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A widely used signal processing paradigm is the state-space model. The
state-space model is defined by two equations: an observation equation
that describes how the hidden state or latent process is observed and a
state equation that defines the evolution of the process through time. In-
spired by neurophysiology experiments in which neural spiking activity
is induced by an implicit (latent) stimulus, we develop an algorithm to
estimate a state-space model observed through point process measure-
ments. We represent the latent process modulating the neural spiking
activity as a gaussian autoregressive model driven by an external stim-
ulus. Given the latent process, neural spiking activity is characterized
as a general point process defined by its conditional intensity function.
We develop an approximate expectation-maximization (EM) algorithm to
estimate the unobservable state-space process, its parameters, and the pa-
rameters of the point process. The EM algorithm combines a point process
recursive nonlinear filter algorithm, the fixed interval smoothing algo-
rithm, and the state-space covariance algorithm to compute the complete
data log likelihood efficiently. We use a Kolmogorov-Smirnov test based
on the time-rescaling theorem to evaluate agreement between the model
and point process data. We illustrate the model with two simulated data
examples: an ensemble of Poisson neurons driven by a common stimulus
and a single neuron whose conditional intensity function is approximated
as a local Bernoulli process.
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1 Introduction

A widely used signal processing paradigm in many fields of science and
engineering is the state-space model. The state-space model is defined by
two equations: an observation equation that defines what is being mea-
sured or observed and a state equation that defines the evolution of the
process through time. State-space models, also termed latent process mod-
els or hidden Markov models, have been used extensively in the analysis of
continuous-valued data. For a linear gaussian observation process and a
linear gaussian state equation with known parameters, the state-space esti-
mation problem is solved using the well-known Kalman filter. Many exten-
sions of this algorithm to both nongaussian, nonlinear state equations and
nongaussian, nonlinear observation processes have been studied (Ljung &
Söderström, 1987; Kay, 1988; Kitagawa & Gersh, 1996; Roweis & Ghahra-
mani, 1999; Gharamani, 2001). An extension that has received less attention,
and the one we study here, is the case in which the observation model is a
point process.

This work is motivated by a data analysis problem that arises from a
form of the stimulus-response experiments used in neurophysiology. In the
stimulus-response experiment, a stimulus under the control of the exper-
imenter is applied, and the response of the neural system, typically the
neural spiking activity, is recorded. In many experiments, the stimulus is
explicit, such as the position of a rat in its environment for hippocampal
place cells (O’Keefe & Dostrovsky, 1971; Wilson & McNaughton, 1993), ve-
locity of a moving object in the visual field of a fly H1 neuron (Bialek, Rieke,
de Ruyter van Steveninck, & Warland, 1991), or light stimulation for retinal
ganglion cells (Berry, Warland, & Meister, 1997). In other experiments, the
stimulus is implicit, such as for a monkey executing a behavioral task in
response to visual cues (Riehle, Grün, Diesmann, & Aertsen, 1997) or trace
conditioning in the rabbit (McEchron, Weible, & Disterhoft, 2001). The neu-
ral spiking activity in implicit stimulus experiments is frequently analyzed
by binning the spikes and plotting the peristimulus time histogram (PSTH).
When several neurons are recorded in parallel, cross-correlations or unitary
events analysis (Riehle et al., 1997; Grün, Diesmann, Grammont, Riehle, &
Aertsen, 1999) have been used to analyze synchrony and changes in firing
rates. Parametric model-based statistical analysis has been performed for
the explicit stimuli of hippocampal place cells using position data (Brown,
Frank, Tang, Quirk, & Wilson, 1998). However, specifying a model when the
stimulus is latent or implicit is more challenging. State-space models sug-
gest an approach to developing a model-based framework for analyzing
stimulus-response experiments when the stimulus is implicit.

We develop an approach to estimating state-space models observed
through a point process. We represent the latent (implicit) process modulat-
ing the neural spiking activity as a gaussian autoregressive model driven
by an external stimulus. Given the latent process, neural spiking activity
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is characterized as a general point process defined by its conditional inten-
sity function. We will be concerned here with estimating the unobservable
state or latent process, its parameters, and the parameters of the point pro-
cess model. Several approaches have been taken to the problem of simul-
taneous state estimation and model parameter estimation, the latter being
termed system identification (Roweis & Ghahramani, 1999). In this article, we
present an approximate expectation-maximization (EM) algorithm (Demp-
ster, Laird, & Rubin, 1977) to solve this simultaneous estimation problem.
The approximate EM algorithm combines a point process recursive nonlin-
ear filter algorithm, the fixed interval smoothing algorithm, and the state-
space covariance algorithm to compute the complete data log likelihood
efficiently. We use a Kolmogorov-Smirnov test based on the time-rescaling
theorem to evaluate agreement between the model and point process data.
We illustrate the algorithm with two simulated data examples: an ensem-
ble of Poisson neurons driven by a common stimulus and a single neuron
whose conditional intensity function is approximated as a local Bernoulli
process.

2 Theory

2.1 Notation and the Point Process Conditional Intensity Function.
Let (0, T] be an observation interval during which we record the spiking
activity of C neurons. Let 0 < uc1 < uc2 <, . . . , < ucJc

≤ T be the set of Jc
spike times (point process observations) from neuron c for c = 1, . . . , C. For
t ∈ (0, T], let Nc

0,t be the sample path of the spike times from neuron c in (0, t].
It is defined as the event Nc

0,t = {0 < uc1 < uc2, . . . , ucj ≤ t
⋂

Nc(t) = j},
where Nc(t) is the number of spikes in (0, t] and j ≤ Jc. The sample path is
a right continuous function that jumps 1 at the spike times and is constant
otherwise (Snyder & Miller, 1991). This function tracks the location and
number of spikes in (0, t] and therefore contains all the information in the
sequence of spike times. Let N0,t = {N1

0,t, . . . , NC
0,t} be the ensemble spiking

activity in (0, t].
The spiking activity of each neuron can depend on the history of the

ensemble, as well as that of the stimulus. To represent this dependence, we
define the set of stimuli applied in (0, t] as S0,t = {0 < s1 <, . . . , < s� ≤ t}.
Let Ht = {N0,t, S0,t} be the history of all C neurons up to and including time
t. To define a probability model for the neural spiking activity, we define the
conditional intensity function for t ∈ (0, T] as (Cox & Isham, 1980; Daley &
Vere-Jones, 1988):

λc(t | Ht) = lim
�→0

Pr(Nc
0,t+� − Nc

0,t = 1 | Ht)

�
. (2.1)

The conditional intensity function is a history-dependent rate function that
generalizes the definition of the Poisson rate (Cox & Isham, 1980; Daley &
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Vere-Jones, 1988). If the point process is an inhomogeneous Poisson pro-
cess, the conditional intensity function is λc(t | Ht) = λc(t). It follows that
λc(t | Ht)� is the probability of a spike in [t, t + �) when there is history
dependence in the spike train. In survival analysis, the conditional inten-
sity is termed the hazard function because, in this case, λc(t | Ht)� measures
the probability of a failure or death in [t, t + �) given that the process has
survived up to time t (Kalbfleisch & Prentice, 1980).

2.2 Latent Process Model, Sample Path Probability Density, and the
Complete Data Likelihood. It is possible to define the latent process in con-
tinuous time. However, to simplify the notation for our filtering, smoothing,
and EM algorithms, we assume that the latent process is defined on a dis-
crete set of evenly spaced lattice points. To define the lattice, we choose K
large, and divide (0, T] into K intervals of equal width � = T/K, so that there
is at most one spike per interval. The latent process model is evaluated at
k� for k = 1, . . . , K. We also assume the stimulus inputs can be measured
at a resolution of �.

We define the latent model as the first-order autoregressive model,

xk = ρxk−1 + αIk + εk, (2.2)

where xk is the unknown state at time k�, ρ is a correlation coefficient,
Ik is the indicator function that is 1 if there is a stimulus at k� and zero
otherwise, α modulates the effect of the stimulus on the latent process, and
εk is a gaussian random variable with mean zero and variance σ 2

ε . While
more complex latent process models can certainly be defined, equation 2.2
is adequate to illustrate the essential features of our algorithm.

The joint probability density of the latent process is

p(x | ρ, α, σ 2
ε ) =

[
(1 − ρ2)

2πσ 2
ε

] 1
2

× exp

{
−1

2

[
(1 − ρ2)

σ 2
ε

x2
0

+
K∑

k=1

(xk − ρxk−1 − αIk)
2

σ 2
ε

]}
, (2.3)

where x = (x0, x1, . . . , xK).
We assume that the conditional intensity function is λc(k� | xk, Hc

k, θ
∗
c ),

where θ∗
c is an unknown parameter. We can express the joint probability

density of the sample path of neuron c conditional on the latent process as
(Barbieri, Quirk, Frank, Wilson, & Brown, 2001; Brown, Barbieri, Ventura,
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Kass, & Frank, 2002)

p(Nc
0,T | x, Hc

T, θ∗
c ) = exp

[∫ T

0
log λc(u | x(u), Hc

u, θ∗
c ) dNc

(u)

−
∫ T

0
λc(u | x(u), Hc

u, θ∗
c ) du

]
, (2.4)

where dNc
(u) = 1 if there is a spike at u from neuron c and 0 otherwise.

Under the assumption that the neurons in the ensemble are conditionally
independent given the latent process, the joint probability density of the
sample paths of the ensemble is

p(N0,T | x, HT, θ∗) =
C∏

c=1

p(Nc
0,T | x, Hc

T, θ∗
c ), (2.5)

where θ∗ = (θ∗
1 , . . . , θ∗

C).

2.3 Parameter Estimation: Expectation-Maximization Algorithm. To
illustrate the algorithm, we choose a simple form of the conditional inten-
sity function. That is, we take the conditional intensity function for neuron
c as

λc(k�) = exp(µc + βcxk), (2.6)

where µc is the log of the background firing rate and βc is its gain parameter
that governs how much the latent process modulates the firing rate of this
neuron. Here we have θ∗

c = (µc, βc). Equations 2.3 and 2.6 define a doubly
stochastic point process (Cox & Isham, 1980). If we condition on the latent
process, then equation 2.6 defines an inhomogeneous Poisson process. Un-
der this model, all the history dependence is through the stimulus. We let
θ = (ρ, α, σ 2

ε , θ∗). Because our objective is to estimate the latent process, x,
and to compute the maximum likelihood estimate of the model parameter,
θ , we develop an EM algorithm (Dempster et al., 1977). In our EM algo-
rithm, we treat the latent process x as the missing or unobserved quantity.
The EM algorithm requires us to maximize the expectation of the complete
data log likelihood. It follows from equations 2.3 and 2.6 that the complete
data likelihood for our model is

p(N0,T, x | θ) = p(N0,T | x, θ∗)p(x | ρ, α, σ 2
ε ). (2.7)

2.3.1 E-Step. At iteration�+1 of the algorithm, we compute in the E-step
the expectation of the complete data log likelihood given HK, the ensemble
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spiking activity and stimulus activity in (0, T], and θ(�), the parameter esti-
mate from iteration �. By our notation convention in the previous section,
since K� = T, HK = HT and

Q(θ | θ�) = E[log[p(N0,T, x | θ)] ‖ HK, θ (�)]

= E

[
K∑

k=0

C∑
c=1

(dNc
(k�)(µc + βcxk + log �)

− exp(µc + βcxk)�) ‖ HK, θ (�)

]

+ E

[
K∑

k=1

−1
2

(xk − ρxk−1 − αIk)
2

σ 2
ε

−K
2

log 2π − K
2

log σ 2
ε ‖ HK, θ (�)

]

+ E

[
1
2

log(1 − ρ2) − 1
2

x2
0(1 − ρ2)

σ 2
ε

‖ HK, θ (�)

]
. (2.8)

Upon expanding the right side of equation 2.8, we see that calculating the
expected value of the complete data log likelihood requires computing the
expected value of the latent process E[xk ‖ HK, θ (�)] and the covariances
E[x2

k ‖ HK, θ (�)] and E[xkxk+1 ‖ HK, θ (�)]. We denote them as

xk|K ≡ E[xk ‖ HK, θ (�)] (2.9)

Wk ≡ E[x2
k ‖ HK, θ (�)] (2.10)

Wk,k+1 ≡ E[xkxk+1 ‖ HK, θ (�)], (2.11)

for k = 1, . . . , K where the notation k | j denotes the expectation of the
latent process at k� given the ensemble spiking activity and the stimu-
lus up to time j�. To compute these quantities efficiently, we decompose
the E-step into three parts: a forward nonlinear recursive filter to compute
xk|k; a backward, fixed interval smoothing (FIS) algorithm to estimate xk|K;
and a state-space covariance algorithm to estimate Wk and Wk,k+1. This ap-
proach for evaluating the complete data log likelihood was suggested first
by Shumway and Stoffer (1982). They used the FIS but a more complicated
form of the state-covariance algorithm. An alternative covariance algorithm
was given in Brown (1987). The logic of this approach is to compute the for-
ward mean and covariance estimates and combine them with the backward
mean and covariance estimates to obtain equations 2.10 and 2.11. This ap-
proach is exact for linear gaussian latent process models and linear gaussian
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observation processes. For our model, it will be approximate because our
observations form a point process.

E-Step I: Nonlinear Recursive Filter. The following equations comprise a
recursive nonlinear filtering algorithm to estimate xk|k and σ 2

k|k using equa-
tion 2.6 as the conditional intensity. The algorithm is based on the maximum
a posterori derivation of the Kalman filter algorithm (Mendel, 1995; Brown
et al., 1998). It recursively computes a gaussian approximation to the pos-
terior probability density p(xk | Hk, θ

(�)). The approximation is based on
recursively computing the posterior mode xk|k and computing its variance
σ 2

k|k as the negative inverse of the second derivative of the log posterior
probability density (Tanner, 1996). The nonlinear recursive algorithm is:

(Observation Equation)

p(dN(k�) | xk) =
C∏

c=1

[exp(µc + βcxk)�]dNc
(k�)

× exp(− exp(µc + βcxk)�) (2.12)

(One-Step Prediction)

xk|k−1 = ρxk−1|k−1 + αIk (2.13)

(One-Step Prediction Variance)

σ 2
k|k−1 = ρ2σ 2

k−1|k−1 + σ 2
ε (2.14)

(Posterior Mode)

xk|k = xk|k−1 + σ 2
k|k−1

C∑
c=1

βc[dNc
(k�) − exp(µc + βcxk|k)�] (2.15)

(Posterior Variance)

σ 2
k|k = −

[
−(σ 2

k|k−1)
−1 −

C∑
i=1

β2
c exp(µc + βcxk|k)�

]−1

(2.16)

for k = 1, . . . , K. The initial condition is x0 and σ 2
0|0 = σ 2

ε (1 − ρ2)−1. The
algorithm is nonlinear because xk|k appears on the left and right of equa-
tion 2.15. The derivation of this algorithm for an arbitrary point process
model is given in the appendix.

E-Step II: Fixed Interval Smoothing (FIS) Algorithm. Given the sequence of
posterior mode estimates xk|k (see equation 2.15) and the variance σ 2

k|k (see
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equation 2.16) we use the fixed interval smoothing algorithm to compute
xk|K and σ 2

k|K. The algorithm is (Mendel, 1995; Brown et al., 1998)

xk|K = xk|k + Ak(xk+1|K − xk+1|k), (2.17)

where

Ak = ρσ 2
k|k(σ

2
k+1|k)

−1 (2.18)

and

σ 2
k|K = σ 2

k|k + A2
k(σ

2
k+1|K − σ 2

k+1|k) (2.19)

for k = K − 1, . . . , 1 and initial conditions xK|K and σ 2
K|K.

E-Step III: State-Space Covariance Algorithm. The covariance estimate,σk,u|K,
can be computed from the state-space covariance algorithm (de Jong &
MacKinnon, 1988) and is given as

σk,u|K = Akσk+1,u|K (2.20)

for 1 ≤ k ≤ u ≤ K. It follows that the covariance terms required for the
E-step are

Wk,k+1 = σk,k+1|K + xk|Kxk+1|K (2.21)

and

Wk = σ 2
k|K + x2

k|K. (2.22)

2.3.2 M-Step. In the M-step, we maximize the expected value of the
complete data log likelihood in equation 2.8 with respect to θ(�+1). In so
doing, we obtain the following closed-form solutions for ρ(�+1), α(�+1) and
σ

2(�+1)
ε ,

[
ρ(�+1)

α(�+1)

]
=




K∑
k=1

Wk−1

K∑
k=1

xk−1|kIk

K∑
k=1

xk−1|kIk

K∑
k=1

Ik




−1 


K∑
k=1

Wk,k−1

K∑
k=1

xk|kIk


 (2.23)

σ 2(�+1)
ε = K−1

[
K∑

k=1

Wk + ρ2(�+1)
K∑

k=1

Wk−1 + α2(�+1)
K∑

k=1

Ik
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− 2ρ(�+1)
K∑

k=1

Wk,k−1−2α(�+1)
K∑

k=1

xk|KIk+2ρ(�+1)α(�+1)

×
K∑

k=1

xk−1|KIk + W0

(
1 − ρ2(�+1)

)]
, (2.24)

where initial conditions for the latent process are estimated from x(�+1)

0 =
ρ(�+1)x1|K and σ

2(�+1)

0|0 = σ
2(�+1)
ε (1 − ρ2(�+1))−1. The closed-form solution for

ρ(�+1) in equation 2.23 is obtained by neglecting the last two terms in the
expectation of the complete data log likelihood (see equation 2.8). This ap-
proximation means that we estimate ρ(�+1) from the probability density of
x1, . . . , xK given x0 and the point process measurements instead of the proba-
bility density of x0, . . . , xK given the point process measurements. Inclusion
of the last two terms results in a cubic equation for computing ρ(�+1), which
is avoided by using the closed-form approximation. We report only the re-
sults of the closed-form solution in section 3 because we found that for our
algorithms, the absolute value of the fractional difference between the two
solutions was less than 10−6 (i.e., |cubic solution-closed form solution|/cubic
solution < 10−6).

The parameter µ
(�+1)
c is estimated as

µ(�+1)
c = log Nc(T)

− log

(
K∑

k=1

exp
(

β(�+1)
c xk|K + 1

2
β2(�+1)

c σ 2
k|K

)
�

)
, (2.25)

whereas β
(�+1)
c is the solution to the nonlinear equation,

K∑
k=1

dNc
(k�)xk|K

= exp µ(�+1)
c

{
K∑

k=1

exp
(

β(�+1)
c xk|K + 1

2
β(�+1)

c σ 2
k|K

)

× (xk|K + β(�+1)
c σ 2

k|K)�

}
, (2.26)

which is solved by Newton’s method after substituting µ
(�+1)
c from equa-

tion 2.26. The expectations needed to derive equations 2.25 and 2.26 were
computed using the lognormal probability density and the approximation
of p(xk | HK, θ (�)) as a gaussian probability density with mean xk|K and
variance σ 2

k|K.
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2.4 Assessing Model Goodness-of-Fit by the Time-Rescaling Theo-
rem. The latent process and point process models, along with the EM al-
gorithm, provide a model and an estimation procedure for computing the
latent process and the parameter vector θ . It is important to evaluate model
goodness-of-fit, that is, determine how well the model describes the neu-
ral spike train data series data. Because the spike train models are defined
in terms of an explicit point process model, we can use the time-rescaling
theorem to evaluate model goodness-of-fit. To do this, we compute for each
neuron the time-rescaled or transformed interspike intervals

τj =
∫ uj

uj−1

λ(u | θ̂ ) du, (2.27)

where the ujs are the spike times from the neuron and λ(t | θ) is the condi-
tional intensity function in equation 2.6 evaluated at the maximum likeli-
hood estimate θ̂ for j = 1, . . . , J, where we have dropped the subscript c to
simplify notation. The ujs are a point process with a well-defined conditional
intensity function and, hence, by the time-rescaling theorem, the τjs are inde-
pendent, exponential random variables with a unit rate (Barbieri et al., 2001;
Brown et al., 2002). Under the further transformation zj = 1−exp(−τj), the zjs
are independent, uniform random variables on the interval (0,1). Therefore,
we can construct a Kolmogorov-Smirnov (K-S) test to measure agreement
between the zjs and the uniform probability density (Barbieri et al., 2001;
Brown et al., 2002). First, we order the zjs from the smallest to the largest
value. Then we plot values of the cumulative distribution function of the

uniform density defined as bj = j− 1
2

J for j = 1, . . . , J against the ordered zjs.
The points should lie on the 45 degree line. Because the transformation from
the ujs to the zjs is one-to-one, a close agreement between the probability
density of the zjs and the uniform probability density on (0,1) indicates close
agreement between the (latent process-point process) model and the point
process measurements. Hence, the time-rescaling theorem provides a direct
means of measuring agreement between a point process or neural spike
train time series and a probability model intended to describe its stochastic
structure.

3 Applications

3.1 Example 1. Multiple Neurons Driven by a Common Latent Process.
To illustrate our analysis paradigm, we simulate C = 20 simultaneously
recorded neurons from the model described by equations 2.2 and 2.6. The
time interval for the simulation was T = 10 seconds, and the latent process
model parameters were ρ = 0.99, α = 3, and σ 2

ε = 10−3 with the implicit
stimulus Ik applied at 1 second intervals. The parameters for the conditional
intensity function defining the observation process were the log of the back-
ground firing rate µ = −4.9 for all neurons, whereas the gain coefficients
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Table 1: True Parameter Values and EM Algorithm Parameter Estimates.

Parameter True Estimate Parameter True Estimate

ρ 0.990 0.993 β10 1.079 1.190
α 3.000 2.625 β11 1.008 1.039
µ −4.900 −5.105 β12 1.078 1.247
β1 1.075 1.261 β13 1.009 1.031
β2 0.989 1.060 β14 1.078 1.129
β3 1.035 1.039 β15 0.980 1.121
β4 0.973 1.101 β16 0.976 1.164
β5 1.003 1.190 β17 0.990 1.234
β6 0.992 1.132 β18 0.968 1.154
β7 0.977 1.118 β19 0.956 0.979
β8 1.027 1.176 β20 1.098 1.350
β9 1.066 1.089

βc for the 20 neurons were chosen randomly on the interval [0.9 1.1]. These
parameter values for the latent and observation processes were chosen to
give an approximate average firing rate of 10 Hz for each neuron. The neu-
ral spike trains were simulated using the time-rescaling theorem algorithm
described in Brown et al. (2002), and the state equations in the EM algorithm
were updated at � = 1 msec.

Using the EM algorithm described in the previous section, we fit the
model in equations 2.2 and 2.6 simultaneously to the 20 simulated neural
spike trains, assuming a fixed noise variance, σ 2

ε = 10−3. The convergence
criteria for the algorithm were absolute changes of less than 10−2 in consecu-
tive iterates of the parameters and relative changes in the parameter iterates
of less than 10−3, that is, |old − new|/old < 10−3. The parameter estimates
from the EM algorithm were in good agreement with the true values used
to simulate the spike train data (see Table 1). In this case, the overestimates
of the gain coefficients, βc, are offset by the underestimates of α and µ.

Approximating the probability density of the state at k� as the gaussian
density with mean x̂k and variance, σ̂ 2

k , it follows from equation 2.6 and
the standard change of variables formula from probability theory that the
probability density of the rate for neuron c at time k� is the lognormal
probability density defined as

p(λc
k | µ̂c, β̂c, x̂k) = (2πσ̂ 2

k )−
1
2 β̂c(λ

c
k)

−1

× exp


−1

2

[
β̂−1

c (log λc
k − µ̂c) − x̂k

σ̂k

]2

 , (3.1)

where µ̂c and β̂c are the EM algorithm estimates ofµc andβc for c = 1, . . . , 20.
The 1 − ξ confidence limits for the rate are computed simply by using the
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relation between the lognormal and standard gaussian probabilities to find
the ξ/2 and 1 − ξ/2 quantiles of the probability density in equation 3.1 for
ξ ∈ (0, 1). In our analyses, we take ξ = 0.05 and construct 95% confidence
intervals.

To compare our model-based analysis with current practices for analyz-
ing neural spike train data using empirical smoothing methods, we also
estimated the rate function for each of the 20 neurons by dividing the num-
ber of spikes in a 100 msec window by 100 msec. The window was then
shifted 1 msec to give the same temporal resolution as in our updating algo-
rithms. Because the latent process drives all the neurons, we also estimated
the population rate by averaging the rates across all 20 neurons. This is a
commonly used empirical temporal smoothing algorithm for computing
spike rate that does not make use of stimulus information in the estima-
tion (Riehle et al., 1997; Grün et al., 1999; Wood, Dudchenko, & Eichen-
baum, 1999).

The confidence limits of the model-based rate function give a good es-
timate of the true firing rate used to generate the spikes (see Figure 1). In
particular, the estimates reproduce the magnitude and duration of the effect
of the implicit stimulus on the spike firing rate. The population firing rate
estimated using temporal smoothing across all neurons is misleading (see
Figure 1, dot-dashed line) in that around the time of the stimuli, it has di-
minished amplitude and is spread out in time. Furthermore, if we smooth a
single spike train without averaging across neurons, spurious peaks in the
firing rate can be produced due to noise (see Figure 1, solid gray line). By
using information about the timing of the stimulus, the model firing rate
estimate follows the true rate function more closely.

The 95% confidence bounds for the state process estimated from the EM
algorithm cover almost completely the time course of the true state process
(see Figure 2). The true state lies sometimes outside the confidence limits in
regions where there are very few spikes and, hence, little information about
the latent process.

To assess how well the model fits the data, we apply the K-S goodness-
of-fit tests based on the time-rescaling theorem as described in section 2.4
(see Figure 3). In Figures 3A, 3B, and 3C, the solid black line represents exact
agreement between the model and spike data, and dotted lines represent
95% confidence limits. For 18 of 20 neurons, the model lies within the con-
fidence limits, indicating a good fit to the data. In contrast, for 14 of the 20
neurons, the empirical estimate lies outside the confidence limits. For 6 of 20
neurons, both the model and empirical estimates lie within the confidence
limits (see Figure 3B). In two cases, the model lies outside the confidence
limits (see Figure 3C). In both cases where the model does not fit the data,
the empirical estimate does not either. Thus, the model appears to give a
considerably more accurate description of the spike train than the empirical
estimate.
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Figure 1: A 2000 millisecond segment of data from neuron 8 in the 20-neuron
simulation study of latent process estimation by the EM algorithm from exam-
ple 1. During this period, 26 spikes (vertical bars above abscissa) are concentrated
around two stimulus events at 5000 msec and 6000 msec. The 95% confidence
bands for the firing rate estimated by the latent model (dashed lines) cover the
true rate (solid black line) used to generate the spikes most of the time. In con-
trast, when the firing rate for neuron 8 is estimated empirically (solid gray line)
using a 100 msec smoothing window (i.e., by dividing the number of spikes in
a 100 msec window by 100 msec), the stimuli appear diminished in amplitude
and spread out in time. Furthermore, a spurious third peak in firing rate is pro-
duced approximately 200 ms after the true first peak. This third peak is avoided
by using a smoothed estimate that is averaged over all cells (dash-dotted black
line), but the EM algorithm estimate of the firing rate based on the model more
accurately reproduces the features of the stimuli.

3.2 Example 2. Single Neuron Latent Stimulus-Response Model. A
common practice is to use the binomial probability mass function as a local
model for analyzing neural spike trains. We demonstrate how the parame-
ters of a local Bernoulli model may be estimated using our EM algorithm.
We generate a single spike train subject to multiple repeated stimuli over a
period of approximately 1 minute. In this example, the conditional intensity
is given by

λ(k�)� = exp(µ + xk)� ≈ exp(µ + xk)�

1 + exp(µ + xk)�
= pk, (3.2)
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Figure 2: True state (solid black line) and estimated 95% confidence limits
(dashed lines) for the true state computed from the spike train observed in
Figure 1 using the EM algorithm. The estimated confidence limits computed as
xk|k ± 1.96σk|k fail to cover the true state when few spikes are discharged (e.g.,
near 5700 ms).

Figure 3: Facing page. Kolmogorov-Smirnov goodness-of-fit analyses based on
the time-rescaling theorem for three representative neurons. Each panel is the
K-S plots comparing the model rate estimate (dashed line), the empirical rate
estimate (solid gray line), and the true rate (solid black line). In these figures,
the 45 degree line in black represents an exact agreement between the model
and the spike data. Dotted lines in each panel are the 95% confidence limits (see
Brown et al., 2002, for details). Since the true rate was used to generate spikes,
the true rate KS plot always lies within the confidence limits. (A) An example
of the KS plot from 1 of the 18 out of the 20 neurons for which the model-based
estimate of the KS plot was entirely within the confidence limits, indicating close
agreement between the overall model fit and the simulated data. (B) An example
of 1 of the 6 out of the 20 neurons for which the K-S plot based on the empirical
rate estimate completely lies within the 95% confidence limits. (C) An example
of 1 of the 2 out of the 20 neurons for which the K-S plot based on the model
estimate of the rate function fails to fall within the 95% confidence limits. For
both of these neurons, as this panel suggests, the KS plot based on the empirical
rate model did not remain in the 95% confidence bounds.
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and spikes are generated with the local Bernoulli model,

p(dN(k�) | Hk) = pdN(k�)

k (1 − pk)
1−dN(k�), (3.3)

with parameters µ = −4.6, α = 4, and ρ = 0.8. The implicit stimulus is
applied at 40 time points. We assume the noise σ 2

ε in the latent process is
0.2. In this example, we set � = 5 msec. This generates a spike train with
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Table 2: True Parameter Values and the EM Algorithm Parameter Estimates.

Parameter ρ α σ 2
ε µ

True 0.800 4.000 0.200 −4.600
Estimate 0.804 3.573 0.125 −4.404

an average firing rate over the minute period of approximately 10 Hz. The
parameters, including the noise variance σ 2

ε , are again estimated using the
EM algorithm and are in good agreement with their true values (see Table 2).

As in the previous example, confidence intervals were computed for the
true rate function by deriving the probability density function for λk using
the standard change of variable formula. Firing rates estimated by the model
are compared with the empirical temporally smoothed rate computed by
counting spikes in a 100 msec window and then dividing by 100 msec.

The firing rate (95% confidence limits) computed by the model compares
favorably with the original rate used to generate the spikes (see Figure 4).
The 95% confidence limits for the model estimate the magnitude and shape
of the stimulus effect on the rate even when the stimulus has little obvious
effect on the spike train. This is because the estimates for each stimulus’s
effect are made based on the whole time series. In contrast, the temporally
smoothed estimate of rate does not clearly identify stimulus effects on the
spike train (see Figure 4, solid gray line). The choice of a 100 msec window for
these simulated data appears too large as increases in firing rate at the stimuli
are smoothed out. We can also make an overall estimate of the accuracy of
the firing rates by comparing the model and the empirical firing rates with
the true firing at the stimulus times, namely, at 40 points in time where
we applied the stimulus during the 1 minute epoch of simulated data. The
mean differences (standard error) between the empirical and model rates
compared to the true rate at these times are −113.9 (4.5) Hz and −8.5 (4.4) Hz,
respectively. Thus, the model provides a significantly better approximation
to the true rate than the empirical method (Student’s t-test, p < 10−6). The
estimate of the state variable is found to compare well with the true state
used to generate the spike train (see Figure 5).

Again we assess model goodness-of-fit using the K-S plot (see Figure 6).
The fit of model lies within the 95% confidence limits except at very small
quantiles and follows closely the curve for the true firing rate. In contrast,
the fit for the empirical 100 msec temporal smoothing method lies outside
the confidence limits for a large portion of the total time, indicating poor fit
to the distribution over low and high percentiles.

3.3 An Extension to More General Point Process and State-Space Mod-
els. In the two simulated data examples we considered, the log conditional
intensity function log λc(t | Ht) was a linear function of both the state vari-
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Figure 4: Simulated spike train (vertical bars above the abcissa), true firing rate
(solid black line) from the local Bernoulli model (see equation 3.2) in example 2,
95% confidence limits for the rate from the model-based EM algorithm (dashed
lines), and empirical firing rate estimate (solid gray line) computed by tempo-
ral smoothing over the 100 msec window. In this time segment, two external
stimuli are applied at 150 msec and 750 msec. The 95% confidence limits cover
nearly everywhere the true rate function. Although the spike count does not
obviously increase at these times, the algorithm estimates effectively the ampli-
tude and duration of the stimulus because it uses information from the entire
spike train. The 100 msec window for the empirical rate function appears too
large as increases in firing rate at the stimuli are smoothed out.

able xk and certain components of the parameter vector θ . The EM algorithm
is straightforward to modify when this is not the case. For an arbitrary
λc(t | Ht), the E-step in equation 2.8 becomes

Q(θ | θ(�)) = E[log[p(N0,T, x | θ)] ‖ Hk, θ
(�)]

≈ E

[
K∑

k=0

C∑
c=1

dNc
(k�) log λc(xk | Hk, θ)

− λc(xk | Hk, θ)� ‖ HK, θ (�)

]

+ E[log p(x | θ) ‖ HK, θ (�)], (3.4)



982 A. Smith and E. Brown

Figure 5: The true state (black line) and the model-based estimates of the 95%
confidence intervals (dashed lines) computed using the EM algorithm for the
local Bernoulli probability model corresponding to the spike train and rate func-
tion in Figure 4. As in example 1, Figure 5 shows that the 95% confidence limits
cover the true state completely except when the neural spiking activity is low
(around 700 msec).

where the last term in equation 3.4 is the sum of the last two terms on the
right-hand side of equation 2.8. We assume λc(xk | Hk, θ) and log λc(xk |
Hk, θ) are twice differentiable functions that we denote generically as g(xk).
To evaluate the first term on the right side of equation 3.4, it suffices to
compute E[g(xk | Hk, θ) ‖ HK, θ (�)]. This can be accomplished by expanding
g(xk) in a Taylor series about x̂k|K and taking the expected value to obtain
the approximation

E[g(xk | Hk, θ) ‖ HK, θ (�)] .= g(x̂k|K) + 1
2
σ 2

k|Kg′′(x̂k|K), (3.5)

where g′′(x̂k|K) is the second derivative of g(xk) evaluated at x̂k|K. The right-
hand side of equation 3.5 is substituted into equation 3.4 to evaluate the E-
step. The evaluation of the second term on the right of equation 3.4 proceeds
as in the evaluation of the second and third terms on the right of equation 2.8.

If the log conditional intensity function is no longer a linear or ap-
proximately linear function of the parameters, the M-step takes the more
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Figure 6: Kolmogorov-Smirnov goodness-of-fit analysis for local Bernoulli
probability model. The K-S plot for the EM algorithm model-based estimate
(dashed line) lies almost entirely within the 95% confidence bounds (dotted
lines) and follows closely the KS plot computed using the true firing rate (solid
black line), which lies almost entirely on the 45 degree line of exact agreement.
In contrast, the empirical rate estimate (solid gray line) lies mostly outside the
confidence limits, suggesting that this model does not agree closely with the
data.

general form,

∇Q(θ | θ(�)) = 0, (3.6)

where the gradient in ∇Q(θ | θ(�)) is with respect to θ . The zero of ∇Q(θ |
θ(�)) and, hence θ(�+1), has to be found using Newton’s method or another
appropriate numerical optimization procedure. Similarly, the recursive fil-
tering and smoothing algorithms generalize in a straightforward way when
the dimension of the state-space model is greater than one (Brown et al.,
1998). While these modifications increase the computational requirements
of our algorithm, they illustrate how it can be applied to a wider range of
point process and state-space models.

4 Discussion

We have presented a method for estimating from point process (spike train)
data a conditional intensity (rate) function modulated by an unobservable
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or latent continuous-valued state variable. The latent variable relates the
effect of the external stimuli applied at specified times by the experimenter
to the spike train rate function. We compute maximum likelihood estimates
of the model parameters by the EM algorithm in which the E-step combines
forward and backward point process filtering algorithms. The model per-
forms better than smoothed histogram estimates of rate because it makes
explicit use of the timing of the stimulus to analyze changes in background
firing. Also, the model gives a more accurate description of the neural spike
train as evaluated by the goodness-of-fit K-S test.

Several authors have discussed the analyses of state-space models in
which the observation process is a point process. Diggle, Liang, and Zeger
(1995) briefly mention state estimation from point process observations but
no specific algorithms are given. MacDonald and Zucchini (1997) discuss
state estimation for point processes without using the smoothing and fil-
tering approach suggested here. West and Harrison (1997) define the state-
space model implicitly and use the discount concept to construct an approx-
imate forward filter. This approach is difficult to generalize (Fahrmeir, 1992).
Kitagawa and Gersch (1996) described numerical algorithms to carry out
state-space updating with forward recursion algorithms for binomial and
Poisson observation processes. For the Poisson model in equation 2.6, Chan
and Ledolter (1995) provided a computationally intensive Markov chain
Monte Carlo EM algorithm to conduct the state updating and parameter
estimation. The forward updating algorithms of Fahrmeir (1992), Fahrmeir
and Tutz (1994), and Durbin and Koopman (2000) resemble most closely
the ones we present, particularly, in the special case where the observa-
tion process is a point process from an exponential family, and the natural
parameter is modeled as a linear function of the latent process. Both the
examples we present follow these two special cases. The Fahrmeir forward
recursion algorithm for example 1 with a single neuron is

xk|k = xk|k−1 +
σ 2

k|k−1β

[λ(k�)β2σ 2
k|k−1 + 1]

[dN(k�) − λ(k�)] (4.1)

σ 2
k|k = [(σ 2

k|k−1)
−1 + λ(k�)β2]−1, (4.2)

whereas the Durbin and Koopman (2000) update is

xk|k = xk|k−1 +
σ 2

k|k−1β

(λ(k�) + σ 2
k|k−1β

2)λ(k�)
[dN(k�) − λ(k�)] (4.3)

σ 2
k|k = [(σ 2

k|k−1)
−1 + β2λ(k�)−1]−1. (4.4)

The variance updating algorithm in the Fahrmeir algorithm agrees be-
cause the observed and expected Fisher information are the same for the
Poisson model in our example. The state updating equation differs from our
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updating formula in equation 2.15 because their update is computed from
the Kalman filter and not directly by finding the root of the log posterior
probability density. The state and variance update formulae in the Durbin
and Koopman algorithm differ from ours because theirs use a Taylor series
approximation of the score function, first derivative of the log likelihood,
instead of the exact score function. Fahrmeir (1992) and Fahrmeir and Tutz
(1994) suggest using the EM algorithm for estimating the unknown param-
eters, but details are not given.

In an example applied to spike train data, Sahini (1999) describes the
use of a latent model for neural firing where spikes are generated as an
inhomogeneous Polya process. In his model, parameters are computed by
optimizing the marginalized posterior by gradient ascent, and Monte Carlo
goodness-of-fit is used to compare the model fit with measured spike train
stochastic process.

The fact that our state-space models fit the simulated data better than
the empirical method is expected given that the spikes were generated with
the model. In applications to real data, it will be possible to use the same
approach, testing reasonable and ideally parsimonious forms of the state-
space and point process models for a given neurophysiological experiment.
In any case, we may use the time-rescaling theorem to assess goodness-of-fit
of any candidate models.

To study the problem of estimating a latent process simultaneously with
its model parameters and the parameters of the observation process, we
discretized time and assumed that the observation process and the latent
process occur on a lattice of points spaced � time units apart. Using the
EM algorithm, we computed the maximum likelihood estimate of θ and
empirical Bayes’ estimates of the latent process conditional on the maximum
likelihood estimate of θ . A Bayesian alternative would be to specify a prior
distribution for θ and compute a joint posterior probability density for the
latent process and θ . Liu and Chen (1998) developed sequential Monte Carlo
algorithms that may be adapted to this approach.

As another alternative, it is useful to point out how the latent process
and parameter estimation may be carried out if both the point process and
the latent process are assumed to be measured in continuous time. Nonlin-
ear continuous time filtering and smoothing algorithms for point process
observations have been studied extensively in the control theory literature
(Snyder, 1975; Segall, Davis, & Kailath, 1975; Boel & Beneš, 1980; Snyder
& Miller, 1991; Twum-Danso, 1997; Solo, 2000; Twum-Danso & Brockett,
2001). If the normalized conditional probability density, p(x(t) | N0,t), is
to be evaluated in continuous time, then a nonlinear stochastic partial dif-
ferential equation in this probability density must be solved at each step
(Snyder, 1975; Snyder and Miller, 1991). Here we let x(t) be the continuous
time value of xk. If the updating is performed with respect to the unnormal-
ized conditional probability density, p(x(t), N0,t), then a linear stochastic
partial differential equation must be solved in this probability density at
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each step (Boel & Beneš, 1980; Twum-Danso, 1997; Solo, 2000). For either
the normalized or unnormalized probability density updating algorithms,
the essential steps in their derivations use the posterior prediction equation
in equation A.1 and the one-step prediction equation in equation A.2 to de-
rive Fokker-Planck equations (Snyder, 1975; Snyder & Miller, 1991; Twum-
Danso, 1997; Solo, 2000; Twum-Danso & Brockett, 2001). If the parameters
of the continuous time system are nondynamic and unknown, then, as in
the discretized time case we present here, either the normalized or unnor-
malized partial differential equation updating of the conditional probability
density may be embedded in an EM algorithm to compute maximum likeli-
hood estimates of the parameters and empirical Bayes estimates of the latent
process. Similarly, a Bayesian procedure can be derived if a prior probabil-
ity density for θ can be specified. While the normalized and unnormalized
conditional probability density updating equations have been known for
several years, the computational requirements of these algorithms may be
the reason they have not been more widely used (Manton, Krishnamurthy,
& Elliott, 1999). Discretized approximations (Snyder & Miller, 1991; Twum-
Danso, 1997; Twum-Danso & Brockett, 2001) and sequential Monte Carlo
algorithms (Solo, 2000; Doucet, de Freitas, & Gordon, 2001; Shoham, 2001)
have been suggested as more plausible alternatives. The sequential Monte
Carlo methods use simulations to compute recursively the solutions to equa-
tions A.1 and A.2 on a discrete lattice of time points, whereas our nonlinear
recursive algorithm, equations 2.12 through 2.16, uses sequential gaussian
approximations to perform the same computations.

A potential application of this analysis paradigm would be to estimate
the effect of external cue on a spike train in the delayed-response hand-
pointing task described in Riehle et al. (1997). In this experiment, parallel
spike data, measured in primary motor cortex of the monkey, are analyzed
to estimate differences between spike rate increases corresponding to ac-
tual motion and those caused by expectation of a stimulus. The structure
of our model enables us to estimate above-random firing propensity in a
single cell while incorporating the history of cell firing. For these reasons,
this approach may have advantages over the unitary events analysis meth-
ods (Grün et al., 1999), which may be difficult to apply to neurons with
low firing rates (Roy, Steinmetz, & Niebur, 2000). A second potential ap-
plication would be in the analysis of cell firing in the trace conditioning
paradigm (McEchron, Weible, & Disterhof, 2001). In this case, a conditioned
stimulus is followed after a trace interval by an unconditioned stimulus.
After many such trials, an association between the two stimuli develops,
as evidenced by changes in the firing rate of the neuron. These data are
conventionally analyzed using PSTH techniques. However, because these
studies involve an implicit relation between the stimulus and the neural
spiking activity, this relation may be more clearly delineated by using the
paradigm presented here. Finally, we are currently investigating the ap-
plication of these methods to learning and memory experiments during
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recordings from the medial temporal lobe of the monkey (Wirth et al., 2002;
Yanike et al., 2002).

The state-space approach suggests several advantages. First, the ap-
proach uses a latent variable to relate explicitly the timing of the stimulus
input and history of the experiment to the observed spiking activity. Second,
use of explicit probability models makes it possible to compute probability
density functions and confidence intervals for model quantities of inter-
est. Finally, formulation of the analysis in terms of a general point process
model allows us to assess model goodness-of-fit using the K-S tests based
on the time-rescaling theorem. In our opinion, this latter step is the most
critical as it forces us to assess how sensitive our inferences may be to lack
of agreement between the model and the experimental data.

In summary, we have presented a computationally tractable method for
state-space and parameter estimation from point process observations and
suggested that these algorithms may be useful for analyzing neurophysi-
ologic experiments involving implicit stimuli. In a future publication, we
will apply these methods to actual experimental studies.

Appendix: Derivation of the Recursive Nonlinear Filter Algorithm

We derive a form of the recursive filter equations appropriate for an arbi-
trary point process model. The algorithm in equations 2.12 through 2.16 is
obtained by taking the special case of the Poisson. To derive the nonlinear
recursive filter, we require the posterior prediction equation,

p(xk | Hk) = p(xk | Hk−1)p(dN(k�) | xk, Hk)

p(dN(k�) | Hk−1)
, (A.1)

and the one-step prediction or Chapman-Kolmogorov equation,

p(xk | Hk−1) =
∫

p(xk | xk−1)p(xk−1 | Hk−1) dxk−1. (A.2)

The derivation of the algorithm proceeds as follows. Assume that at
time (k − 1)�, xk−1|k−1 and σ 2

k−1|k−1 are given. Under a gaussian continu-
ity assumption on xk, the distribution of xk given xk−1|k−1 is N(ρxk−1|k−1 +
αIk, σ

2
k|k−1), where σ 2

k|k−1 = σ 2
ε + ρ2σ 2

k−1|k−1. By equations 2.4, A.1, and A.2
and the gaussian continuity assumption, the posterior probability density
p(xk | Hk) and the log posterior probability density log p(xk | Hk) are, re-
spectively,

p(xk | Hk) ∝ exp

{
−1

2
(xk − ρxk−1|k−1 − αIk)

2

σ 2
k|k−1

}

×
C∏

c=1

exp{log λc(k� | Hc
k)dNc

(k�)−λc(k� | Hc
k)�} (A.3)
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log p(xk | Hk) ∝ −1
2

(xk − ρxk−1|k−1 − αIk)
2

σ 2
k|k−1

+
C∑

c=1

[log λc(k� | Hc
k)dNc

(k�)−λc(k� | Hc
k)�]. (A.4)

To find the optimal estimate of xk, we apply a gaussian approximation
to equation A.3. This gaussian approximation is distinct from the gaussian
continuity assumption and means that we can use the mode and variance
of the probability density in equation A.3 to approximate it as a gaussian
probability density. As a result, we differentiate with respect to xk to find
the mode, and we compute the second derivative to obtain the approximate
variance (Tanner, 1996). Differentiating equation A.4 with respect to xk gives

∂ log p(xk | Hk)

∂xk
= − (xk − ρxk−1|k−1 − αIk)

σ 2
k|k−1

+
C∑

c=1

1
λc(k�)

∂λc

∂xk
[dNc

(k�) − λc(k�)�], (A.5)

and solving for xk yields

xk = ρxk−1|k−1 + αIk

+
C∑

c=1

σ 2
k|k−1λc(k� | Hc

k)
−1

× ∂λc(k� | Hc
k)

∂xk
[dNc

(k�) − λc(k� | Hc
k)�]. (A.6)

Equation A.6 is in general nonlinear in xk and can be solved using Newton’s
method. The second derivative of equation A.5 is

∂2 log p(xk | Hk)

∂x2
k

= − 1
σ 2

k|k−1

+
C∑

c=1

[(
∂2λc(k�)

∂x2
k

1
λc(k�)

−
(

∂λc(k�)

∂xk

)2 1
λc(k�)2

)

× [dNc
(k�) − λc(k�)�]

−
(

∂λc(k�)

∂xk

)2 1
λc(k�)

�

]
, (A.7)
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and the variance of xk, under the gaussian approximation to equation A.3,
is

σ 2
k|k = −

[
− 1

σ 2
k|k−1

+
C∑

c=1

[(
∂2λc(k�)

∂x2
k

1
λc(k�)

−
(

∂λc(k�)

∂xk

)2 1
λc(k�)2

)

× [dNc
(k�) − λc(k�)�]

−
(

∂λc(k�)

∂xk

)2 1
λc(k�)

�

]]−1

. (A.8)

Equations A.6 and A.8 constitute the basis for the general form of the filter
equations 2.12 through 2.16.
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Boel, R. K., & Beneš, V. E. (1980). Recursive nonlinear estimation of a diffusion
acting as the rate of an observed Poisson process. IEEE Trans. Inf. Theory,
26(5), 561–574.

Brown, E. N. (1987). Identification and estimation of differential equation models for
circadian data. Unpublished doctoral dissertation, Harvard University, Cam-
bridge, MA.

Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., & Frank, L. M. (2002). The
time-rescaling theorem and its application to neural spike train data analysis.
Neural Comp., 14(2), 325–346.

Brown, E. N., Frank, L. M., Tang, D., Quirk, M. C., & Wilson, M. A. (1998). A statis-
tical paradigm for neural spike train decoding applied to position prediction
from ensemble firing patterns of rat hippocampal lace cells. J. Neurosci., 18,
7411–7425.

Chan, K. S., & Ledolter, J. (1995). Monte Carlo estimation for time series models
involving counts. J. Am. Stat. Assoc., 90, 242–252.



990 A. Smith and E. Brown

Cox, D. R., & Isham, V. (1980). Point processes. New York: Chapman and Hall.
Daley, D. J., & Vere-Jones, D. (1988). An introduction to the theory of point processes.

New York: Springer-Verlag.
de Jong, P., & Mackinnon, M. J. (1988). Covariances for smoothed estimates in

state space models. Biometrika, 75, 601–602.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from

incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc.
B, 39, 1–38.

Diggle, P. J., Liang, K-Y., & Zeger, S. L. (1995). Analysis of longitudinal data. Oxford:
Clarendon.

Doucet, A., de Freitas, N., & Gordon, N. (2001). Sequential Monte Carlo methods
in practice. New York: Springer-Verlag.

Durbin, J., & Koopman, S. J. (2000). Time series analysis of non-gaussian ob-
servations based on state space models from both classical and Bayesian
perspectives. J. Roy. Statist. Soc. B, 62, 3–56.

Fahrmeir, L. (1992). Posterior mode estimation by extended Kalman filtering
for multivariate dynamic generalized linear models. J. Am. Stat. Assoc., 87,
501–509.

Fahrmeir, L., & Tutz, D. (1994). Dynamic-stochastic models for time-dependent
ordered paired-comparison systems. J. Am. Stat. Assoc., 89, 1438–1449.

Gharamani, Z. (2001). An introduction to hidden Markov models and Bayesian
networks. Int. J. Pattern Recognition, 15(1), 9–42.

Grün, S., Diesmann, M., Grammont, F., Riehle A., & Aertsen, A. (1999). Detecting
unitary events without discretization of time. J. Neurosci. Meth., 93, 67–79.

Kalbfleisch, J. D., & Prentice, R. L. (1980). The statistical analysis of failure time data.
New York: Wiley.

Kay, S. M. (1988). Modern spectral estimation: Theory and applications. Upper Saddle
River, NJ: Prentice Hall.

Kitagawa, G., & Gersh, W. (1996). Smoothness priors analysis of time series. New
York: Springer-Verlag.

Liu, J. S., & Chen, R. (1998). Sequential Monte Carlo methods for dynamic sys-
tems. J. Am. Stat. Assoc., 93(443), 567–576.
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First published September 8, 2004; doi:10.1152/jn.00697.2004. Mul-
tiple factors simultaneously affect the spiking activity of individual
neurons. Determining the effects and relative importance of these
factors is a challenging problem in neurophysiology. We propose a
statistical framework based on the point process likelihood function to
relate a neuron’s spiking probability to three typical covariates: the
neuron’s own spiking history, concurrent ensemble activity, and
extrinsic covariates such as stimuli or behavior. The framework uses
parametric models of the conditional intensity function to define a
neuron’s spiking probability in terms of the covariates. The discrete
time likelihood function for point processes is used to carry out model
fitting and model analysis. We show that, by modeling the logarithm
of the conditional intensity function as a linear combination of
functions of the covariates, the discrete time point process likelihood
function is readily analyzed in the generalized linear model (GLM)
framework. We illustrate our approach for both GLM and non-GLM
likelihood functions using simulated data and multivariate single-unit
activity data simultaneously recorded from the motor cortex of a
monkey performing a visuomotor pursuit-tracking task. The point
process framework provides a flexible, computationally efficient ap-
proach for maximum likelihood estimation, goodness-of-fit assess-
ment, residual analysis, model selection, and neural decoding. The
framework thus allows for the formulation and analysis of point
process models of neural spiking activity that readily capture the
simultaneous effects of multiple covariates and enables the assess-
ment of their relative importance.

I N T R O D U C T I O N

Understanding what makes a neuron spike is a challenging
problem, whose solution is critical for deciphering the nature
of computation in single cells and neural ensembles. Multiple
factors simultaneously affect spiking activity of single neurons
and thus assessing the effects and relative importance of each
factor creates the challenge. Neural activity is often studied in
relation to 3 types of covariates. First, spiking activity is
associated with extrinsic covariates such as sensory stimuli and
behavior. For example, the spiking activity of neurons in the rat
hippocampus is associated with the animal’s position in its
environment, the theta rhythm, theta phase precession, and the
animal’s running velocity (Frank et al. 2002; Mehta et al. 1997,
2000; O’Keefe and Dostrovsky 1971; O’Keefe and Recce

1993). Retinal neurons respond to light intensity and light
contrast, and V1 neurons are influenced by the spatiotemporal
structure outside their classic receptive fields (Knierim and
Vanessen 1992; Sillito et al. 1995; Vinje and Gallant 2000).
The spiking activity of neurons in the arm region of the
primary motor cortex (MI) is strongly associated with several
covariates of motor behavior such as hand position, velocity,
acceleration, and generated forces (Ashe and Georgopoulos
1994; Fu et al. 1995; Scott 2003). Second, the current spiking
activity of a neuron is also related to its past activity, reflecting
biophysical properties such as refractoriness and rebound ex-
citation or inhibition (Hille 2001; Keat et al. 2001; Wilson
1999).

Third, current capabilities to record the simultaneous activ-
ity of multiple single neurons (Csicsvari et al. 2003; Donoghue
2002; Nicolelis et al. 2003; Wilson and McNaughton 1993)
make it possible to study the extent to which spiking activity in
a given neuron is related to concurrent ensemble spiking
activity (Grammont and Riehle 1999, 2003; Hatsopoulos et al.
1998, 2003; Jackson et al. 2003; Maynard et al. 1999; Sanes
and Truccolo 2003). Therefore, a statistical modeling frame-
work that allows the analysis of the simultaneous effects of
extrinsic covariates, spiking history, and concurrent neural
ensemble activity would be highly desirable.

Current studies investigating the relation between spiking
activity and these 3 covariate types have used primarily linear
(reverse correlation) or nonlinear regression methods (e.g.,
Ashe and Georgopoulos 1994; Fu et al. 1995; Luczak et al.
2004). Although these methods have played an important role
in characterizing the spiking properties in many neural sys-
tems, 3 important shortcomings have not been fully addressed.
First, neural spike trains form a sequence of discrete events or
point process time series (Brillinger 1988). Standard linear or
nonlinear regression methods are designed for the analysis of
continuous-valued data and not point process observations. To
model spike trains with conventional regression methods the
data are frequently smoothed or binned, a preprocessing step
that can alter their stochastic structure and, as a consequence,
the inferences made from their analysis. Second, although it is
accepted that extrinsic covariates, spiking history, and neural
ensemble activity affect neural spiking, current approaches
make separate assessments of these effects, thereby making it
difficult to establish their relative importance. Third, model
goodness-of-fit assessments as well as the analysis of neural
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ensemble representation based on decoding should be carried
out using methods appropriate for the point process nature of
neural spike trains.

To address these issues, we present a point process likeli-
hood framework to analyze the simultaneous effects and rela-
tive importance of spiking history, neural ensemble, and ex-
trinsic covariates. We show that this likelihood analysis can be
efficiently conducted by representing the logarithm of the point
process conditional intensity function in terms of linear com-
binations of general functions of the covariates and then using
the discrete time point process likelihood function to fit the
model to spike train data in the generalized linear model
(GLM) framework. Because the discrete time point process
likelihood function is general, we also show how it may be
used to relate covariates to neural spike trains in a non-GLM
model. We illustrate the methods in the analysis of a simulated
data example and an example in which multiple single neurons
are recorded from MI in a monkey performing a visuomotor
pursuit-tracking task.

M E T H O D S

In this section we present the statistical theory underlying our
approach. First, we define the conditional intensity function for a point
process. Second, we present a discrete time approximation to the
continuous time point process likelihood function, expressed in terms
of the conditional intensity function. Third, we show that when the
logarithm of the conditional intensity is a linear combination of
functions of the covariates, the discrete time point process likelihood
function is equivalent to the likelihood of a GLM under a Poisson
distribution and log link function. Alternatively, if the point process is
represented as a conditionally independent Bernoulli process and the
probability of the events is modeled by a logistic function, then the
likelihood function is equivalent to the likelihood of a GLM under a
Bernoulli distribution and a logistic link function. Fourth, we present
several forms of conditional intensity models for representing spiking
history, neural ensemble, and extrinsic covariate effects. Finally, we
define our approach to maximum likelihood estimation, goodness-
of-fit assessment, model comparison, residuals analysis, and decoding
from point process observations by combining the GLM framework
with analysis methods for point processes.

A point process is a set of discrete events that occur in continuous
time. For a neural spike train this would be the set of individual spike
times. Given an observation interval (0, T], a sequence of J spike
times 0 � u1 � . . . � uj � . . . � uJ � T constitutes a point process.
Let N(t) denote the number of spikes counted in the time interval (0,
t] for t � (0, T]. We define a single realization of the point process
during the time interval (0, t] as N0:t � {0 � u1 � u2 � . . . � uj �
t � N(t) � j} for j � J.

Conditional intensity function

A stochastic neural point process can be completely characterized
by its conditional intensity function �(t � H (t)) (Daley and Vere-Jones
2003), defined as

��t � H�t�� � lim
�30

P�N�t � �� � N�t� � 1 � H�t��

�
(1)

where P[ � � � ] is a conditional probability and H(t) includes the
neuron’s spiking history up to time t and other relevant covariates.
The conditional intensity is a strictly positive function that gives a
history-dependent generalization of the rate function of a Poisson
process. From Eq. 1 we have that, for small �, �(t � H(t))� gives
approximately the neuron’s spiking probability in the time interval (t,

t � �]. Because defining the conditional intensity function completely
defines the point process, to model the neural spike train in terms of
a point process it suffices to define its conditional intensity function.
We use parametric models to express the conditional intensity as a
function of covariates of interest, therefore relating the neuron’s
spiking probability to the covariates. We use �(t � �, H(t)) to denote
the parametric representation of the conditional intensity function in
Eq. 1, where � denotes an unknown parameter to be estimated. The
dimension of � depends on the form of the model used to define the
conditional intensity function.

A discrete time representation of the point process will facilitate the
definition of the point process likelihood function and the construction
of our estimation algorithms. To obtain this representation, we choose
a large integer K and partition the observation interval (0, T] into K
subintervals (tk	1, tk]k�1

K each of length � � TK	1. We choose large
K so that there is at most one spike per subinterval. The discrete time
versions of the continuous time variables are now denoted as
Nk � N�tk�, N1:k � N0:tk

, and Hk � H(tk). Because we chose large K,
the differences �Nk � Nk 	 Nk	1 define the spike train as a binary
time series of zeros and ones. In discrete time, the parametric form of
the conditional intensity function becomes �(tk � �, Hk).

Point process likelihood and GLM framework

Because of its several optimality properties, we choose a likelihood
approach (Pawitan 2001) for fitting and analyzing the parametric
models of the conditional intensity function. As in all likelihood
analyses, the likelihood function for a continuous time point process
is formulated by deriving the joint probability density of the spike
train, which is the joint probability density of the J spike times 0 �
u1 � u2 � . . . � uJ � T in (0, T]. For any point process model
satisfying Eq. 1, this probability density can be expressed in terms of
the conditional intensity function (Daley and Vere-Jones 2003). Sim-
ilarly, in the discrete time representation, this joint probability density
can be expressed in terms of the joint probability mass function of the
discretized spike train (see APPENDIX Eqs. A1 and A2) and is expressed
here as a product of conditionally independent Bernoulli events
(Andersen et al. 1992; Berman and Turner 1992; Brillinger 1988;
Brown et al. 2003)

P�N1:K � �� � �
k�1

K

���tk � �, Hk����Nk�1 � ��tk � �, Hk���1	�Nk � o(�J) (2)

where the term o(�J) relates to the probability of observing a spike
train with 2 or more spikes in any subinterval (tk	1, tk]. From Eqs.
A3–A5 in the APPENDIX, it follows that Eq. 2 can be reexpressed as

P�N1:K � �� � exp��
k�1

K

log ���tk � �, Hk����Nk � �
k�1

K

��tk � �, Hk���� o��J� (3)

If we view Eq. 3 as a function of �, given the spike train observations
N1:K, then this probability mass function defines our discrete time
point process likelihood function and we denote it as L(� � HK) �
P(N1:K � �). From Eq. A6 in the APPENDIX, it can be seen that Eq. 3 is
a discrete time approximation to the joint probability density of a
continuous time point process.

To develop a computationally tractable and efficient approach to
estimating � we note that for any subinterval (tk	1, tk], the conditional
intensity function is approximately constant so that, by Eq. 3,
P��Nk� � exp
log ���tk � �, Hk���Nk � ��tk � �, Hk��� is given by the
Poisson probability mass function. Because � is small, this is equiv-
alent to the Bernoulli probability P(�Nk) � [�(tk � �, Hk)�]�Nk [1	�
(tk � �, Hk)�]1	�Nk in Eq. 2. If we now express the logarithm of the
conditional intensity function as a linear combination of general
functions of the covariates
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log ��tk � �, Hk� � �
i�1

q

�igi�vi�tk � ��� (4)

where gi is a general function of a covariate vi(tk) at different time lags
�, and q is the dimension of the estimated parameter �, then Eq. 3 has
the same form as the likelihood function for a GLM under a Poisson
probability model and a log link function (see APPENDIX, Eqs. A7–A8).
Thus, maximum likelihood estimation of model parameters and like-
lihood analyses can be carried out using the Poisson–GLM frame-
work. Alternatively, if we extend the results in Brillinger (1988), we
obtain

log 
�1 � ��tk � �, Hk���	1���tk � �, Hk���� � �
i�1

q

�igi�vi�tk � ��� (5)

then Eq. 2 has the same form as the likelihood function for a GLM
under a Bernoulli probability distribution and a logistic link function
(Eqs. A9 and A10). Thus, maximum likelihood estimation of model
parameters and likelihood analyses can also be carried out using the
Bernoulli–GLM framework (see also Kass and Ventura 2001). In
other words, for � sufficiently small (i.e., at most one spike per time
subinterval), likelihood analyses performed with either the Bernoulli
or the Poisson model are equivalent. However, because we are
interested in modeling the conditional intensity function directly,
instead of the probability of events in our discrete time likelihoods, we
used the Poisson–GLM framework in our analyses.

Therefore, we can take advantage of the computational efficiency
and robustness of the GLM framework together with all of the
analysis tools from the point process theory: goodness-of-fit based on
the time rescaling theorem, residual analysis, model selection, and
stochastic decoding based on point process observations. We refer to
this combined framework as the point process–GLM framework. This
framework covers a very large class of models because Eq. 4 allows
for general functions of the covariates and of interaction terms
consisting of combinations of the covariates. An application of GLM
analysis to spike train data, without the support of the derived
relations between the point process and GLM likelihood functions,
would remain purely heuristic in nature.

Finally, Eqs. 2 and 3 are generally applicable discrete time approx-
imations for the point process likelihood function. Thus, when a
parametric model of the conditional intensity function cannot be
expressed in terms of either Eq. 4 or Eq. 5, the GLM framework may
be replaced with standard algorithms for computing maximum like-
lihood estimates (Pawitan 2001).

Models for the conditional intensity function

We formulate specific models for the conditional intensity function
that incorporate the effects of spiking history, ensemble, and extrinsic
covariates. For the exposition in the remainder of this section, we
extend our notation to include the neural ensemble activity. Consider
an observation time interval t � (0, T] with corresponding sequences
of Jc spike times 0 � u1

c � . . . � uj
c � . . . � uJc

c � T, for c � 1, . . . ,
C recorded neurons. Let N1:K

1:C��c�1
C N1:K

c denote the sample path for the
entire ensemble.

CONDITIONAL INTENSITY MODELS IN THE POINT PROCESS–GLM

FRAMEWORK. The general form for the conditional intensity func-
tion we use to model a single cell’s spiking activity is

��tk � N1:k
1:C, xk��, �� � �I(tk � N1:k, �1)�E�tk � N1:k

1:C, �E��X�tk � xk��, �X� (6)

where � � {�X, �E, �I}, �I(tk � N1:k, �I) is the component of the
intensity function conditioned on the spiking history N1:k of the
neuron whose intensity is being modeled, �E(tk � N1:K

1:C, �E) is the
component related to the ensemble history contribution, and �X(tk �

xk��, �X) is the component related to an extrinsic covariate xk��,
where � is an integer time shift. Note that the term Hk, used in the
previous section, is now replaced by more specific information ac-
cording to the model.

We consider the following specific models for each of these 3
covariate types. We begin with a model incorporating the spiking
history component.

The spiking history component is modeled as

�I�tk � N1:k, �I� � exp��0 � �
n�1

Q

�n�Nk	n� (7)

where Q is the order of the autoregressive process, �n represents
the autoregressive coefficients, and �0 relates to a background level
of activity. This model is henceforth referred to as the autoregres-
sive spiking history model. We apply Akaike’s standard informa-
tion criterion (AIC, see Eq. 16 below) to estimate the parameter Q.
We expect this autoregressive spiking history model to capture
mostly refractory effects, recovery periods, and oscillatory prop-
erties of the neuron.

The contributions from the ensemble are expressed in terms of a
regression model of order R

�E�tk � N1:k
1:C, �E� � exp�	0 � �

c

�
r�1

R

	r
c�N k	r

c � (8)

where the first summation is over the ensemble of cells with the
exception of the cell whose conditional intensity function is being
modeled. Thus the above model contains R � (C 	 1) parameters plus
one additional parameter for the background level. Note that the
coefficients in the ensemble model capture spike effects at 1-ms time
resolution and in this way they may reflect lagged-synchrony between
spikes of the modeled cell and other cells in the ensemble. Alterna-
tively, to investigate ensemble effects at lower time precision, we
consider the ensemble rates model

�E�tk � N1:k
1:C, �E� � exp�	0 � �

c

�
r�1

R

	r
c �N k	�r	1�W

c � N k	rW
c �� (9)

where the term Nk	(r	1)W
c 	 Nk	rW

c is the spike count in a time
window of length W covering the time interval (tk	rW, tk	(r	1)W]. The
coefficients in this model may reflect spike covariances on slow time
scales.

In our application to MI data, the extrinsic covariate xk�� will
specify the hand velocity. To model this component we employ a
variation of the Moran and Schwartz (1999) model, henceforth re-
ferred to as the velocity model

�X�tk � xk��, �X� � exp

0 � �Vk��� �
1 cos ��k��� � 
2 sin ��k����� (10)

where �Vk��� and �k�� are, respectively, the magnitude and angle
of the 2-D hand velocity vector in polar coordinates at time tk��.
In this model xk�� � [�Vk���, �k��]. For illustration purposes, we
have considered only a single, fixed-time shift � in the above
model. Based on previous results (Paninski et al. 2004) we set � �
150 ms. A much more generic model form including linear or
nonlinear functions of covariates at many different time lags could
be easily formulated.

The most complex conditional intensity function models we inves-
tigate are the autoregressive spiking history plus velocity and ensem-
ble activity, and the autoregressive spiking history plus velocity and
ensemble rates models. For the former, the full conditional intensity
function model is given by
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��tk � N1:k
1:C, xk��, �� � exp
� � �

n�1

Q

�n�Nk	n

� �
c

�
r�1

R

	r
c�N k	r

c � �Vk�� � �
1 cos ��k��� � 
2 sin ��k����� (11)

where � relates to the background activity.
It should be noticed that although these models are in the “gener-

alized linear” model class, the relation between the conditional inten-
sity function and spiking history, ensemble, and extrinsic covariates
can be highly nonlinear. These models are linear only after the
transformation of the natural parameter (here the conditional intensity
function) by the log link function and only with respect to the model
parameters being estimated. As seen in Eq. 4, general functions (e.g.,
quadratic, cubic, etc.) of the actual measured covariates can be used.

NON-GLM CONDITIONAL INTENSITY FUNCTION MODEL. To illustrate
the generality of the proposed point process framework, we construct
and analyze a non-GLM conditional intensity function model that also
incorporates effects of spiking history, neural ensemble, and extrinsic
covariates. Additionally, this example demonstrates a procedure for
obtaining a conditional intensity function by first modeling the inter-
spike interval (ISI) conditional probability density function. The
conditional intensity is obtained from the ISI probability density
model using the relation (Brown et al. 2003)

��tk � �, Hk� �
p�te � �, Hk�

1 ��
uNk	1

tk

p�t � �, H�t��dt

(12)

where te � tk 	 uNk	1
is the elapsed time since the most recent spike

of the modeled cell before time tk and p(te � �, Hk) is the ISI probability
density, specified here by the inhomogeneous inverse Gaussian (Bar-
bieri et al. 2001). This probability density is given in Eq. A11 in the
APPENDIX. This density is specified by a time-varying scaling param-
eter s(tk � � ) that, in our application to MI spiking data, captures the
velocity and ensemble rates covariate effects

s�tk � xt��, N1:k
1:C, �X, �E� � exp�� � �

c

�
r�1

R

	r
c(N k	�r	1�W

c � N k	rW
c )

� �Vk�� � �
1 cos ��k��� � 
2 sin ��k����� (13)

and a location parameter . The set of parameters defining the
inhomogeneous inverse Gaussian density and therefore the condi-
tional intensity function is denoted � � {�X, �E, }. This model (Eqs.
12, 13, and A11) is henceforth referred to as the inhomogeneous
inverse Gaussian plus velocity and ensemble rates model. The history
dependence in this model extends back to the time of the previous,
most recent spike.

Maximum likelihood parameter estimation

Maximum likelihood parameter estimates for the models in the
point process–GLM framework were efficiently computed using
the iterative reweighted least squares (IRLS) algorithm. This
method is the standard choice for the maximum likelihood estima-
tion of GLMs because of its computational simplicity, efficiency,
and robustness. IRLS applies the Newton–Raphson method to the
reweighted least squares problem (McCullagh and Nelder 1989).
Given the conditional intensity model in Eq. 4, the log-likelihood
function is strictly concave. Therefore, if the maximum log-
likelihood exists, it is unique (Santner and Duffy 1989). Confi-
dence intervals and p-values were obtained following standard

computations based on the observed Fisher information matrix
(Pawitan 2001). Statistically nonsignificant parameters (e.g. P �
0.001) were set to zero for all of the models. In the non-GLM case,
the inhomogeneous inverse Gaussian model was fit by direct
maximization of the likelihood function using a quasi-Newton
method (IMSL, C function min_uncon_multivar, from Visual Nu-
merics, 2001). For the data sets used here, the most intensive
computations involved operations on large matrices of size about
106 � 200. Algorithms were coded in C and run on dual-processor
3.9-GHz IBM machines, 2 GB of RAM memory. Standard GLM
estimation using IRLS is also available in several statistical pack-
ages (S-Plus, SPSS, and Matlab Statistics toolbox).

Goodness-of-fit, point process residual analyses and
model comparison

KOLMOGOROV–SMIRNOV (K-S) TEST ON TIME RESCALED ISIS. Be-
fore making an inference from a statistical model, it is crucial to assess
the extent to which the model describes the data. Measuring quanti-
tatively the agreement between a proposed model and a spike train
data series is a more challenging problem than for models of contin-
uous-valued processes. Standard distance measures applied in contin-
uous data analyses, such as average sum of squared errors, are not
designed for point process data. One alternative solution to this
problem is to apply the time-rescaling theorem (Brown et al. 2002;
Ogata 1988; Papangelou 1972) to transform point processes like spike
trains into continuous measures appropriate for goodness-of-fit assess-
ment. Once a conditional intensity function model has been fit to a
spike train data series, we can compute rescaled times zj from the
estimated conditional intensity and from the spike times as

zj � 1 � exp �	�
uj

uj�1

��t � H�t�, �̂�dt� (14)

for j � 1, . . . , J 	 1, where �̂ is the maximum likelihood estimate of
the parameters. The zj values will be independent uniformly distrib-
uted random variables on the interval [0, 1) if and only if the
conditional intensity function model corresponds to the true condi-
tional intensity of the process. Because the transformation in Eq. 14 is
one to one, any statistical assessment that measures the agreement
between the zj values and a uniform distribution directly evaluates
how well the original model agrees with the spike train data. To
construct the K-S test, we order the zj values from smallest to largest,
denoting the ordered values as z( j), and then plot the values of the
cumulative distribution function of the uniform density function
defined as bj � ( j 	 1/2)/J for j � 1, . . . , J against the z( j). We term
these plots K-S plots. If the model is correct, then the points should lie
on a 45° line. Confidence bounds for the degree of agreement between
a model and the data may be constructed using the distribution of the
Kolmogorov–Smirnov statistic (Johnson and Kotz 1970). For moder-
ate to large sample sizes the 95% confidence bounds are well approx-
imated by bj � 1.36 � J	1/2 (Johnson and Kotz 1970).

To assess how well a model performs in terms of the original ISIs
(ISIj � uj 	 uj	1), we relate the ISIs to the computed zj values in the
following manner. First, the empirical probability density of the zj

values is computed, and the ratio of the empirical to the expected
(uniform) density is calculated for each bin in the density. Second, the
ISI values in the data are rounded to integer milliseconds and col-
lected into bins. For these ISIs, all the corresponding zj values as well
as the ratios of empirical to expected densities in the related bins are
obtained. This correspondence between ISIs and zj values is easily
available from Eq. 14. Third, we compute the mean ratio R (i.e., the
mean of all the ratios for this particular ISI value). A mean ratio R �
1 (R � 1) implies that there are more (less) rescaled ISIs of length zj

than expected and that the intensity is being underestimated (overes-
timated), on average, at this particular ISI value.
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If the model is correct, the zj values should be not only uniformly
distributed, but also independent. Thus, even when the K-S statistic is
small, we still need to show that the rescaled times are independent.
Here we assess independence up to 2nd-order temporal correlations
by computing the autocorrelation function of the transformed rescaled
times. As a visualization aid, we plot zj�1 against zj.

POINT PROCESS RESIDUAL ANALYSIS. A standard approach in good-
ness-of-fit analysis is to examine structure in the data that is not
described by the model. For continuous valued data, this is done by
analyzing the residual error (i.e., the difference between the true and
predicted values). For point process data, a different definition of
residuals is needed to relate the conditional intensity function to the
observed spike train data. The point process residual (Andersen et al.
1992) over nonoverlapping moving time windows is defined as

M�tk� � �
i�k	B

k

�Ni ��
tk	B

tk

��t � H�t�, �̂�dt (15)

for k 	 B � 1. In the application to MI data, we will look for relations
between the point process residual and motor covariates (e.g., speed or
direction) by computing their cross-correlation functions. Existence of
correlations would imply that there is some structure left in the
residuals that is not captured by the conditional intensity function
model.

MODEL SELECTION. An additional tool for comparing models comes
from the statistical theory of model selection (Burnham and Anderson
2002). The idea consists of choosing the best models to approximate
an underlying process generating the observed data, a process whose
complexity can be potentially infinite dimensional. To achieve this
goal, we adopt Akaike’s standard information criterion (AIC) (Akaike
1973). This criterion also provides a way to rank different candidate
models. The AIC was originally derived as an estimate of the expected
relative Kullback–Leibler distance (Cover and Thomas 1991) between
a distribution given by an approximating model and the distribution of
the true underlying process generating the data. This criterion is
formulated as

AIC�q� � 	2 log L��̂ � Hk� � 2q (16)

where L(�̂ � HK) is the likelihood function, L(�̂ � HK) � P(N1:K � �̂,
HK); �̂ is the maximum likelihood estimate of the model parameters
�̂; and q is the total number of parameters in the model. By this
criterion, the best model is the one with the smallest AIC, implying
that the approximate distance between this model and the “true
process” generating the data is smallest. The AIC is frequently
interpreted as a measure of the trade-off between how well the model
fits the data and the number of parameters required to achieve that fit,
or of the desired trade-off between bias and variance (Burnham and
Anderson 2002). An equivalence between AIC and cross-validation
for the purpose of model selection has been established (Stone 1977).
AIC can be applied to both nested and nonnested models, and to
models with different distributions in their stochastic component. We
compute AIC values for different models to guide our model com-
parison. Specifically, we provide the difference between the AIC of all
of the models with respect to the AIC of the best model. We also use
the AIC to estimate the order of the autoregressive spiking history
component in Eq. 7.

Neural decoding analysis by state estimation with point
process observations

Beyond assessing the goodness-of-fit of a single cell model with
respect to its individual spike train data, we also analyze the ability of
the model, over the entire cell population, to decode an m-dimensional
extrinsic covariate xk��. Such decoding will use the spike times of the
entire ensemble of cells and the corresponding conditional intensity

function for each of these cells. We thus perform a state estimation of
xk based on point process observations and thereby assess the ensem-
ble coding properties of the cell population. The estimated extrinsic
covariate will be given by the posterior mode after a Gaussian
approximation to the Bayes–Chapman–Kolmogorov system (Eden et
al. 2004).

For the particular type of hand kinematics data described above, we
model xk as a Gaussian autoregressive process of order 1, henceforth
AR(1), given by

xk�� � �x � Fxk��	1 � �k�� (17)

where �x is an m-dimensional vector of mean parameters, F is an m �
m state matrix, and �k is the noise term given by a zero mean
m-dimensional white Gaussian vector with m � m covariance matrix
W�. The matrices F and W� are fitted by maximum likelihood.

The point process observation equation is expressed in terms of the
modeled conditional intensity functions �c(tk � � ) for each of the C
cells entering the decoding. As an example, for intensity functions
conditioned on a motor covariate xk�� and intrinsic spiking history
N1:k

C , we have the following recursive point process filter.

One step prediction

xk�� � k��	1 � �x � Fxk��	1 � k��	1 (18)

One-step prediction covariance

Wk�� � k��	1 � FWk��	1 � k��	1F � W� (19)

Posterior covariance

Wk�� � k�� � �Wk�� � k��	1
	1 � �

c�1

C

�� log �c �tk � N 1:k
c , xk�� � k��	1, �̂ c��

�c�tk � N 1:k
c , xk�� � k��	1, �̂ c��[� log �c �tk � N 1:k

c , xk�� � k��	1, �̂ c�]

� �
c�1

C

�2 log �c �tk � N 1:k
c , xk�� � k��	1, �̂ c�

��N 1:k
c � �c�tk � N 1:k

c , xk�� � k��	1, �̂ c����	1

(20)

Posterior mode

xk�� � k�� � xk�� � k��	1 � Wk�� � k��

� �
c�1

C

� log �c�tk � N 1:k
c , xk�� � k��	1, �̂ c� ��N 1:k

c 	�c�tk � N 1:k
c , xk�� � k��	1, �̂ c���

(21)

The term �(�2) denotes the m-dimensional vector (m � m matrix) of
first (second) partial derivatives with respect to xk��, and Wk���k�� is
the posterior covariance matrix of xk��. Similarly, decoding equations
based on other models of the conditional intensity function can be
obtained. The derivation of the recursive point process filter is based
on the well-established (Mendel 1995; Kitagawa and Gersh 1996)
relation between the posterior probability density and the Chapman–
Kolmogorov (one-step prediction) probability density, and on a
Gaussian approximation of the posterior density (for details see Eden
et al. 2004). The Gaussian approximation results from a 2nd-order
Taylor expansion of the density and it is a standard first approach for
approximating probability densities (Tanner 1996; Pawitan 2001).
Nonetheless, the spiking activity enters into the computations in a
very non-Gaussian way through the point process model instantiated
by the conditional intensity function.

The amount of uncertainty in the algorithm about the true state of
the decoded parameter is related to the matrix Wk���k��. Confidence
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regions and coverage probability for the decoding can thus be ob-
tained as follows. At time k�t an approximate 0.95 confidence region
for the true covariate xk�� may be constructed as

�xk�� � xk�� � k���Wk�� � k��
	1 �xk�� � xk�� � k��� � �0.95

2 �m� (22)

for k � 1, 2, . . . , K, where �0.95
2 (m) gives the 0.95 quantile of the �2

distribution with degrees of freedom equal to the dimension m of the
covariate. The coverage probability up to time tk is given by sk/k
where sk is the number of times the true covariate is within the
confidence regions during the time interval (0, k�]. In the decoding
analysis we compute the mean of the coverage probability over the
entire decoding period. A Monte Carlo simulation is employed to
obtain the confidence intervals and coverage probability for the
covariate in polar coordinates. We first use the estimated posterior
covariance matrix to generate 104 Gaussian-distributed samples cen-
tered at the current covariate estimates in Cartesian coordinates.
Second, these random samples are converted to polar coordinates.
Finally, the confidence intervals are then computed from the distri-
bution of the random samples in polar coordinates.

R E S U L T S

The proposed point process framework is illustrated with 2
examples. The first one is applied to simulated neural spike
data and the second to multiple single units simultaneously
recorded from monkey primary motor cortex. For the discrete
time representation of the neural point process we set � � 1
ms.

Simulation study

The goal of the simulation study is 2-fold. First, we illustrate
the main properties of the model in Eq. 11 containing the
autoregressive history, neural ensemble history, and motor
covariate effects. Second, we demonstrate that the parameters
of the simulated model are accurately recovered from relatively
small spike data sets by maximum likelihood estimation im-
plemented with the IRLS algorithm.

The conditional intensity functions of 6 neurons (A, B, C, D,
E, F) were simulated using methods as described in Ogata
(1981). The intensity of 5 of them (B–F) was given by the
velocity model (Eq. 10); that is, the neurons were modeled as
inhomogeneous Poisson processes with mean background
spiking rates of 17, 16, 9, 8, and 7 Hz, respectively, and
inhomogeneity introduced by the modulating hand velocity
signal. Different velocity tuning functions were used for the set
of cells. The hand velocity signal was sampled from actual
hand trajectories performed by a monkey (see Application to
MI spiking data, below). The conditional intensity function for
neuron A was given by the autoregressive spiking history plus
ensemble and velocity model (Eq. 11). The background mean
firing rate of this neuron was set to 10 Hz. The autoregressive
spiking history component contained 120 coefficients covering
120 ms of spiking history (see Fig. 2B). The autoregressive
coefficients mimicked the effects of refractory–recovery peri-
ods and rebound excitation. From the ensemble of 5 neurons,
only 2 contributed excitatory (neuron B) and inhibitory (neuron
C) effects at 3 time lags (	1, 	2, and 	3 ms).

The simulation scheme worked as follows. Starting with the
initial simulation time step, first the conditional intensity func-
tions were updated and then, at the same time step, the spiking
activities for all of the cells were simulated. The simulation
then moved to the next time step. The conditional intensity

functions were updated based on the past intrinsic and ensem-
ble spiking history (neuron A only) and on the current hand
velocity state (all neurons).

The main features of the conditional intensity function
model in Eq. 11 can be observed in Fig. 1, where the simulated
conditional intensity function of neuron A and its own spiking
activity are plotted together with the activity of the other 5
neurons and the contribution of velocity signal. The simulated
conditional intensity function clearly shows the dependence on
spike history: after a spike, the intensity drops to almost zero
and slowly recovers, reaching a period of higher than back-
ground spiking probability at about 20 ms after the spike. Fast
excitatory and inhibitory effects follow the spikes of neurons B
and C. Spiking history, neural ensemble, and velocity modulate
each other’s contributions in a multiplicative fashion.

From the simulated ensemble spike trains and from the
velocity signal, we then estimated the conditional intensity
function generating the spiking activity of neuron A. The data
set entering the estimation algorithm thus consisted of 6 sim-
ulated spike trains, each 200 s long, and of the hand velocity
time series in polar coordinates. The spike train for the mod-
eled neuron A contained 2,867 spikes. The parametric model
for the estimated conditional intensity function consisted of a
background mean, 120 autoregressive coefficients, and 5 re-
gressive coefficients for each of the other 5 neurons (i.e., 25
coefficients in total). Each set of 5 coefficients related to
spiking activity at lags 	1, 	2, . . . , 	5 ms. The IRLS

FIG. 1. Simulated conditional intensity function model. Conditional inten-
sity function, modeled as in Eq. 1, was simulated and used to generate a spike
train (neuron A, blue asterisks mark the times of the spike events). In this
model, the intensity (blue curve) was conditioned on the past spiking history,
the spikes of 2 other neurons (neuron B, excitatory, red asterisks; neuron C,
inhibitory, green asterisks), and on hand velocity. Past spiking history effect
was modeled by a 120-order autoregressive process carrying a refractory
period, recovery, and rebound excitation. Coefficient values were based on
parameters estimated from a primary motor cortex (MI) cell (see Fig. 5B). The
conditional intensity function resulting from the contribution of only hand
velocity is shown by the black line. Three other cells were also simulated
(neurons D, E, and F; black asterisks). Neurons B–F were modeled as
inhomogeneous Poisson processes modulated according to the velocity model
(Eq. 10). All cells had different preferred movement directions. Spiking
history, ensemble, and velocity modulated each other in a multiplicative
fashion. Simulated ensemble spike trains together with hand velocity were
used to estimate the parameters for the conditional intensity function model of
neuron A (see Fig. 2).
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algorithm converged in 12 iterations (tolerance was set to
10	6). Statistically nonsignificant parameters (P � 0.001) were
set to zero (see METHODS section). The true model parameters
used in the simulation of neuron A were accurately recovered
(Fig. 2, B and C), with the estimated model passing the K-S
goodness-of-fit test (Fig. 2D). Parameter estimation on smaller
data sets (about 50 s of data) led to similar successful fittings.

Application to MI spiking data

Experimental data were obtained from the MI area of a
behaving monkey. Details of the basic recording hardware and
protocols are available elsewhere (Donoghue et al. 1998;
Maynard et al. 1999). After task training, a Bionic Technolo-
gies LLC (BTL, Salt Lake City, UT) 100-electrode silicon
array was implanted in the area of MI corresponding to the arm
representation. One monkey (M. mulatta) was operantly con-
ditioned to track a smoothly and randomly moving visual
target. The monkey viewed a computer monitor and gripped a
2-link, low-friction manipulandum that constrained hand
movement to a horizontal plane. The hand (x, y) position signal
was digitized and resampled to 1 kHz. Low-pass–filtered finite

differences of position data were used to obtain hand veloci-
ties. Some 130 trials (8–9 s each) were recorded. More details
about the statistical properties of the distributions for hand
position and velocity, spiking sorting methods, and other task
details can be found in Paninski et al. (2004).

Models including 1, 2, or all of the 3 types of covariates
were analyzed. To start, we focus on the analysis of the
velocity and the autoregressive spiking history plus velocity
models. Later, we also compare these 2 models using neural
decoding based on the observation of the entire ensemble of
cells. For this reason, we analyzed these 2 models for each of
the 20 cells in the ensemble. More detailed analysis involving
K-S plots, point process residuals, and AIC model comparison
will be illustrated for one typical cell.

K-S GOODNESS-OF-FIT ANALYSIS FOR THE VELOCITY AND THE AU-

TOREGRESSIVE SPIKING HISTORY PLUS VELOCITY MODELS. The
tuning functions obtained from the velocity model (Eq. 10) are
shown in Fig. 3. This model was statistically significant for all
of the cells. Preferred direction was diverse across cells,
covering the range of possible directions. The corresponding
K-S plots are shown in Fig. 4. The quantiles refer to the z(j)s
(Eq. 14) and the cumulative distribution function (CDF) refers
to the expected uniform distribution for the case when the
estimated conditional intensity model was equivalent to the
true one. The velocity model tends to overestimate (underes-
timate) the conditional intensity at lower (middle) quantiles.
Introduction of the autoregressive spiking history component
(Eq. 7) in the velocity model greatly improved the explanation
of the spiking process, almost completely eliminating both the
over- and underestimation of the intensity. The maximum
order of the autoregressive component was about 120 (i.e., the
component incorporated history effects spanning over 120 ms
in the past). The most significant history effects extended to 60
ms in the past. For the majority of the cells, this component
seemed to capture mostly 3 main history effects: refractory and
recovery periods followed by an increase in the firing proba-
bility around 20 ms after a spike (see Fig. 5B). It should be
noticed that the autoregressive coefficients could have also
reflected dynamical network properties of nonmeasured neural
ensembles such as networks of excitatory and inhibitory neu-
rons where the modeled cell is embedded, or nonmeasured fast
extrinsic covariates. No significant differences in the K-S plots
were observed between a pure autoregressive history model
and the autoregressive history plus velocity models (not
shown).

Figure 5, C and D summarize the above observations for a
typical cell (cell 75a, 29,971 spikes over 130 trials, i.e., �1,040
s) in this example set and relate the fitting problems of the
velocity model to the original nontime rescaled ISIs. In the
velocity model, the intensity is overestimated (mean ratio R �
1) for ISIs below 10 ms and underestimated (mean ratio R �
1) for ISIs in the interval 10 to about 40 ms (Fig. 5D). The
overestimation is likely a reflection of a refractory–recovery
period (up to �10 ms) after the cell has spiked, which is not
captured by the velocity model. The underestimation reflects a
period of increased firing probability that follows the recovery
period. These 2 different regimes are reasonably well captured
by the coefficients of the autoregressive component (see Fig.
5B), thus resulting in the improved fit observed for the autore-
gressive spiking history plus velocity model. Introduction of

FIG. 2. Model parameter estimation by iteratively reweighted least squares
(IRLS) in the generalized linear model (GLM) framework. Spike trains of the
6 simulated cells (each lasting 200 s; see Fig. 1) together with hand velocity
produced the data set for the estimation of the parameters of the conditional
intensity function model for neuron A. Spike train of neuron A consisted of
2,867 spikes. A: ISI distribution for neuron A. B: true autoregressive coeffi-
cients (thick curve) and the estimated ones. C: ensemble covariate in the
estimated model contained 5 coefficients per cell (covering 5 ms of the past).
Only the 3 coefficients for the excitatory and inhibitory cells were significantly
different from zero (P � 0.001). Bars indicate the 95% confidence intervals.
Small circles show the location of the true coefficients. D: Kolmogorov–
Smirnov (K-S) goodness-of-fit test shows that the estimated conditional
intensity model passed the test (the 95% confidence region is given by the
parallel lines). Coefficients for the velocity covariate 
1 � 0.1 and 
2 � 	0.05
were estimated as 
̂1 � 0.105 and 
̂2 � 	0.045.
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the autoregressive component makes the observed density for
the zj values much closer to the expected uniform density (Fig.
5C).

The K-S statistic measures how close rescaled times are to
being uniformly distributed on [0, 1). In addition, a good model
should also generate independent and identically distributed
rescaled times. To illustrate this point, we checked for temporal
correlations at lag 1 in the time-rescaled ISIs (Fig. 6). As
expected, some temporal structure remains in the case of the
velocity model (r2 � 0.25, P � 10	6), whereas this structure
is effectively insignificant for the velocity plus autoregressive
spiking history (r2 � 0.002, P � 10	6). The cross-correlation
function computed over a broad range of lags was consistent
with this result.

POINT PROCESS RESIDUAL ANALYSIS. Even though the parame-
ters for the velocity model were statistically significant, the
K-S plot analysis showed that the velocity model fell short of
explaining the entire statistical structure in the observed single-
cell spiking activity. It thus remains to be seen how well this
model captured the relationship between hand velocity and
spiking activity. Besides neural decoding, another approach to
address this problem is to measure the correlations among the
point process residuals as defined in Eq. 15 and the movement
velocity. Existence of correlations would imply that there is
some structure left in the residuals that is not captured by the
velocity model. On the other hand, a decrease in the correlation
level with respect to some other model would imply that the

velocity model does capture some of the structure in the
spiking activity related to hand velocity.

We computed the correlations for the residuals from the
autoregressive spiking history model (Eq. 7) and compared
them to the correlations for the residuals from the velocity and
from the autoregressive spiking history plus velocity model.
Residuals were computed for nonoverlapping 200-ms moving
windows (Fig. 7). Cross-correlation functions were computed
between the residuals and the mean of the kinematic variables.
Mean (x, y) velocities were computed for each time window
and were used to obtain, in polar coordinates, the respective
mean movement speed and direction. In the autoregressive
model case, peak cross-correlation values between the residu-
als and direction, speed, and velocities in x and y coordinates
were 0.29, 0.10, 	0.17, and 0.50, respectively. For the autore-
gressive spiking history and velocity model, the peak cross-
correlation values for the same variables were 0.08, 0.06,
	0.12, and 0.28. This suggests that, for this particular neuron,
the velocity model captures a significant amount of information
about hand velocity available in the spiking activity. Nonethe-
less, it is also clear that there is a residual structure in the
spiking activity that is statistically related to the hand velocity
in Cartesian coordinates and that is not captured by the autore-
gressive spiking history plus velocity model. Furthermore, the
cross-correlation functions for both the velocity and the au-
toregressive spiking history plus velocity model show no
significant differences, which suggests that the autoregressive

FIG. 3. Velocity tuning functions. Condi-
tional intensity function values, based on the
velocity model, are expressed by pseudo-
color maps. Velocity is given in polar coor-
dinates, with � representing the movement
direction. Each subplot relates to a particular
cell, with cells’ labels given at the top.
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component does not carry additional statistical information
about hand velocity.

MODEL COMPARISON. We compared partial and complete (i.e.,
1, 2, or 3 covariate types) conditional intensity function models
for cell 75a. The ensemble model included spiking activity of
each cell at 4 time lags (	1, 	2, 	3, and 	4 ms). The
ensemble rates included the spike counts of each cell at 3
nonoverlapping and lagged time windows. The length of each
of the time windows, specified by the parameter W in Eq. 9,
was 50 ms. The K-S plots in Fig. 8 reveal that the autoregres-
sive spiking history plus velocity and the autoregressive spik-
ing history plus velocity and ensemble rates models provided
the best fits among all of the models for this specific cell. The
inhomogeneous inverse Gaussian plus velocity and ensemble
rates model performed better than the velocity, ensemble, and
ensemble rates models. Inspection of the coefficients for the
ensemble and ensemble rates models showed that the depen-
dencies were statistically significant for many of the cells in the
ensemble. Individual cells contributed either positive or nega-
tive effects to the conditional intensity function and the effec-
tive ensemble contribution to the modulation of the conditional
intensity function could reach tens of hertz.

In the above K-S plot comparisons, some of the models had
K-S statistics far from the 95% confidence intervals or nearly
identical to those from other models, making a clear compar-
ison difficult. The AIC analysis was then used to provide a
more detailed comparison, as well as to take the complexity of
the model (i.e., number of parameters) into consideration in the
model comparison. Figure 9 shows the ranked models in terms

of their difference with respect to the AIC of the best model. In
this context, models with lower AIC difference values are
considered better models.

Overall, this criterion provided a fine model ranking and
suggested that models containing the autoregressive spiking
history component performed better in each instance. Among
the alternative models for spiking history, the autoregressive
spiking history model performed better than the conditional
intensity model based on the inhomogeneous inverse Gaussian
ISI distribution model (Eqs. 12, 13, and A11), both in the AIC
and K-S goodness-of-fit analyses. Also, the ensemble rates
model did better than models containing only the velocity
covariate or the ensemble covariate at fine temporal precision.

VELOCITY AND MOVEMENT DIRECTION DECODING ANALYSIS. The
velocity (Eq. 10) and the autoregressive spiking history plus
velocity models were used in the neural decoding of hand
velocity. Models were fit to a training data set (120 trials, about
8–9 s each) and applied to decoding on a different test data set
(10 trials, again about 8–9 s each). The state matrix F for the
AR(1) state process (Eq. 17) was estimated to be diagonal with
nonzero terms approximately equal to 0.99, and the noise
covariance matrix W� to be diagonal with nonzero entries
equal to 0.01. Figure 10 shows the resulting decoding of
movement direction and, in Cartesian coordinates, the esti-
mated (x, y) velocities for a single test trial based on the
velocity model. Overall, decoding of movement direction was
remarkably good. Decoded (x, y) velocities captured mostly
slower fluctuations. To compare the decoding performance of
the 2 models, we computed the coverage probability and the

FIG. 4. K-S plots for the velocity model
and the autoregressive spiking history plus
velocity model. Because the K-S plots are
constructed from a uniform distribution on the
interval [0, 1), the 50th and 100th percentiles
correspond, respectively, to quantiles 0.5 and
1.0 on both the horizontal and vertical axes.
Two-sided 95% confidence error bounds of
the K-S statistics are displayed for each cell
(45° red lines). Visual inspection alone al-
ready reveals that, for most of the cells, the
autoregressive spiking history plus velocity
model (solid curve) improves the fit
considerably.
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decoding error. Table 1 gives the mean values (across time and
trials) for the coverage probabilities of the bivariate estimate
(velocity magnitude and movement direction) and the coverage
probabilities of the univariate estimate (velocity magnitude or
movement direction). Mean coverage probability for the move-
ment direction estimate was 0.94 for the velocity model. For
the same model, coverage probabilities for the bivariate esti-
mate and velocity magnitude were much smaller, consistent
with the observation that the estimated velocities in Cartesian
coordinates captured mostly slow fluctuations. Mean coverage
probability, mean and median decoding errors, and confidence
intervals for the decoding errors were not significantly different
between the 2 models.

D I S C U S S I O N

An important problem in neurophysiology is determining the
factors that affect a neuron’s spiking behavior. To address this
question we have presented a point process statistical frame-
work that allowed us to characterize simultaneously the effects
of several covariates on the spiking activity of an individual

neuron. The 3 types of covariates we considered were the
neuron’s spiking history, past neural ensemble activity, and
extrinsic covariates such as stimuli or behavior. Because de-

FIG. 5. Contribution of the autoregressive spiking history component. Cell
75a is chosen to illustrate how the addition of the autoregressive component
improves the model’s fit. A: ISI histogram. B: estimated coefficients of the
autoregressive component. Autoregressive component incorporates a recovery
period after the cell spikes, which lasts for about 18 ms (negative coefficients).
Cell’s firing probability then starts to increase, peaking at about 25 ms after a
spike. Order refers to the order of the AR coefficient representing increasing
times since the last spike. C: histogram for the transformed times zj for both
models (green: velocity model; blue: autoregressive spiking history plus
velocity model). Black line shows the expected uniform distribution for the
case where the estimated intensity function is close enough to the true intensity
function underlying the neural point process. D: mean ratio of observed to
expected zj values indicates that the velocity model overestimates, on average,
the intensity function for periods up to about 10 ms after a spike, while it tends
to underestimate the intensity for periods between 10 and 40 ms. Introduction
of the negative (positive) autoregressive coefficients almost completely elim-
inates the over (under) estimation of the conditional intensity function based on
the velocity model alone.

FIG. 6. Temporal correlations in the time-rescaled ISIs. Scatter plots are
shown for consecutive zj values from the velocity and autoregressive spiking
history plus velocity (ARVel) models applied to cell 75a. Clearly, the autore-
gressive spiking history plus velocity model presents a more independent
rescaled distribution. Corresponding correlation coefficients are 0.25 (P �
10	6) for the velocity model and 0.002 (P � 10	6) for the autoregressive
spiking history plus velocity model. Cross-correlation functions computed
over a broad range of lags led to similar results. Thus, in addition to improving
the fit in the K-S plots, the introduction of the autoregressive component also
eliminates temporal correlations among the rescaled times observed for the
velocity model.

FIG. 7. Point process residual analysis. A: cross-correlation function C(�)
between the hand-movement direction and the residuals from the autoregres-
sive spiking history (AR, thick curve), the velocity (thin curve), and the
autoregressive spiking history plus velocity (ARVel, dashed curve) models
applied to cell 75a. B–D: cross-correlations functions between the residuals
and speed, and velocity in Cartesian coordinates (Vx and Vy). Correlations are
significantly reduced for the velocity model in comparison to the autoregres-
sive spiking history model. Nonetheless, there remains some structure in the
point process residual that is related to the hand velocity but was not captured
by the velocity model. Correlations for the velocity model were practically
identical to the autoregressive spiking history plus velocity model, suggesting
that the autoregressive component does not provide additional information
about velocity (see text for details).
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fining the conditional intensity function defines a point process
model, the explanatory contributions of the covariates were
assessed by constructing conditional intensity function models
in terms of these covariates and by using a likelihood-based
estimation approach to fit these models to data and to assess
goodness-of-fit.

Analyses that measure the simultaneous effects of different
covariates are crucial because the covariates modulate the
neural spiking activity at the same time. Currently used anal-
ysis methods do not allow for the modeling of the simultaneous
effects of spiking history, neural ensemble, and extrinsic co-
variates on the spike train treated as a point process. To
evaluate the relation between spiking activity and covariates,
the spike train data are frequently transformed to a rate func-
tion and the relation between the rate function and the covariate

is then assessed using regression methods (e.g., Ashe and
Georgopoulos 1994; Luczak et al. 2004). The relation between
a neuron’s spiking activity, spiking history, and concurrent
neural activity are usually assessed using autocorrelation and
pairwise cross-correlation analyses performed directly on the
spike train (e.g., Hatsopoulos et al. 1998). The use of different
methods to assess individually the importance of these covari-
ates precludes an analysis of the neural point process in which
the relative importance of all covariates is assessed and may
also lead to a misleading estimate of the covariate effects. For
example, spiking history effects can interfere with the accurate
estimation of extrinsic covariate effects in spike triggered
averages and reverse correlation methods (Aguera y Arcas and
Fairhall 2003; Aguera y Arcas et al. 2003). Additionally,
current analysis techniques also assess the contribution of
ensemble covariates separately. For instance, pairwise cross-
correlation analyses measure the statistical association of a
single neuron to each member of the ensemble separately but
not the association between the single neuron’s activity and the
entire observed ensemble.

The key to our likelihood approach is representing the
conditional intensity function of a single neuron in terms of the
covariates. In this way, the covariates are directly related to the
probability that the neuron spikes. Although this formulation
can be used generally to analyze the relation between covari-
ates and neural spiking activity, it usually requires writing a
new algorithm or function to carry out the maximum likelihood

FIG. 9. Akaike’s standard information criterion (AIC) model comparison.
For convenience, we plot the differences of the AICs, denoted by �AIC of all
of the models with respect to the AIC of the best model. Following this
criterion and convention, better models have smaller AIC differences. Model
labels: autoregressive spiking history (AR), autoregressive spiking history plus
velocity (ARVel), autoregressive spiking history plus velocity and ensemble
(ARVelEns), autoregressive spiking history plus velocity and ensemble rates
(ARVelEnsRates), inhomogeneous inverse Gaussian plus velocity and ensem-
ble rates models (IIGVelEnsRates), velocity plus ensemble (VelEns), and
velocity plus ensemble rates (VelEnsRates). See METHODS section for model
details. (Cell 75a).

FIG. 8. Goodness-of-fit assessment (K-S plots) of alternative models. For
comparison purposes, the models are shown in 2 groups. Top: the velocity,
ensemble, ensemble rates, and the inhomogeneous inverse Gaussian plus
velocity and ensemble rates models (IIGVelEnsRates) are compared. Bottom:
the autoregressive spiking history plus velocity model (ARVel) is compared
to 2 other models that add the ensemble (ARVelEns) or the ensemble
rates component (ARVelEnsRates). K-S plots for the ARVel and the
ARVelEnsRates partially overlap. (Cell 75a).
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estimation with each new model formulation. To make our
point process likelihood approach more broadly applicable, we
showed that by representing the logarithm of the conditional
intensity function as a linear combination of general functions
of the covariates, the conditional intensity function model
could be efficiently fit to neural spike train data using the GLM
framework under a Poisson distribution and a log link function
(Eqs. 3, A6, and A8). We also showed that, equivalently, if the
point process is represented as a conditionally dependent Ber-
noulli process (Eqs. 2 and A2) and the probability of the events
is modeled by a logistic function, then the point process model
could also be fit using the GLM framework under a Bernoulli
distribution and a logistic link function (Eqs. 5 and A10).
Regarding the time discretization, we note that the 1-ms
discretization interval we chose should not be interpreted as the
absolute discretization interval for all applications of the point
process–GLM framework. How fine the discretization interval
should be will depend on the particular problem under study.

Our use of the Poisson distribution to fit point process
models does not mean that we are assuming that our original
data are Poisson. We are rather exploiting for computational
purposes the fact that all point process likelihoods that admit a
conditional intensity function, including those that are history
dependent, have the same mathematical form given by Eq. A6.
Our analysis makes explicit the relation between likelihood
methods for point processes, conditional Bernoulli processes,
and GLM model fitting with Poisson or Bernoulli distributions.

This relation provides a justification for using this GLM
framework to analyze spike trains as point process data.

The point process–GLM framework for analyzing neural
spike train data has several important advantages. First, this
framework allows us to formulate complex models to relate the
spiking activity to covariates. The fact that Eq. 4 is written in
terms of general functions of the covariates provides the
framework with a very large class of possible models. Second,
the GLM framework is part of several standard mathematical
and statistical packages (e.g., Splus, Matlab, SPSS), so that the
approach is readily accessible to experimentalists analyzing
their data. Even though likelihood-based methods are highly
desirable because of several optimality properties, the biggest
impediment to their widespread use is the lack of readily
available software in which a flexible class of neural spike train
models can be easily applied to data. The point process–GLM
framework offers a practical, broadly applicable solution to the
computational problem of fitting potentially complex point
process models for neural spike trains by maximum likelihood.

Third, the point process–GLM framework makes it possible
to apply a set of goodness-of-fit tools for point processes not
available in the GLM. These are the point process residuals
analysis, goodness-of-fit tests based on the time-rescaling the-
orem, and decoding from point process observations. Fourth,
the model selection and goodness-of-fit methods available in
GLM are extended to spike train data. Thus we have a set of
complementary methods to assess the extent to which proposed
models explain the structure in neural spike trains. Although
we used the point process–GLM framework to carry out most
of the analysis, we also illustrated with the conditional inten-
sity function based on the inhomogeneous inverse Gaussian
model how non-GLM point process likelihood models may be
used to analyze neural spike train data. Finally, by analogy
with the way in which linear regression methods are used to
analyze the relation between a continuous dependent variable
and a set of candidate explanatory variables, the ready avail-
ability of software to implement GLMs also makes it possible
for neurophysiologists to quickly assess the relevance of a wide
range of covariates before proceeding to construct more spe-
cific models that may require non-GLM algorithms to carry out
the model fitting.

A key objective of the proposed framework is to provide
tools for the assessment of the relative importance of the
covariates on neural spiking activity. We showed how this
objective is accomplished by analyzing the goodness-of-fit of

TABLE 1. Mean coverage probabilities, mean, and median errors
for the velocity, and the autoregressive spiking history plus
velocity models

Velocity (AR) History � Velocity

(�V�, �): Mean cov. prob. 0.30 � 0.10 0.24 � 0.08
�V�: Mean cov. prob. 0.32 � 0.10 0.27 � 0.08
�: Mean cov. prob. 0.94 � 0.02 0.90 � 0.04
(Vx , Vy): Mean error 3.60 � 0.3 3.60 � 0.4
(Vx , Vy): Median error 3.43 3.38
(Vx , Vy): Error (95% CI) (0, 7.8] (0, 7.8]
�: Mean error 0.15� � 0.1 0.14� � 0.1
�: Median error 0.11� 0.11�
�: Error (95% CI) (0, 0.65�] (0, 0.63�]

CI denotes the confidence interval. Velocity is given in cm/s.

FIG. 10. Neural decoding of (x, y) velocities and movement direction by the
point process filter. Estimated velocities (thick curve) and direction (red dots),
together with true velocities and direction, are shown for a single decoded test
trial. Time was discretized at a 1-ms resolution. At every millisecond, an
estimate of the velocity parameters was obtained based on the state of the cells
in the ensemble. All 20 recorded cells were used in the decoding. Conditional
intensity function for each cell was given by the velocity model. Original
decoding was done in polar coordinates. From a total of 130 trials, 120 trials
were used for model fitting and 10 test trials for neural decoding. See Table 1
for summary statistics over the entire ensemble of test trials.
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each model we proposed. Because no method provides a
complete assessment of goodness-of-fit, we used the standard
statistical approach of using multiple complementary measures
that evaluate different aspects of the model’s agreement with
the data. We applied 4 complementary types of goodness-of-fit
techniques in our example data set: Kolmogorov–Smirnov tests
based on the time-rescaling theorem, model selection by AIC,
point process residual analysis, and neural spike train decoding
based on point process observations.

First, the K-S analyses performed on the example data
problems were useful in providing a sense of how close our
models were to capturing the stochastic structure in the exam-
ple data sets. The fact that some of our models captured most
of the statistical structure in the spiking activity (Figs. 4 and 8)
suggests that developing a parsimonious statistical model of
MI activity is a realistic goal. The K-S plots also highlighted
the importance of the spiking history. The fact that the coef-
ficients had a structure that seemed to reflect mostly refractory
and recovery periods together with rebound excitation in short
time scales (effectively shorter than 60 ms) suggests that the
autoregressive component successfully captured important his-
tory effects.

Second, the AIC analysis provided additional information
for model comparison when the K-S plots did not distinguish
between different models. By finely ranking the different
models, the AIC analysis allowed for the assessment of the
distinct effects and relative importance of the 3 types of
covariates. Our choice of the AIC for model comparison was
motivated by the fact that AIC was derived to be an estimate of
the expected relative Kullback–Leibler distance between the
distributions generated by the model and the distribution of the
underlying stochastic process generating the data. The “true”
underlying model does not need to be in the set of tested
models for the AIC analysis to suggest the most appropriate
model, a situation that we believe is more often the rule than
the exception in biology. Because the AIC is penalized with
increasing numbers of model parameters, its use is more
appropriate than the use of the data likelihood itself in prevent-
ing overfitting of the data by the model. Additionally, an
equivalence between AIC and cross-validation in model com-
parison problems has been established (Stone 1977), and
model-based penalty methods (e.g., AIC) outperform cross-
validation in important aspects when assessing prediction per-
formance (Efron 2004). We also computed the Bayesian infor-
mation criterion (BIC) (Schwarz 1978), an alternate, more
conservative criterion function for each of our models and
found that it yielded the same model rankings as did the AIC.
When comparing complex models, another protection against
overfitting comes from having large quantities of data as
compared to the number of model parameters. In our example
the �106 data observations far outnumbered the maximum 200
or so parameters in our most complex models. Apparent
inconsistencies between AIC and K-S analyses could occur in
cases where, for example, the conditional intensity model is
more likely to produce the observed spike train as a whole, but
is less accurate in describing a specific aspect of the data
structure, such as the regime of small ISIs. This might have
been the case when comparing the AIC and K-S plots results
for the autoregressive spiking history plus velocity and ensem-
ble model and a simpler autoregressive spiking history plus
velocity model (Figs. 8 and 9).

Third, we illustrated how the point process residual analysis
can be used to assess the contribution of an extrinsic covariate
to a single neuron’s spiking activity. In the illustration exam-
ple, the residual analysis showed that the introduction of the
velocity covariate captured a significant amount of the statis-
tical structure related to hand velocity available in the spiking
activity of a single neuron. Yet, for the particular cell chosen in
this study, the analysis was also able to reveal that there still
was a significant amount of structure in the residuals that was
correlated to hand velocity but that was not captured by this
specific form of the velocity model. Cross-correlation analysis
of the point process residuals and extrinsic covariates is thus an
important tool for assessing whether a particular model has
captured well the effects of the covariate on the spiking
activity. The ideal model should produce a residual with no
significant correlations to the modeled covariate. It should also
be noted that, unlike the decoding analysis, the point process
residual analysis is not dependent on the properties of a
decoding algorithm.

Fourth, complementing the above 3 goodness-of-fit analysis
tools, the spike train decoding allowed for the goodness-of-fit
assessment at the neural ensemble level. In conjunction with
understanding what makes a neuron spike, we are also inter-
ested in assessing how well a model captures the representation
of an extrinsic covariate at the ensemble level. At present,
decoding is the only technique we have for assessing goodness-
of-fit at this level. The key elements for assessing goodness-
of-fit in the decoding analysis were the predicted signal and its
confidence intervals and coverage probability, and especially
the estimation error and its confidence intervals. The confi-
dence intervals and the coverage probability based on the
estimated posterior covariance matrix provided an estimate of
the amount of uncertainty in the decoding algorithm, whereas
the decoding error and its distribution provided a measure of
the algorithm’s actual performance. For this reason, the mean
coverage probability should be interpreted in conjunction with
the mean decoding error. As suggested by the narrow distri-
bution of the decoding error and approximately 0.95 mean
coverage probability (Table 1), hand movement direction was
remarkably well decoded. Velocity estimates in Cartesian co-
ordinates captured reasonably well slow fluctuations in the
measured hand velocity. We also illustrated how to assess the
contribution of the autoregressive spiking history component to
neural decoding. The autoregressive spiking history plus ve-
locity and the velocity models performed similarly well. This
preliminary result suggests that short time dynamics captured
by the autoregressive component did not play a crucial role in
decoding hand velocity or movement direction in this data set.
Given that the models used in the decoding analysis did not
include the ensemble or ensemble rates covariate, the ensemble
decoding assumed independent encoder cells. Nonetheless, the
framework also allows the assessment of the contribution of
interaction patterns in the neural ensemble to decoding. That
could be easily achieved by extending the conditional intensity
models to include the ensemble covariates. This analysis is
beyond the scope of this paper and will be addressed else-
where.

In summary, the above 4 complementary goodness-of-fit and
model selection analyses are an essential step for achieving our
primary objective of assessing the effects and relative impor-
tance of the modeled covariates. The proposed point process
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framework provides a starting point for building and analyzing
complex models of spiking activity including the 3 types of
covariates discussed in this paper. In particular, the point
process–GLM framework provides a systematic approach to
neural spike train data analysis analogous to that for continu-
ous-valued variables under the linear Gaussian regression
framework.

We foresee several potential improvements and extensions
of this framework. Although we were able to fit models with
hundreds of parameters, much larger models will require the
development of efficient algorithms for both GLM and non-
GLM computations. Also, to analyze the relation between the
simultaneous firing of an entire ensemble relative to its spiking
history and a set of extrinsic covariates, we can extend the
framework by using multivariate point process likelihoods
(Chornoboy et al. 1988). A multivariate likelihood model will
facilitate the study of the independence, redundancy, and
synergy in the ensemble representation. Finally, multielectrode
devices (Csicsvari et al. 2003; Donoghue 2002; Nicolelis et al.
2003) now make possible the simultaneous recordings of
multiple single cells from many different brain areas. We
foresee the proposed framework as a valuable tool for inves-
tigating how interacting brain regions represent, compute, and
process information. We are currently applying this framework
to the analysis of parietal and MI spiking activity in monkeys
performing visuomotor tracking tasks and hippocampus activ-
ity in rats performing a range of learning tasks.

A P P E N D I X

Continuous and discrete time point process
likelihood function

The likelihood of a neural spike train, like that of any statistical
model, is defined by finding the joint probability density of the data.
We show below that the joint probability of any point process is easy
to derive from the conditional intensity function. We show that the
point process likelihood function in Eqs. 2 and 3 gives a discrete time
approximation of the likelihood function for a continuous time point
process (Eq. A6 below).

Let 0 � u1 � u2, . . . , uJ � T be a set of neural spike train
measurements. Using the discrete time representation given in the
METHODS section, define the events

Ak � 
spike in �tk	1, tk� � Hk�

Ek � 
Ak�
�Nk 
Ak

c�1	�Nk

Hk � ��
j�1

k	1

Ej� (A1)

for k � 1, . . . , K and where Ak
c is the complement of Ak. For

simplicity, Hk includes only the intrinsic history of the process. It can
be easily extended to incorporate neural ensemble activity and other
extrinsic covariates. By construction of the partition of the interval (0,
T], introduced in the METHODS section, we must have uj � �tkj	1, tkj

],
j � 1, . . . , J, for a subset of the intervals satisfying k1 � k2 � . . . �
kj. The remaining K 	 J intervals have no spikes.

The probability of exactly J events occurring within the intervals
�tkj	1, tkj

]j�1
J in (0, T], may then be computed as

P�N1:K� � P�uj � �tkj	1, tkj
�, j � 1, . . . , J, � N(T� � J)

� �
k�1

K

P�Ak�
�NkP�Ak

c�1	�Nk (A2)

by the definition of Ak and Ek in Eq. A1.

The spike train thus forms a sequence of conditionally independent
Bernoulli trials, with the probability of a spike in the kth time interval
given by P(Ak). In any interval (tk	1, tk] we have

P�Ak� � ��tk � Hk�� � o���

P�Ak
c� � 1 � ��tk � Hk�� � o��� (A3)

Substituting Eq. A3 into Eq. A2 yields

P�N1:K� � �
k�1

K

���tk � Hk����Nk�1 � ��tk � Hk���1	�Nk � o��J� (A4)

which is Eq. 2. For small �, [1 	 �(tk)�] � exp{	�(tk)�} and
log [�(tk)�[1 	 �(tk)�]	1] � log (�(tk)�), therefore we obtain

P�N1:K� � �
k�1

K

���tk � Hk����Nk�1 � ��tk � Hk���	�Nk �
k�1

K

�1 � ��tk � Hk��� � o��J�

� �
k�1

K � ��tk � Hk��

1 � ��tk � Hk��
��Nk

�
k�1

K

exp
	��tk � Hk��� � o��J�

� exp��
k�1

K

log ���tk � Hk����Nk � �
k�1

K

��tk � Hk���� o��J� (A5)

The probability density of these J exact spikes in (0, T], given by
p�N0:T� � lim�30 P�N1:K�/�J, is then obtained as

P�N0:T� � lim
�30

exp��
k�1

K

log ���tk � Hk����Nk � �
k�1

K

��tk � Hk���� o��J�

�J

� lim
�30

exp��
k�1

K

log ��tk � Hk��Nk � �
k�1

K

��tk � Hk����J � o��J�

�J

� exp��
0

T

log ��t � H�t��dN�t� ��
0

T

��t � H�t��dt� (A6)

which is the joint probability density of the point process spike
train in continuous time (Brown et al. 2003; Daley and Vere-Jones
2003). Note that we could have derived the likelihood for the
continuous time point process (and therefore also Eq. 3) by a
generalization of the continuous time Poisson process (Daley and
Vere-Jones 2003), without resorting to representing the neural
point process as a conditional Bernoulli process. We formulated
the spike train joint probability in terms of Eq. A2 only to show
(see below) the equivalence between Poisson and Bernoulli–GLMs
when � is sufficiently small.

The Poisson and Bernoulli–GLMs

We briefly define a generalized linear model and show that for
small enough �, the Bernoulli and Poisson–GLMs are equivalent in
the modeling of spiking train data.

Two main aspects characterize a generalized linear model of a
random variable y (McCullagh and Nelder 1989). First, the mod-
eled random variable y has a distribution in the exponential family.
Among several members of this family are the Gaussian, the
Poisson, and the Bernoulli distribution. The exponential family has
the general form
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f�y � �, �� � exp
�y� � b����/a��� � c�y, ��� (A7)

where a( � ), b( � ), and c( � ) are some specific functions. If � is
known, this is an exponential-family model with canonical param-
eter �.

For the particular case of the Poisson distribution, � � log�,
b(�) � e�, a(�) � � � 1, c(y, �) � 	log (y!). The location and scale
parameters are � and �, respectively. Thus the distribution in Eq. A7
can be expressed as f(y � �) � exp{y log � 	 � 	 log (y!)} �
�ye	�/y!. Note that the canonical parameter � has, in the Poisson
case, a natural representation in terms of the logarithm of the param-
eter �. The joint probability distribution for an independently distrib-
uted data set y � {yk}k�1

K becomes

f�y � �, �� � exp��
k�1

K

yk log �k � �
k�1

K

�k� (A8)

If the rate function �k of this Poisson process is generalized by the
conditional intensity function (Eq. 1); and yk � �Nk, � � 1, then Eq.
A8 has the same form as the typical general likelihood function for
any discrete time point process (Eqs. 3 and A5).

For the Bernoulli case, we let y � {0, 1} with the probability of
success denoted by P, and set � � log ([1 	 P]	1P), b(�) � log(1 �
e�), a(�) � �, c( � ) � 1, and � � 1. Thus, for single realizations we
have p(y � P) � Py(1 	 P)1	y. Given an independently distributed
data set y � {yk}k�1

K , the likelihood function under the Bernoulli
distribution becomes

f�y � �, �)��
k�1

K

�Pk�
yk�1 � Pk�

1	yk (A9)

By letting �Pk�
yk � P�Ak�

�Nk we obtain Eq. A2.
Second, the defining feature of a generalized linear model follows.

The canonical parameter of the exponential family is expressed in a
linear form by a transformation given by a monotonic differentiable
function. In the Poisson case, if the canonical parameter is modeled as
a linear combination of general functions of covariates v of interest
(that is, � � log �(�, v) � �i�1

q �igi (vi) as in Eq. 4 or equivalently
as �(�, v) � exp{�i�1

q �igi(vi)} as in Eqs. 5–10), then f(y � �, �) �
exp{y log �(�, v) 	 �(�, v)} gives the distribution for a GLM under
a Poisson distribution and a log link function. In the Bernoulli case, if
� � log ([1 	 P(Ak � �, Hk)]

	1P(Ak � �, Hk)) is modeled as linear
combination of general functions of the covariates, then Eqs. 2 and A2
give the likelihood function for a GLM under a Bernoulli distribution
and a logistic link function.

Finally, we establish the relation between the Poisson and
Bernoulli–GLMs in the context of neural point process models. After
making explicit the parametric model of the conditional intensity
function, we have the probability of a spike event in the time interval
(tk	1, tk] given by P(Ak � �, Hk) � �(tk � �, Hk)� � o(�). For small �

log � P�Ak � �, Hk�

1 � P�Ak � �, Hk�
� 	 log ���tk � �, Hk��� (A10)

Therefore, for small enough �, the Bernoulli and Poisson–GLMs are
equivalent when applied to the modeling of spiking train data.

The IIG model for the ISI probability density

For a particular cell, let te � tk � uNk	1
denote the time elapsed

since the last spike uNk	1
. The inhomogeneous inverse Gaussian ISI

probability density function conditioned on the motor covariate and
neural ensemble activity is defined as

p�te � G� �
s�tk � � �

�2���
uNk	1

tk

s�t � � �dt�3�1/2 exp
	
1

2

��
uNk	1

tk

s�t � � �dt � �2

2 �
uNk	1

tk

s�t � � �dt 
(A11)

where G � {uNk	1
, xk��, N1:k

1:C, �},  � 0 is the location parameter and
s(tk � � ) � 0 is the scaling parameter at time tk, conditioned on the extrinsic and
ensemble rates covariates as given in Eq. 13.
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Multiple neural spike train data analysis: state-of-
the-art and future challenges
Emery N Brown, Robert E Kass & Partha P Mitra

Multiple electrodes are now a standard tool in neuroscience
research that make it possible to study the simultaneous
activity of several neurons in a given brain region or across
different regions. The data from multi-electrode studies present
important analysis challenges that must be resolved for optimal
use of these neurophysiological measurements to answer
questions about how the brain works. Here we review statistical
methods for the analysis of multiple neural spike-train data and
discuss future challenges for methodology research.

Neurophysiologists often administer a stimulus and simultaneously
record neural activity from a brain region believed to respond to that
stimulus. The stimulus can be physical in nature, such as light used to
stimulate retinal or lateral geniculate neurons, or sound used to stimu-
late neural activity in the auditory cortex. It can also be abstract or cog-
nitive, such as in a working memory task, which elicits neural activity
in the hippocampus or pre-frontal cortex. The experimental question
can be addressed by characterizing the relation between the stimulus
and the individual or ensemble neural responses and/or the relation
among the spiking activity of the neurons in the ensemble. In contrast
to studying the spiking activity from a single neuron, the recent advent
of multiple-electrode recording1 makes it possible to study the simul-
taneous spiking activity of many neurons (more than 20). This allows
us to understand how groups of neurons act in concert to define the
function of a given brain region. Simultaneous recording of multiple
neurons offers new promise for investigating fundamental questions,
provided the challenging problem of analyzing multiple simultane-
ously recorded spike trains can be properly addressed.

In probability theory and statistics, a time series of discrete events,
such as a spike train, is called a point process2. Hence, ensembles of
spike trains from simultaneously recorded neurons are multi-
dimensional point-process time series. These time series are both
dynamic and stochastic. That is, their properties change through time
in a manner that can often be characterized by a probability model
describing the likelihood of spikes at a given time. These data present

new analysis challenges because most standard signal processing tech-
niques are designed primarily for continuous-valued data and not
point processes. Thus, standard methods are of limited use in analyz-
ing multiple neural spike train data. Moreover, because brain regions
represent relevant biological signals in the spiking patterns of their
constituent neurons, proper analysis of these data requires accurately
characterizing the neural interactions.

Spike sorting: identification and classification of spike events
In neurophysiological experiments, individual spikes are not directly
recorded. This is because when multiple electrodes are implanted, the
extracellular voltage potentials recorded on any electrode represent
the simultaneous electrical activity of an unknown number of neu-
rons. From these voltage traces, the spike events or action potentials
must be identified, the number of neurons being recorded must be
determined, and each spike must be assigned to the neuron that pro-
duced it3–5. This three-stage process, termed ‘spike sorting’ (Fig. 1a,b)
is the mandatory first step in all multiple spike train data analyses.
The accuracy of the spike sorting critically affects the accuracy of all
subsequent analyses.

Many algorithms are used for spike sorting and at present, there is
no consensus as to which are best. Different algorithms applied to the
same data set can yield different results, illustrating the many com-
plexities of the spike-sorting problem. First, clusters of voltage traces
that summarize the spike events often violate the frequently made
assumption of stable, Gaussian errors in model-based parametric
algorithms. Because neuronal properties and experimental condi-
tions evolve, these clusters change over time. Second, identifying the
number of neurons is a challenging problem. One strategy is to
assume a number of neurons well in excess of the number believed to
be in the data, and then combine clusters that are sufficiently close
using a stopping criterion5. An alternative Monte Carlo–based strat-
egy has been recently proposed, but has yet to be widely tested6.
Third, dual intracellular-extracellular recording studies have shown
that spike sorting, particularly for large numbers of neurons, has a
non-zero error rate because the probability distribution of spike
shapes from different neurons share some degree of overlap4. Finally,
multiple electrodes with different geometries and numbers of elec-
trodes usually require different sorting algorithms.

Cross-correlogram and cross-intensity function
Most current methods for neural spike train data analysis assess only
associations between pairs of neurons. As is true for continuous-
valued data, techniques to measure the association between neural
spike trains can be divided into time-domain and frequency-
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domain methods. The most commonly used time-domain method for
measuring association between neurons is the unnormalized cross-
correlogram (Fig. 1c)7. Given a pair of neural spike trains and a speci-
fied bin width, the un-normalized cross-correlogram is the
cross-covariance between the two binned spike trains computed at a
series of lags. The method assumes that the two spike trains are sta-
tionary. That is, it is assumed that the stochastic properties of the neu-
rons do not change in time. In many cases, this ‘stationarity’
assumption can be hard to justify, given that the neural responses are
elicited by time-varying stimuli and frequently adapt with time in
response to the same stimulus. Non-stationarity has been addressed by
performing the covariance analyses in moving windows; however, this
requires a substantial amount of data.

A related measure of association between two stationary point
processes (spike trains) is the cross-intensity function8. This function
estimates the spike rate of one neuron at different lags relative to the

spiking activity of a second neuron. Despite being designed expressly to
measure association between two point processes, being simple to com-
pute and having associated confidence interval estimates, this method
has received only limited use in neural data analysis. Both the cross-cor-
relogram and the cross-intensity function are histogram-based, and
provide only measures of paired associations of neural activity.

Joint peri-stimulus time histogram
The joint peri-stimulus time histogram (JPSTH)9 (Fig. 1d) is for a
pair of neurons a logical extension of the single-neuron PSTH9–11.
Whereas the PSTH displays the spike count per unit time t at each
time t, the JPSTH is a two-dimensional histogram that displays the
joint spike count per unit time at each time u for neuron 1 and time v
for neuron 2. The main diagonal of the JPSTH (the ‘PST coincidence
histogram’) displays for each time t the observed rate at which both
neurons fire simultaneously (to within the accuracy of the binwidth
of the histogram). A modification of the JPSTH, termed the normal-
ized JPSTH, is also used12. The normalized JPSTH subtracts from the
joint firing rate the firing rate expected under independence, and then
divides by the product of the two standard deviations (of the two neu-
ronal firing rates) to correct for the possibility that two independent
neurons with jointly elevated firing rates can appear to be strongly
associated. The normalized JPSTH at the time pair (u, v) is the
Pearson correlation (computed across trials) of the firing of neuron 1
at time u with that of neuron 2 at time v. Summing the diagonals of
the normalized JPSTH produces the normalized cross-correlogram.

Although the normalized JPSTH and the normalized cross-
correlogram (Fig. 1) are useful, both have limitations. First, the
Pearson correlation is only one of many possible measures of associa-
tion, and different measures can produce different results, the accu-
racy of which depends on the underlying mechanism that produces
the joint spiking activity13. Second, statistical significance testing can
be performed in several ways with these methods and again, the
results can differ depending on the assumptions and the methods. A
new approach to significance testing using recently developed
smoothing procedures and a bootstrap significance test can yield
greater statistical power11. The bootstrap is a broadly applicable sim-
ulation method for estimating uncertainty in a statistical analysis.
Third, the normalized JPSTH and cross-correlogram assume that all
trials are statistically indistinguishable7. If, instead, there is detectable
trial-to-trial variation in the neural firing rates, then this variation
can appear artifactually as synchrony or time-lagged joint firing7,14. A
fourth, crucial consideration is that whereas all spike train analysis is
predicated on good spike sorting, the accuracy of spike time informa-
tion is particularly important when searching for synchrony or time-
lagged joint firing. The effects of spike overlap, which are problematic
for most spike-sorting algorithms, can produce spurious correlations
between pairs of neurons15.

Spike pattern classification methods
Algorithms to detect precise patterns of spike timing are another
method of measuring associations among neural spike trains10,16,17.
The appeal of these methods is that they provide a way of evaluating
higher-order neural interactions, that is, greater than pairwise, in
ensemble spiking activity18. For example, these methods can be used
to assess the statistical significance of spike triplet occurrences sepa-
rated by precise interspike intervals or the occurrence of similar pat-
terns among two or more neurons (Fig. 1b)19. Methods for identifying
statistically conspicuous spike coincidences have also been developed.
Such coincidences have been labeled ‘unitary events’ when they occur
more frequently than would be predicted by chance under the null

P E R S P E C T I V E

NATURE NEUROSCIENCE VOLUME 7 | NUMBER 5 | MAY 2004 457

Figure 1 Transition from voltage signal recordings to measures of
association for three neural spike trains. (a) Voltage trace containing the
spike events of three different neurons recorded on the same electrode.
Each colored star indicates a different neuron. (b) Application of a spike
sorting algorithm that identifies the spike events, determines the number 
of neurons and assigns each spike event to a particular neuron. The dotted
vertical lines show a spike triplet identified by a spike pattern classification
method. (c–f) Measures of association between the spike trains from Cell 1
and Cell 2 computed using an unnormalized cross-correlogram (c), a 
JPSTH (d), a parametric model fit by maximum likelihood (e) and a cross-
coherence function (f, solid black line) and confidence bounds (f, thin
black line). The horizontal line in c is the upper 95% confidence bound.
Correlations above this line are significantly different from zero.
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hypothesis that spike times are independ-
ent20–22. Their occurrence is then studied in
relation to behavioral events. The delicate sta-
tistical issue involved in applying spike pat-
tern classification methods is choosing the
complexity or size of the pattern, and formu-
lation of the null hypothesis and test statistic
so that the procedure has the correct signifi-
cance level under reasonably general assump-
tions. For this reason, some findings from
these analyses have at times been criticized as
suffering from statistical artifacts23. An alter-
native approach to test for synchrony is to
build a distribution of spike trains under a
null hypothesis by ‘jittering’ the observed
spike trains randomly within a small time
window. This intuitive idea has recently been
formalized and extended to cover several
practical data analysis scenarios24.

Likelihood methods
Likelihood methods are central tools for
modeling and analysis in statistical research25.
Most likelihood methods assume a specific
parametric probability model for a process
under study (Fig. 1e). The likelihood is the
joint probability density of the experimental
data arising from this process viewed as a
function of the model’s unknown or free
parameters. These free parameters may be
estimated from the experimental data by for-
mal estimation procedures such as method of moments or maximum
likelihood. If the probability model is a good approximation to the
process being studied, then use of the likelihood is an optimal way of
analyzing the data being generated by the process25. Likelihood meth-
ods for point processes have been used to analyze single neural spike
train data8,26–29, and in a few instances to model two or more simulta-
neously recorded neurons8,30. Likelihood methods hold important
promise for this and other neuroscience data analysis problems
because they provide in a coherent framework a wide range of well-
developed statistical methods for data analysis, including assessing
model goodness-of-fit, constructing confidence intervals and testing
hypotheses8,29. The challenge in using likelihood point process meth-
ods to analyze multiple neural spike trains is defining multiviariate
point process models that accurately represent joint neural spiking
activity and devising efficient algorithms for model fitting30.

Frequency-domain methods
Under the assumption of stationarity, as in the case of continuous-
valued data, a frequency domain analysis of ensemble neural spiking
activity can be conducted by taking the Fourier transform of the spike
trains, and using these to compute the spectrum of the individual
trains and the cross-spectrum or coherence between each spike train
pair8,31,32. The coherence is a simple frequency-dependent correla-
tion measure of association between two processes (Fig. 1f). It has two
important advantages over the time domain counterpart: the normal-
ization is not bin-size dependent, and it can be pooled across neuron
pairs. It also allows for analysis of point processes, continuous-valued
processes, and hybrid point and continuous-valued pairs using the
same measure. Error estimates and confidence intervals can be com-
puted for spectra and coherence estimates from theoretical formulae

that are valid when the numbers of spikes in the spike trains are large,
or from bootstrap/jackknife procedures (Fig. 1f)33.

Stimulus-driven non-stationarity is an important feature of neural
spike train data, and may be analyzed using moving window estimates
of spectra (spectrograms) and coherences (coherograms)34. A key
technical yet practical point for use of time-frequency spectral esti-
mates, including moving window and wavelet-based estimates35, is
that they must obey the uncertainty principle, which puts a lower
bound on the area of the point spread functions of these estimates at
all points in the time-frequency plane (∆f∆t ≥ 1). Moving window
estimates computed in the frequency domain are often less biased
than the corresponding time-domain estimates. Thus, even time
domain functions, such as the cross-correlogram and the PSTH, may
be optimally estimated by inverse Fourier-transforming the corre-
sponding frequency-domain functions. One principled approach to
estimating the frequency-domain quantities is by using multitaper
techniques36. These methods have also proved useful in estimating
coherence between spike trains and local field potentials37 and are
well-suited for error analyses using bootstrap/jacknife procedures.

Neural spike train decoding
Decoding algorithms are the mathematical techniques used in neuro-
science to study how spike train firing patterns from a single neu-
ron38,39 or an ensemble of neurons40 represent external stimuli and
biological signals. The decoding analysis proceeds typically in two
stages: the encoding stage (Fig. 2a) and the decoding stage (Fig. 2b).
In the encoding stage, neural spiking activity is characterized as a
function of the biological signal. In the decoding stage, the relation is
inverted, and the signal is estimated from the spiking activity of the
neurons. Developed initially to study how movements are represented
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Figure 2 Decoding of position from ensemble rat neural spiking activity40,50. (a) Encoding analysis 
in which the relation between the biological stimulus (trajectory of the rat in the environment, solid
black line in the Position panel) and spiking activity (Spikes panel) is estimated as place receptive
fields for three neurons. (b) Decoding analysis in which the estimated place receptive fields are used
in a Bayesian decoding algorithm to compute the predicted position (thin black line) of the rat in the
environment from new spiking activity of the neural ensemble recorded during the decoding stage.
The predicted position is compared with the observed position (thick black line) during the decoding
stage. The blue oval defines a 95% confidence region centered at that location.
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by neurons in the motor cortex, the population vector is one of the
earliest decoding techniques41,42. To decode the neural spiking activ-
ity at any time t, one computes the population vector (the normalized
dot product of the observed spiking activity in a time window with
the firing functions for each neuron) for different values of the signal.
The value of the signal for which the dot product is the largest is taken
to be the decoded estimate of the signal.

Reverse correlation is a linear regression–based decoding algorithm
that has been used to study how groups of neurons represent infor-
mation in the visual and motor systems and to control neural pros-
thetic devices38,39,43–46. The appeal of this widely used approach is
that binning the spike trains to create continuous-valued regressors
avoids use of an explicit encoding model and makes it possible to use
standard linear regression theory to fit the model and assess the accu-
racy of the decoding. Moreover, computation of the regression coeffi-
cients implicitly takes account of pairwise correlations in the neural
activity. The linear construction of the population vector makes it a
special case of the reverse correlation methods.

Decoding algorithms that are based on Bayes’ theorem, the elemen-
tary probability rule for computing the probability of one event given
another event, offer a general approach to estimating the representa-
tion of a biological signal in ensemble spiking activity40,47–51. They
have been used successfully to study how neural ensembles in the hip-
pocampus represent an animal’s position in an environment40,47,50

(Fig. 2) and to characterize how motor commands are represented by
ensembles of neurons in primary motor cortex49,51. The encoding
stage can use likelihood methods to compute the probability of the
spiking activity given the signal, and the decoding stage computes the
probability of the signal given the spiking activity. The appeal of the
Bayesian approach is that it uses probability models to represent dif-
ferent sources of information in the problem, and it formulates
decoding in the theoretical framework of other filtering and smooth-
ing methods in statistics and signal processing. When the proposed
model is a reasonable approximation to the data, the Bayesian
approach, like the likelihood methods, has many optimality proper-
ties, including efficiency, which, in the decoding problem, means that
its signal estimates have the smallest possible uncertainty25. An
important conceptual difference between the Bayesian and reverse
correlation decoding methods is that under the standard assumptions
of regression theory, the neural firing rates used in a reverse correla-
tion analysis are assumed to be non-random, known constants. In
contrast, the Bayesian approach models the spike trains as a stochastic
point process and the biological signal as a stochastic process based
on its known properties.

Information theory
Information theory measures are used widely in analyses of neural
spike train data39,52–54. These include the entropy to quantify spike
train variability, and mutual information to measure the association
between two processes, such as between two spike trains or between a
spike train and a stimulus. These measures have been applied exten-
sively to study how much information a single spike train conveys
about a biological signal by using histogram-based methods to esti-
mate empirically the relevant probability densities. Use of the infor-
mation measures is grounded in thinking about those parts of the
nervous system, such as visual pathways, that may be modeled as
communication channels39 with a rationale that analyses may be con-
ducted free of assumptions about detailed system properties55. There
are limitations to this approach. For any neural system, the optimal
word length (histogram binwidth) is an unknown that must be esti-
mated taking account that the data requirements for histogram esti-

mation increase exponentially with the word length. The data
requirements are far greater for extending this approach to estimating
mutual information between multiple spike trains and a biological
signal54. Information theory methods summarize complex functional
relationships between the spike train and the signal as single num-
bers. Moreover, whether sensory pathways can be treated using infor-
mation theory as in conventional communications analyses has
recently been questioned56.

One approach to extending the use of information theory to analyze
multiple spike trains may arise from developing probability models of
joint spiking activity and likelihood methods to estimate these models.
An advantage of modeling explicitly the joint probability density
between the ensemble spiking activity and the biological signal is that
the mutual information and any other relevant functions of this 
probability density can be computed directly once this probability
density has been estimated. Parametric models may then offer insight
into how to construct their more flexible, model-free counterparts.

Future challenges for multiple spike train data analysis
Simultaneous recording of multiple spike trains from several neurons
offers a window into how neurons work in concert to generate spe-
cific brain functions. Without substantial methodology research in
the future, our ability to understand this function will be significantly
hampered because current methods fall short of what is ultimately
required for the analysis of multiple spike train data. With the excep-
tion of spike pattern classification methods, decoding algorithms,
partial coherence estimation8 and certain graphical methods57, cur-
rent techniques for spike train analysis are designed to analyze—at
most—pairs of neurons. Therefore, the future challenge is to design
methods that truly allow neuroscientists to perform multivariate
analyses of multiple spike train data. This development must be done
taking explicit account of the questions being studied and the experi-
mental protocols being used.

Because the accuracy of the spike sorting significantly affects the
accuracy of the experimental data, development of the best possible
spike-sorting algorithms must be an important goal. The complexity
of the spike-sorting problem increases with number of electrodes in
the recording systems. There should be systemic study of spike-
sorting algorithms taking account of different electrode numbers and
configurations, recording conditions and brain regions. A harder, yet
no less important, challenge is to devise accurate, real-time spike-
sorting algorithms to enable multiple spike trains to be inputs to neu-
ral prosthetic devices or brain-machine interfaces42,45,46. Real-time
spike sorting could also lead to real-time data analysis, and possibly to
real-time changes in experimental protocols.

Graphical methods57 for multivariate point process data are
important for screening data for errors and inconsistencies prior to
analysis, postulating preliminary models and formulating meaningful
displays to report findings.

Multiple spike trains are multivariate point processes, yet research in
statistics and signal processing on multivariate point process models
has not been nearly as extensive as research on models of multivariate
continuous-valued processes. Therefore, developing multivariate
point process models should be a primary focus of methodology
research for multiple neural spike trains. Because there is a canonical
representation of univariate and multivariate point processes in terms
of the conditional intensity function2,29, developing strategies to con-
struct parametric models of conditional intensity functions and likeli-
hood-based estimation methods seems a good way to proceed2,8,27–30.
Other avenues of investigation could include lattice or spin models
from statistical physics58 and multivariate binary data models from
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statistics59. Whatever the approach, the objective must be to develop
tractable methods for estimating high-dimensional interactions
among groups of neurons from their spike train recordings.
Furthermore, because plasticity in neural dynamics makes non-sta-
tionarity in neural data a rule rather than an exception, developing
explicit adaptive estimation algorithms to track these dynamics for
multivariate point processes is another important research problem60.

Dynamical systems and neural network models have long been cen-
tral in providing quantitative characterizations of neural processes61,62.
Research on data analysis methodology should be conducted in concert
with this modeling research63. Multiple-electrode recordings combined
with statistical methods explicitly designed to analyze multiple spike
train data will offer a better opportunity to explicitly link experimenta-
tion and computational modeling by using the information from
experiments to quantify better predictions from more complex models,
refine model formulation and, as a consequence, design better experi-
ments. Similarly, the computational models can suggest formulations
of the statistical methods that may enhance their success at extracting
salient features in experimental data.

Although the objective of most current neurophysiological experi-
ments is to relate relevant biological stimuli to ensemble spiking activ-
ity, experiments that record simultaneous multimodality data such as
neurophysiological, functional imaging and behavioral data are
becoming more common64. Developing appropriate statistical meth-
ods to analyze simultaneous multimodality recordings will require
innovative approaches to integrate information properly across the
different temporal and spatial scales of various data sources.

There are many benefits of developing multivariate methods for
multiple spike train data analysis. First, methods specifically tailored
to analyze multiple spike train data will allow neuroscientists to
make precise statements of how reliably findings from a given exper-
iment can be stated in terms of standard statistical summaries.
Practically speaking, this means that even for this complex, high-
dimensional modeling problem, the analysis reports standard errors
for firing rates and time constant parameters, provides confidence
intervals for measures of neural interactions and associations, and
gives quantitative assessments of how well a given model describes
the experimental data29. Second, more accurate quantitative sum-
maries will allow neuroscientists to make more reliable statements
about how strongly experimental findings support hypotheses or
proposed mechanisms. For example, would an analysis measuring
time-varying interactions among three or more neurons rather than
pairwise correlations offer new insight into the mechanism of per-
sistent activity seen in the oculomotor system65?

Third, more accurate multivariate quantitative summaries will
make it easier to relate ensemble neural dynamics (within and
between specific brain regions) to behavior and to relevant biological
stimuli. As an illustration, applying these methods to the study of
simultaneously recorded neural activity in the parietal and primary
motor cortices could help reveal how these two brain regions com-
municate during formulation and execution of motor commands.
Fourth, as the number of neurons whose interactions can be accu-
rately measured increases, neuroscientists will be able to increase the
complexity of the experiments they design, and as a consequence, the
questions they investigate. Fifth, more reliable data analyses will pro-
vide more refined quantitative constraints and perhaps parameter
values for dynamical models of neural systems. Finally, improved
multiple spike train data analysis methods, particularly spike-sorting
and decoding algorithms, will have immediate, significant implica-
tion for improving the design and implementation of neural pros-
thetic devices and brain–computer interfaces42,45,46.

Multiple spike train recordings are an important component of the
data explosion that is currently occurring in neuroscience. Therefore,
devising systematic research programs for neuroscience data analysis
akin to those currently being undertaken in genomics and bioinfor-
matics is a must. Several initiatives to support such research have
already been proposed by the US National Institutes of Health
(http://grants1.nih.gov/grants/guide/pa-files/PA-04-006.html) and
National Science Foundation (www.nsf.gov/bio/progdes/biocrcn.
htm). Specific initiatives to encourage quantitative scientists (statisti-
cians, physicists, engineers, computer scientists and mathematicians)
to undertake data analysis research in neuroscience should be part of
these current and future programs. Neuroscience training for statisti-
cians and incentives to involve them more directly in neuroscience
data analysis research should be a priority. Finally, courses on the
analysis of neuroscientific data (www.mbl.edu/education/courses/
special_topics/neufo.html) should be part of the curriculum in neu-
roscience programs, as are courses on computational modeling. This
will ensure that instruction in the most contemporary data analysis
principles and methods are an integral part of undergraduate, gradu-
ate and postdoctoral training in neuroscience, and in the disciplines
that support computational research in this field.
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The signal-to-noise ratio (SNR), a commonly used measure of fidelity
in physical systems, is defined as the ratio of the squared amplitude
or variance of a signal relative to the variance of the noise. This
definition is not appropriate for neural systems in which spiking
activity is more accurately represented as point processes. We show
that the SNR estimates a ratio of expected prediction errors and
extend the standard definition to one appropriate for single neurons
by representing neural spiking activity using point process general-
ized linear models (PP-GLM). We estimate the prediction errors using
the residual deviances from the PP-GLM fits. Because the deviance is
an approximate χ2 random variable, we compute a bias-corrected
SNR estimate appropriate for single-neuron analysis and use the
bootstrap to assess its uncertainty. In the analyses of four systems
neuroscience experiments, we show that the SNRs are −10 dB to
−3 dB for guinea pig auditory cortex neurons, −18 dB to −7 dB for
rat thalamic neurons, −28 dB to −14 dB for monkey hippocampal
neurons, and −29 dB to −20 dB for human subthalamic neurons.
The new SNR definition makes explicit in the measure commonly
used for physical systems the often-quoted observation that single
neurons have low SNRs. The neuron’s spiking history is frequently
a more informative covariate for predicting spiking propensity than
the applied stimulus. Our new SNR definition extends to any
GLM system in which the factors modulating the response can
be expressed as separate components of a likelihood function.

SNR | signal-to-noise ratio | neuron | simulation | point processes

The signal-to-noise ratio (SNR), defined as the amplitude
squared of a signal or the signal variance divided by the variance

of the system noise, is a widely applied measure for quantifying
system fidelity and for comparing performance among different
systems (1–4). Commonly expressed in decibels as 10log10(SNR),
the higher the SNR, the stronger the signal or information in the
signal relative to the noise or distortion. Use of the SNR is most
appropriate for systems defined as deterministic or stochastic
signals plus Gaussian noise (2, 4). For the latter, the SNR can be
computed in the time or frequency domain.
Use of the SNR to characterize the fidelity of neural systems is

appealing because information transmission by neurons is a noisy
stochastic process. However, the standard concept of SNR cannot
be applied in neuronal analyses because neurons transmit both
signal and noise primarily in their action potentials, which are
binary electrical discharges also known as spikes (5–8). Defining
what is the signal and what is the noise in neural spiking activity is
a challenge because the putative signals or stimuli for neurons
differ appreciably among brain regions and experiments. For ex-
ample, neurons in the visual cortex and in the auditory cortex
respond respectively to features of light (9) and sound stimuli (10)
while neurons in the somatosensory thalamus respond to tactile
stimuli (11). In contrast, neurons in the rodent hippocampus re-
spond robustly to the animal’s position in its environment (11, 12),
whereas monkey hippocampal neurons respond to the process of
task learning (13). As part of responding to a putative stimulus,

a neuron’s spiking activity is also modulated by biophysical factors
such as its absolute and relative refractory periods, its bursting
propensity, and local network and rhythm dynamics (14, 15).
Hence, the definition of SNR must account for the extent to which
a neuron’s spiking responses are due to the applied stimulus or
signal and to these intrinsic biophysical properties.
Formulations of the SNR for neural systems have been stud-

ied. Rieke et al. (16) adapted information theory measures to
define Gaussian upper bounds on the SNR for individual neu-
rons. Coefficients of variation and Fano factors based on spike
counts (17–19) have been used as measures of SNR. Similarly,
Gaussian approximations have been used to derive upper bounds
on neuronal SNR (16). These approaches do not consider the
point process nature of neural spiking activity. Moreover, these
measures and the Gaussian approximations are less accurate for
neurons with low spike rates or when information is contained in
precise spike times.
Lyamzin et al. (20) developed an SNR measure for neural

systems using time-dependent Bernoulli processes to model the
neural spiking activity. Their SNR estimates, based on variance
formulae, do not consider the biophysical properties of the
neuron and are more appropriate for Gaussian systems (16, 21,
22). The Poisson regression model used widely in statistics to
relate count observations to covariates provides a framework for
studying the SNR for non-Gaussian systems because it provides
an analog of the square of the multiple correlation coefficient
(R2) used to measure goodness of fit in linear regression analyses

Significance

Neurons represent both signal and noise in binary electrical
discharges termed action potentials. Hence, the standard sig-
nal-to-noise ratio (SNR) definition of signal amplitude squared
and divided by the noise variance does not apply. We show
that the SNR estimates a ratio of expected prediction errors.
Using point process generalized linear models, we extend the
standard definition to one appropriate for single neurons. In
analyses of four neural systems, we show that single neuron
SNRs range from −29 dB to −3 dB and that spiking history is
often a more informative predictor of spiking propensity than
the signal or stimulus activating the neuron. By generalizing
the standard SNR metric, we make explicit the well-known fact
that individual neurons are highly noisy information transmitters.
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(23). The SNR can be expressed in terms of the R2 for linear and
Poisson regression models. However, this relationship has not
been exploited to construct an SNR estimate for neural systems
or point process models. Finally, the SNR is a commonly com-
puted statistic in science and engineering. Extending this concept
to non-Gaussian systems would be greatly aided by a precise
statement of the theoretical quantity that this statistic estimates
(24, 25).
We show that the SNR estimates a ratio of expected prediction

errors (EPEs). Using point process generalized linear models (PP-
GLM), we extend the standard definition to one appropriate for
single neurons recorded in stimulus−response experiments. In
analyses of four neural systems, we show that single-neuron SNRs
range from −29 dB to −3 dB and that spiking history is often a
more informative predictor of spiking propensity than the signal
being represented. Our new SNR definition generalizes to any
problem in which the modulatory components of a system’s output
can be expressed as separate components of a GLM.

Theory
A standard way to define the SNR is as the ratio

SNR=
σ2signal
σ2noise

, [1]

where σ2signal is structure in the data induced by the signal and
σ2noise is the variability due to the noise. To adapt this definition to
the analysis of neural spike train recordings from a single neu-
ron, we have: to (i) define precisely what the SNR estimates;
(ii) extend the definition and its estimate to account for cova-
riates that, along with the applied stimulus or signal input, also
affect the neural response; and (iii) extend the SNR definition
and its estimate so that it applies to point process models of
neural spiking activity.
By analyzing the linear Gaussian signal plus noise model (Sup-

porting Information), we show that standard SNR computations
(Eq. S5) provide an estimator of a ratio of EPEs (Eq. S4). For
the linear Gaussian model with covariates, this ratio of EPEs is
also well defined (Eq. S6) and can be estimated as a ratio of sum
of squares of residuals (Eq. S7). The SNR definition further
extends to the GLM with covariates (Eq. S8). To estimate the
SNR for the GLM, we replace the sums of squares by the re-
sidual deviances, their extensions in the GLM framework Eqs. S9
and S10. The residual deviance is a constant multiple of the
Kullback−Leibler (KL) divergence between the data and the
model. Due to the Pythagorean property of the KL divergence of
GLM models with canonical link functions (26–28) evaluated at
the maximum likelihood estimates, the SNR estimator can be
conveniently interpreted as the ratio of the explained KL di-
vergence of the signal relative to the noise. We propose an ap-
proximate bias correction for the GLM SNR estimate with
covariates (Eq. S11), which gives the estimator better perfor-
mance in low signal-to-noise problems such as single-neuron
recordings. The GLM framework formulated with point process
models has been used to analyze neural spiking activity (5–7, 29).
Therefore, we derive a point process GLM (PP-GLM) SNR
estimate for single-neuron spiking activity recorded in stimulus−
response experiments.

A Volterra Series Expansion of the Conditional Intensity Function of a
Spiking Neuron. Volterra series are widely used to model bi-
ological systems (30), including neural spiking activity (16). We
develop a Volterra series expansion of the log of the conditional
intensity function to define the PP-GLM for single-neuron
spiking activity (31). We then apply the GLM framework out-
lined in Supporting Information to derive the SNR estimate.
We assume that on an observation interval ð0,T�, we record

spikes at times 0< u1 < u2 < .....< uJ <T. If we model the spike
events as a point process, then the conditional intensity function
of the spike train is defined by (5)

lim
Δ→0

PrðNðt+ΔÞ−NðtÞjHtÞ
Δ

= λðtjHtÞ, [2]

where NðtÞ is the number of spikes in the interval ð0, t� for t∈ ð0,T�
and Ht is the relevant history at t. It follows that for Δ small,

Pr spike  in  ðt, t+Δ�jHtÞ≈ λðtjHtÞΔ.ð [3]

We assume that the neuron receives a stimulus or signal input and
that its spiking activity depends on this input and its biophysical
properties. The biophysical properties may include absolute and
relative refractory periods, bursting propensity, and network
dynamics. We assume that we can express log λðtjHtÞ in a Volterra
series expansion as a function of the signal and the biophysical
properties (31). The first-order and second-order terms in the ex-
pansion are

log λðtjHtÞ=
Z t

0

sðt− uÞβSðuÞdu+
Z t

0

βHðuÞdNðt− uÞ

+
Z t

0

Z t

0

sðt− uÞsðt− vÞh1ðu, vÞdudv

+
Z t

0

Z t

0

h2ðu, vÞdNðt− uÞdNðt− vÞ

+
Z t

0

Z t

0

h3ðu, vÞsðt− uÞdNðt− vÞ+ ..., [4]

where sðtÞ is the signal at time t, dNðtÞ is the increment in the
counting process, βSðuÞ is the one-dimensional signal kernel, βHðtÞ
is the one-dimensional temporal or spike history kernel, h1ðu, vÞ is
the 2D signal kernel, h2ðu, vÞ is the 2D temporal kernel, and
h3ðu, vÞ is the 2D signal−temporal kernel.
Eq. 4 shows that up to first order, the stimulus effect on the

spiking activity and the effect of the biophysical properties of the
neuron, defined in terms of the neuron’s spiking history, can be
expressed as separate components of the conditional intensity
function. Assuming that the second-order effects are not strong,
then the approximate separation of these two components makes
it possible to define the SNR for the signal, also taking account of
the effect of the biophysical properties as an additional covariate
and vice versa. We expand the log of the conditional intensity
function in the Volterra series instead of the conditional intensity
function itself in the Volterra series to ensure that the conditional
intensity function is positive. In addition, using the log of the
conditional intensity function simplifies the GLM formulation by
using the canonical link function for the local Poisson model.

Likelihood Analysis Using a PP-GLM.We define the likelihood model
for the spike train using the PP-GLM framework (5). We assume
the stimulus−response experiment consists of R independent tri-
als, which we index as r= 1, ...,R. We discretize time within a trial
by choosing L large and defining the L subintervals Δ=T−1L. We
choose L large so that each subinterval contains at most one spike.
We index the subintervals ℓ= 1, ...L and define nr,ℓ to be 1 if, on
trial r, there is a spike in the subinterval ((ℓ−1)Δ,ℓΔ) and it is 0
otherwise. We let nr = ðnr,1, ...nr,LÞ be the set of spikes recorded on
trial r in ð0,T�. Let Hr,ℓ = fnr,ℓ−J , ..., nr,ℓ−1g be the relevant history of
the spiking activity at time ℓΔ. We define the discrete form of the
Volterra expansion by using the first two terms of Eq. 4 to obtain

log λrðℓΔ
��Hr,ℓ, β

�
≈ β0 +

XK
k=0

βS,k   sℓ−k +
XJ

j=1

βH,j   nr,ℓ−j, [5]
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where β= ðβ0, βS, βHÞ′, βS = ðβS,0,..., βS,KÞ′, and βH = ðβH,1,..., βH,JÞ′,
and hence the dependence on the stimulus goes back a period
of KΔ, whereas the dependence on spiking history goes back a
period of JΔ. Exponentiating both sides of Eq. 5 yields

λrðℓΔjHℓ, βÞ≈ exp

(
β0 +

XK
k=0

βS,k   sℓ−k +
XJ

j=1

βH,jnr,ℓ−j

)
. [6]

The first and third terms on the right side of Eq. 6 measure the
intrinsic spiking propensity of the neuron, whereas the second
term measures the effect of the stimulus or signal on the neuron’s
spiking propensity.
The likelihood function for β given the recorded spike train is (5)

Lðn, βÞ= exp

(XR
r=1

"XL
ℓ=1

nr,ℓ log λ
�
ℓΔ
���β,Hr,ℓ

�
Δ

−
XL
ℓ=1

λ
�
ℓΔ
��β,Hr,ℓ

�
Δ

#)
. [7]

Likelihood formulations with between-trial dependence (32) are
also possible but are not considered here.
The maximum likelihood estimate of β can be computed by

maximizing Eq. 7 or, equivalently, by minimizing the residual
deviance defined as

Dev
�
n, β̂

�
=−2

�
logL

�
n, β̂

�
− logLðn, nÞ�, [8]

where n= ðn1, ..., nRÞ and Lðn,nÞ is the saturated model or the
highest possible value of the maximized log likelihood (26). Max-
imizing logLðn, βÞ to compute the maximum likelihood estimate
of β is equivalent to minimizing the deviance, because Lðn, nÞ is a
constant. The deviance is the generalization to the GLM of the
sum of squares from the linear Gaussian model (33).
As in the standard GLM framework, these computations are

carried out efficiently using iteratively reweighted least squares.
In our PP-GLM likelihood analyses, we use Akaike’s Informa-
tion Criterion (AIC) to help choose the order of the discrete
kernels βH and βS (34). We use the time-rescaling theorem and
Kolmogorov−Smirnov (KS) plots (35) along with analyses of
the Gaussian transformed interspike intervals to assess model
goodness of fit (36). We perform the AIC and time-rescaling
goodness-of-fit analyses using cross-validation to fit the model to
half of the trials in the experiments (training data set) and then
evaluating AIC, the KS plots on the second half the trials (test
data set). The model selection and goodness-of-fit assessments
are crucial parts of the SNR analyses. They allow us to evaluate
whether our key assumption is valid, that is, that the conditional
intensity function can be represented as a finite-order Volterra
series whose second-order terms can be neglected. Significant
lack of fit could suggest that this assumption did not hold and
would thereby weaken, if not invalidate, any subsequent inferences
and analyses.

SNR Estimates for a Single Neuron. Applying Eq. S11, we have that
for a single neuron, the SNR estimate for the signal given the
spike history (biophysical properties) with the approximate bias
corrections is

ŜNRS =
Dev

�
n, β̂0, β̂H

�
−Dev

�
n, β̂

�
− dim

�
β̂0
�
− dim

�
β̂H

�
+ dim

�
β̂
�

Dev
�
n, β̂

�
+ dim

�
β̂
� ,

[9]

and that for a single neuron, the SNR estimates of the spiking
propensity given the signal is

ŜNRH =
Dev

�
n, β̂S

�
−Dev

�
n, β̂

�
− dim

�
β̂S
�
+ dim

�
β̂
�

Dev
�
n, β̂

�
+ dim

�
β̂
� , [10]

where dimðβ̂Þ is the dimension or the number of parameters in β̂.
Application of the stimulus activates the biophysical properties
of the neuron. Therefore, to measure the effect of the stimulus,
we fit the GLM with and without the stimulus and use the dif-
ference between the deviances to estimate the ŜNRS (Eq. 9). Sim-
ilarly, to measure the effect of the spiking history, we fit the GLM
with and without the spike history and use the difference between
the deviances to estimate the ŜNRH (Eq. 10).
Expressed in decibels, the SNR estimates become

ŜNRdB
S = 10 log10

�
ŜNRS

�
[11]

ŜNRdB
H = 10 log10

�
ŜNRH

�
. [12]

Applications
Stimulus−Response Neurophysiological Experiments. To illustrate our
method, we analyzed neural spiking activity data from stimulus−
response experiments in four neural systems. The stimulus applied
in each experiment is a standard one for the neural system being
studied. The animal protocols executed in experiments 1–3 were
approved by the Institutional Animal Care and Use Committees at
the University of Michigan for the guinea pig studies, the University
of Pittsburgh for the rat studies, and New York University for
the monkey studies. The human studies in experiment 4 were
approved by the Human Research Committee at Massachusetts
General Hospital.

Fig. 1. Raster plots of neural spiking activity. (A) Forty trials of spiking ac-
tivity recorded from a neuron in the primary auditory cortex of an anes-
thetized guinea pig in response to a 200 μs/phase biphasic electrical pulse
applied in the inferior colliculus at time 0. (B) Fifty trials of spiking activity
from a rat thalamic neuron recorded in response to a 50 mm/s whisker de-
flection repeated eight times per second. (C) Twenty-five trials of spiking
activity from a monkey hippocampal neuron recorded while executing a
location scene association task. (D) Forty trials of spiking activity recorded
from a subthalamic nucleus neuron in a Parkinson’s disease patient before
and after a hand movement in each of four directions (dir.): up (dir. U), right
(dir. R), down (dir. D), and left (dir. L).
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In experiment 1 (Fig. 1A), neural spike trains were recorded
from 12 neurons in the primary auditory cortex of anesthetized
guinea pigs in response to a 200 μs/phase biphasic electrical pulse
at 44.7-μA applied in the inferior colliculus (10). Note that the
neural recordings were generally multi-unit responses recorded
on 12 sites but we refer to them as neurons in this paper. The
stimulus was applied at time 0, and spiking activity was recorded
from 10 ms before the stimulus to 50 ms after the stimulus during
40 trials. In experiment 2, neural spiking activity was recorded in
12 neurons from the ventral posteromedial (VPm) nucleus of the
thalamus (VPm thalamus) in rats in response to whisker stimu-
lation (Fig. 1B) (11). The stimulus was deflection of the whisker
at a velocity of 50 mm/s at a repetition rate of eight deflections
per second. Each deflection was 1 mm in amplitude and began
from the whiskers’ neutral position as the trough of a single sine
wave and ended smoothly at the same neutral position. Neural
spiking activity was recorded for 3,000 ms across 51 trials.
In experiment 3 (Fig. 1C), neural spiking activity was recorded

in 13 neurons in the hippocampus of a monkey executing a lo-
cation scene association task (13). During the experiment, two to
four novel scenes were presented along with two to four well-
learned scenes in an interleaved random order. Each scene was
presented for between 25 and 60 trials. In experiment 4, the data
were recorded from 10 neurons in the subthalamic nucleus of
human Parkinson’s disease patients (Fig. 1D) executing a di-
rected movement task (15). The four movement directions were
up, down, left, and right. The neural spike trains were recorded
in 10 trials per direction beginning 200 ms before the movement
cue and continuing to 200 ms after the cue.
The PP-GLM was fit to the spike trains of each neuron using

likelihood analyses as described above. Examples of the model
goodness of fit for a neuron from each system is shown in Supporting
Information. Examples of the model estimates of the stimulus and
history effects for a neuron from each system are shown in Fig. 2.

SNR of Single Neurons.We found that the ŜNRdB
S estimates (Eq. 11)

of the stimulus controlling for the effect of the biophysical model

properties were (median [minimum, maximum]): −6 dB [−10 dB,
−3 dB] for guinea pig auditory cortex neurons; −9 dB [−18 dB, −7
dB] for rat thalamic neurons; −20 dB [−28 dB, −14 dB] for the
monkey hippocampus; and −23 dB [−29 dB, −20 dB] for human
subthalamic neurons (Fig. 3, black bars). The higher SNRs (from
Eq. 11) in experiments 1 and 2 (Fig. 3 A and B) are consistent with
the fact that the stimuli are explicit, i.e., an electrical current and
mechanical displacement of the whisker, respectively, and that the
recording sites are only two synapses away from the stimulus. It is
also understandable that SNRs are smaller for the hippocampus
and thalamic systems in which the stimuli are implicit, i.e., behav-
ioral tasks (Fig. 3 C and D).
We found that ŜNRdB

H estimates (from Eq. 12) of the bio-
physical properties controlling for the stimulus effect were: 2 dB
[−9 dB, 7 dB] for guinea pig auditory cortex; −13 dB [−22 dB, −8
dB] for rat thalamic neurons; −15 dB [−24 dB, −11 dB] for the
monkey hippocampal neurons; and −12 dB [−16 dB, −5 dB] for
human subthalamic neurons (Fig. 3, gray bars). They were
greater than ŜNRdB

S for the guinea pig auditory cortex (Fig. 3A),
the monkey hippocampus (Fig. 3C), and the human subthalamic
experiments (Fig. 3D), suggesting that the intrinsic spiking pro-
pensities of neurons are often greater than the spiking propensity
induced by applying a putatively relevant stimulus.

A Simulation Study of Single-Neuron SNR Estimation. To analyze the
performance of our SNR estimation paradigm, we studied sim-
ulated spiking responses of monkey hippocampal neurons with
specified stimulus and history dynamics. We assumed four known
SNRs of −8.3 dB, −17.4 dB, −28.7 dB, and –∞ dB corresponding,
respectively, to stimulus effects on spike rates ranges of 500, 60, 10,
and 0 spikes per second (Fig. 4, row 1). For each of the stimulus
SNRs, we assumed spike history dependence (Fig. 4, row 2) to be
similar to that of the neuron in Fig. 1C. For each of four stimulus
effects, we simulated 300 experiments, each consisting of 25 trials
(Fig. 4, row 3). To each of the 300 simulated data sets at each
SNR level, we applied our SNR estimation paradigm: model

Fig. 2. Stimulus and history component estimates from the PP-GLM analy-
ses of the spiking activity in Fig. 1. (A) Guinea pig primary auditory cortex
neuron. (B) Rat thalamic neuron. (C) Monkey hippocampal neuron. (D) Hu-
man subthalamic nucleus neuron. The stimulus component (Upper) is the
estimated stimulus-induced effect on the spike rate in A, C, and D and the
impulse response function of the stimulus in B. The history components
(Lower) show the modulation constant of the spike firing rate.

Fig. 3. KL-based SNR for (A) 12 guinea pig auditory cortex neurons, (B) 12 rat
thalamus neurons, (C) 13 monkey hippocampal neurons, and (D) 10 sub-
thalamic nucleus neurons from a Parkinson’s disease patient. The black dots are
ŜNRdB

S , the SNR estimates due to the stimulus correcting for the spiking history.
The black bars are the 95% bootstrap confidence intervals for SNRdB

S . The gray
dots are ŜNRdB

H , the SNR estimates due to the intrinsic biophysics of the neuron
correcting for the stimulus. The gray bars are the 95% bootstrap confidence
intervals for SNRdB

H . The encircled points are the SNR and 95% confidence in-
tervals for the neural spike train raster plots in Fig. 1.
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fitting, model order selection, goodness-of-fit assessment, and
estimation of ŜNRdB

S (Fig. 4, row 4) and ŜNRdB
H (Fig. 4, row 5).

The bias-corrected SNR estimates show symmetric spread
around their true SNRs, suggesting that the approximate bias
correction performed as postulated (Fig. 4, rows 4 and 5). The
exception is the case in which the true SNR was −∞ and our
paradigm estimates ŜNRdB

S as large negative numbers (Fig. 4D,
row 4). The ŜNRdB

S are of similar magnitude as the SNR estimates
in actual neurons (see SNR = −18.1 dB in the third neuron in Fig.
3C versus −17.4 dB in the simulated neuron (Fig. 4B).

A Simulation Study of SNR Estimation for Single Neurons with No
History Effect. We repeated the simulation study with no spike
history dependence for the true SNR values of −1.5 dB, −16.9 dB,
−27.9 dB, and –∞ dB, with 25 trials per experiment and 300
realizations per experiment (Fig. 5). Removing the history de-
pendence makes the simulated data within and between trials
independent realizations from an inhomogeneous Poisson process.
The spike counts across trials within a 1-ms bin obey a binomial
model with n = 25 and the probability of a spike defined by the
values of the true conditional intensity function times 1 ms. Hence,
it is possible to compute analytically the SNR and the bias in the
estimates. We used our paradigm to compute ŜNRdB

S . For com-
parison, we also computed the variance-based SNR proposed by
Lyamzin et al. (20) Both ŜNRdB

S and the variance-based estimates
were computed from the parameters obtained from the same
GLM fits (see Eq. S16). For each simulation in Fig. 5, the true
SNR value based on our paradigm is shown (vertical lines).
The histograms of ŜNRdB

S (Fig. 5, row 3) are spread symmetri-
cally about the true expected SNR. The variance-based SNR esti-
mate overestimates the true SNR in Fig. 5A and underestimates the
true SNR in Fig. 5 B and C. These simulations illustrate that the
variance-based SNR is a less refined measure of uncertainty, as it is
based on only the first two moments of the spiking data, whereas
our estimate is based on the likelihood that uses information from
all of the moments. At best, the variance-based SNR estimate can

provide a lower bound for the information content in the non-
Gaussian systems (16). Variance-based SNR estimators can be
improved by using information from higher-order moments (37),
which is, effectively, what our likelihood-based SNR estimators do.

Discussion
Measuring the SNR of Single Neurons. Characterizing the reliability
with which neurons represent and transmit information is an
important question in computational neuroscience. Using the
PP-GLM framework, we have developed a paradigm for esti-
mating the SNR of single neurons recorded in stimulus response
experiments. To formulate the GLM, we expanded the log of the
conditional intensity function in a Volterra series (Eq. 4) to
represent, simultaneously, background spiking activity, the stimu-
lus or signal effect, and the intrinsic dynamics of the neuron. In the
application of the methods to four neural systems, we found that
the SNRs of neuronal responses (Eq. 11) to putative stimuli—
signals—ranged from −29 dB to −3 dB (Fig. 1). In addition, we
showed that the SNR of the intrinsic dynamics of the neuron (Eq.
12) was frequently higher than the SNR of the stimulus (Eq. 11).
These results are consistent with the well-known observation that,
in general, neurons respond weakly to putative stimuli (16, 20).
Our approach derives a definition of the SNR appropriate for
neural spiking activity modeled as a point process. Therefore, it
offers important improvements over previous work in which the
SNR estimates have been defined as upper bounds derived from
Gaussian approximations or using Fano factors and coefficients
of variation applied to spike counts. Our SNR estimates are
straightforward to compute using the PP-GLM framework (5) and
public domain software that is readily available (38). Therefore,
they can be computed as part of standard PP-GLM analyses.
The simulation study (Fig. 5) showed that our SNR methods

provide a more accurate SNR estimate than recently reported
variance-based SNR estimate derived from a local Bernoulli model
(20). In making the comparison between the two SNR estimates, we
derived the exact prediction error ratios analytically, and we used
the same GLM fit to the simulated data to construct the SNR
estimates. As a consequence, the differences are only due to
differences in the definitions of the SNR. The more accurate

Fig. 4. KL-based SNR of simulated neurons with stimulus and history com-
ponents. The stimulus components were set at four different SNRs: (A) −8.3 dB,
(B) −17.4 dB, (C) −28.7 dB, and (D) –∞ dB, where the same spike history com-
ponent was used in each simulation. For each SNR level, 300 25-trial simulations
were performed. Shown are (row 1) the true signal; (row 2) the true spike history
component; (row 3) a raster plot of a representative simulated experiment; (row
4) histogram of the 300 ŜNRdB

S , the SNR estimates due to the stimulus correcting
for the spiking history; and (row 5) histogram of the 300 ŜNRdB

H , the SNR esti-
mates due to the intrinsic biophysics of the neuron correcting for the stimulus.
The vertical lines in rows 4 and 5 are the true SNRs.

Fig. 5. A comparison of SNR estimation in simulated neurons. The stimulus
components were set at four different SNRs: (A) −1.5 dB, (B) −16.9 dB, and
(C) −27.9 dB with no history component. For each SNR level, 300 25-trial
simulations were performed. Shown are (row 1) the true signal; (row 2) a raster
plot of a representative simulated experiment; (row 3) histogram of the
300 KL-based SNR estimates, ŜNRdB

S ; and (row 4) histogram of the 300 squared
error-based SNR estimates, ŜNRdB

SE (20). The vertical lines in rows 3 and 4 are the
true SNRs.
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performance of our SNR estimate is attributable to the fact that
it is based on the likelihood, whereas the variance-based SNR es-
timate uses only the first two sample moments of the data. This
improvement is no surprise, as it is well known that likelihood-based
estimates offer the best information summary in a sample given an
accurate or approximately statistical model (34). We showed that
for each of the four neural systems, the PP-GLM accurately de-
scribed the spike train data in terms of goodness-of-fit assessments.

A General Paradigm for SNR Estimation. Our SNR estimation par-
adigm generalizes the approach commonly used to analyze SNRs
in linear Gaussian systems. We derived the generalization by
showing that the commonly computed SNR statistic estimates a
ratio of EPEs (Supporting Information): the expected prediction
of the error of the signal representing the data corrected for the
nonsignal covariates relative to the EPE of the system noise.
With this insight, we used the work of ref. 26 to extend the SNR
definition to systems that can be modeled using the GLM frame-
work in which the signal and relevant covariates can be expressed
as separate components of the likelihood function. The linear
Gaussian model is a special case of a GLM. In the GLM paradigm,
the sum of squares from the standard linear Gaussian model is
replaced by the residual deviance (Eq. S10). The residual deviance
may be viewed as an estimated KL divergence between data and
model (26). To improve the accuracy of our SNR estimator, par-
ticularly given the low SNRs of single neurons, we devised an ap-
proximate bias correction, which adjusts separately the numerator
and the denominator (Eqs. 9 and 10). The bias-corrected estimator
performed well in the limited simulation study we reported (Figs. 4
and 5). In future work, we will replace the separate bias corrections

for the numerator and denominator with a single bias correction for
the ratio, and extend our paradigm to characterize the SNR of
neuronal ensembles and those of other non-Gaussian systems.
In Supporting Information, we describe the relationship between

our SNR estimate and several commonly used quantities in sta-
tistics, namely the R2, coefficient of determination, the F statistic,
the likelihood ratio (LR) test statistic and f 2, Cohen’s effect size.
Our SNR analysis offers an interpretation of the F statistic that is
not, to our knowledge, commonly stated. The F statistic may be
viewed as a scaled estimate of the SNR for the linear Gaussian
model, where the scale factor is the ratio of the degrees of freedom
(Eq. S21). The numerator of our GLM SNR estimate (Eq. S9) is a
LR test statistics for assessing the strength of the association be-
tween data Y and covariates X2. The generalized SNR estimator
can be seen as generalized effect size. This observation is especially
important because it can be further developed for planning neu-
rophysiological experiments, and thus may offer a way to enhance
experimental reproducibility in systems neuroscience research (39).
In summary, our analysis provides a straightforward way of

assessing the SNR of single neurons. By generalizing the stan-
dard SNR metric, we make explicit the well-known fact that in-
dividual neurons are noisy transmitters of information.
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What Does the SNR Estimate?
The SNR has been most studied for linear model systems Y =
Xβ+ « in which one has observations y= ðy1, . . . , ynÞ′ of a ran-
dom vector Y = ðY1, . . . ,YnÞ′, Xβ is the signal, X = ðx1, . . . , xpÞ is
the n× p design matrix, xk are fixed known vectors of covariates
(k = 1, . . . , p), β is a p× 1 vector of unknown coefficients,
and « is an n× 1  vector of independent, identically distributed
Gaussian random errors with zero mean and variance σ2«. The
first column in X is a n× 1 vector of 1s denoted as 1n. The un-
conditional mean of the random vector Y can be defined as
EY = 1nβ0, where scalar parameter β0 is typically unknown.
A standard way to define the SNR is as a ratio of variances as

SNRX =
σ2signal
σ2noise

, [S1]

where σ2signal is the variance of the signal representing the ex-
pected variability in the data induced by the signal, where

σ2signal = ðXβ− 1nβ0Þ′ðXβ− 1nβ0Þ,

and σ2noise = nσ2« is the variance of noise. In other words, SNR is
the true expected proportion of variance in the data due the
signal divided by the variance due to the noise.
We can obtain an alternative interpretation of SNR (Eq. S1) if

we view the two variances in terms of EPEs in the squared error
sense. The variance of the noise can be viewed as the expected
error of predicting Y when using covariates X (1). That is,

σ2noise =EPEðY ,XβÞ=E½ðY −XβÞ′ðY −XβÞ�. [S2]

Analogously, the expected error of predicting Y when using
1nβ0 is

EPEðY , 1nβ0Þ=E½ðY − 1nβ0Þ′ðY − 1nβ0Þ�. [S3]

Due to the Pythagorean property of EPE in linear Gaussian sys-
tem (1−3), at the parameter values β0 and β that minimize the
EPE, the variance of the signal can be expressed as

σ2signal =EPEðY , 1nβ0Þ−EPEðY ,XβÞ,

the EPE of predicting the values of Y with overall mean, 1nβ0
minus the EPE of predicting Y with the approximating model,
Xβ (4). Hence, σ2signal is the reduction in the EPE achieved by
using the covariates  X. This leads to an alternative definition of
the SNR as

SNRX =
EPEðY , 1n    β0Þ−EPEðY ,XβÞ

EPEðY ,XβÞ , [S4]

which is the reduction EPE due to the signal, divided by the EPE
due to noise, in the squared-error sense. For this reason, we will
refer to Eqs. S1 and S4 as a variance-based or a squared-error-
based SNR.
The variance-based SNRX is the true expected SNR obtained

if the parameters β and β0 that give the minimum EPEs are
known. In practice, however, the SNRX is estimated by replacing
the parameters β and β0 by their least-squares estimates β̂ and
y, respectively. This leads to the estimate of SNRX (Eq. S4)

ŜNRX =
SSResidualðy, 1nyÞ− SSResidual

�
y,X β̂

�
SSResidual

�
y,X β̂

� [S5]

where

SSResidualðy, 1nyÞ= ðy− 1nyÞ′ðy− 1nyÞ

SSResidual
�
y,X β̂

�
=
�
y−X β̂

�
′
�
y−X β̂

�
.

In linear model analyses,   SSResidualðy, 1nyÞ  is the variance of the
data around their estimated overall mean and SSResidualðy,X β̂Þ
is the estimated variability in the data around the estimated signal
X β̂, i.e., the variability that is not explained by the covariate X.

Defining the SNR for a Linear Gaussian Signal Plus
Covariates Plus Noise System
If the system is driven by a signal and a nonsignal component and
if the two components can be separated by an approximate linear
additive model, then the SNR definition and estimate must be
modified. We assume the covariate component of the linear
model Y =Xβ+ « can be partitioned as Xβ=X1β1 +X2β2, where
the first component, X1β1, is a covariate not related to the signal,
and the second component, X2β2, is the signal. There exist values
of vectors β, β1, and β2 that give the minimum EPEs for de-
scribing Y in terms of minimizing EPEðY ,XβÞ, EPEðY ,X1β1Þ,
and EPEðY ,X2β2Þ, respectively. For this case, we can define
SNR in which only a part of the variability in random vector Y is
attributed to the signal to extend the SNR definition in Eq. S1 by
replacing EPEðY , 1nβ0Þ with EPEðY ,X1β1Þ to obtain

SNRX2 =
EPEðY ,X1β1Þ−EPEðY ,XβÞ

EPEðY ,XβÞ [S6]

where the first column of X1 and of X is the vector  1n. Eq. S6
gives the expected SNR in Y about the signal, X2β2, while con-
trolling for the effect of nonsignal component, X1β1. The numer-
ator in Eq. S6 is the reduction in the EPE due to the signal, X2β2,
when controlling for X1β1, the systematic changes in random
vector Y unrelated to the signal whereas the denominator is
the EPE due to the noise. By analogy with Eq. S5, we can esti-
mate the squared-error based SNRX2 (Eq. S6) as

ŜNRX2 =
SSResidual

�
y,X1β̂1

�
− SSResidual

�
y,X β̂

�
SSResidual

�
y,X β̂

� , [S7]

where we replace SSResidualðy, 1n   yÞ with SSResidualðy,X1β̂1Þ in
Eq. S5.

Defining the SNR for GLM Systems
The SNR definition and estimate in Eqs. S6 and S7 extend to the
GLM framework, the established statistical paradigm for con-
ducting regression analyses when data from the exponential
family are observed with covariates (5). We extend SNR to GLM
systems in which the covariates may be partitioned into signal
and nonsignal components by replacing the squared-error EPE
in Eq. S6 with the KL EPE of Y from the approximating model
and by replacing the residual sums of squares in Eq. S7 by the
residual deviances (1, 3, 5). This leads to the following KL gen-
eralization of the true SNR in Y about the signal X2, while taking
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into account the nonsignal effects X1, for the system approximated
by the GLM

SNRX2 =
EPEðY ,X1β1Þ−EPEðY ,XβÞ

EPEðY ,XβÞ , [S8]

and its deviance-based estimate

ŜNRX2 =
Dev

�
y,X1β̂1

�
−Dev

�
y,X β̂

�
Dev

�
y,X β̂

� [S9]

EPEðY ,X1β1Þ=E½−2  log  f ðY jX1β1Þ�

where the expectation is taken with respect to true generating
probability distribution of random vector Y and the “2” in the
definition makes the log-likelihood loss for the Gaussian distri-
bution match squared-error loss. For this reason we refer to Eq.
S8 as a KL-based SNR and Eq. S9 as its KL- or deviance-based
SNR estimator.
The deviance is

Dev
�
y,X β̂

�
=−2log

L
�
y,X   β̂

�
Lðy,   yÞ [S10]

where Lðy,X   β̂Þ is the likelihood evaluated at the maximum like-
lihood estimate β̂ of the model parameter β. Lðy,   yÞ is the satu-
rated likelihood defined as the highest value of the likelihood (5).
By the Pythagorean property of the KL divergence estimate in a

GLM with canonical link (1−3), the numerator in Eq. S8 is the
reduction in KL EPE due to the signal, X2β2, while controlling
for the effect of the nonsignal component, X1β1. The KL-based
SNRX2 has squared error-based SNRX2 as a special case in which
the exponential family model has the Gaussian distribution. The
numerator of the SNR estimate (Eq. S9) gives the reduction in
deviance due to signal, X2β̂2, while controlling for the nonsignal
component, X1β̂1. The estimates β̂ and β̂1 are computed from two
separate maximum-likelihood fits of the two models to data  y (6).
We define a bias correction for the SNR estimator (Eq. S9), as

this problem is especially prevalent in data with a weak signal (4,
7). By definition, the SNR estimate is always positive. Under
regularity conditions, the asymptotic biases of the numerator and
denominator in Eq. S9 are respectively dimðβ1Þ− dimðβÞ and
dimðβÞ, suggesting the approximate bias-corrected SNR estimate

ŜNRX2 =
Dev

�
y,X1β̂1

�
−Dev

�
y,X β̂

�
+ dimðβ1Þ− dimðβÞ

Dev
�
y,X β̂

�
+ dimðβÞ . [S11]

This SNR estimate remains biased because a ratio of unbiased
estimators is not necessarily an unbiased estimator of the ratio.
Our simulation studies in Fig. 4 (rows 4 and 5) suggest that
the bias is small for neural spike trains (4).

Variance-Based and KL-Based SNR Are the Same in Linear
Systems with Independent and Additive Gaussian Noise
We assume that y1, . . . , yn is a realization of independent random
variables Y1, . . . ,Yn, from a linear regression model, with means
E½YijXi�=Xiβ, zero covariances, and a common random error
variance, σ2«. We also assume overall (unconditional) mean
E½Yi�= β0. Furthermore, we assume a reduced model β1, i.e.,
β1 ⊂ β. An example of reduced model is a model with the overall
mean, β0, representing the background firing constant (see Eq.
6), or a model with parameter vector β1 for background firing
constant and for nonsignal covariates. The full model is always
the generating model or a good approximating model.

Then, under the above assumptions, the divergence between
data y1, . . . , yn and the model Xβ1 is

KLðy1..yn,Xβ1Þ= ðy−Xβ1ÞTðy−Xβ1Þ, [S12]

and, assuming the vector value β1 that minimizes EPE, the mean
is equal to

EPEKLðY1..Yn,X1β1Þ=E½KLðY1..Yn,Xβ1Þ�=
X

EðYi −Xiβ1Þ2

=EPESEðY1..Yn,X1β1Þ
[S13]

i.e., KL-based EPE reduces to squared-error-based EPE for the
Gaussian linear system with independent noise. Furthermore,X

EðYi −Xiβ1Þ2 =
X

EðYi −Xiβ1Þ2 +
X ðXiβ−Xiβ1Þ2

= nσ2« + ðXiβ−Xiβ1Þ2
[S14]

where Yi and Xi are ith component of Y and ith row of X,
respectively. Hence, for a linear Gaussian system, we have
EPEKLðY1..Yn,X1β1Þ=   nσ2« +

P ðXiβ−Xiβ1Þ2, with a special case
being β1 = β that gives EPEKLðY1..Yn,XβÞ= nσ2« = σ2noise. If we sub-
stitute this into Eq. S6, we obtain

SNRX1 =
EPEKLðY ,X1β1Þ−EPEKLðY ,XβÞ

EPEKLðY ,XβÞ

=
nσ2« +

P ðXiβ−Xiβ1Þ2   − nσ2«
nσ2«

=
ðXβ− 1nβ0ÞTðXβ− 1nβ0Þ

σ2noise
.

That is,

  SNRKL,X1 = SNRSE,X1 [S15]

in systems that are linear with additive, independent, and Gaussian
noise. Lastly, for completeness, we note here that the scale param-
eter of a linear Gaussian system is ϕ= σ2«.

Variance-Based and KL-Based SNR Are Not the Same for
Independent Binomial Observations
We assume that data y1, . . . , yL are recorded at 1-ms resolution
and that they are realizations of independent random variables
Y1, . . . ,YL, from a Bernoulli distribution with parameters K
and pl, l = 1, . . . , L i.e., their means are K × pl and the variances
are K × pl × ð1− plÞ. Then the overall expected probability of an
event (such as a spike) is p=L−1P K × pl   and the total variance
is

P VarðylÞ=
P  K × pl × ð1− plÞ, and hence the squared-error-

based SNR (Eqs. S1 and S4) can be shown to be

SNR=
P  ðK × pl −   K × pÞ2P K × pl × ð1− plÞ . [S16]

The formula in Eq. S16 can be used to calculate SNR for spike
trains when spikes trains are independent across trials, and when
times of spikes are independent within each trial, such as when
there is no spike history dependence. Then, one can summarize
the data into a 1-ms peristimulus time histogram, which can be
seen as a realization of independent Binomial random variables.
Then the SNR numerator in Eq. S16 is the variance of signal,
and the denominator contains the sum of variances of Binomial
random variables across L bins. This idea was used in ref. 8, and
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it was extended to incorporate the spike history, which was esti-
mated in a sequential manner rather than in one single analysis.
Nevertheless, our simulations in Fig. 5 indicate that expected
variance-based SNR (Eq. S16) is smaller than KL-based ex-
pected SNR (Eq. S8).

Variance-Based SNR and the Coefficient-of-Determination
In linear models with Gaussian noise, the coefficient of deter-
mination, R2, is a commonly used measure of the fit of the model
to the data. The coefficient of determination ranges from 0 to 1,
with 1 indicating perfect fit. Specifically,

R2 =

�
1ny−X β̂

�T�
1ny−X β̂

�
ðy− 1nyÞTðy− 1nyÞ

=
SSResidualðy, 1nyÞ− SSResidual

�
y,X β̂

�
SSResidualðy, 1nyÞ , [S17]

i.e., the numerators of SNR estimator (see Eq. S5) and of R2 are
the same, and it is the sum-of-squares explained by the model
(i.e., the signal), and it is often referred to as SSModel or
SSRegression in statistical software output. The denominators of R2

and SNR are different. The denominator in R2 is the sum of squares
around the grand mean, SSResidualðy, 1nyÞ, representing the total
variability in the data and hence often referred to as SSTotal. On
the other hand, the variability of the data around the estimated linear
function is summarized in the term SSResidualðy,X β̂Þ, which is often
referred to in the statistical software as SSResidual. In summary, the
R2 can be written as

R2 =
SSModel
SSTotal

=
SSModel

SSModel+ SSResidual
, [S18]

and we have that

ŜNR=
SSModel
SSResidual

.

It follows that

1
�
R2 =

SSModel+ SSResidual
SSModel

= 1+
SSResidual
SSModel

= 1+ 1
�
ŜNR

and that

ŜNR=

8>>>><
>>>>:

R2

1−R2   if   R
2 ≠ 1

Inf   if   R2 = 1

0  if   R2 = 0

[S19]

ŜNRdB =

8>>>>>>><
>>>>>>>:

10log10

�
R2

1−R2

�
  if   R2 ≠ 1

Inf   if   R2 = 1

−Inf   if   R2 = 0

0  if   R2 = 0.5

. [S20]

Hence, by Eq. S20, we have that squared-error-based ŜNR is an
increasing function of R2 (Fig. S1). Furthermore, both quantities
R2 and SNR decrease with increasing level of noise (Fig. S2).
A well-known problem with R2 is that it always increases, even

if unimportant covariates are added to the model. Hence an
adjusted R2 was proposed (6, 9) that adjusts for the number
of explanatory terms in a model. Unlike R2, the adjusted R2 in-

creases only if the new term improves the model more than
would be expected by chance. The adjusted R2 can be negative—
just like bias-adjusted SNR—and will always be less than or
equal to the R2. While R2 is a measure of fit, the adjusted R2 is
used for comparison of nested models and for feature (i.e.,
variable) selection in model building and machine learning.
By analogy, the adjusted SNR can also be used for feature
selection in biological systems to quantify the amount of in-
formation in features.
There are many generalizations of R2   for GLMmodels (called

pseudo-R2). Some generalizations are based on likelihoods (9,
10). Their bias-adjusted versions for independent data are known
and implemented in statistical software (e.g., statistical software
R). These bias-adjusted pseudo-R2 measures can be directly used
to obtain the bias-adjusted SNR via Eq. S20. However, even if an
unbiased R2 estimate is used in Eq. S20 under the assumption
that the data are independent, then the SNR estimate can still be
biased because the ratio of unbiased estimates is not necessarily
an unbiased estimate.

Variance-Based SNR and F-Test Statistic
In linear regressionmodels with independent Gaussian errors, the
F test is a commonly used test to evaluate the importance of a set
of covariates, X, in explaining the variability of dependent vari-
able, Y. The F-test statistic has the form

F =
SSModel=df ðModelÞ

SSResidual=df ðResidualÞ

where df ðModelÞ= k− 1, df ðResidualÞ= n− k− 1 are degrees of
freedom of the model and residuals, and k is the number of
covariates (i.e., the number of columns of X). Hence, using
Eq. S5,

F = ŜNR×
df ðResidualÞ
df ðModelÞ [S21]

i.e., the bias-unadjusted SNR estimate Eq. S5 is a multiple of the
F statistic.
If there is no signal, then ðσ2signal=σ2noiseÞ= 0, i.e., SNR= 0 (in

Eq. S1). In this case, none of the covariates in matrix X is re-
lated to Y. In other words, the true generating model is a model
with a constant only. In this case, the F statistic has a central
Fisher distribution with degrees of freedom df ðModelÞ and
df ðResidualÞ. It is easy to see that the mean of the F statistic (if
df ðResidualÞ> 2Þ is

EðFÞ= df ðResidualÞ
df ðResidualÞ− 2

and hence, when there is no signal, it follows from Eq. S21 and
properties of the central F distribution that the mean of the
variance-based ŜNR is

E
�
ŜNR

�
=

df ðResidualÞ
df ðResidualÞ− 2

×
df ðModelÞ
df ðResidualÞ=

df ðModelÞ
df ðResidualÞ− 2

,

while the true SNR= 0; hence the bias of ŜNR is df ðModelÞ/
½df ðResidualÞ− 2�, which converges to zero when the ratio of data
size to number of parameters becomes large.
In the general case, when the true variance-based SNR≠ 0,

then the associated F statistic (Eq. S21) has a noncentral Fisher
distribution with degrees of freedom df ðModelÞ and df ðResidualÞ
and with a noncentrality parameter equal to σ2signal=σ

2
«   = n × SNR.

In such a case, it can be shown that
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E
�
ŜNR

�
=E

	
F

df ðModelÞ
n− df ðModelÞ− 1




=
df ðModelÞ

df ðResidualÞ− 2
+ SNR

n
df ðResidualÞ− 2

and the confidence intervals for SNR can be constructed using
quantiles of noncentral Fisher distribution (11).
The equivalent theory for the bias correction and confidence

intervals of SNR is not available in GLM models with history
dependence. Therefore, here we offered a simple bias correction
Eq. S11) that removes some bias, and we showed that it can work
well in simulations. However, it can be proved that our bias
correction is asymptotically equivalent to the bias correction
above for independent data from linear Gaussian model.

SNR and LR Test
The concept of SNR is also related to the concept of the LR test
(5). Specifically, the scaled numerator of the generalized SNR
estimate (Eq. S9) is an LR test statistic for testing the association

between covariates X and variable Y in GLMs. Under indepen-
dence of the observations, the LR test statistics have asymptot-
ically χ2 distributions with degrees of freedom equal to the
number of estimated parameters associated with the covariates.
Hence, low levels of LR lead to the conclusion that there is not
enough evidence for the association, which corresponds to low
values of SNR estimate (Eq. S9).

Variance-Based SNR and Effect Size for Linear Regression
Another related measure is effect size. Cohen’s effect size for
linear regression models (6, 12), defined as f 2 =R2=ð1−R2Þ, is
the same as the squared-error-based SNR in Eq. S5. Cohen’s f 2

is not typically reported in studies, but it is often used for sample
size calculations in linear regression. For linear regressions, ef-
fect sizes of 0.02, 0.15, and 0.35 are considered small, medium,
and large, respectively. These three effect sizes correspond to an
R2 of 0.02, 0.13, and 0.26 SNR of −17 dB, −8.2 dB, and −4.6 dB,
which are consistent with the SNR values that we reported for
some of the neurons.
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Fig. S1. Relationship between SNR and R2. Both plots are created for R2 values between 0.05 and 0.95. (Left) Eq. S19 and (Right) Eq. S20.
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Fig. S2. Simulation analysis of the relationship between SNR and R2. One hundred observations were simulated from the linear model Y = 0.3X + «, where
«, the errors, are independent Gaussian with zero mean and SDs of 2, 5, 10, and 30. These models give (A) SD = 2, R2 = 0.95, SNR = 13 dB; (B) SD = 5, R2 = 0.76,
SNR = 5.1 dB; (C) SD = 10, R2 = 0.40, SNR = −1.7 dB; and (D) SD = 30, R2 = 0.09, SNR = −10 dB.

Fig. S3. Examples of goodness-of-fit analysis of GLM for a single neuron from the (A) primary auditory cortex of an anesthetized guinea pig, (B) rat thalamus,
(C) monkey hippocampus, and (D) human subthalamic nucleus neuron. (Left) The KS plot of the time-rescaled interspike intervals The parallel 45° lines are the
95% confidence interval. The KS plot (dark curve) lies within the 95% confidence intervals, suggesting agreement between the GLM and the data. (Right) The
partial autocorrelation function of the interspike intervals transformed into Gaussian random variables. The horizontal parallel lines are the 95% confidence.
The Gaussian transformed interspike intervals falling within the 95% confidence intervals suggests lack of correlations up to lag 100. Lack of correlation is
consistent with the transformed times being independent and further supports the goodness of fit of the GLM.
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Time series are an important data class that includes recordings
ranging from radio emissions, seismic activity, global position-
ing data, and stock prices to EEG measurements, vital signs, and
voice recordings. Rapid growth in sensor and recording technolo-
gies is increasing the production of time series data and the
importance of rapid, accurate analyses. Time series data are com-
monly analyzed using time-varying spectral methods to charac-
terize their nonstationary and often oscillatory structure. Current
methods provide local estimates of data features. However, they
do not offer a statistical inference framework that applies to
the entire time series. The important advances that we report
are state-space multitaper (SS-MT) methods, which provide a
statistical inference framework for time-varying spectral analy-
sis of nonstationary time series. We model nonstationary time
series as a sequence of second-order stationary Gaussian pro-
cesses defined on nonoverlapping intervals. We use a frequency-
domain random-walk model to relate the spectral representations
of the Gaussian processes across intervals. The SS-MT algorithm
efficiently computes spectral updates using parallel 1D complex
Kalman filters. An expectation–maximization algorithm computes
static and dynamic model parameter estimates. We test the frame-
work in time-varying spectral analyses of simulated time series
and EEG recordings from patients receiving general anesthesia.
Relative to standard multitaper (MT), SS-MT gave enhanced spec-
tral resolution and noise reduction (>10 dB) and allowed statisti-
cal comparisons of spectral properties among arbitrary time series
segments. SS-MT also extracts time-domain estimates of signal
components. The SS-MT paradigm is a broadly applicable, empiri-
cal Bayes’ framework for statistical inference that can help ensure
accurate, reproducible findings from nonstationary time series
analyses.

nonparametric spectral analysis | spectral representation theorem |
complex Kalman filter | statistical inference | big data

The importance of developing principled methods to solve
big data problems is now broadly appreciated (sites.

nationalacademies.org/DEPS/BMSA/DEPS 171738). Time series
are an important big data class that includes signals ranging from
gravitational waves (1), solar variations (2), radar emissions (3),
seismic activity (4), global positioning data (5), and stock prices
(6) to neural spike train measurements (7), EEG recordings (8),
vital signs (9), and voice recordings (10). Rapid growth in sen-
sor and recording technologies in science, engineering, and eco-
nomics is increasing time series data production and with it, the
importance of conducting rapid, accurate analyses. Such analy-
ses require extracting specific data features and characterizing
their uncertainty in a way that makes possible formal statisti-
cal inferences the same way as they are conducted in simpler
problems.

A range of time-frequency methods is used to characterize the
nonstationary and often oscillatory features in time series data.
Standard nonparametric spectral methods estimate the spectrum
(i.e., the frequency content of the time series in a small time
interval on which the data are presumed to be stationary) (8, 11,
12). Fourier-based spectral methods estimate only signal power

as a function of frequency and therefore, cannot provide time-
domain signal estimates. Spectrogram estimation (time-varying
spectral analysis), which entails estimating the frequency content
as function of time for nonstationary data, is carried out by sim-
ply repeating spectrum estimation on overlapping or nonover-
lapping time intervals. Spectrum estimates on adjacent intervals
(8, 10–14) are not formally related. While recently developed
time-frequency methods address the general problem of mini-
mizing the resolution tradeoff between time and frequency, these
techniques are computationally intensive, give their best perfor-
mance in high signal-to-noise problems, and to date, have had
limited application in actual time series analyses (15, 16). Despite
their use to study important problems, current time-frequency
methods have a critical shortcoming. None of these methods pro-
vides a statistical inference framework applicable to the entire
time series. (1–10).

State-space (SS) modeling is a flexible, established inference
framework for analyzing systems with properties that evolve with
time (17–21). This paradigm has been used for time-frequency
analysis of nonstationary time series with parametric time series
models (22–24), harmonic regression models (25), and nonpara-
metric time series models using batch processing (26). Given
stationary data recorded on a finite interval, multitaper (MT)
methods are optimal for balancing the bias–variance tradeoff in
spectrum estimation conducted by combining Fourier-based
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Rapid growth in sensor and recording technologies is spurring
rapid growth in time series data. Nonstationary and oscilla-
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methods with tapering (8, 11, 12). Therefore, a plausible
approach to analyzing nonstationary and oscillatory time series
is to combine SS modeling with MT methods to optimize locally
the bias–variance tradeoff, relate spectral estimates across local
intervals, and conduct formal statistical inference.

The important advances that we report are state-space mul-
titaper (SS-MT) methods, which provide a statistical inference
framework for time-varying spectral analysis of nonstationary
time series. The balance of the paper is organized as follows.
In Theory, we define the SS-MT time-frequency model, SS-MT
spectrogram estimation algorithm, time-domain signal extrac-
tion algorithm, and empirical Bayes’ inference framework. In
Applications, we illustrate use of the algorithms in the analy-
sis of a simulated nonstationary time series and of EEG time
series recorded from patients under general anesthesia. Discus-
sion summarizes the properties of the SS-MT paradigm and high-
lights the implications of this future research for solving large
data inference problems.

Theory
An SS-MT Time-Frequency Model. Assume that we observe a non-
stationary time series of the form

yt = xt + εt , [1]

where xt is a zero mean, second-order, locally stationary Gaus-
sian process and εt is independent, zero mean Gaussian noise
with common variance σ2

ε for t = 1, 2, . . .,T . A common practice
in analyses of nonstationary time series is to assume a minimal
interval length and that data are stationary on intervals having
this minimal length (SI Appendix, Table S1). We define the local
stationarity of xt by assuming that we can write T =KJ , where K
defines the number of distinct, nonoverlapping stationary inter-
vals in xt and J is the number of observations per stationary
interval. We index the stationary intervals as k = 1, . . . ,K and
the points per interval as j = 1, . . . , J . For example, if we have
1,440 s of a time series that is stationary on 1-s intervals and
recorded at 250 Hz, then K = 1,440, J = 250, and T = 3,60,000.

We present the data on stationary interval k as the vector
Yk of length J , with the j th element that is Yk,j = yJ(k−1)+j ,
Xk,j = xJ(k−1)+j , and εk,j = εJ(k−1)+j for k = 1, . . . ,K and
j = 1, . . . , J . By the spectral representation theorem (27), we can
express each Yk as

Yk = Xk + εk

= W∆Zk + εk , [2]

where W is a J × J matrix with the (l , j )th element that
is (W )l,j = J−1/2 exp (i2π(l − 1)j/J ). ∆Zk = (∆Zk (ω1), . . . ,

∆Zk (ωJ ))′ are differences of orthogonal Gaussian increments,
and we define ωj = 2π(j − 1)J−1.

To relate the data on adjacent intervals, we assume that the
Gaussian increment differences are linked by the random walk
model

∆Zk = ∆Zk−1 + vk , [3]

where we assume that vk is a zero mean, independent complex
Gaussian process with J × J diagonal covariance matrix I (σ2

v,j )
for j = 1, . . . , J . Eq. 3 defines a stochastic continuity constraint
on the nonstationary time series in the frequency domain.

To represent the observation model [2] in the frequency
domain, we let F be the Fourier transform operator defined
as the J × J matrix with the (j , l)th element that is (F )j ,l =

J−1/2 exp (−i2π(l − 1)j/J ). Taking the Fourier transform of
Eq. 2 yields

Y F
k = ∆Zk + εFk , [4]

where Y F
k =FYk , FW = I , and εFk =Fεk is a zero mean, com-

plex Gaussian vector with J × J diagonal covariance matrix

I (σ2
ε). Eqs. 2 and 3 define a frequency-domain SS model for the

nonstationary time series.
To combine the SS and MT paradigms, we note that, in the

absence of Eq. 3, MT methods with Slepian functions selected as
tapers would be used to estimate the spectrum on each stationary
interval (11, 12). Therefore, as in the application of MT methods,
given J , the number of data points in the stationary interval and
∆, the data sampling rate, we also assume that ωr , the desired
frequency resolution for the spectral analysis, has been specified
for the problem. Next, M , the number of tapers, is chosen to
minimize the local bias–variance tradeoff for spectrum estima-
tion on each stationary interval using the standard MT formula
M ≤ 2[J∆−1ωr ]− 1 (28). We index the tapers as m = 1, ...,M .

We let S (m) denote the operator for applying the mth Slepian
taper to the data, Y (m)

k =S (m)Yk denote the tapered data, and
Y

(m),F
k =FY

(m)
k denote the Fourier transform of the tapered

data. If we take the Slepian tapers to be orthonormal, then
by theorem 4.4.2 in ref. 29, the Fourier transform of each
tapered series has the same probability distribution and thus,
the same spectral representation as Y F

k in Eq. 4. Therefore,
we write

Y
(m),F
k = ∆Z

(m)
k + ε

(m),F
k , [5]

and we view ∆Z
(m)
k and ε(m),F

k as a realization of ∆Zk and of
εFk , respectively, observable through the mth tapered series. It
follows that the random walk model in Eq. 3 has the realization

∆Z
(m)
k = ∆Z

(m)
k−1 + v

(m)
k , [6]

where we assume that v
(m)
k is a zero mean, independent com-

plex Gaussian vector with a J × J diagonal covariance matrix
I (σ

2,(m)
v,j ) for j = 1, . . . , J and m = 1, . . . ,M . Eq. 6 induces

stochastic continuity constraints on the tapered nonstationary
time series. Eqs. 5 and 6 define an SS-MT time-frequency model.
Use of the Slepian tapers to achieve the desired frequency reso-
lution given the assumed length of the local stationary intervals
transforms the original time series [2] and its state model [3] into
M independent time series [5] and their respective M indepen-
dent state models [6].

SS-MT Spectrogram Estimation Algorithm. The linear complex
Gaussian form of Eqs. 5 and 6 suggests that a Kalman fil-
ter algorithm can be used to compute the sequence of incre-
ment differences (23) and thus, the sequence of spectrum
estimates. For this problem, the Kalman filter has a special
structure. Because the M ∆Z

(m)
k are independent, there are

M separate, independent J -dimensional Kalman filters. In addi-
tion, because ∆Z

(m)
k (ωj ) is orthogonal across frequencies, there

are, for each tapered series, J parallel 1D complex Kalman fil-
ter algorithms, one for each frequency ωj . Hence, the Gaussian
increment differences can be recursively estimated by applying
M ·J 1D complex Kalman filter algorithms to the M tapered time
series. Assuming that the increment difference estimates have
been computed on interval k − 1, then for tapered series m , the
1D complex Kalman filter algorithm for estimating ∆Z

(m)
k (ωj )

on interval k is

∆Z
(m)

k|k−1(ωj ) = ∆Z
(m)

k−1|k−1(ωj ) [7a]

σ
2,(m)

k|k−1,j =σ
2,(m)

k−1|k−1,j + σ
2,(m)
v,j [7b]

∆Z
(m)

k|k (ωj ) = ∆Z
(m)

k|k−1(ωj )

+C
(m)
k,j (Y

(m),F
k,j −∆Z

(m)

k|k−1(ωj )) [7c]

σ
2,(m)

k|k,j = (1− C
(m)
k,j )σ

2,(m)

k|k−1,j , [7d]
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where the Kalman gain for m = 1, . . . ,M , k = 1, . . . ,K , and
j = 1, . . . , J is

C
(m)
k,j = (σ2,(m)

ε + σ
2,(m)

k|k−1,j )
−1
σ
2,(m)

k|k−1,j . [8]

The notation k |s denotes the estimate on stationary interval
k given all of the data observed through stationary interval s .
The derivation of the Kalman filter algorithm is in SI Appendix.
We assume that the algorithm has initial conditions ∆Z

(m)
0 (ωj )

and σ2,(m)
0,j . We carry out their estimation along with the model

parameters using an expectation–maximization (EM) algorithm,
which we describe in SI Appendix. Given the Kalman filter esti-
mate of the increment differences on interval k , the SS-MT spec-
trogram estimate at frequency ωj on interval k is

f SS−MT
k|k (ωj ) =M−1

M∑
m=1

||∆Z
(m)

k|k (ωj )||2, [9]

where ||∆Z
(m)

k|k (ωj )||2 is the mth SS eigenspectrogram at fre-
quency ωj (11). Each SS eigenspectrogram is a spectrogram esti-
mate computed by weighting the data with a different Slepian
taper. Like the MT spectrogram defined below [10], SS-MT spec-
trogram estimate [9] is the average of the M approximately inde-
pendent SS eigenspectrograms.

Eqs. 7–9 define the SS-MT algorithm for spectrogram estima-
tion for nonstationary time series. For each tapered series, the
increment difference estimate on interval k is a weighted aver-
age between the increment difference estimate on interval k − 1
and the difference between the Fourier transform of the tapered
series and the increment difference estimate on interval k − 1.
The weighting depends on the Kalman gain, which is between
zero and one by construction. If the Kalman gain is close to zero,
then the one-step prediction variance σ2,(m)

k|k−1,j is small relative

to the observation variance σ2,(m)
ε , and hence, the increment dif-

ference estimate on interval k is close to the estimate on inter-
val k − 1. If the Kalman gain is close to one, then the one-step
prediction variance is large relative to the observation variance,
meaning that the uncertainty in the prediction of the increment
difference on interval k based on the data up through interval
k − 1 is large. In this case, the increment difference estimate on
interval k is close to the Fourier transform of the tapered series
observed on interval k .

In the absence of the state models [3 and 6], Eq. 9 becomes
the MT spectrogram estimate

f MT
k (ωj ) =M−1

M∑
m=1

‖Y (m),F
k,j ‖2, [10]

where Y
(m),F
k = (Y

(m),F
k,1 , . . . ,Y

(m),F
k,J )

′
and ||Y (m),F

k,j ||2 is the
mth MT eigenspectrogram at frequency ωj (12). In the absence
of tapering, Eq. 9 becomes the SS periodogram estimate

f SS−P
k|k (ωj ) = ||∆Z SS−P

k|k (ωj )||2, [11]

which is computed by applying J parallel 1D complex Kalman fil-
ters to the Fourier transformed data Y F

k . In the absence of taper-
ing and the SS model, Eq. 11 becomes the periodogram estimate

f Pk (ωj ) = ||Y F
k,j ||2, [12]

where Y F
k = (Y F

k,1, · · · ,Y F
k,J )′. By comparing the SS-MT algo-

rithm [7–9] with the standard MT [10], the periodogram [12], and
the SS periodogram [11] algorithms, it is possible to understand
the effects on spectrogram estimation of combining the MT
approach with SS modeling. In addition, the SS-MT paradigm
can be applied to compute cross-spectrograms between two or
more time series that are described in SI Appendix (SI Appendix,
Fig. S12).

Time-Domain Signal Extraction. Given the ∆Z
(m)

k|k , we can estimate
the denoised time-domain signal as

Xk|k =W∆Zk|k , [13]

where ∆Zk|k =M−1∑M
m=1 ∆Z

(m)

k|k . The extracted signal is a lin-
ear combination of the estimated increment differences across
all of the frequencies. Frequency components on different sta-
tionary intervals are related, because all are estimated by the
complex Kalman filter algorithm in Eqs. 7a–7d. Hence, selective
filtering, such as high-pass, low-pass, and band-pass filtering, can
be performed by simply choosing the components of ∆Zk|k in
the desired frequency range. Given a set of L, not necessarily
sequential frequencies, ωj for j = s1, . . . , sL, we can obtain the
filtered time-domain signal as

X L
k|k =W∆ZL

k|k , [14]

where the components of ∆ZL
k|k , outside the L frequencies

and their conjugate symmetric frequencies, are all zero. Eq.
14 provides a highly flexible alternative to an empirical mode
decomposition that allows extraction of a time-domain signal
composed of any specified frequency components. The ana-
lytic version of the filtered time-domain signal can be com-
puted as

RL
k|k,t + iI L

k|k,t = 2J−
1
2

sL∑
j=s1

∆ZL
k|k (ωj )e

iωj t [15]

for t = J (k−1)+l and l = 1, . . . , J . Here, [(RL
k|k,t)

2
+(I L

k|k,t)
2
]
1/2

and tan
(
−I L

k|k,t/R
L
k|k,t

)
are the instantaneous amplitude and

phase of the time-domain signal in the specified frequency
range, respectively (SI Appendix, Figs. S1 and S2). This com-
putation obviates the need to apply a Hilbert–Huang trans-
form to either filtered data or data processed by an empiri-
cal mode decomposition to estimate instantaneous amplitude
and phase.

Inferences for Functions of the Increment Differences. To make
inferences for functions of the increment differences at any time
points, we compute the joint distribution of the increment differ-
ences conditional on all of the data in the time series using the
fixed interval smoothing algorithm (20, 21), which is

∆Z
(m)

k|K (ωj ) = ∆Z
(m)

k|k (ωj )

+Ak,j (∆Z
(m)

k+1|K (ωj )−∆Z
(m)

k+1|k (ωj ))

σ
2,(m)

k|K ,j = σ
2,(m)

k|k,j + A2
k,j (σ

2,(m)

k+1|K ,j − σ
2,(m)

k+1|k,j )

Ak,j = σ
2,(m)

k|k,j (σ
2,(m)

k+1|k,j )
−1
, [16]

where the initial conditions are ∆Z
(m)

K |K (ωj ) and σ
2,(m)

K |K ,j for
k =K − 1,K − 2, . . . , 1 and j = 1, 2, . . . , J . To compute the
covariances between any two states, we use the covariance
smoothing algorithm defined as (20)

σ
(m)

k,u|K ,j =Ak,jσ
(m)

k+1,u|K ,j [17]

for 1 ≤ k ≤ u ≤ K . Eqs. 16 and 17 allow us to compute the joint
distribution of the increment differences conditional on all of the
data. Therefore, we can compute the distribution of any function
of the increment differences by Monte Carlo methods (30). For
each Monte Carlo sample, we draw from the joint distribution
and compute the function of interest. The histogram of the func-
tion of interest provides a Monte Carlo estimate of its posterior
probability density. The estimate is empirical Bayes, because it
is computed conditional on the maximum likelihood parameter
estimates (31).
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Model Parameter and Initial Condition Estimation. The Kalman fil-
ter [7 and 8], Kalman smoother [16], and covariance smoothing
[17] algorithms assume that the initial states ∆Z

(m)
0 (ωj ), the ini-

tial state variances σ2,(m)
0,j , and the model parameters σ2,(m)

v,j and
σ
2,(m)
ε are known. We use an EM algorithm (32) designed after

refs. 20 and 21) to compute maximum likelihood estimates of
the initial conditions and the model parameters. The details are
given in SI Appendix.

Applications
Spectrogram Analysis of Simulated Data. We first tested the SS-
MT algorithm on the simulated nonstationary process (Fig. 1A)
defined by the sixth-order autoregressive model adapted from
ref. 12:

xt = 3.9515xt−1 − 7.8885xt−2 + 9.7340xt−3 − 7.7435xt−4

+ 3.8078xt−5 − 0.9472xt−6 +
16t

T
vt , [18]

where T = 1,28,000 s and vt is independent, zero mean Gaus-
sian noise with unit variance. The spectrogram of the model has
three peaks at 3.5, 9.5, and 11.5 Hz (Fig. 1B). All three peaks
grow linearly in height and width with time. We added an inde-
pendent zero mean Gaussian noise with variance set to achieve a
signal-to-noise ratio of 0 dB. The sampling rate is 64 Hz. Eq. 18 is
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Fig. 1. Spectrogram analysis of the time-varying sixth-order autoregressive process defined in Eq. 18. (A) Ten-second segments from the simulated time
series starting at 5, 16, and 25 min. (B) True spectrogram. (C) Periodogram. (D) MT spectrogram. (E) SS periodogram. (F) SS-MT spectrogram. Right shows for
each panel a zoomed-in display of the 3 min between 24 and 27 min. The color scale is in decibels.

nonstationary at each time t . However, because it can be approx-
imated in small intervals by a stationary sixth-order autoregres-
sive process, it satisfies the Dahlhaus definition of local station-
arity (33). We set J = 1024 and K = 125. We choose M , the
number of tapers, to be four, which corresponds to a spectral
resolution of 0.5 Hz for the MT methods. We estimated the
model parameters from the first 50 observations using the EM
algorithm (SI Appendix).

Fig. 1 C–F shows the periodogram (Fig. 1C), the MT spectro-
gram (Fig. 1D), the SS periodogram (Fig. 1E), and the SS-MT
spectrogram (Fig. 1F). While all four methods capture the gen-
eral structure of the true spectrogram (Fig. 1B), there are clear
differences. The MT spectrogram (Fig. 1D) shows, as expected,
better resolution of (less variability in estimating) the three peaks
compared with the periodogram (Fig. 1C). However, when com-
paring the power in the frequency bands outside the three peaks,
both the periodogram (Fig. 1C) and the MT spectrogram (Fig.
1D and SI Appendix, Fig. S6) overestimate the noise relative
to the true spectrogram (Fig. 1B and SI Appendix, Fig. S6 C
and D) by 10–15 dB. The SS periodogram (Fig. 1E) and the
SS-MT spectrogram (Fig. 1F and SI Appendix, Fig. S6 C and
D) estimate the noise outside the three peaks to be at or near
−10 dB as in the true spectrogram (Fig. 1B and SI Appendix,
Fig. S6 C and D). The MT and the SS-MT spectrograms cap-
ture well and agree closely in their estimates of the power in
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the three peaks (Fig. 1 D, Right and F, Right and SI Appendix,
Fig. S6).

A key difference between the MT and the SS-MT spectro-
grams appears as the power increases. As the heights of the spec-
tral peaks at 9.5 and 11.5 Hz increase, the depth of the “valley”
in the spectrogram between them increases also (Fig. 1B and SI
Appendix, Fig. S6 C and D). The valley is at 5 dB between min-
utes 24 and 27 (Fig. 1B, Right and SI Appendix, Fig. S6D). The
MT spectrogram estimates the valley to be at 10 dB (Fig. 1D,
Right and SI Appendix, Fig. S6D). In contrast, the SS-MT spec-
trograms estimates the valley to be at 4 dB (Fig. 1D, Right and
SI Appendix, Fig. S6D). In addition, the mean squared error was
lower at all frequencies for the SS-MT algorithm compared with
the other three methods (SI Appendix, Table S2). We explain
the enhanced denoising and enhanced spectral resolution of the
SS-MT algorithm relative to the MT algorithm after we analyze
the real EEG recordings in the next examples. In SI Appendix,
we assess the effect of stationary interval length on spectrogram
estimation.

Spectrogram Analysis of the EEG During General Anesthesia. Anes-
thetic drugs act in the brain to create the altered states of
general anesthesia by producing highly structured oscillations
that disrupt normal information flow between brain regions (34,
35). Because these oscillations are readily visible in the EEG,
EEG and EEG-derived measures are commonly used to track
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Fig. 2. Spectrogram analysis of EEG time series recorded from a patient under general anesthesia maintained with sevoflurane and oxygen. (A) The expired
concentration of sevoflurane. (B) Raw EEG signals. (C) Periodogram. (D) MT method spectrogram. (E) SS periodogram. (F) SS-MT spectrogram. The color scale
is in decibels.

in real time the brain states of patients receiving general anes-
thesia and sedation (36). We illustrate the SS-MT methods by
comparing them with the other three spectrogram methods in
the analysis of EEG recordings from patients during general
anesthesia.

The EEG recordings, in this example and the subsequent
examples, are deidentified data collected as part of protocols
at the Massachusetts General Hospital (MGH) that have been
approved by the MGH Human Research Committee. For EEGs
recorded from patients, informed consent was not required,
whereas for EEGs recorded from volunteer subjects, informed
consent was required and was obtained. For each patient, the
EEG was continuously recorded during general anesthesia using
the Sedline monitor (Masimo) with the standard six-electrode
frontal montage. The Sedline array records from electrodes
located approximately at positions Fp1, Fp2, F7, and F8. On
each channel, the electrode impedance was less than 5 kohms.
We used the EEG data recorded at Fp1 for the spectral analyses
and the EEG data recorded at Fp1 and Fp2 for the coherence
analyses (SI Appendix, Fig. S12). We began the EEG recordings
approximately 3–5 min before induction of general anesthesia
and continued the recordings for ∼3–5 min after extubation.

The data analyzed in Fig. 2 consist of 190 min of EEG
recorded at 250 Hz during maintenance of general anesthesia
using the ether anesthetic sevoflurane with oxygen. Hence, we
take T = 2,850,000. We set J = 500 based on our several years of
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experience analyzing the EEG of anesthetized patients. Hence,
we have K = 5,750. We chose M , the number of tapers, to be
three. This corresponds to a spectral resolution of 2 Hz for the
MT method. We estimated the model parameters and initial con-
ditions from the first 5 min of data using the EM algorithm. To
estimate the observation noise variance in the EM algorithm, we
restricted the analysis to frequencies in the physiologically rel-
evant range from 0.1 to 30 Hz. The raw EEG signal (Fig. 2B)
shows strong modulation with changes in the sevoflurane con-
centration (Fig. 2A).

All four spectrograms for these data show the well-known
alpha-beta oscillations (8–17 Hz) and slow-delta oscillations
(0.1–4 Hz) that are characteristic of general anesthesia main-
tained by sevoflurane (36). When the sevoflurane concentration
increases, the power in the alpha-beta band shifts to lower fre-
quencies, while the power in the slow-delta band power shifts
to higher frequencies. The opposite changes occur when the
sevoflurane concentration decreases. The spectral changes asso-
ciated with increases in the sevoflurane concentration appear
as increases in theta oscillation power (4–8 Hz) (36). The peri-
odogram (Fig. 2C) shows diffuse, grainy power between 10 and
17 Hz and in the slow-delta range. As expected, the MT spec-
trogram (Fig. 2D) has higher spectral resolution relative to the
periodogram. Both the periodogram and the MT spectrogram
show diffuse power ranging from 7 to −2 dB in the theta range
and from −5 to −15 dB in the beta-gamma range (>17 Hz).
Relative to the periodogram and the MT spectrogram, the SS
periodogram (Fig. 2E) and the SS-MT spectrogram (Fig. 2F)
show substantially greater denoising defined as a reduction in
power in the frequency bands with low power. For the latter
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two spectrograms, the power in the beta-gamma range is uni-
formly at −15 dB, which is a 5–15 dB power reduction relative
to the MT spectrogram. Both the SS periodogram and the SS-
MT spectrogram estimate the power in the theta band to be
10–15 dB less than that for either the periodogram or the MT
spectrogram. Like the periodogram, the prominent alpha-beta
and the slow-delta power in the SS periodogram is grainy and
diffuse.

Spectrogram Analysis of the EEG During Transitions Among Anes-
thetic States. To illustrate the full potential of the SS-MT algo-
rithm, we reanalyze 155.4 min of EEG data recorded at 250 Hz
from a frontal lead in a human volunteer subject receiving i.v.
propofol administered by a computer-controlled infusion at an
increasing and then, a decreasing infusion rate (35). Gradually
increasing the propofol infusion rate allows the subject to tran-
sition gradually from being awake to unconsciousness (UNC).
Gradually decreasing the propofol infusion rate from the rate
required to achieve the maximum target effect site concentration
(model-derived brain concentration) allows the subject to transi-
tion from UNC to the awake state. Baseline EEG was recorded
for 20 min while the subject lay supine with eyes closed and
received no propofol. After the baseline period, propofol was
administered through a computer-controlled infusion to achieve
five different effect site concentrations in increasing levels (Fig.
3A) (35). After completing the fifth level, the propofol infusion
rate was systematically decreased to achieve a similar sequence
of target effect site concentrations in decreasing order until the
infusion was stopped. Each target effect site concentration was
maintained for 14 min.
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Based on the analyses of the subject’s responses to yes–no
questions administered every 4 s, we identified five distinct
behavioral or anesthetic states: conscious, loss of consciousness
(LC), UNC, recovering consciousness (RC), and conscious (Fig.
3A, black dashed vertical lines) (35). The important scientific
question to answer is whether these distinct anesthetic states are
associated with distinct EEG signatures.

We take T = 2,331,000 and set J = 1,000, K = 2,331, and
M = 5. This gives a spectral resolution of 1.5 Hz for the MT
method. Because we expect the EEG frequency content to
change substantially with changes in target effect site concen-
tration, we estimated, using the EM algorithm, a new set of
model parameters from the first 5 min of EEG data recorded
at each level. The effects of changing the propofol infusion rate
are apparent in the unprocessed EEG (Fig. 3B, black curves),
the denoised time-domain signal (Eq. 14 and Fig. 3B, red curves),
the MT spectrogram (Fig. 3C), and the SS-MT spectrogram (Fig.
3D). At baseline, moderate-amplitude slow oscillations domi-
nate the EEG. Low-amplitude beta-gamma oscillations appear
midway through level 2 and transition into narrow-band, high-
amplitude alpha oscillations by level 4. At the same time, the
slow oscillations transition to high-amplitude, slow-delta oscilla-
tions. By level 5, the alpha oscillations have nearly dissipated, and
the EEG is dominated by slow-delta oscillations. As the propo-
fol infusion rate is decreased, EEG dynamics are recapitulated
in reverse. As in the previous examples, the SS-MT spectrogram
shows substantial spectral denoising and increased resolution rel-
ative to the MT spectrogram. The denoised time-domain signals
and the SS-MT spectrogram strongly suggest that different oscil-
latory components are present in the EEG when the subject is in
different anesthetic states.

Inferring Differences in Spectral Power Between Anesthetic States.
To make a formal statistical inference about the relationship
between these anesthetic states and EEG signatures, we com-
pare the power across the spectrogram from 0.1 to 30 Hz among
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representative 100-s intervals during each of the anesthetic states
(Fig. 3A). The 100-s intervals are baseline awake period awake1,
500–600 s; LC, 3,100–3,200 s; UNC, 4,600–4,700 s; RC, 6,600–
6,700 s; and final awake state awake2, 9,000–9,100 s. To compare
two 100-s intervals for each frequency ω in a given frequency
range, we compute the average difference spectrogram between
two intervals:

∆f̄r,s(ω) =
1

100

[∫
r

f SS−MT
t (ω)dt −

∫
s

f SS−MT
t (ω)dt

]
, [19]

where r and s are two distinct 100-s intervals. To determine if
there is a significant change in the spectrogram between any two
of the anesthetic states, we use a Monte Carlo procedure to com-
pute an approximate empirical Bayes’ 95% confidence interval
(95% CI) for ∆f̄r,s(ω) (30). Together, the Kalman filter [7 and
8], the Kalman smoothing [16], and the covariance smoothing
[17] algorithms define the multivariate complex Gaussian joint
posterior density of ∆Zk|K for k = 1, . . . .K , conditional on the
parameter estimates. The quantity ∆f̄r,s(ω) is a function of the
∆Zk|K , so that given a random sample of the ∆Zk|K , we can
compute ∆f̄r,s(ω). By drawing a large number of the ∆Zk|K , say
1,000, we can, therefore, compute 95% CIs for ∆f̄r,s(ω) (Fig. 4).
A significant difference in power is observed if the zero is not in
the 95% CI.

We show 6 of 10 possible comparisons of differences in power
among the five anesthetic states (Fig. 4). The LC and UNC
states show significant increases in power in the slow-delta and
alpha bands relative to awake1, the baseline awake state (Fig.
4 A and B). There is also a significant increase in power in the
upper part of the slow-delta and in the alpha bands between
RC and awake1 (Fig. 4C) and between LC and the UNC state
(Fig. 4E). In contrast, there are no appreciable differences in
power between awake2 and awake1 (Fig. 4D) or between LC
and RC (Fig. 4F). These findings are in complete agreement
with the structure of the power in the spectrogram (Fig. 3D). We
can conclude that there are significant quantifiable differences in
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EEG power between different anesthetic states and that those
differences can range from 10 to 20 dB (95% CI). These find-
ings also agree with and go beyond the original analyses of these
data, in which hypothesis testing methods with Bonferroni cor-
rections were used to compare the anesthetized states with just
awake1 (35). Using the model in Eq. 18, we assessed the cover-
age probability of the empirical Bayes’ CIs in a simulation study
(SI Appendix) and found that the actual and nominal coverage
probabilities are in good agreement.

Spectrogram Denoising. The SS-MT spectrogram has greater
denoising than the MT spectrogram (Figs. 1–3) because of the
stochastic continuity constraints (Eq. 3) and the eigenspectro-
gram averaging (SI Appendix, Figs. S3 and S4). The stochastic
continuity constraint has a different independent effect at each
frequency. In both the theoretical and the real data examples,
the state variances, σ2,(m)

v,l , are small (0.05–4 dB) for frequencies
with low power and large (27–38 dB) for frequencies with high
power (SI Appendix, Fig. S5, blue curves). The Kalman gains,
C

(m)
k,l , reached steady-state values within 5–10 updates, and like

the state variances, the Kalman gains were small (0.1–0.4) for
frequencies with low power and large (0.7–0.95) for frequencies
with high power (SI Appendix, Fig. S5, red curves). Rewriting Eq.
7c as

∆Z
(m)

k|k (ωl) = (1− C
(m)
k,l )∆Z

(m)

k−1|k−1(ωl) + C
(m)
k,l Y

(m),F
k,l [20]

shows that the increment difference estimate on interval k is a
weighted average between the increment difference estimate on
interval k − 1 and the Fourier transform of the tapered data
on interval k . In particular, frequencies with low power weight
Z

(m)

k−1|k−1(ωl) more than Y
(m),F
k,l . This weighting favors suppress-

ing increases or fluctuations in the low-power or noise frequen-
cies. In contrast, frequencies with high power weight more the
new information in Y

(m),F
k,l . These differential effects denoise

the spectrogram by heightening the contrast between frequen-
cies with high power and those with low power in the analysis of
the simulated data (Fig. 1F and SI Appendix, Fig. S6 C and D)
and in the analysis of the actual EEG recordings (Fig. 2F and SI
Appendix, Figs. S6C and S9C).

Averaging the MT eigenspectrograms reduces the variabil-
ity in the MT spectrogram (SI Appendix, Fig. S3) (11). Each
SS-MT eigenspectrogram (SI Appendix, Fig. S4 A–C) has vari-
ability comparable with the SS periodogram (Fig. 2E) (29).
Averaging the SS-MT eigenspectrograms reduces the vari-
ability of the SS-MT spectrogram at each frequency rela-
tive to the SS periodogram (SI Appendix, Fig. S4D) by M−1

[9], thus giving the SS-MT spectrogram a further denoising
enhancement.

Spectral Resolution and Leakage Reduction. Kalman filter updating
[7c and 20] enhances the spectral resolution of the SS-MT spec-
trogram relative to the MT spectrogram by reducing leakage. To
see why, assume that fk (ωj ) and fk (ωl) are the true spectrograms
on time interval k at two frequencies ωj and ωl , respectively, and
that fk (ωj )� fk (ωl). Let ∆ωr be the frequency resolution cho-
sen for the MT analysis. If |ωj − ωl | < ∆ωr (|ωj − ωl | > ∆ωr ),
then in the MT analysis, the narrow (broad)-band power at ωj

leaks into the power at ωl (12). The extent of the leakage is gov-
erned by the power spectral density of each taper (SI Appendix,
Figs. S7, S8, S10, and S11). In the SS-MT analysis, because ωl

has low power, ∆Z
(m)

k|k (ωl) weights ∆Z
(m)

k−1|k−1(ωl) much more

than Y
(m),F
k,l , the term in Eq. 20 that carries the leakage from

ωj . Hence, broad- and narrow-band power leakage from ωj into
the power at ωl is reduced, because the Kalman gain at ωl

is small.

For example, at 70 min (Fig. 2 D and F and SI Appendix, Fig.
S9 A and C), the MT and SS-MT spectrograms agree in the high-
power frequency bands (i.e., 0.1–5 and 9.5–15.5 Hz) and disagree
in the low-power frequency bands (5.1–9.4 and 15.6–30 Hz); 6 Hz
is just on the border of the narrow-band leakage from 5 Hz for
the MT spectrogram (SI Appendix, Fig. S9A). The 12-dB dif-
ference between the MT and the SS-MT spectrograms at 6 Hz
results, because the former has leakage from the power at 5 Hz,
whereas the latter has enhanced denoising and reduced leakage.
A 10- to 15-dB power difference persists between the MT and
SS-MT spectrograms beyond 15 Hz because of the small values
of the Kalman gain in this frequency band (SI Appendix, Fig. S9
C and D).

At 80 min (Fig. 2 D and F and SI Appendix, Fig. S9 B and
D), the MT and SS-MT spectrograms also agree in the high-
power frequency bands (0.1–5 and 10.5–15 Hz) and disagree in
the low-power frequency bands (i.e., 5.1–9.4 and 15.1–30 Hz). A
similar argument explains the 7-dB difference in power at 16 Hz
between the MT and the SS-MT spectrograms at minute 80. The
same argument also explains in the analysis of the simulated data
example the 7-dB difference in power at 11 Hz in the MT and
SS-MT spectrograms at 25 min (SI Appendix, Fig. S6D). The dif-
ferences between MT and SS-MT tapering are discussed in SI
Appendix.

Discussion
Time series are a prominent big data class with growth that
is being spurred by innovations in sensing and recording tech-
nologies. These data track dynamic processes, making accu-
rate real-time analyses an important objective. Aside from sim-
ply extracting important features from the series, the analysis
should provide associated measures of uncertainty, so that for-
mal statistical inference can be conducted the same way that
it would be conducted for questions arising from smaller, sim-
pler datasets. No current time-frequency analysis method pro-
vides an inference framework applicable to the entire series
(8, 11–16). To address the inference problem for nonstation-
ary time series, we combined the MT and the SS approaches
into an empirical Bayes’ paradigm for frequency- and time-
domain analyses of nonstationary time series. We showed the
SS-MT inference paradigm by analyzing differences in EEG
power between different propofol-induced anesthetic states
(Fig. 4). By reporting the results in terms of 95% empiri-
cal Bayes’ CIs, we measure directly the effect size (i.e., how
much EEG power differs among propofol’s anesthetic states).
We base our inferences on 95% CIs derived from the empir-
ical Bayes’ estimate of the joint posterior distribution of the
power across all of the frequencies and all times in the time
series rather than on tests of multiple hypotheses. Our small
simulation study (SI Appendix) suggests that the nominal and
actual coverage probabilities of the empirical Bayes’ CIs are in
good agreement. The empirical Bayes’ paradigm has been sug-
gested as a practical approach to solving large-scale inference
problems (37).

Our analyses offer scientific insights. The SS-MT spectrograms
show denoising and spectral resolution that more clearly define
the frequency content of anesthetic EEG signals. As a conse-
quence, the results in Fig. 2 suggest that most of the theta oscil-
lation power in the sevoflurane spectrogram could be caused by
power shifts from both the alpha band above and the slow-delta
band below. The results in Fig. 4 allow us to make formal infer-
ences about EEG power difference as a function of the level of
unconsciousness in a single individual.

SS-MT Time-Frequency Analysis of Nonstationary Time Series. In
addition to providing a statistical inference framework, the SS-
MT paradigm has other desirable features. By the spectral rep-
resentation theorem, the orthogonal increment differences are
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the fundamental process that underlies a stationary time series
(27, 38). Hence, we defined nonstationarity by starting with the
common practice of choosing a minimal interval on which the
time series is assumed stationary (SI Appendix, Table S1) and
then applying a stochastic continuity constraint [3 and 6] to
link the increment differences across the minimal intervals. We
constructed the SS model by taking the observed data to be
the Fourier transforms of the M tapered data series [5]. For
a given taper, the Fourier transform of the tapered data is J
independent, complex Gaussian observations in the frequency
domain. Hence, to estimate the increment differences, we imple-
mented in parallel J independent 1D complex Kalman filters
[7a–7d]. Given the M tapers, the M ·J algorithms run in parallel,
and the SS-MT spectrogram (cross-spectrogram) estimates are
computed by summing the M eigenspectrograms (eigen cross-
spectrograms) in Eq. 9 (SI Appendix, Eq. S14) at each Kalman fil-
ter update. Parallel computation makes SS-MT spectrogram esti-
mation attractive for real-time applications. Each 1D complex
Kalman filter has an associated Kalman smoother [16], covari-
ance smoothing [17], and an EM algorithm for parameter esti-
mation at each frequency (SI Appendix).

Both the SS and the MT components of SS-MT analysis con-
tribute significantly to spectrogram denoising. The state vari-
ances and Kalman gains are high (low) at frequencies with high
(low) power (SI Appendix, Fig. S5). Therefore, the Kalman filter
updating [7c and 20] denoises the spectrogram by heightening
the contrast between high- and low-power spectrogram ordinates
(Figs. 1 D and F, 2 D and F, and 3 C and D). The MT component
of the SS-MT algorithm further contributes to the denoising by
averaging the eigenspectrograms to reduce the variance at all fre-
quencies by M−1 (SI Appendix, Figs. S3 and S4). In addition, SS
estimation [7c and 20] enhances the spectral resolution in the
SS-MT spectrogram relative to the MT spectrogram by reducing
both narrow-band and broad-band leakage (SI Appendix, Figs.
S6 and S9). Because the Kalman gains at low-power frequencies
are small, leakage from even nearby frequencies with high power
is reduced (SI Appendix, Figs. S6 and S9). In our simulated and
real data examples, the effect of SS updating on denoising and
spectral resolution was a 10- to 15-dB difference between the SS-
MT and the MT spectrograms in the low-power frequency bands
(Figs. 1 D and F, 2 D and F, and 3 C and D and SI Appendix, Figs.
S6 and S9).

By applying the spectral representation theorem to the esti-
mated increment differences [14 and 15], we extracted the time-
domain signals within specified frequency bands as well as instan-
taneous phase and amplitude (Fig. 3B and SI Appendix, Figs.
S1 and S2). The SS-MT paradigm is highly flexible, because
arbitrary combinations of frequency components can be chosen
to construct the time-domain signal. Time-domain signal extrac-
tion is not possible with standard nonparametric spectral meth-
ods, which only estimate power as a function of frequency.
Estimating instantaneous phase and amplitude with conven-
tional approaches requires a separate analysis (14). The SS-
MT paradigm conducts spectral analysis, signal extraction, and
instantaneous phase and amplitude estimation as parts of a uni-
fied framework.

Theoretical and Problem-Specific Methods Development. Our local
stationarity definition differs from the Dahlhaus definition,
which assumes time-invariant increment differences with deter-
ministic continuity of the time-dependent transfer function in
the spectral representation (33). The lengths of the local inter-
vals are either assumed (33) or estimated (39). The local spectral
estimates are computed as the squared modulus of the Fourier
transform of the data after applying a single taper or by fitting a
parametric model using local Whittle likelihoods (40). Like the
MT methods, these local estimation approaches do not combine
information across the local stationary intervals.

In contrast, the stochastic continuity constraint imposed by the
random walk model enables recursive estimation of the time-
dependent increment differences and the spectrogram. The cur-
rent form of the continuity constraint has a theoretical draw-
back. It implies that, at each frequency, spectral power grows
with time, since the theoretical spectrum on stationary interval
k at frequency ωj is

fk (ωj )dωj = fk−1(ωj )dωj + σ2
j . [21]

In practice, the spectrogram estimate does not explode, because
on every stationary interval k , C (m)

k,l , the Kalman gain is bounded
between zero and one [8]. If the Kalman gain is zero, then the
spectrogram estimate on interval k is the SS-MT spectrogram
estimate on interval k−1, whereas if the Kalman gain is one, then
the spectrogram estimate on interval k is the MT spectrogram
estimate on interval k [20]. Nevertheless, a possible correction
to Eq. 21 is to assume that the increment differences follow a
stationary model, such as

∆Zk (ωj ) = ρj∆Zk−1(ωj ) + vk (ωj ), [22]

where we assume that 0 < ρj < 1. Hence, we have

fk (ωj )dωj = E‖∆Zk (ωj )‖2

= ρ2j E‖∆Zk−1(ωj )‖2 + σ2
j

= ρ2j fk−1(ωj )dωj + σ2
j . [23]

Eq. 22 means that the nonstationary time series has an underly-
ing stationary increments process. The parameter ρj can easily
be estimated in the EM algorithm. Our SS approach falls into
the class of regularization methods for solving big data problems
(41). Thus, the current wealth of regularization research can be
applied to the SS-MT paradigm.

In our data analyses, we followed the common practice of set-
ting the stationary interval a priori (SI Appendix, Table S1). Our
analyses (SI Appendix, Fig. S14 and Table S2) suggest that the
spectrogram estimates can be sensitive to interval choice and that
different stationary intervals could be optimal for different fre-
quencies. Therefore, in future work, we will incorporate interval
choice into the estimation by evaluating the likelihood as a func-
tion of stationary interval length.

At present, both our model-fitting algorithms and inference
framework depend critically on the Gaussian observation and
state models [2 and 3]. Description of signal frequency content
and inferences may be inaccurate when these assumptions do not
hold. As an alternative, model-fitting and inference using non-
Gaussian SS models can be readily carried out using sequential
Monte Carlo methods (42). This extension will be the topic of a
future investigation.

Application of the SS-MT paradigm in time-frequency anal-
yses of different types of nonstationary time series is a pro-
ductive way to extend our methods by allowing the question
under investigation to guide problem-specific development
of the framework. We will continue to study EEG time series
recorded under different anesthetic drugs (36). The EEG
recorded during sevoflurane general anesthesia (Fig. 2) sug-
gests a smooth process defining continuity among the time inter-
vals. Therefore, higher-order stationary models could be chosen
to impose a greater degree of smoothness on the increment dif-
ferences and the spectrogram. In contrast, the EEG recorded
during induction of and recovery from propofol-induced uncon-
sciousness (Fig. 3) suggests that a process with jump discon-
tinuities may be a more appropriate state model for these
data. SI Appendix, Table S1 summarizes problems from dif-
ferent fields of science that have used MT spectral methods
to study nonstationary processes. These several applications
suggest a rich testbed for further development of the SS-MT
paradigm.
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Adaptive model parameter estimation using local likelihood,
SS, or method of moments techniques can be combined with dif-
ferent continuity models. A key decision in using adaptive esti-
mation is defining the timescale of the parameter updates. We
used the target anesthetic levels as covariates—subject matter
constraints—to set this timescale in Fig. 3. Subject matter con-
straints may also be used to reduce the number of parameters.
We limited state variance estimation to frequencies below 30 Hz
based on knowledge of the frequency range relevant for track-
ing anesthetic states (36). The näıve empirical Bayes’ CIs had
good coverage probabilities based on our small simulation study
of the model in Eq. 18. These intervals can be further calibrated
by taking account of the uncertainty in the maximum likelihood

parameter estimates obtained from the EM algorithm (43).
Computation of the SS-MT cross-spectrogram (SI Appendix, Fig.
S12) suggests that our paradigm can be extended to inference
problems for multivariate nonstationary time series.

The SS-MT paradigm provides a computationally efficient
framework for spectrogram estimation, time-domain signal extrac-
tion, and statistical inference for nonstationary time series.
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