Brane Localization and Stabilization via Regional Physics

[arXiv:1205.1528]

David Jacobs, Glenn Starkman, and Andrew Tolley

Case Western Reserve University

Workshop on Cosmic Acceleration (CMU)
August 24, 2012

- Extra Dimensions, Braneworlds and Regional Physics
 - Motivations
 - Global/Regional Effects on Local Physics
 - Implications for Braneworlds
- Localizing and Stabilizing a Brane
 - Contributions to the Effective Potential
 - 4-brane Wrapped Around 2d Manifolds

- Extra Dimensions, Braneworlds and Regional Physics
 - Motivations
 - Global/Regional Effects on Local Physics
 - Implications for Braneworlds
- Localizing and Stabilizing a Brane
 - Contributions to the Effective Potential
 - 4-brane Wrapped Around 2d Manifolds

Why Extra Dimensions and Braneworlds?

They are an interesting possibility and may offer an explanation of some outstanding issues in fundamental physics, e.g.

- Weak Hierarchy ($M_{\text{Weak}} \ll M_{pl}$): "Large" Extra Dimensions (Arkani-Hamed, et al. '98, Randall & Sundrum '99,...)
- Dark Energy ($\rho_{DE} \ll M_{Weak}^4$): Modifying Gravity in the IR with infinite extra d's (DGP '00, de Rham, et al. '07,...)

Why Extra Dimensions and Braneworlds?

They are an interesting possibility and may offer an explanation of some outstanding issues in fundamental physics, e.g.

- Weak Hierarchy ($M_{\text{Weak}} \ll M_{pl}$): "Large" Extra Dimensions (Arkani-Hamed, et al. '98, Randall & Sundrum '99,...)
- Dark Energy ($\rho_{DE} \ll M_{Weak}^4$): Modifying Gravity in the IR with infinite extra d's (DGP '00, de Rham, et al. '07,...)

- Extra Dimensions, Braneworlds and Regional Physics
 - Motivations
 - Global/Regional Effects on Local Physics
 - Implications for Braneworlds
- Localizing and Stabilizing a Brane
 - Contributions to the Effective Potential
 - 4-brane Wrapped Around 2d Manifolds

A Simple Example The Cylinder

A cylinder – one dimension of E² compactified

 Locally homogeneous and isotropic, however the interactions with fields tell you that isotropy is broken

A More Interesting Example The 2d Horn

• Contrast with the 2d horn (\mathcal{H}^2/Γ) , obtained by compactifying one dimension of the hyperbolic space (\mathcal{H}^2)

- Again, the geometry is homogeneous and isotropic, but now fields can tell you that both symmetries are broken
- Result: "Things look different" depending on where you are

The 2d Horn An Example Wavefunction

Typical probability density for low-energy bulk wavefunctions:

 Suppressed when wavelengths > horn circumference, affecting e.g. interaction between brane and bulk fields

In general...

- Generic Point: Even if the geometry is locally homogeneous and isotropic, the physics may very well not be because it is sensitive to global conditions
- In particular, position (of e.g. a brane) can be physically relevant, and valuable for model building!

The 2d Horn and Cone

Nice models for more generic spaces because

- one is curved, the other is flat
- one is infinite in extent, one ends at a vertex
- both break translation invariance (important later)
- both have "large" and "small" regions
- Field modes can be solved for analytically

The Horn/Cone as a Regional Approximation

- On more general manifolds some regions may be well-approximated by a horn or cone
- Regional physics depends on more than the local geometry, but not necessarily on the full manifold structure

- Extra Dimensions, Braneworlds and Regional Physics
 - Motivations
 - Global/Regional Effects on Local Physics
 - Implications for Braneworlds
- Localizing and Stabilizing a Brane
 - Contributions to the Effective Potential
 - 4-brane Wrapped Around 2d Manifolds

Motivations (Braneworld Scenarios)

- Regional features of the bulk manifold will affect, e.g.
 - probability for the brane fields to interact with bulk fields
 - the apparent dimensionality of the spacetime
- So there are two questions:
 - So, where is the brane? (localization)
 - What keeps it there? (stabilization)
 Constraint: no massless scalars

- Extra Dimensions, Braneworlds and Regional Physics
 - Motivations
 - Global/Regional Effects on Local Physics
 - Implications for Braneworlds
- Localizing and Stabilizing a Brane
 - Contributions to the Effective Potential
 - 4-brane Wrapped Around 2d Manifolds

The Casimir Effect

Canonical Example: Parallel Conducting Plates

Bordag, et al. (2009)

- Force on plates because seperation, $a \Rightarrow \{k\}$ and $E_0 = 1/2\Sigma\hbar\omega(k)$
- Since E(a), the force, $F \sim -\frac{d}{da}E(a)$

Casimir Energy Forces on Branes from Bulk Fields

 Bulk fields satisfying boundary conditions on the brane can provide a position-dependent Casimir energy/force

Energy from Brane Geometry

• If the brane geometry is non-trivial, e.g. when it wraps

- Energy from brane tension acts to shrink brane
- Energy from its extrinsic curvature acts to flatten the brane
- These can be position-dependent

- Extra Dimensions, Braneworlds and Regional Physics
 - Motivations
 - Global/Regional Effects on Local Physics
 - Implications for Braneworlds
- 2 Localizing and Stabilizing a Brane
 - Contributions to the Effective Potential
 - 4-brane Wrapped Around 2d Manifolds

The Models

 $\mathcal{M}^4 \times \mathcal{H}^2/\Gamma$ (Hyperbolic Horn)

 \bullet The full spacetime manifold is $\mathcal{M}^4\times\mathcal{H}^2/\Gamma$

$$ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu + e^{-2z/z_\star} Z_\star^2 d\theta^2 + dz^2$$

• SM fields can propagate in θ (it's "universal"), but in z they're confined to a codimension-1 brane at z_b

The Models $\mathcal{M}^4 \times \mathcal{H}^2/\Gamma$ (Hyperbolic Horn)

ullet We assume a bulk scalar field, ϕ

• Brane boundary conditions (e.g. $\phi(z_b) = 0$) determine the spectrum, hence affect the energy in quantum fluctuations

The Models M4× Cone

Same setup as horn

• Flat space, but $\theta \leftrightarrow \theta + 2\pi (1 - \delta)$

$$ds^2 = \eta_{\mu\nu}dx^{\mu}dx^{\nu} + dr^2 + r^2d\theta^2$$

Local (Geometric) Energies of the Brane

$$\begin{aligned} E_{\text{ten}} &= \int d^4 x \sqrt{|\gamma|} \sigma \\ E_{\text{curv}} &= \int d^4 x \sqrt{|\gamma|} \left(h_1 K^2 + h_2 K_{ab} K_{ab} + \ldots \right) \end{aligned}$$

Casimir Energy

• Vacuum Energy in bulk field, ϕ

$$E_0 = \frac{1}{2} \sum_{\mathbf{i}} \omega_{\mathbf{i}}$$

Zeta fn. regularization used to tame divergences

$$E_0 = \lim_{s \to 0} E_0(s) \equiv \lim_{s \to 0} \frac{\mu^{2s}}{2} \sum_{\mathbf{i}} \omega_{\mathbf{i}}^{1-2s}$$

= $E_0^{ ext{div}}(s) + E_0^{ ext{finite}}$

 $E_0^{ ext{div}}(s)\sim rac{1}{s}$, but is actually irrelevant for the Casimir force.

Brane Potential (Horn, Dirichlet)

Brane Potential (Cone, Dirichlet)

Summary

- In a general braneworld scenario, it is very relevant where the brane resides – can use non-trivial bulk manifolds for interesting model building
- Different contributions to the brane position effective potential shown to provide stability by pitting at least two effects against each other
- Casimir is particularly important, as it might be the only mechanism available for a codimension-d brane (with d extra dimensions), i.e. point-like in the bulk