Carnegie Mellon University McWilliams Center for Cosmology

2016 Jamboree

Rachel Mandelbaum (+Optimus Prime)

Observational cosmology:

- how can we make the best use of large datasets? (+stats, ML connection)
- dark energy
- the galaxy-dark matter connection

for tens of millions of galaxies to (statistically) map dark matter and answer these questions

I measure this:

Data I use now:

Future surveys I'm involved in:

euclid

Hung-Jin Huang

Sukhdeep Singh

Graduate Student with Prof. Rachel Mandelbaum

Research

- 1. Weak Lensing Science
 - Gravitational Physics
 - Nature of Dark Matter, Dark Energy

2. Intrinsic Alignments

- Galaxy Formation and Evolution
- Weak Lensing Systematics

r_p [Mpc/h]

FRANCOIS LANUSSE

Observational cosmology

• Weak Lensing

Astrostatistics

• Sparsity / Machine Learning

Postdoc with Rachel Mandelbaum

Carnegie Mellon University McWilliams Center for Cosmology

Danielle Leonard

McWilliams Postdoctoral Fellow

- Weak lensing + other LSS probes of non-standard cosmology, especially alternative theories of gravity
- Degeneracies involving beyond-LCDM parameters
- Understanding theoretical uncertainties, as related to next-generation surveys

Matthew G. Walker

Mao-Sheng Liu (Terrence) Advisor: Matthew Walker

Study the distribution of dark matter at small scale through sampling-based inference, including:

Likelihood Approximation
Approximate Bayesian Computation
Machine Learning

Evan Tucker - 4th Year Grad Student

Working with Matt Walker, we developed a new model for fitting galaxy spectra extracting population properties: age, [Fe/H], v_{los}, and mass. We are now developing a new mixture model to understands dynamics of galaxy clusters.

Alex Geringer-Sameth

Postdoctoral researcher

Astroparticle physics

Tina Kahniashvili

The McWilliams Center For Cosmology

- Cosmology
 - Very Early Universe
 - Fundamental
 Symmetries Tests
 - Gravitational Waves
 - Cosmic Microwave
 Background
 - Accelerated Expansion
 - Modified Gravity
 - Dark Energy
 - Astro-Particle Physics
 - Neutrino Mass Origin

Astrophysics

- Cosmic Magnetic Fields
- MHD Turbulence

Hy Trac Asst Prof 8307 Wean Hall hytrac@cmu.edu

Group

Minghan Chen, Paul La Plante, Michelle Ntampaka, Jeff Patrick, Layne Price

Interests

Structure formation & evolution, large-scale structure, dark matter halos, galaxies, clusters, cosmic reionization

Tools

Cosmological simulations, N-body, hydro, radiative transfer

Ether (finite-volume particle method) Hyper (fast hydro-particle-mesh)

First Stars & Galaxies

Galaxy Clusters

Meshing

Meshfree

Michelle Ntampaka

Research:

- Graduate student working in Hy Trac's group
- Research: Galaxy Cluster
 Dynamics with ML and Stats

Outreach:

Early Childhood Astronomy

Paul La Plante

- Graduate student, soon-to-be postdoc
- Works with Prof. Hy Trac
- Simulations of helium reionization
- Quasar properties, IGM thermal history, Lyman-alpha forest
- Efficient, scalable algorithms for cosmological simulations

and analysis

Peta-scale computation

Helium reionization in action

Diane Turnshek, Special Faculty, Physics, CMU

- Teaches Astronomy and manages classroom demos
- Teacher Advisory Panelist at Carnegie Science Center
- IDA Dark Sky Defender
- Chair of IAU Technical Working Group against light pollution

Layne Price

Cosmo/Stats/ML

Early universe	Machine	Bayesian
theory	learning	modelling

Jeff Peterson: Radio Astronomy With 2000-receiver Telescopes

- Building three radically new telescopes in Canada (CHIME), South Africa (HIRAX) and China (Tianlai).
- Primary Goals:
 - Map LSS via 21-cm intensity field—BAO dark energy test
 - Find and localize 10 Fast Radio Burst per day

Zhonghao Luo (Roy)

- Advisor: Jeff Peterson
- 4th year graduate student
- Lyman Alpha Intensity Mapping using a small aperture telescope with grism spectrotomography

Hsiu-Hsien Lin

• 4th year physics graduate student Advisor: Jeffrey Peterson

• Search Fast Radio Bursts (FRBs) and Pulsars by using Green Bank Telescope and incoming telescopes.

• Discover FRB110523 Masui, K., Lin, H.-H., Sievers, J., et al. 2015, Nature, 528, 523

Name : Aklant Kumar Bhowmick Advisor: Tiziana Di Matteo

- Third year graduate student at CMU
- Worked in the field of interfacial instabilities
- Interested in Smooth Particle Hydrodynamic simulations

Stanic et al. 2012

http://web.phys.cmu.edu/~tiziana/D6bh/article/compare2.gif

Carolina Núñez

Research Assistant, "Pre-Doc"

Group: Prof. Shirley Ho

Selection x DEEP2: z Selection x COSMOS: Photo-z Selection x DEEP2: U-BNormalized Distribution 5 $\overline{U-B} = 1.14$ 4 $\sigma_{(U-B)} = 0.24$ $\bar{z} = 0.68$ $\bar{z} = 0.68$ $\sigma_z = 0.14$ $\sigma_z = 0.18$ $\overline{U-B} = 1.02$ 3 This Work, $z \ge 0.55$ $\sigma_{(U-B)} = 0.27$ $\bar{z} = 0.67$ $\bar{z} = 0.62$ This Work, $z \ge 0.70$ $\sigma_{2} = 0.20$ $\sigma_{z} = 0.18$ 2 Prakash et al. (2015) <u>V-B</u>=1.01 $\sigma_{(U-B)} = 0.27$ $\bar{z} = 0.65$ $\bar{z} = 0.60$ 1 o_=0.20 o.=0.18 0.5 0.5 2.01.0 1.52.0 0.01.01.5 0.0 0.5 1.01.5 2.0 0.0U-BZ Z

Research Topics:

- Photometrically selected massive galaxy catalog
- SZ effect
- Photo-z

Ross O'Connell

McWilliams Center

LSS, BAO, etc.

Current interests: Covariance matrix estimation

Tomographic analysis (for eBOSS, DESI, etc.)

https://github.com/rcoconnell/Rascal

Elena Giusarma

Postdoctoral Fellow

8.0

P/P 9.0

0.15

Research Groups:

- Prof. Shirley Ho
- Prof. Rupert Croft

Research Topics:

- Neutrino Cosmology
- Impact of neutrinos properties
- Modeling scale dependent bias using CMB lensing and galaxy clustering
- Gravitational redshift in galaxy clusters

the lyman-alpha forest

relativistic distortions of galaxies and large-scale structure

cosmology video games

Gravitational redshifts in galaxy clusters / MaNGA BCGs

__author__ = 'Hongyu Zhu' __status__ = '4th year graduate student' __advisor__ = 'Prof. Rupert Croft'

RECENT ASTROPARTICLE THEORY PROJECTS: Leonard Kisslinger and Collaborators:

1) Review of QCD, Quark-Gluon Plasma, Heavy Quark Hybrids, and Heavy Quark State Production in p-p and A-A Collisions, Leonard S. Kisslinger and Debasish Das, Int.J.Mod.Phys.A 31, 1630010 (2016)

This was a review of the Quantum Chromodynamics Cosmological Phase Transitions, the Quark-Gluon Plasma, the production of heavy quark states via p-p collisions and RHIC (Relativistic Heavy Ion Collisions) using the mixed hybrid theory for the $\Psi(2S)$, $\Upsilon(3S)$ states; and the possible detection of the Quark-Gluon Plasma via heavy quark production using RHIC.

2) Polarized Gravitational Waves from Cosmological Phase Transitions, L.S.K. and Tina Kahniashvili, Phys.Rev.D 92, 043006 (2015)

We estimated the degree of circular polarization for the gravitational waves generated during the electroweak and QCD phase transitions (EWPT and QCDPT) from the kinetic and magnetic helicity generated by bubble collisions during those cosmological phase transitions.

3) STERILE NEUTRINOS: neutrinos in addition to the three standard model active neutrinos.

One Sterile Neutrino: Experimental parameters were used to estimate the effect on muon neutrinos converting (oscillating) to electron netrinos: L.S.K., Int.J.Theor.Phys. 54,2141(2015);

Two Sterile Neutrinos: L.S.K., Int.J.Theor.Phys. to be published (2016)

Review of Neutrino Oscillations With Sterile and Active Neutrinos: L.S.K., Int. J. Mod. Phys. A, Vol 31, 1630037 (2016)

4) Dark Mass Creation During EWPT via Dark Energy Interaction, L.S.K. and S. Casper, Modern Physics Letters A Vol 29, 1450055 (2014).

Since all standard particles received their mass during the early universe cosmological Electroweak Phase Transition (EWPT), we added Dark Matter Dark Energy terms with a Dark Energy field interacting with a Dark Matter field, called the Qunitessence fiels, to the EW Lagrangian previously used to calculate the magnetic field created during the EWPT. From this model we calculated the mass of Dark Matter Particles and estimated the Dark Matter masses to be in the range of a few GeV to 140 GeV, which is consistent with recent experiments.

Department of Statistics

PENNSYV

Peter Freeman Domain: Astrostatistics

A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting

Contained a Density $\begin{array}{c} \text{Density} \\ \text{Density} \\ \begin{array}{c} \text{maxRatio} = 1 \max_{i \in s} R_i \\ \text{Matio} \\ \hline \\ \end{array} \\ \begin{array}{c} \text{Ratio} \\ \text{Ratio} \\ \hline \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \\ \end{array} \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \\ \end{array} \\ \end{array}$ \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{P} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array} \end{array}

Approximate Bayesian Computation

Sams²⁰¹⁶⁻¹⁷ Program on Statistical, Mathematical and Computational Methods for Astronomy (ASTRO)

Evolution of Galaxy Morphology real

Etc., Etc.

Zongge Liu

- Advisor: Chad Schafer
- Interest: applied statistics in astronomy/ data mining
- Projects:
- Astrostats: predicting emission line from galaxy continuum
- Data mining: Effective recovery and efficient fusion for aggregated historical data.
- Cosmology: CMB weak lensing

Department of Statistics

Exploring the Intergalactic Medium

Collin Eubanks, Jessi Cisewski, Rupert Croft, Doug Nychka, and Larry Wasserman

Goal: Produce 3D map of H_I density fluctuations in the IGM from Lyman-α forest in BOSS/eBOSS QSO spectra

Principle Challenges: Highly nonuniform sampling, computational costs

Future Work: (Suboptimal) homogeneous map, eBOSS DR13 (and future releases), supercluster catalog, topological analysis, ...

Interests: Galaxy morphology

- Comparing distributions of galaxy morphologies between two populations (high-mass vs. low-mass, old vs. new and high SFR vs. low SFR)
- Main interest is to know how two populations are locally different in a multivariate space of morphology statistics such as M, I, D, Gini, M₂₀, C and A.

Binomial Tests for Mass (7-dim feature space)

Ilmun Kim¹, Ann Lee¹, Peter Freeman¹ and Jeffrey Newman²

¹Department of Statistics Carnegie Mellon University ²Department of Physics and Astronomy University of Pittsburgh