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Semantic priming is traditionally viewed as an effect that rapidly decays. A new view of 
long-term word priming in attractor neural networks is proposed. The model predicts 
long-term semantic priming under certain conditions. That is, the task must engage 
semantic-level processing to a sufficient degree. The predictions were confirmed in computer 
simulations and in 3 experiments. Experiment 1 showed that when target words are each 
preceded by multiple semantically related primes, there is long-lag priming on a semantic- 
decision task but not on a lexical-decision task. Experiment 2 replicated the long-term 
semantic priming effect for semantic decisions with only one prime per target. Experiment 3 
demonstrated semantic priming with much longer word lists at lags of 0, 4, and 8 items. These 
are the first experiments to demonstrate a semantic priming effect spanning many intervening 
items and lasting much longer than a few seconds. 

Many forms of priming have been studied (for reviews, 
see Monsell, 1985; Richardson-Klavehn & Bjork, 1988; 
Schacter, 1987). Whereas in repetition priming the priming 
stimulus is identical to the target, in similarity-based priming 
tests (e.g., form priming, morphological priming, and seman- 
tic priming), the prime and target are different words sharing 
some surface features, semantic features, or both. Repetition 
priming and form priming have been found to produce 
long-lasting effects ranging from hours to weeks or even 
months (e.g., Bentin & Feldman, 1990; Bentin & Mosco- 
vitch, 1988; Jacoby & Dallas, 1981; Rueckl, 1990; Sloman, 
Hayman, Ohta, Law, & Tulving, 1988). Semantic priming, 
however, is traditionally thought to produce only short-term 
effects that dissipate after several seconds or after more than 
one item intervenes between prime and target stimuli. 
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Is it possible that completely different priming mecha- 
nisms are operating at semantic levels of processing as 
compared with other levels at which priming could occur? 
The most parsimonious account would be that the same 
mechanisms operate at all levels of the system. In this 
article, we are concerned particularly with long-term prim- 
ing and argue in favor of a single mechanism to account for 
all types of long-term priming. Our view is that short-term 
semantic priming involves a process completely different 
from that underlying long-term priming, but either type of 
process should behave according to the same computational 
principles at any level of the system, whether it be percep- 
tual or semantic. Although our account of long-term priming 
is very general, our focus is specifically on semantic priming 
because our model makes novel predictions in this domain. 
We first present a theoretical account of long-term priming 
based on a distributed cormectionist model of word recogni- 
tion, combined with some very general learning-processing 
assumptions. The theory specifies conditions under which 
long-term priming should occur and predicts that semantic 
priming should produce long-term effects under the appropri- 
ate conditions (even though it has not been found in the 
literature to date). We use a combination of connectionist 
modeling and experimental techniques to test our computa- 
tional account of long-term priming. Whereas computational 
models have been used most often in the literature to account 
for data after the fact, our theoretical account has been used 
to generate predictions and guide our experimental investiga- 
tions. Our modeling approach is also novel in that we take 
into account task-specific differences that we predict will 
explain the failure of previous studies to find long-term 
semantic priming. Both computer simulations and experi- 
ments with human participants are shown to confirm our 
predictions. 

We now review the different forms of long-term priming 
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that have been studied in the literature and summarize the 
major theoretical accounts that have been proposed. We then 
present our computational account of long-term priming and 
explain why the model predicts that it should be possible to 
produce long-term semantic priming. 

Repetition Priming 

Repetition priming is observed when participants are 
more accurate or efficient in responding to previously 
studied (primed) targets than to new (unprimed) targets. The 
term implicit memory was coined by Graf and Schacter 
(1985; Schacter, 1987) to refer to the sort of unconscious 
memory measured on priming tasks. One of the earliest 
accounts of long-term repetition priming was based on 
Morton's (1969) logogen model of word recognition. Mor- 
ton proposed that long-term priming is the result of a 
word-detector unit's threshold being lowered as a result of 
previous suprathreshold activation of that word unit. Bave- 
lier and Jordan (1993) proposed a similar account of 
long-term repetition priming in a multilayered connectionist 
model. McClelland and Rumelhart (1986) proposed an 
alternative mechanism for long-term repetition priming in 
neural networks with recurrent connections, which we adopt 
in our model. They postulated that exposure to each pattern 
involves some incremental learning. (See also Bower, 1996, 
for a similar account.) We refer to this postulate as the 
"incremental learning hypothesis." It predicts that all of the 
connections in the network that are involved in processing a 
pattern, not just the thresholds of units, should undergo some 
incremental learning as a result of priming. In McClelland 
and Rumelhart's model, each learning step involves a large 
initial change in each weight, which rapidly decays down to 
a permanent or very slowly decaying smaller change. Thus, 
priming is thought to reflect the normal course of learning. 
When a network is exposed to a previously primed pattern, it 
should settle to a stable response more quickly because the 
connections involved in producing the response have been 
reinforced. 

Similarity-Based Priming 

The threshold lowering and incremental learning hypoth- 
eses both can account for long-term repetition priming, in 
which responses to the same input pattern are faster or more 
accurate on repeated presentations. However, when the 
prime and target stimuli are not identical but related, the 
threshold account predicts no long-term effect. The incremen- 
tal learning account makes no specific prediction about how 
long-term priming would depend on the level of similarity 
between primes and targets, although McCleUand and 
Rumelhart (1986) did make the general argument that 
long-term priming should generalize from primes to similar 
targets on the basis of the amount of overlap in their 
representations. For example, in  form-based priming (For- 
ster, 1987), the prime and the target are similar in that they 
share perceptual features but axe otherwise unrelated, whereas 
in semantic priming the prime and the target are semanti- 
cally similar or are semantic or contextual associates. Any 

theory capable of making specific predictions about these 
cases must make stronger assumptions about the nature of  
the representation, the processing of stimuli, or both. 

Most of the experimental work on form-based priming 
has examined short-term effects, as first reported by Meyer, 
Schvaneveldt, and Ruddy (1974), who found faster lexical 
decision for words preceded by orthographically and phono- 
logically similar words. In contrast, long-term similarity- 
based priming has been much less studied. Bentin and 
Feldman (1990) reported that Hebrew words based on a 
common morphological root, that is, the same consonant 
pattern, produced a priming effect on lexical decision that 
was still significant with 15 intervening items between the 
prime and the target. This was true regardless of whether or 
not the words were semantically associated. When words 
were semantically and not morphologically related, the 
priming effect fully dissipated after a lag of 15 items. Rueckl 
(1990) has reported consistent long-term priming effects in 
tachistoscopic word recognition, when each word was 
primed by a large set of orthographically similar words. 
Studies by Rueckl and Olds (1993) and by Feustel, Shiffrin, 
and Salasoo (1983) provided converging evidence for these 
results. Rueckl interpreted the results of his 1990 studies by 
using McClelland and Rumelhart's (1986) incremental learn- 
ing hypothesis, combined with an assumption about the 
distributed nature of word representations. It was predicted 
that the amount of form priming should increase with the 
similarity between prime and target. Assuming an ortho- 
graphic representation of words in which activity was 
distributed across many units, Rueckl reasoned that ortho- 
graphically similar words would activate many features in 
common and therefore would benefit mutually from the 
strengthening of connections between those features. Note 
that Rueckl's findings cannot be explained adequately by 
theories that postulate long-term threshold changes in word- 
detector units; these "localist" theories would not predict 
such effects to generalize to visually similar words. 

Whereas repetition and form priming effects may be very 
long lasting, semantic priming (Meyer & Schvaneveldt, 
1971) on implicit memory tests such as lexical decision and 
naming has been found to disappear when the prime and 
target are separated by several intervening items or time lags 
of more than several seconds (e.g. Bentin & Feldman, 1990; 
Dannenbring & Briand, 1982; Henderson, Wallis, & Knight, 
1984; McNamara, 1992b; Monsell, 1985; Rateliff, Hockley, 
& McKoon, 1985). Studies of semantic priming across a lag 
of a single intervening item (reviewed in Joordens & Besner, 
1992; Masson, 1995) have yielded mixed results; Joordens 
and Besner (1992) have shown a very small but reliable 
semantic priming effect in the lexical-decision task across a 
lag of a single item, even when the possibility of conscious 
comparison of primes and targets is minimized. Neverthe- 
less, the above literature would suggest that semantic 
priming has little or no effect beyond the immediate 
semantic context. 

We now describe our view of long-term priming in 
connectionist networks, which predicts that a long-term 
semantic priming effect should also be possible. To antici- 
pate, we propose that long-term semantic priming involves 
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incremental learning in semantic networks rather than a 
process such as residual activation that mediates short-term 
effects. Thus, our proposed model of long-term semantic 
priming is not meant, for the moment at least, to rival models 
that seek to account for short-term priming. Though funda- 
mentally different from each other, the processes underlying 
short- and long-term semantic priming are seen as comple- 
mentary. One is likely to be crucial for supporting the type of 
rapid, but transient, anticipations necessary for efficient 
discourse and reading, whereas the other reflects and 
contributes to the construction of long-lasting semantic 
networks. As a result, the type of test that best reveals 
long-term semantic priming will be different from the one 
that is sensitive to short-term priming. The overwhelming 
majority of short-term priming tests have focused on the 
lexical level, whereas for long-term priming to be revealed, 
the tests need to access the semantic level to a greater 
degree. These issues are addressed at greater length in 
presenting our model and the experiments that support it. 

Word Recognit ion in Attractor Networks 

To account for differences in similarity priming when the 
primes are visually versus semantically related within a 
computational framework, we begin by describing a connec- 
tionist model of word recognition that involves multiple 
levels of processing. This model was originally proposed by 
Hinton and Shallice (1991) to account for symptoms of 
reading impairment such as those seen in people with deep 
dyslexia. The network was trained with an iterative version 
of the back-propagation learning procedure (Rumelhart, 
Hinton, & Williams, 1986) to map orthographic representa- 
tions of words onto distributed semantic representations via 
a layer of hidden units, with the help of semantic "cleanup 
units"--an extra, hidden layer only connected to the seman- 
tic units. There were feed-forward connections from ortho- 
graphic to hidden units and reciprocal connections between 
the hidden and semantic units, between the cleanup and 
semantic units, as well as within the semantic layer. 

Using this architecture, Hinton and Shallice (1991) pro- 
posed a novel view of the mechanism underlying word 
recognition: when a word is presented to the network as an 
orthographic input pattern, the rest of the network, including 
the semantic and hidden layers, gradually settles into a stable 
representation called an attractor state. Recognition occurs 
when it reaches the correct attractor. The current state vector 
of the input units can be thought of as representing a single 
point in a high-dimensional orthographic space, with dimen- 
sionality equal to the number of orthographic input units. 
Likewise, the current state vector of the semantic units can 
be thought of as a single point in semantic space, with 
dimensionality equal to the number of semantic units. 
Because there is no systematic correspondence between 
orthographic and semantic features, the network must learn 
to map points that may be nearby in the orthographic state 
space onto much more distant points in the semantic state 
space. In contrast, semantically related words are typically 
represented by distant points in orthographic space, but by 
nearby points in semantic space because they share many 

semantic features. When the network is damaged by remov- 
ing connections or by adding noise to the weights, the 
reading pattern associated with deep dyslexia is observed: 
Not only are visually similar words (e.g., cat and mat) seen 
to be occasionally confused, but substitution errors involv- 
ing semantically related words are also observed (e.g., cat 
read as dog), as are mixed visual-semantic errors (e.g., cat 
read as rat). 

Long-Term Semantic Priming in Attractor Networks 

Adopting the Hinton-Shallice (1991) view of word recog- 
nition leads us to conceptualize the process of long-term 
priming rather differently. When a word is presented to the 
network, and its semantic representation is activated, assum- 
ing McClelland and Rumelhart's (1986) view of long-term 
priming is correct, all the connections participating in the 
entire activated pathway of units should be altered. These 
weight changes should increase the probability that the 
network will produce the same response when given the 
same input pattern in the future, even if the pattern is noisy 
or incomplete, and should make the same units even more 
strongly active the next time (if they are not already at their 
maximum activation levels). Thus, the attractor for this 
particular input pattern will be deepened. ~ Because the shape 
of the attractor basin has now been altered, the network's 
responses to other patterns should also be affected. Small 
perturbations in the state of the network in the vicinity of this 
attractor should be pulled more strongly back to the attractor 
state. Semantically related words might therefore be ex- 
pected to benefit from their nearby neighbor having been 
primed because their attractors would overlap in many 
dimensions. Priming with multiple semantically similar 
primes should produce an even larger effect than with 
single-word semantic priming. Balota and Paul (1996) found 
empirical support for this prediction in the context of 
short-term priming: Two primes produced more priming 
than did one prime. The computational reason for this 
prediction in the case of long-term priming is that the 
semantic attractors for the primes would be deepened 
preferentially along those dimensions common to many 
elements of the prime set and common to the target as well. 
However, those dimensions of the attractor basins for the 
primes that were not shared by the target would be relatively 
unaffected. 

To make the above predictions more concrete, if we could 
measure at the semantic level the settling time of the 
network, we would expect to see long-term semantic 
priming. However, because semantically related words 
normally are far apart in the orthographic space, a semantic 
prime would not be expected to influence settling time to the 
same degree at the orthographic level. Similar predictions 

Plant and Shallice (1993b) have proposed a similar scheme to 
account for perseverative naming in optic aphasic patients, which 
they described as being analogous to a temporary priming effect. 
They implemented this priming effect by using a separate set of 
fast-decaying weights to store short-term correlations between 
units' activities across recently presented patterns. 
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could be made regarding human participants: When primed 
with a word having similar semantics to the target, partici- 
pants should be faster on a semantic-retrieval task such as 
semantic classification. On tasks such as lexical decision or 
word identification that depend less directly on semantics, 
however, there should not be strong evidence of semantic 
priming. 

Why have previous experiments failed to show long-term 
semantic priming? Our predictions suggest that the follow- 
ing two variables are critical: (a) the task and, in particular, 
the level of processing in which the participant engages 
when responding to both prime and target words, and (b) the 
degree of semantic overlap, or number of shared features, 
between the primes and the targets. To our knowledge, with 
the exception of Woltz's (1990, 1996) work (see General 
Discussion), all of the previous attempts to study the time 
course of semantic priming have used word-recognition 
tasks such as lexical decision rather than explicitly semantic 
tasks such as animacy or size decisions. Our prediction is 
that the semantic priming effect occurs by deepening 
attractors in semantic space for both primes and related 
targets, and that this effect should primarily manifest itself 
on semantic-retrieval tasks. Further, a close match between 
the type of processing involved during presentation of the 
prime and target should also be critical. This last point has 
been demonstrated previously in a series of priming experi- 
ments by Vriezen, Moscovitch, and Bellos (1995). Except 
for one experiment, these studies assessed repetition priming 
in a semantic-classification task. Vriezen et al. found that 
when lexical decision or naming on the priming word list 
was followed by a semantic decision (e.g., of size or 
animacy) on the target word list, there was no priming effect. 
Only when the task performed on the priming list tapped into 
the same level of processing (or higher), as compared with 
the task performed on the target list, did priming occur, 
although the tasks did not have to be identical. 

Our second prediction is that the degree of semantic 
overlap should also be a critical variable. Only when the 
prime and target have sufficiently overlapping basins of 
attraction in semantic space would we predict long-term 
semantic priming. Thus, words that are highly associated on 
the basis of free-association norms but are not particularly 
similar in meaning, such as bread and butter, would not be 
expected to produce long-term priming. This prediction 
makes intuitive sense when priming is viewed as a reflection 
of incremental learning. We would like representations in 
memory to reflect our recent experiences and for learning to 
generalize to items that have overlapping meanings; how- 
ever, more distant associations such as bread-butter might 
be modeled better by some alternate learning mechanism. 

The following simulations and experiments were carded 
out to test our predictions about long-term semantic priming. 
Simulation 1 involved semantic priming in a neural network 
using blocked priming trials, with priming blocks consisting 
of multiple semantic primes per target. Settling time was the 
dependent measure. Simulation 2 involved a similar testing 
procedure, but with only a single related semantic prime per 
target word. Our previous simulations (S. Becker, Behr- 
mann, & Moscovitch, 1993) investigated repetition priming, 

form priming and semantic priming, using single-word 
priming trials, and found an interaction between the prime 
type (orthographic vs. semantic) and the level of processing 
during the test (orthographic vs. semantic layer settling 
time). We designed the current simulations to replicate our 
previous results on semantic priming. However, we modi- 
fied our procedure in two substantial ways to simulate more 
realistically a long-term priming procedure that could be 
applied to human participants. First, rather than presenting a 
single related prime immediately preceding each target, we 
switched to a blocked priming procedure; in each block of 
trials, several related and unrelated primes were presented, 
followed by a target word. This is a more realistic simulation 
of long-term priming because there are multiple intervening 
items between a related prime and target. Second, we 
switched the semantic task from semantic layer settling time 
to a more specific animacy-decision task that could be 
performed by human participants. In the model, we simu- 
lated the animacy decision by measuring the settling time of 
the unit in the semantic layer representing the animacy 
feature. In Experiment 1, we measured long-term semantic 
priming in participants by using blocked priming trials on a 
semantic-decision (animacy) versus a lexical-decision task, 
with multiple semantic primes for each target, as in Simula- 
tion 1. In Experiment 2, we further investigated the semantic 
priming effect by using the same experimental setup and 
target words but only a single word prime per target as in 
Simulation 2. Experiment 3 was conducted to determine 
whether long-term priming could be sustained over much 
longer lists and to explore its decay function by varying the 
lag between the prime and the target. 

Simulation 1 

We used a network that we had first trained to perform 
visual word recognition by producing the correct semantic 
and phonological representations in response to an input 
orthographic representation. The phonological layer was not 
needed for the present simulations but was included in the 
network for use in other simulations. The network was tested 
on a series of priming trials, on orthographic- and semantic- 
decision tasks. 

M e ~ o d  

The network architecture. The network used in our simulations 
is shown in Figure 1. It is similar to Hinton and Shalliee's (1991) 
network (described above), except that we used a deterministic 
Boltzmann machine (DBM; Peterson & Anderson, 1987) rather 
than a back-propagation network. We chose the DBM network 
because it is trained by using a simple contrastive Hebbian learning 
rule (see Appendix A) that is thought to be more biologically 
plausible than back-propagation networks. Plaut and Shallice 
(1993a) showed that a DBM network very similar to ours could 
produce qualitatively similar behavior to Hinton and Shallice's 
network. Our network consisted of orthographic, semantic, and 
phonological (O, S, and P) layers, a hidden layer between the O and 
S units, and a hidden layer between the S and P units, as shown in 
Figure 1. The P layer was not relevant to the simulations reported 
here. As in all DBM networks, all connections were bidirectional. 
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Figure 1. The architecture of the network. Arrows indicate full 
connectivity among units within or between groups. All connec- 
tions are bidirectional. There were 40 units in each hidden layer, 28 
orthographic units, 33 phonological units, and 68 semantic units. 

The feedback connections greatly increase the settling time of the 
network, particularly because the network must be simulated on a 
serial machine. To minimize the number of connections in our 
network, we only included within-layer or autoassociative connec- 
tions in the O, S, and P layers that were involved in generating 
responses. It was thought that such connections would enhance 
within-layer priming effects. 

Although our network differs from the Hinton-Shallice (1991) 
architecture in that it lacks the extra hidden layer of semantic 
cleanup units, the bidirectional links add enough extra connections 
to make the cleanup layer unnecessary. Further, the S ---' P route 
may provide additional cleanup. Our network architecture was 
virtually identical to that used by Plaut and ShaUice (1993a, Figure 
12) except that each unit in our O and P layers also had a link to 
itself, and each O layer unit had an external input connection. These 
two modifications permitted us to measure settling time in the O 
layer. 

The unit activations. To be able to study the network's 
orthographic settling time, we used a slightly different mode of 
pattern presentation from the standard DBM during the latter stages 
of training and in the priming simulations. In the standard DBM, an 
input pattern is presented to the network by fixing the states of the 
input units to the pattern values and by not allowing these states to 
update. This method of pattern presentation at the input layer is 
sometimes referred to as "hard-clamping," and means that settling 
time cannot be measured at the input layer. We therefore used a 
"soft-clamping procedure" for the orthographic layer input units, 
which allowed the orthographic layer to settle along with the rest of 
the network. In our soft-clamping procedure, orthographic units' 
states were strongly influenced by their external input but were also 
subject to top-down influences. Further details on the unit activa- 
tions and training procedure are provided in Appendix A. 

The training procedure. DBM learning (Peterson & Anderson, 
1987) is appealing because it is based on a simple Hebb-like 
learning rule. Hebb (1949) postulated that the strength of the 
connection between two neurons should increase whenever those 
neurons are simultaneously active. DBM learning is more general 
in that connection strengths are adjusted in proportion to the 
product of the pre- and postsynaptic activities, and can therefore 
either increase or decrease. 2 Learning in a DBM proceeds in two 
phases, applied alternatingly for each training pattern: (a) a positive 
phase, in which the input and output units are clamped to their 
correct states and positive Hebbian learning occurs, and (b) a 
negative phase, in which only the input units are clamped and 
negative Hebbian learning or "unlearning" occurs. See Appendix A 
for further details. 

The network was trained for 3,500 sweeps through the training 
set of 40 patterns until the network learned to produce the correct 
semantic and phonological representations in response to each 
orthographic input pattern. No priming effects were simulated 
during the training phase. Units' states were considered correct 
when they were within 0.3 of their target states. 

Materials. The training set consisted of the same 40 words' 
orthographic-input and semantic-output vectors used by Hinton 
and Shallice (1991), shown in Appendixes B and C, augmented by 
the phonological output vectors used by Plant and Shallice (1993a). 
The words were composed of only the letters {b, c, d, g, h,/, m, n, p, 
r, t} in the first position, {a, e, i, o, u} in the second position, {b, c, d, g, 
k, m, n, p, r, t, w} in the third position, and {e, k, -} in the fourth 
position, where - denotes a blank. Thus, there was one ortho- 
graphic input unit for each letter-position combination. Similarly, 
Plant and Shallice's (1993a) phonological output representation 
consisted of 33 position-specific phonemic features: {Ibl, lid, Idl, 
Idyl, Ijl, Igl, ~hi, Ill, Iml, In~, Ipl, Irl, It/} in the first position, {/a/,/el, 
/il, Iol, luJ, lie/, lewl, larl, ~awl,/owl,/oal} in the second position, 
and {Ibl, Idl, Igl, lid, In~,/red, It/, -} in the third position. Words were 
grouped into five categories: indoor objects, animals, body parts, 
foods, and outdoor objects. The Hinton-Shallice semantic features 
were chosen so that words in the same category had a much higher 
degree of semantic overlap (80.5% on average) than did words in 
different categories (66.2% on average). 

Procedure. The priming condition for each target word was 
either unrelated or related, and the dependent measures were 
orthographic-level and semantic-level settling times. The unrelated 
primes condition served as a baseline. The network was tested on 
blocks of 11 words. Each block consisted of a priming list of 10 
words, followed by a single target word. Each prime list was 
constructed so that either half of the words in the list were related to 
the target (the related primes condition) or all 10 words were 
unrelated to the target (the unrelated primes condition). The words 
in each block were randomly chosen without replacement as 
follows. In the related primes condition, the 5 related words were 
drawn from the same category as the target word but excluding the 
target word, and the 5 unrelated words were drawn from one other 
randomly chosen category excluding the target category. In the 
unrelated primes condition, two categories were selected at ran- 
dom, without replacement, excluding the target category; 5 words 
were then randomly selected from each of the two categories. The 
priming words were presented in a random order, with the 
constraint that the last 3 prime words must be unrelated to the 
target. 

Priming was simulated as an incremental learning mechanism 
(McClelland & Rumelhart, 1986). For each prime word in a block, 
the weights in the network were updated according to the DBM 
contrastive Hebbian learning rule (see Appendix A), with a fixed 
learning rate of 0.0002. When all of the prime words in a block had 
been presented, the network was then presented with a target word 
and again permitted to settle. To keep the number of free 
parameters in the model to a minimum, no decay in the learning 
was simulated. However, to obtain a more realistic model, we 
would obviously need to address this issue. 

Each target word was tested for 20 successive blocks in each of 
the two priming conditions (unrelated and related primes), with the 
particular primes selected randomly with replacement in each 

2 The terms presynaptic and postsynaptic, borrowed from neuro- 
biology, are standard in the connectionist modeling literature. They 
refer respectively to the units at the sending and receiving ends of a 
connection. 
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Table 1 
Mean Settling Times (STs ) and Error Rates (in Percentages) 
for Simulations I and 2 

Network performance measure 

Orthographic ST Semantic ST Errors 

Simulation M SE M SE % SE 

Simulation 1 
Unrelated 23.16 2.0 33.04 2.1 10 3.6 
Related 22.03 1.0 32.03 1.9 5 1.7 

Simulation 2 
Unrelated 22.73 1.9 33.87 2.5 9 3.7 
Related 22.62 1.8 33.27 2.4 9 3.9 

block. To prevent identity priming effects when the same target 
words were retested in different blocks, we reset the weights in the 
network after each block. Each time a target word was presented, a 
small amount of noise with mean 0.0 and standard deviation 0.05 
was added to the input (orthographic) units' states, as during 
training. This repeated testing of each word was done to generate a 
distribution of independent responses to each target word that could 
be statistically analyzed. 

We used two response measures on each trial, orthographic layer 
settling time and semantic (animacy) decision time. The ortho- 
graphic settling time was assumed to be analogous to lexical- 
decision time. The semantic decision was whether a given word 
represented an animate or an inanimate object. In our network, as in 
the Hinton--Shailice (1991) model, the semantic representation 
included a single unit designated to represent the "animacy" 
feature. We therefore simply used the settling time for this animacy 
unit as a measure of the semantic-decision time. A group of one or 
more units was considered to have settled to a correct response 
when each of those units was within 0.3 of its correct value, the 
same correctness criterion used during the learning phase. Because 
we measured responses from all of the orthographic layer units as 
well as from the animacy unit on each trial, all of these units were 
required to be in correct states for the responses on this trial to be 
considered correct. If the network did not arrive at a correct 
response by the time all units' states had stopped changing (to 
within a tolerance of 0.001), it was considered an error trial. 
Priming scores for correct trials were calculated for each word as 
the average difference between settling time (ST) on related trials 
and unrelated trials. The baseline or "unrelated" ST was taken to 
be the mean settling time for each target word when primed by a set 
of unrelated words. The "related" ST was measured for each target 
primed with a mixture of related and unrelated words. 

Results and Discussion 

The mean STs averaged across words on correct trials and 
percentages of  error responses in each condition for Simula- 
tion 1 are shown in the top half  of  Table 1.3 On average, the 
network settled about 1 cycle faster for related primes 
compared with unrelated primes, at both the orthographic 
and semantic levels. These priming effects are plotted in the 
left half  of  Figure 2. Paired t tests on the mean STs for each 
word on related correct trials versus unrelated correct trials 
revealed that on the semantic task, priming was significantly 
greater than zero, t(39) = 2.37, whereas on the orthographic 
task it was not. For  these and all subsequent analyses, effects 
are described as significant if  the probabil i ty of  observing 

the effect is less than .05; all t tests and sign tests were 
one-tailed. There was a very strong trend toward positive 
priming on the orthographic ST scores. However, a closer 
inspection of  the mean ST scores for individual words 
revealed that this trend was not at all consistent across 
words. At  the orthographic level, priming was actually 
negative for 20 of  the 40 words, zero for 4 words, and 
positive for 16 words. Further, of  the 16 positive cases, only 
2 were very large and the rest were close to zero. Thus the 
apparent trend appears to be a result of  a couple of  outliers. 
The high variabili ty in orthographic ST scores may be a 
result of  the fact that we used a small set of  stiort words with 
relatively high orthographic overlap. In contrast, at the 
semantic level, priming was much more consistent across 
words. It was negative for only 6 words, zero for 10 words, 
and positive for 24 words. A paired t test on the mean 
priming scores (unrelated ST minus related ST) for each 
word at the orthographic level versus the semantic level 
revealed that the difference was not significant. Again, this 
appears to be a result of  the large variabili ty in the 
orthographic ST scores. A paired t test on the mean error 
rates for each word on related and unrelated trials revealed 
no significant differences. Thus, the results are consistent 
with our prediction that there should be a strong long-term 
semantic priming effect on a semantic-decision task but not 
on an orthographic task. 

S i m u l a t i o n  2 

In Simulation 1 we used multiple related primes per target 
because it was thought that multiple primes would be most 
l ikely to produce long-term priming in human participants. 
Simulation 2 was run to test whether long-term priming 
would also be observed with a single related prime per 
target. It was predicted that there would be less semantic 
priming in this case. 

M e ~ o d  

The same network, tasks, and procedure as in Simulation 1 were 
used. This time, however, each target word was only primed with a 
single related prime per block. Twenty blocks were run for each of 
the 40 target words. Each block once again consisted of a priming 
list of 10 words, followed by a single target word. In the related 
primes condition, a block consisted of a word randomly chosen 
from the same category but not identical to the target, and 9 
randomly chosen primes, each from a different randomly selected 
unrelated category, followed by a target word. In the unrelated 
primes condition, a block consisted of 10 randomly chosen 
unrelated primes, each selected from a different one of 10 randomly 
chosen unrelated categories, followed by a target word. In both 
conditions, the randomly chosen categories were sampled with 
replacement. As in Simulation 1, the priming words were presented 
in a random order, with the constraint that the last 3 prime words 
must be unrelated to the target. 

3 We used the same error measure for both tasks. Alternatively, 
one could measure error rates separately for the two layers. 
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Figure 2. Plot of the unrelated minus the related settling times (cycles) for the orthographic and 
semantic layers in Simulations 1 and 2, and the unrelated minus the related reaction times (in 
milliseconds) for lexical and animacy decisions in Experiments 1 and 2. Each bar represents the 
standard error of the priming effect. 

Results and Discussion 

The mean STs averaged across words and percentages of 
error responses in each condition for Simulation 2 are shown 
in the bottom half of Table 1. On average, the network 
settled 0.12 cycles faster for related targets at the ortho- 
graphic level and 0.60 cycles faster for related targets at the 
semantic level. Paired t tests on the mean STs for each word 
on related and unrelated trials revealed significant priming at 
the semantic level, t(39) = 1.93, but not at the orthographic 
level. These priming effects are plotted in the left half of 
Figure 2. An examination of the mean priming scores for 
individual words revealed that at the orthographic level, 
semantic priming was positive for 2 words, negative for 1 
word, and zero for the rest. At the semantic level, 12 scores 
were positive, 5 were negative, and the rest were zero. A 
paired t test on the mean priming scores (unrelated STs 
minus related STs) for each word at the semantic level 
versus the orthographic level revealed that there was signifi- 
cantly more priming on the semantic task than on the 
orthographic task, t(39) = 1.92. Paired t tests on the mean 
error rates for each word on related and unrelated trials 
revealed no significant differences at any level. To compare 
the results of Simulations 1 and 2, we performed a paired t 
test on the mean semantic priming scores for each word. It 
was predicted that there would be greater semantic priming 
in Simulation 1 than in Simulation 2. Although there was a 
trend in this direction, a t test revealed that the difference 
was not significant. 

To test more directly our hypothesis that priming involves 
deepening the attractor basins for primes and related words, 
we also computed the depth of the attractor basins for words 
before and after priming. The depth of any point in the state 
space of a DBM network can be determined by computing 
the free energy of the network (see Hinton, 1989). Details of 
this computation are provided in Appendix A. Conceptually, 
the energy can be thought of as a measure of the amount of 
tension in the network. If a pair of units are strongly linked 
but they are in opposite states, there is tension between them, 
raising the energy of the system. The same is true if they are 
negatively linked but in the same state. Thus, a network in a 

low-energy configuration has each pair of connected units' 
states in good agreement with the constraints imposed by the 
connection weights. The energy is a continuous function 
over the entire space of possible states of the network. If  we 
could plot this function before and after priming, we should 
be able to see how the attractors are reshaped. However, the 
state space is high-dimensional, so it is impossible to display 
the attractor basins for words graphically. However, we can 
plot one-dimensional subregions of this state space by com- 
puting the energy of any two points in the space, as well as a 
series of intermediary points along a linear trajectory con- 
necting those two endpoints, to visualize how priming shapes 
the attractor basins. We start by computing the energy of the 
two end points, for example, the attractor states for cat and 
dog. We then compute the vectorial difference between those 
two states; this gives us the direction one must travel in state 
space to go directly from cat to dog. We can now interpolate 
points along this path by taking the state vector for cat and 
adding to it some proportion of the difference vector. Setting 
the network states to these interpolated points, we can 
compute the energies at each of these points to get a function 
of energy along this one-dimensional path in state space. 

We computed the energy of the network after it had been 
presented with a prime word, after it had been presented 
with a target word, and also the energy of 100 states 
computed at evenly spaced intervals between these two end 
states, before and after priming. We found that the energy 
changes were too small to be visible on the graph (usually in 
the fourth or fifth significant decimal place), although they 
were highly reliable. We also examined the changes in 
energy at the semantic and orthographic levels separately. 
Semantic-level energy was computed by applying the free 
energy equation given in Appendix A to the units in the 
semantic layer and by considering only within-layer connec- 
tions. Orthographic layer energy was computed similarly for 
the orthographic units. Paired t tests were performed on both 
the means and the medians of these energy scores for each 
word in the related versus unrelated conditions. In Simula- 
tion 1, 34/40 words showed decreases in mean semantic 
layer energy after priming with related words compared with 
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the unrelated baseline, and 38/40 words showed decreases in 
mean semantic layer energy. Although the effect on the mean 
semantic energies was not significantly different from zero 
(average unrelated minus related mean semantic energy = 
.02, standard error = .28, t[39] < 1), it was significant for 
the medians (average of median semantic energy changes = 
- .44 ,  standard error = .25, = 1.80). The lack of significance 
in the means was clearly due to 5 outliers that represented 
huge increases in mean energy (and one small increase), 
relative to the other 34 words that all showed small but 
consistent decreases. The pattern of energy changes for the 
orthographic layer was very similar but in the opposite 
direction: 29/40 words showed increases in mean ortho- 
graphic layer energy in the related condition, and 34/40 of 
the words showed increases for the medians. T tests of the 
orthographic layer energy changes were not significant for 
either the means or the medians. 

Because of these small differences, we therefore used a 
much larger learning rate of 0.02 rather than 0.0002 for 
generating the energy plots, which produced more notice- 
able differences. Typical examples of such graphs are shown 
in Figure 3 for two pairs of words. In Figure 3A, we see 
energy plots for a pair of semantically unrelated words (bed 
and cat) before and after priming by the word bed. The 
energy at the left edge of the curve, at the attractor state of 
the word bed, is lower after priming with bed (repetition 
priming). The energy of the curve at the rightmost point, at 
the attractor state for the word cat, does not change much if 
at all after priming with bed. Thus, there is no evidence of 
semantic priming for unrelated words. In Figure 3B, we see 
energy plots for a pair of semantically related words (dog 
and cat) before and after priming by the word dog. This 
time, the primed curve is lower at all points along the 
trajectory through the state space from dog to cat. Thus, the 
basins of attraction have been deepened for both the prime 
and the target word. In addition, the energy barrier between 
the two attractor states, that is, the energy maximum near the 
midpoint of the curve, has been lowered after priming. 

We have demonstrated a general pattern of results in our 
simulations that was predicted by our computational model. 
Priming deepens the attractor basins of both primes and 
semantically similar words, leading to faster semantic but 
not orthographic decisions. Further, we saw a trend toward 
multiple primes being more effective than single primes at 
speeding performance on semantic decisions. We view these 
results as a preliminary test of  the feasibility of our model, 
providing grounds to investigate the long-term semantic 
priming phenomenon further. The next question is whether 
similar results would hold in human participants. If  the 
model has captured the essential aspects of semantic memory 
representation for the current tasks, as well as the basic 
mechanism of long-term priming, we should see at least 
qualitative agreement between our pattern of simulation 
results and the pattern of priming in human participants. 

Exper iment  1 

On the basis of the results of Simulation 1, we designed 
Experiment 1 to test the hypothesis that long-term semantic 
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Figure 3. The free energy is plotted against the state of the 
network before and after priming with (A) an unrelated word and 
(B) a related word. Each point along the x-axis represents a single 
point in the high-dimensional network state space. The two end 
.points on the x-axis of each graph represent the state the network is 
m when it recognizes the words shown. The intermediary points 
represent the states of the network along a direct path between the 
two end states. The distance along the y-axis represents the energy. 
The difference between the upper and lower curves represents the 
priming effect for repetition priming (left end) and semantic 
priming (right end). 

priming in human participants would produce more facilita- 
tion on a semantic task than on a lexical-decision task. To 
keep the conditions as close as possible to the simulation 
experiments, we attempted to use similar tasks. There is 
some controversy in the literature as to what performance 
index in a connectionist network constitutes a good model of 
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lexical decision. Some have argued that lexical decision 
could be based, at least in part, on phonology (Rueckl, 1995; 
Seidenberg & McClelland,  1989). Here, we used ortho- 
graphic ST to model  lexical-decision time in human partici- 
pants. Seidenberg and McClel land (1989) used orthographic 
error scores in their networks to model  human lexical- 
decision errors. However,  Besner, Twilley, McCann,  and 
Seergobin (1990) found that this model  generated unrealisti- 
cal ly high error rates for nonword processing, calling into 
question whether it was even capable of  handling nonword 
performance. 4 Here, we are concerned with reaction times to 
words rather than to nonword performance in our model. In 
this respect, as our experiments show, orthographic ST in 
our model  seems to capture human performance in semantic 
priming quite well,  at least qualitatively. Note that we are not 
claiming that lexical decision is a purely orthographic task; 
it is l ikely to be influenced to some degree by semantics. 
Likewise,  in our network simulations, the orthographic layer 
was influenced by top-down feedback from semantics, 
although we referred to orthographic ST as an "orthographic 
task." 

For  the semantic-decision task, as in the network simula- 
tions, the task was an animacy decision; participants judged 
words to be living or nonliving. For  each participant, half  of  
the target words were pr imed with a set of  semantically 
similar words. Participants performed the same decision for 
both prime and target words. 

Method 

Participants. Sixty undergraduate students from the University 
of Toronto participated in our study for credit in an introductory 
psychology course. 

Materials. The prime words presented to each participant were 
drawn from a list of 150 words, each chosen to be closely 
semantically related to 1 of the 30 target words, so there were 5 
primes per target. We used multiple primes per target to maximize 
the chance of obtaining a long-term semantic priming effect, as 
Rueckl (1990) did in studying long-term form priming. The primes 
were chosen from the same Battig-Montague category norms 
(Battig & Montagne, 1969) as well as from a thesaurus of 
synonyms. 

The target list consisted of 45 four- and five-lettcr words. Thirty 
of these were target words (15 primed and 15 unprimed) and 15 
were filler words. To minimize the possibility of any short-term 
semantic priming from occurring within the target list, we chose 
each target word from a different category. The fillers were 15 
pronounceable nonwords if the task was lexical decision and 15 
words that were semantically unrelated to the targets if the task was 
semantic decision. 

The prime words and corresponding targets were divided into 
two equal-sized sublists, shown in Appendix D. Each participant 
was presented with only half of the primes in the study list (75 of 
the 150 primes), either Sublist A or B, and tested on the entire target 
list (30 words), including both primed and unprimed targets. The 
sublist of primed targets was counterbalanced across participants, 
so that each target word was primed for half of the participants and 
unprimed for the other half. 

Procedure. Participants were assigned to either the lexical- 
decision or the semantic-decision group. Within each of those 
groups, half were primed on Sublist A and half on Sublist B 
(Appendix D). Stimuli were presented on a Macintosh computer 

screen. At the start of each trial, a large fixation dot appeared in the 
middle of the screen for 1 s, after which time a word appeared in the 
center of the screen and remained there until the participant 
responded. Participants were instructed to be prepared to respond 
by resting one finger on the comma key and one on the adjacent 
period key, using their dominant hand. A "yes" response was made 
by pressing the comma key, and a "no" response by pressing the 
period key. After the participant responded, the word disappeared 
and the screen remained blank for 500 ms before the next trial 
began. 

Participants were given three practice trials, followed by three 
blocks of experimental trials. The participant was instructed to 
make either a lexical decision or a semantic decision for each word 
and to respond as quickly and as accurately as possible. In the 
semantic-decision case, the participant was told to respond "yes" if 
the item represented something living, or part of a living thing, and 
"no" if otherwise. In the lexical-decision case, the participant was 
told to respond "yes" if the item was a word and "no" if otherwise. 

Experimental trials were divided into three blocks, each consist- 
ing of a prime list and a target list. Each prime list within a block 
consisted of a randomized list of 25 semantic primes for the 
corresponding 5 primed targets in the following target list. Each 
target list in a block consisted of a randomized list of 15 words: 5 
fillers, 5 unprimed targets, and 5 primed targets. This resulted in an 
average lag of 10 items between the last related prime word in a 
prime list and the corresponding target word in the following target 
list in the same block. There was a 2-rain pause after each block of 
trials, as well as within each block between the prime and target 
lists. Which half of the target list was primed was counterbalanced 
across participants; thus, half of the participants' prime lists 
consisted of primes from Sublist A, and the other haif's were from 
Sublist B. Participants were instructed to make the same decision 
for each word in each list. They were not told about the distinction 
between prime and target lists. 

Results and Discussion 

Trials on which an incorrect response was made were 
excluded from data analyses in this and all subsequent 
experiments.  The mean reaction times (RTs) and error rates 
with standard errors are shown in the top half  of  Table 2. T 
tests on the error rates for each task revealed no significant 
differences. Thus, error rates were similar for pr imed and 
unprimed trials. The higher overall  error rates on the 
semantic-decision task probably reflect the greater difficulty 
of  this task, also reflected in the overall  increase and greater 
variabili ty in RTs. Because the distribution of  participants '  
RT scores was skewed by  some extremely long RTs, we 
analyzed the medians rather than the means in the following 
and all subsequent analyses. A three-way analysis of  vari- 
ance (ANOVA) with task (lexical or semantic decision) and 
sublist (A or B) as between-subjects variables and priming 
condition (primed or unprimed) as a within-subjects vari- 
able, conducted on the participants '  median reaction times, 

4 One drawback to Seidenberg and McClelland's (1989) imple- 
mentation of their model is that, unlike ours, it lacked a semantic 
layer. This may have contributed to its poor nonword reading 
performance. Subsequently, Plant and McClelland (1993) have 
shown that attractor networks with a better orthographic representa- 
tion are capable of reading nonwords with error rates and specific 
error patterns that are very similar to those made by humans. 
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Table 2 
Mean Reaction Times (RTs; in Milliseconds) and Error 
Rates (in Percentages)for Experiments I and 2 

Task 

Lexical decision Semantic decision 
Condition 

and measure M SE M SE 

Experiment 1 

Unrelated 
RT 597 18 759 23 
Error 2 0.7 5 1.0 

Related 
RT 587 18 716 24 
Error 3 0.8 6 1.0 

Experiment 2 

Unrelated 
RT 709 23 
Error 6 1.1 

Related 
RT 674 20 
Error 6 1.2 

showed no significant effect of word sublist, nor any 
significant interactions involving word sublist. The word 
sublist variable was therefore dropped from subsequent 
analyses. A 2 × 2 (Priming × Task) ANOVA on the same 
scores yielded significant main effects of priming, F(1, 58) = 
10.58, MSE = 21,533.8, and of task, F(1, 58) = 25.73, 
MSE = 634,889.3), as well as a significant interaction 
between these variables, F(1, 58) = 4.03, MSE = 8,208.8. 
These priming effects are plotted in the right half of Figure 2. 
The interaction between priming and task type was investi- 
gated further by performing separate t tests on the data from 
the lexical-decision and semantic-decision tasks. There was 
a significant priming effect on the semantic-decision task, 
t(29) = 2.97, but not on the lexical-decision task, t(29) = 
1.30, though there was a trend toward long-term priming on 
lexical decisions. In a 2 × 2 (Priming × Task) items 
ANOVA on the median scores for each word, treating items 
as participants, there were significant main effects of prim- 
ing, F(1, 29) = 11.72, MSE = 21,627.7, and of task, F(1, 
29) = 90.33, MSE = 654,606.4. Although the Task × 
Priming interaction was not significant in the items analysis, 
there was a trend in this direction, F(1, 29) = 2.63, MSE = 
11,213.3,p < 0.12. 

Because our target list included more inanimate than 
animate words, we also performed a 2 × 2 (Priming × 
Animacy) items ANOVA with animacy as a between- 
subjects variable on the semantic-decision scores. There was 
no significant effect of animacy, nor an Animacy × Priming 
interaction. Sign tests revealed that a significant proportion 
of the median scores were faster in the primed condition than 
in the unprimed condition for the animacy-decision task, for 
both participants (20/30) and words (23/30). For the lexical- 
decision task, the proportions of median scores showing 
priming did not differ from chance levels, for both partici- 

pants (12/30) and words (17/30). In summary, as predicted, 
our semantic priming manipulation produced a long-term 
facilitatory effect spanning more than 2 min, evidenced 
predominantly on the semantic-decision task. 

On average, participants' median semantic-decision times 
were 43 ms faster for primed words than for unprimed words 
(a 5.7% speedup), as compared with an insignificant 10-ms 
(1.7%) speedup on lexical decision. These results are 
qualitatively similar to the pattern of results seen in Simula- 
tion 1, where priming with blocks of words from two 
categories produced a 2.25% speedup on semantic settling 
time and an insignificant 0.88% speedup on orthographic 
settling time. Thus, we have demonstrated in both simula- 
tions and experiments that the long-term semantic priming 
effect depends critically on the degree of semantic involve- 
ment in the task. 

One drawback to our experimental design is that in the 
lexical-decision condition, as in many lexical-decision stud- 
ies, only the target lists contained nonwords; the priming 
lists contained none. Thus, it is possible that participants 
could have developed a bias toward making fast "yes" 
responses without fully processing the words. This could 
explain our failure to find long-term priming on the lexical- 
decision task. Joordens and Becker (1997) performed a 
similar lexical-decision experiment with much longer word 
lists of which 50% were nonwords. Primes and targets were 
separated by varying lags within blocks. The type of 
nonwords used for fillers was varied within subjects and 
between blocks to be more or less wordlike. In one 
condition, they were unpronounceable nonsense words---the 
least wordlike in another, they were pronounceable non- 
sense words; and in the third, they were pseudohomophones 
(e.g., brane)--the most wordlike. As in our experiment, 
there was no semantic priming on lexical decision at lags 
greater than one for unpronounceable or pronounceable 
nonsense words. Of interest, in the pseudohomophone 
condition, there was long-lag priming, suggesting that when 
participants are forced to rely more on semantics, even 
lexical decisions can exhibit long-term semantic priming. 

In Experiment 1, there were five primes per target. In our 
simulations, we demonstrated that the long-term semantic 
priming effect also holds when there is only a single prime 
per target, although there was a trend toward a smaller effect 
in Simulation 2. Experiment 2 was conducted to determine 
whether people behaved according to the model's predic- 
tions. 

Exper iment  2 

In Experiment 2, we used the same materials as in 
Experiment 1 except that each participant was only pre- 
sented with one of the five primes for each target word. It 
was predicted that there would still be long-term priming on 
semantic decisions, although the effect might be somewhat 
weaker. Because there was no evidence of semantic priming 
in lexical decision in Experiment 1, this time participants 
only performed the semantic-decision task. 
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Method 

Participants. Thirty undergraduate students drawn from the 
same participant pool as for Experiment 1 participated in our study. 

Materials. The same target words and prime words as in 
Experiment 1 were used, but each participant was presented with 
no more than one prime word per target. The 150 primes from 
Experiment 1 were divided into five sublists of 30 prime words, one 
for each of the 30 target words, and these sublists were further 
divided into primes corresponding to target Sublist A and Sublist B 
(Appendix D). Participants were each assigned to 1 of 10 corre- 
sponding groups (5 prime sublists × 2 target sublists), and 3 
participants were run in each cell. 

Procedure. The same procedure was used as in Experiment 1 
for the semantic-decision condition except that this time each 
participant was presented with only one block of words, consisting 
of a list of 15 prime words followed by a list of 30 target words, 
with a 2-rain pause in between. This resulted in an average lag of 
21.5 items between a given prime in the prime word list and the 
corresponding word in the target list. 

Results and Discussion 

The mean RTs and percentage error rates with standard 
errors are shown in the bottom half of  Table 2. These error 
rates are similar to those for the semantic-decision task in 
Experiment 1. A t test on these error rates revealed no 
significant difference between the primed and unprimed 
conditions. As before, semantic priming produced a facili- 
tatory effect on the semantic-decision task. This priming 
effect is plotted in the fight half of  Figure 2. A two-way 
ANOVA on the participants' median scores with priming 
condition as a within-subjects variable and sublist (A,B) as a 
between-subjects variable revealed a significant main effect 
of  priming, F(1, 28) = 6.57, MSE = 18,200.4. No other 
effects were significant. On average, participants were 35 ms 
faster in making semantic decisions for primed words than 
for unprimed words, a speedup of  4.9%. A one-way items 
ANOVA treating items as participants and priming condition 
as a within-subjects variable revealed a marginally signifi- 
cant priming effect, F(1, 29) = 4.07, MSE = 11,956.8. 
When animacy was added as a between-subjects variable, 
there were no significant effects. Sign tests revealed that a 
significant proportion of  the median scores were faster in the 
primed than in the unpfimed condition, for both participants 
(20/30) and words (22/30). 

The priming effect on the semantic task in Experiment 2 
was still surprisingly large at 4.9%, compared with 5.7% for 
Experiment 1. Because the two experiments used exactly the 
same methodology apart from the difference in the makeup 
of  the priming blocks, we combined the semantic decision 
scores from Experiments 1 and 2 into a single two-way 
ANOVA, with priming as a within-subjects variable and 
experiment as a between-subjects variable. This analysis 
revealed once again a significant main effect of  priming, 
F(1, 58) = 15.66, MSE = 45,825.2. Although there was a 
trend toward more priming in Experiment i (multiple primes 
per targe0 than in Experiment 2 (single prime per target), the 
interaction was not significant. These results parallel the 
pattern of  results in Simulations 1 and 2. 

The results of  Experiments 1 and 2 are consistent with our 

interpretation of  an automatic learning process underlying 
the long-term semantic priming effect. However, an alterna- 
tive interpretation is that participants used recollective 
processes. Perhaps they explicitly recognized some targets 
as being related to previously seen items. Experiment 3 was 
designed to address this issue, as well as to investigate the 
decay of  the effect. 

Expe r imen t  3 

One way to improve our experimental procedure to 
minimize the possibility of  strategic processing is to use 
much longer word lists. Experiment 3 was designed to 
determine whether the long-term semantic priming effect 
would hold up in longer word lists, while exploring the 
potential decay of  the effect by systematically varying the 
prime--target lag. In this final experiment, we used a list of  
48 prime-target word pairs and a slightly different proce- 
dure: prime and target words were interspersed within a 
single long block of  triais. Three lags were examined: 0 
items, 4 items, and 8 items. The ordering of  stimuli was 
randomized, subject to two important constraints of  (a) 
keeping response history constant across related and unre- 
lated trials and (b) rotating the targets and primes through 
the two different relatedness conditions and the three 
different lags. 

Method 

Participants. Sixty undergraduate students drawn from the 
same participant pool as for Experiments 1 and 2 participated in our 
study. 

Materials. Forty-eight prime-target pairs were chosen to maxi- 
mize semantic relatedness. These items, as well as the practice and 
filler items, are listed in Appendix E. Some of the pairs were taken 
from the stimuli used in Experiment 2 of Joordens and Becker 
(1997), whereas others were provided by Timothy McNamara 
(personal communication, November 16, 1995). The filler words 
were selected to ensure that the proportions of animate and 
inanimate items were approximately equal. Each prime-target pair 
was coupled with another pair to allow the related prime for one 
target to serve as the unrelated prime for its coupled target. Four 
prime-target lists were created from these coupled prime-target 
pairs, so that each participant was exposed to only one of the four 
possible pairings of the four words. For example, iceberg-glacier 
was coupled with fate-destiny. Thus, a given participant would see 
either iceberg followed (after a lag of 0, 4, or 8 items) by glacier, 
iceberg followed by destiny, fate followed by destiny, or fate 
followed by glacier. 

Procedure. In the present experiment, we used a running 
animacy-decision task in which participants make animacy deci- 
sions for a stream of stimuli, with each subsequent stimulus 
presented shortly after a decision is made for the current stimulus. 
Unlike the previous two experiments, there was no separation into 
a study phase and a test phase. Experimental trials were divided 
into eight blocks. Each block contained 12 words: 3 primes (which 
could be related or unrelated), 3 targets, and 6 filler words. It is 
important to note, however, that this block structure was not made 
apparent to the participants. From a participant's perspective, the 
experiment appeared to be structured as a single block of 116 trials. 
The first 20 of these trials were practice. The next 96 were 
experimentai trials. 
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Table 3 
Mean Reaction limes (RTs; in Milliseconds) and Error 
Rates (in Percentages)for Experiment 3 

Lag 

0 Items 4 Items 8 Items 
Condition 

and measure M SE M SE M SE 

Unrelated 
RT 868 36 859 23 883 32 
Error 9 1.8 10 2.0 10 1.7 

Related 
RT 776 18 817 23 812 30 
Error 10 2.2 6 1.8 87 1.8 

Given that we also wanted to rotate the stimulus pairs through 
the different lags, it was further required that there be three versions 
of each of the four fists described above: one in which the coupled 
prime-target pairs occun~  at a lag of 0, one at a lag of 4, and one 
at a lag of 8. Thus, the complete counterbalancing of prime identity, 
target identity, and lag required that 12 separate lists be created. 
Response history across the related and unrelated versions of each 
lag was controlled within each of these lists in the following 
manner. First, four different blocks of 12 trials were created, each 
having a slightly different response history for the three lags. For 
example, the first block consisted of P8, F, P0, TO, F, F, P4, F, F, TS, 
F, and T4, where F is a filler word, P8 is the prime for Lag 8, T8 is 
the target for Lag 8, and so forth. Within each block, two of the 
primes were related and one was unrelated. Each block and its 
mirror version were presented within each list, with the mirror 
version of the block having identical response characteristics but a 
different "relatedness" associated with each lag. This ensured that 
every participant experienced one related and one unrelated trial at 
each of the four response histories within each of the three lags. 
Response history was not controlled across the different lags, given 
that the critical issue is to allow a controlled comparison of 
responses to the related and unrelated targets within each lag, not 
across the different lags. 

The timing of events was as follows: First, the message Press the 
(space bar) when you're ready to begin was presented. Depression 
of the space-bar resulted in a 300-ms blank field followed by 
presentation of the first stimulus. Each response then initiated 
another 300-ms blank field followed by the subsequent stimulus, 
and so on, until all 116 stimuli had been presented and responded 
to. 

Apparatus. Stimuli were displayed on a 15-inch (38.1-cm) 
SVGA color monitor and measured approximately 8 mm tall by 
7 mm wide. Participants were positioned approximately 65 cm 
from the monitor and used the keyboard to enter their responses. 
Participants pressed the 1 key to indicate an "animate" decision 
and the 2 key to indicate an "inanimate" decision. They were 
instructed to respond as quickly and as accurately as possible. 

the targets as animate or inanimate, examination of  Figure 4 
suggests that priming occurred at all lags. 

Statistical analysis of  the RT data revealed only a main 
effect of  context, F(1, 59) = 18.30, MSE = 23,002.9. 
Pairwise t tests revealed that priming effects were significant 
at all lags, all ts(59) > 2.30. An analogous A_NOVA 
performed on the error data revealed a marginal effect of  
context, F(1, 59) = 3.40, p < .08. Planned t tests revealed 
that the only difference in error rate to reach significance 
across related and unrelated contexts was the 4% priming 
effect observed at Lag 4, t(59) = 2.30. It is important to note 
that this significant priming effect in errors at Lag 4 
coincides with the smallest priming effect in RT. 

The results of  Experiment 3 extend those of  Experiments 
1 and 2. Whereas our first two experiments used relatively 
short word lists and allowed the prime-target lag to vary 
randomly, Experiment 3 used longer word lists and system- 
atically varied the prime-target lag. The fact that long-term 
priming was still seen at the longest lag in our experiment 
supports our assumption that the basis of  the priming effect 
is automatic learning rather than other strategic processes 
such as recollection. Further, our results indicate that this 
effect decays very little, if at all, over the range of  lags we 
studied. 

It should also be noted that there is considerable variabil- 
ity in RT scores for the animacy-decision task. Thus, the 
apparently smaller priming effect at Lag 4 compared with 
Lag 8 in the present experiment is likely to be due to chance 
or due to the fact that some portion of  the priming effect 
manifested itself in errors for the Lag 4 condition as opposed 
toRT. 

Genera l  Discuss ion  

We began by making the novel prediction that it should be 
possible to produce long-term semantic priming. This predic- 
tion was generated by our computational model of  priming 
and would not have been made without the model. Our 
experiments confirmed this prediction and are the first to 
demonstrate a semantic priming effect spanning many 
intervening items and lasting much longer than a few 

Results and Discussion 

Separate analyses were conducted on the mean RTs for 
correct word decisions and on the mean percent errors. Each 
analysis initially consisted of  a 3 (lag) × 2 (context) 
ANOVA. T tests were then conducted to examine the 
reliability of  the priming effect at each lag. The results of  
Experiment 3 are presented in Table 3 and Figure 4. With 
respect to the time it took participants to correctly categorize 

Figure 4. Plot of the unrelated minus the related reaction times 
(milliseconds) across prime-target lags for animacy decisions in 
Experiment 3. The bars represent the standard error of the priming 
effect. 
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seconds. Our theoretical account of long-term priming stated 
that priming involves changes in distributed representations 
that deepen the basins of attraction for primed words. Words 
that are semantically similar would also tend to have their 
attractors deepened because these atWactors presumably 
overlap along many dimensions in semantic space. This led 
to the prediction that semantically similar words should 
benefit from priming on tasks involving semantic decisions 
because the system should be able to settle into the correct 
semantic attractor more quickly. However, because semanti- 
cally similar words are usually unrelated orthographically, 
there should be less benefit on lower-level tasks like lexical 
decision. Results from both our simulations and experimen- 
tal data support these predictions. To summarize, in Simula- 
tion 1 we showed significantly faster ST in the semantic but 
not in the orthographic layer in the network after priming 
with multiple semantically related primes. In Simulation 2 
we showed the same pattern of results, when only one prime 
per target was used. Graphs of one-dimensional cross 
sections of the energy surface of the network revealed that 
our priming manipulation did indeed lower the basins of 
attraction for both primes and semantically related words. In 
Experiment 1 we replicated the results of Simulation 1 in 
human participants, who showed priming by multiple seman- 
tic primes on a semantic-decision task but not on a lexical- 
decision task. Note, however, that in both the simulations 
and the model there was a small trend toward long-term 
semantic priming on lexical decision. In Experiment 2, as 
predicted by the model, we found long-term semantic 
priming after only a single prime. Finally, in Experiment 3 
we replicated the effect at lags of 0, 4, and 8 items by using a 
longer list of test items. Thus, our computational model and 
preliminary simulations were able to generate novel, testable 
predictions that guided our experimental work. 

We would not necessarily expect the amount of priming to 
be in precise quantitative agreement between the simulations 
and the human experiments. Our simulations involved a 
small network of 269 units and a very small training set of 
only 40 words and 5 categories. In spite of these simplifica- 
tions in the implemented version of our model, the main 
results are in surprisingly close qualitative agreement with 
the experimental data. Thus, we have suggestive results 
from our simulations and converging evidence from experi- 
ments that are consistent with our prediction that long-term 
priming involves changes in connection strengths in distrib- 
uted representations that alter the attractor basins of primes 
and related words. 

Our model suggests one explanation as to why previous 
experiments in the literature failed to produce long-term 
semantic priming on lexical decision: the match between the 
representational level of prime-target overlap (e.g., ortho- 
graphic vs semantic) and the level of processing in the test 
task is a critical variable. If the prime and target words have 
overlapping basins of attraction only at the semantic level, 
for example, we would expect to see evidence of priming 
only on tasks that engage semantic processing to a sufficient 
degree. Lexieal decisions on words embedded in a back- 
ground of scrambled nonwords are easy to perform quickly 
without doing any semantic retrieval. However, as Joordens 

and Becker (1997) have shown, when the lexical-decision 
task is made more difficult by making the nonwords more 
wordlike, semantics does appear to be important for making 
accurate decisions, and thus long-term semantic priming is 
observed even on this task. Note that our experiments do not 
allow us to determine whether it is making animacy 
decisions on the prime, the target, or both, that is necessary 
to observe long-term semantic priming. Our model predicts 
that both are critical, as is consistent with the fiterature on 
long-term repetition priming (e.g., Vriezen et al., 1995). 

Other Forms of Long-Term Priming 

We now examine two other forms of long-term priming, 
morphological and conceptual priming, both of which can 
be accommodated within the framework of our model. We 
then compare the major theoretical accounts of long-term 
priming with our own. 

Morphologicalpriraing. Morphological priming in lexi- 
cal decision has been reported at long lags in a variety of 
languages including English (Stolz & Feldman, 1995), 
Hebrew (Bentin & Feldman, 1990), Serbo-Croatian (Feld- 
man & Moskovljevi6, 1987) and American sign language 
(Emmorey, 1991). These findings might seem to be at odds 
with our results. Why should it be so easy to produce 
long-term priming for morphologically but not for semanti- 
cally related words on this task? To address this question, 
one needs to consider the levels of representation of 
semantic and morphological relatedness. Many models of 
lexical access (see, e.g., Chialant & Caramazza, 1995) 
assume that words are decomposed into morphologically 
based constituents at a presemantic, lexical level of represen- 
tation. If our network model was trained on a much larger 
word corpus, it might be expected to discover some aspects 
of morpbologieal structure as a useful intermediate-level 
representation in mapping from orthography to semantics 
and phonology. Thus, the hidden layer subsequent to the 
orthographic layer in our network could serve this role, 
among other things. It should be noted, however, that 
whether there is in fact a separate level of morphological 
representation is a matter of debate in the literature (see P. T. 
Smith, 1995, for example, for a dissenting opinion and some 
simulation results). 

If the above view of morphological representation is 
correct, and if we are correct in assuming that lexical 
decisions are based primarily on the ST of presemantic units, 
then the lexical-decision task would depend directly on the 
ST of morphological representational units but would not 
depend directly on semantic-level activation. This would 
explain why long-term priming is seen in lexical decisions 
for morphologically similar words but is not normally seen 
for semantically similar words. However, this argument does 
not preclude the possibility that the lexical-decision task is 
sensitive to semantic influences. 5 In fact, there is plenty of 

5 Further, it is important to note that morphologically related 
words are usually also semantically related. Hence, in Rueckl, 
Mikolinski, Raveh, Miner, and Mars's (1997) model of morphologi- 
cal priming, the semantic to orthographic pathway plays an 
important role. 
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experimental evidence to support this possibility (reviewed 
in Balota, 1990). Our network model explicitly incorporates 
semantic influences on lexical decision through feedback 
connections from the semantic to the orthographic layer via 
a hidden layer. Thus, Joordens and Becker (1997) found that 
under conditions thought to increase the importance of 
semantics in making lexical decisions, long-term semantic 
priming can be obtained. 

Conceptual priming. Findings in the literature of long- 
term conceptual priming (reviewed in Roediger, 1990; 
Roediger & McDermott, 1993) are consistent with our 
theoretical account of long-term semantic priming. These 
studies have found long-term priming on conceptually 
driven tasks such as category exemplar generation (e.g., the 
word dog is presented during a study or priming phase and is 
later generated in response to the cue animal). An attractor 
network could account for such an effect in the following 
way: The system settles into an attractor state in response to 
the prime word, and long-term priming results. This deepens 
the basin of attraction for the prime, which overlaps with 
that of the cue, making the same response more probable or 
more rapidly generated when the cue is subsequently 
eneotmtered. Thus, we view long-term semantic priming and 
conceptual priming as having very similar underlying mecha- 
nisms. Future developments of the model will address how 
long such effects can last and how they can be reinstated in 
the appropriate context. 

Woltz (1990, 1996) has studied a more complex form of 
conceptual-repetition priming in which the participants' 
task is to judge whether pairs of words (e.g., moist-damp) 
have the same meanings. When the same pair of words 
reappeared later in the list, substantial long-lag priming was 
observed. Moreover, when the prime pair preceded a synony- 
mous target pair (e.g., moist-damp followed by soggy-wet), 
there was also long-lag priming. This finding could be 
accommodated within our framework for long-term seman- 
tic priming, assuming each word's attractor basin in the 
prime pair was individually deepened, allowing faster 
processing of the target pair. However, results in other 
conditions of Woltz's (1990) second experiment do not fit 
this explanation. Specifically, when either the prime or target 
pair was unrelated, even if corresponding elements of the 
prime and target pairs were synonymous (e.g., ample- 
enclose followed by enough-surround), there was no evi- 
dence of long-lag priming. Further, Woltz's (1996) second 
experiment included some identical pairs of primes and 
targets that were synonymous (e.g., moist-moist followed by 
damp-damp), with sequential word presentation to ensure 
full semantic processing of at least the first member of each 
pair; in this condition, there was no long-lag priming. Woltz 
concluded from these data that priming on his semantic- 
comparison task primarily involves the particular processes 
involved in comparing word meanings, rather than a more 
general reinforcement of semantic-level representations. 
Although these data appear to fly in the face of our semantic 
learning explanation, it may be that the added complexity of 
Woltz's task relies heavily on postsemantic-retrieval process- 
ing and therefore is insensitive to semantic learning effects. 
More specifically, the bottleneck in this task may be the 

word comparison stage, in which case any benefits of 
enhancing semantic-level representations would be small in 
comparison to effects of enhancing the particular connec- 
tions involved in making the same-Mifferent judgment. 
Thus, we would predict that if participants engaged in 
semantic comparisons on the prime list, followed by simple 
semantic decisions on the target list (e.g., a same--different 
meaning decision on moist-moist followed by an animacy 
decision on damp), one would indeed see long-lag priming. 
We now consider how our model could be extended to allow 
such processing-specific learning effects as reported by 
Woltz. 

Transfer-appropriate processing accounts. Two impor- 
tant theoretical accounts of repetition priming in the litera- 
ture deal directly with task-specificity effects during the 
priming-study phase: Tulving and Schacter's (1990) mul- 
tiple memory systems theory postulates that different brain 
subsystems are involved in different priming tasks, whereas 
Roediger's (1990) transfer appropriate processing theory 
postulates that different kinds of processing are required for 
different tasks. Both accounts predict that a critical factor in 
producing priming is a match between the level or type of 
processing involved when the participant is responding to 
primes versus targets. In particular, they predict task-specific 
priming effects for data-driven versus conceptually driven 
tasks. Vriezen et al. (1995) observed task-specific repetition 
priming effects even within the semantic domain. Repetition 
priming was observed when the task was a size decision (is it 
bigger than a bread box?) at study and a dimension decision 
(is it wider than it is long?) at test or vice versa. But there 
was no repetition priming if the judgments at study and test 
involved different semantic domains, that is, size versus 
animacy. 

We are sympathetic to the transfer-appropriate processing 
accounts described above and view them as being compat- 
ible with our explanation of long-term priming. Given that 
participants apparently can truncate their level of processing 
as necessary according to task demands, one would expect 
the level of long-term priming effects to be in correspon- 
dence with the level of processing. To account for within- 
level processing-specificity effects such as those found by 
Vriezen et al. (1995) and Woltz (1990, 1996), we would have 
to extend our model to include some sort of selection 
procedure to focus processing on a particular layer or subset 
of units during priming. One way to to do this would be to 
add a response layer to the network and explicitly train it to 
respond according to the current task demands. It might 
learn to make animacy decisions, for example, by inhibiting 
processing of semantic features irrelevant to this task. The 
network would then be prevented from strengthening the 
connections between features relevant to the animacy deci- 
sion and other irrelevant features. Hence, the network would 
exhibit no transfer from the animacy decision to unrelated 
tasks such as size decisions. A number of studies by 
Dagenbach, Carr, and colleagues (reviewed in Carr et al., 
1994, pp. 704-705) provided evidence in support of such an 
attentional mechanism, at least during memory retrieval. 
They postulated that a center-surround attentional mecha- 
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nism modulates the retrieval of weakly activated items, thus 
inhibiting irrelevant associated items. 

Recollective processes. An alternative explanation of 
our findings is that the long-term effects we found are due to 
learning in an episodic memory system or to some sort of 
strategic processing. For example, perhaps participants 
noticed the semantic relationship between the target words 
and previously encountered words, and this awareness 
facilitated their semantic decision making. This is in contrast 
to our view that long-term priming involves incremental 
learning in a distributed memory system and that the transfer 
of priming effects to similar words is due to automatic 
generalization of this learning to words with overlapping 
basins of attraction. Such a mechanism should not require 
conscious strategies, although they might play an additional 
role. Further, it may turn out that conscious processing of the 
prime is necessary for long-term learning---even without the 
necessity of laying down an episodic memory trace. 

Ratcliff and McKoon (1988) have questioned the notion 
that all long-term priming effects are subserved by the same 
mechanism. For example, Ratcliff et al. (1985) have re- 
ported an intermediate-range priming effect for newly 
learned associates in recognition memory tasks whose time 
course appears to differ from both short-term and long-term 
priming. Whereas in lexical decision, semantic-associative 
priming is typically found to decay rapidly after one or two 
intervening items, in recognition priming, the decay (for 
repeated items and for newly learned associates as primes) is 
much more gradual but is largely diminished by a lag of 8 
items. It is possible that this effect is due to the use of 
conscious strategies. Our procedure was designed to mini- 
mize the use of conscious strategies by forcing participants 
to respond quickly to serially presented items. However, it is 
possible that our word lists (Experiments 1 and 2) or lags 
(Experiment 3) were short enough that participants did in 
fact use recollective strategies. 

Short-Term Semantic Priming 

Having discussed various findings and theoretical ac- 
counts concerning long-term priming, we now turn to the 
literature on short-term semantic priming. Another possible 
interpretation of our findings is that they are qualitatively the 
same as traditional short-term effects. Perhaps existing 
theories of short-term priming could be extended to accom- 
modate our findings. But before turning to these theoretical 
accounts, we discuss another important distinction in the 
semantic priming literature: between semantic and associa- 
tive relatedness. Most theories make different predictions 
depending on whether words are purely semantically related 
(e.g., bread-cake) or are both semantically and associatively 
related (e.g., bread-butter). 

Semantic versus associative priming. Whether short- 
term semantic priming occurs at all for words that are purely 
semantically related but not associatively related has been a 
subject of debate in the literature. Although some studies 
have reported pure semantic priming on lexical decision 
(e.g., Fischler, 1977; Lupker, 1984), Sbelton and Martin 
(1992) found no such effect on this task with a procedure 

thought to minimize strategic processing. 6 However, al- 
though Moss, Ostrin, Tyler, and Marslen-Wilson (1995), like 
Shelton and Martin, did not find pure semantic priming on 
visual lexical decision for category coordinates (e.g., pig- 
horse), they did find pure semantic priming for instrument 
relations (e.g., broom-floor). Further, they observed pure 
semantic priming for all types of semantic relations tested on 
auditory lexical decision. In a more recent unpublished 
experiment, R. Martin, J. Altarriba, S. Wayland, and J. Sbelton 
(personal communication, December 21, 1995) attempted to 
replicate the Shelton and Martin (1992) study by testing 
students at Rice University (the site of the original study) 
and at other universities. Although they again failed to 
obtain priming on the semantically related pairs with Rice 
students as participants, they did obtain significant priming 
for students at the other universities with the same materials 
and procedures. These investigators noted that the students 
at the other universities had substantially longer RTs, which 
may have related to the differing results. One account of 
these findings is that the semantic level of representation 
takes longer to activate than the orthographic-lexical level 
because it is a later stage of processing. Thus, slower 
responding participants would be activating semantics to a 
larger degree and would therefore be more likely to show 
semantic priming on lexical decision. 

In a recent set of studies, McRae and Boisvert (1997) used 
word pairs that had been assessed for semantic overlap on 
the basis of empirically derived feature norms (McRao, de 
Sa, & Seidenberg, 1997) and which were not associatively 
related according to word-association norms. They found 
significant short-term semantic priming for both semantic 
decisions (does the word refer to something you can touch?) 
and lexical decisions. They also tested the semantically 
related word pairs used in Shelton and Martin's (1992) 
studies and replicated their null result. In fact, according to 
McRae and Boisvert's similarity rating norms, these words 
were not highly semantically related. Taken together, these 
studies clearly demonstrate the importance of a strong 
overlap in semantics for obtaining short-term "pure seman- 
tic" priming. These data support models of word recognition 
that use distributed representations of semantics, like the 
Hinton-Shallice (1991) model on which our account of 
long-term priming is based. As we have argued, sufficient 
semantic overlap should also be a critical feature for 
long-term semantic priming. In fact, we would predict 
long-term priming if the highly related prime-target pairs in 
McRae and Boisvert's study were presented at long lags. 
This should be particularly evident on a semantic-decision 
task. 

The above data actually raise a tricky issue for our 
account of the short- versus long-term distinction in seman- 
tic priming: We have argued that previous attempts to get 
long-term semantic priming in lexical decision failed be- 
cause the task is not sufficiently semantic in nature. If this is 
true, then why should there be greater short-term priming in 
lexical decision as the semantic overlap between primes and 

6 Plaut (1995) has proposed a connectionist model that accounts 
for Shelton and Martin's (1992) data. 
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targets is increased and as participants' RTs become longer? 
Further, studies that directly manipulated the depth of 
processing of the prime have shown that the semantic 
priming effect is attenuated (Kaye & Brown, 1985) or 
eliminated (M. C. Smith, Theodor, & Franklin, 1983; Henik, 
Friedrich, & Kellog, 1983; Friedrich, Henik, & Tzelgov, 
1991) when the prime is processed in a letter search task. 
Presumably, in such shallow processing tasks semantic 
processing is virtually absent. Taken together, these data 
suggest that some amount of semantic processing is a 
necessary condition for short-term pure semantic priming. 
One possible resolution of these data with our account is to 
assume that in order for long-term priming to occur, the 
relevant semantic-level nodes must be fully activated or 
activated above some threshold. An explicitly semantic task 
such as animacy decision would achieve this, whereas a 
lexical-decision or naming task may or may not. Evidence in 
support of the assumption that sufficiently strong activation 
is required for long-term priming comes from studies 
showing that subliminal prime presentation eliminates long- 
term repetition priming in lexical decision (Forster & Davis, 
1984), stem completion, and fragment completion (Forster, 
Booker, Schacter, & Davis, 1990). Further, as discussed 
following our first experiment, Joordens and Becker (1997) 
indirectly manipulated the depth of processing of primes and 
targets in a running lexical-decision task by varying the 
word-nonword similarity and found long-term priming only 
for deeply processed primes and targets. 

Contextual priming. Recent studies by Hess, Foss, and 
Carroll (1995) suggested that semantic-associative related- 
ness may be an overly simplistic explanation of the richness 
of contextual priming effects observed in more realistic 
reading situations. Their findings indicate that when a word 
is read in the context of a related sentence, this broader 
context predicts priming more consistently than does the 
single preceding word. These findings have clear implica- 
tions for both short-term priming studies and studies such as 
ours involving long-term priming in isolated word recogni- 
tion. Clearly, when one is reading a passage of text as 
compared with a list of isolated words, a far richer base of 
information is available to facilitate word processing. These 
facilitatory effects may indeed turn out to be long-term as 
well as short-term. We now turn to two major theoretical 
accounts of short-term priming: residual activation theories 
and compound-cue theory. 

Activation Theories 

Many theories have been proposed to account for short- 
term semantic-associative priming that involve some sort of 
residual activation effect from the prime, for example, by the 
activation of an "expectancy set" of word nodes represent- 
ing possible associates of the prime (e.g., C. Becket, 1980), 
automatic spreading activation in a localist network (Ander- 
son, 1983; Collins & Loftus, 1975; Collins & Qulllian, 1969; 
Neely, 1977; Posner & Snyder, 1975), or sustained activa- 
tion of a distributed representation (A. Sharkey & N. 
Sharkey, 1992; N. Sharkey, 1989; Masson, 1989, 1991, 
1995). See Nee ly (1991) for an excellent survey of the major 

findings and theoretical accounts in the enormous literature 
on short-term semantic-associative priming. We focus on 
the localist and distributed activation accounts here because 
they have two things in common with our account of 
priming: They specifically address the time course of 
semantic priming, and they are based on similar models of 
word recognition that involve activation patterns in net- 
works of interconnected nodes. 

As mentioned in the introduction, the standard finding is 
that semantic priming fully dissipates for prime-target lags 
greater than one (see, e.g., Joordens & Besner, 1992). 
Spreading activation accounts of priming (Anderson, 1983; 
Collins & Loftus, 1975; Collins & Quillian, 1969; Neely, 
1977; Posner & Snyder, 1975) assume a localist representa- 
tion in which there is a node for each word or concept. When 
a word's node is activated, activity automatically spreads 
across links to related word nodes, with activation decaying 
with distance and time. Typically, relatedness is defined in 
terms of free association norms (see, e.g., McNamara, 
1992a, 1992b). Priming occurs when the residual activation 
of a target node reduces the time required to fully activate it 
by the target word. Priming across a lag of 1 can be 
accommodated easily in these models because of the localist 
representation. Provided the intervening word is unrelated, it 
should not interfere with activation of the prime or target 
word node. Spreading activation models also predict medi- 
ated priming (McNamara, 1992a), in which concepts related 
to the prime via two-step and three-step chains would be 
weakly activated and therefore weakly primed. However, 
Ratcliff and McKoon (1994) noted that each word has many 
associates; therefore, they argued that if each word activates 
about 20 related nodes, in a three-step chain, 8,000 nodes 
would be activated, constituting a substantial proportion of 
the adult lexicon. Spreading activation models could ac- 
count for long-lag priming as follows: If some activation 
spreads from a prime word to its semantically related target 
and that activation decays very slowly, it could persist across 
arbitrarily many intervening items. However, by Ratcliff and 
McKoon's line of reasoning, if substantial activation were to 
persist beyond two intervening items, and each active node 
in turn activated its own 20 or so associates, one would soon 
have the entire lexicon activated. 

Distributed connectionist models provide a somewhat 
similar account of short-term priming in terms of residual 
activation, but by using a different representation of seman- 
tics. Instead, each word or concept is represented by a 
pattern of activation across a large set of nodes such that 
related concepts activate overlapping representations. An- 
other fundamental difference is that typically only one 
concept can be fully activated at one time, although multiple 
concepts could be weakly activated. For the sake of brevity, 
we focus on Masson's (1995) model, noting that Sharkey 
and Sharkey (A. Sharkey & N. Sharkey, 1992; N. Sharkey, 
1989) proposed a very similar model. Masson accounted for 
short-term semantic priming by using a connectionist model 
with an input layer representing orthographic features of a 
word, a meaning layer representing the word's semantics, 
and a phonological layer representing the word's pronuncia- 
tion. When a word is processed by the network, residual 
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activation remains at the semantic layer. Thus, when a new 
pattern is presented to the input units, the initial state of the 
semantic units can influence the time the network takes to 
settle to a stable response. If the initial state is similar to the 
network's final response, ST should be fast relative to 
starting from an unrelated semantic state. 

Masson's (1995) model has greater difficulty than a 
localist one in handling priming across a nonzero lag. 
Activation of an intervening item's distributed representa- 
tion would presumably wash out that of the prime. However, 
Masson's simulations show that if the intervening item only 
partially activates the semantic layer, the residual activation 
is noisier but still sufficient to produce priming. Further, 
Masson's model handles the differential effects of interpos- 
ing an unrelated versus a neutral prime. When an unrelated 
prime is processed, the network is far from the correct state 
for the target, and therefore retrieval is slow. In contrast, a 
neutral prime such as a row of Xs would not activate a 
systematic pattern on the semantic layer and thus would not 
interfere with semantic priming. 

Masson's (1995) account of semantic priming is based on 
a model of word recognition very similar to our model. 
However, both Masson's and the spreading-activation ac- 
counts of the mechanism of priming differ substantially from 
ours. Any sustained activation account must predict that 
some decay occurs. As new stimuli are encountered, their 
activations must predominate over the residual effects of 
previous stimuli. Thus, such effects can only be very 
short-lived and ultimately must decay down to zero. Al- 
though the exact time course of decay of activation is a 
subject of ongoing empirical investigation, it is generally 
agreed that this decay is very rapid and could not possibly 
accommodate the long-lasting semantic priming effects 
obtained in our studies. 

If models of short-term semantic priming cannot reason- 
ably accommodate very long-lasting effects, perhaps our 
model of long-term priming could be made to accommodate 
short-term effects. For example, perhaps the plastic changes 
associated with long-term priming are initially very large but 
then decay down to some stable baseline, as proposed by 
McClelland and Rumelhart (1986). This view has a certain 
appeal, to the extent that it is parsimonious. However, our 
experience with training neural networks with very large 
weight changes suggests that this is a recipe for disaster. 
That is, large changes in weights to accommodate one 
particular stimulus tend to produce massive interference 
effects with subsequent stimuli, along with very high error 
rates. This pattern of results is not typical of human 
participants in priming experiments. Thus, unless the learn- 
ing is mediated by a specialized memory system that is 
relatively immune to interference (e.g., the episodic system) 
it is likely to involve fairly small, incremental adjustments 
(McClelland, McNaughton, & O'Reilly, 1995; O'ReiUy & 
McClelland, 1994). Our conclusion is that a combination of 
short-term activation effects and long-term weight changes 
seems the most plausible account of the semantic priming 
literature. 

Compound-Cue Theory 

In contrast to explicit activation accounts of short-term 
priming, compound-cue accounts (e.g., Dosher & Rosedale, 
1989; Ratcliff & McKoon, 1988; Whittlesea & Jacoby, 
1990) view priming as a result of the combination of the 
prime and target into a composite cue in short-term memory. 
This compound cue produces greater familiarity than either 
cue alone and hence a speeded response. Depending on what 
sort of processing participants engaged in between succes- 
sive items, such a mechanism could conceivably produce 
priming across arbitrarily long lags, though for very long 
stimulus lists the effect would presumably drop off sharply 
as the lag increased. 

However, when one considers how such a mechanism 
might actually be implemented within a distributed network 
model of memory, it begins to look very much like residual 
activation accounts. For example, Ratcliff and McKoon 
(1994) have proposed that in a network such as the 
Seidenberg and McClelland (1989) model of lexical deci- 
sion, 

• . .  gradual (stochastic) replacement of one item by the next 
item . . .  would allow the representation at input to be a 
compound . . .  [which] could percolate through the whole 
network. To produce semantic priming effects . . . .  the seman- 
tic layer could represent semantic feature overlap, so that a 
compound of related items would produce a better match to 
memory and faster responses. (p. 183) 

It is difficult to distinguish this proposal from that of Masson 
(Masson, 1991, 1995) or Sharkey (A. Sharkey & N. Sharkey, 
1992; N. Sharkey, 1989). Like the Masson and Sharkey and 
Sharkey models, we consider compound-cue accounts to be 
a viable explanation for short time-scale priming effects, 
complementary to our account of long time-scale effects. 

Conclusions 

Our view of long-term priming as incremental learning 
differs from previous accounts of short-term semantic- 
associative priming in the literature that involve transient 
effects like residual activation or expectancy generation. 
These accounts were developed to explain short-rived ef- 
fects like priming by associatively related words (e.g., bread 
and butter). 7 Such processes may help the cognitive system 
to process language rapidly by preparing it for what is likely 
to occur next, on the basis of the current context (but see 
Hess et al., 1995). Long-term learning, in contrast, is 
presumably necessary to lay down cumulative memory 
traces of what a person has experienced over a lifetime. This 
view suggests that long-term priming reflects the normal 
course of learning. Presumably these different short- and 

7 It is widely believed that such effects reflect priming at the 
lexical level rather than at the semantic level. For example, de 
Groot (1990) found no differences in short-term priming for 
associatively related words in the lexical-decision and animacy- 
decision tasks, except in one experiment in one condition. In that 
condition, the effect only showed up for animate words, and 
subsequent experiments implicated strategic processing as a prob- 
able explanation of this result. 
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long-term mechanisms would act in concert in a complete 
cognitive system. 

The data reported here highlight the value of  combining 
modeling and experimental approaches to developing theo- 
retical accounts of  cognitive processes. Having a computa- 
tional model allows us to postulate in a precise and specific 
way the mechanisms that may underlie long-term priming. 
The process of  building our priming model led us to make 
novel predictions about long-term semantic priming, which 
we were then able to confu'm experimentally. In our 
simulations, we have undoubtedly used a highly oversimpli- 
fied representation of  human semantic memory, as well as of  
the semantic learning process. Thus, we could not hope for 
exact quantitative agreement with human data. However, for 
the most part we were able to obtain good agreement 
between our qualitative pattern of  simulation results and the 
pattern of  priming in human participants. From this we can 
conclude that the model did capture the essential aspects of  
orthographic and semantic memory organization that are 
relevant to the lexical- and semantic-decision tasks. Thus, 
the general approach appears to be promising as a way of  
bridging the gap between neural modeling and experimental 
approaches to understanding human cognition. 
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A p p e n d i x  A 

S i m u l a t i o n  D e t a i l s  

Pattern Presentation 

For each pattern presentation, during both learning and testing- 
priming sessions, the states of the units were updated repeatedly for 
a number of time steps until the network reached a stable attractor. 
At each time step, t, each unit's state, y,(t), was updated according 
to the following equation: Yi(0 = yz(t- 1) + a[~(x,(t)/T) - 
yi(t - 1)], where ct is fixed state adaptation rate parameter, ~(xi) is 
the activation function--a nonlinear function of the weighted 
summed input xi = ~;,jwijyj(t)--and T is the "temperature" param- 
eter of the DBM. In our simulations, ct was 0.4, and for the 
activation function we used the hyperbolic tangent nonlinearity, 

e x - e - X  

or(x) = 
e~ + e-X ' 

an S-shaped function producing real-valued continuous activations 
ranging from - 1  to 1. In the learning and energy equations 
(described below), we shifted and scaled the activations to range 
from 0 to 1 so that they could be interpreted as probabilities. This 
function is commonly used in connectionist models with nonlinear 
units. Another common choice of nonlinearity is the sigmoid 
function, ~r(x) = 1/(1 + e-X), which is nearly identical in form. The 
temperature parameter scales the total input to units and thereby 

determines the slope of the activation function. Its purpose is 
explained in the next paragraph. 

The Boltzmann machine is similar to a Hoptield (1982, 1984) 
network in that both use symmetric connections and Hebbian 
learning rules to store patterns as attractors. Two major problems 
with the Hopfield network are its poor storage capacity and the fact 
that it can settle into "blend states"nattractors that do not 
correspond to any stored patterns. The Boltzmann machine over- 
comes these two problems respectively by its learning rule, 
described in the next subsection, and by using a procedure called 
simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) to 
update the states until a low-energy attractor is reached. Simulated 
annealing works as follows: Each time a pattern is presented to the 
network, the unclamped units are initialized to intermediary states 
of 0.0, and the temperature parameter is set to a high initial value; at 
this high temperature, the slope of the activation function is nearly 
flat so units' states are relatively insensitive to their total inputs. 
Units' states are then gradually updated for many iterations. At each 
iteration, T is decayed by some factor, until it has reached a 
minimum value. This annealing procedure helps prevent the 
network from becoming trapped in poor local minima. In our 
simulations, the initial temperature was 30, the decay factor was 
0.9, and the final temperature was 1.0. State updates continued until 
no unit had changed its state by more than 0.00001 from one 
iteration to the next. These parameter values were determined 
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empirically to produce reasonably fast and continuous convergence 
to an energy minimum. 

Soft-clamping of the orthographic units' states was achieved by 
adding an extra connection with a large fixed weight to each 
orthographic unit and passing the external input in along this 
connection. The weights on these extra connections were fixed at 
2.0, so that each orthographic unit's state would be influenced 
predominantly by the external input hut also to some degree by the 
activations of units in the other layers in the network. We did not 
experiment with this choice of fixed weight. However, during 
learning the network was free to make the other weights arbitrarily 
large, so the choice of the external weight value became less 
relevant as learning proceeded. 

Leaming  

In a standard DBM, the weight update for each connection is 
computed according to a contrastive Hebbian learning rule (Peter- 
son & Anderson, 1987), which involves two phases for each 
training pattern. In the positive phase, the states of both the input 
and output units are clamped to their correct values, the input 
vector and desire.d output vector or training signal, respectively. 
The hidden unit StateS are then repeatedly updated until they settle 
to stable values. Positive Hebbian learning then occurs: wo( t )  = 
wo{t - 1) + ty,(t)yj(t), where • is the learning rate. Thus, weights 
on connections between strongly coaetive units are strengthened. In 
the negative phase only the input units' states are clamped; the rest 
of the network settles into an attractor state that may or may not be 
the correct response, and this response is "unlearned": wo( t  ) = 
w i j ( t -  1) - ey,(t)yj(t). Thus, weights on connections between 
strongly coactive units are weakened. Eventually, learning in the 
two phases converges to a net effect of zero once the network has 
learned to produce the correct output states in response to the 
corresponding clamped input states in the negative phase. For 
efficiency of learning, the network was first trained for 2,000 
sweeps through the training set of 40 patterns, exactly in the 
manner described by Plaut and Shallice (1993a), using hard- 
clamping of inputs. The learning rate for each unit during this 
initial training phase was .Ol/fanini, as in the Plant and Shallice 
simulations (David Plant, personal communication), wherefanini is 
the number of incoming connections to the ith unit. Thus, each 
unit's learning rate was scaled by its fanin. For each training 
pattern, the network was trained to map from orthography to the 
correct semantics and phonology, from semantics to the correct 
orthography and phonology, and from phonology to the correct 
semantics and orthography. Thus, each learning iteration involved 
one positive phase, hard-clamping the O, S, and P layers, and three 

negative phases, leaving the O and S layers, the P and S layers, or 
the O and P layers unclamped. The network was then trained for an 
additional 1,500 sweeps through the training set by using soft- 
clamping, with a fixed learning rate for all units of 0.00001, and 
this time it was only trained to map from orthography to semantics 
and phonology. During this latter training stage, zero-mean noise 
with a standard deviation of 0.05 was added to the orthographic 
inputs on each pattern presentation. 

Free Energy 

Hinton (1989) showed that the DBM learning procedure per- 
forms minimization by steepest descent in the Boltzmann free 
energy, F, which is defined in terms of the energy E and entropy H 
of the system as follows: 

F = E - T H  

= - ~ ~ij yyjW# - T ~ [yi l°g yi + ( 1 -  Yi) l°g ( 1 -  

It is this quantity that we plotted in Figure 2, where i andj  indexed 
over all pairs of connected units in the entire network. 

A p p e n d i x  B 

H i n t o n  a n d  S h a l l i c e ' s  40  W o r d s  

Indoor Body Outdoor 
objects Animals parts Foods objects 

Bed Bug Back Bun Bog 
Can Cat Bone Ham Dew 
Cot Cow Gut Hock Dune 
Cup Dog Hip Lime Log 
Gem Hawk Leg Nut Mud 
Mat Pig Lip Pop Park 
Mug Ram Pore Pork Rock 
Pan Rat Rib Rum Tor 

Note. From "Lesioning an Attractor Network: Investigations of 
Acquired Dyslexia," by G. E. Hinton and T. Shallice, 1991, 
Psychological Review, 98, p. 79. Copyright 1991 by the American 
Psychological Association. Reprinted with permission of the 
author. 

(Appendixes continue) 
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Appendix  C 

Hinton and ShaUice's  Semantic  Features 

Semantic features 

max-size-less-foot max-size-foot-to-two-yards max- size-greater-two-yards 
maln-shape-2D main-shape-3D 
cross-section-rectangular cross-section-circular 
has-legs 
white brown green 
color-other-strong varied-colors transparent 
dark hard soft 
sweet tastes-strong 
moves 
indoors in-kitchen in-bedroom 
in-living-room on-ground on-surface 
otherwise-suported 
in-country found-woods found-near-sea 
found-near-streams found-mountains found-on-farms 
pan-of-limb surface-of-body interior-of-body 
above-waist 
mammal wild fierce 
does-fly does-swim does-run 
living carnivore 
made-of-metal made-of-wood made-of-liquid 
made-of-other-nonliving got-from-plants got-from-animals 
pleasant container 
man-made container 
for-cooking for-eating-drinking for-other 
used-alone for-breakfast for-lunch-dinner 
for-snack for-drink 
particularly-assoc-child panicularly-assoc-adult used-for-recreation 
human component 

Note. From "Lesioning an Attractor Network: Investigations of Acquired Dyslexia," by G. E. 
Hinton and T. Shallice, 1991, Psychological Review, 98, p. 94. Copyright 1991 by the American 
Psychological Association. Adapted with permission of the author. 
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A p p e n d i x  D 

Stimuli  fo r  Ex 

Sublist A 

Prime Target Prime Target 

whale shark cotton 
dolphin rayon 
fish linen 
porpoise satin 
salmon velvet 

foot mile coat 
inch pullover 
yard sweater 
meter dress 
kilometer blouse 

cherry 
plum 
lime 
raisin 
melon 

grape stool 
seat 
bench 
recliner 
throne 

mansion home shuttle 
house railway 
abode freighter 
dwelling subway 
lodging streetcar 

robin dove louse 
swan flea 
pigeon hornet 
eagle parasite 
canary vermin 

lentil bean manuscript 
broccoli novel 
pea journal 
legume paperback 
spinach document 

flurry snow salt 
blizzard pepper 
sleet seasoning 
slush flavoring 
frost savory 

pontoon 
surfboard 
buoy 
float 
ferry 

raft 

~eriments 1 and 2 

Prime 

silk minute 
second 
week 
month 
day 

shirt waterway 
stream 
channel 
brook 
creek 

chair knife 
fork 
ladle 
silverware 
cutlery 

train cow 
lamb 
goat 
mutton 
mule 

roach aluminum 
copper 
iron 
zinc 
chrome 

book dollar 
nickel 
quarter 
penny 
coin 

spice zither 
lute 
guitar 
cello 
piano 

paw 
foot 
mitt 
palm 
finger 

Sublist B 

Target 

hour 

river 

spoon 

sheep 

steel 

dime 

harp 

hand 

Prime 

auger 
borer 
chisel 
reamer 
pliers 

ruby 
emerald 
sapphinre 
topaz 
amethyst 

tulip 
daisy 
violet 
orchid 
pansy 

portal 
entranceway 
gateway 
window 
closet 

whiskey 
pilsner 
stout 
lager 
ale 

knife 
skewer 
dagger 
sword 
lance 

evergreen 
birch 
spruce 
cedar 
balsam 

Target 

drill 

jade 

rose 

door 

beer 

spear 

pine 

(Appendixes continue) 
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Append ix  E 

St imuli  fo r  Exper imen t  3 

Stimulus pairs 

Practice stimuli Prime Target Prime Target Filler words 

board fate destiny snare trap stuff fun 
butter infant baby demon devil blood mildew 
lettuce foam froth tack pin ant skunk 
chasm iceberg glacier plate dish bear carrot 
cabin wasp hornet bison buffalo fight moss 
crab mistake error rug carpet aardvark goldfish 
bacteria sorcery magic rifle gun muffin young 
cord filth dirt bucket pail mushroom cactus 
priest pig swine book novel shark mule 
frost cushion pillow mist fog paste gopher 
hall sound noise prison jail rose cucumber 
jury odor scent home house robin parrot 
gem marsh swamp monkey ape stone folder 
officer frog toad ladle spoon apple pill 
oven kleenex tissue desk table rope frame 
person agony pain wolf dog germs trout 
lizard fire flame oyster clam fly lobster 
shadow bush shrub boat ship grape iguana 
salute robber thief hawk eagle weed bottle 
square shore beach mouse rat under shelf 

melody song snake serpent coral clock 
octopus squid student pupil soap kite 
shrine altar grass lawn chief bone 
pledge promise sheep lamb doctor daisy 
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