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In current conceptualizations of visual attention, selection takes
place through integrated competition between recurrently
connected visual processing networks. Selection, which
facilitates the emergence of a ‘winner’ from among many
potential targets, can be associated with particular spatial
locations or object properties, and it can be modulated by both
stimulus-driven and goal-driven factors. Recent neurobiological
data support this account, revealing the activation of striate
and extrastriate brain regions during conditions of competition.
In addition, parietal and temporal cortices play a role in
selection, biasing the ultimate outcome of the competition.
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Abbreviations
ERP event-related potential
fMRI functional magnetic resonance imaging 
MEG magnetoencephalography 
MST medial superior temporal
MT middle temporal
PET positron emission tomography 
SOA stimulus onset asynchrony
TMS transcranial magnetic stimulation 
TEO temporal occipital
WTA winner-take-all

Introduction
The term ‘selective attention’ generally refers to the set of
operations that determine which of several possible inputs
will be analyzed past the level at which all may be
processed in parallel. Standard conceptualizations of selec-
tive attention have undergone numerous transformations
in the four decades following Broadbent’s [1] initial pro-
posal. Early theories drew analogies between selection and
a filtering mechanism that operated in accordance with a
set of either early perceptual [1] or later semantic [2] crite-
ria. Later theories recast attention as the selective
distribution of a limited supply of cognitive resources (see
e.g. [3]); this shifted the perceived role of attention from a
discrete gateway separating different levels of processing
to that of a modulatory influence that could increase or
decrease the efficiency of demanding processing tasks.
Considered in this way, attention was a far more flexible
mechanism, capable of facilitating or inhibiting processing
of the input. Moreover, this perspective afforded an analy-
sis of selection phenomena in terms of costs and benefits
(see e.g. [4,5]): for example, an increase in the efficiency of
processing a selected portion of input necessitated a con-

comitant decrease in processing other, nonselected por-
tions of input. 

A state of competition between different possible inputs
supplanted the need for a discrete filtering process. In sim-
ple competition models, the input receiving the greatest
proportion of resources (e.g. as a result of more salient bot-
tom-up attributes) would be most completely analyzed, and
the contents of this analysis would be communicated to fur-
ther stages of processing. A specialized attentional
mechanism that could alter the distribution of these
resources could, in essence, facilitate the processing of the
information in a portion of input by providing it with addi-
tional support and biasing competition in its favour. How
such a mechanism might identify a discrete portion of input
for preferential processing continues to be the source of
considerable debate, as some studies implicated a mecha-
nism that selected input associated with a specific set of
spatial locations (see e.g. [4]), whereas others pointed to a
mechanism that selected input associated with a represen-
tation of an object that had already been fully parsed in
accordance with pre-attentive Gestalt principles (see
e.g. [6]). Most importantly, it was unclear how competition
and modulation might be related to processing in the brain.

Computational modelling, however, has provided a means
of addressing these issues. Biased competition can be read-
ily understood in terms of interactions between units in
‘winner-take-all’ (WTA) neural networks, and a number of
neurally inspired computational models of selective atten-
tion have employed WTA network dynamics [7–9].
Moreover, recent proposals (e.g. [10,11]) have interpreted
the functioning of the attentional components associated
with posterior and anterior neuroanatomical regions [12] in
terms of WTA interactions among lower-level representa-
tions in early visual cortical and subcortical areas,
higher-level representations in the dorsal and ventral visual
processing streams, and the frontal lobes (see Figure 1).
According to these models, representations within the
same processing region that correspond to different por-
tions of input are mutually inhibitory, whereas those in
different processing systems that correspond to the same
portion of input are mutually excitatory. Thus, selection
emerges from local competition and nonlocal cooperation
in multiple levels of processing throughout the entire set
of interconnected networks. 

Competition in lower-level posterior regions will tend to
be influenced by exogenous factors such as attribute
salience. This will, in turn, affect competition in the high-
er-level, more anterior regions to which they provide input.
However, endogenous factors such as task relevance or
goal-driven strategies will tend to bias competition in the
more intention-related anterior representations that can, in

The cognitive neuroscience of visual attention
Marlene Behrmann* and Craig Haimson†

nb9208.qxd  12/17/1999 2:55 PM  Page 158



The cognitive neuroscience of visual attention Behrmann and Haimson    159

turn, provide top-down support to posterior regions and
thereby modulate the influence of exogenous factors at a
lower level. This view of integrated competition between
recurrently connected visual processing networks has been
applied to a number of different issues in the visual atten-
tion literature (see e.g. [13–15]) and continues to gain
support with the accumulation of new and converging evi-
dence from the different methodologies encompassed by
cognitive neuroscience. 

Our goal in this review is to describe several examples
from the body of recent work that has uncovered new char-
acteristics of the operation of integrated competition
within neuroanatomical attention networks. Although
there have been many advances in our understanding of
the cognitive mechanisms mediating visual selection in the
past year [16,17], we will restrict our review to research
that incorporates both behavioral and brain mechanisms.

Biased competition as a mechanism
of selection
Recent support for the biased competition model of visual
attention has been provided by both functional magnetic
resonance imaging (fMRI) and event-related potential
(ERP) studies. In these studies, enhancement of cortical
activation or attention-related waveforms is observed
under various conditions of competition: for example,
when subjects perform more difficult discriminations,
when distractors compete with targets and when task
demands increase (e.g. when subjects have to saccade to a
feature target rather than simply signalling its presence
with a key press) [18••]. Moreover, when task demands
increase, less activation is observed in areas associated with
an irrelevant task being performed simultaneously, reflect-
ing the decrease in processing of nonselected information
[19•]. Competitive effects are also observed when, for
example, stimuli are presented simultaneously rather than
sequentially. In the former condition, greater activation is
seen in areas V1, V2, V4, and TEO, probably reflecting the
mutual suppression induced by competing stimuli [20••];
this difference in activation increases with distance from
V1, possibly reflecting increased receptive field size and
greater competition between neurons encoding different
objects located within overlapping regions of space.
Interestingly, the competition between the stimuli can be
altered by focused attention: when the stimuli appear
simultaneously, the suppressive interaction can be can-
celled by having subjects attend selectively to one of the
possible stimulus locations [20••].

Competition is also evident when attending selectively to
one of two perceptual features of a stimulus, compared
with dividing attention across both. For example, com-
pared with a fixation condition, attending to the colour or
shape of a stimulus manifests as increased activation in
occipital and inferior temporal regions [21•]. Switching
attention between the two features of a stimulus, perhaps
reflecting the dynamics of the WTA, engages additional

cortical regions and results in activation in parietal regions
as well as in the cerebellum. Similar effects are observed
when subjects attend selectively to the local or global
level of a stimulus; this produces an amplitude modula-
tion or increase in the early P1 components of the ERP
waveform, in a region corresponding to the fusiform gyrus
on PET (positron emission tomography) scans [22•].
When attention is divided between local and global levels,
later, more hemisphere-specific effects are observed.
Interestingly, even when subjects attend to a single
dimension such as colour (e.g. to a red or to a blue stimu-
lus), early waveforms associated with attending to one of
the two colours may be localized to occipital and temporal
regions, whereas later waveforms may be localized to
more anterior fusiform regions and to prefrontal cortex. 

Attention-related impairments resulting from damage to
parietal cortex can also be interpreted as reflecting competi-
tion between targets. When letters are presented to the left
and right sides of a patient with a right parietal lesion, report
of the left item (‘extinction’) is poor at short SOAs (stimulus
onset asynchrony) irrespective of whether the left or right
item is presented first [23••]. Report of the contralateral
item improves, however, with increasing temporal lag
between the two presentations, suggesting that when the
less powerful contralateral item obtains a temporal advan-
tage, it is sufficiently activated to compete with and surpass
the ipsilateral representation. Bottom-up properties of the
stimulus can also affect the competition, as the contralateral
item is reported more often when it shares orientation with
the ipsilateral item and is, therefore, more resistant to
extinction [24]. Furthermore, the competition can span
more than a single modality; when a visual stimulus is pre-
sented on the ipsilateral side, it can inhibit detection of a
tactile stimulus presented contralaterally [25•].

Figure 1

Reciprocal connections between components of the integrated
competition system responsible for attentional modulation.
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Selection by spatial location
An efficient means of selecting input is on the basis of spa-
tial location. When spatial regions are selected covertly
(i.e. in the absence of an eye movement) by pre-cueing
spatial locations in which targets will probably appear,
neural regions, including the right anterior cingulate gyrus
and right posterior parietal cortex (intraparietal sulcus), are
activated [26]. Attentional modulation occurs irrespective
of whether the cues are nonsymbolic and appear peripher-
ally [26] or are symbolic and presented centrally [27]. As
would be predicted by a competition account, dividing
attention between right and left locations results in longer
reaction times to detect the target compared with when
attention is biased to one side. An early ERP P1 compo-
nent over the lateral occipital scalp accompanies the
attentional benefit and a late positive deflection reveals
both the attentional costs and benefits [28•]. Moreover, an
event-related optical signal can be elicited in early visual
areas when stimuli appear at attended, relative to unat-
tended, locations. Whether or not the neural mechanisms
associated with covert attentional shifts are identical to
mechanisms dedicated to saccadic shifts remains a matter
of debate. A direct comparison between a saccadic and a
covert attentional shift task resulted in identical regions of
activation for both, albeit to a greater extent in the eye
movement task [29•]. Data from neuropsychological sub-
jects reveal a dissociation, however, between mechanisms
subserving attentional and gaze orienting [30•]: neglect
patients with frontoparietal lesions make leftward eye
movements without corresponding attentional shifts,
whereas neglect patients with parietal lesions, who do not
respond to left-sided stimuli, show different patterns of
covert and overt responses to right-sided targets of differ-
ing eccentricities.

Modulation of competition: bottom-up and
top-down biases
Competition between input stimuli may be modulated
through biasing feedback from higher-level representa-
tions of spatial location and object structure. In addition to
early striate and extrastriate areas, posterior parietal
regions are activated when subjects perform difficult dis-
criminations such as visual search for a target defined by a
conjunction of multiple features [18••,31]. Performance
on these tasks may be severely impaired in brain-damaged
patients with parietal lesions ([32]; although see [33]).
The critical role of the parietal cortex in the attentional
circuit has been confirmed by a study showing that trans-
cranial magnetic stimulation (TMS) applied to the right
parietal cortex of normal subjects leads to increased reac-
tion times for conjunctive but not for simple feature
searches [34••]. The disruptive effects of TMS, however,
can be eliminated by training subjects on the conjunctive
visual search task [35•], again suggesting that, as with
focused spatial attention [20••], the suppressive effects of
the competition can be reduced. Importantly, the benefits
of training did not transfer to an isomorphic search task for
conjunctions of different features; this suggested that

practice resulted in the bottom-up strengthening of spe-
cific connections between representations of the features
in the conjunction rather than an alteration in the atten-
tional process (which, presumably, would have transferred
to a new stimulus set).

Endogenous biases may also affect the competition in dif-
ferent cortical regions. Even when the visual display is
held constant, increased cortical activation in MT–MST
was observed when subjects were instructed to attend to
moving rather than stationary dots [36]. Under similar con-
ditions, attentional modulation can also be observed in
early visual areas such as V1 and/or V2 [37], albeit to a lesser
extent [38]. Similarly, enhanced activation is observed in
regions of temporal cortex involved in face processing as a
function of preferentially attending to faces [39]. Finally,
long-latency field potentials in posterior fusiform gyrus,
recorded directly from the inferior surface of the temporal
lobes in epilepsy patients, are modulated when subjects
attend to one of two streams of words [40].

Modulation of competition by object
representations: spatially invariant
or spatiotopic?
The finding that object representations can alter selec-
tion may be readily understood as resulting from
interactions between lower-level input representations
in early visual cortex and higher-level representations of
object structure in the ventral pathway. While some have
argued that the object-based attentional effects are
mediated by spatially invariant object representations
[15], others suggest that they are mediated by more spa-
tiotopic representations (e.g. the ‘grouped array’
proposed by Farah [41]), and susceptible to modulation
by perceptual organization [42•]. Both types of represen-
tations, however, probably play a role (see Figure 1).
Certainly, it is likely that object perception involves
competitive interactions between spatially invariant
object representations in later temporal lobe regions (see
e.g. [43,44]) and that these dynamics play an important
role in determining which of several objects ultimately
‘captures’ attention and allows for the generation of a
behavioral response. However, given the interconnected
nature of the visual system, it is also highly likely that
these processes influence competition in lower-level
visual areas via feedback connections as well as via con-
nections with spatial representations in the dorsal stream
(which, in turn, provide biasing feedback to early visual
areas). Evidence to support this highly interactive sys-
tem comes from a study showing that information about
visual shape can even affect activity in the parieto-occip-
ital sulcus [45]; magnetoencephalography (MEG) alpha
rhythms in this region were suppressed most strongly
when participants correctly identified a stimulus as a
well-formed object but were enhanced when partici-
pants incorrectly labelled objects as noise stimuli and
were enhanced even further when stimuli were actually
non-objects.
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The effect of object properties on single-cell activity can
be observed in even the earliest cortical visual areas.
Roelfsema et al. [46••] found that the firing rates of neu-
rons in V1 corresponding to various segments of a curved
line were enhanced relative to responses to a distractor
line even when the lines were spatially overlapping.
These results suggest that it is the entire object that is
modulating the firing rate rather than attention spread-
ing across spatial positions occupied by the curve. The
suppression of early ERP waveform components in
human subjects also suggests that modulation of early
ERP activity may be related to feedback from spatially
invariant representations. Because suppression of P1 and
N1 ERP components — both of which reflect the spatial
distribution of attention — was observed when subjects
attended to two different objects that occupied the same
spatial position but not when a single object was present,
an object-based rather than space-based explanation is
more appropriate [47•].

Selection appears to involve not only object-based but also
space-based representations. Enhanced amplitude of N1
or P1 ERP signals is seen when subjects report attributes
of two overlapping objects [48•]: enhanced N1 signals are
observed during trials in which attributes to be reported
(e.g. colour and shape) appear in different objects (attrib-
uted to a change in the size of the attended region),
whereas enhanced P1 activity is observed on same-object
trials in which a probe appears after stimulus offset
(reflecting the increased focus of attention). Importantly,
along with these spatial modulations, enhanced P3 wave-
forms (a later, more cognitive component) are observed in
occipital, parietal, and temporal sites, suggesting the
involvement of object-based representations.

The joint contribution of both space- and object-based
attentional systems is also evident in a recent PET study.
Fink et al. [49•] found that there is a substantial overlap in
activation of cortical regions when subjects perform an
object-based (e.g. is dot on the left or right side of a line?)
and space-based (e.g. is the line on the left or right side of
the screen?) task relative to a control condition. In addi-
tion, there were areas that were selectively activated in
each of the two tasks. Areas of overlap included left and
right medial and lateral parietal cortex, as well as left pre-
frontal cortex; however, the left occipital lobe, and the
striate and prestriate cortex were activated only in the
object-based task, and the right inferior temporal lobe,
fusiform gyrus, and right dorsolateral prefrontal cortex
were activated only in the space-based task.

The interactions between perceptual organization of
objects and spatial attention are also evident in studies of
patients who extinguish left-sided information following
right-parietal lobe damage. Just as a prior temporal entry
for a contralateral target can reduce the probability of its
being extinguished by a competing ipsilateral target [23••],
so can grouping the contralateral item with its ipsilesional

counterpart makes it resistant to extinction. Left-sided
information can be grouped with right-sided information
by bottom-up factors such as colour, proximity, brightness
or collinearity [50,51], or even by an illusory contour of a
partially occluded figure [52•]. Top-down modulation also
plays a role, resulting in less extinction for known, familiar
objects or words than for unknown items [53–55].

Computational accounts and
integrated competition
Several recent computational accounts of visual atten-
tion include an attentional map (also referred to as a
priority or saliency map [8,56]) that instantiates the WTA
dynamics. The winner, which emerges from the compe-
tition, may then be mapped through a smaller
‘attentional’ window (the selection network [57]) or may
be selected as the target because of its high saliency
value (both absolute and relative to the other stimuli
[58•]). Selected representations may be subsequently
inhibited to implement inhibition of return [58•]. These
models successfully simulate not only the performance
of normal subjects in various experimental paradigms,
but also exhibit the behavioral pattern associated with
attentional deficits such as hemispatial neglect and
extinction. One notable difference between these mod-
els and the full integrated competition account is that in
the models the competition is more localized to a partic-
ular component rather than being widespread
throughout the processing circuit. Whether this depar-
ture is truly significant remains to be determined.

Conclusions and future directions
Behavioral and neurobiological data are increasingly con-
verging on the notion that selecting a target from a
complex array of visual stimuli involves a recurrently con-
nected network of visual processing areas. Competition
and cooperation of units in this network facilitate the
emergence of a winner from a host of potential targets.
While we know that the competition can be modulated,
and we know some of the characteristics of this modula-
tion, a full understanding of the factors that bias the
outcome and the mechanism by which this occurs remains
to be determined. Of importance too are the variables that
potentially cancel out the suppressive interactions and the
time course of the competition and its consequences.
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