases of persistent prosopagnosia can be contrasted with
findings from Mancini et al. (1994) who report data from six patients
with unilateral lesions acquired prenatally or before age 1.' Three

1 Although each patient's performance was compared to only one control subject, we
assume high representativeness of those controls reflecting normal and comparable per-
formance across tasks from both Table II and the following sentence in Mancini et al.
(1994). “In the control group, the scores in the various tasks therefore did not vary sig-
nificantly from one child to another despite the differences in age and IQ, whereas in the
patient group the scores in the various tasks did differ significantly from one patient to
another”.
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(Patients 1-3) had damage to the RH and the other three had damage to
the LH? (Patients 11-13) When tested in later childhood (from 7 to 11
years), all children were able to recognize famous faces except for Pa-
tient 11° although 3 patients (1, 3 and 11) showed impaired identity
discrimination (sorting faces into pairs). This advantage for the re-
cognition over face matching is a little surprising unless the famous
faces had salient distinguishing characteristics. Variability in face and
non-face task performance was high and two patients with the same
etiology (Sturge-Weber angiomatosis) and similar extent of right occi-
pital angioma performed differently on tasks like lip reading, emotional
expression and identity judgment. Taken together, the results showed
that some aspects of face processing (famous faces and sex dis-
crimination) did not differ from controls, whereas other skills were
severely impaired (identity and lip reading) although the pattern varied
from one child to another. Given the variability and perhaps the dif-
ference in the complexity of different tasks, reaching conclusions from
this study is difficult. Also, in the absence of premorbid data, we do not
know whether the children's visual abilities were ever affected or
whether there was a deficit early on that subsequently recovered.

2.2.2. Later-onset cases (between 1 and 6 years of age)

All cases reviewed above had perinatal or prenatal cortical pertur-
bation but there are also cases with later lesions. Barton et al. (2003)
reported findings from three patients (two with bilateral lesions) whose
onset of lesion ranged between 1 and 6 years of age (see Table 1 for
more details). When tested in adulthood, all three showed severe face
recognition deficits, with varying degrees of impairment in object re-
cognition and/or basic visual perception such as spatial contrast, lu-
minance, and spatial resolution. In particular, the authors noted that all
three patients were impaired in encoding the spatial configurations of
face features, implicating configural processing in within-category
discrimination as critical for face recognition. Note that a deficit in
configural processing is also observed in the individuals with early
cataracts, possibly implicating a similar early mechanism in the cortical
lesion patients (Maurer et al., 2007).

Hadjikhani and De Gelder (2002) provided the first systematic study
probing the neural basis of childhood prosopagnosia (see Table 1 for
more details). They tested two adults, both of whom suffered from a
closed head injury, one at 18 months of age (GA), and the other at age 7
years (RP). As is often true in such cases, neither patient had an obvious
lesion on an MRI scan. However, both displayed severe impairment in
recognizing faces while their object recognition abilities were reported
to be preserved (but no RT is reported and the difficulty of the object
recognition tests is not matched to that of the face tasks). During a
localizer scan, GA showed no face-selective activation (i.e., a stronger
response to faces than objects) anywhere in the VOTC whereas RP
showed activation for both faces and objects in typical object-selective
cortex, inferior occipital gyrus (IOG) and lateral occipital cortex (LOC).
The absence of face-selective activation anywhere in GA is surprising
and even the cataract patients show face-selective activation, albeit
reduced relative to controls (Grady et al., 2014). The findings are also
counterintuitive as the child with the earlier lesion does not show re-
covery of recognition skills whereas the child with the later lesion does.

Another comparable case, MJH, suffered a fall at age 5 and sus-
tained extensive bilateral lesions to VOTC (including regions that would
normally encompass FFA and OFA) (Michelon and Biederman, 2003; Xu
and Biederman, 2014). Despite being completely blind for a period of

2 Although a RH lesion is more commonly associated with prosopagnosia, there are
reports of prosopagnosia associated with a left occipitotemporal lesion (Barton, 2008) and
of a patient with pre-existing right-sided infarcts who only became prosopagnosic fol-
lowing a subsequent left occipitotemporal hemorrhage (Ettlin et al., 1992).

3 Surprisingly, subject 11 is not considered prosopagnosic. “Despite his zero score re-
cognition of famous faces, subject 11 was not prosopagnosic, since when presented with
his mother's and his sister's photographs, he was able to recognize them.” Mancini et al.
(1994), p. 162.
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time immediately following his accident, MJH regained close-to-normal
visual acuity and normal contrast sensitivity except for the persistence
of tunnel vision. Roughly 40 years later MJH was still impaired in face
individuation (Michelon and Biederman, 2003) and detection (Xu and
Biederman, 2014), suggesting insufficient plasticity to restore face
perception (multiple tests conducted between ages 34 and 45 years).
MJH is less impaired in face imagery than in perception (Michelon and
Biederman, 2003) and his performance in discriminating facial ex-
pression and sex (Mangini and Biederman, 2004) as well as object
naming was in the normal range (Michelon and Biederman, 2003). He
did, however, have difficulty comprehending abstract drawings and
showed a mild learning disability involving arithmetic, spelling,
handwriting, and slowed reading.

The 14 childhood studies reviewed above all refer to individuals
who have suffered an insult to cortex rather than a resection of cortical
tissue. It appears, however, that etiology is not necessarily a de-
termining factor of the presence/absence of recovery. Mixed results can
also be found in cases of right hemispherectomy even when the pa-
tients’ age and etiology (epilepsy) are closely matched as in the next
two case studies described below. Damasio et al. (1975) reported a case
of a 34-year-old woman who had undergone a right hemispherectomy
at age 20. She sustained a severe closed head injury at age 5 which later
triggered medically intractable seizures, eventually requiring a right
hemispherectomy. Of course interpreting the nature of the neural
changes in such a case is challenging given the long time line and the
infrequent testing to map the trajectory of change: it is impossible to
know whether the prosopagnosia occurred as a result of the initial in-
jury, the ensuing epilepsy or the surgery itself. Surprisingly, this in-
dividual was not hemianopic after the surgery. She did, however, have
bilateral optic atrophy prior to the surgery and, when tested 14 years
post-surgery, there was a gradual suppression of vision in the left eye
(eventually blind) and enlargement of the right eye's visual field. Post-
surgical testing of face recognition did not show any impairment in the
discrimination of familiar or unfamiliar faces, and reading of letters,
words, digits, and numbers was normal. One possible interpretation is
that considerable reorganization (shift of recognition skills to LH be-
cause of more severe insult to RH) might have occurred post injury and
thus face and word/letter recognition were normal postsurgery. The
absence of data pre-surgery and post injury also make it difficult to
determine exactly when and what kind of reorganization occurred.

In contrast, patient BM was a 33-year-old woman who underwent
right hemispherectomy to manage her medically intractable epilepsy at
age 13 (Sergent and Villemure, 1989). Post-surgically BM had a dense
left homonymous hemianopia, impaired contrast sensitivity in the low
spatial frequency range and profound prosopagnosia across a range of
tests, despite being unaware of her impairment. No obvious object ag-
nosia was found for common objects but she did show a deficit in dis-
criminating between highly similar objects. In addition, she had normal
reading and good comprehension. Writing to copy and dictation, as well
as spelling, were unimpaired, too.

2.2.3. Interim summary

Taken together, there appears to be no straightforward relationship
between the etiology, time of onset, localization of the lesion and the
severity or recovery of the impairment in face processing. Restitution or
sparing of face recognition is clearly possible as shown in at least 5 out
of 6 patients from Mancini et al. (1994) and Damasio et al. (1975), but
persistent impairment is noted in the other 10 prosopagnosic cases,
even when the nature of lesion, time of surgery and testing period post-
surgery seem roughly similar. One definitive conclusion is that some
aspects of face recognition can be spared or restored after both early
and later lesion. These findings challenge the extreme hypothesis that
there is a dedicated neural substrate for face recognition and no pos-
sibility for reorganization (Farah et al., 2000).

Of course this leaves open the question why recovery ensues in some
but not all cases. One possibility, as alluded to previously concerns the
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quality of the input. If low-level vision is affected, with poor acuity, and
poor contrast sensitivity, this may impede any experience-dependent
maturation. The failure to acquire face recognition post-lesion (even
with intervention (as in Ellis and Young, 1988; Young and Ellis, 1989)),
then, may be a result of poor input to the system rather than the con-
sequence of a dedicated and immutable cortical region. The absence of
recovery may also result from the fact that the remaining hemisphere is
‘crowded out’ i.e. the LH is already committed to particular functions,
making it incompatible with new skills although why this is true in
some but not all cases is unclear.

A further possible determinant of recovery concerns whether the
damage is unilateral or bilateral in nature. In the early onset cases,
those with persistent prosopagnosia have bilateral deficits and those
with recovery mostly have unilateral lesions. The same distinction may
hold in those cases with later onset (Barton et al., 2003 with 2 of 3 cases
having bilateral lesions, and Hadjikhani and De Gelder (2002) whose
patients had closed head injuries). This unilateral/bilateral distinction,
again, does not seem to hold in all the hemispherectomy cases, how-
ever, as two cases (Damasio et al., 1975; Sergent and Villemure, 1984),
had unilateral right hemispherectomy and yet only one recovered face
recognition abilities.

2.3. Object recognition in pediatric patients

Pediatric patients with only or predominantly object agnosia
without major difficulties in other domains (e.g., faces, words) are re-
latively rare and perhaps even more rare than prosopagnosia without
concomitant object agnosia.” One possible reason for this rarity is that
objects typically elicit more extensive and distributed activation in the
VOTC compared to face- or word-selective activation (Grill-Spector,
2003; Haxby et al., 2001) so that, even after damage, some neural tissue
in this region may be preserved. In those cases who do show object
agnosia, then, the chances of subsequent recovery might be low, as
opportunities for functional reorganization may be precluded by the
extensive lesion that likely caused the agnosia in the first place.

2.3.1. Cases with no or limited recovery

One of the most severe cases, AR, presented with object agnosia,
prosopagnosia and color agnosia after contracting herpes encephalitis
that resulted in extensive atrophy in the right temporal lobe and in a
portion of the left inferotemporal region (Schiavetto et al., 1997) (see
Table 2). Over the seven-year follow-up, AR showed limited recovery
despite the proficient use of compensatory strategies such as feature-by-
feature analysis for object identification and spatial localization for
memorizing the position of objects (perhaps reflecting preserved par-
ietal lobe function).

A similar but perhaps even more dramatic case is SB who contracted
meningoencephalitis at age 3, resulting in extensive bilateral ventral
lesions and a lesion in the right dorsal pathway (Lé et al., 2002) (see
Table 2). Tested at age 30 (27 years post-onset), SB had a severe re-
cognition deficit for objects, faces and words. He also had a range of
low-level visual deficits such as impaired color vision, texture percep-
tion, and contrast sensitivity (in the high spatial frequency range) and
no obvious recovery of his hemianopia. However, he showed surprising
visuomotor competence, as reflected by his ability to orient and shape
his hand for reaching and grasping objects. The authors concluded that
the preservation of the visuomotor sensitivity is mediated by the re-
sidual dorsal pathway (Goodale and Milner, 1992), consistent with
findings that the magnocellular-dorsal pathway supports residual visual
perception functions for action (although see Rossit et al., 2017, for
some recent counter-evidence).

“ We have not included cases of childhood object agnosia with no obvious structural
abnormalities such as patient LG (Ariel and Sadeh, 1996; Gilaie-Dotan et al., 2009) or MJ
(Martinaud et al., 2015).
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2.3.2. Cases with some recovery in low- or high-level vision

A different pattern, this time of some recovery of low-level visual
skills, is reported in a case of object agnosia with relatively preserved
face and word recognition (Bova et al., 2008). This patient suffered a
bilateral V1 lesion at the age of 2 years 6 months (hemorrhagic infarcts
and blood perfusion deficit were seen on imaging in both occipital
lobes). Within 4 years of recovery, the patient progressively regained
low-level visuoperceptual functions, starting with the recovery of mo-
tion perception, to an improvement in visual acuity and gradual re-
duction of the visual field defect. Comprehensive testing revealed
average visuomotor integration skills (less than 50th percentile), but
poor visual object recognition as measured on the Birmingham Object
Recognition Battery (Riddoch and Humphreys, 1993), poor recognition
of overlapping figures (Poppelreuter-Ghent Test, 3rd percentile), re-
duced gestalt perception (Street Completion Test, 10th percentile), and
poor identification of objects viewed from unusual perspectives and
under unusual lighting conditions (3rd and 1st percentiles respectively,
see Table 2). Face and word recognition were reported to be relatively
spared although performance was still poor (approximately 20th per-
centile on Test of Memory and Learning (TOMAL) facial memory
subtest; no data on word recognition reported). Taken together, the
pattern of visual recovery over a 4-year period in this child suggests
differential patterns of functional recovery in low- vs. high-level vision:
the acuity and the span of the visual field appear to have resolved, but
the deficit in higher-order visual recognition persisted.

The hypothesis that intact low-level visual abilities early on are
crucial for the development of high-level vision was directly examined
in a recent fMRI study (see Table 2) (Hu et al., 2013). Patient CGN
suffered a subdural hematoma in the left occipitoparietal cortex at the
age of one year. At the age of 12.8 years, or about six years after the
surgical removal of the subdural hematoma, CGN's low-level vision had
improved significantly, including a largely alleviated hemianopia and
this was reflected in the functional activation in the left occipital cortex.
Importantly, although the left temporal cortex was activated by visual
stimuli (faces, words, objects and scrambled objects minus the fixation
baseline), the response was not object-selective (defined by the contrast
of the object categories (faces, words and objects) versus scrambled
objects). The right inferotemporal cortex revealed normal object-se-
lective activation, indicating relatively uncompromised recognition
when objects appeared in the good visual field. Taken together, the
parallel findings between behavior and the neural basis of object re-
cognition suggest that visual inputs from the early visual cortex at a
young age may be necessary to trigger not just the activation but also
the fine-tuned development of high-level visual functions in object-se-
lective cortex (although note that the RH was spared at all stages and
this may be the basis of the normal recognition). The differential tra-
jectories of functional recovery in low- and high-level vision in both
Bova et al. (2008) and Hu et al. (2013) echo the quality of the input
argument mentioned previously. That is, the development of category-
selective regions might depend on visual inputs at an early age, and
early-onset disorders of low-level vision may impede experience-de-
pendent maturation. Even the gradual recovery of low-level vision
(within about 6 years) appears to be insufficient and category-selective
behavior and neural responses remain abnormal (Bova et al., 2008; Hu
et al., 2013).

Perhaps the most successful recovery of object recognition was
evident in patient SR who suffered a diffuse lesion in the frontal, oc-
cipital, and parietal lobes as a result of encephalitis at 8 weeks of age
(Funnell and Wilding, 2011). Although SR was not tested premorbidly
(and testing of an 8 week old is not likely to be very informative), we
assume that SR's poor recognition is a direct consequence of the en-
cephalitis. SR then showed gradual, albeit slow, recovery of object re-
cognition over the 8 years of the longitudinal investigation: visual as-
sessment at age 10 years revealed normal basic visual abilities such as
contrast sensitivity, convergence, color vision, and pursuit movement.
Also, although her ability remained poorer than that of controls, SR was
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able to learn to perceive visual shape to some extent. Presumably the
early timing of lesion, the fact that temporal cortex was spared and the
etiology (encephalitis) might be key to the extent of plasticity and re-
covery.

Similar to these five in-depth case reports of childhood object ag-
nosia (some of whom showed recovery and some did not), there are
mixed reports of impaired or preserved object recognition associated
with perinatal lesion. For example, 15 out of 22 children born preterm
with periventricular leukomalacia affecting the retinogeniculate visual
pathways (Fazzi et al., 2009, see Table 2) showed an object recognition
deficit when tested at age 6-15 years. In contrast, letter recognition was
intact in all cases and face recognition and Gestalt perception were
relatively spared (4/22 were impaired in the former and 5/22 in the
latter task).

2.3.3. Interim summary

A few key points can be derived from the studies of object re-
cognition impairment. One speculative comment is that the number of
object agnosic cases in the literature is rather small, perhaps indicative
of high rates of recovery given the relatively large cortical region im-
plicated in object recognition. A dissociation between recovery of early
and later parts of cortex might be possible: pattern recognition may
continue to be adversely affected even though some lower-level visual
abilities may be functional or even recovered over time. This pattern of
dissociation is found in some cases of object agnosia (gradually re-
covered low-level vision: Bova et al., 2008 and Hu et al., 2013; normal
or near-normal low-level vision: Fazzi et al., 2009 and Schiavetto et al.,
1997) and prosopagnosia (gradually recovered low-level vision: MJH in
Michelon and Biederman, 2003; Xu and Biederman, 2014; functional
low-level vision: GA in Barton et al., 2003; Hadjikhani and De Gelder,
2002). It is the case, however, that there are a number of cases that
have moderate to severe impairment in basic visual abilities and per-
sistent category-level impairments (e.g., object agnosia: Lé et al., 2002;
prosopagnosia: KBN and KT in Barton et al., 2003; Farah et al., 2000;
Sergent and Villemure, 1989; Young and Ellis, 1989). Of note, in all of
the cases with category-level impairments, it is possible to see differ-
ential recovery e.g., recovery of reading skills but ongoing marked
prosopagnosia.

2.4. Word recognition in patients with an early-onset lesion

In this last section, we review the word recognition deficits in the
early lesion/resection cases. Given that letter and word recognition is
not typically acquired until roughly 4-6 years of age and that the
mastery of the mappings between visual print (orthography) and pho-
nological representations takes considerable experience (Schlaggar
et al., 2007), case reports of pure word recognition deficits in childhood
are extremely rare. One prediction, however, is that, given that the left
VWFA and other areas associated with more linguistics aspects of
reading (such as supramarginal gyrus) may not mature until later
childhood, the prolonged developmental trajectory of reading acquisi-
tion may potentially offer greater opportunities for plasticity and re-
organization. Because our focus is primarily on the visual system, we
focus more on the VWFA than on other areas that support reading (e.g.,
supramarginal gyrus) and so the question is, whether the right VWFA
can be functionally recruited to subserve normal reading after lesion or
resection encompassing the left VWFA?

2.4.1. Cases with no or limited recovery

Danelli et al. (2013) studied the spoken and written language re-
covery of a 14-year-old adolescent (EB) who underwent a left hemi-
spherectomy at the age of 2 years 6 months (see Table 3). At test, EB's
language production and comprehension was near-to-normal and acti-
vation in his right language network conformed to the linguistic neural
blueprint of the LH (another case of dramatic reorganization of speech
and language skills). Curiously, given that the left hemispherectomy
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occurred before the formal acquisition of reading, no reading-specific
activation was found in EB's right ventral occipitotemporal cortex
(spatially congruent with a right-sided VWFA). In fact, this region was
more activated in response to elementary shape matching than to or-
thography, and his reading profile was one of surface dyslexia, typically
due to damage of the left parietal or temporal lobe. It is unclear whether
the persistent dyslexia is a direct result of the resection of the left VWFA
and LH language regions, whether there is ‘crowding’ of the right
hemisphere or whether some other mechanism is at work here.

Similar to EB above, O’Hare et al. (1998) reported an impairment in
a 10-year-old child with normal intelligence who sustained bilateral
occipital-lobe infarctions at the age of 2.5 years. This child showed a
broad deficit in visual cognition including alexia (although recognition
of letters and numbers was spared), object agnosia, prosopagnosia, and
some degree of topographic agnosia in various investigations conducted
between age 8.5 and 10 years (see Table 3).

2.4.2. Cases with functional reorganization of VWFA

A seemingly contradictory finding was reported in Cohen et al.
(2004) in an 11-year-old left-handed girl with a history of Sturge—
Weber disease, who had surgical resection of the left occipital lobe at
age 5 years. Left lateralization of language-related activations was
found, including Broca's area, superior temporal sulcus, and inferior
parietal lobule, and clinical assessment showed normal spoken lan-
guage production and comprehension. Her reading performance was
within the lower range of normal adults (although it is not clear why
adults were used as controls here), despite her right hemianopia. In-
terestingly, the right VWFA was functionally recruited for word reading
such that it was activated more strongly by words than by checker-
boards whereas a comparable level of activation is found in normal
readers. According to the authors, this interhemispheric shift may have
taken advantage of direct transcallosal projections from the right oc-
cipitotemporal cortex to the preserved language areas in the LH. It is
also unclear whether the patient's left-handedness afforded any ad-
vantages in the reorganization of the VWFA. In fact, reorganization to
right VWFA is not uncommon and has also been reported in some adult
cases (Fischer-Baum et al., 2017, see more discussion in 3.5 Mechanism
of plasticity). Furthermore, in the case of pediatric patient CGN in Hu
et al. (2013)° with additional details presented in the previous Section
2.3.2, CGN showed age-appropriate reading and word-selective acti-
vation in the right VWFA at age 12 following lesion to the left occipi-
toparietal cortex at the age of one year.

2.4.3. Interim summary

Varying degrees of functional recovery of reading are evident in
these three case studies with a lesion encompassing the left VWFA.
Although causation cannot be easily established, the degree of recovery
of reading ability (ranging from normal to none) is likely to be asso-
ciated with the degree to which the right VWFA can be functionally
recruited in word reading. A unilateral lesion offers potential for re-
mapping to the other hemisphere (as in Cohen et al., 2004 and Hu et al.,
2013 but not in Danelli et al., 2013) whereas a bilateral lesion to the
occipital lobe precludes opportunities for functional reorganization
(O’Hare et al., 1998). Aside from a difference in the extent of the lesion,
other possible explanatory factors that differentiate the presence versus
absence of recovery in the 3 cases is that the individual with recovered
reading was left handed and the resection occurred later than in the
other cases (5 years versus 2.5 years).

3. Discussion

The goal of this review paper is to examine the profile of recovery of

S This case was presented in 2.3 Object recognition in patients with early-onset lesion,
based on the primary impairment.
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visual recognition skills in pediatric patients who have undergone a
cortical resection or who have suffered a lesion to the visual system
(e.g., post-meningitis). Elucidating the nature and extent of recovery
has the potential both to inform our theories of cortical organization
and to provide possible opportunities for optimizing recovery in in-
dividuals with brain damage. To achieve this goal, we reviewed the
findings from 46 children, all of who evinced a deficit in visual re-
cognition.

Unsurprisingly perhaps, we have been unable to uncover any cut
and dried answers. The profile of plasticity across the reported cases is
highly variable, and this variability holds for the recovery of face, ob-
ject and word recognition skills. Out of the 16 cases with a lesion af-
fecting face recognition, 10 showed no recovery (see Table 1). There
was also no recovery of high-level visual function in 18 out of 27 cases
with a lesion affecting object recognition despite varying degrees of
recovery of low-level vision (see Table 2), and no recovery of reading in
2 out of 3 cases with a lesion affecting word recognition (see Table 3).
Together, out of 46 cases (which is admittedly a relatively small
sample), 30 cases showed no recovery and the remaining 16 showed
recovery to varying extents. Although no straightforward conclusions
are possible, and this is disappointing, the finding of such variability is
informative in and of itself and raises a host of questions for future
study.

3.1. Plasticity in high-level vision

In addition to surveying the cases and laying out the presence/ab-
sence of plasticity, a further goal was to determine whether the nature
and extent of recovery might permit conclusions about brain-behavior
organization. Specifically, we hypothesized that the absence of plasti-
city might reflect a modular organization in which a specific cortical
region subserves a specific function in which case, after damage, no
other region can assume the function of the damaged area. The opposite
end of the outcome continuum is one in which full recovery occurs
irrespective of the size or site of the damage as the claim is that all
cortical regions are equipotential (at least in early childhood).

That we do not see full recovery in all 46 cases essentially rules out
the equipotential viewpoint. We do not even see recovery even in a
subset of cases with the earliest possible lesions (perinatal or meningitis
on Day 1 of age), which would afford maximal opportunity for re-
wiring. The absence of recovery might be taken as compatible with the
strictly modular view. As articulated clearly by Farah et al. (2000), the
persistence of a deficit supports the notion of prespecified function and
structure in the genome and no ensuing malleability.

The problem with adopting this immutability viewpoint, however,
is undermined by the fact that there are some cases who do show res-
titution of function: for example, this is so for the patient who under-
went a right hemispherectomy (Damasio et al., 1975), and for some (or
possibly all) of the 5 patients with prenatal or very early postnatal
unilateral lesion in Mancini et al. (1994). In the domain of object re-
cognition, the patient who suffered an early lesion at eight weeks of age
showed a gradual recovery of object recognition over at least 8 years
(Funnell and Wilding, 2011) and the functional reorganization to right
VWFA in both Cohen et al. (2004) and Hu et al. (2013)° also reflect
orthographic pattern recognition following lesion or surgical resection.
These demonstrations of recovery challenge the strong conclusion that
the neural substrate for visual recognition (even for face recognition) is
committed early (Farah et al., 2000).

As clear from the above discussion, we have ruled out the extreme
hypothesis of no recovery as well as the hypothesis of full recovery and,
consequently, are left with an inconsistent picture of plasticity for face,

© This case was presented in 2.3 Object recognition in patients with early-onset lesion,
based on the primary impairment but the presence of right VWFA activation is important
in this context.
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object and word recognition. The remaining question then is what
principles govern reorganization in some but not all individuals? There
is no unambiguous conclusion. One limitation is that patients are al-
most never tested premorbidly (many are too young at the time of re-
section or lesion). Also, in some cases plasticity might have occurred
prior to the surgery and the brain might already have reorganized so
that good visual recognition post-surgery may already be in place.
Other limitations are that many patients are tested only once post-brain
damage so determining the nature, trajectory and mechanism of re-
covery when it exists, is difficult. Last, anatomical information about
the lesion is often limited, and, across studies, patients are tested with
different tests, making comparisons difficult.

We also raise a caveat in the interpretation of the sparing or re-
covery of visual cognition in pediatric patients. ‘Recovery’ implies that
there was an impairment initially and that it was followed by gradual
improvement over time. For example, we used “recovery” in our ana-
lysis of the Funnell and Wilding (2011) study: longitudinal investiga-
tions into S.R.’s visual object recognition and naming between ages 6
and 14 years showed an initial impairment followed by gradual im-
provement over time. However, in cases of perinatal lesion in Mancini
et al. (1994) where no premorbid data are reported, the varied per-
formance across different face-related tasks (e.g., identity, expression,
sex) was used to infer that some aspects of face processing could be
developed while other aspects could not be learned with experience.
The assumption is that the children would have been impaired in par-
ticular domains and so the skills they manifest at testing must have
been acquired but we do not have strong evidence for an initial im-
pairment and subsequent recovery.

3.2. What factors affect plasticity?

A host of characteristic properties are known to predict post-surgery
prognosis (Stiles et al., 2005). Also, the earlier the resection the better
the recovery (Bourne, 2010), and the data we report are consistent with
this as functional restitution of aspects of face recognition is observed in
those with prenatal injury (Mancini et al., 1994). Although these data
do not directly implicate a specific critical period for the acquisition of
high-level visual skills, in theory, damage that occurs within the ‘sen-
sitive’ period of development may afford an optimal outcome (Hensch,
2005) if the damage occurs earlier (Staudt, 2010).

Given that experience is well known to tune the visual system
(Gauthier et al., 2000; Gauthier and Tarr, 1997; McGugin et al., 2017),
and that a stimulating, rich environment delivering good quality and
widely varying inputs has the potential to trigger experience-dependent
changes in the patient (Kolb, 1995), one might expect greater plasticity
in domains to which we are exposed through daily experience. Yet, the
10 childhood prosopagnosic individuals had many years of experience
with faces post-lesion (including a training program targeting face
processing in KD; Ellis and Young, 1988) and none recovered the ability
to recognize faces. Although the lesions in most cases occurred prior to
the emergence of a mature face-processing brain network (Golarai
et al., 2007; Scherf et al., 2007), which has a prolonged developmental
trajectory even extending to age 30 years (Germine et al., 2011), re-
covery may simply take longer. Additional follow-up of these cases in
later years might further illuminate the nature and extent of recovery
from childhood lesion or surgery.

The absence of plasticity in many cases is consistent with the sur-
prising absence of plasticity in individuals with the developmental or
congenital form of prosopagnosia (CP) (Avidan and Behrmann, 2009;
Behrmann and Avidan, 2005; Geskin and Behrmann, in press). These CP
individuals fail to master face recognition notwithstanding their normal
vision and normal cognition and intelligence. The difficulties they ex-
perience appear to be lifelong and no substantial recovery has been
documented but some training studies do report some improvement
(DeGutis et al., 2011, 2014). Although the absence of recovery is puz-
zling in these cases given the lack of an observable lesion, there may be
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alterations in VOTC such as compromised white matter integrity
(Thomas et al., 2008; but see Song et al., 2015) that prevents incidental
plasticity in a way that mimics a frank lesion. In such individuals,
presumably, the dysfunctional mechanism is still in situ, precluding
major changes in topography and selectivity.

A further predictive factor concerns the extent of the lesion: the
more circumscribed the cortical resection/lesion, the better the out-
come and, as noted above, there is minimal plasticity possible in either
low- and high-level vision following a bilateral lesion (Farah et al.,
2000; Young and Ellis, 1989). In addition, more chronic etiologies do
better than those with acute onset (e.g., the relatively slow growth
profile associated with tumor potentially affords greater opportunity for
plasticity and reorganization than does stroke: a sudden lesion (Mancini
et al., 1994) or meningitis (Farah et al., 2000; Young and Ellis, 1989)
may preclude the opportunity for reorganization. In contrast, it remains
possible, at least in principle, that a slow growing tumor or epilepsy,
which is managed medically before becoming intractable, may offer
time for slow reorganization of function.

3.3. Low-level deficits and experience-dependent plasticity?

To what extent does the deficit in low-level vision impede plasti-
city? A differential pattern of functional recovery may be associated
with the status of low-level vision. For example, Bova et al. (2008)
documented recovery of their patient's visual functions from the age of
2.6 years to 6.8 years. Motion perception was fully recovered first at 2.9
years, followed by gradual recovery of visual acuity and visual field
from age 2.6-5 years, and then complete recovery of basic vi-
sual-perceptual abilities at age 6.8 years. Fox et al. (2010) also noted
that high-level neural circuits are dependent on the quality of the in-
formation provided by lower level circuits. Consistent with this, in this
review, cases with limited or no recovery of high-level vision tend to be
those in whom deficits in low-level vision also persist (Farah et al.,
2000; Mancini et al., 1994; Sergent and Villemure, 1989; Young and
Ellis, 1989).

Of course, a persistent deficit in low-level vision deprives the ob-
server of experience and this deprivation plays an important role (Daw,
2003; Lewis and Maurer, 2005). As alluded to above, in children with
congenital blindness or cataracts, even if only for a short period, the
brief, early visual deprivation can lead to long-lasting deficits in face
and holistic/configural processing (congenital cataracts: Le Grand et al.,
2004, 2003, 2001) and object and form processing (congenital blind-
ness: Ostrovsky et al., 2006). Early visual deprivation can also affect
aspects of mid-level vision including the perception of global form and
global motion (Ellemberg et al., 2005; Lewis et al., 2002), especially
after binocular deprivation (Ellemberg et al., 2002), and surgery does
not immediately ameliorate all aspects of the impairment (Gandhi
et al., 2015). Similarly, global processing deficits have been reported in
amblyopic observers (see Hamm et al., 2014 for a review), concurrent
with deficits in global motion perception (dorsal visual stream), global
form perception and holistic face perception (ventral visual stream).

Unsurprisingly, deprivation of visual signals in those who are con-
genitally blind also impedes the emergence of some aspects of higher-
order vision. However, functional neural reorganization such as cross-
modal plasticity has often been reported after sensory deprivation: for
example, in the blind, ‘visual cortex’ can be activated by tactile sti-
mulation (Biichel, 1998; Sadato et al., 1996), or auditory stimulation
(Gougoux et al., 2005; Striem-Amit et al., 2012) or can even be re-
cruited during symbolic math calculation (Kanjlia et al., 2016) or
syntactic functions (Lane et al., 2017). In particular, a functional dis-
sociation between a ventral “What” stream for the processing of object
shape and a dorsal “Where” stream for the processing of space exists in
blind subjects in both the auditory and tactile domain (Amedi et al.,
2007; Collignon et al., 2011). For recent reviews on category selectivity
in the blind, see Bi et al. (2016).

Taken together, the timing and quality of visual experiences,
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particularly during an early developmental period, can have cascading
effects on the development of mid- and high-level vision. Of note, even
if these visual deficits recover, category-level recognition impairments
may persist but other aspects of high-level visual function can be pre-
served.

3.4. Category-selective or broader deficits?

For convenience, we have divided the reviewed cases into three sub-
groups depending on the primary deficit (although which is primary is
sometimes debatable). Almost all, if not all, cases do not show a deficit
that is limited to one visual category (see Tables 1-3), and the degree to
which deficits, other than the primary deficit, recover also varies in
these cases. In particular, the extent to which recognition abilities are
spared or recovered is not consistent, suggesting that the lack of plas-
ticity in high-level vision in the immature brain may not be strictly
category-specific (Farah et al., 1995; McNeil and Warrington, 1993).
Ten out of 16 cases with a deficit in face recognition, as reviewed in
Table 1, show an impairment in object recognition and/or reading
abilities, although this varies in severity. In fact, the presence of a fairly
widespread deficit is worth noting: because tests of object and word
processing are generally not as demanding as face recognition tests
(Behrmann et al., 1998; Gauthier et al., 1999), uncovering a more
general deficit indicates that the deficits might be rather severe. In cases
of childhood object agnosia, none of the cases demonstrated normal
face recognition (Bova et al., 2008; Funnell and Wilding, 2011; Lé et al.,
2002; Schiavetto et al., 1997) and, in studies of childhood pure alexia, if
the face and object recognition were tested, the pure alexia co-occurred
with prosopagnosia and object agnosia (O’Hare et al., 1998). In addi-
tion, considering the possibility that the development of high-level vi-
sual function is initially undifferentiated and becomes increasingly
functionally specialized in the mature brain (Durston et al., 2006), it
makes sense that the effects of a lesion sustained during early devel-
opment may not be specific to one particular function. In sum, a
common pattern evident from early brain lesions is that of a general
impairment that affects recognition in multiple visual domains.

3.5. Mechanisms of plasticity

Although the cases reviewed in this paper do not speak directly to
underlying mechanisms of plasticity, multiple mechanisms ranging
from molecular and cellular changes through alterations to systems and
networks are known to contribute to and govern plasticity, and hun-
dreds of studies have been designed to elucidate these neurobiological
processes. Among the major type of neurobiological changes are in-
creased neural sensitivity, increased neural specificity, strengthened
neural connectivity and/or improved neural efficiency. Morphology of
dendritic spines also affects plasticity (Burke and Barnes, 2006) and
alterations and regulation of excitation and inhibition (E/I) circuit
balance support changes in cortex (Bavelier et al., 2010). A compre-
hensive review is beyond the scope of this review paper but the reader
is referred to review papers such as those by Johnston and colleagues
for extended discussion of these topics Johnston et al. (2009, 2001) and
by Cramer et al. (2011).

It is challenging to infer direct links between the known neurobio-
logical mechanisms and the changes noted in the pediatric cases fol-
lowing CNS damage. Perhaps more easily conceptualized are system-
wide changes that involve spontaneous intra-hemispheric shifts, such as
changes in representational maps, e.g., the hand area can shift dorsally
to invade the shoulder region following injury to the motor network
(Nudo et al., 1996), changes in inter-hemispheric balance (Cramer
et al., 1997; Feydy et al., 2002), distribution of activation or alterations
in weighting of connections of a network (Grefkes et al., 2008) or
compensation by a homologous region in spared hemisphere (Fischer-
Baum et al., 2017). Additionally, as reviewed by Anderson et al. (2011),
reduction of diaschisis and anatomical reorganization may also be key
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to some of the functional changes we have reviewed. One new approach
that offers an opportunity to document and characterize change espe-
cially in reactive plasticity is one in which Multi-Voxel Pattern Analysis
(MVPA) can be used to compare the functional profile of the recovered
behavior such as reading in right VWFA with the MVPA pattern of
controls’ left VWFA to evaluate similarity in representational organi-
zation post recovery (Fischer-Baum et al., 2017).

We have not considered intervention or treatment in any detail in
this review. While there are invasive and noninvasive interventions to
restore visual acuity in adult rodents or cats (see Table 1 in Bavelier
et al., 2010), this work has not been done in humans. There is great
interest in promoting plasticity in humans, for example following am-
blyopia (Levi et al., 2015), and, in the last decade, non-invasive brain
stimulation and neuropharmacological approaches have made great
strides, as well (Cramer et al., 2011). Of high practical significance,
understanding neuroplasticity and exploiting the potential for change
would be a significant clinical advance, paving the way for new ap-
proaches to functional rehabilitation following cortical damage in
childhood or adulthood. Some of the same ideas may be exploited in
improving performance and promoting generalization of function in
neurologically normal individuals (Green et al., 2010) and the re-
cognition of the protracted developmental profile of normal individuals
provides further clues for times and ways in which to facilitate opti-
mization of neural circuits (Somerville, 2016).

4. Conclusion

This review examines the extent of plasticity or restitution of
function in children with a lesion to higher-order visual cortex and
explores the ramifications of the surgery for cortical vision. Perhaps
unsurprisingly, no clear patterns emerge. Together, the findings from
the various studies of prosopagnosia, object agnosia and pure alexia
(arbitrarily divided as children have more than one disorder) suggest an
inconsistent picture with many cases showing no plasticity and a few
revealing instances of marked recovery. That the disorders persist in
some (perhaps the majority) of the cases is rather surprising given the
protracted development of the VOTC during childhood and the op-
portunities for experience-dependent change, which ought to poten-
tially offer greater opportunities for alternative patterns of brain orga-
nization. Although plasticity was not evident in many cases (Bova et al.,
2008; Farah et al., 2000; O’Hare et al., 1998), this negative evidence
needs to be considered in the broader context in which childhood ag-
nosia, prosopagnosia, or pure alexia are rare, and the possibility of
many more cases with substantial recovery may be high. These cases
would not necessarily have been seen by clinicians nor reported in the
literature.

The relative paucity of cases of visual recovery seems strikingly
different from the reports of substantial restitution of function in lan-
guage function following left hemispherectomy (Boatman et al., 1999;
Telfeian et al., 2002; Vining et al., 1997). Because we have no way of
knowing the base rates, calculating the proportion of recovered versus
non-recovered cases is not possible. Also, as noted previously, because
the premorbid function is not always unequivocally established, the
presence of good language function post-damage may reflect the
sparing of language function or may be the result of shifts of organi-
zation that even occurred pre-surgery in response to the effects of the
lesion.

The clearest conclusion we can reach is that attempts at researching
functional outcome/recovery in children with a lesion to higher-order
visual cortex are rather disjointed and that more research is required.
As such, the review stands as a call to action laying out hypotheses that
ought to be tested in future studies. Although most individuals receive
standardized neuropsychological testing, there are few established tests
for childhood prosopagnosia or object agnosia. Unsurprisingly then,
researchers often end up having to create their own tests for these di-
agnoses, making cross-cases comparisons difficult. But perhaps more
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critical for our understanding of plasticity is the inability to derive
causal inference. Pediatric patients, especially those with prenatal/
perinatal lesions, are usually not tested experimentally premorbidly.
Also, many patients have only been tested once post-lesion (or surgery).
The absence of longitudinal data makes it hard to infer whether plas-
ticity was a consequence of the surgery, pre-surgical adaptation or ty-
pical development. Moreover, in many cases, the anatomical informa-
tion about the lesion or resection is quite limited (i.e. to what extent is a
region spared vs. affected), which further limits the interpretation of
plasticity. Future studies may benefit from rigorous and careful testing
taking into consideration, for example, visual complexity of the input
across categories, better tracking the trajectory of change before and
after surgery, extending the length of the follow-up period with more
frequent measurements and characterizing the nature and extent of the
resection or lesion as precisely as possible.
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