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Highlights

Main Concepts

Galileons are higher derivative, ghost free scalar field theories which
are not renormalized by loop corrections and have shift symmetries.

They exhibit Vainshtein screening mechanism and appear in modified
gravity theories, ex. DGP and Massive Gravity.

Galileons are the Goldstones of spacetime SSB in probe brane theories.

This works treats Galileons using standard SSB methods, galileons
require a higher dimensional construction and are Wess-Zumino terms.

Garrett Goon (UPenn) August 24, 2012 3 / 13



Highlights

Main Concepts

Galileons are higher derivative, ghost free scalar field theories which
are not renormalized by loop corrections and have shift symmetries.

They exhibit Vainshtein screening mechanism and appear in modified
gravity theories, ex. DGP and Massive Gravity.

Galileons are the Goldstones of spacetime SSB in probe brane theories.

This works treats Galileons using standard SSB methods, galileons
require a higher dimensional construction and are Wess-Zumino terms.

Garrett Goon (UPenn) August 24, 2012 3 / 13



Highlights

Main Concepts

Galileons are higher derivative, ghost free scalar field theories which
are not renormalized by loop corrections and have shift symmetries.

They exhibit Vainshtein screening mechanism and appear in modified
gravity theories, ex. DGP and Massive Gravity.

Galileons are the Goldstones of spacetime SSB in probe brane theories.

This works treats Galileons using standard SSB methods, galileons
require a higher dimensional construction and are Wess-Zumino terms.

Garrett Goon (UPenn) August 24, 2012 3 / 13



Highlights

Main Concepts

Galileons are higher derivative, ghost free scalar field theories which
are not renormalized by loop corrections and have shift symmetries.

They exhibit Vainshtein screening mechanism and appear in modified
gravity theories, ex. DGP and Massive Gravity.

Galileons are the Goldstones of spacetime SSB in probe brane theories.

This works treats Galileons using standard SSB methods, galileons
require a higher dimensional construction and are Wess-Zumino terms.

Garrett Goon (UPenn) August 24, 2012 3 / 13



Review of Galileons

DGP

Modify gravity at large scales to explain cosmic acceleration.

The DGP model (Dvali, Gabadadze, Porrati, 2000) consists of a
3-brane floating in a 5D bulk with the action,

S =
M3

5

2

∫
d5X

√
−G R(G ) +

M2
4

2

∫
d4x
√
−gR(g) .

In a certain limit, DGP effects are captured by a single scalar field,

SD.L. ∼
∫

d4x − 1

2
(∂π)2 − a

Λ3
(∂π)2�π +

1

M4
πT + . . .
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Review of Galileons

Generalization and Properties

The cubic interaction term, (∂π)2�π, has interesting properties.

Shifts by a total derivative under “Galileon” symmetry,

π → π + a + bµxµ, ∂µπ → ∂µπ + bµ

and second order equations of motion.

In d-dimensions there are only d + 1 Galileon terms, taking the form

Li ∼ π(∂2π)i−1, i ∈ {1, . . . , d + 1}

generalized by (Nicolis, Rattazzi, Trincherini, 2009).

Other terms in the EFT are higher order, ∼ (∂∂π)n.

Galileons do not receive quantum corrections, δΓ ∼ (∂∂π)n. Proof is
diagrammatic.

Garrett Goon (UPenn) August 24, 2012 5 / 13



Review of Galileons

Generalization and Properties

The cubic interaction term, (∂π)2�π, has interesting properties.

Shifts by a total derivative under “Galileon” symmetry,

π → π + a + bµxµ, ∂µπ → ∂µπ + bµ

and second order equations of motion.

In d-dimensions there are only d + 1 Galileon terms, taking the form

Li ∼ π(∂2π)i−1, i ∈ {1, . . . , d + 1}

generalized by (Nicolis, Rattazzi, Trincherini, 2009).

Other terms in the EFT are higher order, ∼ (∂∂π)n.

Galileons do not receive quantum corrections, δΓ ∼ (∂∂π)n. Proof is
diagrammatic.

Garrett Goon (UPenn) August 24, 2012 5 / 13



Review of Galileons

Generalization and Properties

The cubic interaction term, (∂π)2�π, has interesting properties.

Shifts by a total derivative under “Galileon” symmetry,

π → π + a + bµxµ, ∂µπ → ∂µπ + bµ

and second order equations of motion.

In d-dimensions there are only d + 1 Galileon terms, taking the form

Li ∼ π(∂2π)i−1, i ∈ {1, . . . , d + 1}

generalized by (Nicolis, Rattazzi, Trincherini, 2009).

Other terms in the EFT are higher order, ∼ (∂∂π)n.

Galileons do not receive quantum corrections, δΓ ∼ (∂∂π)n. Proof is
diagrammatic.

Garrett Goon (UPenn) August 24, 2012 5 / 13



Review of Galileons

Generalization and Properties

The cubic interaction term, (∂π)2�π, has interesting properties.

Shifts by a total derivative under “Galileon” symmetry,

π → π + a + bµxµ, ∂µπ → ∂µπ + bµ

and second order equations of motion.

In d-dimensions there are only d + 1 Galileon terms, taking the form

Li ∼ π(∂2π)i−1, i ∈ {1, . . . , d + 1}

generalized by (Nicolis, Rattazzi, Trincherini, 2009).

Other terms in the EFT are higher order, ∼ (∂∂π)n.

Galileons do not receive quantum corrections, δΓ ∼ (∂∂π)n. Proof is
diagrammatic.

Garrett Goon (UPenn) August 24, 2012 5 / 13



Review of Galileons

Generalization and Properties

The cubic interaction term, (∂π)2�π, has interesting properties.

Shifts by a total derivative under “Galileon” symmetry,

π → π + a + bµxµ, ∂µπ → ∂µπ + bµ

and second order equations of motion.

In d-dimensions there are only d + 1 Galileon terms, taking the form

Li ∼ π(∂2π)i−1, i ∈ {1, . . . , d + 1}

generalized by (Nicolis, Rattazzi, Trincherini, 2009).

Other terms in the EFT are higher order, ∼ (∂∂π)n.

Galileons do not receive quantum corrections, δΓ ∼ (∂∂π)n. Proof is
diagrammatic.

Garrett Goon (UPenn) August 24, 2012 5 / 13



Geometric Picture of Galileons

Galileons as Goldstones

Galileons arise from probe brane scenarios using Lovelock invariants in
the action (de Rham et al., 1003.5917).

Galileons arise from M4 brane in an M5 bulk and taking c5 →∞.
Other Galileon theories come from brane perspective (Goon et al.,
1103.5745),(Goon et al., 1003.5917).
Galileon type theories describe Goldstones of spacetime SSB.
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Motivations

A New Viewpoint

Study from new perspective, solely from SSB pattern.

SSB is well studied, wealth of knowledge readily available.

New perspectives may shed light on non-renormalization theorem.
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SSB and Nonlinear Realizations

The Coset Construction: Internal Case (Callan, Coleman,...)

Break G → H, where {VI}’s generate H and {Za}’s are broken.

Identify fields with coordinates of the coset G/H, [g ] = eπ
aZa .

Fields transform in a well-defined manner under g ∈ G
eπ

aZa → eπ
′aZa = geπ

aZah−1(g , πa), h ∈ H.

To create actions one computes the Maurer-Cartan form,

[g ]−1d[g ] ≡ ωI
V VI + ωa

ZZa

and the left action of G changes ωZ (π)→ hωZ (π)h−1.

Use ωa
Z ’s in H invariant ways to make strictly invariant Lagrangians.

Galileons are not strictly invariant.
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Witten’s SU(3)× SU(3) Example

The Wess-Zumino-Witten Term (Witten,1983)

Consider breaking SU(3)L × SU(3)R → SU(3)diag.

Coset is ∼= SU(3), elements are [g ] = eπ
aT a ≡ U(π) ∈ SU(3).

The Maurer-Cartan form is U−1dU, actions take the form

S =

∫
d4x Tr

[
U−1∂µU U−1∂µU

]
+ . . .

and have discrete symmetries π → −π and parity.

Discrete symmetries are not expected and disallow observed processes.

Something’s missing.
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A 5D Solution

Witten’s method: take spacetime to be an S4 enclosing B5.

Use coset construction to produce a locally exact 5-form, ω5 = dα4.
Define a 5D “Wess-Zumino” action by integrating ω5 over B5,

Under symmetry, ω5 → ω5, but it’s possible that α4 → α4 + dλ.
Resolves 4D problems,

SWZ = α

∫
B5

Tr
[
U−1dU ∧ . . . ∧ U−1dU

]
= α

∫
M4

d4x εµνρσπa∂µπ
b∂νπ

c∂ρπ
d∂σπ

eTr [T a . . .T e ] + . . .

Global considerations show that α is quantized, not renormalized.
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The Galileon Analogy

Minkowski Galileons arose from c5 →∞ limit of M4 in M5 theory.

SSB pattern is Gal(3 + 1, 1)→ SO(3, 1) where Gal(3 + 1, 1) is
ISO(4, 1) with c5 →∞.
Basics of coset construction are unchanged, but there are fewer DOF
due to the “Inverse Higgs Effect.”
The 4D application of the coset construction only creates lagrangians
of the form

L4D ∼ (∂∂π)n ,

strictly invariant under ∂µπ → ∂µπ + bµ, as expected.
The 5D construction leads to galileons

L5D ∼ π(∂∂π)n ,

which change by a total derivative.
No obvious non-renormalization theorem.
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Further Work

Used to catalog galileons in arbitrary dimensions, via cohomology.

Analysis applies to multigalileons with internal SO(N) symmetry.
Conformal galileons, SO(4, 2)→ SO(3, 1),

L4D =
1

2
e2π(∂π)2 + . . .

L5D = (∂π)4 + 2(∂π)2�π ,

and other patterns.
Conformal galileon WZ term appears in a-theorem.
Further investigate quantum aspects of galileon type theories.
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