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Dear DOT Secretary Chao and EPA Administrator Wheeler, 

Thank you for the opportunity to provide comments on the proposed rule for passenger car and light 

truck fuel economy and greenhouse gas emission standards. We are professors at Carnegie Mellon 

University who have studied vehicle design, economics, environmental impacts, and public policy – 

including the light duty fleet standards – over the past fifteen years. The views expressed in this 

comment are provided based on our assessment of the proposed regulations as experts in these areas 

and are not intended to represent Carnegie Mellon University. 

In our assessment, the proposed rule does not satisfy the “maximum feasible” standard required by 

law, and its analysis of costs and benefits has fundamental flaws that, if resolved, could change agency 

conclusions about the proposed standards. We detail these concerns below, and we also offer 

responses to agency requests for comment on several details of the policy. We provide several peer-

reviewed scientific publications at the end of this comment that support our assessment. 

1.  Concerns About the Proposed Rule and the Supporting Analysis 

The proposed rule is to freeze fuel economy and greenhouse gas fleet standards at 2020 levels through 

2026 instead of allowing them to continue to become more stringent over the period, as defined in 

current law. We are concerned that the proposed rule does not satisfy the standard set in the Energy 

Policy Conservation Act. The notice of proposed rulemaking (NPRM) indicates that agency analysis 

expects the proposed rule to increase petroleum consumption by 0.5 million barrels per day, prevent 

more than 12,700 fatalities, and reduce driving while making only a small climate change impact and 

increasing net benefits to society. We are concerned that the analysis has fundamental flaws that, if 
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resolved, could substantially change these estimates and change which policy alternatives maximize 

net benefits. We will focus on four items: 

1.1   Maximum Feasible Standards 

NHTSA is required to set the “maximum feasible average fuel economy level” each model year while 

considering “technological feasibility” and “economic practicability”.1 Although there is ambiguity in 

determining what level of standard is “maximum feasible”, the frozen standard in the proposed rule 

fails to meet this requirement in a fundamental way because technological capabilities and cost are 

constantly improving. Capabilities for what is technologically feasible at a particular cost are generally 

greater in a given year than in years prior. For instance, since 1996, technology improvements have 

been used to increase fuel economy and/or horsepower of cars by about 2% per year,2 and the 

agencies’ own preliminary regulatory impact analysis (PIRA) assumes that “manufacturers would still 

choose to increase fuel economy” every year under the proposed frozen standards.3 Table 1 shows 

that the agencies’ own analysis predicts that automakers will exceed the standards in every year that 

the standard remains frozen. Furthermore, automakers are global companies, and they must invest in 

research and development to meet international regulations on fuel economy and greenhouse gas 

emissions. Regulations in Canada, China, the E.U., and Japan will continue to increase in stringency 

in the future, further advancing automakers’ technological progress. For all of these reasons, the 

                                                

1 The Energy Policy Conservation Act of 1975. U.S. Code, Title 49, Subtitle VI, Part C, Chapter 329, Section 32902. 

2 Leard, Linn and Zhou 2017 “The effect of standards for new vehicle fuel economy and GHG emissions on US consumers,” Resources issue 195, Fall 
2017. 

3 Preliminary Regulatory Impact Assessment for The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 2021-2026 Passenger Cars 
and Light Trucks, July 2018, p1016, https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ld_cafe_co2_nhtsa_2127-al76_epa_pria_181016.pdf  
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standard for what is “maximum feasible”  increases in stringency over time. The law requires standards 

to be “maximum feasible,” and frozen standards do not satisfy this criteria. We recommend that a 

“maximum feasible” standard increase in stringency over time to account for technological 

advancement and cost reductions. 

Table 1: Comparison of agency-estimated CAFE requirements with agency-estimated 
average fleet fuel efficiency under the proposed standards. The agencies predict that 

automakers will continue to increase fuel economy every year and will exceed the standards 
for both cars and trucks in all years that the proposed standards remain frozen (indicated 

with an *), suggesting that the proposed standards are not “maximum feasible” 

 Passenger Cars Light Trucks 
Model 
Year 

Average of OEMs’ 
CAFE requirement 

from NPRM Table 1-1 

Estimated Fuel 
Economy from 

PIRA Table 8-34 

Average of OEMs’ 
CAFE requirement 

from NPRM Table 1-2 

Estimated Fuel 
Economy from 

PIRA Table 8-34 
2020 43.7 42.6 31.3 30.7 
2021 43.7 43.6 31.3 31.7 
2022* 43.7 44.2 31.3 32.0 
2023* 43.7 44.5 31.3 32.1 
2024* 43.7 44.6 31.3 32.2 
2025* 43.7 44.8 31.3 32.3 
2026* 43.7 45.1 31.3 32.5 

 

1.2   Fatalities 

The agencies claim that the proposed rollback will prevent more than 12,000 fatalities, largely from 

assumed scrappage of older vehicles due to cheaper new vehicles. Overall, the agencies are assuming 

that making new cars more expensive leads to more cars on the road, but in practice vehicle ownership, 

driving, and fatalities may actually increase with the proposed rollback. 

The scrappage estimate comes from a regression model estimating how new vehicle prices will affect 

used car scrappage. If tighter standards increase the cost of new vehicles without a sufficient increase 

in value to consumers (e.g.: due to higher efficiency), this could reduce demand for new vehicles and 

increase demand for used vehicles, raising used vehicle prices and providing incentives for owners to 
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delay scrappage (but also providing incentives for new and used vehicle buyers to reduce vehicle 

ownership). The agencies’ approach to estimating the magnitude of this potential scrappage effect has 

several critical flaws that, if resolved, could significantly change the estimated implications of the 

proposed rule.  

First, the regression posed identifies only correlations, not causality. It is likely that other factors not 

captured by the model, such as changes in employment, economic disparity, or household size, may 

affect both new vehicle prices and used vehicle scrap rates. If so, then estimating the correlation 

between new vehicle prices and used vehicle scrap rates does not provide an appropriate model for 

assessing the effects of a counterfactual scenario in which new vehicle prices are independently 

increased. We recommend that methods for causal inference be used in counterfactual analysis, or, if 

causal inference is not possible in this case, that the analysis avoid making causal claims based on non-

causal models without adequate emphasis on the potential for bias. One possible direction to reduce 

potential bias in these estimates is to conduct the regression of used car scrappage on vehicle standards 

themselves, rather than on new vehicle prices.4 

Second, the regression has many parameters that are not statistically significant, and the analysis 

ignores uncertainty. The model, specified in Section 8.10.7.7 of the PIRA estimates the relationship 

between scrappage rates and vehicle age, new vehicle price, operation cost, and GDP growth, 

including an assumed functional form with a mix of multiple lag variables, log transformations, and 

third order polynomial relationships. This specification results in a large number of coefficient 

                                                

4 Linn and Dou “How do US passenger vehicle fuel economy standards affect purchases of new and used vehicles?” Report, Resources for the Future, 
August 2018 http://www.rff.org/files/document/file/RFF%20Rpt%20Linn%20Dou%20Fuel%20Economy%20New%20Cars.pdf 
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estimates, many of which are not statistically significant. Because the estimated coefficients are 

uncertain, the effects of changing new vehicle price on used vehicle scrappage rates is also uncertain. 

Computing scrappage estimates using only point estimates of the coefficients ignores uncertainty, 

resulting in false precision about the magnitude of the effect. We recommend using a Monte Carlo 

analysis to understand the distribution of scrappage outcomes implied by uncertainty of the value of 

the coefficients in the model regression and reporting 95% confidence intervals.  

Additional uncertainty stems from model misspecification. For example, by comparing 9000 variations 

of model specifications, Haaf et al. (2014)5 show that models of vehicle ownership choices can make 

substantially different predictions depending on the set and form of the variables used in the assumed 

model functional form. Unless there is a strong theoretical basis or strong empirical evidence for the 

particular functional form assumed in the regression, we recommend that the analysis be repeated 

with multiple alternative plausible functional forms based in the literature to assess how robust the 

claimed effects are to variation in the assumed model form, and we recommend that the agencies 

avoid making claims that are not robust to reasonable variation in model specification. 

Third, the analysis uses separate assumptions to estimate the effect of annual mileage accumulation 

and scrappage rates. The agencies request comment on this in the NPRM: “The current model 

assumes that annual mileage accumulation and scrappage rates are independent of one another. We 

seek public comment on the appropriateness of this assumption…” The use of independent models 

effectively assumes that driving patterns are determined by the vehicle rather than by the household. 

                                                

5 Haaf, C.G., J.J. Michalek, W.R. Morrow, and Y. Liu (2014) "Sensitivity of vehicle market share predictions to discrete choice model specification," 
ASME Journal of Mechanical Design v136 121402 p1-9. 
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Suppose, for example, that a household owns two vehicles, one new and one old, and decides to scrap 

the old vehicle early due to lower used vehicle prices induced by relaxing the standards. The agencies’ 

analysis effectively assumes that said household would continue to drive the new vehicle as before, 

foregoing the travel that used to be provided by the old vehicle, rather than shifting some trips from 

the old vehicle to the new vehicle. In reality, the household is likely to use the remaining vehicle for 

at least some of the trips that were previously served by the old vehicle. In assuming that travel patterns 

are tied to the vehicle, rather than the household, the agencies make a strong assumption that results 

in implausible predictions, and it serves to overestimate the reduction in vehicle miles traveled and the 

implications of that reduction, including fatalities. According to internal EPA analysis, for every one 

extra new vehicle purchased due to reduced costs, the model predicts that 50 additional older vehicles 

will be scrapped and that the households who lose these vehicles will forego the travel associated with 

them rather than shift the travel to other vehicles in the household.6    

We recommend that the agencies either construct and validate an integrated model that accounts for 

shifts in travel among vehicles with changes in fleet size or, in the absence of such a model, refrain 

from claiming benefits based on the assumption that travel patterns are tied to vehicles instead of 

households. We also recommend that the agencies conduct a rigorous, and transparent peer-review of 

their scrappage assumptions through an independent scientific organization, such as the National 

Academies. 

 

                                                

6 Preliminary Regulatory Impact Assessment of The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Year 2021-2026 Passenger Cars 
and Light Trucks, p1016, https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/ld_cafe_co2_nhtsa_2127-al76_epa_pria_181016.pdf  
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1.3   Reduced Driving 

It is well known that reducing the cost of driving can induce an increase in driving, and a range of 

studies over many years have attempted to estimate the magnitude of this “rebound” effect. Prior 

agency analysis reviewed the literature and used a moderate 10% rebound assumption, but the most 

recent analysis supporting the proposed rule increases this assumption to 20% based on averaging 

estimates from studies in the literature from before 2009.7 The analysis ignores more recent studies 

that suggest a smaller rebound effect,8,9,10 it ignores the difference between aggregate rebound and per-

vehicle rebound,11 and it ignores that most studies estimate rebound in response to changes in gasoline 

prices, whereas rebound in response to changes in vehicle efficiency is likely to be less salient to 

consumers and result in a smaller effect. The analysis also ignores the effect of changing other costs 

of driving besides fuel cost – cars that are more expensive also have higher insurance and depreciation 

costs per mile that affect the cost of driving beyond fuel price. Considering these effects and recent 

estimates of rebound suggests a smaller rebound effect than assumed in the analysis.  

We recommend that the agencies update their rebound assumptions by drawing primarily on recent 

studies using U.S. data that estimate per-vehicle rebound in response to changes in vehicle efficiency, 

rather than changes in fuel price. 

                                                

7 Federal Register Vol. 83, No. 165 p 43100 

8 Gillingham, K., D. Rapson and G. Wagner (2015) “The rebound effect and energy efficiency policy,” Review of Environmental Economics and Policy, v10 n1 
p68-88. 

9 K. Gillingham et al, Nature  493, 475 (2013) 

10 C. Knittel and R. Sandler, American Economic Journal: Economic Policy . Forthcoming 

11 Linn, J., Comment on the NPRM, Docket No. EPA-HQ-OAR-2018-0283 and Docket No. NHTSA-2018-0067 
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1.4   Technology Projections and Costs 

Prior analysis by NHTSA and EPA found that the existing standards increase net benefits to society. 

But the new analysis ignores EPA’s model and uses a changed version of NHTSA’s model with many 

new assumptions that increase the assumed cost of compliance. To our knowledge, the new model 

has not been independently peer reviewed and assessed for validity of the changes in assumptions. 

Agency conclusions that the net benefits of the proposed rule exceed those of the augural standards 

are based on a number of assumptions about how automakers will implement fuel-saving technologies 

that are much more pessimistic than prior agency assumptions. In prior analysis it was assumed that 

automakers would implement the most cost effective fuel saving technologies first, subject to 

constraints about which technologies are compatible. In the new analysis, internal EPA documents 

identify several ways that the current model assumes that automakers will implement technologies that 

are several thousand dollars more expensive than other available packages with similar effectiveness.12 

There are a variety of other pessimistic assumptions in the model, such as the assumption that 

automakers will convert entire vehicle lines to electric at once rather than offer both electric and 

gasoline powertrain options, as is common today. Further, the agencies include an assumed loss of 

value to consumers associated with undesirable attributes of fuel-saving technologies, but a number 

of fuel saving technologies actually increase performance, and publications in peer-reviewed scientific 

journals have found that (1) the evidence of hidden costs to vehicle operation characteristics from fuel 

                                                

12 SR 12866 Review Materials for The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks 
NPRM; RIN 2060-AU09, Office of Management and Budget, https://www.regulations.gov/document?D=EPA-HQ-OAR-2018-0283-0453.  
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saving technologies is limited13 and (2) taking advantage of fuel economy / performance tradeoffs 

while accounting for pricing and consumer demand allows automakers to comply at lower costs than 

agencies estimate, not higher costs.14  

We recommend that the agencies conduct a rigorous, and transparent peer-review of their technology 

cost assumptions through an independent scientific organization, such as the National Academies. 

 

2.  Responses to Agency Requests for Comment 

2.1   Credit Transfers and Flexibilities 

The regulations allow for certain flexibilities, such as transferring “credits” between passenger car and 

light truck fleets, so that if one fleet over-complies with the regulation, the other can under-comply 

within a set limit. Automakers can also bank (carry forward) and borrow (carry back) credits within 

certain time periods. These flexibilities reduce compliance costs with the regulations. However, the 

agencies’ main cost-benefit analysis does not consider these flexibilities over the regulated time period. 

NHTSA is currently prohibited by statute from including these flexibilities in their standard-setting 

process.15 We find this requirement problematic because the automakers use these flexibilities as a 

                                                

13 Huang, Helfand, Bolon, Beach, Sha and Smith (2018) “Re-searching for hidden costs: evidence from the adoption of fuel-saving technologies in light-
duty vehicles,” Transportation Research Part D: Transport and Environment v65 p194-212. 

14 Whitefoot, Fowlie and Skerlos (2018) “Compliance by design: influence of acceleration trade-offs on CO2 emissions and costs of fuel economy and 
greenhouse gas regulations,” Environmental Science & Technology v51 n18 p10307-10315. 

15 United States. (2007). Energy independence and security act of 2007. US Government Printing Office. 
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common means of complying with the regulation, and ignoring them will bias the cost-benefit analysis 

to overestimate costs.   

2.2   Credit Trading 

Automakers who exceed standards earn credits that can be sold to automakers who fall short. The 

agencies requested comment on whether this credit trading system should be improved or potentially 

eliminated. Trading provides an opportunity to achieve a given outcome more efficiently – at lower 

cost, and so we recommend that trading should remain in place and that the agencies should consider 

options to enable easier trading among automakers. Currently these trades tend to be negotiated one-

by-one in an ad-hoc process, which increases transaction costs. A potential route to strengthening 

efficiency of credit trading is to consider creating a market with transparent prices for trading permits 

to reduce barriers to trade. 

2.3   Driving Cycle Tests and Off-Cycle Credits 

The fuel efficiency of each vehicle is measured for regulatory purposes using an old 2-cycle 

city/highway laboratory test on a dynamometer. These old tests represent a gentle type of driving 

sensitive to the limits of dynamometers at the time they were developed, and they are not 

representative of real world driving. The fuel economy ratings consumers see when buying cars are 

based on 5-cycle tests that account for factors like air conditioning use, aggressive driving, and cold 

starts. A 50mpg Prius on the new test looks like 70mpg Prius for regulatory compliance purposes, and 

this creates endless confusion in the public discussion. We recommend that the agencies update the 

2-cycle test procedure used for regulatory compliance to match the 5-cycle procedure used to rate 

vehicles for consumer purchases. 
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Neither laboratory tests can capture all of the factors that may affect a vehicle’s fuel efficiency and 

emissions. For example, solar reflective glass reduces the load on a vehicle’s air conditioner and can 

save fuel, but this is not captured in laboratory tests. Because the regulation is intended to address 

real-world fuel consumption and emissions, unless the laboratory test is revised to measure these 

factors, we recommend that it is appropriate to continue to provide additional credits for technologies 

that can be shown to reduce fuel consumption and emissions in real world driving. It is important that 

the credits be applied only to technologies that credibly reduce emissions, so continuing the practice 

of permitting credits for a pre-approved menu of features that have been tested internally, for 

technologies demonstrated through A-B testing, and through features with documented evidence of 

benefit made available for public comment. Better still, we suggest that the agencies consider a 

redesign of the laboratory test used for compliance using modern data (e.g.: GPS and CAN bus data) 

to attempt to represent real-world driving as closely as possible. 

2.4   Footprint-Based Standards 

The current and proposed fuel economy standards set different targets for different vehicles 

depending on the vehicle’s footprint (a measure of size computed as wheelbase ́  track width). Though 

designed to encourage adoption of fuel-saving technologies across the fleet without pushing people 

into smaller vehicles, a peer-reviewed study by Whitefoot and Skerlos16 suggests they nevertheless 

encourage automakers to design larger vehicles as a path to compliance, and there is some evidence 

                                                

16 Whitefoot and Skerlos 2012 “Design incentives to increase vehicle size created from the US footprint-based fuel economy standards,” Energy Policy 
v41 p402-411. 
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that automakers are doing this.17 We recommend that the agencies reexamine automaker response to 

the footprint-based standards to determine if adjustments should be made to avoid inducing increases 

to vehicle size.  

A more economically efficient approach of taxing emissions and fuel consumption at socially 

appropriate levels would allow households to determine whether to reduce fuel consumption and 

emissions by driving less, by buying a vehicle with more fuel saving technologies, or by buying a 

smaller vehicle – or, alternatively, to not reduce fuel consumption and emissions at all but rather pay 

a cost based on the damages they cause. Forcing improvements only through one mechanism (fuel-

saving technologies) increases the cost of achieving these outcomes. 

2.5   Alternative Fuel Vehicle Incentives 

Current standards provide incentives for automakers to produce alternative fuel vehicles, such as 

electric vehicles, by favorable accounting in compliance calculations. An electric vehicle in 2018 is 

counted as a zero-emission vehicle in EPA’s compliance calculations, ignoring power plant emissions 

that our research has shown can cause more deaths per vehicle lifetime than emissions from an 

efficient gasoline vehicle in some parts of the U.S.18,19 Additionally, one electric vehicle purchase in 

2018 is counted as though two electric vehicles were purchased in compliance calculations. Both of 

these accounting adjustments allow automakers who sell alternative fuel vehicles to have higher 

                                                

17 United States. Environmental Protection Agency.  (2016) Light-Duty Automotive Technology and Fuel Economy Trends: 1975 Through 2016. EPA-
420-R-16-010. Page 24. 

18 Weis, A., P. Jaramillo and J.J. Michalek (2016) "Consequential life cycle air emissions externalities for plug-in electric vehicles in the PJM 
interconnection," Environmental Research Letters, v11 n2 024009. 

19 Yuksel, T., M. Tamayao, C. Hendrickson, I. Azevedo and J.J. Michalek (2016) "Effect of regional grid mix, driving patterns and climate on the 
comparative carbon footprint of electric and gasoline vehicles," Environmental Research Letters, v11 n4 044007. 
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emitting fleets overall and result in increased net emissions every time an alternative fuel vehicle is 

sold.20 There are sound reasons to incentivize alternative fuel vehicle development, but these particular 

incentives do so in a way that leads to higher fleet emissions (even when the alternative fuel vehicle 

itself is clean), while other approaches, such as tax credits for purchasing electric vehicles, do not 

necessarily increase emissions. For this reason, we recommend that EPA allow the alternative fuel 

vehicle incentives to expire and count all sources of life cycle greenhouse gas emissions in compliance 

calculations with the best available estimates. In contrast, NHTSA handles alternative fuel vehicles 

differently by statute and counts just 15% of the gasoline-equivalent energy consumed. As electric and 

other alternative vehicles make up a larger share of the fleet, the distinction between regulating fuel 

economy and regulating emissions will deepen, and if the government wishes the agencies to continue 

to harmonize standards, the 15% rule used by NHTSA, which is arbitrary from an emissions 

perspective, should be revisited. 

2.6   Using Net Benefits as a Basis for Policy Selection 

The agencies are seeking comment on whether a comparison of net benefits is “an appropriate basis 

for [policy] selection”. Our recommendation is that maximizing net benefits is among the most 

important factors to consider in policy selection because it is an effort to weigh a variety of policy 

implications on a common basis and seek decisions that are beneficial to society overall. However, 

three important caveats should also be considered.  

                                                

20 Jenn, A., I.L. Azevedo and J.J. Michalek (2016) "Alternative fuel vehicle adoption increases fleet gasoline consumption and greenhouse gas emissions 
under United States corporate average fuel economy policy and greenhouse gas emissions standards," Environmental Science & Technology, v50 n5 p.2165-
2174. 
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First, estimates of net benefits are inherently uncertain, particularly for policies with such wide-

reaching effects as the light-duty vehicle standards, and changes in assumptions can often change the 

ordering of alternative policy proposals, leaving room for an analyst with an agenda to, intentionally 

or inadvertently, make assumptions to produce preferred model outcomes. Analysis of net benefits 

should follow best practices, base assumptions on the peer-reviewed scientific literature, be 

transparent, clearly justify assumptions, and evaluate a range of scenarios with alternative assumptions 

to characterize how sensitive estimates are to assumptions. In some cases the uncertainty about net 

benefits may be too broad to justify policy selection on that basis alone. 

Second, while a net benefits analysis captures many aspects of policy impact in a single framework, it 

does not typically capture all aspects that may be important to policymakers. For example, it does not 

capture distributional effects of a policy or the potential for the policy itself to induce changes in social 

norms, preferences, and values. 

Third, the legal basis for NHTSA’s regulation of vehicle efficiency comes from the Energy 

Independence and Security Act of 1975, which requires that NHTSA set the “maximum feasible” 

standards while considering “technological feasibility” and “economic practicability”.21 While net 

benefits provide a useful metric for policy selection, it is not clear that there is necessarily any 

relationship between maximizing net benefits and setting the “maximum feasible” criteria while 

considering “economic practicability”. 

                                                

21 The Energy Policy Conservation Act of 1975. U.S. Code, Title 49, Subtitle VI, Part C, Chapter 329, Section 32902. 
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a b s t r a c t

The recently amended U.S. Corporate Average Fuel Economy (CAFE) standards determine fuel-economy
targets based on the footprint (wheelbase by track width) of vehicles such that larger vehicles have
lower fuel-economy targets. This paper considers whether these standards create an incentive for firms
to increase vehicle size by presenting an oligopolistic-equilibrium model in which automotive firms can
modify vehicle dimensions, implement fuel-saving technology features, and trade off acceleration
performance and fuel economy. Wide ranges of scenarios for consumer preferences are considered.
Results suggest that the footprint-based CAFE standards create an incentive to increase vehicle size
except when consumer preference for vehicle size is near its lower bound and preference for
acceleration is near its upper bound. In all other simulations, the sales-weighted average vehicle size
increases by 2–32%, undermining gains in fuel economy by 1–4 mpg (0.6–1.7 km/L). Carbon-dioxide
emissions from these vehicles are 5–15% higher as a result (4.69!1011–5.17!1011 kg for one year of
produced vehicles compared to 4.47!1011 kg with no size changes), which is equivalent to adding
3–10 coal-fired power plants to the electricity grid each year. Furthermore, results suggest that the
incentive is larger for light trucks than for passenger cars, which could increase traffic safety risks.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In order to reduce the greenhouse gas emissions and oil
consumption associated with passenger transportation, the U.S.
Congress recently amended fuel economy regulations on new
passenger vehicles in the form of the Corporate Average Fuel
Economy (CAFE) standards. Responding to criticisms that CAFE
encourages the production of smaller vehicles, which unfavorably
impacts domestic automakers compared to foreign automakers
and may also increase traffic safety risks, the CAFE regulations for
vehicles produced from 2011 to 2016 are a function of the
footprint (wheelbase by track width) of the vehicles in a manu-
facturer’s fleet such that manufacturers that produce larger
vehicles can meet lower fuel economy standards. This regulation
design could potentially create an incentive for automotive
manufacturers to increase the size of their vehicles and diminish
the policy’s goal of reduced fuel consumption. Understanding this
issue is both important and timely; policymakers are currently
developing the CAFE regulations for vehicles produced from
2017 to 2025 and are planning to finalize these regulations by
July 2012.

Given these footprint-based standards, a profit-maximizing
manufacturer will evaluate various tradeoffs to determine whether
modifying vehicle footprint is desirable. These tradeoffs include the
marginal reduction in the fuel economy standard, the cost of
modifying vehicle footprint, the impact on vehicle fuel economy
and other aspects of vehicle performance such as acceleration, and
the resulting change in consumer demand. Therefore, any design
incentives to modify vehicle footprint will depend on the relation-
ships between these factors.

The National Highway Traffic Safety Administration (NHTSA)
states that the dependency of fuel economy targets on vehicle
footprint was established such that any incentive to increase or
decrease vehicle size would be minimized (NHTSA, 2009). How-
ever, despite researchers’ recommendations for further investiga-
tion (NRC, 2002; Greene and Hopson, 2003), no quantitative
analysis was performed to assess what effect the chosen stan-
dards have on design incentives to increase or decrease vehicle
size. The most closely related analysis examines the impact of
weight-based fuel economy standards on changes to vehicle
weight (Greene and Hopson, 2003). But, because the relationships
between vehicle weight and consumer demand, production costs,
fuel economy, and other vehicle attributes are not necessarily the
same as the analogous relationships for footprint, their results
cannot directly be applied to footprint-based standards.

This study uses simulation analysis to test the hypothesis that
the footprint-based CAFE standards will not create an incentive to
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increase vehicle size. An oligopolistic equilibrium model of the U.S.
automotive industry is constructed to study firm incentives in
response to the footprint-based CAFE. In this model, firms can
adjust vehicle prices, tradeoff acceleration performance with fuel
economy, implement fuel-saving technology features, and increase
vehicle footprint. The relationships between vehicle performance
attributes are determined from engineering vehicle simulations.
Results are presented over a wide range of assumptions of consumer
preferences for vehicle size, price, acceleration performance, and fuel
efficiency.

Changes in the footprint of vehicles have implications for both
fuel economy goals and traffic safety. If vehicle footprint increases,
gains in fuel economy could be significantly lower. We investigate
this issue by determining the change in the sales-weighted average
fuel economy observed in simulations that allow firms to increase
the footprints of vehicles and comparing this with fuel economy
gains assuming, as in NHTSA’s (2009) analysis, that vehicle size and
sales remain unaffected. With respect to traffic safety, both the
absolute measures of vehicle size (the dimensions of the vehicle) and
the relative measures of vehicle size (spread of dimensions across
vehicles) can impact safety risks (Kahane, 1997; NRC, 2002). This
study investigates the impact of footprint-based CAFE standards on
both the absolute change in vehicle size and relative differences in
vehicle size changes between passenger cars and light trucks, which
can be used in conjunction with traffic safety studies to understand
the impact of footprint-based CAFE on traffic safety risks.

2. State of the art: CAFE and vehicle footprint or weight
incentives

Although researchers have discussed potential design incen-
tives induced by CAFE standards based on vehicle attributes
(i.e., vehicle footprint or weight), the majority of these studies
are based on qualitative reasoning rather than a quantitative
analysis of firm incentives. The National Research Council (NRC)
conducted an analysis of CAFE suggesting that the regulations
could avoid design incentives to reduce vehicle size or weight by
allowing the fuel economy standards to depend on such attri-
butes. Specifically, the analysis reasons that proportionate
weight-based fuel economy targets would eliminate motivation
for weight reductions, therefore avoiding any adverse safety
implications (NRC 2002, see also dissent to this conclusion in
Greene and Keller, 2002). The study also mentions that these
targets could cause vehicle weight to increase and lead to higher
fuel consumption. These conclusions were largely based on
regressions of vehicle curb weight on fuel economy and qualita-
tive observations of vehicle weight trends. Additional studies
have also raised concerns that attribute-based fuel economy
standards could be susceptible to unintended incentives for firms
to design vehicles to be larger or heavier in order to qualify for a
less stringent standard (Norman, 1994; Greene et al., 2005).

NHTSA constructed the footprint-based CAFE standards using
a quantitative analysis but did not study whether manufacturers
would have an incentive to change vehicle size as a result of the
standards. Fuel economy targets were defined by determining the
cost-effective fuel economy that could be obtained without modify-
ing vehicle footprints, and then by fitting a function to these fuel
economy values as a function of vehicle footprint (NHTSA, 2006).
NHTSA reasoned that, under footprint-based CAFE, if manufacturers
redesign a vehicle model to have a smaller footprint, the manufac-
turer’s average fuel economy would increase but so would their
required average fuel economy target and, therefore, any incentive
to change vehicle footprint would be reduced (NHTSA, 2005, 2006).

Greene and Hopson (2003) analyze the impact of weight-based
standards on incentives to increase vehicle weight. In the study,

the authors recognize that although manufacturers may be able to
lower their required fuel economy standard by increasing vehicle
weight, fuel economy also decreases with increased weight. They
determine that increasing vehicle weight by 1% would reduce fuel
economy performance by 0.6%. Assuming that increasing vehicle
weight by 1% would reduce the CAFE requirement by 1% and given a
combined standard of 32.7 mpg by 2015, the authors find that the
weight-based standard will cause an average increase in weight by
1% and a loss of fuel economy gains by 2.5%.

In addition to studying the footprint-based standards instead of
weight-based standards, our approach differs in a few other impor-
tant ways from Greene and Hopson’s analysis. First, we consider the
ability of firms to make tradeoffs between fuel economy and
acceleration performance and shift production among their vehicle
models by modifying prices. This is in addition to changing vehicle
footprint and implementing technology features that improve fuel
economy at some added cost. Second, we model the automotive
industry at a detailed scale, representing all vehicle models and
engine options produced in a year by the top twenty firms that sell
vehicles in the United States.

3. Methodology

To investigate potential design incentives from the footprint-
based CAFE standards, we consider the decisions that an auto-
motive manufacturer may make in response to the regulation. If a
manufacturer wishes to increase the footprint of a particular
vehicle, the weight of a vehicle will increase to some extent. This
will negatively impact both the fuel economy of the vehicle and
the acceleration performance. These losses can be alleviated by
incorporating various technology features (e.g., lower friction
engine components, cylinder deactivation, or lightweight materi-
als) at some additional cost. Another option is to redesign the
powertrain to improve fuel economy by compromising accelera-
tion performance, or vice versa. A profit-maximizing manufac-
turer would balance these decisions based on how the resulting
vehicle attributes affect vehicle sales (q), production costs (c), and
the ability to meet the CAFE standard. This study is the first
analysis of attribute-based standards to consider each of these
tradeoffs together.

These decisions can be formulated as an optimization problem
where the firm f maximizes profits subject to the constraints of
the CAFE regulation. The firm can choose the footprint (f tp),
acceleration performance (acc), level of additional technology
features (tech), and price (p) of each vehicle in their fleet. The
constraint of the CAFE regulation is a function of individual
vehicle fuel economy targets (T), which depend on the footprint
of the vehicle:

max
f tpj ,accj ,techj ,pj8j

X
j
qjðpj,mpgj,accj,techj,f tpjÞðpj%cjðaccj,techj,f tpjÞÞ

subject to
P

jAJf ,L
qjðpjÞ

ð
P

jAJf ,L
qjðpjÞÞ=mpgj

Z

P
jAJf ,L

qjðpjÞ

ð
P

jAJf ,L
qjðpjÞÞ=Tj

ð1Þ

where mpgj ¼ f ðaccj,techj,f tpjÞ; Tj ¼ gðf tpjÞ
Because fuel economy, acceleration performance, and the types of

technology features incorporated into the vehicle are all related, the
above formulation considers fuel economy as dependent on the
decision variables acc and tech. This choice is arbitrary and equiva-
lent to the manufacturer choosing fuel economy and acceleration
performance with the tech variable determined as a function of those
attributes.

Demand for a particular vehicle, qj, in Eq. (1) is dependent
upon attributes of the vehicle j as well as the attributes of all

K.S. Whitefoot, S.J. Skerlos / Energy Policy 41 (2012) 402–411 403



other vehicles available to consumers. We account for this
relationship by solving an oligopolistic equilibrium model where
automotive manufacturers seek to maximize profits according to
Eq. (1). The subsections below detail how each of the remaining
functions in Eq. (1) are derived and how the equilibrium model is
formulated.

3.1. Fuel economy targets

The reformed CAFE standards are calculated for each manu-
facturer as a function of the footprints of the vehicles it produces.
Specifically, the regulation sets individual fuel economy targets
for each vehicle based on the vehicle’s footprint, where larger
vehicles have lower targets. A firm will comply with the reformed
CAFE standards if the sales-weighted average fuel economy of
both its fleets of passenger cars and light trucks are equal to or
greater than the respective sales-weighted average targets set for
these vehicles as in

StandL ¼

P
jAJf ,L

qj

ð
P

jAJf ,L
qjÞ=Tj

ð2Þ

The variables qjand Tj in this equation are respectively the
sales and fuel economy target for vehicle j in vehicle class L (i.e.,
passenger cars or light trucks), where the set of vehicles in class L
produced by firm f is denoted Jf ,L. The model-year (MY) 2014
fuel-economy targets for passenger cars and light trucks as a
function of vehicle footprint are described by Eq. (3) and illu-
strated in Fig. 1:

passenger cars : Tj ¼

1=min max 5:308! 10%4 ! f tpjþ4:498! 10%3,1=38:08
! "

,1=29:22
! "

light trucks : Tj ¼

1=min max 4:546! 10%4 ! f tpjþ1:331! 10%2,1=31,30
! "

,1=23,09
! "

ð3Þ

3.2. Tradeoffs between fuel economy, footprint, and acceleration
performance

Increasing vehicle footprint leads to a reduction in fuel economy
and acceleration performance of the vehicle due to the increase in
vehicle weight. We derive these relationships by determining how
vehicle weight changes with vehicle footprint and then by deter-
mining the relationship between vehicle weight, fuel economy, and
0–60 mph acceleration time. According to Stodolski et al. (1995),
approximately 42% of a vehicle’s curbweight is attributable to

components that are not affected by increases in external vehicle
dimensions, such as the engine, transmission, seats, and wheels
(also see Kelkar et al., 2001). An additional 9.5% of a vehicle’s weight
can be approximated as independent of footprint because the height
of the vehicle is unaffected.1 Therefore, a 10% increase in a vehicle’s
footprint would result in approximately a 5% increase in curbweight.
Sensitivity tests of this assumption are described in the Results
section.

A regression analysis of the relationship between vehicle
footprint and curbweight using MY2006 vehicle data was also
performed to compare to this assumption. The estimates of these
regression results indicate that, controlling for both engine size
and vehicle height, curbweight increases 0.53% with every 1%
increase in footprint. Further information on this regression is
provided in Appendix A.

The relationship between vehicle weight, fuel efficiency (in gal
per 100 mi), and 0–60 mph acceleration time was determined
from a combination of physics-based vehicle simulations and data
on technology features (e.g., cylinder deactivation). The technol-
ogy features considered were derived from a subset of technol-
ogies identified by NHTSA, which are used to conduct analyses
informing the CAFE rulemaking. Table 1 displays a list of the
technology features considered in our simulations. The costs of
these technology features, estimated by NHTSA (2008), are based
on confidential data provided by automotive manufacturers,
suppliers, and consultants.

The software package AVL Cruise was used together with these
data to simulate the 0–60 mph acceleration time and fuel economy
of several vehicle types with varying curbweights, powertrain
variables (engine displacement size and the final drive ratio in the
transmission), and technology features. Vehicle simulations were
conducted for seven separate vehicle segments (i.e. compact cars,
minivans, etc.). A total of 29,747 vehicle simulations were conducted
to determine how fuel economy and 0–60 mph (0–97 kph) accel-
eration time change in response to small changes in vehicle curb-
weight and input powertrain variables. Using these simulation
results, the variable tech was created by ordering the cost-effective
combinations of technology features that increasingly improve fuel
economy and then by assigning an integer value to each ordered
combination. This variable represents a continuous approximation of
the discrete choices of implementing technology features and is
necessary for model tractability. The function f in Eq. (1), which
describes the relationship between fuel economy, 0–60 acceleration
performance, and the level of technology features (tech), was then fit
to the simulation data. Further details about this process and the
regression can be found in Whitefoot et al. (2011).

Validation tests were performed comparing the approximated
relationships based on the simulation data with observed data,
shown in Fig. 2. This data includes all non-hybrid vehicle models
and engine options in MY-2006. Predicted fuel economy values fit
the observed data with an R-squared value of 0.80.

In addition to reducing fuel economy and acceleration perfor-
mance due to increases in vehicle weight, increasing vehicle
footprint may also impact these attributes due to changes in the
aerodynamic drag of the vehicle. However, vehicle simulations
indicate that a 10% increase in vehicle footprint leads to less than
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Fig. 1. MY-2014 CAFE footprint-based fuel economy targets.

1 The body in white, interior less seats, and window glass makes up 35% of
vehicle curbweight (Stodolski et al., 1995; Kelkar et al., 2001). We assume that
each of these components can be broken down into subcomponents that scale
with one side of the vehicle body. Approximating a vehicle as a block with height
h, length l, and width w, the surface area of the vehicle body is 2wlþ2whþ2lh. If
the footprint increases by 1% the vehicle body’s surface area increases by
2:02wlþ2

ffiffiffiffiffiffiffiffiffiffi
1:01
p

whþ2
ffiffiffiffiffiffiffiffiffiffi
1:01
p

lh. Using model-year 2006 vehicle dimensions, this
represents a 0.73% increase in surface area. Therefore, we assume
(0.35)(0.27)¼ 9.5% of a vehicle’s curbweight depends on the vehicle’s height but
is independent of the vehicle’s footprint.
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a 1% change in fuel economy and 0–60 mph acceleration time.
Therefore, aerodynamic drag is not considered in this study.

The effect of firms using light-weight materials for vehicle
components where it is cost-effective under the unreformed CAFE
standards are implicitly included in the vehicle performance model.
The analysis does not consider the ability of manufacturers to further
lightweight their vehicles. NHTSA’s (2008) analysis indicate that
additional lightweighting is more cost-effective, in terms of fuel-
consumption reductions per additional cost, than either engine
friction reduction or high-efficiency alternators, but less cost-effective
than all other technology features considered. Our results indicate
that manufacturers do not implement engine friction reduction or
use high-efficiency alternators in the majority of vehicles (60–99% of
sales depending on demand parameters), implying that lightweight-
ing is not cost-effective for these vehicles. Therefore, we do not
expect the omission of additional lightweighting to substantially
affect results. Supposing the contrary, that lightweighting is more
cost-effective, then firms would be able to increase the footprint of
their vehicles with smaller losses in acceleration performance and
fuel economy. Consequently, the extent to which firms have an
incentive to increase the size of their vehicles would be, if anything,
larger than the results presented in this study. However, the reduc-
tion in fuel economy gains may be lower because lightweighting
lowers the relative fuel-economy penalty for increasing vehicle size.

3.3. Tradeoffs between footprint and production costs

The product development process for a vehicle model begins
with a set of targets specifying vehicle design features, including
target vehicle dimensions, followed by detailed design of all vehicle
subsystems and ending with vehicle production (Sörenson, 2006;

Weber, 2009). The choice of target dimensions at the beginning of
this process impacts the resulting production costs of each vehicle in
the model line. Most notably, the material costs of the body panels,
chassis, glass, driveshaft, axles, and certain interior components will
increase with vehicle footprint. Production costs associated with
manufacturing processes may also increase. The typical vehicle
assembly process involves forming steel sheets into body panels
using a series of stamping operations, assembling the panels using
robotic arms, spot welding the panels together, and installing
subsystem components (Braess and Seiffert, 2005). The costs of
these production processes may increase with the vehicle footprint,
for example if more time or energy is needed to lift heavier body
panels or to provide additional spot welds to assemble the larger
panels. Labor costs may also increase if more time is needed to
perform assembly operations, for example if additional fasteners are
necessary to attach larger subcomponents to the vehicle body.

Acquiring data on these production costs as a function of vehicle
footprint is difficult, but we can approximate an upper bound of the
impact of increasing vehicle footprint on production costs. Because
the aim of this study is to test whether an incentive to increase
vehicle size exists, and the extent of this incentive, we use an upper-
bound estimate of costs so that our results represent the lower bound
of changes to vehicle size. As a conservative upper bound, we assume
that increasing vehicle footprint will increase the incremental pro-
duction costs linearly according to a 1-to-1 relationship, implying
that a 1% change in vehicle footprint increases incremental produc-
tion costs by 1%. We expect that many of the costs of vehicle
components and manufacturing operations increase at a smaller rate
with vehicle footprint—such as the material costs of body panels—or
are completely independent of footprint—such as the costs asso-
ciated with the seats. Therefore, we expect that this 1-to-1 assump-
tion represents a highly conservative estimate of the impact of
vehicle footprint on production costs. If the costs of increasing vehicle
footprint are smaller than the assumed relationship, the incentive to
increase vehicle size would be larger than results suggest.

Because targets for vehicle dimensions are set early in the product
development process and subsequent design of vehicle subsystems
considers these dimensions, we do not expect fixed costs associated
with vehicle design to increase with incremental decisions on vehicle
footprint. We also assume that fixed costs associated with manufac-
turing processes do not increase with decisions on vehicle footprint.
One exception is that the dies used for body-panel stamping scale
with footprint dimensions, and therefore the costs associated with
the die material increase with footprint. However, the portion of die
costs that depend on body panel area is small (Clark and Fujimoto,
1991; McGee, 1973) and so this issue is not considered here.

3.4. Consumer preferences for vehicle size, fuel economy, and
acceleration

Consumer demand for new vehicles is modeled as a discrete-
choice utility model where consumer utility is a function of

Table 1
Incremental costs of technology features considered based on NHTSA’s (2008) analysis.

Technology costs Two seater Compact Midsize/
minivan

Fullsize SUV Small pickup Large
pickup/van

Low friction lubricants ($) 3 3 3 3 3 3 3
Engine friction reduction ($) 126 84 126 126 126 126 168
Aggressive shift logic ($) 38 38 38 38 38 38 38
Early torque converter lockup ($) 30 30 30 30 30 30 30
High efficiency alternator ($) 145 145 145 145 145 145 145
Aerodynamic drag reduction ($) 38 38 38 38 38 38 38
Low rolling resistance tires ($) 6 6 6 6 6 6 6
Cylinder deactivation ($) n/a n/a 203 203 203 203 229
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Fig. 2. Comparison of vehicle performance model to MY-2006 vehicle data.
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vehicle price, fuel consumption, acceleration performance, and
vehicle size:

Unj ¼ a1pjþa2ef f jþa3accjþa4sizejþxjþEnj ð4Þ

Vehicle price, p, in Eq. (4) is measured in ten thousands of 2011
dollars. Fuel efficiency, eff, is measured in terms of the gallons of fuel
needed to drive 100 miles, and acc is the inverse of the time to
accelerate from 0–60 mph (0–97 kph) in tenths of a second, which is
approximately proportional to the ratio of horsepower to vehicle
weight but also depends on transmission parameters other than
horsepower (e.g., the final drive ratio). The parameter size repre-
sents the overall length of a vehicle multiplied by the width (L103
by W105 according to SAE International (2005) standards) in ten
thousands of sq in. Conversions between footprint and size assume
that overall width minus track width, and overall length minus
wheelbase, are constant. The xj parameter represents the mean
combined utility for all other vehicle attributes, and Enj is an error
term specific to individual n and vehicle j.

Multiple confounding factors in observed vehicle and consu-
mer choice data present significant challenges to accurately
estimating the a demand parameters. Vehicle prices and observed
attributes—including fuel consumption, acceleration perfor-
mance, and size—are correlated with unobserved vehicle attri-
butes that consumers value, such as exterior and interior styling.
This correlation produces biased estimates of the demand para-
meters. Researchers commonly address this problem by conduct-
ing an instrumental variable regression to recover unbiased
estimates of the parameters, relying on a set of instruments that
are correlated with the observed attributes but are independent
of unobserved attributes (e.g., Berry, 1994). However, most of
these studies are only concerned with estimating the price
parameter; identifying valid instruments for all the attributes
listed in Eq. (4) in addition to vehicle prices is particularly
challenging (Nevo, 2000). As a result, with only one exception
(Klier and Linn, 2008), analyses of CAFE and alternative fuel-
economy incentives that estimate consumer preferences have
assumed that vehicle attributes other than fuel economy cannot
change (e.g., Goldberg, 1998; Jacobsen, 2010; Austin and Dinan,
2005). Therefore, instead of attempting to solve this problem as it
would apply to this study, we take a different approach, simulat-
ing multiple combinations of values for these preference para-
meters as scenarios that span the range of reasonably expected
consumer preferences as determined by existing literature. While,
in many cases, we cannot be certain that these estimates are not
biased because of the confounding factors described above, the
ranges of estimates in the literature are large enough to presume
that they contain the set of plausible values.

Although simulating combinations of demand parameters
allows us to investigate the potential incentive to increase vehicle
size over multiple scenarios of consumer preferences, this enu-
meration of demand parameter combinations presents a chal-
lenge with regard to computational time. In order to tractably
simulate a significant number of combinations of the parameters
in Eq. (4), it is necessary to make a simplifying assumption that
the a coefficients are common across all consumers, meaning that
heterogeneous preferences are not accounted for in this model.
Following customary assumptions of the logit model, the Enj

parameters are assumed independently and identically distribu-
ted across vehicles according to a Type 1 extreme value distribu-
tion. This assumption allows the expected value of sales of vehicle
j to be written as in

EðsjÞ ¼ N
eVj

eVog þ
P

kAIeVk
ð5Þ

Vj ¼ a1pjþa2gpmjþa3accjþa4sizejþxj

The parameter N in Eq. (5) is the number of consumers, I is the
set of vehicles in the market including vehicle j, and Vog is the
utility of the outside good, representing the utility of not purchas-
ing a new vehicle. Given the sales of vehicle j(sj); the number of
consumers that did not purchase a new vehicle (sogÞ; and values
of the a coefficients for price, fuel consumption, acceleration
performance, and size, the mean utility of all other vehicle
attributes (xj) can be inferred as

xj ¼ log
sj

I

$ %
%log

sog

I

! "
%ða1pjþa2gpmjþa3accjþa4sizejÞ ð6Þ

The ranges of plausible values for the a coefficients in the
equations above were determined based on key properties of
consumer demand for new automobiles estimated in the literature.
Ranges for the price coefficient were based on estimated values for
the average price-elasticity of demand, which range from %2.0 to
%3.1 in the literature (Berry et al., 1995; Goldberg, 1998; Jacobsen,
2010; Klier and Linn, 2008; Train and Winston, 2007). Ranges of
values for the remaining coefficients were informed based on the
willingness of consumers to pay for improved fuel consumption,
faster acceleration performance, and larger size as estimated from
the literature. These estimates were either derived from logit models
that consider consumer preferences to be homogeneous or random-
coefficient logit models where the mean of the distribution is used
to derive willingness-to-pay.2 The average estimated willingness
to pay for vehicle attributes ranges from $340 to $2000 for
an additional sq ft of vehicle size ($366–$2150 per 1000 cm2),
$160–$5500 for an increase of 0.01 hp/lb in acceleration perfor-
mance ($97–$3345 per 0.01 kW/kg), and $1100–$9000 for a reduc-
tion in fuel consumption of 1 gal per 100 miles ($468–$3826 per
L/100 km) (Beresteanu and Li, 2008; Greene and Liu, 1987; Klier and
Linn, 2008).

Helfand and Wolverton (2009) recently conducted a survey of
consumer valuation for fuel economy and found that estimates
for consumers willingness to pay for 1 mpg (0.43 km/L) more of
fuel economy ranges from approximately $200–$600 in the
literature. Using the vehicle data input into our simulations, this
corresponds to an average willingness to pay as low as $800 for
improved fuel efficiency of 1 fewer gal per 100 miles ($340 per
L/100 km), which is less than the lower bound determined above.
Therefore, we use $800-$9000 for 1 fewer gal per 100 miles
($340–$3826 per L/100 km) as the range of consumer preference
for fuel efficiency instead.

Table 2 reports the ranges of willingness-to-pay for vehicle
attributes as estimated in the literature and the a coefficients that
correspond to these ranges. Ideally, combinations of these para-
meters for the simulations would be determined by sampling
from their joint distribution. However, existing literature has
neither produced estimates of this joint distribution nor char-
acterized correlations between these parameters. Consequently,
combinations of these parameters were simulated assuming
independence of preference parameters so as to span the com-
plete range of consumer preference scenarios that would be
produced using any correlation of parameters. Specifically, the
parameter ranges were divided up into three levels for each
parameter—representing the lower bound, midpoint, and upper
bound for each parameter—and combinations of these parameter
levels were used as simulation inputs. Assuming that the incen-
tive to change vehicle size is monotonic with consumer prefer-
ences for vehicle size, price, fuel efficiency, and acceleration
performance, the range of the results of this study bound the

2 Boyd and Mellman (1980), referenced in Greene and Liu’s (1987) review,
estimate a random-coefficient utility model using a lognormal distribution on the
coefficient of fuel efficiency. In this case, the median of the distribution was used
to derive willingness-to-pay values.
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results that would be produced using any combination of demand
parameters in the ranges specified. Strong evidence supporting
this monotonicity is shown in the Results section.

3.5. Equilibrium model

Producer decisions regarding vehicle prices and attributes are
modeled as an oligopolistic equilibrium model where firms
maximize profits with respect to the prices, acceleration perfor-
mance, and levels of technology features of their vehicles. The top
twenty automotive firms that sell vehicles in the United States
are represented in the model. Vehicles are represented as all
vehicle models and engine options produced by these firms based
on MY-2006 data, totaling 473 vehicles.

Firms are differentiated as to whether they are expected to
meet the CAFE standards even if it is more profitable to violate
them. The model allows BMW, Jaguar, Mercedes-Benz, Porsche,
and VW to violate the standard and pay the legally required
penalties. The profit maximization formulation for these firms
takes the form of

max
f tpj ,accj ,techj ,pj8j

X

j

qjðpj%cjÞ%FC%FT ð7Þ

where

mpgj ¼ f ðaccj,techj,f tpjÞ

FC ¼
X

mACC

qm

 !
X

mACC

qm

qm=Tm
%
X

mACC

qm

qm=mpgm

 !

FT ¼
X

nACT

qn

 !
X

nACT

qn

qn=Tn
%
X

nACT

qn

qn=mpgn

 !

The parameters FC and FT are, respectively, the penalties for
violating the fuel economy standard for passenger cars (StandC)
and light trucks (StandT). Fuel economy targets, Tm and Tn, for
these vehicle classes are determined by Eq. (2). All other firms are
treated as constrained to the CAFE standards so that their profit
maximization problems take the form of Eq. (3).

Firm decisions on vehicle footprint are constrained to a maximum
of a 10% increase. This constraint is imposed to avoid extrapolation
outside of the boundaries of the data used to construct the
engineering performance model and to account for any potential
manufacturing constraints of dramatically increasing vehicle foot-
print. Data of vehicle models from 1997–2010 indicate that increases
in vehicle footprint by 10% compared to the previous model design
occur (Chrome Systems, Inc., 2008), suggesting that any potential
constraints on footprint are at least 10% and, therefore, imposing this
constraint on the model causes the results to represent a lower
bound with respect to the incentive to increase vehicle size under the
footprint-based CAFE standards.

4. Results

Simulations were performed for a number of combinations of
consumer preference parameters and the change in the sales-
weighted average of overall vehicle size (length by width) across
all vehicle models was determined. Table 3 presents results for
scenarios in which the average price-elasticity of demand is high.
This represents a conservative case in which incentives to increase
vehicle size are lower because consumers are not as willing to pay
for the cost of increasing vehicle size. The upper left corner of this
table represents the lower bound of changes in vehicle size caused
by the MY-2014 footprint-based CAFE standards. The table also
illustrates how changes in vehicle size vary with different levels of
consumer preferences for vehicle size, fuel efficiency, and accelera-
tion performance.

For the results in Table 3, consumer preference parameters for
acceleration performance and fuel efficiency are set at the same level
(i.e., either both low, both high, or both at midpoints). Additional
simulation results are presented in Table 4. These results illustrate the
sensitivity of changes in vehicle size under footprint-based CAFE to
consumer preference parameters, including independent variations of
preference for fuel efficiency and acceleration performance. The last

Table 2
Ranges of demand parameters in literature and corresponding model coefficients.

Range of mean price elasticity

Low Mid High

Price 2.0 2.6 3.1
Corresponding coefficients, aprice 0.65 0.83 1.00

Range of estimated willingness to pay

Low Mid High
Vehicle Size (sq ft) $340 $1170 $2000

(sq m) $366 $1259 $2153

Corresponding coefficient
aprice ¼ 1.00 2.12 7.44 12.71
aprice ¼ 0.83 1.76 6.18 10.55
aprice ¼ 0.65 1.38 4.84 8.26

Acceleration performance (0.01 hp/lb) $160 $2830 $5500
(0.01 kW/kg) $97 $1721 $3345

Corresponding coefficient
aprice ¼ 1.00 0.06 1.07 2.07
aprice ¼ 0.83 0.05 0.89 1.72
aprice ¼ 0.65 0.04 0.70 1.35

Fuel efficiency (gal/100 mi) $800 $4900 $9000
(L/100 km) $340 $2083 $3826

Corresponding coefficient
aprice ¼ 1.00 0.07 0.44 0.80
aprice ¼ 0.83 0.06 0.37 0.66
aprice ¼ 0.65 0.05 0.29 0.52
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line of Table 4 represents the upper bound of changes in vehicle size
caused by the MY-2014 footprint-based CAFE standards.

Results indicate that there is an incentive to increase vehicle
size in all simulations except the scenarios in which consumer
preference for size is at the lower bound ($340 per sq ft) and
preference for acceleration performance is at the upper bound
($5500 per 0.01 hp/lb). In those cases, firms have an incentive to
shift production of their vehicles such that the average vehicle
size decreases by 1.0–1.4 sq ft (0.09–0.13 sq m) due to low con-
sumer preference for vehicle size compared to acceleration
performance. In all other simulations, firms have an incentive to
increase the size of vehicles sold, both by increasing the footprint
of vehicle models and by shifting production toward larger
vehicles. The incentive varies substantially depending on con-
sumer preferences, from an average of 1.4–16.1 sq ft (0.13–
1.21 sq m). This compares with an average increase in size of
1 sq ft (0.09 sq m) between 2008 and 2011.

Depending on the scenario, between 7% and 33% of vehicle models
and engine options are actively constrained by the 10% upper bound
on the increase in vehicle footprint. The larger percentage occurs in
scenarios where consumer preference for vehicle size is high and
preferences for acceleration performance and fuel efficiency are low.
This suggests that the increase in vehicle size for these scenarios
would be even higher if this constraint was relaxed.

Sensitivity of these results with respect to assumptions on
vehicle weight and production costs was also investigated.
Vehicle curbweight was assumed to increase by 0.5% for every
1% increase in footprint. A 40% variation in the percentage of
vehicle weight that changes with footprint leads to less than a 5%
change in results. Production costs were assumed to increase 1%
for every 1% increase in footprint as a highly conservative upper
bound. Assuming instead that an increase in footprint by 1%

increases production costs by 0.8%, the change in average vehicle
size is approximately 9% greater.

To test the impact of the incentive to increase vehicle size on
fuel economy, we compare simulation results to the average fuel
economy that the CAFE standards would require if vehicle size
and sales remain unaffected. Specifically, the sales and vehicle
footprint using MY-2006 data was input into Eqs. (1) and (2) to
determine these fuel economy standards. This is similar to the
process NHTSA has used to predict future levels of fuel economy,
except they have used product development plans provided by
automotive firms to extrapolate future vehicle attributes. Our
calculations from this procedure indicate that the required
average fuel economy under the MY-2014 footprint-based stan-
dards is 30.7 mpg (13.1 km/L). This is similar to NHTSA’s esti-
mated value of 31.5 mpg (13.4 km/L). Simulation results indicate
that the combination of increases in vehicle size and shifts in
production to larger vehicles can reduce these fuel economy
requirements. The resulting required fuel economy standards
from the simulations are 1.4–4.1 mpg (0.6–1.7 km/L) lower than
if vehicle sales and size remained unaffected.

Simulations results also suggest that the incentive to increase
vehicle size is significantly different for light trucks and for
passenger cars. Fig. 3 illustrates the change in vehicle footprint
and fuel economy from simulation results using midpoint values
of consumer preference for fuel efficiency, acceleration perfor-
mance, and vehicle size. Initial vehicle data is displayed in gray
with counterfactual simulation results in black. The sizes of the
circles in the figure are proportional with vehicle sales. The sales-
weighted harmonic mean of fuel economy and vehicle footprint
are plotted as a cross (þ).

The figure illustrates that vehicle footprint increases for both
passenger cars and light trucks, but that the increase in footprint

Table 3
Changes in sales-weighted average vehicle size given combinations of consumer preference parameters with price sensitivity at the
upper bound.

Preference for vehicle size

Low Mid High

Preference for
fuel efficiency

High Preference for
acceleration

High %1.4 sq ft þ3.8 sq ft þ7.0 sq ft
(%0.13 sq m) (þ0.35 sq m) (þ0.65 sq m)

Mid Mid þ1.5 sq ft þ7.5 sq ft þ9.2 sq ft
(þ0.14 sq m) (%0.70 sq m) (þ0.85 sq m)

Low Low þ2.1 sq ft þ9.6 sq ft þ13.4 sq ft
(þ0.20 sq m) (þ0.89 sq m) (þ1.24 sq m)

Table 4
Sensitivity of results to variations in consumer preference parameters.

Price sensitivity Preference for
fuel efficiency

Preference for
acceleration

Preference for
vehicle size

Sales-weighted average
change in footprint

High Mid High Mid þ4.0 sq ft (þ0.37 sq m)
High Mid Low Mid þ9.4 sq ft (þ0.87 sq m)
High High Mid Mid þ5.9 sq ft (þ0.55 sq m)
High Low Mid Mid þ9.2 sq ft (þ0.85 sq m)
Mid Mid Mid Mid þ10.5 sq ft (þ0.98 sq m)
Low Mid Mid Mid þ11.3 sq ft (þ1.05 sq m)
High Low High Mid þ5.9 sq ft (þ0.55 sq m)
High High Low Mid þ9.3 sq ft (þ0.86 sq m)
High Mid High Low %1.0 sq ft (%0.09 sq m)
High High Mid Low þ1.3 sq ft (þ0.12 sq m)
Mid Mid Mid Low þ4.2 sq ft (þ0.39 sq m)
Low Low Low High þ16.1 sq ft (þ1.50 sq m)
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for light trucks is significantly larger than for passenger cars. The
sales-weighted average increase in vehicle footprint is 9.9 sq ft
(0.92 sq m) for light trucks but 5.7 sq ft (0.53 sq m) for passenger
cars.

This behavior can be explained by the larger impact of the
CAFE standard for light trucks on firm profits than the standard
for passenger cars. Simulation results give the Lagrange multiplier
to the constraints in eq. (3), which is interpreted as the incre-
mental profit loss given an incremental increase in the CAFE
standard, referred to as the shadow cost of the standard. Results
indicate that this shadow cost is 1.5–7.0 times larger for light
trucks than passenger cars. Because the light truck standard
causes larger profit losses than the passenger car standard, firms
increase the sales-weighted average footprint of light trucks more
than passenger cars in 20 out of the 21 simulations conducted.

Similar counterfactual simulations for the reformed CAFE stan-
dards have not been performed; so these shadow costs cannot be
compared to other estimates in the literature. With regard to the
unreformed CAFE standards, Anderson and Sallee (2009) also found
that the ranges of estimated shadow costs of the standard for light
trucks were larger than for passenger cars for Ford, GM, and

Chrysler. Jacobsen (2010) found that the shadow cost for light
trucks was larger than passenger cars for Ford, but that the shadow
cost for light trucks was lower than for passenger cars for GM and
Chrysler.

The incentive to increase vehicle size also varies substantially
among vehicle models within the same class. For the case
illustrated in Fig. 3, in which consumer preferences for vehicle
size, fuel efficiency, and acceleration performance are all at their
mid-points and price-elasticity for demand is high, increases in
vehicle footprint range up to 13.8 sq ft (1.28 sq m) for certain
light-truck models, and 10.4 sq ft (0.97 sq m) for certain passen-
ger-car models. Even in the cases in which the sales-weighted
average vehicle size decreases, the size of certain vehicle models
increase by as much as 8.5 sq ft (0.79 sq m).

Additional simulations were performed to test the impact of
changing the slope of the functions determining fuel-economy
targets dependent on vehicle footprint, as described by eq. (3).
These functions were iteratively modified to decrease the slopes
until simulation results show no increase in the sales-weighted
average footprint for the case where consumer preferences for
vehicle size, fuel efficiency, and acceleration performance are all
at their midpoints. Results indicate that if the slope of the
function for passenger cars is reduced by a third and the slope
of the function for light trucks is reduced by half, then the sales-
weighted average footprint does not increase for this scenario of
consumer preferences. Fig. 4 illustrates these results.

Fig. 3. Simulation results given midpoint consumer preferences. Sales-weighted
harmonic mean vehicle attributes are represented as a cross (þ). Initial data are in
light gray, with MY-2014 CAFE counterfactual simulation results in dark gray.
Circle size is proportional to vehicle sales.

Fig. 4. Simulation results for midpoint consumer preferences with modified
functions determining fuel-economy targets dependent on vehicle footprint.
Sales-weighted harmonic mean vehicle attributes are represented as a cross
(þ). Initial data are in light gray, with MY-2014 CAFE counterfactual simulation
results in dark gray. Circle size is proportional to vehicle sales.
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5. Discussion

This analysis shows that the current footprint-based CAFE
standards create an incentive to increase vehicle size that under-
mines gains in fuel economy over a large range of assumptions
about consumer preferences. The hypothesis that the footprint-
based CAFE standards do not create an incentive to increase
vehicle size can be rejected except under somewhat extreme
simultaneous assumptions regarding consumer preferences for
vehicle size and acceleration performance. Assuming vehicles are
driven 12,000 miles per year for 10 years and annual U.S. new
vehicle sales are 13 million, results indicate that the reduction in
required fuel economy caused by the incentive to increase vehicle
size leads to an additional 24–76 million short tons (22–69
Mtonnes) of annual CO2 emissions—comparable to adding 3–10
coal-fired power plants (each 1000 MW) to the electricity grid
each year (Fay and Golomb, 2002).3

The results also suggest that the incentive to increase vehicle size
is greater for light trucks than for passenger cars, which would
increase the divergence of the sizes of vehicles in these classes. This
divergence could negatively affect traffic safety because one can
expect a divergence in the weight of vehicles in these classes
corresponding to their divergence of size. Although the literature
on traffic safety has not produced a consensus on the relationship
between vehicle size and safety, researchers generally agree that if
the spread of vehicle weight on the road increases, fatality risk in a
two-vehicle crash increases (Anderson and Auffhammer, 2011;
Greene and Keller, 2002; Kahane, 1997).

While the footprint-based CAFE standards can theoretically be
modified to eliminate incentives to change vehicle size, this study
illustrates that this process would be difficult in practice. As
results illustrate, if the slope of the functions determining fuel
economy targets dependent on vehicle footprint is flattened, the
incentive to increase vehicle size is reduced. Results also suggest
that, unless consumer preferences for vehicle size are at the lower
bound and preferences for acceleration performance are at the
upper bound of the ranges considered, the slope of both passenger
car and light truck functions should be flattened and the slope of
the function for light trucks should be flattened to a greater
extent to avoid a divergence between the sizes of light trucks and
passenger cars.

This analysis shows that designing the footprint-based CAFE
standards such that no incentive exists to change vehicle size is
complicated by the fact that this incentive depends on a number
of relationships that vary among individual vehicle models. The
incentive to increase vehicle size depends on engineering trade-
offs between vehicle size and other vehicle attributes, consumer
preferences for all of these attributes, production costs, and
competition between automotive firms. Results illustrate that
the incentive to change vehicle size resulting from these factors
varies substantially across individual vehicle models. Conse-
quently, designing footprint-based fuel-economy standards in
practice such that manufacturers have no incentive to adjust
the size of their vehicles appears elusive at best and impossible
at worst.

6. Conclusions and recommendations

This study presents an oligopolistic equilibrium model to
study whether footprint-based fuel-economy standards create
an incentive to increase vehicle size. Simulation results reject

the hypothesis that footprint-based standards do not create an
incentive to increase vehicle size over a large range of assump-
tions regarding consumer preference. Except for the scenarios in
which consumer preference for vehicle size is at the lower bound
and preference for acceleration performance is at the upper
bound of ranges considered, an incentive to increase vehicle size
exists and can undermine gains in fuel economy. The required
fuel-economy standards from these simulation results are
1.4–4.1 mpg (0.6–1.7 km/L) lower than if vehicle size and produc-
tion mix is assumed unaffected by the policy. Results also suggest
that the incentive to increase vehicle size is larger for light trucks
than passenger cars, which could lead to higher traffic safety risks
due to the increased divergence of vehicle size between these two
classes. Furthermore, this analysis illustrates that incentives to
change vehicle size vary considerably between individual vehi-
cles, suggesting that modifying the CAFE standards as they are
currently structured so that manufacturers do not have incentives
to change the sizes of their vehicles is extremely difficult.

In the near-term, the analysis suggests that the following three
measures could help to reduce the incentive to increase vehicle size.
First, the slope of the function determining fuel economy targets
based on vehicle footprint should be flattened for both passenger
cars and light trucks, and even further for light trucks to avoid a
divergence in size between these vehicle classes. Second, potential
incentives for automakers to change vehicle size in response to the
CAFE standards should be carefully analyzed in all future rulemak-
ings to inform the specific policy design. Finally, considering the
sensitivity of the incentive to increase vehicle size on consumer
preferences, which are likely to change over time, future rulemaking
should either allow for modifications to the standards if it becomes
clear that fuel-economy goals will not be met or endeavor to design
the standards such that the effects of changes in consumer prefer-
ences are minimized.

In the longer term, alternative policy options should be
considered to address fuel-economy goals and concerns regarding
traffic safety. The ideal solution would be a policy that could
assess the impact of a vehicle on total traffic safety (including the
vehicle’s passengers, passengers of other vehicles, and pedes-
trians) as well as assess the impact of the vehicle on total fuel
consumption and would optimize these two objectives for the
social good, giving automakers guidance on how to balance the
objectives where they compete and rewarding them for develop-
ing solutions that improve both safety and fuel economy. Con-
sidering the practical difficulties of designing and implementing
safety and fuel-economy regulations, however, this ideal is clearly
a long way off if not impossible. All the same, policymakers and
researchers should consider how to make steps toward this ideal.
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Appendix A

This appendix describes the regression analysis of the relation-
ship between vehicle footprint and curbweight.

3 This calculation is based on the EPA’s estimates of 19.4 lb CO2 per gallon
gasoline and 22.2 lb CO2 per gallon diesel (EPA, 2005), with gasoline vehicles making
up 99% of new vehicle sales and diesel vehicles making up the remaining 1%.
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The model of vehicle curbweight as a function of vehicle
footprint is assumed to take the following form:

logðwtÞ ¼ blogðf tpÞþgXþe ðA1Þ

where wt is the curbweight of the vehicle, f tp is the footprint, X is
a vector of covariates, and e is the error term. The coefficient b is
the percentage increase in curbweight resulting from a 1%
increase in footprint (see for example Wooldridge 2002).

Two specifications of this model are used. The first uses no
covariates; footprint is the only explanatory variable for curbweight.
The second specification includes additional vehicle attributes as
covariates to control for correlations in the data between footprint
and other vehicle attributes that affect curbweight. Engine size
(engsize) and vehicle height are included as covariates in this second
specification.

Vehicle data from model-year 2006 was used to perform these
regressions (Chrome Systems, Inc., 2008). Results of the three
specifications are presented in Table A1. These results indicate
that, when no additional vehicle characteristics are used as
covariates, curbweight is estimated to increase by 1.3% for every
1% increase in footprint. When both engine size and height are
controlled for in the regression, curbweight is estimated to
increase by 0.53% for every 1% increase in footprint.
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For the specialism to emerge and 
grow, data scientists will have to over-
come barriers that are common to 
multi disciplinary research. As well as 
acquiring understanding of a range of 
science subjects, they must gain aca-
demic recognition. Journals such as the 
Data Science Journal should become 
more prominent within the comput-
ing community. Software products and 
technologies should be valued more by 
academic committees. 

New interdisciplinary courses will 
be needed. The University of Califor-
nia, Berkeley, and Stanford University 
in California have set up introductory 
courses for computer scientists on big-
data techniques — more universities 
should follow suit. Natural scientists, 
too, should become familiar with com-
puting and format issues.

In my lectures for computer-science 
graduates, I have brought together stu-
dents at the University of Southern Cali-
fornia in Los Angeles with researchers at 
the JPL. Using real projects, my students 
see the challenges awaiting them in their 
future careers. I hope to employ some of 
them on the projects that will flow from 
the JPL’s big-data initiative. The technolo-
gies and approaches that they develop will 
spread beyond NASA through contribu-
tions to the open-source community.

Empowering students with knowledge 
of big-data infrastructures and open-
source systems now will allow them to 
make steps towards addressing the major 
challenges that big data pose. ■
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Buy a more fuel-efficient car and you 
will spend more time behind the 
wheel. That argument, termed the 

rebound effect, has earned critics of energy-
efficiency programmes a voice in the  
climate-policy debate, for example with an 
article in The New York Times entitled ‘When 
energy efficiency sullies the environment’1. 

The rebound effect idea — and its extreme 
variant the ‘backfire’ effect, in which 

supposed energy savings turn into greater 
energy use — stems from nineteenth-century 
economist Stanley Jevons. In his 1865 book 
The Coal Question, Jevons hypothesized  
that energy use rises as industry becomes 
more efficient because people produce and 
consume more goods as a result2.

The rebound effect is real and should be 
considered in strategic energy planning. 
But it has become a distraction. A vast 

The rebound effect 
is overplayed

Increasing energy efficiency brings emissions savings. 
Claims that it backfires are a distraction, say Kenneth 

Gillingham and colleagues. 

Fuel-efficient cars cost less to run, so people might use them a little more.  
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academic literature shows that rebounds 
are too small to derail energy-efficiency 
policies. Studies and simulations indicate 
that behavioural responses shave 5–30% 
off intended energy savings (see ‘Bounce 
back’), reaching no more than 60% when 
combined with macroeconomic effects. 

There is ample scientific evidence to 
diminish undue concern about rebounds 
and bolster support for energy-efficiency 
measures. 

Many countries are considering legisla-
tion to limit energy demand, oil imports 
and pollution3. China plans to reduce its 
energy intensity by 16% from 2010 levels 
by 2015; the European Union aims to cut 
energy use by 20% compared with 2020 
projections; and Japan seeks a 10% drop 
in electricity demand from 2010 levels by 
2030. Energy efficiency could contribute 
to the savings, but no country is taking full 
advantage of its potential. 

Various factors slow the uptake of effi-
cient technologies, including behaviour, 
high cost and split incentives between 
investors and beneficiaries. Energy stand-
ards could help. Last year, the United States 
extended its fuel-economy standards for 
cars and trucks to require a doubling by 
2025. Even taking rebound into account, 
we expect that these standards will yield 
substantial net energy savings.

FOUR EFFECTS
A rebound effect manifests in four ways, 
each of which makes energy-efficiency  
policies less effective. The important ques-
tion is by how much. 

The ‘direct’ effect occurs when a drop in 
the price of using an energy service causes 
a rise in demand. Analysts infer the size of 
the effect from changes in people’s behav-
iour as prices vary. Numerous studies show 
that increased driv-
ing due to improved 
fuel economy reduces 
intended energy sav-
ings by 5–23% at first, 
rising to around 30% 
after several years as 
people get used to 
the lower cost4. The initial direct effect for 
home electrical appliances is also around 
10% (ref. 5). 

Because people respond more strongly to 
price than to efficiency cues when deciding 
how much energy to use6, these numbers are 
overestimates. The direct rebound effect for 
efficiency alone should be nearer the low end 
of this range, or around 5–10% (refs 4,5).

Money saved through efficiency can also 
be spent on another product, such as a new 
phone, causing an ‘indirect’ rebound effect 
if extra energy is needed to manufacture 
and use the additional item. Assessments 
of household spending indicate that 5–15% 

of energy-efficiency savings are displaced 
in this way7. If the cost of making efficiency 
improvements is included, then the indi-
rect effect is at the low end of this range. A 
Toyota Prius, for example, is more expen-
sive than a comparable but less-efficient 
car, reducing the spare money available. 

Two other rebound effects apply on 
the scale of national economies. The lat-
est fuel-economy standards passed by the 
United States will reduce demand for oil 
there. But, because that will drive down the 
price of oil globally, they could encourage 
people elsewhere to drive more, leading to 
a ‘macroeconomic price’ effect. 

Greater energy efficiency could also spur 
pockets of industrial growth, leading to a 
‘macroeconomic growth’ effect. Higher 
energy efficiency in one sector can create 
opportunities or technologies in others 
that consume more energy. For exam-
ple, the development of lighter, stronger  
materials for fuel-efficient cars might lead 
to better aeroplanes, boosting energy use 
in the aviation sector. 

Macroeconomic rebound effects are 
hard to pin down, but simple economic 
theory sets a limit. Standard assumptions 
linking supply and demand suggest that 
‘backfire’ due to the price effect is impos-
sible: if global demand for oil falls, the oil 
will become cheaper, so the incentive to 
produce it will be reduced. Less oil will be 
used overall, even though the cost is lower. 

COMPLICATED SUMS
The four rebound effects cannot simply be 
added together to give the combined effect, 
because the presence of one may erode oth-
ers. For example, when both the direct and 
indirect apply, the result is less than the sum 
of the two because any direct rebound effect 

decreases the amount of money available to 
spend elsewhere. Macroeconomic models 
estimate total combined rebound effects to 
be in the range of 20–60%8,9. 

In sum, rebound effects are small and 
are therefore no excuse for inaction. Peo-
ple may drive fuel-efficient cars more and 
they may buy other goods, but on balance 
more-efficient cars will save energy. 

Energy-efficiency measures should be on 
the policy menu to curb energy use and to 
address global warming. Stricter energy-
efficiency legislation should be considered 
across all sectors, alongside options that 
are not subject to rebound effects, such as 
carbon pricing. ■
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BOUNCE BACK
US policy to double fuel economy standards by 2025 would reduce projected energy consumption 
by almost 7% in the absence of behaviour changes. A conservative estimate of rebound effects from 
driving more and purchasing additional goods limits energy reductions to around 5%.

Behaviour changes push 
consumption back up

Less fuel is used owing 
to greater efficiency

“Rebound 
effects are 
small and are 
therefore no 
excuse for 
inaction.”
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Sensitivity of Vehicle Market
Share Predictions to Discrete
Choice Model Specification
When design decisions are informed by consumer choice models, uncertainty in choice
model predictions creates uncertainty for the designer. We investigate the variation and
accuracy of market share predictions by characterizing fit and forecast accuracy of dis-
crete choice models for the US light duty new vehicle market. Specifically, we estimate
multinomial logit models for 9000 utility functions representative of a large literature in
vehicle choice modeling using sales data for years 2004–2006. Each model predicts
shares for the 2007 and 2010 markets, and we compare several quantitative measures of
model fit and predictive accuracy. We find that (1) our accuracy measures are concord-
ant: model specifications that perform well on one measure tend to also perform well on
other measures for both fit and prediction. (2) Even the best discrete choice models
exhibit substantial prediction error, stemming largely from limited model fit due to unob-
served attributes. A na€ıve “static” model, assuming share for each vehicle design in the
forecast year¼ share in the last available year, outperforms all 9000 attribute-based
models when predicting the full market one year forward, but attribute-based models can
predict better for four year forward forecasts or new vehicle designs. (3) Share predic-
tions are sensitive to the presence of utility covariates but less sensitive to covariate form
(e.g., miles per gallons versus gallons per mile), and nested and mixed logit specifications
do not produce significantly more accurate forecasts. This suggests ambiguity in identify-
ing a unique model form best for design. Furthermore, the models with best predictions
do not necessarily have expected coefficient signs, and biased coefficients could misguide
design efforts even when overall prediction accuracy for existing markets is maximized.
[DOI: 10.1115/1.4028282]

1 Introduction

Design researchers have proposed a variety of methods to pre-
dict the influence of design decisions on firm profit as part of a
broader effort to base design decisions explicitly on predictions of
downstream consequences for the firm [1]. The majority of these
methods apply discrete choice methods [2] to predict consumer
choice as a function of product attributes and price. Such predic-
tions are proposed as a way to guide or even optimize design deci-
sions [3–11]. Application of choice models within design
implicitly relies on accurate choice predictions [5,12]. Given the
many sources of uncertainty in such models, however, Frisch-
knecht et al. [8] question the suitability of using choice models in
a design context. At a minimum, researchers must be aware of the
degree of prediction error and uncertainty when employing market
models in design.

Prediction error can arise from many sources, including noisy
data, finite data, omitted variables, changes in preferences or mar-
ket conditions between estimation and prediction, and misspecifi-
cation of the choice process [13]. Recent design research has
modeled some aspects of model uncertainty by posing distribu-
tions over model coefficients [5,12]. Following standard asymp-
totic results, coefficient distributions are most often assumed to be
normal with mean vector and covariance matrix determined by
properties of the log-likelihood function. However, model misspe-
cification is virtually guaranteed in most revealed preference con-
texts, given the complexity of human choice behavior for difficult
decisions [14], and standard statistical results do not apply in such
settings, nor are they comprehensive. Moreover, few applications
of choice modeling in any field carefully analyze sensitivity of
model fit or forecast accuracy using alternative utility

specifications or error structures that might imply different design
decisions. A realistic portrait of these aspects of predictive error
cannot be captured in a fully generalizable way across product
domains or contexts but can nevertheless be better understood via
data-driven examination in the specific market of interest.

We focus on the effect of model specification and characterize
share prediction accuracy of multinomial logit models in an
empirical study of recent new vehicle markets using revealed
preference sales data. The automotive sector is among the most
popular product domains for application of choice modeling in
general [4,7–9,11,15–44] and in the design literature specifically
[4,7–9,15,21,24,27,28,32,35]. Logit models, along with variants
including nested and mixed logit models, represent the most popular
modeling approach by far. While stated choice methods fit to conjoint
survey data are common [3,9,24,27,39–41], they measure hypotheti-
cal choices and generally must be calibrated to achieve a match with
market sales data [25,45]. We focus here on choice models fit to ag-
gregate market sales data [4,7,8,15–20,22,28,29,32–38,40,43,46].

Given the importance of the vehicle choice application in the
design literature and beyond, a better understanding and charac-
terization of prediction accuracy in this domain and its implica-
tions for design is needed. We aim to address this need with an
automotive case study by fitting a set of models representative of
those in the literature to past vehicle sales data, using the resulting
models to predict sales in later years, and assessing prediction
accuracy.

Our analysis is focused on the following research questions:

(Q1) How should we measure prediction accuracy, and do dif-
ferent measures lead to different conclusions about which
models predict best?

(Q2) How widely do predictions vary for alternative model
specifications? Which specifications have the best predic-
tions, and how good are they?

(Q3) What are the implications for using choice models in
design, particularly of new products?
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The design literature has not yet investigated what measures of
forecast accuracy exist or compared these measures to understand
how they differ in characterizing accuracy, thus Q1. Q2 applies
appropriate measures to the specific task in our case study. Q3
focuses on prediction accuracy for new vehicle designs, and we
examine the relationship between accurate prediction in existing
markets versus potential to predict response to new designs that
deviate from market patterns (e.g., correlations with unobserved
attributes). We view design as primarily interested in the introduc-
tion of new products or (large) changes to product features, moti-
vating a focus on new vehicles.

2 Literature Review

Broadly, there are two schools of research in the vehicle
demand literature. The first is concerned foremost with predicting
future vehicle demand shares, usually at an aggregate level like
vehicle class or powertrain type, and often without transparency
about the assumptions and models used to make the forecast. We
henceforth refer to this type of literature as “forecasting”. The sec-
ond school is interested in model construction and in vehicle and
consumer attributes coefficient estimation especially as it pertains
to willingness-to-pay and demand elasticity in past markets. We
henceforth refer to this type of literature as “explanatory.” Appen-
dix A compares publications of each type.1

Forecasting studies are conducted by private or government
research entities or issued in report format from an academic
research institute (see Appendix A). Reports are typically not peer
reviewed and rarely contain a full mathematical description of the
model, making it impossible to reproduce the model without addi-
tional information. Some reports include sensitivity cases formed
with variations on model assumptions; for example, the Energy
Information Administration Annual Energy Outlook [47] contains
base, low, and high alternative vehicle future market share as a
result of base, low, and high future oil prices. This type of sensi-
tivity only captures uncertainty about model input parameters and
assumes that model specification and estimated coefficients are
known. In practice, model specifications for choice contexts as
complex as automotive purchases are always uncertain, and the
relevant question is whether or not the model is sufficient for its
intended function. The forecasting literature is typically not used
in engineering design models due to lack of transparency and doc-
umentation of data and modeling assumptions and lack of models
that make predictions as a function of design variables. Rather,
models from the explanatory literature are applied in a predictive
context.

The bulk of the new vehicle purchase demand literature is
explanatory, conducted by academic researchers and published in
peer-reviewed academic journals (see Appendix A). This litera-
ture extensively discusses model estimation and to a lesser degree
model selection, including potential sources of error from model
misspecification. Usually researchers compare the goodness-of-fit
across several specifications in order to determine which model
best represents a known, current reality. However, most of this lit-
erature does not attempt to make predictions about future vehicle
market share penetration or evaluate models with predictive capa-
bilities in mind (Frischknecht et al. [8] is a rare exception). In gen-
eral, models that fit the existing data best may not necessarily be
the best at predicting counterfactuals: statistical models may be
misspecified, containing systematic difference in prediction from
true process (“bias”), or may be sensitive to overfitting noise in
the data instead of signal (“variance”) [48].

The earliest applications of economic models for overall auto-
motive demand focused on macroeconomic variables and, as
Train [49] highlights, only included price. These studies are
referred to as aggregate studies because the level of granularity of
predictions is at the whole market or vehicle class level as

opposed to individual vehicle designs2. Disaggregate studies
evolved to predict the number of vehicles an individual household
would choose to own [49]. For example, Lave and Train [44]
advanced this work by proposing a disaggregate model of vehicle
class purchase choice based on consumer characteristics and addi-
tional vehicle characteristics, such as fuel economy, weight, size,
number of seats, and horsepower. A wide variety of models fol-
lowed over the next three decades: Boyd and Mellman [43], who
propose a random coefficient logit model adopted by others
[11,28,35,50,51]; Berry et al. [42], who include an alternative-
specific constant (ACS) in the utility function of a random coeffi-
cient demand model adopted by others [16,52–54]; Brownstone
and Train [39], who propose several choice model specifications
using the results of a California conjoint study described in Bunch
et al. [55] and adopted by others [56,57]; and Whitefoot and Sker-
los [11], who investigate the effect of fuel economy standards on
vehicle size and employ a logit model with coefficients drawn
directly from the literature. Other new-vehicle purchase models
include [23,26,29,31,34,40,41,58].

We use the preceding literature to inform comparison models
of our creation; we do not recreate prior models exactly due to
limited availability of data or specifics about estimation methods.
Instead, we form a combinatorial set of utility specifications using
covariate forms from these prior models, fit them all to a common
data set, and test them all on a common prediction set. Appendix
B summarizes the covariates used in past models and those
adopted for our tests.

3 Methods

Our overall goals are to examine the robustness of multinomial
logit model predictions over various utility function specifications
and to compare the predictions across the structural specifications
of logit, mixed logit, and nested logit (for brevity we refer to the
multinomial logit model as “logit”). We identify a universe of
covariates informed by the literature and form combinations of
them such that we have defined all possible linear utility function
specifications from these covariates. We then estimate the logit
coefficients on US consumer vehicle purchase data from 2004 to
2006 and predict market share for each of the vehicles in the US
purchase data from 2007 and 2010.

Using the measures described in Sec. 3.4, we rank the predic-
tive accuracy across utility function specification for each of the
measures.

3.1 The Data Set. Our data set draws vehicle attribute infor-
mation from Ward’s Automotive Index [59] and aggregate US
sales data from Polk [60] for vehicle sales during 2004–2007 and
2010. Other studies have used a variety of data sources (including
these) as well as stated preference surveys. We use 2004–2006
data for estimation because we expect three years of data to be
sufficient to predict a successive year, and we predict 2007 and
2010 sales to examine the effects of different time horizons. We
implicitly assume that all individuals who purchased a vehicle
considered all of the other vehicles available in the same year and
made a compensatory decision based on vehicle attributes.

Our models consider only new vehicle buyers, thus there is no
outside good (option to not purchase any vehicle). Inclusion of an
outside good allows a choice model to endogenously determine
market size. Excluding it models only share among the vehicles
purchased, which is likely less sensitive to macroeconomic fac-
tors. There are many factors that drive share and are not included
in our models, but we are interested in how well a modeler can
predict when relying primarily on available vehicle attribute data.

3.2 Model Specification. Each model uses the utility
function

1An electronic companion to this paper containing the appendices referenced
herein can be found at http://repository.cmu.edu/meche/70/ 2We use the term “vehicle design” to refer to vehicle make-model.
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uij ¼ x0jbþ eij (1)

where uij is the utility of vehicle design j for consumer i, xj is the
attribute vector of vehicle j, b is the vector of model parameters to
be estimated, and eij is an error term. Following standard assump-
tions, if eij is independently identically distributed (iid) and fol-
lows a type I extreme value distribution, then the probability Pj

that a randomly selected consumer will choose vehicle j can be
expressed as

Pj ¼
exp x0jb
! "

XJ

k¼1

exp x0kb
# $

(2)

where J is the number of vehicle design options. This is the (mul-
tinomial) logit formula.

While any choice of covariates x is possible in principle, we
focus on combinations of covariates used in the prior literature.
We survey the automotive demand literature to identify the uni-
verse of independent variables historically used in automotive
discrete choice models (Appendix B). From this list of candi-
date covariates, we select a subset to define a manageable set of
models. Many of the models in the literature include demo-
graphic or consumer usage covariates, but because Polk sales
data [60] does not include individual-level choices, we ignore
demographics. For some demographic information like gender
or income an aggregate distribution over the US population is
available, but because we do not know which consumers
selected which vehicles, sampled consumer attributes are
unlikely to accurately determine specific individuals’ sensitivity
to vehicle attributes. We omit several variables because they are
not available in our data sources:

• Indirect vehicle attributes like consumer reports ratings for
handling and safety—These would be unknown at the time of
prediction.

• Vehicle and battery maintenance costs—These covariates are
used primarily when predicting alternative vehicle share, and
they will not vary substantially across conventional and
hybrid powertrains.

• Acceleration time (seconds)—We indirectly test inclusion of
acceleration through functions of horsepower and weight.
Note that horsepower/weight correlates well with 0–60 mph
acceleration time for cars well but poorly for trucks.

• Range—This covariate is used primarily when predicting
alternative vehicle share and will not vary substantially
across conventional and hybrid powertrains. A related fuel
economy covariate is included.

• Top speed—We use an alternative measure of performance
through horsepower and weight.

• Number of seats—We use vehicle class, which is closely
related to seating.

• 2-year retained value—Like the consumer rating data this
would not be known at the time of prediction.

• Attributes specific to alternative-vehicles (e.g., dummies for
hybrid or electric power trains)—These are not relevant to
our data set, which includes conventional vehicles and only a
limited number of hybrid powertrains.

The highlighted covariates in Appendix B are those which
remain after omitting demographic, usage, indirect, and unavail-
able attributes. Some studies group price and fuel economy varia-
bles into discrete levels of each rather than treating them as
continuous variables. We consider all covariates (except for class
and brand dummies) to be continuous variables because, unlike
controlled conjoint experiments, the market data do not fit well
into a small number of discrete levels. Price is always included as
a covariate and can take any of the forms listed in Table 1; vehicle
class dummies are also always included. The other highlighted
covariates in Appendix B can take one of the forms listed in
Table 1 or can be excluded from the utility function entirely
(“excluded” option). Given these covariate options, there are 9000
possible utility specifications for the logit model outlined in
Table 1. Operating cost includes the macroeconomic variable of
retail gas price. Though we aim to exclude nonvehicle attributes,
this covariate was particularly prevalent in the literature. Further-
more, while having more covariates cannot decrease best model fit
on a given data set, that does not imply that more covariates will
improve model forecast accuracy. In general, introducing more
covariates introduces the risk of overfitting the estimation data.

From the selected covariates, we assume that the utility func-
tion is linear in parameters (a standard assumption in the vast ma-
jority of logit model applications because it ensures that the log-
likelihood function is concave [2]) and construct models using all
possible linear combinations of covariates.

Many of these covariates are correlated. Such correlations can
induce bias in the estimated coefficients if not corrected [63].
However, while this presents difficulties in drawing inferences
from the coefficients (e.g., willingness-to-pay) it does not neces-
sarily affect the ability to make predictions from the model so

Table 1 Covariate forms tested in utility function specifications

Functional form options

Covariate Option 0 Option 1 Option 2 Option 3 Option 4

Price Price ($) Priceþ op cost ln(price)
Operating costa Excluded Fuel cost/mile Miles/fuel cost Miles/gallon Gallons/mile
Accelerationb Excluded Horsepower/weight (hp/wt) wt/hp exp(c1# (hp/wt) c2) hp
Size Excluded Length Width Length-width Length#width
Style Excluded (Length#width)/height
Air conditioning Excluded Dummy if air-conditioning is standard
Transmission Excluded Dummy if auto. transmission is standard
Brand Excluded Dummy for country of originc Dummy for brandd

Vehicle class Dummies for vehicle classe

aFuel cost is average annual gas price [61] in 2004 dollars, adjustment based on the consumer price index [62].
bc1¼$0.00275 and c2¼$0.776 as in the EIA Annual Energy Outlook [47].
cCountry of origin includes: United States, Europe, and Asia; excludes United States dummy for identification.
dBrand includes: Acura, Audi, BMW, Buick, Cadillac, Chevrolet, Chrysler, Dodge, Ford, GMC, Honda, Hummer, Hyundai, Infiniti, Isuzu, Jaguar, Jeep,
Kia, Land Rover, Lexus, Lincoln, Mazda, Mercedes, Mercury, Mitsubishi, Nissan, Oldsmobile, Pontiac, Porsche, Saab, Saturn, Scion, Subaru, Suzuki,
Toyota, Volkswagen, Volvo; excludes Acura dummy for identification.
eClass includes: Compact, midsize sedan, full size sedan, luxury sedan, SUV, luxury SUV, pickup, minivan, van, and sports; van is excluded for
identification.
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long as the correlations in the training data would also be present
in the prediction set. For vehicle markets, this is likely to hold for
near-term predictions, though it may not hold for new designs that
do not follow prior patterns in the marketplace.

For illustration of this concept, suppose the true choice genera-
tor uses the utility function u xjb0ð Þ ¼ b

0

0xþ e, and the designs in
the market follow a pattern: x¼ A0y for x2 Rn; y 2 Rm;m < n.
Then for any coefficient vector b ¼ b0 þ D : AD ¼ 0f g;
u xjbð Þ ¼ b0A0y þ e ¼ Ab0 þ ADð Þ0yþ e ¼ b00xþ e ¼ u xjb0ð Þ.
Therefore, choice probabilities are identical for any D in the null
space of A, and b0 is not identifiable: coefficient estimates b could
be arbitrarily far from their true value b0. Nevertheless,
u xjbð Þ ¼ u xjb0ð Þ, so utility estimates (and therefore choice proba-
bilities) can be correct even for arbitrarily biased coefficients as
long as the new designs follow the pattern in the marketplace
x¼ A0y. If a new design deviates from the prior pattern
~x¼ A0yþ z, utility (and therefore choice probabilities) may be
biased: u ~xjbð Þ¼ b0þDð Þ0 A0yþzð Þþe¼ Ab0þADð Þ0yþ b0 þ Dð Þ0
zþ e ¼ b00A0yþ b00zþ D0zþ e ¼ u ~xjb0ð Þ þ D0z. Therefore, mod-
els that predict well overall may nevertheless have biased coeffi-
cients that predict poorly for new designs that deviate from the
market pattern. We assess predictive accuracy for products in the
marketplace and also examine variation in implications of coeffi-
cient estimates for new designs.

3.3 Model Estimation. The likelihood of the estimated pa-
rameters L is defined as the probability of generating the observed
data given the estimated parameter values

L b̂jx
! "

¼
YJ

j¼1

Pj

# $nj (3)

where nj is the sales of vehicle j. The maximum likelihood estima-
tor of the parameters b̂ is the value of the vector that maximizes
L. The monotonic transformation ln(L) is typically used as the
objective function for computational benefit. For more detail on
logit models and their estimation see Train [2].

The mixed logit, or random coefficients logit, model is similar
to the logit model except the individual b’s are allowed to vary
over the population to represent heterogeneous consumer prefer-
ences. In our case we assume that they are independently normally
distributed

b ' N l;Rð Þ (4)

where R is a diagonal matrix, and the maximum likelihood
procedure estimates the elements of l and R using numerical inte-
gration [2]. This specification relaxes the independence from irrel-
evant alternatives (IIA) restriction for substitution patterns [2].

Our nested logit specification divides the vehicles into groups
or nests by vehicle class and fits a logit model to each of the nests.
We assume that the utility functional form is the same for each
nest, but coefficients may differ across nests. For example, the b
for price will be different for midsize cars than it is for pickups.
However, within a nest b is fixed. A nested logit exhibits the IIA
property for products within a nest, but relaxes the IIA restriction
for products in different nests.

As generalizations of the logit model, nested and mixed logit
models will necessarily fit any set of estimation data at least as
well as the logit. The mixed logit generalization of the logit model
is even flexible enough to represent most random utility maximi-
zation models, given enough flexibility over the coefficient distri-
bution [2]. However, nested and mixed logit models need not
predict as well as logit models due to the potential for overfitting.

3.4 Evaluation Measures. After fitting each of the model
specifications, we evaluate prediction error using likelihood meas-
ures, the Kullback–Leibler divergence (KL) [64], a cumulative

distribution of error tolerance (CDFET), and the average share
error (ASE), and we compare the goodness-of-fit using the above
measures as well as the Akaike information criterion (AIC) [65],
and the Bayesian information criterion (BIC) [66]. Each of these
measures is described below. We compare models selected as best
by these measures to one another and to literature-informed
benchmark models.

Likelihood: Likelihood, defined in Eq. (3), and monotonic trans-
formations of likelihood, such as log-likelihood ln(L) and average
likelihood (AL) (L1/N, where N is the number of choices observed)
measure the probability that the model would generate the data
observed. When comparing two models for the same data set, the
model with larger L is more likely to generate the data observed.

KL divergence: The KL divergence measures the difference
between a predicted distribution and the true distribution [67].

KL sjjjPj

! "
¼
XJ

j¼1

ln
sj

Pj

% &
sj (5)

where sj¼ nj/J is the market share of vehicle design j. The KL
measure is also a monotonic transformation of L, thus L and KL
will rank models identically, and maximizing likelihood is equiva-
lent to minimizing KL (see Appendix C for proof).

ASE: ASE measures the average error in share predictions
across the vehicle designs.

ASE ¼ 1

J

XJ

j¼1

sj $ Pj

'' '' (6)

We report ASE as a summary statistic in Appendix D but do not
use it as a basis for model selection because it does not holistically
capture distribution divergence: It will not distinguish between
models with large error for one vehicle alternative vs. the same
degree of error spread out among many vehicle alternatives.

Error tolerance cumulative distribution function (CDF): The
CDFET graphs the fraction of vehicles with absolute share predic-
tion error, |sj – Pj| for vehicle design j, less than a specified value.
This measure, to our knowledge proposed here, evaluates a model
in terms of error tolerance levels. We use absolute share error
rather than relative error because relative error overemphasizes
small prediction errors for vehicles with small market share. A
CDFET is a more comprehensive description of model prediction
error than likelihood measures because it characterizes the distri-
bution of accuracy across the vehicle share predictions, rather
than just how well a model predicts “on average”.

Two additional measures apply only to assess fit with estima-
tion data, not predictive accuracy [68].

AIC: AIC is a variation of likelihood that attempts to penalize
overfitting.

AIC ¼2ln Lð Þ$2k (7)

where k is the number of model parameters.
BIC: BIC is similar to AIC but with a stronger penalty for an

increasing number of covariates.

BIC ¼2ln Lð Þ$ln Jð Þk (8)

AIC and BIC can take on the value of any negative real number,
have no standalone meaning, and are only useful as compared to
other candidate models fit to the same data set. Larger values are
preferred. Derivations and consistency proofs for the KL, AIC,
and BIC measures can be found in Ref. [68].

4 Results

Of the 9000 tested utility function specifications, for 8993
(99.9%) the Knitro optimization algorithm for MATLAB converged
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to likelihood-maximizing coefficients, and the other seven failed
to converge. Only the 8993 models that successfully converged
were considered as candidate models. The candidate models were
ranked from best to worst on each measure. There were no two
models with identical values for any measure (no ties). In the fol-
lowing results “best models” refer to the models ranked as number
one for a given measure.

4.1 Q1: Model and Evaluation Measure Comparison. We
refer to a model that most accurately predicts the in-sample esti-
mation data according to a given measure as the “best estimative
model”, and we refer to a model that most accurately predicts the
out-of-sample prediction data as the “best predictive model.” The
traditional goodness-of-fit measures—likelihood/KL and AIC/
BIC—select the same best estimative model, and they also agree
upon the specification of the best predictive model. The CDFET
goodness-of-prediction measure selects distinct model specifica-
tions as the best predictive models dependent upon the desired
error tolerance level (we test error tolerance levels of 25%, 50%,
and 75%). The three CDFET best predictive models are also dis-
tinct from the best estimative and predictive models under the
AIC, BIC, and likelihood criteria. See Appendix D for selected
model measure comparisons and coefficient estimates.

Though the best likelihood/AIC/BIC estimative model is dis-
tinct from the best predictive model, the difference in form is
small. They include the same covariates but in different forms
(e.g., operating cost as miles/dollar as opposed to gallons/mile)
with the exception of luxury and transmission which contribute
little to utility relative to the contribution of the other attributes.

4.2 Q2: Model Accuracy. Table 2 summarizes the AL calcu-
lated on the prediction data set for select combinations of model
specification (rows) and estimation/prediction data set scenarios
(columns). We report the relative average likelihood (RAL) in
Table 2 defined as the AL of the model divided by the AL of an
ideal aggregate model that predicts shares perfectly. The reason we
report RAL instead of simply AL is because choice diversity in the
data necessarily lowers the maximum attainable value of AL with
any model. Thus RAL describes the amount of predictive power
obtained by a particular model relative to the best possible predic-
tive power that could be obtained with any aggregate model.

The rows compare the predictive performance of the model that
has the best predictions and the model that fit the estimation data
best. Using each of the utility functions from the best estimative
logit models, we fit additional mixed and nested logit models. Due
to computational limitations, we did not run all 9000 utility form
combinations for the mixed and nested logit structural

specifications. Rather we used the results from the logit model
output to inform the selection of covariate form for the mixed and
nested logit models. The “no info” row is calculated by assigning
an equal share to all vehicles. The static model row assumes that
shares in the prediction year are identical to the most recent share
of the vehicle design available in the estimation data for all vehi-
cle designs present in both the estimation and prediction data,
and all new vehicle designs receive an equal proportion of the
remaining share.

Scenario 1 is our base case, where models are fit to sales in
years 2004–2006 and used to predict 2007 sales. Scenario 2 uses
only 2006 data to predict 2007, assessing sensitivity of predictions
to the amount of data used for estimation. Scenario 3 fits the mod-
els directly to 2007 data, helping to identify the portion of predic-
tion error that stems from model fit, rather than from changes over
time. Scenario 4 uses 2004–2006 data to predict 2010 sales,
assessing differences when predictions are made farther into the
future. Scenario 5 assesses predicative accuracy for a single vehi-
cle class,3 rather than the entire market, and scenario 6 assesses
only the predictive accuracy for new vehicle designs introduced in
2007. Comparisons can be made within each column to evaluate
the prediction accuracy across model specifications for a given
estimation/prediction data set.

In scenarios 1–3, which predict the full 2007 market, the best
predictive logit model predicts better than the best estimative
model, the class dummies model does not predict as well as the
models which contain vehicle attributes, and the no info model
predicts worst, as expected. Nested logit predictions have lower
AL than logit, but mixed logit predictions have higher AL.4 That
the nested logit does not predict better than the logit suggests that
the relaxation of the IIA property among the nests selected does
not improve prediction. Model predictions could potentially be
improved further by exploring alternative parameter distributional
forms such as multivariate normal with a full covariance matrix
[69], although that introduces more potential for overfitting with
aggregate sales data. We leave such explorations for future work.
See Appendix E for mixed and nested logit coefficient estimates
and Appendix F for actual versus predicted shares.

In all three scenarios the static model outperforms all other
models. Additionally, we see little difference in prediction quality
between scenarios 1 and 3 when using the same model (compare
across columns) compared to the difference due to model specifi-
cation (compare down rows), even though the prediction set and

Table 2 RAL calculated on the prediction data set for select model specifications and data sets

Scenario 1 2 3 4 5 6

Estimation data 2004–2006 2006 2007 2004–2006 2004–2006 2004–2006

Prediction data 2007 2007 2007 2010 2007 2007

Market Full market Full market Full market Full market Luxury sedan New designs

AL of ideal model (predicted shares¼ actual shares) 0.0076 0.0076 0.0076 0.0080 0.0384 0.4610
RAL of no info model 55.3% 55.3% 55.3% 43.6% 63.6% 93.2%
RAL of static model 88.3% 88.3% 88.3% 23.7% 73.3% 95.9%
RAL of class dummies only logit 65.9% 65.9% 65.9% 53.6% NA 95.0%
RAL of best fit logit model for L/AIC/BIC of estimation data 76.4% 77.7% 81.7% 67.3% 73.3% 96.5%
RAL of logit model with greatest likelihood for prediction data 79.0% 79.0% 81.7% 68.5% 87.9% 97.5%
RAL of mixed logit with best logit estimation fit covariates 79.0% 79.0% 85.6% 67.3% 89.2% 97.0%
RAL of nested logit with best logit estimation fit covariates 73.8% 72.4% 80.3% 64.8% NA 95.3%

Note: in Scenario 5 luxury sedan vehicles are used for estimation and prediction; in scenario 6 the full market is used for estimation, but evaluation meas-
ures are assessed for prediction of new vehicles only. Italicized numbers emphasize that the number is an AL as opposed to an RAL. Bold numbers indi-
cate the greatest RAL in a given column (most accurate model for a given scenario).

3This is distinct from the “class dummies only logit” which includes data for the
entire market but uses only dummies representing each class as covariates.

4A likelihood ratio test of the best logit and mixed logit models calculated on
2007 data suggests that there is sufficient evidence to reject the null hypothesis that
the mixed logit model predicts significantly better at the a¼ 0.1 level.
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estimation set are identical in scenario 3. Together, these results
indicate that residual error in model fit is a major source of predic-
tion error, and there is too much missing data or model misspecifi-
cation in the attribute-based models to fit or predict the full
market as well as the static model. Without data on missing cova-
riates that influence choice, such as vehicle aesthetics, it is diffi-
cult to fully explain choice behavior at the vehicle design level
with only the available covariates.

However, scenario 4 examines a longer time horizon and
reveals that the static model has poor predictive capability when
forecasting farther into the future. The attribute-based models
attempt to capture consumer choice as a function of observable
attributes plus random noise, but since not all attributes are
observed, share is not fit perfectly. In contrast, the static model
does not attempt to explain the reason for consumers’ choices but
instead simply assumes consumers will make the same choices
year after year. The static model does well for the 2007 forecasts
because share for each vehicle model changes little from year to
year, but over a longer time horizon vehicle designs change and
new designs are added to the market ('37% of the vehicle designs
sold in 2010 did not appear in the 2004–2006 data). The static
model has no information about these new designs, so it loses pre-
dictive capability, and over a longer prediction horizon the
attribute-based models perform substantially better than the static
model.

Scenario 5 indicates that the attribute-based models also per-
form better than the static model in the luxury sedan class. The
best class model is distinct for each class, though all class models
include some form of all covariates with the exception of style
and automatic transmission as standard. The AL of 2007 class pre-
dictions increases when the best estimative class level model is fit
to class data as opposed to the best estimative full market model
fit to the full market data with the exception of midsize and sports
cars (see Appendix G for table of class model specifications and
model AL comparison by class).

Figure 1(a) shows the CDFET for selected models of scenario
1. The x-axis is the absolute difference between the predicted
share and the actual share, and the y-axis is the proportion of vehi-
cle designs whose share prediction error is less than the corre-
sponding value on the x-axis. For example, in Fig. 1(a) point
(0.25%, 0.7) indicates that 70% of the share predictions made by
the best AIC/BIC/KL models deviate from the observed share by
less than 0.25% (the average vehicle design share in this market is
0.42%).

The worst models all perform similarly to one another in sce-
nario 1 and lie on top of the class-only curve in Fig. 1(a) (and are

thus omitted for readability). While a model could plausibly be
posed that predicts worse than the no info model, we do not
observe it in our utility specifications. The best models and worst
models differ most noticeably in their omission of covariates. The
best models include some form of almost every covariate, whereas
the worst models omit covariates entirely. For example, the worst
model as selected by the likelihood and AIC measures applied to
the estimated data only contains the covariates price and class.
Conversely, if we compare only models that contain some form of
price, operating cost, acceleration, size covariates, and class and
brand dummies (style, luxury, and automatic transmission dum-
mies could be excluded), then we see no practical difference in
the predictive power of the best and worst models. No one covari-
ate in isolation sets the best models apart from the worst models.
A model’s predictive power thus appears to be robust to covariate
form but sensitive to the exclusion of attributes.

4.3 Q3: Implications for Design. Scenario 6 compares the
best-predictive logit model for all vehicles to the model that best
predicts the shares of the new vehicle designs introduced in 2007.
The best new vehicle model is determined similarly to the best
predictive logit model of scenarios 1–3 by ranking the models on
each of the measures; however, the measures in this case were cal-
culated by treating each of the new vehicles individually and the
holdover vehicles as an aggregated “other” share. (The “other”
share is calculated as the sum of all holdover vehicle shares.) In
contrast to scenario 1, the attribute-driven logit models of scenario
6 have a higher likelihood than the static model, since the static
model has no information about new designs.

The CDFET of Fig. 1(b) shows that at lower values of error tol-
erance the attribute-driven models are superior to the static model
and that there is some difference in prediction quality between
models that predict best for the whole market versus the new vehi-
cle market. Overall, while the static model outperforms attribute-
based models for near-term predictions, attribute-based models
are needed for predicting the performance of new vehicle designs
and for making longer-term predictions. Still, the degree of uncer-
tainty and error in predictions for new designs may be too large to
guide design choices appropriately in some contexts.

Appendix D summarizes model coefficients for several specifi-
cations including those representative of models in the literature
as well as best estimative and best predictive models. It is clear
that different specifications lead to different inferences about the
effect of attribute changes on choice. For instance, the utility func-
tion specifications based on Boyd and Mellman [43], Berry et al.

Fig. 1 CDF of error tolerance for the best logit model specifications as measured by likelihood/KL and AIC/BIC measures on
2004–2006 sales estimation data and 2007 sales prediction data compared to alternative models (a) full market and (b) new
vehicle designs only
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[42], and Whitefoot and Skerlos [11] result in a coefficient for
operating cost that suggests consumers prefer higher efficiency
(longer range per unit cost or lower fuel consumption per unit dis-
tance) all else being equal, as expected. But the best estimative
and best predictive models suggest that consumers prefer lower
efficiency. This can happen because efficiency may serve as a
proxy for unobserved variables (e.g., size, performance, or styling
variables not captured in the data). While the latter models make
better predictions for existing vehicle markets that follow estab-
lished patterns (attribute correlations), they could misguide design
efforts that divert from established market patterns.

5 Limitations

Our investigation is a first step in a larger goal of characterizing
the design impacts of choice prediction uncertainty. All of our
models have error resulting from misspecification and missing in-
formation (as do all similar models in the literature that are based
on market sales data rather than controlled experiments). For
example, we do not have information on attributes that are impor-
tant in some vehicle classes (like towing capacity for trucks), and
we lack information and quantification of some key purchase driv-
ers, such as esthetics. We lack individual-level choice data with
consumer covariates, such as demographics or usage variables [9],
which can help explain choice behavior and improve predictions
when predictions of future population covariates are available.
Nevertheless, such limitations are common in choice models used
to assess the vehicle market or guide design choices. Our study
suggests that if models lack transparent quantifications of impor-
tant determinants of product choices, designers should be cautious
about basing design decisions on choice models.

More research is needed to assess a wider scope of modeling
alternatives. We did not consider ASCs—product-specific factors
that can proxy for omitted variables—and their use in prediction
or design. ASCs can generate models that match estimation data
shares exactly; however, they contain no information about specific
unobserved product features, and they are unknown for any new
product designs. We also ignore a major component of the new ve-
hicle modeling literature: covariate endogeneity—a correlation
between model covariates and the unobserved terms like error.
Endogeneity implies that coefficients are biased and inconsistent if
not properly estimated, typically requiring instrumental variables
techniques [2]. We also did not consider alternative estimation
methods (e.g., Bayesian methods) and alternative heterogeneity
specifications (e.g., latent class models, a mixed logit model with
joint parameter distributions, mixture models, and generalized logit
models that account for scale and coefficient heterogeneity [69]).

Our study uses random utility discrete choice models that treat
consumers as observant rational utility maximizers with consistent
preferences. While this is a popular approach to modeling con-
sumer choice, important criticisms exist. For instance, preferences
can evolve over time [25], changing with cultural symbolism [70]
and/or social interactions [71]. The theory of construction of pref-
erence adapted to design by MacDonald et al. [14] suggests that
consumers’ preferences for attributes do not exist a priori but are
rather evaluated on a case-by-case basis [14]. Morrow and Mac-
donald [10] suggest that vehicle choice behavior may be better
represented by a “consider-then-choose” model [72] where con-
sumers first screen out most alternatives using simple rules, subse-
quently maximizing utility over a smaller “consideration set”
[73]. The potential value of this type of model is suggested here
by the better performance of class-only models, a special case of
the consider-then-choose model. More broadly, the Lucas critique
warns against use of aggregated historical data to predict out-
comes in counterfactual future scenarios [74].

6 Conclusions

While the topic of uncertainty associated with choice predic-
tions is widely discussed in the design community (e.g.,

Refs. [3–5,12,14,28]), there is no current consensus as to what
processes and measures best quantify model uncertainty. This gap
motivated our first research question, Q1. We investigated several
well-known measures of model performance evaluated on a pre-
diction set. For the automotive case study examined, likelihood
measures (and the rank-equivalent KL divergence measure) tend
to identify the same top-ranked model as the penalized likelihood
measures AIC and BIC do. While CDFET measures identify dif-
ferent top-ranked models, depending on the error tolerance
selected, the resulting models share most covariates. Models that
perform well on one measure tend to perform well on the other
measures, and models that perform poorly on one measure also
tend to perform poorly on the other measures. In other words,
determination of the best models in our study did not depend
strongly on potentially arbitrary selection of the measure used to
evaluate predictive accuracy.

Overall our results confirm several intuitive features of this
application: attribute-based models predict better than models
with no information; models of a particular vehicle class typically
make better predictions than models of the full market; including
more covariates generally improves predictive accuracy; and bet-
ter model fit correlates well with better predictive accuracy. The
match between fit and predictive accuracy, suggesting no major
overfitting issues, is particularly encouraging, since the modeler
has access to choice data for estimation but not choice data in the
counterfactual predictive context. These findings would have to
be validated in other product domains on a case-by-case basis.

We also observe a number of less intuitive results that are rele-
vant to design. First, the models we construct are fairly poor pre-
dictors of future shares. In our base scenario, our best predictive
model has an average error of 0.24% (the average share of a vehi-
cle design is 0.42%), which translates to an error of approximately
37,500 vehicles sold for the 2007 market. The limited predictive
power of standard models on real data in a canonical product cate-
gory suggests designers should apply discrete choice models cau-
tiously, though predictions may be substantially better in domains
with fewer unobserved attributes or with conjoint data (where all
attributes are observed).

Second, we find that attribute-based models do not furnish the
best predictions for short-run forecasts in stable market condi-
tions; attribute-based models estimated on 2004–2006 data were
outperformed in predicting 2007 shares by the “static” model that
assumes no changes in shares. However, attribute-based models
are superior to the static model when predicting new vehicles
only, since the static model lacks information about new entrants.
There are some intuitive reasons why the static model might per-
form better than attribute-based models for short term predictions
of existing designs given relatively stable market conditions. First,
the static model may implicitly capture effects related to omitted
vehicle attributes neglected by attribute-based models. Second,
the static model may predict well in the short-run simply because
of “inertial” conditions specific to the automotive market, particu-
larly multiperiod production schedules and inventory buildup that
must ultimately be cleared over the short run using unobserved
advertising and/or purchasing incentives.

Third, while including an appropriate set of product attributes
as model covariates is important to improving predictive accu-
racy, the form those covariates take in the utility function is less
important in this application. This implies that it may be less im-
portant to test many variations of utility function covariate form
when constructing a model, but it also means that any design deci-
sions (e.g., design optimization results) that are not robust to vari-
ation in utility function covariate form may not be justified given
the near equivalence of alternative covariate form in fit and pre-
diction error with market data. If different utility specifications
lead to different design decisions but the data cannot discern
which form best represents choices, then design decisions cannot
be reliably based on any single specification.

Finally, we observe that some of the models with the best pre-
dictive accuracy have coefficients with unexpected signs—likely
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biased due to correlation with unobserved attributes. Despite good
prediction accuracy in existing markets, where attribute correla-
tions are similar from year to year, these models may misguide
design efforts if the designer makes changes that do not follow
correlations in the marketplace. For example, the sign of the coef-
ficient for the gallons per mile (gpm) attribute of the best predic-
tive logit model is negative,5 suggesting that consumers prefer
lower fuel economy, all other attributes being equal. In fact, con-
sumers may purchase vehicles with lower fuel economy because
of other features of those vehicles unobserved by the modeler
(e.g., size, performance, or styling attributes not captured in the
model). The model predicts well if the new market retains such
correlations, but a designer who lowers fuel economy alone is not
likely to obtain the outcome predicted by the model. Thus, accu-
racy of predictions in existing markets is not a sufficient condition
for use in design.

To verify that our results are not specific to the 2004–2006
timeframe, we conducted a similar analysis with estimation data
from years 1971–1973 and 1981–1983 with prediction data from
the respective one and four year forward markets. We find that
our conclusions are generally robust to alternate timeframes: our
accuracy measures are concordant; the best models exhibit sub-
stantial prediction error stemming from limited model fit; the
static model outperforms the attribute-based models when predict-
ing the full market one year forward but attribute-based models
can predict better for four year forward forecasts or new vehicle
designs; share predictions are sensitive to the presence of utility
covariates but less sensitive to covariate form; nested and mixed
logit specifications do not produce significantly more accurate
forecasts; and the 1971–1973 models with best predictions do not
necessarily have expected coefficient signs (though 1981–1983
models do). See Appendix H of the supplemental material for
additional detail.
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Abstract
Weperform a consequential life cycle analysis of plug-in electric vehicles (PEVs), hybrid electric
vehicles (HEVs), and conventional gasoline vehicles in the PJM interconnection using a detailed,
normative optimizationmodel of the PJM electricity grid that captures the change in power plant
operations and related emissions due to vehicle charging.We estimate andmonetize the resulting
humanhealth and environmental damages from life cycle air emissions for each vehicle technology.
Wemodel PJMusing themost recent data available (2010) aswell as projections of the PJMgrid in
2018 and a hypothetical scenariowith increasedwind penetration.We assess a range of sensitivity
cases to verify the robustness of our results.We find that PEVs have higher life cycle air emissions
damages than gasolineHEVs in the recent grid scenario, which has a high percentage of coal
generation on themargin. In particular, battery electric vehicles with large battery capacity can
produce two to three times asmuch air emissions damage as gasolineHEVs, depending on charge
timing. In our future 2018 grid scenarios that account for predicted coal plant retirements, PEVs
would produce air emissions damages comparable to or slightly lower thanHEVs.

1. Introduction

Plug-in electric vehicle (PEV) technologies, including
plug-in hybrid electric vehicles (PHEVs) and battery
electric vehicles (BEVs), have the potential to reduce
environmental impacts from the transportation sys-
tem by reducing or eliminating tailpipe emissions.
However, the emissions associated with producing
PEVs and generating the electricity to charge PEVs
affect whether these vehicles have higher or lower life
cycle environmental and health impacts compared to
efficient gasoline vehicles (Michalek et al [1], Tessum
et al [2]). Evaluating the sustainability of different
transportation choices thus requires both a considera-
tion of the full life cycle of the technology as well as an
analysis of the impacts of the technology choice [3].
While there has been significant research to under-
stand the life cycle environmental impacts of PEVs,
most of this prior work has followed an attributional

life cycle assessment (LCA) approach to answer the
question ‘what air emissions are PEV charging respon-
sible for’? Such approaches have assumed that PEV
charging produces emissions proportional to the
average emissions rate for electricity generation in the
political boundary (country, state, etc) or grid region
(NERC region, eGRID sub-region, interconnect, bal-
ancing area, etc) where the vehicle is charged. Alter-
natively, some studies have used hypothetical
emissions factors to evaluate a broader set of scenarios
of the effects of PEV charging [1, 2, 4, 5]. The results
from previous work thus vary depending on the
researcher’s value judgment related to the emissions
that a PEV should be responsible for when charging in
a particular location.

In contrast, a consequential approach answers
‘what are the air emissions implications of PEV
adoption in a region’ by assessing how grid operations
change in response to new charging demand. These
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consequential effects of PEV charging on grid emis-
sions have been examined using empirical ‘top-down’
methods and normative ‘bottom-up’ methods [6].
Top-down empirical models of the power system, like
those developed by Siler-Evans et al [7] andGraff Zivin
et al [8], use regressions on historical data to estimate
marginal emissions rates. Such analysis is grounded in
the actual operations of the power system. However,
the approach is limited to historical scenarios and is
only appropriate for the analysis of small changes in
generation or load. It also suffers from error in coun-
terfactual analysis because correlations in past data do
not necessarily imply causality. The gap between cor-
relation and causality is particularly evident for the
dispatch of hydroelectric plants, which may change
generation timing in response to new load but typi-
cally will not change total energy generated in response
to new load. Alternatively, bottom-up normative
models of the power system, such as those used by
Sioshansi et al [9], Peterson et al [10], Choi et al [11]
and Weis et al [12], use optimization models to esti-
mate how a power system should operate to minimize
costs subject to a variety of constraints. These models
can assess changes of grid operation in response to
new PEV load. Such analysis can model future power
plant scenarios and large load changes. While this
approach has limited scalability for modeling large
systems, and it is typically not possible to model all
possible considerations that affect grid operations in
practice, there is growing interest in using bottom-up
models of the power system in consequential LCA.

Table 1 summarizes prior consequential LCA stu-
dies of PEV air emissions. Tamayao et al [6] apply two
different top-down regression models [4, 5] to assess
consequential greenhouse gas (GHG) emissions in the
US, while Ma et al [13] perform their own regression
on the operation of the UK grid. Sandy [14] and Onat
et al [15] average results fromORNL’s analysis of mar-
ginal emissions for electric vehicles using a dispatch
model and different vehicle charging patterns [16].
Finally, Choi et al [11] construct a bottom-up capacity
expansion and unit commitment model to assess con-
sequential GHG emissions. In this paper, we adopt the
bottom-up normative approach to model the power
system under different scenarios in the PJM system in
order to inform a consequential LCA of PEVs. Unlike
previous work, our analysis includes the valuation of
social damages associated with emissions of criteria air
pollutants as well as GHG emissions. PJM (an inde-
pendent system operator in Pennsylvania, New Jersey,
Maryland, Ohio, and several other states) is an inter-
esting power system to examine, as it is the largest
independent system operator in the United States by
population and has a large installed coal capacity. The
supplemental information (SI) includes an expanded
comparison of this study with previous life cycle stu-
dies of PEVs in theUnited States.

2.Methods

2.1. Life cycle boundary
We estimate the life cycle emissions of CO2, CO, SO2,
PM2.5, NOx, and VOCs for conventional, hybrid, and
PEVs, including the emissions from vehicle manufac-
turing, fuel production, and use. The analysis focuses
on the region covered by the PJM interconnection,
which has the largest electricity market in the US and
serves 13 states in the Mid-Atlantic region [17]. For
CVs and HEVs, the emissions from fuel production
and use include upstream emissions from petroleum
drilling and refining as well as the tailpipe emissions
during vehicle operations. For BEVs, fuel production
emissions include power plant emissions and
upstream emissions from coal and natural gas produc-
tion, but these vehicles do not have tailpipe emissions.
Finally, PHEVs have emissions associated with both
gasoline and electricity. Figure 1 shows the scope of the
life cycle inventory. We do not consider end of life
emissions. Further, we assume a total vehicle life of
160 000 miles for all vehicle types, following Michalek
et al [1].

2.2. Vehicle andpower grid scenarios
For this analysis we rely on a unit commitment and
economic dispatch (UCED) model previously devel-
oped and used to evaluate the costs and benefits of
controlled charging of electric vehicles in the PJM
system [12, 18]. This model uses amixed integer linear
optimization program tominimize the costs of operat-
ing the power system to meet load given constraints,
including power plant operating constraints (mini-
mum and maximum load, ramping rates, and mini-
mum up and down time), as well as transmission and
operating reserves constraints. Furthermore, the
model incorporates vehicle charging by including
charging requirements and battery constraints.

In order to account for changes in the composition
of the PJM power plant fleet that may result from
environmental regulations, renewable energy man-
dates, and changes in energy prices, we develop three
scenarios of the power system. For the first scenario,
we use the Environmental Protection Agency (EPA)’s
NEEDS database in order to represent the recent PJM
system [19]. Our second scenario,meant to represent a
future grid, includes retirement of power plants pre-
dicted by the EPA [20] and a 3% wind penetration, as
described in Weis et al [12]. Finally, in the third sce-
nariowe include the power plant retirements EPA pre-
dicts, and we add 20% wind. The additional wind
generation for the future grid comes from NREL’s
Eastern Wind Integration and Transmission Study
dataset [21]. For each scenario, we add wind sites in
order of capacity factor to reach the required wind
penetration level (3% for the second scenario and 20%
for the third scenario).
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Table 1. Summary of literature estimating consequential life cycle air emissions fromPEVs.

Study Location Air emissions Model type Model detail

Tamayao et al [6] US GHG Empirical Applies regression results from [4, 5]
Choi et al [11] Eastern Interconnect GHG Normative Capacity expansion andunit commitment
Ma et al [13] CA,UK GHG Empirical Regression on plant operation to find averagemarginal emission factor
Sandy [14] US GHG Normative Averages resulting emissions frompower plant dispatch in [16]
Onat et al [15] US GHG Normative Averages resulting emissions frompower plant dispatch in [16]
This study US PJM GHG, SO2,NOx, PM2.5, CO, VOC Normative Optimal dispatch
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We also account for differences in vehicle technol-
ogy using Argonne National Laboratory’s 2013
GREET 1 and 2models [22, 23]. The base case PEV for
the recent grid scenario is a 2010 PHEV-35, sized to
represent the Chevy Volt. We also include a smaller
battery size based on the Toyota Plug-in Prius and a
larger battery size based on the TeslaModel S. The effi-
ciency of the long-range BEV is that of the 2012 Tesla
Model S, as measured by the EPA [24] (we examine
more efficient BEVs in sensitivity analysis). For the
future grid scenarios we use GREET’s 2015 PHEV-35
vehicle specifications. Table 2 summarizes the differ-
ences across scenarios.

2.3. Life cycle inventory
We determine the life cycle emissions for each stage
shown in figure 1 for each vehicle type based on a
160 000 mile vehicle life. Table 3 provides a summary
of the data used for each stage of the life cycle.

2.3.1. Emissions from power plant operations
In order to estimate the change in emissions from the
power system resulting fromvehicle charging, we solve
the UCED model both with and without electric
vehicles and compare the difference in the operating
schedules of the power plants. We add the charging
load to the existing non-vehicle electricity load by
assuming electric vehicles make up 10% of the vehicle
fleet in PJM. Furthermore, we assume that electric
vehicles are distributed throughout the PJM system
proportionally to population (we test alternative
assumptions in sensitivity analysis).

Using data from the National Household Travel
Survey (NHTS) [25] we estimate the vehicle charging
load, following Weis et al [12, 26]. The NHTS data
provide the distance driven during each trip through-
out the day surveyed as well as the time of each trip for
approximately 100 000 passenger cars across the US.
We use the distance driven in a day, the vehicle effi-
ciency, and the electric range of the vehicle to calculate
both the distance driven in charge-depleting versus

charge-sustaining mode and the total charging load
per day. We assume that all PHEVs drive as far as pos-
sible in charge-depleting mode before switching to
charge-sustaining mode. We also assume that vehicle
charging occurs at home after the last trip of the day
and that each vehicle is fully charged by the first trip of
the next day. For each fleet/vehicle type scenario, we
calculate the hourly charging load for a scenario where
charging begins at full power following the last trip of
the day (‘uncontrolled charging’) and a scenario where
the utility dynamically controls the rate at which each
vehicle is charged in order tominimize generation cost
(‘controlled charging’). Controlled charging of electric
vehicles may provide operational benefits to the grid,
but it also changes the emissions associated with elec-
tric vehicle charging [12], so it represents an additional
scenario for analysis. For the controlled charging sce-
narios, we use 20 representative vehicle profiles to
model the load from the electric vehicles as described
in Weis et al [12] and assume that the vehicle is con-
strained to be fully charged by the first trip of the fol-
lowing day while the charging rate is limited to Level 2
charging (7.2 kW).

2.3.2. Tailpipe emissions
Thedistance driven using the gasoline engine (all times
for the CV and HEV and during charge-sustaining
mode for PHEVs) and the vehicle’s emission rate
determine its tailpipe emissions. We assume that each
vehicle travels 160 000 miles over its lifetime. Table 4
shows tailpipe emission rates for GHG, CO, SO2,
PM2.5, NOx, and VOCs from the GREET 1model [22].
While the two PHEVs burn some gasoline in charge-
depleting mode, the BEV-265 operates without any
tailpipe emissions.

2.3.3. Upstream emissions
Our life cycle emissions include the emissions from
the production, processing, and delivery of fossil fuels
(either to fuel the vehicles or to generate electricity), as
well as the emissions from vehicle and battery

Figure 1. Life cycle inventory for plug-in electric, hybrid electric, and conventional vehicles.
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Table 2. Summary of scenarios.

Scenario Power systemdata Conventional vehicle Hybrid vehicle Plug-in electric vehicles

2010GREETPHEV-10 (Plug-in Prius-sized)
Recent (2010) 2010 PJM 2010GREET ICEV 2010GREETHEV 2010GREETPHEV-35 (Volt-sized)

2012 BEV-265 (Tesla-sized)

Future (~2018) EPA forecasted 2018 PJMwith 3%wind penetration 2015GREET ICEV 2015GREETHEV 2015GREETPHEV-35 (Volt-sized)

Hypothetical highwind future EPA forecasted 2018 PJMwith 20%wind penetration 2015GREET ICEV 2015GREETHEV 2015GREETPHEV-35 (Volt-sized)
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manufacturing. Argonne National Laboratory’s
GREET 1 model [22] provides the emission rates for
oil drilling and refining, which are the basis of the
upstream emissions estimate for gasoline. Upstream
emissions for vehicle and battery manufacturing come
from theGREET 2model [23].

To account for the emissions from the production,
processing, and delivery of coal and natural gas for
power plants used to charge the electric vehicles, we
rely on the GREET 1 model, which provides these
emissions on a per MWh basis (as shown in the sup-
porting information). We then apply these emissions
factors to the amount of electricity generated from
coal and natural gas plants in the UCEDmodel results.
We include only the upstream emissions from coal-
and natural gas-based electricity as these fuels account
for the majority of generation response to additional
vehicle charging load [12]. In the high wind scenario,
wind power also contributes to vehicle charging, but
wind requires no fuel and thus has no upstream emis-
sions (our model does not include the emissions from
building physical infrastructure).

2.4. Life cycle damages
Air emissions cause environmental degradation and
affect human health. For CO2, we use estimates of the
social cost of carbon that the US EPA uses for
regulatory impact assessment [27]. EPA reports this
social cost of carbon for three different discount rates:

2.5%, 3%, and 5%. We use the 3% discount rate
average value for 2010 as our base value for all
scenarios.

In order to estimate the damages from SO2, PM2.5,
NOx, and VOCswe use the values from the AP2model
[28], which estimates the marginal health and envir-
onmental damages for emissions of each criteria air
pollutant in each county in the United States. This
model has many uncertain parameters, including the
value of statistical life, which is used to monetize mor-
bidity and mortality from air pollution. The AP2
model includes results from a Monte Carlo analysis
of the damages in each county for the baseline
year (2005). As a base case, we assume that these
2005 marginal damages per unit of emission in each
location apply also to the recent grid and future grid
scenarios. We use the distribution of the results from
the Monte Carlo analysis to characterize the uncer-
tainty within the AP2 model. Damages from vehicle
charging are based on the change in the annual genera-
tion and emissions from each power plant in the
UCED model that results from increased charging
load. Since the AP2 values are specific to individual
counties where emissions take place, we also need to
incorporate the location of the vehicle tailpipe emis-
sions. To do so, we allocate vehicles to counties
within PJM proportionally to population. We further
assume that each vehicle is driven within its respective
county.

Table 3.Data for the life cycle emissions for each stage.

Stage Emission rate Source Other assumptions Source

Power plant operation Short Ton/year Unit commitment
model

Driving patterns and
vehicle efficiency

NHTSGREET 1, fuelec-
onomy.gov

Tailpipe lb/mile GREET 1 Driving patterns NHTS
Vehiclemanufacturing Short Ton/lifetime GREET 2
Batterymanufacturing Short Ton/lifetime GREET 2
Oil production Short Ton/mile GREET 1
Gasoline refining Short Ton/mile GREET 1
Coal production Short Ton/MWh GREET 1 MWhproduced using coal Unit commitmentmodel
Natural gas production Short Ton/MWh GREET 1 MWhproduced using nat-

ural gas
Unit commitmentmodel

Table 4.Tailpipe emissions in pounds per 1000miles fromGREET 1. The recent grid scenario relies on the
data for the 2010 vehicles, while the future scenarios are based on the characteristics of the 2015 vehicles. CS:
charge-sustainingmode. CD: charge-depletingmode.

Vehicle CO2-eq VOC CO NOx PM2.5 SO2

2010CV 772 0.375 6.393 0.265 0.026 0.011
2010HEV 551 0.265 6.393 0.220 0.026 0.008
2010 PHEV-10CS (Plug-in Prius) 529 0.265 6.393 0.220 0.026 0.008
2010 PHEV-10CD (Plug-in Prius) 265 0.088 2.205 0.079 0.006 0.004
2010 PHEV-35CS (Volt) 683 0.265 6.393 0.220 0.026 0.010
2010 PHEV-35CD (Volt) 44.1 0.022 0.375 0.013 0.001 0.001
2010 BEV-265 (TeslaModel S) 0.00 0.00 0.00 0.00 0.00 0.00
2015CV 705 0.375 6.393 0.265 0.026 0.011
2015HEV 507 0.265 6.393 0.220 0.026 0.007
2015 PHEVCS (Volt) 573 0.265 6.393 0.220 0.026 0.009
2015 PHEVCD (Volt) 41.9 0.016 0.397 0.014 0.001 0.001
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We allocate the emissions from vehicle and battery
manufacturing to US counties identified by the US
census as having automobile and parts manufacturing
activity, weighted by the number of automotivemanu-
facturing workers, following Michalek et al [1]. We
also allocate coal, oil, and natural gas upstream emis-
sions to US counties where mines, oil and gas fields,
and refineries are located, weighted by the production
in each county. Figure 2 shows the resulting cumula-
tive probability distribution of damages from manu-
facturing, coal, oil and gas production, and oil
refining. The damage calculations assume that all
emissions and damages occur in the United States,
though in practice some of these processes occur
outside of US borders. Marginal emissions in other
countries could incur higher or lower damages than in
the US, depending on the existing pollutant con-
centrations and populations in those areas. At this
time, however, we are unable to include these dama-
ges. We allocate the damages for all life cycle stages
except for vehicle and battery manufacturing across
the years of the vehicle lifetime, ignoring changes in
the electricity grid over the vehicle life. We then used a
3% discount rate to find the present value of these
damages, consistent with the calculation of CO2

damages.

3. Results

3.1. Life cycle emissions
Figure 3 shows the breakdown of estimated emissions
by life cycle stage for each scenario. In the recent grid

scenario, the PEVs have higher GHG, SO2, NOx, and
PM2.5 emissions and lower CO and VOC emissions
than theHEV. Compared to the CV, PEVs have higher
SO2 emissions and lower CO and VOC emissions,
while GHG, NOx and PM2.5 emissions may be higher
or lower, depending on the PEV characteristics and
the charging scenario. Controlled charging of PEVs
increases emissions of GHGs, SO2, NOx, and PM2.5

while reducing emissions of VOCs compared to
uncontrolled charging, due in part to the increased use
of coal-fired power plants available at night. Use of
coal generation increases with controlled charging in
all scenarios because these plants have lower marginal
cost than gas plants and have more excess capacity
available in off-peak hours than during uncontrolled
charging ours (the hours immediately following the
vehicle’s first home arrival at the end of the day). For a
detailed description of the analysis and assumptions
regarding the response of power plant dispatch to
additional electric vehicle charging load see [12].

In the future grid scenarios, compared to theHEV,
the PHEV-35 has higher SO2 emissions and lower
PM2.5, VOC, and CO emissions, while GHG and NOx

emissions may be higher or lower, depending on the
charging scenario and wind power scenario. Com-
pared to the CV, the PHEV-35 has higher SO2 and
lower GHG, NOx, PM2.5, VOC, and CO emissions.
Controlled charging of the PHEV-35 increases SO2

and NOx while decreasing VOC emissions, but the
effect on GHG and PM2.5 emissions depends on the
presence of wind, and the effect on CO emissions is
negligible.

Figure 2.Cumulative probability distribution of damages per ton of pollutant released for assumed locations of upstreamproduction
emissions by pollutant type (usingAP2 data for 2005).
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3.2. Life cycle damages
3.2.1. Expected values
PEVs have higher expected life cycle damages than
hybrid vehicles in the recent PJM scenario in all cases
examined, as shown in figure 4. Their expected
damages are also higher than those of conventional
vehicles, except for the case of the PHEV-10 with
uncontrolled charging. Long-range BEVs cause two to
three times as much air emissions damage as HEVs.
The electricity generation damages come largely as a
result of the SO2 emissions from the coal plants used to
charge the vehicles in off-peak hours. Controlled
charging increases life cycle damages relative to
uncontrolled charging because of the increases in
emissions associated with higher levels of coal genera-
tion. Uncertainty is not presented here because
common sources of uncertainty create correlated

uncertainty across scenarios, so error bars could be
misleading in comparing across cases. Instead,
section 3.2.2. includes an analysis of uncertainty and
robustness in these results.

In the future scenarios, shown in figure 5, the
PHEV-35 is able to reduce life cycle damages by a few
hundred dollars over its lifetime compared to the CV
and the HEV. Again, PEVs tend to produce larger
damages under controlled charging than under
uncontrolled charging, but in the future scenarios the
PHEV-35 provides benefits compared to the CV and
the HEV regardless of the charging scheme. The high-
wind future scenarios do not necessarily imply lower
consequential damages than the low-wind future sce-
narios for PEVs because added wind displaces fossil
fuel plants, which can increase the availability of coal
on themarginwhen PEVs charge.

Figure 3. Life cycle emissions by pollutant and life cycle stage for each vehicle type in the recent (a) and future (b)PJMgrid. UC stands
for uncontrolled charging andCC stands for controlled charging.
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3.2.2. Uncertainty and robustness
Qualitatively, our key findings are that (1) the PEVs
causemore damage than theCVandHEV in the recent
PJM grid, (2) the PHEV-35 causes less damage than
the CV in the future PJM grid scenarios, but these
damages are not much lower than those for the HEV,
and (3) controlled charging tends to increase damages
compared to uncontrolled charging, though the PEVs
provide benefits compared to the CV and HEV in the
future grid scenarios regardless of charging scheme.
To characterize uncertainty and robustness of these
findings, we use the Monte Carlo analysis results from
the AP2 model and assess the probability that each
vehicle technology has higher life cycle air emissions
damages than the HEV. Table 5 reveals that the

conclusions above are robust, especially in the recent
grid. The uncertainty in the AP2 models does not
significantly affect the comparison across vehicle types
because most of this uncertainty is a result of
uncertainty in the value of a statistical life, which
affects damage estimates across all cases. As a result,
this uncertainty typically changes only the magnitude
of the difference between hybrids and other vehicles,
not the sign.

The results in table 5 incorporate only the
uncertainty quantified in the AP2model due to uncer-
tainty in input parameters, such as the value of a statis-
tical life. We examine the effect of some of the
other important input parameters and assumptions
through sensitivity cases summarized in table 6

Figure 4.Expected value of life cycle air emission damages for each vehicle type in the recent PJMgrid. UC stands for uncontrolled
charging andCC stands for controlled charging for the electric vehicles.

Figure 5.Expected value of life cycle damages in the future PJMgrid. The highwind scenario has 20%of demandmet bywind.UC
stands for uncontrolled charging andCC stands for controlled charging.
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and detailed in the supporting information. These
include alternative assumptions for (1) emissions
damage models, (2) BEV efficiency, (3) power grid
characteristics that influence dispatch decisions, (4)
PEV adoption patterns, and (5) policy effects on con-
sequential life cycle implications. Our key findings
are generally robust, though future fuel prices could
affect the consequential emissions benefits of PEVs
versus HEVs; binding SO2 caps would likely make
PEVs more competitive; and assessing a larger con-
sequential life cycle scope that accounts for the effect
of PEV adoption on each manufacturer’s vehicle
fleet emissions due to US corporate average fuel
economy and GHG emission policy results in the
conclusion that PEV adoption increases damages

in all scenarios modeled (the policy extends through
2025) [29].

4.Discussion and conclusions

Using a consequential LCA approach for the vehicles
and scenarios modeled, we find that (1) PEVs cause
more damage than HEVs in the recent PJM grid, (2)
PEVs cause comparable or slightly lower emissions
than HEVs in the future PJM grid scenarios, and (3)
utility-controlled (mostly nighttime) PEV charging
tends to increase life cycle emissions compared to
uncontrolled charging. However, (1) changes in future
fuel prices could affect whether PEVs have higher or

Table 5.Robustness of results for the damage difference between hybrid vehicles and each other vehicle type. CV=conventional vehicle.

Scenario Charging
Probability damages are larger than
forHEV’s

Mean change in life cycle damages com-
pared toHEV’s

CV—recent grid 100% $650
PHEV-10—recent grid Uncontrolled 81% $210

Controlled 98% $1100
PHEV-35—recent grid Uncontrolled 95% $1200

Controlled 99% $4200
BEV-265—recent grid Uncontrolled 99% $4800

Controlled 99% $8400
CV—future grid 99% $580
PHEV-35—future grid Uncontrolled 4% −$420

Controlled 28% −$60
PHEV-35—future grid with
highwind

Uncontrolled 17% −$150

Controlled 18% −$150

Table 6. Summary offindings from sensitivity analysis.

Sensitivity scenario Purpose of scenario Finding

AP2 2011 damage estimates Testmore recent estimates of damages per
ton emissions from each location

Higher estimated damages, but keyfindings are robust.
Increased potential for PEVs to lower damages ver-
susHEVs in future grid

EASIURdamage estimates Test an alternativemethod for estimating
damages

Higher estimated damages, but keyfindings are robust.
PEVs have comparable damages versusHEVs in
future grid

High efficiency long-
range BEV

Test the life cycle damages of a BEVwith
comparable performance to the other
vehicles

Lower estimated damages but keyfindings are robust.
BEVs have higher damages thanCVs,HEVs, and
PHEVs in the recent grid

Futurewith expensive coal,
cheap natural gas

Test effect of possible future fuel prices PEVs slightly increase damages versusHEVswhen
uncontrolled, reduce damages when controlled

Futurewith cheap coal, expen-
sive natural gas

Test effect of possible future fuel prices PEVs slightly reduce damages versusHEVswhether
uncontrolled or controlled

Additional spinning reserves
required for highwind case

Test effect of higher reserve requirements for
intermittent wind

Key findings are robust

No transmission constraints Test effect of transmission constraints and
location of loads and responding
generators

Key findings are robust

PEVs in urban areas only Test effect of location of vehicles Key findings are robust
SO2 cap Test effect of a binding SO2 cap SO2 damages likely reduced, but not necessarily to zero

since PEV chargingmay affect location of SO2 emis-
sions. PEVs likely reduce damages

CAFE leakage effect Test effect of vehicle fleet-wide emissions
enabled by PEV sales due toCAFE incen-
tives for AFV adoption

PEVs increase overall US damages versusHEVs even in
future grid and evenwith highwind penetration
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lower damages thanHEVs in a future grid andwhether
controlled charging increases or decreases emissions,
and (2) when the effect of US PEV adoption on
automaker fleet emissions is accounted for, PEV
adoption could increase emissions in all scenarios due
to leakage effects in federal fuel economy standards
[29, 34–36]. The SI includes a discussion about the
limitations of the model beyond the scope of the
sensitivity analysis.

Our results for the recent PJM grid are consistent
with those from Tessum et al using the 2007 electricity
mix [2]: PEVs have higher damages than gasoline vehi-
cles in the recent grid. Michalek et al [1] found that
PEVs with larger batteries cause more damage, which
we also observe in our recent grid scenarios. None of
the PEVs in our study, regardless of battery size, have
lower damages than the HEV in the recent grid due to
the large amounts of coal on the margin in PJM com-
pared to the averagemix used inMichalek et al [1]. The
future of the grid past 2018, which is relevant for
future PEV adoption, is expected to be lower-emitting
than the recent grid, but consequential emissions from
a grid far into the future are difficult to meaningfully
project. Both Michalek et al [1] and Tessum et al [2]
find that PEVs can reduce damages if charged with
zero-emission electricity. This is a useful bounding
case but not a scenario likely to occur soon, since even
if wind, solar, nuclear, and hydroelectric power make
up a much larger portion of the grid mix in the future,
the consequential effect of PEV charging (the differ-
ence between grid operations when PEVs are present
versus absent) is still primarily to increase generation
from fossil fuel plants. Sincemost wind, solar, nuclear,
and hydroelectric power is fully used in the absence of
PEV load, PEV adoption will not cause an increase in
generation from these plants. Only when low-emis-
sion plants would have been curtailed in the absence of
PEVs can PEV adoption result in increased use of these
plants. Thus, the consequential emissions of PEV
charging are affected more by the mix of coal and nat-
ural gas plants in a region than by the amount of
renewable or low-emission generation capacity.

The difference between coal and natural gas gen-
eration is significant. We show that even in one of the
power systems in the country with the highest coal
generation, PEVs could reduce transportation health
and environmental damages in the near future, long
before a zero-carbon electricity mix is achieved, due
primarily to substitution of natural gas for coal on the
margin.

While PEVs can double or triple air emission
damages in the recent grid relative toHEVs, they could
reduce damages in a future grid. However, we estimate
that near future (∼2018) potential air emissions bene-
fits from PEV adoption in PJM are small relative to
HEVs (or even negative when considering the net
effect on the automaker’s fleet under federal fuel econ-
omy policy). Nevertheless, electrification may offer a
promising long term option to significantly reduce air

emissions from the transportation sector compared to
some other alternative transportation fuels, including
biofuels and natural gas, that have been shown to offer
small-to-no reductions in GHG emissions and could
have unintended consequences like higher global food
prices [30, 31]. Indeed, the logistics of regulating emis-
sions from individual vehicles over their functional
lives are more difficult than regulation of power plant
emissions [37].

Continued regulation of the electricity system can
increase the benefits of vehicle electrification, and con-
sequential air emissions implications of PEV charging
are already lower in many regions than in PJM [6].
While near-term benefits of PEV adoption in PJM are
estimated to be small or negative, a transition of the
transportation system could lead to long-term benefits
outside the scope of this analysis, including greater
benefits in other regions and future emissions savings
enabled by a transition to electric vehicles as the elec-
tricity grid becomes cleaner and as public policy
adjusts [32, 33].
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Abstract
Wecompare life cycle greenhouse gas (GHG) emissions fromseveral light-duty passenger gasoline and
plug-in electric vehicles (PEVs) acrossUS counties by accounting for regional differences due tomarginal
gridmix, ambient temperature, patterns of vehiclemiles traveled (VMT), anddriving conditions (city
versus highway).Wefind that PEVs canhave larger or smaller carbon footprints than gasoline vehicles,
dependingon these regional factors and the specific vehiclemodels being compared.TheNissanLeaf
battery electric vehicle has a smaller carbon footprint than themost efficient gasoline vehicle (theToyota
Prius) in theurban counties ofCalifornia, Texas andFlorida,whereas thePriushas a smaller carbon
footprint in theMidwest and the South.TheLeaf is lower emitting than theMazda3 conventional gasoline
vehicle inmost urban counties, but theMazda 3 is lower emitting in ruralMidwest counties. TheChevrolet
Volt plug-inhybrid electric vehicle has a larger carbon footprint than thePrius throughout the continental
US, though theVolt has a smaller carbon footprint than theMazda3 inmanyurbancounties. Regional
gridmix, temperature, driving conditions, andvehiclemodel all have substantial implications for
identifyingwhich technologyhas the lowest carbon footprint,whereas regional patterns ofVMThave a
much smaller effect.Given the variation in relativeGHG implications, it is unlikely that blunt policy
instruments that favor specific technology categories can ensure emission reductions universally.

1. Introduction

Past studies have shown that life cycle plug-in electric
vehicle (PEV) emissions depend heavily on the
assumed electricity grid mix [1–7], driving patterns
(including drive cycle and distance) [8–10] and climate
(including ambient temperature) [7, 11]. These factors
vary regionally, so PEV emissions implications also
vary regionally. Several studies have assessed regional
differences in PEV emissions incorporating subsets of
these factors [2, 4–7, 11–15]—with most focused on
regional grid mix, but no study has accounted for the
combined influence of consequential grid emissions,

driving patterns, and temperature heterogeneity in
assessing regionally-specific life cycle implications of
PEVs in the US. In table 1 we summarize studies that
make regional comparisons of PEV emissions in the
United States. Key factors that differentiate these
studies include:

1.1. Life cycle scope
Existing studies assessing PEV emissions have differ-
ent life cycle scopes, which may include or exclude
each of the following: vehicle and battery manufactur-
ing emissions; gasoline extraction, processing, trans-
portation, and fuel combustion emissions; power
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Table 1. Summary of published studies assessing the regional variation in electrified vehicle GHG emissions in theUnited States.

Study Vehicle types Regional resolution Life cycle scope Electricity source and emissions
Utility factor orVMT
pattern Driving conditions Temperature

EPRI-NRDC (2007) [14] PHEV NERC regions Use Phase Consequential Homogeneous Homogeneous Ignored
Electricity upstream and

generation; gasoline
upstream and
combustion

Bottom-upmodeled emissions (573 g
CO2e kWh−1 in 2010; 97–412 g
CO2e kWh−1 in 2050)

(PHEV10: 0.12 PHEV20:
0.49 PHEV40: 0.66)

Federal Urban
Driving Sche-
dule (FUDS)

Hadley andTsvetkova (2009) [15] PHEV 13NERC subregions Partial Use Phase Consequential Homogeneous Homogeneous Ignored
Electricity generation;

gasoline combustion
Bottom-up approach usingORCEDmodel
assuming 25%PHEVmarket penetration
by 2020

Not clear Three load levels
assumed per
vehicle—1.5 kW,
2 kW, and 6 kW

Anair andMahmassani (2012) [4] ICV,HEV, PHEV, BEV eGRID subregion Use Phase Attributional Homogeneous Homogeneous Ignored
Electricity upstream and

generation; gasoline
upstream and
combustion

Average regional generation covering trans-
mission and upstream loss
(286–983 gCO2e kWh−1)

(Chevrolet Volt: 0.64) EPA combined
driving cyclea

MacPherson et al (2012) [17] PHEV NERC regions, NERC Life Cycle Attributional Homogenous: Homogenous Ignored
subregions and states Average regional and state based emissions

fromEPA eGRID2010 database
PHEV35: 0.635, and
Regional: NERC
region based utility
factors estimated
based onNHTS.

EPA combined
driving cycle

Thomas (2012) [19] HEV, PHEV, BEV 13NERC subregions Use Phase Consequential Not clear Not clear Ignored
Electricity upstream and

generation from
GREET; gasoline well-
to-wheel using
GREET (2001)

Averagemarginal emissions fromHadley
andTsvetkova (2009)

Yawitz et al (2013) [13] HEV, PHEV, BEV State Life Cycle Attributional Homogeneous Homogeneous Ignored
Average state generation PHEV: 0.5 EPA 2013

Graff Zivin et al (2014) [5] ICV,HEV, PHEV, BEV eGRID subregion Partial Use Phase Consequential Homogeneous Homogeneous Ignored
Electricity generation;

gasoline combustion
MarginalNERC emissions considering
interregional trading

35 mi day−1 EPA combined city/
highway
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Table 1. (Continued.)

Study Vehicle types Regional resolution Life cycle scope Electricity source and emissions
Utility factor orVMT
pattern Driving conditions Temperature

Onat et al (2015) [6] ICV,HEV, PHEV, BEV 13NERC subregions Life Cycle Consequential Regional Homogeneous Ignored
Marginal emissions fromThomas (2012)
[19]which is based onORCEDmodel

State based utility
factors

EPA combined

Tamayao et al (2015) [2] ICV,HEV, PHEV, BEV NERC region Life Cycle Consequential Homogeneous Homogeneous Ignored
ComparesGraff Zivin et al (2014) and Siler-
Evans et al (2012)marginal emission fac-
tors byNERC region and average state,
eGRID subregion, andNERCemission
factors

USNHTS (2009)
national distribution

EPA combined

Yuksel andMichalek (2015) [11] BEV NERC region Partial Use Phase Consequential Homogeneous Homogeneous Regional
Electricity generation;

gasoline combustion
ComparesGraff Zivin et al (2014) and Siler-
Evans et al (2012)marginal emission fac-
tors byNERC region.

USNHTS (2009)
national distribution

Efficiency based on
FleetCarma on-
road data [28]

Based on FleetCarma
data forNissan
Leaf and regional
temperature data

Nealer et al (2015) [18] BEV eGRID subregions Life Cycle Attributional Homogeneous Homogeneous Ignored
Average emission rate for generators located
in each subregion.

EPA combined city/
highway

Archsmith et al (2015) [20] ICV, BEV NERC regions Life Cycle Consequential Regional Homogeneous Regional
Regression-basedmarginal emission esti-
mates for current, average emission rates
for future

Based on regional
NHTS data

Based onGREET Based on data from
[26–27]

This study ICV,HEV, PHEV, BEV County-level estimates Life Cycle Consequential Regional Regional Regional
based on highest-
resolution data avail-
able for each factor

ComparesGraff Zivin et al (2014) and Siler-
Evans et al (2012)marginal emission fac-
tors byNERC region.

NHTS (2009) state
distribution

EPA city, highway or
combined based
on county urbani-
zation level

Based onANL temp-
erature-controlled
laboratory test
data and regional
temperature data.

a The US Department of Energy define three driving conditions: city—‘urban driving, in which a vehicle is started in themorning (after being parked all night) and driven in stop-and-go traffic’; highway—‘amixture of rural and interstate
highway driving in awarmed-up vehicle, typical of longer trips in free-flowing traffic’; (3) combined—‘combination of city driving (55%) and highway driving (45%)’ [48].
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plant emissions from electricity generation for vehicle
charging; power plant fuel feedstock extraction, pro-
duction and transportation emissions; and end of life
emissions. Several of the studies shown in table 1 only
include emissions related to vehicle use or a subset of
the emissions related to vehicle use (e.g., vehicle
tailpipe emissions and power plant smokestack emis-
sions), leading to incomplete assessments. Life cycle
studies suggest that emissions implications from
sources other than tailpipe and power plant emissions
can comprise one fifth to one third of vehicle life cycle
greenhouse gas (GHG) emissions [2, 6, 16, 17], so
addressing the full life cycle can be important for
comprehensive comparisons.

1.2. Electricity sources and emissions
Critical to assessing life cycle emissions of PEVs are the
sources of energy used to generate electricity and their
efficiencies [1, 2, 4, 5, 7, 12, 13]. While some studies
use an attributional life cycle approach in which they
assign to the PEV the average emission rates for power
plants in the same state or power grid regionwhere it is
charged [4, 13, 17, 18], other studies take a consequen-
tial life cycle approach, estimating the change in grid
emissions resulting fromnewPEV charging in a region
[5, 7, 14, 15, 19]. The latter is appropriate for assessing
the emissions implications of a policy intervention.
One empirical approach to estimating consequential
emissions of PEV charging is to estimate marginal
emission factors using historical data. Several studies
have conducted regressions on past data to estimate
marginal emission rates for US grid regions [5, 20, 7],
though Alexander et al (2015) warn that regional
marginal emissions can be difficult to identify because
of interregional trade [21]. Tamayao et al (2015) [2]
show that differences between average and marginal
emission factors can affect whether PEVs are estimated
to be higher or lower emitting than efficient gasoline
vehicle models. In some cases, the uncertainty is such
that one is not able to conclude whether the emissions
from PEVs are larger or smaller than efficient gasoline
vehiclemodels.

1.3.Driving patterns
Driving conditions (specifically, driving cycle—the
trajectory of vehicle velocity over time) can affect the
relative vehicle efficiency of PEVs and conventional
gasoline vehicles differently and thus substantially
affect the relative economic and environmental bene-
fits of electrified vehicles. For instance, PEVs can offer
substantial economic and GHG benefits over conven-
tional vehicles (CVs) for stop-and-go city drivingwhile
offering fewer environmental benefits at a higher cost
premium for highway cruising [8]. Patterns of driving
distance also matter, particularly for PHEVs, which
use a mix of gasoline and electricity for propulsion.
For example, longer driving distances lead to higher
petroleum and total energy use [9, 10], and the shorter

distances traveled by urban drivers result in higher
PHEV utility factors [22]. As shown in table 1, most
existing studies have modeled regional heterogeneity
of electricity source but ignore regional differences in
driving distance distributions and driving conditions
that affect vehicle efficiency.

1.4. Temperature
Most studies ignore the regional effect of ambient
temperature. However, temperature has an important
effect on vehicle efficiency due to heating, ventilation,
and air conditioning (HVAC) use and temperature-
related battery efficiency effects. Indeed, compared to
mild regions, Yuksel and Michalek (2015) [11] esti-
mate that battery electric vehicles (BEVs) can consume
an average of 15%more energy in hot and cold regions
of the US. Similarly, Neubauer and Wood (2014) [23]
estimate that HVAC use can increase energy con-
sumption by 24% in cold climates, and Kambly and
Bradley (2014) [24, 25] note that HVAC use can
decrease BEV range depending on the region and time
of day; andMeyer et al (2012) [26] observe a 60% drop
in range in −20 °C lab tests with maximum climate
control use. Archsmith et al (2015) [7] use vehicle test
data from Meyer et al (2012) [26] and Lohse-Busch
et al (2013) [27] to argue that temperature can have as
large an effect on electric vehicle charging emissions as
regional gridmix, and in a working paperHolland et al
(2015) [12] adjust vehicle efficiency regionally to
account for temperature effects in estimating air
pollution damages.

To assess the combined effect of these regional fac-
tors, we develop and apply a model that integrates the
effects of electricity source, driving patterns, and
temperature with a comprehensive life cycle scope to
characterize regional GHG emissions from electricity
and gasoline light-duty vehicles.

2.Data andmethods

We perform a comparative life cycle assessment of the
CO2 emissions across five existing vehicle models
summarized in table 2. These vehiclemodels represent
CVs, hybrid electric vehicles (HEVs), plug-in electric
vehicle (PHEVs), and BEVs, and they were selected
based on availability of Argonne National Laboratory
vehicle test efficiency data at high, low, and moderate
test chamber temperatures [29].

Figure 1 summarizes the framework used in this
work. We start by assigning driving conditions to each
county based on urbanization level; we assign vehicle
miles traveled (VMT) patterns to counties based on
data from the National Household Travel Survey
(NHTS) for the corresponding state; and we assign
marginal grid emission factors for each North Amer-
ican Electric Reliability Corporation (NERC) region to
the counties that lie in that region. We then estimate
the energy consumption rate for each vehicle based on
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Argonne National Laboratory’s Downloadable
Dynamometer Database (D3) temperature-controlled
chamber vehicle test data together with information
on temperature, drive cycle, and VMT patterns for
each county. We use energy consumption and VMT
patterns to compute timing and duration of vehicle
charging. Finally, we estimate life cycle CO2 emissions
for each vehicle type and location by adding vehicle
and battery manufacturing emissions, gasoline com-
bustion and upstream emissions (based on computed
gasoline consumption), and electricity production and
upstream emissions (based on computed electricity
consumption, timing, and location).

We use county-level data when such resolution
exists, and we use regional data where we lack county-
level resolution.We perform sensitivity analysis to test
implications of several factors and assumptions and to
test robustness of our results. We explain each of these
modules in the following sections with additional
detail provided in the SI.

2.1. Vehicle energy efficiency
For each vehicle model in table 2 we estimate
how vehicle energy efficiency changes with driving
cycle and temperature. We use the D3 database from
Argonne National Laboratory’s Advanced Powertrain
Research Facility [29], which provides dynamometer
test data for several vehiclemodels. D3 provides energy

efficiency estimates at three different temperatures
(20° F, 72° F and 95° F) and for three different
standard test driving cycles (the urban dynamometer
driving schedule (UDDS) cycle, the US06 cycle, and
the highway fuel economy test (HWFET) cycle) [30].
During the tests at 20° F and 95° F, the climate control
is set to keep the cabin temperature at 72° F. These
‘2-cycle’ tests, used in federal regulatory compliance
calculations, are known to produce optimistic fuel
consumption results relative to on-road driving,
resulting in lower than actual emission estimates [31].
We use linear interpolation between each measured
point, and we avoid extrapolation below 20° F and
above 95° F (instead holding the efficiency estimate
fixed at the corresponding extremum for temperatures
outside themeasured ranges). Themeasured efficiency
estimates account for charging losses.

2.2. VMTpatterns
Daily trip length and timing for light-duty vehicles in
each county is drawn from the distribution of trips in
the NHTS [32] from all counties from the same state
from a set of 76 149 total vehicles (we filter the dataset
to private light-duty vehicles only and exclude the data
points that are reported by members of the household
other than the driver). Trip details are used to account
for the ambient temperature effect (as temperature
varies through the day) and to assess when the vehicle

Table 2.Vehiclemodels considered.

Vehiclemodel Type Model year
Battery energy capacity

Nominal (kWh) Usable (kWh)

Nissan Leaf BEV 2013 24 21
ChevyVolt PHEV (EREV) 2013 16.5 10.8
Toyota Prius PHEV PHEV (blended) 2013 4.4 2.7
Toyota Prius HEV 2010 — —

Mazda 3 (with i-ELOOP) CV 2014 — —

Figure 1. Framework for the analysis.
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is available for charging. We test alternative assump-
tions in the sensitivity analysis.

2.3.Driving conditions
For urban counties we use the UDDS test results; for
rural counties we use theHWFET cycle results; and for
outlying (suburban) counties we use the combined
results to represent the dominant driving conditions
in each case. We test alternative assumptions in the
sensitivity analysis.

2.4. Charging profile
We assume convenience charging, i.e., charging starts
as the last trip of the day ends. We estimate the
charging duration based on the daily energy consump-
tion of each vehicle.We test alternative assumptions in
the sensitivity analysis.

2.5. Temperature
We use the Typical Meteorological Year (TMY3)
Database from the National Renewable Energy
Laboratory [33]which provides hourly ambient temp-
erature data for a typical meteorological year for 1011
locations in the continental United States. We use a
triangulation-based linear spatial interpolation
method [34] to estimate temperature profiles at the
center of each county. In the sensitivity analysis, we
assess the effect of ignoring temperature on our
results.

2.6. Emission factors
For electricity emissions associated with PEV char-
ging, we use the 2011 marginal emission factors from
Siler-Evans et al [20], which are based on regressions
of empirical, historical changes in power plant emis-
sionswith respect to changes in generationwithin each
NERC region. We examine this choice in more detail
in the discussion section and test alternative assump-
tions in the sensitivity analysis.

Table 3 summarizes emissions estimates asso-
ciated with manufacturing and assembly of vehicles

and lithium-ion battery packs; gasoline production,
transport and combustion; and electricity upstream,
production, transmission, and distribution.

3. Results and discussion

Figure 2 summarizes the increase or decrease in life
cycle GHG emissions from driving a 2013 Nissan Leaf
BEV, a 2013 Chevrolet Volt PHEV, or a 2013 Toyota
Prius PHEV relative to the most efficient gasoline
vehicle in the market—the Toyota Prius HEV (mod-
eled here using data from a 2010 HEV Prius)—and
relative to a CV of comparable size—the Mazda 3. A
map of county urbanization level is provided in the SI,
since urbanization level determines drive cycle.

The Nissan Leaf BEV produces lower life cycle
GHG emissions than the Prius HEV in urban counties
of Texas, Florida, and much of the southwestern US.
In most of the rest of the country the Leaf increases
GHG emissions relative to the Prius HEV, with those
increases beingmost notable in theMidwest and in the
South. This is due to the combined effect of grid car-
bon intensity, highway driving, and regional temper-
ature. In particular, the Northern Midwest has a
combination of a coal-heavy electricity grid, rural
counties (with an assumed highway driving cycle), and
cold weather that all contribute to higher relative
emissions for the BEV.

The Chevrolet Volt PHEV has higher life cycle
emissions than the Prius HEV in all counties. This is
because the Volt consumes more gasoline per mile in
charge-sustaining mode (after the battery is depleted)
than the Prius HEV, and it consumes more electricity
per mile than the Leaf in charge-depleting (CD)mode
(when the battery is charged) at high temperatures.
Further, in cold weather the Volt consumes both gaso-
line and electricity in CD mode. Comparison of elec-
tricity and gasoline consumption for different vehicles
is provided in the SI (section 4).

The PHEV Prius produces lower life cycle GHG
emissions than the HEV Prius in Texas, Florida, and

Table 3.Assumptions and data sources used for each life cycle stage.

Emissions source Estimate(s) used Data source

Vehiclemanufacturing (including
battery)

18 g mi−1 CV GREET (2013) [35] andTamayao et al (2015) [2]

16 g mi−1HEV
41 g mi−1 PHEV-EREV
22 g mi−1 PHEV-blended
51 g mi−1 BEV

Gasoline combustion 8655 gCO2 gal
−1 gasoline Average of values fromEPA (2014) [36] andVenkatesh et al

(2011) [37]
Gasoline production and
transportation

2400 gCO2 gal
−1 gasoline Average of values fromVenkatesh et al (2011) [37] andGREET

(2013) [35]
Electricity generation 430–932 kgCO2eq MWh−1 Siler-Evans et al (2012) [20]
Electricity upstream 38–107 kgCO2 MWh−1 Tamayao et al (2015) [2] (estimated based on Siler-Evans et al (2012)

[25]Graff Zivin et al (2014) [5], Venkatesh et al (2011) [37], Venka-
tesh et al (2011) [38], andUS EPA (2009) [39])
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the southwestern US as well as in most urban areas,
but it produces higher emissions in many rural areas
across the country—especially in the Northern Mid-
west. This is because the PHEV Prius consumes less
gasoline than the HEV Prius in city driving conditions
and more gasoline than the HEV Prius in highway
driving conditions. Differences between the HEV
Prius and the PHEV Prius are generally less pro-
nounced than those comparing the HEV Prius to the
Volt or the Leaf.

In the right-hand column in figure 2 we provide a
similar analysis using a conventional gasoline vehicle,
the 2014 Mazda 3 (with i-ELOOP), with EPA-rated
combined (5-cycle) fuel efficiency of 32 mpg as the
reference vehicle in place of the HEV Prius. The
i-ELOOP is an energy recovery braking system

intended to capture a portion of the benefits that
HEVs and PEVs capture in regenerative braking to dis-
place accessory load without a full hybrid system.
Relative to theMazda 3, we find that (1) the Leaf redu-
ces GHG emissions in urban counties across the US as
well as suburban and rural counties in Texas, Florida,
the Western US, and New England while increasing
GHG emissions in the rural Midwest; (2) the Volt
reduces GHG emissions in urban counties across the
US while increasing GHG emissions in rural counties
of the Midwest and the South; and (3) the Prius PHEV
reduces emissions in all counties. In all three cases the
GHG emission reductions in urban counties can be
substantial.

Figure 3 shows the breakdown of life cycle CO2

emissions for each vehicle in various selected counties

Figure 2.Estimated difference in life cycle GHG emissions (gCO2eq mi−1) of selected plug-in electric vehicles (2013Nissan Leaf BEV,
2013Chevrolet Volt PHEV, and 2013 Prius PHEV) relative to selected gasoline vehicles (2010 PriusHEV and 2014Mazda 3). In each
case blue indicates that the PEVhas lowerGHG emissions than the gasoline vehicle and red indicates that the PEVhas higherGHG
emissions than the gasoline vehicle.
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from two NERC regions: the Western Electricity
Coordinating Council (WECC) and the Midwest
Reliability Organization (MRO), which have, respec-
tively, the lowest and highest electricity generation
CO2 emissions factors in the continental US. The
counties selected within those regions also have
diverse climate and urbanization levels. Tailpipe and
power plant emissions make up 64%–80% of life cycle
GHG emissions in these examples. Batteries are less
efficient when cold, and so are engines, but gasoline
vehicles are able to use waste heat from the engine to
heat the cabin, while BEVs and EREV PHEVs need to
draw energy from the battery to heat the cabin, so
PEVs tend to have larger energy penalties in cold
weather regions than conventional gasoline vehicles.

The following conclusions can be made from
figure 3:

• The effects of regional climate and grid mix on
emissions become more important for vehicles
with higher degrees of electrification. We find all
vehicles have higher emissions in Minnesota, a
colder state, compared to California. However, the
increase in emissions is largest for the Leaf BEV,
whereas only a slight increase is observed with
Mazda 3CV.

• In contrast, the effect of driving cycle on emissions
becomes more prominent for vehicles with
lower degrees of electrification. In counties with
similar climate conditions and grid mix, we observe

that the biggest change in emissions with highway
driving compared to city driving occurs with
Mazda 3.

• Hot temperatures in Arizona do not increase the
emissions from the Leaf significantly relative tomild
climate counties in California—an apparent contra-
diction to Yuksel and Michalek [11], who show a
22% increase in Leaf emissions in hot regions of
Arizona compared to coastal California. The pri-
mary reason is that the laboratory data used in this
study suggest lower energy consumption at high
temperatures compared to real world data used in
Yuksel andMichalek [11]. Further discussion of this
issue is provided in the SI, section 4.

4. Sensitivity analysis

Details regarding the sensitivity analysis can be found
in the SI, and table 4 summarizes key findings. Overall,
we find that ignoring regional heterogeneity of temp-
erature or driving conditions (city/highway) affects
carbon footprint technology comparisons substan-
tially in some regions, whereas urban/rural hetero-
geneity of VMT patterns has a negligible effect.
We also find, consistent with prior work [2], that
delayed charging increases the GHG emissions asso-
ciated with PEVs in most regions and reduces the
potential for emissions savings when compared to
gasoline vehicles.

Figure 3. Life cycle CO2 emissions in gCO2eq mi−1 in selected counties. Vehicles are ordered from lowest to highest degree of
electrification.
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Figure 4 summarizes life cycle GHG emission
results for the Nissan Leaf in six counties. The Minne-
sota counties, which have both cold weather and the
most carbon-intensive electricity grid region, have
notably higher life cycle emissions than other counties,
and the sensitivity case ignoring temperature has the
largest effect on results.

Figure 5 summarizes the maximum change in
GHG emissions per mile for a Nissan Leaf across all
counties for each NERC region between the base case
scenario and each sensitivity scenario. Ignoring temp-
erature has the largest effect, reducing emissions esti-
mates by up to 97 gCO2eq mi−1, while ignoring
differences in drive cycle can increase emissions in
some counties by up to 8 gCO2eq mi−1 (drive cycle
affects CV efficiency more than PEV efficiency).
Delayed charging can increase Leaf emissions by up to
21 gCO2eq mi−1, while use of MSA-level VMT pat-
terns changes results less than 3 gCO2eq mi−1.

5. Limitations

Where possible, our analysis uses the most recent data
available at the highest resolution available to account
consistently for regional effects of grid emissions,
driving patterns, and temperature on life cycle GHG
emissions of PEVs and gasoline vehicles. However,
there are several limitations regarding the data that
should be understoodwhen interpreting our results:

5.1. Regional grid emissions
The marginal emissions estimates used in this analysis
are based on regressions for year 2011 and may not
capture changes that may occur in the grid due to
changes in policies, fuel prices, economic conditions or
other factors. It is generally expected that GHG grid
emission rates will decline over time, during the period
that PEVs are being adopted and used. However,
consequential (marginal) emissions from new load do

Table 4. Summary offindings from the sensitivity analysis.

Sensitivity case Change frombase case Purpose Finding

Homogeneous
temperature

Vehicle efficiency at 72° F used
for all counties all year

Test importance of temp-
erature effect

Temperature effect substantially changes
comparison results for northern states

Homogeneous driving
conditions

Vehicle efficiency on combined
UDDS/HWFETused for all
counties

Test importance of drive
cycle

Drive cycle affects the relative benefits of
PEVs versusHEVs (and especially versus
CVs).Without differentiated drive
cycles, urban counties are not
distinct fromnearby rural counties.

VMTclustered by state
and urbanization
level

Each county’s VMTdistribution
is drawn from all NHTS data
from the same state and urba-
nization level

Test importance of differ-
ences in urban/rural
driving distance

UsingMSA level VMTdoes not change the
results significantly. Themaximum
change is around 2 g mi−1.

Delayed charging Each PEV’s charging schedule
begins atmidnight, rather than
upon arrival at home

Test importance of charge
timing

Delayed charging increases GHG emissions
of PEVs inmost of the country and redu-
ces competitiveness with theHEV.

Figure 4.Radar chart showingNissan Leaf life cycle emissions in gCO2eq mi−1 fromdifferent cases in selected counties.
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not decrease linearly with average grid emission rates.
Because marginal emissions come primarily from fossil
fuel plants, the mix of natural gas versus coal on the
margin primarily determines the consequential emis-
sions of new PEV charging. If the regions that are
currently relying on coal at the margin start switching to
natural gas generation used at the margin, then the
amount of carbon dioxide savings from vehicle electrifi-
cation will increase, and we may expect the more
emissions-intensive areas of the country to look more
like the less emissions-intensive areas in the future. Also,
while we discuss county-level differences, we implicitly
assume that within each NERC region all counties have
identicalmarginal emission factors. Since the electric grid
is heavily interconnected, it is difficult to attribute
emissions to load changes at county-level resolution. In
practice, itmay be the case that adding PEV load in some
areas of a NERC region could have different emission
implications than adding the same load in adifferent area
of the sameNERCregion.

5.2.Driving patterns
Our summary maps assign the UDDS test results to
urban counties and the HWFET test results to rural
counties, but in practice driving conditions are hetero-
geneous in all counties. Also, importantly, on-road
driving conditions differ substantively from these two
laboratory tests, which are known to produce optimistic
fuel efficiency estimates due to their relatively mild drive
cycle demands. Driving distances also may vary for
different counties in a state, but we lump counties
together when estimating driving distance distributions
because we lack data resolution to identify driving
distance distributions for individual counties. TheNHTS
data set provides information on the trips taken by each
surveyed US vehicle on a single survey day and does not
include day-to-day variability for each vehicle. In this

study, we average over the vehicle profiles to assess
implications for average driving distances andwe assume
these daily profiles are identical over the year. In practice
the driving profiles of PEV adopters may differ from the
general population.

5.3. Temperature
We treat temperature as the only factor affecting
vehicle efficiency on a particular drive cycle, but in
practice other regional factors could affect the results.
For example, the level of humidity will affect HVAC
use, and the road conditions (such as terrain, pre-
cipitation, and wind) can also affect the efficiency of
the vehicle. Our efficiency estimates are based on
linear interpolation using test results at three tempera-
tures for each drive cycle. Comparisons with in Yuksel
and Michalek [11] suggest that this captures the
general shape of the trend reasonably well but coarsely.
We also avoid extrapolation beyond the range of
temperatures tested and therefore likely make opti-
mistic estimates of vehicle efficiency loss in extreme
weather regions.

5.4. Vehicles
We examine only five specific vehicle models for which
we have access to laboratory test data at multiple
chamber temperatures and multiple drive cycles. Other
vehiclemodels, includingmore recentmodel years of the
vehicles examined, could have different performance
characteristics, temperature sensitivity, etc

5.5.Other externalities
We focus on GHG emissions, but other externalities,
including criteria air pollutant emissions and their
effect on health, dependence on foreign oil and its
relation to energy security and independence, water
resource use for energy production, and battery

Figure 5.Maximumchange in emissions for aNissan Leaf relative to the base case. Themaximumdifference is observed in a different
county for each case.
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hazardous waste disposal play important roles in
guiding policy decisions. In particular, electric vehicle
externalities from air pollution may be larger then
those for global warming [12, 16, 40].

6. Policy implications

Our results suggest that the GHG-reduction benefits
of PEVs have significant regional variability due to grid
mix, temperature, and driving conditions as well as
differences among vehicle alternatives within each
technology class. This suggests that a regionally-
targeted vehicle-specific strategy to encourage adop-
tion primarily in areas where specific PEVs provide the
largest benefits could increase the GHG reductions
achievable under a given budget.

While current federal policy for PEVs is fairly uni-
formacross theUS, individual states have adopted differ-
entiated policies including zero-emission vehicle
mandates, state tax breaks for PEV purchases, and a
range of other incentives, such as subsidized charging
infrastructure or access to high-occupancy vehicle lanes
for PEV owners. For instance, California, Oregon, New
York,New Jersey,Maryland, Connecticut, Rhode Island,
Massachusetts, Vermont, and Maine all have policies
that mandate sales of vehicles with zero tailpipe emis-
sions (called ‘zero emission vehicles’ or ZEVs) based on
California’s policy authorized under section 177 of the
Clean Air Act [41]. In urban counties (city driving) of
these ZEV states the PEVs we model are lower emitting
than theMazda 3 CV, but they are not all lower emitting
in rural counties (highway driving), and somePEVs (e.g.:
the Volt) are higher-emitting than the gasoline-powered
PriusHEV in all counties of these states.

Further, state subsidies for PEV purchases vary,
with the largest subsidies offered in Colorado and,
until recently, in West Virginia and Georgia [42], and
there is evidence that subsidies increase adoption [43].
West Virginia and Georgia in particular are locations
where the GHG case for PEVs in our analysis is less
strong, since the gasoline-powered Prius HEV has
lower life cycle GHG emissions there than either the
Leaf BEVor theVolt PHEV.

Our results suggest that the GHG case for PEVs is
generally strongest in urban counties of Texas, Flor-
ida, and the Southwestern US followed by New Eng-
land, and it is generally weakest in theMidwest and the
South. However, it is important to note that these esti-
mates are uncertain and dynamic, since (1) the power
grid is highly interconnected and changes over the life
of the vehicle as the power plant fleet and feedstock
prices fluctuate, (2) on-road weather effects on vehicle
efficiency may differ from controlled laboratory tests
at fixed ambient temperature settings, (3) driving con-
ditions in practice are heterogeneous within each
county and are far more diverse than the standard
city/highway laboratory tests can capture, and (4)PEV
benefits relative to gasoline vehicles vary across

different PEV models and depend on which gasoline
vehicle the PEV buyer would have purchased if the
PEV were not available. The complexity of these
uncertain and dynamic regional and vehicle differ-
encesmakes it difficult to forecast regional GHGbene-
fits of PEVs with certainty, and such challenges pose
difficulties for regulators worldwide.

Broadly, regional policies that are more aligned
with the GHG benefits we estimate could bemore effi-
cient at achieving GHG reductions, though other fac-
tors such as regional consumer preferences, political
climate, and other externalities also affect regional
policy choices. In general, policies that target GHG
reductions directly, such as carbon tax or cap-and-
trade policies, rather than favoring specific technolo-
gies, are likely to be more efficient at achieving GHG
reductions, though support for the development and
deployment of new technologies can also have
dynamic benefits and potentially lead to large long-
term benefits if they enable a fleet transition that
would not have happened otherwise [44, 45]

Regional differences inGHG emissions fromPEVs
also have implications for vehicle labeling and regula-
tion. GHG emission estimates used for vehicle fuel
economy and environment labels (window stickers)
currently report only tailpipe emissions. But upstream
GHG emissions from PEV charging can be larger than
tailpipe emissions, and they vary regionally. Ideally,
future labels will include life cycle emissions estimates
that include power plant emissions—but this goal is
challenging to achieve with precision given the regio-
nal variability and the challenges described previously.
Secondly, the US EPA regulates GHG emissions from
motor vehicle fleets and currently treats PEVs as
though they are zero-emission vehicles when operat-
ing on electricity [43]. If future regulations are updated
to incorporate upstream PEV emissions from vehicle
charging, as they are expected to, regional differences
and regional patterns of vehicle adoption will be
important to achieving meaningful estimates of GHG
emissions fromPEVs.

Finally, larger factors can influence policy strategies.
For example, when deciding where to allocate scarce
public resources, benefits of light-duty transportation
electrification must be weighed against benefits that
could be achieved in other sectors [46]. Further, our ana-
lysis focuses on life cycle emissions directly associated
with the vehicles we assess and ignores consequential
fleet-wide GHG emission effects of PEV adoption due to
alternative fuel vehicle incentives in federal corporate
average fuel economy policy and GHG emissions stan-
dards. These incentives allow automakers that sell PEVs
to meet less-stringent fleet GHG emission standards, at
least through 2025, result in net GHG increases when
PEVs are sold [47]. This policy effect can be large enough
to wipe out any net GHG savings offered by PEV adop-
tion in the near term, although PEV adoption could also
have dynamic effects on technology trajectories in the
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light-duty vehicle fleet that help encourage a long term
transition.
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ABSTRACT: The United States Corporate Average Fuel Economy (CAFE) standards and
Greenhouse Gas (GHG) Emission standards are designed to reduce petroleum
consumption and GHG emissions from light-duty passenger vehicles. They do so by
requiring automakers to meet aggregate criteria for fleet fuel efficiency and carbon dioxide
(CO2) emission rates. Several incentives for manufacturers to sell alternative fuel vehicles
(AFVs) have been introduced in recent updates of CAFE/GHG policy for vehicles sold
from 2012 through 2025 to help encourage a fleet technology transition. These incentives
allow automakers that sell AFVs to meet less-stringent fleet efficiency targets, resulting in
increased fleet-wide gasoline consumption and emissions. We derive a closed-form
expression to quantify these effects. We find that each time an AFV is sold in place of a
conventional vehicle, fleet emissions increase by 0 to 60 t of CO2 and gasoline consumption
increases by 0 to 7000 gallons (26,000 L), depending on the AFV and year of sale. Using
projections for vehicles sold from 2012 to 2025 from the Energy Information Administration, we estimate that the CAFE/GHG
AFV incentives lead to a cumulative increase of 30 to 70 million metric tons of CO2 and 3 to 8 billion gallons (11 to 30 billion
liters) of gasoline consumed over the vehicles’ lifetimes − the largest share of which is due to legacy GHG flex-fuel vehicle credits
that expire in 2016. These effects may be 30−40% larger in practice than we estimate here due to optimistic laboratory vehicle
efficiency tests used in policy compliance calculations.

■ INTRODUCTION
About 28% of the United States greenhouse gas (GHG)
emissions are produced by the transportation sector (the
second largest United States GHG source, after the electricity
sector), and 62% of these emissions are produced by light-duty
vehicles.1 Light-duty vehicles also consumed 118 billion gallons
(450 billion liters) of gasoline in 2012, representing more than
half of the petroleum-based fuels consumed in United States
transportation.1 The main United States policy effort to control
petroleum consumption and greenhouse gas emissions in the
United States light-duty vehicle fleet is the federal Corporate
Average Fuel Economy (CAFE) policy and associated Green-
house Gas Emission standard.
A History of CAFE. In response to the oil crisis of 1973, the

United States passed the Energy Policy and Conservation Act
of 1975 (Public Law 94163), which included CAFE standards.
CAFE mandates that the sales-weighted average fuel efficiency
of all new light-duty vehicles sold by each manufacturer in a
particular year must meet or exceed a specific target. These
targets were initially the same for each manufacturer (although
some manufacturers chose to pay fines rather than comply2),
and separate targets were set for cars and light trucks. The first
standards came into effect in 1978 for passenger cars and were
followed by standards for light-duty trucks the following year. A
timeline of the standards and changes is shown in Figure 1.

The National Highway Traffic Safety Administration
(NHTSA) originally promulgated the CAFE standards, but
following California’s efforts to create state-specific standards
and a court ruling in 2007 that required the U.S. Environmental
Protection Agency (EPA) to regulate CO2 emissions as
pollutants under the Clear Air Act (Massachusetts versus U.S.
Environmental Protection Agency), the rule making for the
newest set of CAFE standards and GHG emission standards
were passed as a joint set of rules between NHTSA and the
EPA in 2010 and came into effect in 2012, applying to model
years 2012 to 2016. For the first time, these standards also
required carbon dioxide emissions compliance from manufac-
turers. The EPA regulates fleet average GHG emissions
(hereafter referred to as the GHG standard), while NHTSA
regulates the corresponding fleet average fuel efficiency
(hereafter referred to as the CAFE standard). The NHTSA
and EPA standards were harmonized to have comparable
stringency,4,5 but there are also important differences between
the two rules.
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Each agency offers manufacturers compliance flexibility
mechanisms that include (1) credits that can be earned if a
manufacturer’s fleet has lower emissions or higher efficiency
than the respective policy requires in a given year and can be
traded or used when a manufacturer’s fleet would otherwise not
comply with the policy, (2) credits for air conditioning
improvements, (3) other off-cycle credits for measurable
GHG and fuel savings from technologies whose benefits are
not measured by the standard laboratory two-cycle test, and (4)
incentives for selling AFVs.5 We focus exclusively on the last
effect.
While the two agencies worked in coordination to establish

these fuel efficiency and GHG standards, they differ in that the
EPA standard allows certain air conditioning improvement
credits toward compliance with the GHG standards that
NHTSA is not permitted to allow toward compliance with
CAFE policy. To address this difference, NHTSA relaxes the
stringency of their standard to a level that maintains a
harmonized standard with the EPA (see pages 25329−25330
in ref 4), assuming that manufacturers take full advantage of the
air conditioning credits (which they are expected to do).
Additionally, NHTSA incentives for AFVs differ from EPA

incentives for AFVs due in part to differences in the regulatory
authority of the two agencies. The two policies were designed
to have comparable stringency, but because they are not
identical, it is possible that one standard may be slightly more
restrictive than the other for a given manufacturer’s fleet in a
given year. While it is potentially true that the CAFE standard
could be slightly more stringent than the GHG standard for a
given manufacturer, the penalty for violating the GHG standard
is severe (potential revocation of the license to sell vehicles in
the United States), whereas the penalty for violating the CAFE
standard is relatively mild ($5.50 per 0.1 mpg violation per
vehiclea quantity that manufacturers have been willing to pay
in the past even when standards were far more lax). In
particular, the Federal Register notes that “NHTSA recognizes
that some manufacturers may use the option to pay civil
penalties as a CAFE compliance flexibilitypresumably, when
paying civil penalties is deemed more cost-effective than
applying additional fuel economy-improving technology, or

when adding fuel economy-improving technology would
fundamentally change the characteristics of the vehicle in
ways that the manufacturer believes its target consumers would
not accept. NHTSA has no authority under EPCA/EISA to
prevent manufacturers from turning to payment of civil
penalties if they choose to do so. This is another important
difference from EPA’s authority under the CAA, which allows
EPA to revoke a manufacturer’s certificate of conformity that
permits it to sell vehicles if EPA determines that the
manufacturer is in non-compliance, and does not permit
manufacturers to pay fines in lieu of compliance with applicable
standards” (ref 5, pp 63130−63131). For this reason, we focus
on treating the GHG standard as the binding constraint in our
analysis, and we present results for a binding CAFE standard in
the Supporting Information.
In addition to changes in average fuel economy targets over

time, in 2012, the targets became attribute based; the efficiency
target for each vehicle is a function of its footprint (the product
of wheelbase and track widtha measure of vehicle size).4 For
both passenger cars and light-duty trucks, vehicles with a larger
footprint have less stringent efficiency targets. Each vehicle sold
does not necessarily need to comply with the standard
associated with its footprint. Instead, the focal year sales-
weighted average efficiency of all vehicles sold by each
manufacturer must meet or exceed the sales-weighted standard
defined by the footprints of the vehicles sold that year (Figure
S1, Supporting Information). The intent of the attribute-based
standards is to reduce fuel consumption and emissions
primarily by encouraging technological improvements across
the fleet, rather than shifting consumers into smaller vehicles.4

By 2025, the average fuel efficiency of new passenger cars will
be required to meet or exceed 54.5 MPG (4.3 L per 100 km)
(as measured by a two-cycle laboratory test and based on the
EPA GHG standard assuming the entire fleet is able to meet
the standard through fuel economy improvements alone).5

These requirements will likely have strong effects on the vehicle
market, both for manufacturers, who must make significant
technological improvements to keep pace with the mandate, as
well as for consumers, who will have access to a different set of

Figure 1. Historical CAFE/GHG Standards and Expected Joint Rule-Making Standard Requirements from 1978 through 2025. Dates correspond to
the effective implementation dates of each new policy. Data sources: refs 3−5.
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vehicle options at different prices than they would in the
absence of regulation.
The policy will substantially decrease future gasoline

consumption and corresponding GHG emissions per mile
driven compared to 2009 (see Figure S2 in the Supporting
Information for a summary of compliance in 2009 by
manufacturer). Broadly speaking, for both cars and trucks, the
American manufacturers have historically tended to treat the
CAFE standard as a binding constraint, while Asian
manufacturers tended to overcomply and European manufac-
turers tended to undercomply (and therefore paid penalties).
As the standard increases in stringency, and as penalties for
violation are increased, manufacturers will need to implement
vehicle design changes and/or shift the portfolio of vehicles
they sell in order to comply. Since penalties for violation of the
new GHG standards are higher than those of the older CAFE
standard, we follow prior analysis6 in assuming the standards
will be binding for all manufacturers in the future (with the
exception of Teslaa unique automaker focused on low
volume electric vehicles). Figure S2 in the Supporting
Information shows that in the 2009 fleet no automaker other
than Tesla would have satisfied the 2016 standards, providing
further evidence that the standards are binding. However, if any
firms were to find the CAFE/GHG standard to be nonbinding
without the AFV incentives, the policy and the incentives would
be irrelevant for that manufacturer.
The Congressional Budget Office (CBO) noted in a 2012

report “With CAFE standards in place···putting more electric
(or other high-fuel-economy) vehicles on the road will produce
little or no net reduction in total gasoline consumption and
greenhouse gas emissions”.6 This is because future stringent
GHG standards are expected to be binding with high penalties
for violation, and under a binding standard, the annual target
would be achieved regardless of whether AFVs are sold. This
effectwhere efforts to reduce emissions in one area lead to
increased emissions elsewhere, resulting in no net benefithas
been referred to as “leakage”. Goulder et al.7 also note this
leakage effect in relation to state Pavley limits on vehicle
greenhouse gas emissions. Leakage is not a property of the
CAFE/GHG policy itself but rather a description of the fleet-
wide implications of other policies intended to reduce
emissions or gasoline consumption in a particular subset of
the United States fleet when implemented in the presence of
binding national standards.
We find that this leakage effect is now amplified by AFV

incentives in CAFE/GHG standards. Beginning in 2012, the
EPA/NHTSA policy includes incentives that encourage
automakers to produce AFVs by allowing automakers that
sell AFVs to meet less-stringent fleet standards. The rules offer
different incentives for flex fuel vehicles (FFVs), compressed
natural gas vehicles (CNG), battery electric vehicles (BEVs),
plug-in hybrid electric vehicles (PHEVs), and fuel cell vehicles

(FCVs). There are two types of AFV incentives in the GHG
standard: weighting factors and multipliers. A weighting factor
reduces the effective emissions rate for AFVs used in
compliance calculations, allowing AFVs to count as though
they have lower emissions than they actually do and relaxing
the stringency of the automaker’s fleet standard. A multiplier
allows each AFV sold to count as more than one vehicle sold in
compliance calculations, further relaxing stringency of the
automaker’s standard (whenever the AFV is lower emitting
than the manufacturer’s average vehicle). Table 1 summarizes
the weights and multipliers in the GHG policy from 2012 to
2025. We estimate the magnitude of the resulting implications
of AFV incentives in a binding GHG standard for fleet gasoline
consumption and greenhouse gas emissions. The EPA also
notes this effect and estimates the decrease in GHG emission
reductions due to projected PHEV and BEV adoption in model
years 2017 to 2025 under these incentives (ref 5, pp. 62811, ref
18 p4−141). They argue that “EPA believes it is worthwhile to
forego modest additional emissions reductions in the near term
in order to lay the foundation for the potential for much larger
‘game-changing’ GHG emissions and oil reductions in the
longer term.” The Supporting Information provides additional
estimates for the case when the CAFE standard (which has
statutory weighting factors for AFVs but not multipliers) is
binding.

Literature Review. The CAFE policy has had a profound
impact on transportation in the United States; over the last
several decades, it has affected the emissions of hundreds of
millions of vehicles and reduced consumption of gasoline on
the order of billions of gallons, as the following studies indicate.
The effectiveness and efficiency of the CAFE policy for
reducing emissions and oil consumption has been well
studiedand hotly debated. In a 1998 evaluation of CAFE
standards, Greene8 argued that fuel economy regulation has
been economically efficient and, despite a potential rebound
effect, has saved consumers $50 billion annually (Azevedo9

estimates that direct rebound effects in personal transportation
likely range from 4% to 87%; however, recent studies suggest
that the short-term price elasticity for fuel, used as a proxy for
direct rebound effects, is fairly inelastic, and there is some
indication that it has been decreasing over time.10)
Greene also warns that “simply because a corporate average

fuel economy formula worked well in the past does not mean
that a more efficient formulation does not exist”. Indeed, most
economists argue that imposing gasoline taxes can achieve the
same outcomes as CAFE more efficientlythough implemen-
tation of fuel taxes is controversial and politically challenging.
For example, Kleit11 reports that a gas tax of $0.11 per gallon
would lead to the same gasoline savings as the CAFE standards,
while costing far less (a $4 billion welfare loss due to CAFE
compared to a $290 million welfare cost due to gasoline taxes).
Similarly, Austin and Dinan12 use a Bertrand equilibrium model

Table 1. Summary of AFV Incentives in the GHG Standard4,5

% VMT on alt fuel, pj weighting factor, wj multiplier, mj

vehicle type 2012−2015 2016−2025 2012−2015 2016−2025 2012−2016 2017−2019 2020 2021 2022−2025
ICV 0 0 1 1 1 1 1 1 1
FFV 50 15 0.15 1 1 1 1 1 1
CNG 100 100 1 1 1 1.6 1.45 1.3 1
BEV 100 100 0 0 1 2.0 1.75 1.5 1
PHEV 29−66 29−66 0 0 1 1.6 1.45 1.3 1
FCV 100 100 0 0 1 2.0 1.75 1.5 1
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to project responses to fuel efficiency standards and find that
gasoline taxes would result in around 60% lower welfare losses
while achieving the same oil consumption decrease. However,
Gerard and Lave13 argue that such taxes ought to supplement
existing CAFE standards, rather than replace them, because
CAFE inefficiencies are mitigated with gas taxes that internalize
externalities and because consumers use higher implicit
discount rates than social discount rates, and they tend to
purchase less-efficient vehicles among those with equivalent
lifetime costs.
A range of studies have followed the announcement and

implementation of the 2012−2016 CAFE/GHG standards,
estimating fuel and emissions savings using economic
equilibrium models,14,15 life-cycle assessment,16 and decision
theory.17 The EPA also released a report evaluating the effect of
the 2012−2016 standards,18 estimating 1 billion metric tons of
CO2 reductions and savings of 1.8 billion barrels of oil over the
lifetime of new vehicles sold during the period. By 2050, the
EPA expects that CAFE standards will lead to reductions of 500
million metric tons of CO2 annually.18 The United States
emissions from the transportation sector are currently about 1.8
billion metric tons of CO2 annually,

19 so this is a substantial
reduction in emissions. CAFE policy achieves these reductions
by incentivizing automakers to redesign vehicles, implement
fuel savings technologies, and adjust fleet sales mix (e.g., via
strategic pricing). Whitefoot et al.20 argue that firms may rely
primarily on vehicle design changes rather than strategic pricing
to comply with standards, although Shiau et al.21 suggest that
the CAFE policy can be ineffective at causing changes to vehicle
design when the standard is set too high without a
corresponding increase in the penalty for violation. Whitefoot
and Skerlos22 argue that footprint-based standards incentivize
automakers to increase vehicle size, potentially undermining
fuel economy gains by an estimated 1 to 4 MPG and increasing
new vehicle emissions by 5% to 15%.
AFV incentives in CAFE policy further complicate the

policy’s effects. Anderson and Sallee23 estimate that the ability
of automakers to exploit flex-fuel vehicle incentives reduces
CAFE compliance costs dramatically. Goulder et al.7 show that
because of federal CAFE standards, the California Zero
Emission Vehicle (ZEV) regulation has no net effect on fuel
consumption or emissions due to the leakage effect; sales of
fuel efficient vehicles in California and other ZEV states are
balanced by sales of less-efficient vehicles in other states,
resulting in no net benefits at the national level.
However, because of AFV incentives in CAFE/GHG policy

this leakage effect is compounded and sale of AFVs results in
increases of fleet emissions and fuel consumption. EPA
estimates the net effect of the incentives for BEVs and
PHEVs in the GHG standard on fleet GHG emissions to be an
increase of 56 to 101 million metric tons of CO2 equivalent for
model year 2017−2025 based in part on detailed models of the
most cost-effective ways industry is expected to meet the
standards (ref 5 p62811, ref 18 p4−141). We perform an
independent assessment of the effect for all AFVs; we derive a
closed form expression for the change in fleet emissions and
gasoline consumption per AFV sold for the period 2012
through 2025; and we estimate the net effect using a range of
sales projections.

■ DATA AND METHODS
GHG Standards and AFV Incentives. We assume that

there will be no changes in the policy design between now and

2025, that the total number of vehicles sold by each
manufacturer is not affected by the AFV incentives, and that
the GHG standards are binding (i.e., we assume that each
manufacturer will comply with future GHG standards without
significantly exceeding them). Both the EPA (ref 4, pp 25342−
25343) and the Congressional Budget Office6 make similar
assumptions in their analysis of the effects of the CAFE/GHG
standards. When a manufacturer complies exactly with the
GHG standards, it satisfies the following equation:

∑
=

∑∈ ∈n s

N

n r

N
j J j j j J j j

(1)

where nj is the number of units of vehicle model j sold by the
manufacturer in the focal year, sj is the footprint-based GHG
standard associated with vehicle model j in the focal year, rj is
the GHG tailpipe emission rate for vehicle model j, N = ∑j∈Jnj
is the total number of vehicles sold by the manufacturer in the
focal year, and J is the set of all vehicle models offered by the
manufacturer. EPA policy requires the sales-weighted average
emission rate to be less than or equal to the standard. We
assume the standard is binding (an active constraint), and thus
eq 1 enforces an equality.
However, eq 1 does not account for the fact that the GHG

standard incorporates a set of AFV incentives. To account for
AFV incentives, we partition the set of vehicle models J into the
subset of conventional vehicles, JC, and the subset of alternative
fuel vehicles, JA. The GHG policy includes weighting factors, w,
that reduce the effective emission rate attributed to AFVs in
compliance calculations, allowing AFVs to count as though they
have lower emissions than they actually do. This effectively
relaxes the standard. A multiplier, m, allows each AFV sold to
count as more than one vehicle sold in compliance calculations
and can either decrease or increase the stringency of the
standard depending on whether the AFV is lower or higher
emitting than the manufacturer’s average vehicle, respectively.
The resulting relation for the GHG standard with AFV weights
and multipliers is
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where wj ∈[0, 1] is the weighting factor for AFV model j, mj ≥
1 is the multiplier for AFV model j, rj

A is the emission rate of
AFV model j when operating on its alternative fuel (including
some upstream emissions, such as power plant emissions for
charging BEVs or PHEVs), rj

G is the tailpipe emission rate of
dual-fuel AFV model j when operating on gasoline, and pj is the
assumed portion of AFV miles propelled using the alternative
fuel (pj = 1 for pure AFVs but p ∈(0, 1) for dual fuel vehicles
that use a mix of gasoline and an alternative fuel, such as FFVs
and PHEVs). Note that in the EPA rule, because r and rj

G

historically measure only tailpipe emissions and ignore
upstream emissions from gasoline production and distribution
supply chains, and because differences in upstream emissions
are important when comparing AFVs to gasoline vehicles, the
estimates of AFV emissions rj

A used in compliance calculations
are modified to estimate relative emissions differences.
Specifically, upstream emissions for the average gasoline vehicle
are subtracted from the overall estimate of tailpipe + upstream
AFV emissions to produce a relative AFV emission rate
estimate rj

A (see p 62822 of refs 4 and 5). Table 1 summarizes
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weights, multipliers, and the portion of vehicle miles traveled
(VMT) operating on the alternative fuel assumed by the EPA
for each of the AFV types included in the 2012−2016 and
2017−2025 rules.
For the particular case when there is no change in the

manufacturer’s GHG target (e.g., no change in vehicle
footprint) induced by the AFV incentives, the net change in
GHG emissions associated with vehicle operation, Δγ, is

∑γΔ = ′ − + − ̅′ − −
∈

⎛

⎝
⎜⎜

⎞

⎠
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j j j j j j j j

A G

A
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where v is the assumed lifetime vehicle miles traveled for all
vehicles, nj′ is the sales volume of vehicle model j given the AFV
incentives, and s′̅ is the manufacturer’s sales-weighted GHG
target, given the sales mix under the AFV incentives (see the
Supporting Information for derivation and for the general case).
Examining partial derivatives reveals that net GHG emissions
increase as weighting factors, w, are reduced. Net GHG
emissions also increase as dual-fuel AFV’s gasoline emission
rates, rG, are reduced (holding other factors constant). If an
AFV has lower weighted emissions than the manufacturer’s
GHG standard, then net GHG emissions increase as the
multiplier, m, increases and as the AFV sales volume, n,′
increases. The effect of other factors, p and rA, depends on the
values of w and m. When the multiplier is 1 and the weighting
factor is 1, the AFV incentive effect is zero. For m > 1 or 0 ≤w
< 1, the effect of AFV incentives is to increase net emissions
(whenever AFVs are lower emitting than the fleet average).
Similarly, we can determine the net gasoline consumption

change, Δλ, as a result of the GHG policy:
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where δ = 1 gallon of gasoline/8887 g of CO2 is the reciprocal
of the carbon dioxide emissions produced per gallon of gasoline
combusted (refer to the Supporting Information for deriva-
tion). The change in gasoline consumption due to the GHG
policy is proportional to the change in emissions if the AFV
incentives do not induce additional AFV sales (nj′ = nj ∀j ∈JA).
Net Effects of AFV Incentives for Vehicles Sold

between 2012 and 2025. To estimate the net effect of
AFV incentives on fleet tailpipe and power plant emissions
associated with vehicle operation (i.e., ignoring differences in
vehicle manufacturing emissions or end of life emissions for
AFVs), we apply projections of AFV sales through 2025 from
the reference case scenarios of the EIA’s Annual Energy
Outlook (AEO) reports in 2012 through 2015 (Figure S5,
Supporting Information). We compare four different AEO
projections because the sales of AFVs, particularly FFVs, are
substantially higher in the 2012 projections (at nearly 1 million
sales annually) but have since been adjusted downward in the
2013 projections before increasing in the 2014 and 2015
projections.24−27

The AEO reports provide projections of sales for PHEV10,
PHEV40, BEV100, and FFVs.24−27 We select representative
vehicles in each vehicle technology category: The Toyota Prius
PHEV, Chevrolet Volt, and Nissan Leaf are used as proxies for
the AEO’s PHEV10, PHEV40, and BEV100, respectively. For the
representative FFVs, we draw from historical sales-weighted

emissions rates, rA and rG, of FFVs over the past decade.
Estimates may vary for AFVs in other classes (e.g., SUVs,
trucks, etc.).
As a base case, we track the net change in GHG emissions,

ΔΓt, annually (where t = {1, 2, ..., 26} refer to years {2012,
2013,..., 2037}, respectively) using United States average
estimates of annual VMT as a function of vehicle age based
on NHTS survey data28 summarized in Table S2 of the
Supporting Information (v = ∑τ = 1

L vτ ≈ 157,000 mi). We
assume each vehicle has a lifetime of L = 12 years.
Again assuming the AFV incentives do not cause a change in

the manufacturer’s GHG target (e.g., no change to vehicle
footprintsee Supporting Information for the general case),
the net change in emissions during year t due to vehicles sold in
years τ = {1, ..., t} is computed as

∑ ∑ΔΓ = ′ − + − ̅′ − −
τ

τ τ τ τ τ τ τ τ τ τ
= ∈

−v n m w p r m s p r((1 ) ( 1)( (1 ) ))t

t
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t j j j j j j j j
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A
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We account for the cumulative change in emissions due to
vehicles sold from 2012 to 2025 due to the AFV incentives, but
because emissions from these vehicles are produced in years
following the vehicle sale, we account for cumulative emissions
through 2037 (∑t = 1

26 ΔΓt, where wjτ = mjτ = 1 ∀τ > 14; vt−τ = 0
∀(t − τ) > L). We compute gasoline consumption implications
in a similar way, but because we lack counterfactual projections
of AFV sales in the presence versus absence of the incentives,
we focus on the case where AFV sales are unchanged by the
incentives and leave alternative scenarios for future work given
the uncertainty and the complexity of interactions between
incentive-induced sales, weights, and multipliers.
Table S1 of the Supporting Information summarizes

emission rates for a set of United States AFVs based on EPA
estimates measured via the two-cycle tests used in CAFE/GHG
compliance calculations.29 Emissions associated with electricity
consumption are also from EPA estimates; we adopt their
figures for upstream electricity GHG emission factors
(conversion to emission rates from Wh per 100 mi by EPA
methods outlined on page 62822 of ref 5). In the sensitivity
analysis, we test the importance of this assumption. The EPA
currently considers BEV emissions and PHEV emissions while
operating on electricity to be 0 g of CO2 per mile in compliance
calculations. Values for the proportion of VMT, p, propelled by
the alternative fuel are also taken from EPA estimates (Table
1).4,5

Sensitivity Analysis. The two-cycle test used for measuring
CAFE/GHG compliance is known to produce optimistic
estimates relative to typical on-road driving patterns.33 The
fuel economy displayed on current vehicle window stickers
instead reports the newer five-cycle based testing, and the EPA
uses 5-cycle measurements in regulatory impact analysis.18 If
real-world on-road emissions (estimated using the five-cycle
test rates), r5, are φ times as large as two-cycle test emission
rates, r, for all vehicles, so that r5j

A = φrj
A and r5j

G = φrj
G ∀j ∈ J,

then the on-road emissions effect of the AFV incentives
increases by a factor of φ. These factors are summarized in
Table S1 of the Supporting Information.
The second assumption we examine is the grid emissions

used in the charging of electric vehicles. The EPA method uses
projections of 2030 national average of projected marginal grid
emission rates, and we compare this to estimates of the
emissions over ranges of recent regional marginal grid emission
rates.25 We adopt a base case “mid” scenario using the EPA
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projected emission factor and estimate the upper and lower
ranges of grid emissions using the lowest and highest annually
averaged marginal emission rates by North American Electric
Reliability Corporation (NERC) regions from 2007 as
estimated by Siler-Evans et al.30 These range from 530 to
790 kg/MWh. Average emission rates for smaller grid regions
ranging from 300 to 1000 kg/MWh have also been used in
electric vehicle studies,33 but given the consequential framing of
our analysis, we focus on marginal emission factors, which
estimate the effect of changes in the system that result from
new electricity demand.
Finally, in the Supporting Information, we examine the case

where the CAFE standard is binding instead of the GHG
standard.

■ RESULTS
We start by showing the effect of the weights and multipliers
for one specific AFV. Figure 2 illustrates how the inclusion of

GHG AFV incentives results in increased emission rates for a
Chevrolet Volt. The black line shows the annual GHG
emissions standards with which the manufacturer needs to
comply. If one vehicle has emissions lower than the standard, a
second “balancing vehicle” can be sold with higher emissions
such that the average emission rate of the two vehicles is equal
to the standard. This is an illustrative case with a single
balancing vehicle model, equal sales volume for the AFV and its
balancing vehicle, and no change in sales volume induced by
the AFV incentives. Without AFV incentives, the average of the
Volt emission rate (solid blue) and the balancing vehicle
emission rate (solid red) is equal to the standard with which the
manufacturer would need to comply in each year. The Volt
emissions appear to increase over time only because the EPA
uses AFV upstream emission estimates relative to the upstream
emissions of an average conventional internal combustion
vehicle (as described earlier), which decrease over time as the
standards become more stringent (see p 62822 of ref 4). With
the AFV incentives, the adjusted emission rate for the Volt used
in GHG accounting calculations is artificially lowered using a

weighting factor (dotted blue). The balancing vehicle (dotted
red) produces higher emissions for two reasons; between 2012
and 2016, the weighting factor allows the balancing vehicle to
be a higher-emitting vehicle, and after 2016, the inclusion of a
multiplier, m, greater than one compounds this effect. The net
increase in the average emission rate resulting from the AFV
incentives is the difference between the red lines (shaded area
in Figure 2). For the Volt, this increase ranges from ∼40 gCO2/
mi (25 g/km) in 2012−2016 to 140 gCO2/mi (87 g/km) in
2017. We perform a similar assessment for the AFVs listed in
Table S3 in the Supporting Information and find that the
increase in emissions ranges between 10 and 400 gCO2/mi (6
to 250 g/km)a range comparable to the emissions that
would have been created if an extra conventional light-duty
vehicle’s emissions were added to the fleet’s emissions each
time an AFV is sold in place of a conventional vehicle (a
Toyota Camry is 330 gCO2/mi (200 g/km)).
The net lifetime increase in fleet GHG emissions and

gasoline consumption for several AFVs is shown in Figure 3

(again for the case of no change to the manufacturer’s GHG
target induced by the incentives). The greatest increase occurs
for battery electric vehicles (BEVs), such as the Nissan Leaf and
the Ford Focus BEV, because AFV incentives for these vehicles
have weighting factors of w = 0 and multipliers as high as m = 2.
The Chevrolet Volt and Toyota Prius PHEV follow a similar
pattern at lower magnitude. Flex fuel vehicles benefit from a
0.15 weighting factor and assumed 50% of VMT propelled by
ethanol, both of which expire in 2016.
We also estimate the cumulative increase in GHG emissions

resulting from AFV incentives from 2012 to 2025. We use the
AEO vehicle sales projections made in 2012, 2013, 2014, and
2015 reports, as explained in the Data and Methods
section.24−27 The results are shown in Figure S3 in the
Supporting Information. The largest source of emissions
difference between vehicle technologies is caused by the
difference in projected sales from the AEO reports. The FFVs
have the highest sales in both cases and as a result produce the
highest cumulative increase in emissions, although the
emissions from FFVs peak earlier, as their AFV incentives
expire first. Despite relatively large differences in projected sales
of plug-in electric vehicles, we find that the cumulative

Figure 2. Illustration of emission rates for a Chevrolet Volt and its
balancing vehicle (shown here for the case of equal sales volume and
no sales induced by the AFV incentive). The balancing vehicle is the
vehicle whose emission rate, when averaged with the Volt emission
rate using the GHG compliance formula, results in satisfying the GHG
standard exactlyshown both with and without AFV incentives. The
shaded area represents the increase in average balancing vehicle
emission rate due to AFV incentives. Equations are described in the
Data and Methods section.

Figure 3. Change in fleet GHG emissions and gasoline consumption
each time an AFV is sold in place of a conventional vehicle due to AFV
incentives under a binding GHG standard (shown here assuming no
change in the manufacturer’s footprint-based GHG standard induced
by the incentives).
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emissions effect is comparable across technologies from sales in
2012 through 2025, ranging between 2 and 11 million metric
tons of increase in CO2 emissions for each technology using
2013 projections. The net effect of the AFV incentives is an
increase of 30 to 70 million metric tons of CO2 emitted over
the lifetime of the vehicles sold during this period. This is the
equivalent of relaxing the GHG standard by about 0.8−1.5%
(assuming no change in total sales). The effect of AFV
incentives on gasoline consumption depends on the change in
AFV sales induced by the incentives. Assuming no change in
sales, the incentives result in 3−8 billion gallons (11−30 billion
liters) of gasoline consumed over the lifetime of the vehicles
sold during this period.
Sensitivity Analysis Results. We calculate the difference

in emissions between two-cycle tests (used to measure fuel
economy for compliance calculations) and five-cycle tests (used
to measure fuel economy for vehicle window stickers), which
provide more accurate estimates of on-road vehicle fuel
economy34 (Table S1, Supporting Information). Emissions
estimates from the five-cycle test are 1.3 to 1.4 times as large as
those from the two-cycle test for the vehicle models we
examine, suggesting (if the ratio were comparable for all vehicle
models) that the on-road emissions implications of the AFV
incentives could be 30−40% higher than our base estimates
made using CAFE/GHG 2-cycle tests.
Due to uncertainty in emissions from the electric grid

resulting from charging of BEVs and PHEVs (refer to Table S3
in the Supporting Information for efficiency of BEVs and
PHEVs), we also compare the EPA’s projection of incremental
grid emission factors in 2030 against estimated marginal
emissions rates of different NERC regions in 2007.30 We use
the low-emitting Western Electricity Coordinating Council
(WECC) region as a low case and the high-emitting Midwest
Reliability Organization (MRO) region as a high case. As
shown in Figure 4, the emissions from the EPA projected
national grid emissions is closer to the low case, but we find

that the total emissions vary by less than 30% from the lowest
and highest estimates of 28 to 38 million tCO2, respectively.
Currently, plug-in electric vehicle adoption is concentrated in
regions that have lower marginal emission rates.35

In the Supporting Information, we also develop a similar
analysis for the case where the CAFE standard is binding rather
than the GHG standard. We find that the emissions
consequences per AFV sold do not peak in 2017 (Figure S6)
under a binding CAFE standard as they do under a binding
GHG standard (Figure 3) because the CAFE standard has no
AFV multipliers. However, the overall cumulative emissions
implications of the AFV incentives are comparable under a
binding CAFE standard to our estimates under a binding GHG
standard (see Supporting Information for details).
Additionally, we ignore the effects of other flexibility

mechanisms in CAFE/GHG policy, such as off-cycle credits
and credit trading. These credits could interact with the AFV
incentives we analyze. For example, if the credits effectively
loosen the GHG standard observed by automakers, then the
resulting effective s ̅ in eqs 3−5) may increase, resulting in larger
emissions implications than we estimate here for years with
multipliers greater than one. We leave analysis of other
flexibility mechanisms for future work.

■ DISCUSSION
We estimate net increases in GHG emissions and gasoline
consumption as a result of AFV incentives in a binding light-
duty vehicle GHG policy under the assumption that the GHG
policy may affect vehicle design and sales mix but not total
vehicle sales. We find under fairly general conditions that
reducing AFV weighting factors results in increased fleet
emissions and gasoline consumption. Increasing AFV multiplier
factors also results in increased emissions and gasoline
consumption when the manufacturer’s incentive-weighted
AFV emissions are lower than its fleet average. Further, and
counterintuitively, increased sales of AFVs in place of
conventional vehicles results in increased United States fleet
emissions and gasoline consumption because of the incentives.
Fleet-wide gasoline consumption also increases as any dual-fuel
AFV technology’s gasoline consumption rate is reduced
(holding all other factors constant). These outcomes are
further modified if the AFV incentives induce a change in the
manufacturer’s sales mix that significantly affects its GHG target
(e.g.: a change in the size of the vehicles sold), and any change
in vehicle miles traveled, such as a rebound effect induced by
lower operation costs or reduced travel due to electric vehicle
range limitations, could further modify fleet-wide implications.
Using sales projections from the AEO 2012−2015

reports,24−27 we estimate the net effect of the AFV incentives
in the GHG standard from vehicles sold from 2012 to 2025
(assuming a 12 year life) is an increase of 30 to 70 million
metric tons of CO2 (50% to 75% due to FFVs) relative to the
same policy without AFV incentives (or, equivalently, relative
to the same policy if there are no AFV sales). Gasoline
consumption implications depend on AFV sales induced by the
incentive, but assuming no induced sales implies 3.4 to 7.9
billion additional gallons (11 to 30 billion liters) of gasoline
consumed. On-road effects may be 30−40% higher in practice,
since our base case analysis is based on optimistic 2-cycle
laboratory tests used in CAFE/GHG compliance calculations.
Therefore, we estimate the on-road effect as about 40 to 100
million metric tons of CO2. For comparison, EPA estimates a
similar range of emissions (56 to 101 million metric tons of

Figure 4. Increase in cumulative emissions due to AFV incentives
based on EIA AEO 2015 Alternative Vehicle Sales Forecasts under a
binding GHG standard (shown here assuming no change in the
manufacturer’s footprint-based GHG standard and no change in AFV
sales induced by the incentives). High scenario: highest recent
marginal emission rate in the United States by NERC region (MRO,
Midwest at 786 kg CO2/MWh). Base case scenario: EPA projected
national average incremental emission rate in 2030 (base case: 534 kg
CO2/MWh). Low scenario: lowest recent marginal emission rate in
the United States by NERC region (WECC, West at 464 kg CO2/
MWh).
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CO2) for a narrower set of technologies (BEVs and PHEVs) in
a shorter period (2017−2025). The difference is due in part to
EPA using more optimistic projections of plug-in electric
vehicle sales than EIA projections. Our estimates represent
about 1−2% of total estimated GHG savings from CAFE/GHG
policy, and the net effect on fleet-wide GHG emissions is
approximately equivalent to relaxing the overall GHG standards
by 0.8% to 1.5%. The policy also has implications for other air
pollutants not examined here, which could have large social
costs.36,37

■ POLICY OPTIONS
The fleet-wide effects we identify under binding GHG
standards occur as a result of the interaction of AFV incentives
in the GHG policy with an increase in AFV sales, driven largely
by state policies. Candidate approaches to addressing this issue
might include (1) making no policy changes, (2) eliminating
the AFV incentives, (3) eliminating policies that encourage
AFV sales, (4) redesigning policies, or (5) considering
alternative policies. We examine each approach in turn:
(1) No Policy Change: Tolerating the near term emissions

and gasoline consumption increases we identify in
pursuit of long-term reductions is an option, since the
long run emissions and gasoline savings of a transition to
AFVs are likely to more than compensate for the short-
term increases we estimate, and AFV implementation
efforts may further generate positive network external-
ities.5,38,39 But future benefits attributed to these policies
are only realized if the policies in question succeed in
securing a transition to AFVs that would not have
happened otherwise. Or, if such policies accelerate a
transition that would have happened more slowly
otherwise, the benefits of the policy are those associated
with the change in the transition interval enabled by the
policy. Depending on the magnitude of the policy’s effect
in accelerating a transition, the long-term benefits of the
policy may or may not outweigh the near term increases
in emissions and gasoline consumption we estimate.

(2) Eliminate AFV Incentives: Eliminating the CAFE/GHG
AFV incentives would eliminate the increase in fleet
emissions per AFV sold but not the emissions leakage
effect (i.e., AFV adoption would produce no net change
in fleet emissions or gasoline consumption), and the
resulting standards may be more difficult and expensive
for automakers to achieve, given low gas prices and
consumer preferences for large performance vehicles. In
fact, the negotiations in setting policy for the CAFE/
GHG standard may have resulted in less stringent fuel
efficiency and GHG emissions targets had the incentives
been excluded.

(3) Eliminate Policies That Encourage AFV Sales: Our
analysis shows that reducing AFV sales (e.g., by
eliminating policies that encourage or mandate AFV
adoption) through 2025 would reduce short-term fleet
emissions and gasoline consumption. However, such an
option could stall efforts to put the fleet on a path to
transition that would take over in a decade even if the
ideal technology and infrastructure were available at
competitive costs today.

(4) Redesign Policies: Improved coordination of federal and
state policy design could potentially help to reduce
negative interactions among policies because the fleet-

wide emissions and gasoline consumption effects we
estimate are proportional to the number of AFVs sold,
and the state zero-emission vehicle policy represents the
largest effort to increase the number of AFVs sold. But
coordination is nontrivial; the new CAFE/GHG stand-
ards themselves were created as a federal compromise
with California, which wanted more stringent state
standards.

(5) Alternative Policies: Pricing externalities at a value equal
to the estimated marginal damage caused to society is
among the most efficient options for achieving end goals,
but public support for such policies is low in the United
States, even if tax revenues are returned to American
households.40 Alternative policies such as regulating CO2
as a pollutant, subsidizing fuel-efficient vehicles, and
requiring high fuel efficiency, are more politically
palatable. Nevertheless, continued attempts to persuade
the public and lawmakers of the benefits of an efficient
externality pricing approach that addresses end goals
directly, rather than favoring specific technologies,
remains important. While higher prices on gasoline,
electricity, and other fuels to reflect the damages they
cause are not the only mechanisms needed to secure a
transition to alternative fuel vehicles or to manage
climate change and air pollution, they would help to
mitigate some of the key unintended and often difficult-
to-spot effects of interactions among well-intentioned
policies.

With the current federal CAFE/GHG policy in place, other
federal and state policies that increase AFV market share will
result in increased fleet-wide United States greenhouse gas
emissions and gasoline consumption through at least 2025. It is
hoped that understanding this effect can inform future federal
and state policy design while also informing policymakers in
other regions with related automotive policies, such as China
and the European Union, of the effects of interactions between
fleet standards and mechanisms that encourage adoption of
specific technologies.
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The Rebound Effect and
Energy Efficiency Policy

Kenneth Gillingham*, David Rapsony, and Gernot Wagnerz

Introduction

Buy a more fuel-efficient car, drive more. This is perhaps the simplest illustration of what has

come to be known as the rebound effect—the phenomenon that an increase in energy efficiency

may lead to less energy savings than would be expected by simply multiplying the change in

energy efficiency by the energy use prior to the change. The existence of the rebound effect has

been clear for a long time. In fact, Jevons (1865) hypothesized that greater energy efficiency may

even lead to a “backfire,” whereby industrial energy use increases. However, the size of the

rebound effect is much less clear. There is great variation in estimates, which stems from

differences in definitions of the rebound effect, as well as in the quality of the data and the

empirical methodologies used to estimate it. This has clear policy implications because both

researchers and policymakers need reliable information about the magnitude of the rebound

effect to evaluate the energy savings and economic welfare implications of energy efficiency

policies. Although the rebound effect is just one component of this more important analysis, it

has received significant attention, including in the popular media, which is often in search of

counterintuitive results.

The goal of this article is to more clearly define the rebound effect in the context of energy-

efficiency improvements, including clarifying its various channels, and to critically assess the

literature that estimates its magnitude. In particular, we distinguish between the rebound effect

from a costless exogenous energy efficiency improvement—what we will refer to here as a zero-

cost breakthrough—and the rebound effect from an actual (typically costly) energy efficiency

policy—what we will refer to here as a policy-induced improvement. Recognition of this
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distinction can be helpful for interpreting estimates in the literature, which often conflate the

two, leading to inappropriate conclusions and an exaggerated rebound effect.

The most common approach in the literature for estimating the rebound effect is to empir-

ically estimate fuel-price or operating-cost elasticities of demand. However, such estimates

should be treated with caution precisely because they conflate the zero-cost breakthrough

and policy-induced improvement effects. When we consider the cumulative rebound effect,

especially if we include rebound effects that may occur at the macroeconomic level, reliable

empirical estimates are much harder to come by.

The article is structured as follows. First we define the different components of the rebound

effect. Then we review the quantitative evidence in the literature on the different microeco-

nomic and macroeconomic channels of the rebound effect and discuss challenges to identifying

causal rebound effects for each channel. We conclude with a discussion of the implications of

the rebound effect for energy efficiency policy.1

Defining the Rebound Effect

The classic way that researchers have approached the rebound effect in the literature has been to

consider an improvement in energy efficiency and then compare the achieved reductions in

energy use to those forecasted without any consumer and market responses to the energy-

efficiency improvement. Such consumer and market-wide responses are likely to occur because

the energy efficiency improvement itself changes relative prices (and, thus, real income). The

rebound effect is then expressed as the percentage of the forecasted reduction in energy use that

is lost due to the sum of the consumer and market responses.

To illustrate, consider an air conditioner with annual electricity use of 100 kWh/year.

Suppose a more efficient air conditioner shaved 10 kWh/year off this total before accounting

for any consumer and market responses. If these responses increased electricity use by 1 kWh/

year, then the rebound effect would be equal to 10 percent—that is, 1 of the 10 kWh per year in

expected energy savings would be “taken back” due to the consumer and market responses.2

Exogenous versus Bundled Improvements in Energy Efficiency

Although this broad definition captures the essence of the rebound effect, it neglects the way in

which energy efficiency is actually improved. The literature makes different assumptions about

this key issue, which can cause misconceptions about exactly what the rebound effect is, how to

estimate it, and how to interpret those estimates. It is helpful to begin with the distinction

between (1) an exogenous increase in energy efficiency (holding other product attributes con-

stant) and (2) a change in energy efficiency that is bundled with changes in other product

attributes (e.g., a more energy-efficient air conditioner that is also smaller overall and, thus, can

1Throughout the article, we highlight common misconceptions about the rebound effect and how to address
them. See the online supplementary materials for a table that summarizes the main misconceptions about the
rebound effect.
2Here we follow the literature by defining the rebound effect with respect to energy. One could analogously
define the rebound effect with respect to emissions (Thomas and Azevedo 2013), which in many cases is
proportional to the energy rebound. Exceptions include biofuels policies that lead to indirect land use emissions
or policies that lead to fuel switching, for example from coal to natural gas and, thus, from carbon to methane
emissions.
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work in different windows), which may induce a change in the energy service provided and

perhaps also in the cost of the product.3

To illustrate this distinction, first consider an exogenous increase in energy efficiency—a

zero-cost breakthrough—in which an innovation allows a product (e.g., an appliance) manu-

facturer to increase energy efficiency costlessly while holding all other attributes of the product

the same. The resulting consumer and market responses are a pure rebound effect because they

capture only those responses induced by the improvement in energy efficiency.

In contrast, consider a policy-induced improvement, whereby a policy requires manufac-

turers to improve the energy efficiency of a particular product. In this case, the energy efficiency

improvement may be costly, potentially raising the price of the product. At the same time, the

policy may induce or even necessitate changes in other attributes of the product, such as size,

weight, or capacity. In this case, both the price of the product and the energy service it provides

may change along with the improvement in energy efficiency.4

Thus, for both estimation and policy purposes, it is crucial to distinguish between zero-cost

breakthroughs and policy-induced improvements. If we are seeking to estimate a response

attributed directly to an energy efficiency improvement, then the zero-cost breakthrough ap-

proach is likely to be a better measure of the rebound effect. Any empirical estimation that

controls for all of the key attributes of a product is aiming to identify this pure effect. In fact, this

is the most common approach used to estimate what most researchers call the rebound effect.

In contrast, if we are interested in the overall effect of a policy—the bundle of changes that

occurs, including but not limited to energy efficiency—then focusing on a policy-induced

improvement is the appropriate approach. In this case, the goal would be to estimate a com-

pound effect that combines the energy savings from the efficiency improvement with the energy

adjustments due to changes in the attributes and cost of the product. This estimate may even

capture changes in sales of the product or other consequences. To calculate the policy-induced

improvement rebound effect, one could examine the difference in the forecasted energy savings

(based on a simple engineering calculation) and the empirically estimated effect. This result

may be appropriate for considering the energy implications of a specific policy but is generally

not equivalent to the more pure concept of the rebound effect represented by the zero-cost

breakthrough approach.

Which Is the Preferred Approach for Policy Analysis?

Neither the zero-cost breakthrough nor the policy-induced improvement approach is unam-

biguously a better choice for policy analysis. The choice depends on context and the specific

question at hand. The zero-cost breakthrough approach, which isolates the effect of an exogen-

ous energy efficiency improvement on the consumer and market responses, provides clear

guidance on how changes in energy efficiency alone would change energy use. These results

3Energy is a demand that is derived from the consumers’ demand for energy services (e.g., miles driven in a
particular car, refrigeration). These energy services themselves may change along with the attributes of a product
(e.g., a refrigerator with an ice maker provides a different energy service than a refrigerator without an ice
maker).
4There may be a continuum between zero-cost breakthroughs and policy-induced improvements, whereby a
rebound effect captures some, but not all, of the changes from a policy. However, such intermediate cases may
be more difficult to interpret in terms of policy implications. Thus, we focus our discussion here on the two
extremes: zero-cost breakthrough and policy-induced improvement.
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are likely to be more widely applicable than focusing on a specific policy-induced improvement

because the approach holds constant potentially confounding variables. Thus, the results can be

used to establish the degree to which the rebound effect improves social welfare by providing

cheaper energy services that consumers value. Moreover, if policy-induced energy efficiency

improvements are associated with only negligible costs and changes in attributes, then estimates

for zero-cost breakthrough may be similar to those for policy-induced improvements.

However, in most cases, an energy efficiency policy also causes changes in costs and attributes.

It is difficult to disentangle these responses empirically because it is essential to know all of the

pertinent consumer and market responses to the improved efficiency, the changes in attributes,

and the increased cost of the product itself. All of these responses (which comprise the policy’s

overall effect) play a role in what ultimately matters most to policymakers: the energy efficiency

policy’s effects on social welfare.

Microeconomic Channels for the Rebound Effect

Before moving to empirical estimates of zero-cost breakthroughs and policy-induced improve-

ments, it is useful to review some basic microeconomic theory to highlight the channels by

which the microeconomic rebound occurs. These channels stem from the classic substitution

and income effects of consumer theory. We focus only on consumer theory here but address

rebound effects from producers in our discussion of the macroeconomic rebound.

Substitution and Income Effects

When energy efficiency improves, the price of energy services changes. Substitution and income

effects arise, which influence consumers’ consumption of the energy services and, ultimately,

energy use. Measuring these effects is not straightforward. In the case of a zero-cost break-

through, the decline in the cost of the energy services implies that consumers will make a series

of four adjustments to their consumption bundle,5 which may, in turn, affect their derived

demand for energy. First, consumers will substitute toward the more energy-efficient product,

which is now relatively less expensive. Second, consumers will substitute away from other now

relatively more expensive goods.6 Third, the lower effective price for the energy service increases

the consumer’s purchasing power, which means consumers will further increase consumption

of the more energy-efficient product (assuming it is a normal good). Finally, their increased

purchasing power means that consumers will also increase their consumption of other normal

goods. Each of these adjustments will either increase or decrease the amount of energy used for

the consumer’s consumption bundle.

The direct rebound effect

These four effects do not perfectly match the terms most commonly used in the literature on the

rebound effect. The direct rebound effect is generally defined as the change in energy use resulting

from the combined substitution and income effects on the demand for the energy-efficient product

5See Borenstein (2015) for a more technical discussion of these channels of behavioral adjustment.
6More broadly, consumers will change their bundle of consumption toward complements to (and away from
substitutes for) the energy-efficient product.
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(Sorrell and Dimitropoulos 2008). This definition is convenient because economists typically

estimate elasticities of demand (e.g., the marginal change in demand for air conditioning as the

operating cost of the air conditioner changes), which can be easily converted into a direct rebound

effect. Using these elasticity estimates implicitly adopts the zero-cost breakthrough approach to the

rebound effect because it tells us, for example, how much additional air conditioning consumers

will use if their operating cost changes on the margin, holding all other product attributes constant.

For example, if the elasticity of demand with respect to the operating cost is!0.5, then 50 percent

of the reduction in energy use from an improvement in energy efficiency on the margin will be

taken back by the substitution and income effects, which increases the energy use.7 It is important

to note that this estimate of the direct rebound effect ignores any changes in the demand for other

goods due to either the change in relative prices or purchasing power. Nonetheless, the direct

rebound effect is useful for quantifying and understanding the first-order consumer response to an

increase in energy efficiency.

The indirect rebound effect

The effect of an energy efficiency increase on the demand for all other goods and the subsequent

change in energy use is called the indirect rebound effect. However, the literature is not con-

sistent in how this term is used. Some studies include any changes in energy use resulting from

changes in the demand for other goods, including substitution effects, income effects, and any

embodied energy used to create the energy efficiency improvement (Azevedo 2014). Other

studies use the term indirect rebound effect even more broadly, by including substitution

effects, income effects, embodied energy, and even macroeconomic rebound effects (Sorrell

and Dimitropoulos 2008). However, the most common approach in the literature is to refer to

the indirect rebound effect as including only the income effects on the consumption of all other

goods. For example, buyers of a more fuel-efficient vehicle may decide to spend the savings on a

flight for a vacation—another energy-intensive activity—or on something much less energy

intensive, such as books and movies. The sign and magnitude of this indirect rebound effect

depends on the difference in energy intensity (per dollar) between the energy-efficient product

(prior to the efficiency improvement) and other goods consumed on the margin. It is import-

ant to recognize that this more common definition of the indirect rebound effect ignores the

substitution effects on other goods that arise from the decrease in the cost of using the more

energy-efficient product.8 Along the same lines, the literature commonly ignores any cost of the

efficiency improvement, even though such a cost would produce income effects—reducing

(increasing) the indirect rebound effect if, before the improvement, the energy-efficient product

is more (less) energy intensive than the marginal consumption bundle (Borenstein 2015).

The microeconomic rebound and welfare

The income and substitution effects described here are no different from any other adjustments

that consumers make when confronted with a change in relative prices. By revealed preference,

consumers are enjoying private surplus gains. Thus, it follows that a net welfare decrease from a

rebound effect is only possible if the external costs associated with these adjustments to the

consumer’s consumption bundle outweigh the private gains. For example, the external

7Note that this approach ignores the substitution and income effects on other goods.
8These substitution effects are typically implicitly assumed away as being insignificant.
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pollution costs from particularly dirty electricity use could outweigh the consumer surplus

benefits from consumers increasing usage of a more efficient air conditioner and reoptimizing

their consumption bundle.9

Estimating Microeconomic Rebound Effects

We now turn to estimation. Because the microeconomic rebound effect consists of substitution

and income effects across all goods, an attempt to fully measure the rebound effect would

require estimating the substitution and income effects for all goods in the economy—clearly an

infeasible task. Instead, most studies ignore the demand for other goods and focus on estimat-

ing the price elasticity of demand for the more energy-efficient product—the zero-cost break-

through approach. A few studies estimate the effect of a policy—the policy-induced

improvements approach—although again they generally ignore effects on other goods in the

economy. There are also a few estimates of the income effects from changing the energy con-

sumption of all other goods, but these are generally based on the average rather than the

marginal consumption bundle. We are not aware of any studies that estimate these own-

and other-good effects jointly using comparable data sources. This may bias rebound effect

estimates because a greater increase in demand for the energy-efficient product (i.e., direct

rebound) generally implies a smaller increase in demand for other goods (i.e., substitution and

income effects on other goods) (Chan and Gillingham 2015).

Caveats

Before discussing specific estimates, additional caveats are in order. First, to provide reliable

guidance for analyses, it is critical that studies estimate a causal effect. This is particularly

important when using demand elasticities to quantify the rebound effect.10 For example, studies

that rely on cross-sectional variation in fuel prices or operating costs may have difficulty

controlling for unobserved heterogeneity. Such studies, even if otherwise well executed, tend

to find much more elastic demand than studies that include other sources of variation (e.g., see

West 2004).

Second, the conversion of a demand elasticity into an estimate of the direct rebound effect

requires an assumption about symmetry of consumer response to changes in fuel prices and

energy efficiency. Under standard neoclassical assumptions, the utilization of an energy-

consuming good is based on the operating cost (i.e., the fuel price divided by the energy

efficiency). Therefore, a change in both the fuel price and in the energy efficiency of the

good will change the operating cost in identical (but opposite) ways. Thus, it is common in

the literature to describe the fuel-price elasticity of demand as being the direct rebound effect, as

we will see. However, in settings where multiple energy services use the same fuel, the fuel-price

elasticity and the direct rebound effect are not one and the same (Chan and Gillingham 2015).

Furthermore, recent evidence concerning passenger transportation suggests that consumers

may respond less to changes in energy efficiency than to changes in fuel price (Gillingham

2011). This may occur because fuel prices are more salient: consumers see them every time they

9See Chan and Gillingham (2015) for a detailed examination of these welfare effects.
10Many studies estimating demand elasticities do not meet current standards for identification and fail to
address standard endogeneity issues such as simultaneity.
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pay their energy bill. In this case, using the fuel-price elasticity of demand would overestimate

the direct rebound effect. However, other studies show either no asymmetry in response

(Frondel and Vance 2013) or a greater response to changes in energy efficiency than to changes

in fuel price (Linn 2013). One potential explanation for a greater response to changes in energy

efficiency is the perceived longevity of such changes. Li, Linn, and Muehlegger (2014) find that

gasoline taxes appear to be more salient than fuel prices, perhaps again due to perceived

longevity. Thus, further research is needed into the symmetry of fuel-price elasticities and

energy efficiency elasticities.

Third, the consumer response to any change in usage costs may vary depending on the

timeframe of the response. For example, when fuel prices change, in the short run consumers

can choose how many trips to take, what route to take, which vehicle to take (if they have

multiple vehicles), and whether to take public transportation (if available). In the medium run,

they can purchase or scrap vehicles, and in the long run they can choose where to live and work.

It is likely that long-run energy demand is more elastic than short-run demand; yet long-run

elasticities are harder to estimate credibly and thus harder to come by.

Finally, each estimate of price elasticities is for a particular time and place, and energy

demand could vary with the specific setting. For example, Gillingham (2014) shows that the

elasticity of demand for driving with respect to the price of gasoline exhibits noticeable het-

erogeneity across different counties in California. One could imagine that there would be even

greater differences when examining a developing country or a country with an extensive public

transportation system. The bottom line here is that even if an elasticity estimate is internally

valid, we need to examine its external validity before applying it elsewhere.

With these caveats in mind, we next review the relevant elasticity estimates in the literature

that may be useful in providing policy guidance to economists and policymakers.

Elasticities for Developed Countries

We first discuss the literature for developed countries. Given the vast number of estimates, we

present selected reliable estimates, with a focus on studies of overall demand or household-level

demand (table 1).11

The studies we include in table 1 were selected because they are more recent and use rigorous

empirical methods such as panel data methods, experimental designs, or quasi-experimental

designs. These studies attempt to address potential endogeneity concerns and present some

evidence of internal validity. They tend not to rely exclusively on cross-sectional variation. All

provide either short-run or medium-run estimates. As emphasized by Hamilton (2009) and

Gillingham (2011), including a lagged dependent variable to distinguish between short-run and

long-run responses requires strong assumptions. Yet, nearly all estimates of long-run responses

are based on either an ordinary least squares regression with a lagged dependent variable or on

cross-sectional variation (with the assumption that it is capturing a long-run equilibrium).

Thus, we believe that the short-run and medium-run estimates are more reliable.

The primary theme that emerges from our review of this literature is that the short-run and

medium-run elasticities of demand for gasoline/driving and electricity are generally in the range

11For more comprehensive reviews of estimates of elasticities in different sectors, see Greening, Greene, and
Difiglio (2000), Sorrell (2007), Jenkins, Nordhaus, and Shellenberger (2011), and Gillingham (2011). Not
surprisingly, these reviews show large ranges of estimates in most sectors.
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of !0.05 to !0.40, suggesting a direct rebound effect on the order of 5 percent to 40 percent,

with most of the studies falling in the range of 5 percent to 25 percent. All of these studies focus

on gasoline or electricity use, and it may not be appropriate to apply the estimates to other

energy services, including those that use natural gas, heating oil, or other fuels. Unfortunately,

there is scant evidence on the price elasticity of demand for other energy services; all of the

published papers we could find are more than a decade old and use limited data. In a review of

the older literature, Sorrell (2007) finds wide ranges for most residential energy services. Thus,

we believe that new research is needed on these other energy services. Moreover, new studies are

needed to help us identify the size of the error from using own-price elasticities for the direct

rebound.

Most of the studies cited in table 1 are for the United States. Because each country has unique

circumstances, it may be inappropriate to apply the estimates in table 1 to other regions and

countries, both developed and developing.12

Elasticities for Developing Countries

For developing countries, one might hypothesize a greater elasticity of demand to price

changes, and thus direct rebound effect, because of the greater unmet demand for energy

services. However, there are a variety of country-specific factors that may affect responsiveness

in any given market, such as the wealth of those who own vehicles or appliances. In our review

Table 1 Selected elasticity estimates for developed countries

Study Type of price elasticity Estimated value

Allcott (2011) Illinois short-run elasticity of electricity

demand, 2003 and 2004

!0.1

Barla et al. (2009) Canada short-run elasticity of VMT

demand, 1990–2004

!0.08

Frondel and Vance (2013) Germany short-run elasticity of VMT

demand, 1997–2009

!0.458a

Gillingham (2014) California medium-run new vehicle

elasticity of VMT demand, 2001–2009

!0.23

Hughes, Knittel, and Sperling (2008) U.S. short-run elasticity of gasoline

demand, 1975–1980

!0.21 to !0.34

Hughes, Knittel, and Sperling (2008) U.S. short-run elasticity of gasoline

demand, 2001–2006

!0.034 to !0.077

Ito (2014) California medium-run elasticity of electricity

demand, 1999–2007

!0.088

Jessoe and Rapson (2014) Connecticut short-run elasticity of electricity

demand, 2011

!0.12

Small and van Dender (2007) U.S. short-run elasticity of VMT

demand, 1966–2001

!0.045b

Notes: All electricity demand elasticity estimates are for residential customers. VMT refers to vehicle miles traveled.
aWe report the fixed effects estimate, which we believe to be the most reliable.
bWe use the estimate from the 1997–2001 period; earlier elasticities were higher in absolute value.

12For example, Frondel et al. (2013), which uses data for Germany—a country with better public transportation
and higher gasoline prices than the United States—finds a more elastic response in driving to changes in gasoline
prices than the other studies in table 1.
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of the literature, we found a surprising number of studies estimating elasticities of usage for

durable goods in low- and middle-income countries. However, the authors of these studies

often face severe data limitations and measurement error in the data. Moreover, these studies

rarely meet current standards for identification in applied economics, and the caveats above

certainly apply here.

Table 2 shows a representative sample of studies published in peer-reviewed journals. We

have not screened these studies for reliability (as we did for the developed countries) because

nearly all of them face data limitations. We should, thus, be very cautious in viewing them as

causal estimates of price elasticities. These estimates of demand elasticities in developing coun-

tries range widely, with the most common range on the order of !0.10 to !0.40 in the short

run. Despite the limitations of some of these studies, it is interesting to note that the estimated

Table 2 Representative sample of recent price elasticity estimates for low- and middle-income
countries

Study Type of elasticity Estimated value

Al-Faris (2002) Gulf Cooperation Council short-run

elasticity of total electricity

demand, 1970–1997

!0.09

Alves and De Losso

da Silveira Bueno (2003)

Brazil short-run elasticity of gasoline

demand, 1974–1999

!0.09

Atakhanova and Howie (2007) Kazakhstan short-run elasticity of electricity

demand, 1994–2003

!0.128a

Athukorala and Wilson (2010) Sri Lanka short-run elasticity of total

elasticity demand, 1960–2007

!0.16

Ben Sita, Marrouch, and Abosedra (2012) Lebanon short-run elasticity of gasoline

demand, 2000–2010

!0.623

Crotte, Noland, and Graham (2010) Mexico short-run elasticity of gasoline

demand, 1980–2006

0 to !0.15

Halicioglu (2007) Turkey short-run elasticity of electricity

demand, 1968–2005

!0.33 to !0.46

Iwayemi, Adenikinju,

and Babatunde (2010)

Nigeria short-run elasticity of gasoline

demand, 1976–2006

!0.25

Jamil and Ahmad (2011) Pakistan short-run elasticity of total

electricity demand, 2000s

!0.07

Lin and Zeng (2013) China medium-run elasticity of gasoline

demand, 1997–2008

!0.196 to !0.497

Nahata et al. (2007) Russia short-run elasticity of electricity

demand, 1995–2000

!0.165 to !0.28

Ramanathan (1999) India short-run elasticity of gasoline

demand, 1972–1993

!0.21

Sene (2012) Senegal short-run elasticity of gasoline

demand, 1970–2008

!0.12

Zein-Elabdin (1997) Sudan short-run elasticity of charcoal

demand, 1960–1990

!0.55

Ziramba (2008) South Africa short-run elasticity of

electricity demand, 1978–2005

!0.02

Notes: Gulf Cooperation Council countries are Saudi Arabia, Kuwait, Bahrain, Qatar, United Arab Emirates, and Oman. All

electricity demand elasticity estimates are for residential customers unless otherwise noted.
aWe report the instrumental variables fixed effects estimate.
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elasticities for developing countries are in the same range as the estimates for developed

countries.

Estimated Policy-Induced Improvements

Estimating the rebound effect for policy-induced improvements requires more than just the

fuel-price elasticity of demand because other product attributes may also have changed. Recent

studies have used variation from natural experiments to estimate rebound effects in this

context.

For example, in a field experiment in which households are given more efficient clothes

washers, Davis (2008) finds a price elasticity of clothes washing of !0.06. This estimate is

similar to a zero-cost breakthrough but with a key difference: the new clothes washers given

to the households were larger and gentler on clothes than the old washers. This means that

households may have adjusted their clothes washing behavior in response not only to the

change in the price of the energy service but also to improved nonprice product attributes.

In fact, the increase in clothes washer use resulted from households running more clothes in

each wash. This estimate is capturing the direct rebound effect of a policy-induced improve-

ment. That is, it captures the effects from both the change in energy efficiency and the change in

the quality of the energy service (i.e., clothes washing).

In a similar study, Davis, Fuchs, and Gertler (2015), examine a program in Mexico that

provides direct cash payments and subsidized financing to consumers replacing old air condi-

tioners and refrigerators with new energy-efficient appliances, much like the cash-for-clunkers

program for vehicles in the United States. They find that electricity use dropped by only

7 percent after replacing the old refrigerator with a new, efficient one and that electricity use

actually increased after replacing an air conditioner. These results suggest a potentially very

large change in the energy service (e.g., the new refrigerators may have been much larger or the

air conditioners quieter), as well as an income effect from the transfer, which together lead to a

large apparent rebound effect from this policy.

Finally, Gillingham (2013) examines the direct rebound effect of a policy-induced change in

vehicle prices that leads to consumers purchasing different vehicles (each with bundles of

attributes) and then driving them more. The result is an elasticity of driving with respect to

operating costs of!0.15 for new vehicles in California. We believe that further research on the

rebound effect of policy-induced improvements is very important for policy.

Estimates of Rebound Effects on Other Goods

As mentioned earlier, changing the energy efficiency of a good may affect overall energy

demand through changes in the demand for other goods in the consumption bundle, which

occur through the substitution and income effects on these goods. Most studies seek to estimate

only the income effects for other goods (calling this the indirect rebound) by answering the

question: If consumers are given an extra dollar, how will they spend it?13 One approach has

been to assume that consumers make purchases associated with the average energy intensity of

all consumer goods, which is often referred to as proportional respending. Studies that follow

13Specifically, we would want to know how consumers would spend the dollar on all goods except the more
energy-efficient one.
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this approach generally examine the energy intensity of the economy using either input-output

tables or other aggregate statistics of economic activity and energy use. A second approach is to

use cross-sectional data to compare consumption patterns across income brackets (Thiesen

et al. 2008). A third approach is to use income elasticities that are based on how consumers’

demand for goods changes over time as income rises (Druckman et al. 2011). The findings in

this literature vary, but most recent studies tend to estimate a consumption elasticity with

respect to income on the order of 5 percent to 15 percent (Druckman et al. 2011; Thomas and

Azevedo 2013). Thomas and Azevedo (2013) also make assumptions in order to bound the

estimated substitution effects for other goods. One would expect that these effects would vary

depending on the cross-elasticities between the good in question and other energy-using goods,

the additional cost of the more efficient good, and any additional energy use from the produc-

tion of the more efficient good. It is important to note that all existing estimates assume a zero-

cost breakthrough scenario. Any additional costs would reduce the income effects on other

goods, thus reducing the indirect rebound. In addition, most existing estimates are for de-

veloped countries, although there has been some work on the income elasticity of energy use in

developing countries (see, e.g., Wolfram, Shelef, and Gertler 2012).

Macroeconomic Channels for the Rebound Effect

The macroeconomic rebound effect is complex. This is because markets re-equilibrate when the

demand for an energy resource changes, and an increase in energy efficiency may affect overall

energy demand through several channels of adjustment. In this section we seek to clarify this

issue in four ways: (1) we define the macroeconomic rebound and review the theoretical

pathways that are thought to generate it; (2) we describe the challenges inherent in trying to

quantify the magnitude of the macroeconomic rebound, including discussing common pitfalls;

(3) we review what the theoretical and empirical literature tells us about the potential magni-

tude of the macroeconomic rebound; and (4) we discuss what this means for environmental

economics research and policymaking.

Defining Macroeconomic Rebound Effects

The literature defines the macroeconomic rebound effect as an increase in energy use after an

energy efficiency improvement through market adjustments and innovation channels. Such an

effect is easiest to consider in the context of a zero-cost breakthrough, which underpins much of

the discussion that follows.14 We divide our discussion into a macroeconomic price effect and a

macroeconomic growth effect.

Macroeconomic price effect

The macroeconomic price effect is an economy-wide analog to the microeconomic direct

rebound effect that works through prices (Gillingham et al. 2013). When an energy efficiency

improvement shifts the market demand curve for energy down (i.e., to the left), consumers and

producers will adjust until a new equilibrium is reached. To illustrate, consider the global oil

14Although in theory it is possible to consider macroeconomic rebound effects in the context of a policy-induced
improvement, we have never seen this done in practice.

78 K. Gillingham et al.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/re
e
p
/a

rtic
le

-a
b
s
tra

c
t/1

0
/1

/6
8
/2

5
8
3
8
3
4
 b

y
 S

e
ria

ls
 R

e
c
o
rd

s
 S

e
c
tio

n
 u

s
e
r o

n
 2

6
 O

c
to

b
e
r 2

0
1
8



market. An efficiency improvement in, say, the United States, will lower the global oil price,

which increases the global quantity of oil demanded. As shown in figure 1, the initial increase in

energy efficiency shifts the global demand curve down, from D to D’. Because a minus b is the

shift in demand and a minus c is the change in equilibrium quantity, the macroeconomic price

effect is 1–(a-c)/(a-b). The magnitude of this rebound effect is thus a function of the slopes of

the demand and supply curves, whereby increasingly inelastic supply and increasingly elastic

demand induce a higher rebound.

Macroeconomic growth effect

The macroeconomic growth effect, which is often cited but poorly defined, is the rationale

behind many of the backfire claims in the literature—that is, that energy efficiency improve-

ments will actually increase energy use.15 In fact, the classic example given by Jevons (1865)

postulates a type of macroeconomic growth effect. The basic premise is that an increase in the

efficiency of energy-consuming durables may spur economic growth—and that economic

growth requires additional energy consumption. There are three main channels through

which a change in energy efficiency could lead to the macroeconomic growth effect.

First, sectoral reallocation may occur due to a change in the relative returns of economic

sectors.16 For example, a change in the productivity of energy inputs in an energy-intensive

Figure 1 Macroeconomic price effect
Notes: This graph depicts the macroeconomic price effect associated with an energy efficiency policy that
shifts demand inwards from D to D0. The shift in demand reduces the quantity of energy demanded from a
to b; however, the equilibrium outcome yields a smaller energy reduction due to the price effect, which
moves quantity from b to c.

15For example, Jenkins, Nordhaus, and Shellenberger (2011) state: “The more efficient production and use of
energy at a macroeconomic scale drives economic productivity overall and encourages the substitution of energy
for other factors of production (e.g., labor), resulting in more rapid economic growth and energy consumption
(‘macroeconomic rebound’ effects).”
16Sectoral reallocation in response to changing costs is analogous to a reallocation of inputs into aggregate
production in response to changing costs.
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sector may improve the relative return on investment in that sector, leading that sector to grow

relative to others. This can be (roughly) thought of as the supply-side analogy to the substitu-

tion effects discussed in the context of the microeconomic rebound.

A second potential channel is induced innovation—that is, a shock to total factor product-

ivity. One possibility is that an energy efficiency policy (a policy-induced improvement) leads

manufacturers to update their processes, thus inducing innovation. Alternatively, a zero-cost

breakthrough in one sector may spill over to others. For example, the development of lighter-

weight aircraft to improve aircraft efficiency may spill over to other sectors and lead to lighter-

weight vehicles. Of course, to be considered a rebound, the innovation in other sectors must be

directly attributable to the spillovers from the energy efficiency improvement. Should such

spillovers exist, they could increase or decrease energy use in the other sectors.

The third potential channel for the macroeconomic growth effect concerns the deployment

of inframarginal resources (i.e., money in the economy that would previously have been spent

on energy) that are freed by a zero-cost breakthrough. These may be subject to a fiscal multiplier

(see, e.g., Ramey 2011). That is, dollars that were previously spent on energy can now be spent in

ways that engage new economic activity that utilizes previously idle resources. Surplus created

from this new activity may cause the overall economic impact to exceed the initial amount by

some multiplier (Borenstein 2015). Of course, for such a multiplier effect to occur, idle re-

sources must be available so that the incremental resources do not simply crowd out private

investment. Although this may be the case during recessions, it is less likely to be the case during

economic upswings. More generally, there is strong disagreement among macroeconomists

about the size of the fiscal multiplier (Ramey 2011). However, the multiplier in the rebound

setting is slightly different because there is long-term debt associated with fiscal stimulus, but

not with a zero-cost breakthrough. We are not aware of any study focusing directly on estimat-

ing such multipliers in the context of energy efficiency. We turn next to the challenges of

estimating macroeconomic rebound effects.

Challenges of Estimating the Macroeconomic Price Effect

The magnitude of the macroeconomic price effect depends on the relative supply and demand

elasticities.17 If the demand elasticity is low and the supply elasticity is high, then the effect will

be small. The estimates discussed earlier concerning the price elasticity of gasoline use suggest a

relatively inelastic oil demand function, at least in the medium run. The supply of oil is con-

sidered to be relatively inelastic in the short run due to capacity constraints. However, oil supply

would be expected to be more elastic in the long run because it depends on how development of

new extraction technologies responds to price. Unfortunately, there is very little empirical

evidence on such supply elasticities. Borenstein (2015) uses oil supply elasticities of 0.2, 0.6,

and 1.0 for a sensitivity analysis of the macroeconomic price effect but asserts that the long-run

oil supply elasticity may be rather high.18

The estimates in Borenstein (2015) indicate that with an oil demand elasticity of!0.4 and an

oil supply elasticity of 1.0, the macroeconomic price effect is approximately 30 percent. Using

linear demand and supply functions, we arrive at a similar result. However, the possible range

17This should be clear from figure 1.
18Given the remarkable innovations in oil extraction over the past several decades due to high oil prices, we agree
with Borenstein’s assertion.
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for the macroeconomic price effect is quite large: with a supply elasticity of only 0.2 and demand

elasticity of!0.6, we can expect to see a macroeconomic price effect as large as 76 percent. We

believe that it is far more likely that long-run oil supply is highly elastic, so we would not expect

an effect this large, even if it is possible. Given the likely high long-run oil supply elasticity and

low or moderate demand elasticity, we suspect that the macroeconomic price rebound in oil

markets is on the order of 20 percent to 30 percent. However, we have not yet seen evidence for

other energy markets (e.g., electricity, natural gas). Moreover, for all markets, it is important to

recognize that the macroeconomic price effect will always be less than one (demand curves

slope downward and supply curves slope upward, by construction). This means that it is

theoretically impossible for backfire to occur due solely to the macroeconomic price effect.

Challenges of Estimating the Macroeconomic Growth Effect

Despite being central to backfire claims, the macroeconomic growth effect is the rebound effect

topic with the least amount of concrete evidence. Attempts to quantify the macroeconomic

growth effect are plagued by the same challenges that are encountered in most macroeconomics

research. That is, the global economy is a single, interconnected, complex dynamic system,

making definitive arguments about cause and effect nearly impossible. This means, for example,

that we cannot say with empirical certainty how U.S. fuel economy standards affect long-run

energy use in the United States, let alone in China.

Fortunately, basic economic theory provides some clear guidance on the macroeconomic

growth rebound most commonly discussed: sectoral reallocation. The key theoretical insight is

that the extent to which a zero-cost breakthrough leads to increases or decreases in overall

energy use depends on the elasticities of substitution in consumption and production. To

illustrate, consider a household that consumes two goods—an aggregate consumption good

(e.g., food or clothing) and an energy service (e.g., driving). This means that households can use

their income to purchase either the consumption good or a car and the energy to power it. The

question of interest here is: What happens to aggregate energy use in the economy if cars are

made more energy efficient?

In the consumer sector, the answer depends on the elasticity of substitution between goods

and energy services in the household utility function. To illustrate, let’s consider the extremes. If

goods and energy services are perfect substitutes, then the household will spend its entire budget

on whichever good has the highest utility per dollar spent. If energy services become less

expensive than goods (in utility per dollar), then the household may shift its entire budget

toward energy services. On the other hand, if goods and energy services are perfect comple-

ments, then they will be optimally consumed in fixed proportion. In this case, making one of

the goods marginally cheaper (e.g., through energy efficiency standards) will make little differ-

ence in consumption and overall energy use because energy is a derived demand (i.e., from

energy services). This means that although zero-cost breakthroughs may cause the level of

energy services to increase, less energy will be used than before the zero-cost breakthrough.

Based on these two extremes, it is clear that there must be a high degree of substitution toward

energy services in consumption for the level of actual energy use to increase above pre-energy

efficiency improvement levels.

So far, the logic we have presented is the same as the logic behind the microeconomic

substitution effects. This means that the consumer substitution effects will be contained in
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estimates of the sectoral reallocation effect. But sectoral reallocation is even broader; it depends

not only on patterns of consumption but also on patterns of production. For production,

precisely the same logic applies as for consumption. Where production occurs by combining

energy inputs with nonenergy inputs (e.g., capital and labor), the degree of substitutability/

complementarity in production determines the overall effect of a zero-cost breakthrough on

energy use. If the inputs are highly substitutable, an increase in energy efficiency in production

will cause a large swing toward increasing energy inputs. If they are complements, they must be

used in fixed proportion, and energy demand will remain unchanged.

A useful implication of these theoretical insights is that the sectoral reallocation rebound is

largely driven by the magnitude of substitution elasticities. Intuitively, we would view energy

and nonenergy inputs as being more complementary than substitutable in both consumption

and production because energy cannot be directly consumed; rather, we use it to help us meet

our broader consumption needs. This intuition is shared by Goulder et al. (1999), whose

simulation model of alternative abatement policies assumes complementarity of energy and

other inputs to production.19 This leads us to believe that macroeconomic growth rebound

effects are likely to be small. However, there is clearly a need for more research to quantify the

relevant substitution elasticities.

Empirical Evidence on the Macroeconomic Growth Effect

The theoretical insights just discussed are particularly useful when interpreting the empirical

literature on the macroeconomic growth effect, which focuses primarily (but not exclusively)

on sectoral reallocation. Other channels may be implicitly included in the macroeconomic

growth effect but, to the best of our knowledge, have not been identified separately. There are

three strands in the literature that quantify the macroeconomic growth rebound. The first

strand uses a structural model of the production function of the economy to make theoretical

predictions about the rebound effect. The second attempts to econometrically estimate the total

rebound effect (macroeconomic and microeconomic) using historical time-series data. The

third involves simulation models of the economy based on input-output tables of economic

activity and calibrated relationships between key variables governing economic growth.

Structural models

Beginning with Saunders (1992), there has been a stream of studies in the energy economics

literature that relies on a neoclassical growth model to provide theoretical insight into the

sectoral reallocation rebound. For example, using a single-sector neoclassical growth model

that includes capital, labor, and energy inputs, Saunders (1992) examines how energy efficiency

improvements affect overall energy consumption. In this simple setting, the consumer con-

siders energy-intensive goods as perfect substitutes for non-energy-intensive goods. Thus, by

construction, Saunders finds that backfire can occur.

Our concern with this and many other models in this literature is that they rely heavily on

structural assumptions. For example, switching to a production function that assumes perfect

19Goulder et al. (1999) assume an elasticity of substitution of 0.8. It may be even lower in the context here
because the energy efficiency intervention itself will already dictate substitution toward more energy-efficient
production technology.
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complementarity of inputs (i.e., a Leontief production function) would immediately imply zero

rebound. Of course, the structural assumption here is just as restrictive as in the single-sector

neoclassical growth model. Although such theoretical exercises are interesting, their limitation

is that nearly any outcome is possible depending on the choice of structural assumptions and

functional forms.

Econometric estimates

Although this observation should not be surprising to macroeconomists, these limitations of

structural models have made the use of empirical analyses all the more important for providing

reliable guidance on the magnitude of the macroeconomic growth rebound. However, this is

where demonstrating causality is critical—but also extremely difficult. For the last century, we

have seen large increases in both energy use and the energy efficiency of many durable goods.

But in order to claim a causal relationship between energy efficiency and energy use, it must be

shown that energy consumption has not increased due to some other factor. Ideally, the

experiment needed to identify a zero-cost breakthrough would consist of two worlds—one

with the zero-cost breakthrough and one without. Unfortunately, as for many issues in macro-

economics, such an experiment is impossible. In fact, it is extremely difficult, if not impossible,

to separate the effect of energy efficiency improvements from exogenous economic growth and

the simultaneous dramatic improvements in energy services. Not surprisingly, the few econo-

metric investigations that have relied on historical data to provide evidence of a combined

macroeconomic and microeconomic rebound effect leading to backfire (e.g., Tsao et al. 2010;

Saunders 2013) have not been published in economics journals, where the standard for em-

pirically identifying a causal effect tends to be higher.

Simulation models

In the absence of credible empirical strategies, macroeconomists often build models of the

economy that simulate the effects of policies. This brings us to the third class of approaches used

to estimate the macroeconomic rebound effect: calibrated simulation models. These models

tend to be general equilibrium models based on input-output tables of economic activity or

estimated macroeconometric models with hundreds of equations. Of course, the results of such

models are driven by the structure of the model and the parameterization of the relationships.

For this reason, many macroeconomic modelers focus on modeling to build intuition, rather

than numerical estimates.

The simulation models that are used to numerically estimate the macroeconomic rebound

effect compare total energy consumption in a scenario that slightly perturbs the energy effi-

ciency parameter to total energy consumption in the business-as-usual case. If the change in

predicted energy use is less than the expected effect of energy efficiency, then the difference is

attributed to the rebound effect; if total energy increases, it is consistent with backfire. Some of

the most interesting studies in this literature build computable general equilibrium or econo-

metric simulation models of the U.K. economy (e.g., Barker, Ekins, and Foxon 2007; Barker,

Dagoumas, and Rubin 2009; Turner 2009). These find results ranging from negative rebounds

to massive backfire. This large range of results is very useful for considering the implications of

different combinations of structural assumptions and parameter values for the macroeconomic

rebound effect. But the reliance of these studies on correlations to parameterize key
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relationships in the models leaves us unconvinced that they truly pin down the magnitude of

the rebound effect. Thus, another valuable area for future research would be analyses that

combine clever new empirical approaches with careful numerical simulations.

Implications for Environmental Economics Research and Policy

What does this discussion of the challenges of quantifying the macroeconomic rebound effect

tell us about its likely magnitude? Note first that estimates of the sectoral reallocation macro-

economic rebound are not necessarily additive with respect to the microeconomic rebound

effects, which are typically already aggregated into the macroeconomic measure. In addition, the

macroeconomic price and sectoral reallocation effects may be partly offsetting because suffi-

ciently lower equilibrium energy prices can lead to a reallocation away from energy (Turner

2009). Moreover, to the extent that numerical simulations are based on historical correlations,

rather than causal effects, we need to be cautious about interpreting point estimates too literally.

That said, it is possible that there is a substantial macroeconomic growth effect in certain

circumstances. Moreover, it appears likely that there is at least some increase in energy con-

sumption from the macroeconomic growth effect, given that it has a theoretically sound basis.

Thus, when considering a zero-cost breakthrough, we would recommend that the best current

approach for a policy economist would be to calculate the macroeconomic price effect based on

the best estimates of elasticities and then perform a sensitivity analysis using different values of

the macroeconomic growth rebound effect. Two recent estimates of the macroeconomic

growth rebound that could be considered for such a sensitivity analysis are 11 percent

(Barker, Ekins, and Foxon 2007) and 21 percent (Barker, Dagoumas, and Rubin 2009).20 We

do not believe that the literature currently provides convincing evidence of a backfire due to the

macroeconomic rebound effect.

What does a macroeconomic rebound mean for the welfare effects of policy? The macroeco-

nomic price effect of an energy efficiency improvement arises from reaching equilibria in mar-

kets, which improves welfare. Sectoral reallocation leads to more efficient production in an

economy, improving welfare. If the energy efficiency improvement induces innovation, this

would also improve welfare. However, because these welfare gains may be countered by losses

from greater external costs of production or consumption, the net welfare effects are ambiguous.

Conclusions and Implications for Policy

The debate about the magnitude of the rebound effect continues and has important implica-

tions for energy efficiency policy. This article has attempted to inform this debate through three

main contributions. First, we have introduced the important conceptual distinction between a

rebound effect associated with a costless energy efficiency improvement that holds other attri-

butes constant (zero-cost breakthrough) and an energy efficiency policy that may be bundled

with other product changes that affect energy use (policy-induced improvement). Second, we

have distilled the empirical literature on the microeconomic rebound into a manageable

number of estimates that we believe are the most reliable. Third, we have attempted to clarify

20This 21 percent is based on the 2020 estimate, whereas the estimate for 2030 is 41 percent. However, both
estimates include the income effect within the macroeconomic rebound.
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the nature of the macroeconomic rebound and have presented an approach for conceptualizing

(or estimating) the size of the effect.

We find that the existing literature does not support claims that energy efficiency gains will be

reversed by the rebound effect. Thus we would argue that the continued focus on backfire in

policy debates is largely unwarranted and is perhaps distracting attention from the most im-

portant issues, such as the welfare implications of energy efficiency policies. In most cases, the

total microeconomic rebound has been found to be on the order of 20 percent to 40 percent

when all substitution and income effects are included (and perhaps even when the embodied

energy in the energy efficiency improvement is included). Far less is known (or knowable)

about the macroeconomic rebound. However, we have presented a framework that suggests

three conclusions about the macroeconomic rebound. First, although in some markets the

macroeconomic price effect may be substantial, it must always be less than 100 percent. Second,

the rebound based on sectoral reallocation is likely smaller than the price effect because energy is

more likely to be a complement to, rather than substitute for, other inputs in production.

Finally, little is known about the effects of induced innovation and productivity on the rebound

effect, beyond observing that such developments would almost certainly be welfare increasing.

In particular, there is a lack of consensus in the literature that examines how regulation affects

total factor productivity. Nevertheless, if induced innovation and productivity lead to a re-

bound, then quantifying the effect would face the difficult challenge of determining a coun-

terfactual path of innovation and productivity. There is currently scant evidence on this

induced innovation channel and thus further research is needed on this topic.

The cumulative effect of these channels of rebound in a zero-cost breakthrough setting may

be large in some situations and smaller in others. If pressed to offer our subjective assessment, in

most cases we do not expect the total rebound effect to exceed 60 percent, but we recognize that

it is possible to have a larger total effect.21 One might expect a policy-induced improvement to

have a larger rebound due to associated changes in product attributes that consumers value, but

a smaller rebound to the extent that the cost of the policy mitigates both the income and

macroeconomic growth effects. In fact, sufficiently costly energy efficiency policies may well

engender negative rebound effects. In sum, while the energy savings from energy efficiency

policies will be reduced by the presence of a rebound effect, a zero-cost breakthrough rebound is

likely to both conserve energy and increase welfare. The same may be true for a policy-induced

improvement rebound, but each policy will require its own analysis.

A primary conclusion of our review is that unless the rebound effect has severe external costs,

it will be a benefit, rather than a cost, of an energy efficiency policy. Unfortunately, the focus on

minimizing energy use, rather than the broader objective of maximizing economic efficiency,

has caused some policymakers to make the mistake of designing policies to mitigate the re-

bound effect. Such efforts, as discussed in the literature (e.g., van den Bergh 2011) and the policy

community (e.g., Gloger 2011), are likely counterproductive from a welfare perspective. Rather

than considering the rebound effect as a deterrent to passing energy efficiency policies, policy-

makers should include the welfare gains and losses as part of their analysis of the benefits of a

policy.

21This 60 percent estimate is based on a 30 percent long-run microeconomic rebound, 25 percent macroeco-
nomic price effect, and 5 percent macroeconomic growth effect (accounting for the fact that estimates of the
macroeconomic growth effect both range widely and may be implicitly including some of the other rebounds).
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ABSTRACT: The ability of automakers to improve the fuel
economy of vehicles using engineering design modifications
that compromise other performance attributes, such as
acceleration, is not currently considered when setting fuel
economy and greenhouse-gas emission standards for passenger
cars and light trucks. We examine the role of these design
trade-offs by simulating automaker responses to recently
reformed vehicle standards with and without the ability to
adjust acceleration performance. Results indicate that accel-
eration trade-offs can be important in two respects: (1) they
can reduce the compliance costs of the standards, and (2) they
can significantly reduce emissions associated with a particular
level of the standards by mitigating incentives to shift sales
toward larger vehicles and light trucks relative to passenger
cars. We contrast simulation-based results with observed changes in vehicle attributes under the reformed standards. We find
evidence that is consistent with firms using acceleration trade-offs to achieve compliance. Taken together, our analysis suggests
that acceleration trade-offs play a role in automaker compliance strategies with potentially large implications for both compliance
costs and emissions.

■ INTRODUCTION
The U.S. Corporate Average Fuel Economy (CAFE) and
Greenhouse Gas (GHG) standards, issued by the National
Highway and Traffic Safety Administration (NHTSA) and
Environmental Protection Agency (EPA) are the principal
means of reducing GHG emissions of light-duty vehicles in the
United States. A significant reform of these standards occurred
after the passage of the Energy Independence and Security Act
(EISA) in 2007. The reformed standards do not set a fixed level
of fuel economy or GHG emissions that must be met. Instead,
the standards for each automaker are based on the sizes of the
vehicles they produce (specifically, the vehicle’s footprint,
defined as the wheelbase multiplied by the track width) and
various credits they can receive (e.g., alternative-fuel vehicle
credits). The first phase of these reformed standards were
enforced between 2011 and 2016. The agencies have since
issued standards for 2017−2021 and are evaluating the costs
and benefits of the policy to inform the final standards through
2025.
NHTSA is required to set the standards at the “maximum

feasible” level, considering “technological feasibility, economic
practicability, the effect of other motor vehicle standards of the
government on fuel economy, and the need of the United

States to conserve energy.”1 The agencies have met this
requirement by determining the costs and benefits of adopting
various technologies that reduce fuel consumption and GHG
emissions while maintaining or improving the performance of
other vehicle attributes, most notably acceleration time.2 This
cost-benefit analysis informs the standard-setting along with
other considerations, such as harmonization with state GHG
regulations.3

One advantage of the agencies’ analytical approach is that it
guarantees the standards can be met using available
technologies, assuming vehicle demand does not change.2

Still, nothing restricts automakers to respond to the standards
the way the agencies’ model predicts. Automakers have multiple
compliance options available to them, and presumably choose
the combination of strategies that minimize their compliance
costs. Policy analyses that do not account for the full suite of
compliance options may significantly overestimate compliance
costs and produce misleading estimates of emission reductions.
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In addition to implementing various technology features,
other possible responses to the policy include (1) trading off
vehicle performance attributes (such as acceleration perform-
ance) to improve fuel economy,4−6 (2) taking advantage of
various credit provisions,7,8 (3) adjusting prices to shift sales to
vehicles that exceed their fuel economy target,9−11 (4)
increasing vehicle footprint (thereby decreasing the stringency
of their fuel economy and GHG targets),12 and (5) violating
the standards and paying fines to NHTSA and civil penalties to
EPA.13−15 Previous studies have examined the influence of the
latter four of these alternative strategies on fuel consumption
and/or costs.7,9−12 Whether firms have incentives to trade off
acceleration performance and fuel economy in response to the
reformed policy, however, has not been examined in depth.
In this paper, we investigate the role that engineering design

trade-offs between acceleration performance and fuel economy
can play in automakers’ response to the reformed standards. To
do this, we nest a flexible approximation (also called a surrogate
model) of engineering design trade-offs generated from
physics-based vehicle performance simulations within an
economic equilibrium model of the automotive market. We
then simulate the engineering design and pricing decisions of
profit-maximizing firms responding to the 2014 standards with
and without the ability to trade off acceleration performance.
Our analysis focuses on the compliance options that

automakers can use over the “medium run”, namely fuel-
efficiency technologies and design trade-offs that can be
implemented in the first few (i.e., 1−6) years after the
regulations are announced. In order to be consistent with the
agencies’ approach, we do not account for design changes to
vehicle footprint and compliance options that take longer
production planning lead times, such as converting a significant
percentage of their fleet to electric vehicles.13 However, we also
find that our conclusions are robust to relaxing the technology
assumptions.
Unlike the agencies’ analysis, which assumes vehicle-specific

demand is fixed, our model allows demand to respond to
policy-induced changes in vehicle prices and attributes. This
demand response is important to consider when assessing the
significance of acceleration trade-offs. In contrast with fuel-
efficiency technologies that increase vehicle production costs,
the primary costs to automakers of compromising acceleration
performance are lost profits due to reduced demand and/or
lower markups necessary to achieve a particular level of
demand.
Acceleration trade-offs can lower the compliance costs

associated with the regulation in three related ways. First, an
automaker may find it relatively more profitable to compromise
the acceleration performance of its vehicles (to improve fuel
economy) rather than incorporating additional costly fuel-
saving technologies or changing prices to shift demand to more
fuel-efficient vehicles. Second, automakers may prefer to use
acceleration trade-offs in combination with technology features
in some or all of their vehicles so that fuel economy improves as
well as acceleration performance. Third, if the regulation
induces worse acceleration performance in some vehicles,
competition for consumers who value acceleration will be
reduced. This may cause some automakers to improve the
acceleration performance of certain vehicles (in order to attract
these consumers) at the expense of fuel economy, while
simultaneously improving the fuel economy of other vehicles
enough to comply with the standards.

This paper contributes to a growing body of literature that
examines the economic and environmental impacts of fuel
economy and GHG standards. Recent research finds that
manufacturers can use a variety of loopholes and other
compliance mechanisms that relax the stringency of the
standards, leading to higher emissions.7,8,12,15,16 If acceleration
trade-offs offer a relatively cost-effective means of complying
with the standards, automakers’ incentives to exploit these
mechanisms that relax the stringency of the standards will be
reduced.
Our work also begins to bridge a gap between the

engineering design and economics literatures examining firms’
optimal product design and pricing decisions. The approach we
take is designed to leverage the relative strengths of methods in
each field. Recent work in the economics literature uses bundles
of attributes observed in the marketplace to econometrically
estimate engineering trade-offs between energy efficiency and
other product attributes.5,11,17,18 The most closely related
example is Klier and Linn (2012), who examine the influence of
trade-offs between fuel economy and engine power in the
context of the prereform CAFE standards. One limitation of
this approach is that many combinations of product attributes
are not observed in the marketplace, but are technologically
feasible and potentially optimal under future policy scenarios. A
second concern is that correlations between attributes of
interest (e.g., energy efficiency) and attributes that are difficult
to quantify or otherwise unobservable in historical data (e.g.,
vehicle shape) can make it difficult to identify attribute trade-
offs econometrically. The physics-based engineering simula-
tions we use to characterize design trade-offs can identify
technologically possible combinations of attributes that have
yet to manifest in existing product designs. This approach also
allows us to identify trade-offs independently of unobserved
product attributes.
The engineering design literature, on the other hand,

develops detailed models of the trade-offs among product
attributes based on physics.19−21 In this literature, it is common
to determine a particular firm’s choices of engineering design
variables and prices that maximize the firm’s profits.22−24 With
a few notable exceptions,25−29 however, this body of research
generally ignores the strategic nature of competing firms’ price
and design decisions. The studies that do account for
competitor design and pricing decisions are focused on
relatively simple examples with ten or fewer products in the
market and identical design trade-offs and costs for all firms.
We extend this literature by nesting an engineering-design
model of heterogeneous firms producing many product variants
(a total of 471 distinct vehicle models and engine options) in
an economic equilibrium model that captures the strategic
competition between automakers. This extension is significant
because the strategic interactions between competing firms and
the industry structure affects firms’ profit-optimal designs and
prices,25,29 and therefore resulting emissions and costs.

■ MATERIALS AND METHODS
To capture the trade-offs between acceleration performance
and fuel economy, we implement thousands of vehicle
performance simulations over a range of feasible vehicle design
configurations using an engineering simulation software
package (AVL Cruise) that is used by the automotive industry
to support the powertrain development process. To incorporate
these simulated data in our model in a tractable way, we
estimate a flexible approximation of the relationships among

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.7b03743
Environ. Sci. Technol. 2017, 51, 10307−10315

10308

http://dx.doi.org/10.1021/acs.est.7b03743


vehicle performance attributes and production costs. These
estimated relationships are then nested within an oligopolistic
equilibrium model of the automotive market.
On the supply side, we include the 18 automakers that

comprise 97% of the U.S. market. We assume each firm chooses
prices and design variables for each of their vehicle models and
engine options (e.g., the Toyota Camry with a 2.5 L engine and
with a 3.5 L engine) to maximize profits. More specifically, we
allow automakers to adjust fuel consumption (measured as
gallons of fuel consumed per 100 miles) and acceleration
(measured as the time in seconds to accelerate from 0 to 60
mph) by modifying powertrain tuning variables and technology
features that can be changed in the medium run during vehicle
redesign. We hold fixed the vehicle design parameters that are
determined in earlier stages of the vehicle development process
(see Supporting Information (SI) S1.1 for details). Longer-run
design parameters include vehicle segment (e.g., midsize
sedan), the powertrain architecture (e.g., conventional gasoline,
hybrid, or diesel), and key internal and external dimen-
sions.30−32

On the demand side, a random-coefficient logit discrete
choice model is estimated using household-level data on vehicle
purchase decisions. Taken together, the supply and demand-
side models can be used to simulate how automakers’ profit-
maximizing choices of vehicle designs and prices change in
response to the 2014 standards, and the resulting impact on
emissions and costs in equilibrium. To evaluate how
acceleration trade-offs affect these outcomes, we generate two
sets of simulations: (1) a model where automakers can adjust
acceleration performance and fuel consumption, and (2) a
more restricted model where acceleration performance is held
fixed for all vehicles.
We choose 2006 as the reference year for consumer

preferences and “baseline” vehicle designs to which automakers
can add technology options and adjust powertrain tuning
variables. This was the year immediately preceding the passage
of EISA. After this year, automakers presumably began to plan
their compliance strategies, and in some cases, implement
design changes to earn early compliance credits.
Engineering Design Trade-offs. We make a conceptual

distinction in our modeling framework between two types of
engineering design modifications that automakers can use to
change the fuel economy of their vehicles in the medium-run.
Powertrain tuning variables (e.g., the final drive ratio) can be
adjusted to favor fuel economy over acceleration performance
or vice versa and have negligible influence on production costs
or lower these costs. Technology features can be incorporated
into a vehicle at an extra cost to improve fuel economy.
Examples of technology features include high-efficiency
alternators, low resistance tires, and low-friction materials in
the engine. Many (although not all) of these technology
features improve acceleration performance in addition to fuel
economy.
As we discuss below, our model of the vehicle development

process is not comprehensive. Because of simulation and data
constraints, we do not account for all powertrain tuning
variables and technology features automakers have at their
disposal in the medium-run to increase fuel economy (e.g.,
changing the number of transmission gear ratios). If excluded
powertrain tuning variables or technology features are less cost-
effective to change than those explicitly accounted for, omitting
them will be inconsequential. If any of the omitted powertrain
tuning variables are more cost-effective, our results represent

lower bounds of the impact that design trade-offs can have on
emissions and costs. However, if omitted technology features
are more cost-effective than those we include, the influence of
acceleration trade-offs would be overestimated. To assess the
robustness of our findings to the set of technology features
considered, we conduct sensitivity tests of our results to
extending the technology improvements possible and lowering
technology costs.
Our modeling of vehicle design trade-offs begins with the

construction of “bundles” of design variables specific to each
vehicle segment, s, indexed b = 1···B. Each bundle is comprised
of a set of powertrain tuning variables, xs, and technology
features, ts, that firms are able to adjust in our equilibrium
model, as well as fixed design parameters, xs̃, which firms cannot
change. In the model, there are two powertrain tuning variables
that can be manipulated to trade off acceleration performance
for improved fuel economy: engine displacement size and the
final drive gear ratio in the transmission. Fixed design
parameters consist of vehicle segment, baseline curbweight
(i.e., the weight of the vehicle without any passengers or cargo
and without substituting existing materials for lightweight
materials), gradeability (i.e., the steepest hill a vehicle can climb
maintaining a particular speed), and towing requirements. Our
classification of vehicle parameters as adjustable or fixed is
based on the structure of the vehicle development process and
manipulability of these parameters over the medium run as
described in detail in SI S1.1. Technology features are taken
from NHTSA’s analysis of available fuel-saving technologies
based on independent studies and information from automotive
manufacturers, researchers, and consultants (SI Table S2).33

We use the vehicle performance simulation package AVL
Cruise to calculate the fuel consumption per 100 miles
(fuelcons) and 0−60 mph acceleration time (acc) of a
particular vehicle design conditional on a specified bundle of
design parameters, b. We generate almost 30 000 sets of
simulation results, each representing the fuel consumption and
acceleration performance corresponding to the bundle of
design parameter inputs, which are varied at small increments.
Additional details of the vehicle simulations are discussed in SI
S1.3.
The relationship between adjustable powertrain tuning

variables and production costs is taken from Michalek et al.,
who estimate the relationship using data from automotive
manufacturers and wholesale and rebuilt engine suppliers.27

Production costs associated with the addition of specific
technology features are taken from NHTSA’s analysis (SI Table
S2), which were used in cost-benefit analyses of the
regulations.33 NHTSA collected these cost data from vehicle
tear-down studies, confidential manufacturer information, and
independent studies. Cost reductions due to learning in the
time between the announcement of the reformed regulations
and their implementation are incorporated into the agencies’
estimates (see SI S1.6−1.8 for a detailed description of the
data). Similar to the agencies’ approach, we assume that all
changes to vehicle designs occur during regularly scheduled
product redesign cycles and so do not incur additional costs
that would be associated with modifying the medium-run
vehicle design variables in later stages of the development
process.34

Because changes to the final drive ratio negligibly influence
production costs, for any chosen values of acceleration
performance and technology features, there is only one choice
of xs that minimizes the production costs, c, associated with a
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given level of fuel consumption (see SI S1.4 for a detailed
explanation). The engineering design trade-offs we model can
thus be summarized by a system of two equations representing
the efficiency frontiers (called Pareto frontiers in the engineer-
ing design literature) of fuel consumption and production costs
for a particular vehicle design as a function of its acceleration
performance and technology features, conditional on fixed
design parameters (derivations are provided in SI S1.4 and
S1.6): = ̃t xfuelcons (acc , ; )s s ssb 1 sbO , = ̃c t x(acc , ; )s s ssb 2 sbO .
While we could in principle specify the structure of these two

functions and estimate the parameters separately for all possible
combinations of technology features, in practice it is computa-
tionally infeasible to explicitly incorporate this large number of
discrete technology combinations in our equilibrium simu-
lations. For the purpose of tractability, we approximate the set
of cost-effective technology feature combinations with a single
continuous variable, tech. The tech variable takes on a value
between zero (the baseline case) and the maximum number of
cost-effective combinations of technology features for each
vehicle segment, with each value mapping to a specific
combination of technology features. These technology
combinations are ordered by decreasing fuel consumption for
the same acceleration time, which is also increasing in cost.
Therefore, a higher value of tech corresponds to a lower fuel-
consumption and higher cost vehicle conditional on 0−60 mph
acceleration time.
Several parametric specifications of the fuel consumption and

cost functions were estimated using the vehicle simulation and
production cost data. The following specifications performed
the best under the Akaike Information Criterion:

κ κ κ κ
κ κ

= + + + ·
+ + · + ϵ

− wt wtfuelcons e acc

tech tech acc
sb 1s 2s

acc
3s sb 4s sb sb

5s sb 6s sb sb sb

sb

(1)

σ σ σ σ σ= + + + · +
+ ϵ

−c wt wte acc techsb 1s 2s
acc

3s b 4s b sb 5s s

sb

sb

(2)

where fuelcons, c, acc, and wt, are the fuel consumption,
marginal production costs, 0−60 mph acceleration time, and
the curbweight of a vehicle in segment s with bundle of design
variables b. We show in SI S1.9 that these particular
specifications preserve important relationships between fuel
consumption, acceleration performance, technology features,
and costs from the underlying vehicle performance simulations
and cost data.
Estimated values of the parameters in eqs 1 and 2 are

reported in SI Tables S3 and S4. The models fit the data in
each segment reasonably well (R2 = 0.81−91) with the
exception of the two-seater segment (R2 = 0.67 for fuel
consumption and 0.75 for costs). However, this segment
comprises less than 1% of vehicle sales so the poorer fit should
not significantly affect the policy simulation results.
Demand Model. Following Train and Winston (2007), we

model consumer vehicle choices using a random-coefficient
logit model estimated using data on consumer-level choices and
vehicle attributes. The utility consumer n derives from vehicle
model and engine option i can be decomposed into four
components:

∑ ∑δ β ν μ= + + + ϵu a z ani i ik nr kr ik nk k ni
kr k (3)

The first component, δi, captures the average utility across
consumers for a specific vehicle model and engine option. δi =
∑kaikβk + ξi where each aik is an observable vehicle attribute,
such as price and fuel economy, β̅k is the coefficient for the
attribute, and ξi captures the utility of attributes valued by the
consumer but not observed in the data (e.g., interior materials).
The second component represents the portion of utility for
vehicle attributes that varies systematically with observed
consumer characteristics, zn. The third component captures
the effects of interactions between vehicle attributes and
consumer characteristics we cannot observe. This allows for
random variation in consumer preferences for specific vehicle
attributes, μ, which are assumed to be normally distributed.
The fourth term, ϵnj, in eq 3 captures idiosyncratic individual

preferences. We invoke the standard assumption that these
errors have an i.i.d. Type I extreme value distribution. This
assumption yields the following functional form for the vehicle-
choice-share probabilities, Pni, conditional on zn, vn, and the
parameters to be estimated, θ.

θ
δ β ν μ

δ β ν μ= = | =
+ ∑ + ∑

+ ∑ + ∑ + ∑

≡ + ∑

P y i z v
a z a

a z a

u
u

Pr( , , )
exp( )

1 exp( )

exp( )
1 exp( )

n n n
i ik nr kr k ik nk k

j j kr jk nr kr k jk nk k

ni

j nj

kr
ni

(4)

The predicted sales of vehicle i is M∑nPin ≡ qi where M is
the market size. This utility formulation is extended to include
consumers’ ranked choices when available (see SI S3.2).
Because unobserved vehicle attributes that consumers value,

such as interior materials, acoustic performance, and electronic
accessories, are likely to be correlated with the vehicle attributes
of primary interest (namely, price, fuel economy, and
acceleration performance), estimating eq 4 for β̅k directly will
likely yield biased estimates. This well-documented endoge-
neity problem is typically addressed using an instrumental
variables (IVs) strategy.35−38 It has become standard to use
functions of nonprice attributes, w, including horsepower and
fuel economy, as IVs for endogenous attributes.35−39 This
strategy is predicated on an exclusion restriction that requires
the IVs to be exogenous such that ξ | =( w[ ] 0i . Our study is
motivated by the observation that automakers can modify
vehicle attributes such as fuel economy and horsepower in the
medium-run. Thus, in contrast to earlier studies, we use only
those vehicle attributes that are determined by longer run
product-planning schedules as IVs for price, fuel economy, and
acceleration performance. Specifically, we use the moments of
vehicle dimensions of same-manufacturer vehicles and differ-
ent-manufacturer vehicles, powertrain architecture (e.g., hybrid,
diesel, conventional gasoline), and drive type (e.g., all wheel
drive). This identification strategy is discussed in more detail in
SI S3.3.
Two sources of data are used to estimate the demand model:

a detailed household-level survey conducted by Maritz
Research in 2006, and vehicle characteristic data available
from Chrome Systems Inc. SI S3.1 describes these data and
reports the estimated parameters in SI Tables S8 and S11. We
perform random initial value tests and verify that the algorithm
converges to the same solution.

Automotive Oligopoly Model. To model firms’ product
pricing and design decisions, we nest the engineering design
and demand models summarized by eqs 1−4 within a
differentiated product oligopoly model. We assume that firms
choose the prices, acceleration performance, and levels of
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technology features of all the vehicle models and engine
options they produce to maximize profits, π, according to the
following formulation.

∑π −=

− − ≤ ∀
= ̃

= ̃
= ̃

∀ q p c

q g p

c x

max ( )

subject to CAFE CAFE credit 0 l

where ( , fuelcons , acc ; x )

fuelcons h (acc , tech ; x )

h (acc , tech ; )

p j
j

j j j

j j j j j

j j j j

j j j j

,acc tech

l
TARGET

l l

1

2

j j j,

(5)

The variables qj, pj, and cj are, respectively, the quantity
demanded, price, and marginal cost associated with vehicle
model and engine option j. The standards are represented as a
constraint for each vehicle class l (i.e., passenger cars and light
trucks). We define CAFEl to be the harmonic sales-weighted
average fuel economy of all vehicles in class l that the firm
produces, which must equal or exceed the firm’s CAFE target
for that vehicle class, CAFEl

TARGET, within allowable fuel-
economy credit provisions defined by the regulations, creditl.
Excluding differences between noncompliance penalties and the
credits automakers can earn under the CAFE and GHG
standards (i.e., AFV and off-cycle credits), the standards are
equivalent. Therefore, in the case where firms meet the
standards without the use of these credits, both standards can
be represented by the single constraint for each vehicle class in
eq 5. We repeat the simulations under alternative assumptions
to explore scenarios under which automakers can earn
additional credits under the CAFE and GHG standards (see
SI S4.3).
For the main specification presented in this paper, we allow

all firms to trade credits between their passenger car and light
truck fleets but we constrain firms to comply with the 2014
standards without further credit provisions. We use our
oligopoly model to simulate the effects of replacing the
unreformed 2006 standards with the 2014 reformed standards
with and without the consideration of acceleration trade-offs.
We use 2006, which just predates the policy reform, as a
baseline against which we determine emission reductions,
changes in vehicle attributes, and producer and consumer costs.
To avoid confounding the effects of the policy reform with our
modeling assumptions (including any model misspecification
and the omission of some credit provisions) as well as the
exogenous reduction of technology costs over time, we use
simulated partial equilibrium outcomes under the 2006
standards as our baseline rather than observed data. A
comparison of the simulated baseline outcomes with observed
attributes is provided in SI S4.1. In order to build confidence in
our simulations, we perform out-of-sample predictions of sales-
weighted average fuel economy and acceleration performance
in the years between 2006 and 2014 and compare them to
observed values in these years. We find that the simulations
predict observe values within 3% for each year (see SI S4.5).

■ SIMULATION RESULTS
The model is used to simulate a series of vehicle-specific
equilibrium outcomes: fuel economy, acceleration performance,
technology features, prices, production costs, and vehicle sales.
These simulated outcomes are used to calculate total use-phase
GHG emission reductions over the lifetime of the vehicles and

producer and consumer costs resulting from replacing the 2006
standards with the 2014 standards. GHG emissions are
calculated assuming passenger cars and light trucks are
respectively driven 195 000 and 226 000 miles over their
lifetime in the baseline with a rebound effect of 10.3%.40,41

Producer costs are measured in terms of profit losses relative to
the baseline. Consumer costs are measured in terms of
consumer surplus losses calculated by equivalent variation, or
the amount that a consumer would need to be paid to realize
the same amount of utility. We determine the compliance costs
of the policy in terms of the sum of profit losses and consumer
surplus losses (hereafter, social surplus losses) per ton of
emissions reduced. We stop short of a comprehensive measure
of the societal benefits (e.g., improved air quality) associated
with reduced fuel consumption and GHG emissions in these
calculations.
In addition to assessing the extent that acceleration trade-offs

influence GHG emissions and social surplus, we investigate two
“offsetting” effects that play a role in determining the net effect
of the reformed standards on aggregate emissions. The first
relates to the differences in stringency between the passenger-
car and light-truck standards. If the market share of light trucks
rises relative to that of passenger cars, GHG emissions will be
higher. The second relates to the fact that the standards are
size-based. Firms can reduce the stringency of the standards by
shifting sales toward larger passenger cars and light trucks.
Table 1 summarizes simulation results for two scenarios: (1)

modeling trade-offs between fuel economy and acceleration

performance, and (2) excluding these trade-offs. In the
simulation that include design trade-offs, we see significant
compromises in acceleration performance. Average 0−60 mph
acceleration time increases 0.7 s or approximately 8% (an
increase in acceleration time means acceleration performance is
worse). Notably, the large majority of this change comes from
the design response versus changes in sales composition. In the
simulations that shut off the design trade-offs, we see a
relatively small increase in acceleration time, which is driven
entirely by changes in sales composition.
Results indicate that, when acceleration trade-offs are

considered, GHG emission reductions increase from 19 to 77

Table 1. Simulation Results of the Impact of Replacing the
2006 Standards with the 2014 Standards in Simulations
Excluding and Including Acceleration (acc) Trade-Offs;
Both Scenarios Account for Price Changes and Adoption of
Fuel-Saving Technology Features

no acc trade-
offs

with acc trade-
offs

Emissions and Social Surplus Results
change in CO2 emissions (million metric
tons)

−18.8 −76.5

change in consumer surplus (billions 2014
USD)

−$12.8 −$7.4

change in producer profits (billions 2014
USD)

−$0.2 −$0.1

Aggregate Vehicle Attribute Results
change in sales-weighted average fuel
economy (mpg)

+0.7 +2.6

change in sales-weighted average acceleration
(s)

+0.1 +0.7

change in sales-weighted average footprint
(sq ft)

+1.2 +0.1

change in share of light trucks +3.5% +2.7%
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million metric tons. There are two key reasons for this that are
related to changes in the composition of new cars sold. First,
the market share of light trucks increases more when
acceleration trade-offs are shut off. Second, the sales-weighted
average vehicle footprint increases by 1.0 sq. ft (0.09 m2) when
acceleration trade-offs are excluded, whereas it remains
approximately the same when they are included. Recall that
we do not allow firms to change the footprint of their vehicles
in our simulations, so this increase in size is due to price
changes that shift demand to larger passenger cars and light
trucks (see Whitefoot and Skerlos12 for an analysis of size
increases when footprint-design changes are possible).
Social surplus is also significantly impacted by acceleration

trade-offs. Policy-induced consumer surplus losses decrease
from $12.8 billion or approximately $790 per consumer to $7.4
billion or approximately $460 per consumer when the trade-offs
are included. Total profit losses are reduced from $200 million
to $100 million, which should be considered upper bounds
because we do not account for all compliance flexibilities in the
regulations (e.g., banking and borrowing of credits). Total
social surplus losses when attribute trade-offs are excluded are
comparable to results in Klier and Linn’s (2012) study of the
prereform regulations after adjusting for the stringency of the
reformed standards (see S4.4 for details). The change in social
surplus when attribute trade-offs are included, however, is
smaller than that reported in Klier and Linn. This is most likely
due to a combination of two factors. First, our estimates of
attribute trade-offs using physics-based vehicle simulations
imply that fuel consumption can be reduced with smaller
adjustments in acceleration performance than econometric
estimates that may conflate trade-offs with unobserved vehicle
attributes correlated with fuel economy and acceleration (see
S2). Second, the reformed policy differs from past regulations
in several important ways that reduce costs for compliant firms
(e.g., reducing leakage by enforcing tough penalties for firms
that violate the GHG standards). Similar to most prior studies,
we find that the vast majority of the costs of the policy are
passed on to consumers.
The simulated average impacts on vehicle attributes mask

significant heterogeneity across vehicles. Figure 1 shows the
policy-induced changes in sales-weighted average fuel economy
and acceleration times and the spread between the 10th and
90th quantiles. As the figure illustrates, there are mostly
increases, but also some notable decreases, in these attributes

when acceleration trade-offs are included. Recall that auto-
makers may reduce the fuel economy of some vehicles in favor
of acceleration performance to attract consumers willing to pay
for superior acceleration performance. Our simulation results
show that for 25% of vehicles, firms choose to reduce fuel
economy in order to improve acceleration performance. For
57% of vehicles, automakers rely on compromising acceleration
performance rather than relying on fuel-saving technology
features to improve fuel economy, and for 17% they use a
combination of acceleration trade-offs and technology features.
Less than 1% have no change in acceleration performance. We
also find heterogeneity across automakers. Some firms rely on
acceleration trade-offs to comply with the standards to a much
greater extent than others.
We also conduct sensitivity tests that examine the effect of

varying the estimates of technology feature costs and consumer
willingness-to-pay for fuel economy. Results are summarized in
Table 2. When consumers are willing to pay more for

improvements in fuel economy, the influence of acceleration
trade-offs on emissions and compliance costs is lower than in
the main simulation specification. The change in GHG
emission reductions due to acceleration trade-offs drops from
58 million metric tons to 32 and reductions in compliance costs
drop from 5.5 billion to 2.2. This occurs because the standards
are effectively less stringent so that the benefits of using
acceleration trade-offs as an additional compliance strategy is
smaller (although still substantial). Intuitively, acceleration
trade-offs also have a somewhat smaller impact on emissions
and compliance costs when fuel-saving technology costs are
lower and when the upper bound of the tech variable is relaxed.

■ LONGITUDINAL REGRESSION OF OBSERVED
ACCELERATION

The simulation results summarized above predict how the
reformed policy affects acceleration trade-offs, emissions, and
compliance costs conditional on modeling assumptions and
holding other confounding factors (such as fuel prices)
constant. These simulations are based entirely on data that
was available before the policy change in order to be consistent
with the type of analysis agencies could perform when assessing
the impact of future policy options.

Figure 1. Simulation results of changes in vehicle attributes in
response to the reformed standards when trade-offs between fuel
economy and acceleration (acc) are considered and when they are
excluded from the analysis. The sales-weighted averages for fuel
economy are harmonic averages following the policy, whereas
arithmetic averages are used for acceleration.

Table 2. Influence of Acceleration Trade-Offs on Simulation
Results of the 2014 Policy Outcomes under Alternate
Specificationsa

change in CO2
emissions (million

metric tons)

change in compliance
costs (billion 2014

USD)

main specification −58 −5.5
Sensitivity Tests on
Main Specification

willingness to pay for
fuel economy 35%
higher

−32 −2.2

cost of tech features 25%
lower

−48 −4.7

maximum tech 10%
higher

−54 −3.7

aThe table presents the dif ference between the estimates produced
from the simulations where acceleration trade-offs are included with
the estimates produced by the simulations that exclude these trade-
offs.
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As a check on the simulation results, we also examine
acceleration trade-offs using a completely different method: a
longitudinal regression analysis of the acceleration performance
we observe in the new vehicle market before and after the
reformed standards took effect. We use data on sales-weighted
attributes collected by EPA for 1976−2014 vehicles.42 These
data are recorded at the level of firm-year for each vehicle class.
Although the reformed standards did not apply until 2011,
automakers could earn credits for earlier action, which they
could use to comply with the standards once they took effect.43

For this reason, we look for evidence of policy-induced design
changes as early as 2007 (after EISA was passed).
Empirically estimating the causal effect of the policy reform

on vehicle attributes is difficult because there are many time-
varying factors that could influence vehicle design choices.
Potentially confounding factors include exogenous technolog-
ical change, rising gasoline prices, and evolving consumer
preferences. In order to isolate the effect of the reformed
standards on vehicle design choices as best we can with the
available data, we include several controls for these time-varying
factors in our analysis.
We use 30 years of data prior to the announcement of the

reformed policy to analyze trends in acceleration performance
over time. The following equation serves as the foundation for
our empirical analysis:

α δ β γ γ ε= + + ′ + + +t Xacc ( ) D1 D2it it t t it1 2 (6)

where i indexes manufacturing firms and t indexes time
(measured in years). The δ(t) function models acceleration
performance as a function of time. Xit captures time varying
determinants of acceleration performance such as gasoline
prices. D1 and D2 are policy indicators that equal one one after
MY2006 and MY2010, respectively, and zero before. Including
these binary policy indicators allows a level shift in acceleration
performance trends after the policy takes effect. We also
estimate a linear spline function which allows the slope of the
acceleration performance trajectory to change as firms begin to
comply with the policy. In the spline specifications, binary
indicators in eq 25 are replaced with B1t = t-2006 and B2t = t-
2010.
Results are summarized in Table 3 (additional specifications

are described in the SI). Relative to the trends and relationships
observed prior to the reformed standards, we find that the rate
of improvement in acceleration performance slowed after the
policy reform was announced and slowed further once the
policy took effect. These policy variables are jointly significant.
The preferred specifications are (2) and (4), which condition
on real gasoline prices. These estimated coefficients can be used
to impute an effect of the policy on sales-weighted average 0−
60 mph acceleration time. The table reports these imputed
effects which range from 0.63−1.10 s slower. For the preferred
specifications, the estimated effects of the policy on average
acceleration are remarkably similar to our simulation-based
estimate of 0.7 s.
Analyzing these same data at the firm-level reveals substantial

heterogeneity in patterns of acceleration performance across
manufacturers. For each firm and vehicle type (i.e., passenger
car or light truck), we construct the counterfactual trajectory of
acceleration performance by extrapolating prepolicy acceler-
ation trends controlling for time-varying factors. Observed
acceleration following the introduction of the reformed
standards underperforms relative to this counterfactual for
most firms. For some firms, however, we estimate improve-

ments in acceleration performance among passenger cars (Kia)
and trucks (Chrysler, Ford, and Mercedes-Benz). These firm-
level estimates are summarized in SI Table S14. While the firm-
level heterogeneity is qualitatively consistent with our
simulation results, firm-level estimates of acceleration time
vary substantially between the two approaches.
In sum, the trajectories in acceleration performance we

observe are qualitatively consistent with our simulation results;
following the introduction of the reformed policy, observed
acceleration performance is significantly worse than our
counterfactual estimate based on trends before the policy
change. Our estimated impact of the reformed standards on
sales-weighted average acceleration performance are very
similar across our econometric and simulation results, although
the firm-level results are not as congruent. These results lend
further support to our hypothesis that acceleration trade-offs
play an important role in automakers’ compliance strategies.

■ CONCLUSION
Environmental policies can significantly influence engineering
design decisions as firms reoptimize their products to meet
compliance requirements at minimum cost. We evaluate the
potential importance of vehicle design trade-offs between fuel
economy and acceleration performance in automakers’
responses to the reformed CAFE and GHG standards. Using
simulations of the automotive industry, we find that automakers
have an incentive to use these design trade-offs and that GHG
emissions and compliance costs (measured in terms of lost
producer profits and consumer surplus) are significantly lower
when these trade-offs are accounted for. We also find that these
simulation-based estimates are consistent with changes in
vehicle attributes observed in the years following the
announcement of the policy. Given the potential importance
of acceleration trade-offs as a means of complying with vehicle
standards, regulatory agencies should consider these perform-
ance trade-offs. Our results also imply that previous analyses of
the regulations that do not include these trade-offs may

Table 3. Regression Analysis of Sales-Weighted Average
Acceleration Performance over the Period 1976−2014a

(1) (2) (3) (4)

time trend −0.181b −0.174b −0.182b −0.176b

(0.014) (0.012) (0.014) (0.012)
D1 0.523b 0.161

(0.202) (0.165)
D2 0.571b 0.467b

(0.180) (0.166)
real gasoline prices 0.261d 0.270d

(0.158) (0.148)
B1 0.195b 0.070

(0.070) (0.049)
B2 −0.074 0.082

(0.061) (0.053)
Constant 15.008b 14.293b 15.024b 14.307b

(0.363) (0.553) (0.362) (0.514)
imputed impact of the policy
on acceleration (s)

1.1 0.63 1.1 0.71

joint F-test 5.37c 4.01c 8.22b 8.57c

R2 0.750 0.754 0.753 0.757
number of observations 493 493 493 493
aThe unit of observation is a firm-year-vehicle type. bp < 0.01. cp <
0.05. dp < 0.1.
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significantly overestimate compliance costs and underestimate
GHG emission reductions.
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(31) Sörensen, D. The Automotive Development Process; Springer,
2006.
(32) Weber, J. Automotive development processes; Springer, 2014.
(33) NHTSA. Preliminary Regulatory Impact Analysis: Corporate
Average Fuel Economy for MY2011−2015 Passenger Cars and Light
Trucks; U.S. Department of Transportation, 2008.
(34) EPA; DOT NHTSA. 2017 and Later Model Year Light-Duty
Vehicle Greenhouse Gas Emissions and Corporate Average Fuel
Economy Standards. Federal Register 2012, 77 (199), 62712.

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.7b03743
Environ. Sci. Technol. 2017, 51, 10307−10315

10314

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.est.7b03743
http://pubs.acs.org/doi/suppl/10.1021/acs.est.7b03743/suppl_file/es7b03743_si_001.pdf
mailto:kwhitefoot@cmu.edu
https://www.epa.gov/enforcement/clean-air-act-vehicle-and-engine-enforcement-case-resolutions
https://www.epa.gov/enforcement/clean-air-act-vehicle-and-engine-enforcement-case-resolutions
http://dx.doi.org/10.1021/acs.est.7b03743


(35) Berry, S. T. Estimating discrete-choice models of product
differentiation. RAND Journal of Economics 1994, 25, 242−262.
(36) Berry, S.; Levinsohn, J.; Pakes, A. Automobile prices in market
equilibrium. Econometrica 1995, 63, 841−890.
(37) Berry, S.; Levinsohn, J.; Pakes, A. Differentiated Products
Demand Systems from a Combination of Micro and Macro Data: The
New Car Market. Journal of Political Economy 2004, 112 (1), 68−105.
(38) Train, K. E.; Winston, C. Vehicle choice behavior and the
declining market share of us automakers*. International Economic
Review 2007, 48 (4), 1469−1496.
(39) Jacobsen, M. R. Evaluating US fuel economy standards in a
model with producer and household heterogeneity. American Economic
Journal: Economic Policy 2013, 5 (2), 148−187.
(40) Small, K. A.; Van Dender, K. Fuel efficiency and motor vehicle
travel: the declining rebound effect. Energy Journal 2007, 28, 25−51.
(41) U.S. Department of Transportation National Highway Traffic
Safety Administration. Final Regulatory Impact Analysis: Corporate
Average Fuel Economy for MY 2012-MY 2016 Passenger Cars and Light
Trucks, 2010.
(42) US Environmental Protection Agency. Light-Duty Automotive
Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975
through 2015; EPA-420-R-15-016, 2015.
(43) U.S. Environmental Protection Agency. U.S. Department of
Transportation National Highway Traffic Safety Administration. Light-
Duty Vehicle Greenhouse Gas Emission Standards and Corporate
Average Fuel Economy Standards; Final Rule. Federal Register 2010, 75
(88), 25413−25414.

Environmental Science & Technology Policy Analysis

DOI: 10.1021/acs.est.7b03743
Environ. Sci. Technol. 2017, 51, 10307−10315

10315

http://dx.doi.org/10.1021/acs.est.7b03743


Contents lists available at ScienceDirect

Transportation Research Part D

journal homepage: www.elsevier.com/locate/trd

Re-searching for hidden costs: Evidence from the adoption of fuel-
saving technologies in light-duty vehicles

Hsing-Hsiang Huanga,⁎, Gloria Helfandb, Kevin Bolonb, Robert Beachc, Mandy Shac,
Amanda Smithc
aOak Ridge Institute for Science and Education, at the Office of Transportation and Air Quality, U.S. Environmental Protection Agency, 2000
Traverwood Dr, Ann Arbor, MI 48105, USA
bAssessment and Standards Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency, 2000 Traverwood Dr, Ann
Arbor, MI 48105, USA
c RTI International, 3040 E. Cornwallis Rd, Research Triangle Park, NC 27709, USA

A R T I C L E I N F O

Keywords:
Light-duty vehicles
Fuel economy standards
Vehicle greenhouse gas standards
Content analysis
Vehicle fuel-saving technology
Vehicle operational characteristics

A B S T R A C T

A variety of fuel-saving technologies have been implemented in light-duty vehicles since 2012
under the U.S. Environmental Protection Agency’s (EPA) and Department of Transportation
(DOT)’s light-duty vehicle greenhouse gas emissions and fuel economy standards. Questions have
arisen whether there are hidden costs that have not been included in the net benefit calculations
as a result of adoption of the new technologies. In this paper, we replicate and expand results
from Helfand et al. (2016). We define hidden costs of the new technologies as problems with
operational characteristics such as acceleration, handling, ride comfort, noise, braking feel, and
vibration, not all of which are easily measured by objective criteria. We overcome the empirical
challenge by using data coded from online professional auto reviews that qualitatively evaluate
fuel-saving technologies and operational characteristics for model years 2014 and 2015 vehicles.
We estimate relationships of fuel-saving technologies and operational characteristics, including
an overall vehicle assessment, and find little correlation of hidden costs with the technologies
themselves. Variable quality of implementation of technologies across automakers may better
explain negatively evaluated operational characteristics. The results imply that automakers have
typically been able to implement fuel-saving technologies without harm to vehicle operational
characteristics.

1. Introduction

Fossil fuel combustion in transportation has contributed approximately one-fourth of greenhouse gas (GHG) emissions in the
United States in recent years (U.S. Environmental Protection Agency (EPA), 2016a). In an effort to reduce GHG emissions and
improve energy security, the U.S. Environmental Protection Agency (EPA) and the Department of Transportation (DOT) established
vehicle GHG and fuel economy standards for light-duty vehicles for model years (MYs) 2012 through 2025. In the presence of the
standards, vehicle manufacturers have implemented a wide range of fuel-saving technologies (EPA, 2016b; EPA, DOT and California
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Air Resources Board (CARB) 2016, Chapter 5).1 Assessments of the standards have found enormous net benefits to society, including
significant net benefits from fuel savings for new vehicle buyers (e.g., EPA and DOT, 2010, 2012; EPA, DOT, and CARB, 2016).
However, questions have been raised about whether there are hidden costs that have not been included in the net benefit calculations
as a result of adoption of the new technologies (Allcott and Greenstone, 2012; Gillingham and Palmer, 2014; Helfand et al., 2016). In
particular, hidden costs that exceed the net positive financial benefits from fuel reduction for new vehicle buyers might explain why
markets had been slow to adopt fuel-saving technologies on light-duty vehicles in the absence of the standards. Given the wide range
of fuel-saving technologies developed and adopted in recent years, it is important to understand whether any of the new technologies
impose hidden costs.

We consider hidden costs to be negative impacts of the technologies on performance, drivability, ride comfort, and other char-
acteristics that would cause losses to consumer welfare and are difficult to measure. For instance, if six-speed automatic transmissions
were clunky or otherwise worse to drive than traditional four-speed automatic transmissions, buyers of vehicles with six-speed
transmissions would suffer welfare losses from the hidden costs and thus would be less interested in buying them. As the effects of the
GHG standards depend critically on consumers buying vehicles with fuel-saving technologies, an evaluation of the new technologies
should consider potential hidden costs.

One set of literature relevant to hidden costs as a result of adoption of fuel-saving technology has focused on estimating the
tradeoffs between fuel economy and horsepower and weight (e.g., Knittel, 2011; Klier and Linn, 2012, 2016; MacKenzie and
Heywood, 2015). This literature has focused on estimating this relationship as technological, not involving consumer response; see
EPA, DOT, and CARB (2016), Chapter 4.1.3, for further discussion.

This paper is closely related to Helfand et al. (2016), which investigated whether there are hidden costs in a range of operational
characteristics. Though operational characteristics that consumers may care about are not well measured by quantified vehicle
attributes, they are usually evaluated qualitatively by professional auto reviewers. Helfand et al. (2016) gathered data on both
operational characteristics and fuel-saving technologies for MY 2014 by conducting a content analysis of online auto reviews of MY
2014 vehicles. Content analysis involves systematic coding of text; it can be used to convert qualitative information to quantitative
(Krippendorff, 2013). They did not find systematic evidence of negative operational characteristics associated with adoption of a
variety of fuel-saving technologies, suggesting that it is possible to use the technologies on light-duty vehicles without imposing
hidden costs on consumers.

This paper builds on Helfand et al. (2016) in several ways. First, this paper adds evaluations from professional auto reviews for
MY 2015 vehicles to the dataset. These additional data provide an opportunity for validation of the results of the original study.

Second, instead of only using cross-sectional variation in technology adoption, the use of year fixed effects allows for control of
more unobserved factors that may be correlated with changes in technology adoption and evaluation results, such as changes in
consumer preferences. The larger dataset also helps avoid small sample size for some technologies. The estimation results of this
paper, using the pooled data and adjusted standard errors dealing with potential small sample bias, are consistent with Helfand et al.
(2016)’s conclusion that fuel-saving technologies generally appear not to be associated with negative operational impacts.

Third, to further explore the role of variable implementation quality for fuel-saving technologies, proposed by Helfand et al.
(2016), we estimate whether negative evaluations of operational characteristics are correlated with negatively reviewed technolo-
gies, conditional on the presence of the technologies. We find evidence of positive relationships between negatively evaluated
technologies and negatively evaluated operational characteristics, suggesting that poorly implemented technologies, instead of the
presence of the technologies themselves, may be correlated with hidden costs.

Lastly, we examine whether fuel-saving technologies are associated with the overall assessment of the reviewed vehicles con-
cluded by each reviewer. An overall rating, advising whether to purchase the vehicle, may be explicit, or it may be inferred from the
evaluation of vehicle characteristics and comparison with vehicles in the same segment. The overall rating is expected to include any
factors that the reviewer may consider, even if they are not specifically evaluated. We do not find evidence of associations between
negative overall ratings of vehicles and the presence of fuel-saving technologies. Instead, we find negatively rated technologies and
negatively rated operational characteristics are highly associated with the overall rating, further suggesting that lower quality
technologies, with their adverse effects on operational characteristics, play key roles in getting a negative overall assessment.

These results suggest that, to date, automakers generally have been able to implement fuel-saving technologies without imposing
hidden costs on consumers. This finding implies that net benefits from fuel savings suggested in the literature are higher than
potential hidden costs of adoption of fuel-saving technology.

The remainder of this paper is structured as follows. The next section describes our data. Section 3 covers our estimation ap-
proach. Section 4 presents our results for the relationship of fuel-saving technologies and operational impacts. Section 5 presents our
results for the relationship of the technologies with the overall assessment. Section 6 concludes.

2. Data and content analysis

The data for this study come from online professional auto reviews of MY 2014 and MY 2015 new vehicles. Professional auto
reviews provide qualitative evaluation of both technologies and operational characteristics. For both of these categories, quality may
be difficult to quantify but is very important to consumers. Hidden costs emerge if negative impacts on these operational

1 For instance, gasoline direct injection was widely used on nearly half of all vehicles in model year 2016, while it was used in less than 3% of
vehicles in model year 2008 (EPA, 2016b).
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characteristics exist as a result of adoption of fuel-saving technology.
Content analysis provides a systematic approach to evaluate reviewers’ evaluations of the quality of fuel-saving technologies and

operational characteristics of the vehicles they review. This method involves breaking text into words and phrases that can be
categorized and analyzed using specified definitional codes (Krippendorff 2013). Content analysis has been widely used in the
humanities and social sciences to classify, measure, and evaluate themes and symbols in various communications media. See Sha and
Beach (2015) and Sha et al. (2016) for further background and detail, and Helfand et al. (2016) for further examples of vehicle-
related content analyses.

2.1. Identification of relevant websites of professional auto reviews

As detailed in Sha and Beach (2015) and Sha et al. (2016), we followed a set of specific procedures to identify the websites used in
this study. In particular, we aimed for websites that contained reviews from professional auto reviewers and that consumers are most
likely to consult when making vehicle buying decisions in the United States. First, using Google and Yahoo internet search engines,
we sought websites on the first page of search returns for keywords “new cars,” “buying a new car,” and “auto reviews.” Second, we
excluded websites that did not have national and professional auto reviews. Third, we used monthly unique views from Quantcast.
com and Compete.com to gauge website popularity, and excluded websites that had less than one million unique views in both
Quantcast.com and Compete.com. Finally, we screened websites to include only professional reviews that evaluated vehicles and
technologies. Each review must have gone beyond a basic specification list, have an independent assessment of vehicle quality, and
show evidence of the reviewer having test-driven the reviewed vehicle.

For MY 2014 vehicles, six websites were selected by following the sampling procedures above: Automobile Magazine, Auto
Trader, Car and Driver, Consumer Reports, Edmunds, and Motor Trend. For MY 2015 vehicles, we started with the six websites for
MY 2014 vehicles, and followed the same procedures to identify other potential websites. One new website, Cars.com, was added in
MY 2015, because its web viewership met our criteria for inclusion. As in Helfand et al. (2016), this study included all reviews of new
MY 2014 and 2015 vehicles subject to the light-duty GHG standards. We dropped the reviews of Volkswagen and Audi diesel vehicles
due to concerns over compliance with emissions standards, as well as medium-duty vehicles not subject to the light-duty vehicle
standards. Table 1 reports the number of reviews by website in our analysis. Our dataset includes 2238 separate reviews over the two
model years, including 1003 for MY 2014 and 1235 reviews for MY 2015.

The vehicles reviewed in our sample appear to be roughly representative of vehicles offered, based on data from fueleconomy.gov
(U.S. Department of Energy and EPA, 2014, 2015), although the reviews do not reflect sales (see Table 2). Vehicles offered may be a
better comparison group than sales, because potential buyers examine auto reviews based on the choice set, rather than what other
people buy. Grouped at the vehicle class level as presented in Table 3, the percentage of auto reviews by class is roughly similar to the
national fleet-wide breakdown (again based on fueleconomy.gov data) of MY 2014 and MY 2015 vehicles. While the number of
reviews of mid-sized cars are over-represented for MY 2014 vehicles, it becomes slightly under-represented for MY 2015 vehicles.

2.2. Coding qualitative assessments of vehicle characteristics

This study codes both fuel-saving technologies and operational characteristics discussed in auto reviews. The set of technologies
coded included most of the technologies proposed for compliance purposes in EPA and DOT (2010, 2012). The set of operational
characteristics was developed from judgment of factors likely to be relevant to drivers, with refinements based on experience with the
reviews. To ensure consistency of coding between MY 2014 and MY 2015 vehicles, and thus allow for better assessment of replication
of results, the same coders and coding definitions of fuel-saving technologies and operational characteristics were used for both
samples (Sha et al. 2016). One new fuel-saving technology, fuel cell, was added for MY 2015. Tables 4 and 5 list the coded fuel-saving
technologies and operational characteristics, respectively, in the study. A hybrid vehicle is a special case, because all hybrids have
stop-start and CVT. For this study, stop-start and CVT are only possible for non-hybrid vehicles; “hybrid” is considered a package
including stop-start and CVT.

Coding processes were also consistent over both datasets. For each auto review, every mentioned fuel-saving technology and

Table 1
Auto reviews by website.

Website MY 2014 MY 2015 Pooled

Review Count % Review Count % Review count %

automobilemag.com 144 14 138 11 282 13
autotrader.com 224 22 336 27 560 25
caranddriver.com 216 22 202 16 418 19
cars.com 0 0 90 7 90 4
consumerreports.org 86 9 79 6 165 7
edmunds.com 112 11 105 9 217 10
motortrend.com 221 22 285 23 506 23

Total 1003 100 1235 100 2238 100
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operational characteristic was coded as Positive, Negative, or Neutral. For instance, a passage of text containing a negative evaluation
of stop-start technology would be coded as Negative – Stop-Start, while another passage of text containing a positive evaluation of
steering feel was coded as Positive – Steering Feel. It was coded as Neutral when the reviewer did not demonstrate an intensity of
opinion that could be clearly discerned to be positive or negative.

In addition to categorizing each mention of a technology and operational characteristic as positive, negative or neutral, the overall
assessment, or recommendation, of the review was coded as well. Review summaries and conclusions often provide a general idea of
the reviewer’s attitude about the reviewed vehicle (e.g. a reviewer might opine whether consumers should/shouldn’t purchase a
particular car.) Reading the review as a whole led to assigning a positive, negative, or mixed evaluation to each review to capture the
overall assessment.

The analysis here uses what Helfand et al. (2016) call review-level data: that is, the codes are aggregated for each review. If a
specific technology or characteristic is mentioned multiple times in an auto review and all the codes for the mentions of the tech-
nology are the same throughout the auto review, then it is listed once in the relevant column. For instance, if all of the mentions of
turbocharging are negative in an auto review, then that review is coded once for Turbocharged – Negative. On the other hand, if a
technology or characteristic receives more than one kind of evaluation – for instance, both positive and negative evaluations in the
same auto review – the review is coded once for each evaluation of the technology – in this case, once positive and once negative.
Helfand et al. (2016) found little difference for results when using individual codes compared to the review-level analysis.

Table 2
Auto reviews by make, compared with fueleconomy.gov counts.

Make MY 2014 MY 2015

Auto Review fueleconomy.gov Auto Review fueleconomy.gov

Count % Count % Count % Count %

Acura 24 2.4 16 1.3 22 1.8 10 0.8
Audi 37 3.7 48 3.9 60 4.9 55 4.3
BMW 69 6.9 98 8.0 77 6.2 121 9.4
Bentley 11 1.1 7 0.6 16 1.3 8 0.6
Buick 27 2.7 16 1.3 11 0.9 16 1.3
Cadillac 36 3.6 35 2.8 21 1.7 29 2.3
Chevrolet 85 8.5 77 6.3 101 8.2 92 7.1
Chrysler 4 0.4 14 1.1 28 2.3 13 1.0
Dodge 24 2.4 35 2.8 41 3.3 35 2.7
Ferrari 7 0.7 13 1.1 0 0.0 14 1.1
Fiat 8 0.8 7 0.6 4 0.3 10 0.8
Ford 47 4.7 88 7.2 79 6.4 78 6.1
GMC 17 1.7 36 2.9 21 1.7 51 4.0
Honda 34 3.4 30 2.4 30 2.4 27 2.1
Hyundai 19 1.9 38 3.1 64 5.2 44 3.4
Infiniti 25 2.5 29 2.4 23 1.9 31 2.4
Jaguar 28 2.8 20 1.6 22 1.8 23 1.8
Jeep 42 4.2 35 2.8 15 1.2 39 3.0
Kia 44 4.4 35 2.8 44 3.6 38 2.9
Lamborghini 0 0.0 7 0.6 5 0.4 4 0.3
Land Rover 15 1.5 13 1.1 17 1.4 11 0.9
Lexus 23 2.3 25 2.0 54 4.4 32 2.5
Lincoln 6 0.6 16 1.3 22 1.8 21 1.6
Maserati 0 0.0 6 0.5 1 0.1 6 0.5
Mazda 49 4.9 25 2.0 15 1.2 24 1.9
Mercedes-Benz 74 7.4 85 6.9 84 6.8 83 6.5
Mini Cooper 11 1.1 46 3.7 9 0.7 44 3.4
Mitsubishi 17 1.7 19 1.5 10 0.8 18 1.4
Nissan 40 4.0 51 4.1 54 4.4 50 3.9
Porsche 34 3.4 52 4.2 47 3.8 61 4.8
Ram 7 0.7 13 1.1 8 0.6 15 1.2
Rolls Royce 9 0.9 7 0.6 4 0.3 7 0.6
Scion 4 0.4 9 0.7 8 0.6 7 0.6
Smart 1 0.1 4 0.3 0 0.0 0 0.0
Subaru 25 2.5 23 1.9 59 4.8 21 1.6
Tesla 0 0.0 3 0.2 4 0.3 8 0.6
Toyota 63 6.3 58 4.7 75 6.1 53 4.1
Volkswagen 32 3.2 50 4.1 44 3.6 46 3.6
Volvo 5 0.5 13 1.1 36 2.9 21 1.6
Other* 0 0.0 27 2.2 0 0.0 18 1.4

Total 1003 1229 1235 1284

* Other includes Alfa Romeo, Aston Martin, Bugatti, BYD, Lotus, McLaren, Mobility Ventures LLC, Pagani, Roush, and SRT.
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2.3. Summary statistics

Table 4 reports the number of auto reviews that have positive, negative, or neutral evaluations of fuel-saving technologies. The
fuel technologies examined are not mentioned very frequently in the reviews. There are about 1.52 and 1.27 codes of fuel-saving
technologies per review for the MY 2014 and MY 2015 data, respectively. The most mentioned technologies are high speed auto-
matic, turbocharged, electronic power steering, and continuously variable transmissions (CVT). Among the four most evaluated
technologies, turbocharged and high speed automatic have substantially more mentions for MY 2015 vehicles than MY 2014 vehicles.

In the data, positive evaluations exceed negative evaluations for all the technologies examined for both years. As reported in
Table 4, in the aggregate, positive evaluations are about 70% of the totals, while negative evaluations are less than 20%. CVT, stop-
start, and low rolling resistance tires are the most frequently negatively reviewed fuel-saving technologies for the data. However,
even these most frequently negatively reviewed technologies have majority positive evaluations. For example, CVT has 51% and 59%
positive evaluations for the MY 2014 and MY 2015 data, respectively, while it has about 30% negative evaluations for vehicles of

Table 3
Auto reviews by vehicle class, compared with fueleconomy.gov counts.

Vehicle Class MY 2014 MY 2015

Auto Review fueleconomy.gov Auto Review fueleconomy.gov

Count % Count % Count % Count %

Subcompact Cars 84 8.4 101 8.2 111 9.0 107 8.3
Minicompact Cars 11 1.1 52 4.2 13 1.1 56 4.4
Compact Cars 181 18.1 201 16.4 271 21.9 207 16.1
Two Seaters 88 8.8 93 7.6 75 6.1 100 7.8
Midsize Cars 227 22.6 215 17.5 149 12.1 203 15.8
Large Cars 93 9.3 104 8.5 119 9.6 113 8.8
Small Station Wagons 26 2.6 36 2.9 56 4.5 35 2.7
Midsize Station Wagons 6 0.6 4 0.3 21 1.7 8 0.6
Passenger Vans 1 0.1 16 1.3 1 0.1 14 1.1
Minivans 15 1.5 14 1.1 28 2.3 14 1.1
Small SUVs 130 13.0 179 14.6 212 17.2 196 15.3
Standard SUVs 94 9.4 116 9.4 121 9.8 134 10.4
Small Pickup Trucks 1 0.1 14 1.1 27 2.2 24 1.9
Standard Pickup Trucks 42 4.2 54 4.4 28 2.3 45 3.5
Other* 4 0.4 30 2.4 3 0.2 28 2.2

Total 1003 100 1229 100 1235 100 1284 100

* Other includes special purpose vehicle and cargo vans.

Table 4
Total number of positive, negative, and neutral evaluations of fuel-saving technologies by auto review.

Fuel-Saving Technology MY 2014 MY 2015 Pooled

Negative Neutral Positive Total Negative Neutral Positive Total Total

Active Air Dam 0 0% 0 0% 6 100% 6 0 – 0 – 0 – 0 6
Active Grill Shutters 0 0% 0 0% 1 100% 1 1 14% 0 0% 6 86% 7 8
Active Ride Height 0 0% 1 33% 2 67% 3 0 – 0 – 0 – 0 3
Low Resistance Tires 4 24% 5 29% 8 47% 17 4 31% 1 8% 8 62% 13 30
Electronic Power Steering 45 22% 42 20% 121 58% 208 22 14% 19 12% 116 74% 157 365
Turbocharged 20 9% 23 10% 180 81% 223 43 13% 35 10% 264 77% 342 565
GDI 6 9% 6 9% 54 82% 66 4 6% 6 9% 55 85% 65 131
Cylinder Deactivation 1 3% 4 11% 30 86% 35 4 16% 3 12% 18 72% 25 60
Diesel 7 12% 9 15% 44 73% 60 5 28% 2 11% 11 61% 18 78
Hybrid 16 23% 10 14% 45 63% 71 10 21% 5 11% 32 68% 47 118
Plug-In Hybrid Electric 4 14% 6 21% 18 64% 28 4 22% 3 17% 11 61% 18 46
Full Electric 2 9% 6 27% 14 64% 22 0 0% 3 15% 17 85% 20 42
Fuel Cell 0 – 0 – 0 – 0 0 0% 0 0% 1 100% 1 1
Stop-Start 14 27% 7 14% 30 59% 51 15 31% 9 19% 24 50% 48 99
High Speed Automatic 60 14% 81 20% 273 66% 414 96 20% 76 16% 310 64% 482 896
CVT 35 31% 20 18% 57 51% 112 38 30% 14 11% 75 59% 127 239
DCT 16 24% 10 15% 42 62% 68 18 17% 10 10% 77 73% 105 173
Elec Assist/Low Drag Brakes 1 14% 3 43% 3 43% 7 0 0% 0 0% 2 100% 2 9
Lighting-LED 1 5% 2 10% 17 85% 20 0 0% 1 4% 25 96% 26 46
Mass Reduction 0 0% 9 12% 65 88% 74 3 6% 2 4% 43 90% 48 122
Passive Aerodynamics 4 10% 7 18% 29 73% 40 2 11% 0 0% 17 89% 19 59
Efficiency Totals 378 16% 391 16% 1668 68% 2437 463 18% 310 12% 1783 70% 2556 4993
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both model years. These results suggest that it is possible to implement these technologies without significant hidden costs.
Some technologies have limited reviews in a single model year data, such as plug-in hybrid electric, passive aerodynamics, and

low resistance tires. As shown in the last column of Table 4, all but five technologies have more than 30 reviews in the pooled data;
the exceptions are active air dam, active grill shutters, active ride height, fuel cell, and electric assist or low drag brakes. The
technologies with greater than 30 reviews most frequently mentioned positively in percentage terms include LED lighting, mass
reduction, gasoline direct injection (GDI), cylinder deactivation, turbocharged, and passive aerodynamics. The technologies with
greater than 30 reviews least frequently mentioned negatively in percentage terms are the same ones, except that full electric replaces
turbocharged. The most frequently negatively reviewed technologies over the two years by percentage are CVT, stop-start, low-
rolling-resistance tires, hybrid, and dual-clutch transmissions (DCT). As noted, though, these all are rated positively for more than
50% of the reviews where they are mentioned.

As reported in Table 5, mentions of the operational characteristics in the aggregate have more than 60% positive evaluations,
about 20% neutral evaluations, and about 20% negative evaluations. The reviews of operational characteristics are slightly more
negative (17–22% negative) than the reviews of fuel-saving technologies (16–18% negative). Among the operational characteristics,
chassis, powertrain, and general vibration have the highest percentage of negative reviews across both model years, followed by
interior and tire-road noise. Mentions of vibration are relatively infrequent; only charging for plug-in electric vehicles is mentioned as
infrequently. It may be that vibration is mentioned only when there is a problem.

Fig. 1 shows a summary of the overall assessments of the vehicles reviewed. Similar to the aggregated operational characteristics,
about 65% of vehicles are positively reviewed on the overall assessment. While MY 2015 vehicles have slightly more mixed eva-
luations than MY 2014 vehicles, only about 8% of the reviews have an overall negative evaluation.

In Panel (A) of Fig. 2, we divide our pooled data into two groups: one (red) includes the auto reviews that mention the technology
listed on the vertical axis, and the other (blue) includes the auto reviews that do not mention the technology. Then we compare the
shares of auto reviews with an overall negative assessment between the two groups. For instance, while 8% of reviews that do not
mention GDI have a negative overall assessment, only 2% of reviews that do mention GDI have a negative overall assessment. As
Panel A indicates, vehicles with most fuel-saving technologies are less likely to have negative overall assessments than vehicles
without the technologies, with the exception of vehicles with CVT, hybrid, low-rolling-resistance tires, LED lights, and high speed
automatic.

In Panel (B) of Fig. 2, we compare the total number of negative evaluations of operational characteristics between the two groups.
It suggests that vehicles with most fuel-saving technologies get fewer negative evaluations of operational characteristics than vehicles

Table 5
Total number of positive, negative, and neutral evaluations of operational characteristics by auto review.

Operational Characteristics MY 2014 MY 2015 Pooled

Negative Neutral Positive Total Negative Neutral Positive Total Total

Handling
Steering Feel 147 20% 163 22% 442 59% 752 173 21% 119 15% 517 64% 809 1561
Cornering Ability 92 14% 116 17% 471 69% 679 135 18% 131 17% 500 65% 766 1445
General Drivability 116 15% 146 18% 531 67% 793 173 19% 130 14% 621 67% 924 1717
General Handling 82 12% 130 20% 450 68% 662 139 17% 116 14% 571 69% 826 1488

Acceleration
Acceleration Feel 76 15% 73 15% 343 70% 492 158 26% 47 8% 405 66% 610 1102
Acceleration Capability 164 16% 231 23% 630 61% 1025 254 21% 232 19% 744 60% 1230 2255
General Acceleration 24 17% 27 19% 89 64% 140 47 18% 39 15% 170 66% 256 396

Braking
Brake Feel 46 13% 58 17% 246 70% 350 99 27% 46 12% 226 61% 371 721
Stopping Ability 31 9% 78 22% 249 70% 358 49 14% 73 21% 228 65% 350 708
General Braking 21 17% 18 15% 83 68% 122 17 17% 14 14% 72 70% 103 225

Noise
Tire-Road Noise 72 24% 74 25% 153 51% 299 113 34% 48 14% 172 52% 333 632
Wind Noise 29 14% 46 21% 139 65% 214 50 21% 36 15% 147 63% 233 447
Interior Noise 16 32% 6 12% 28 56% 50 20 40% 4 8% 26 52% 50 100
Powertrain Noise 145 25% 104 18% 330 57% 579 149 24% 68 11% 400 65% 617 1196
General Noise 58 14% 33 8% 332 78% 423 61 15% 24 6% 332 80% 417 840

Vibration
Chassis Vibration 7 70% 3 30% 0 0% 10 2 67% 0 0% 1 33% 3 13
Powertrain Vibration 10 40% 8 32% 7 28% 25 10 56% 2 11% 6 33% 18 43
General Vibration 19 42% 13 29% 13 29% 45 14 42% 2 6% 17 52% 33 78
Ride Comfort 149 19% 171 22% 462 59% 782 201 22% 135 15% 585 64% 921 1703
Fuel Economy 161 22% 178 24% 396 54% 735 239 27% 163 19% 474 54% 876 1611
Range 7 16% 11 24% 27 60% 45 7 18% 8 21% 23 61% 38 83
Charging 3 30% 0 0% 7 70% 10 2 14% 2 14% 10 71% 14 24

Operational Totals 1475 17% 1687 20% 5428 63% 8590 2112 22% 1439 15% 6247 64% 9798 18388
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without the technologies, with the exception of CVT, hybrid, low-rolling-resistance tires, and plug-in hybrid-electric vehicles.
It is important to note that the difference between the two groups does not imply causality: that is, that the presence of the

technology would reduce the likelihood of having negative evaluations of operational characteristics or the overall assessments.
Instead, they present the difference in means conditional on mention of a technology between the two subgroups. Many other factors,
as we describe later in this paper, are expected to contribute to the difference.

3. Empirical approach

3.1. Specifications and estimation

The content analysis data were used to build a linear probability model (LPM) exploring the relationship of fuel-saving tech-
nologies with the various operational characteristics. Following Helfand et al. (2016), we run the following LPM as our baseline
model predicting I NegativeOper( )i j t, , , an indicator variable equal to 1 if operational characteristic j was negatively reviewed on model-
year t vehicle in auto review i:∑= + + ∊I NegativeOper β I Tech FixedEffects( ) ( )i j t k k i k t i j t, , , , , , (1)

in which I Tech( )i k t, , is a vector of k indicator variables representing all fuel-saving technologies examined in this study. The indicator
variable is equal to 1 if a technology was mentioned in an auto review. FixedEffects include, at a minimum, website, class, and make
fixed effects, to address potential unobserved heterogeneity in factors that might be correlated with both the technology mentioned
and the operational characteristic.

When we pool the MY2014 and 2015 data, we also control for the following fixed effects: year (e.g., market conditions common to
all manufacturers), year-by-website (e.g., a website's year-specific review standards and preferences), year-by-class (e.g., year-specific
market conditions for a vehicle class common to all manufacturers), and year-by-make (e.g., a company's year-specific innovation
and/or production strategy). The interactions of fixed effects play important roles in identifying our variables of interest βk, as they
control for factors that do not vary over the make-year, class-year, and website-year. Model-by-class fixed effects interacting with
model year will also be included in our robustness check, although within model-by-class-by-year variation in the variables of fuel-
saving technologies could be reduced.

We estimate this specification using a standard fixed effects regression. A positive coefficient of βk indicates that the mentioned
technology is associated with an increased likelihood of a hidden cost; a negative coefficient, on the other hand, indicates that the
technology is associated with a reduction in the likelihood of a hidden cost.

One hypothesis suggested in Helfand et al. (2016) is that, while it appears possible for all the technologies to be used without
imposing hidden costs, problems may arise due to variation in quality of implementation of some technologies in some vehicle
models. In that paper, the authors compare effects on operational characteristics when the technology is mentioned, to effects on
characteristics when the technology receives a negative evaluation; they find more correlations with negatively reviewed
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67.9
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29.1

63.3

0
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40
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80

MY 2014 MY 2015

Negative Mixed Positive

Fig. 1. Overall assessment of the quality of the vehicle reviewed.
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characteristics for negatively reviewed technologies than for the presence of the technologies. In this paper, we directly estimate
whether negative operational impacts are responsive to a negatively reviewed technology conditional on the presence of the tech-
nology2:

Fig. 2. Comparison of evaluation of overall assessment and operational characteristics by technology using pooled data.
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∑ ∑= + + + ∊I NegativeOper α I NegativeTech β I Tech FixedEffects( ) ( ) ( )i j t k k i k t k k i k t i j t, , , , , , , , (2)

I NegativeTech( ) equals 1 if fuel-saving technology k was negatively reviewed in auto review i of model year t , and equals 0 if
technology k was positively or neutrally reviewed, or not mentioned. The underlying idea is that, if a technology was not im-
plemented well (e.g., poor quality in production of the technology, poor installation, and/or poor other adjustments to the tech-
nology), auto reviewers would give a negative review for the technology.3

Conditional on the mention of fuel-saving technologies and the fixed effects, this specification directly tests whether a negatively
reviewed technology is correlated with negative rating of an operational characteristic. Also, specification (2) seeks to address the
selection bias arising from the possibility that a negatively reviewed technology is more likely to be mentioned than a technology that
is working well. The coefficients of interest, βk and αk, are estimates of the increase in the probability of a negative review due to
either the presence of technology k or a negative evaluation of technology k, respectively. A positive value for αk, especially if
combined with a reduction in the value for βk, supports the hypothesis that poor implementation of technologies is associated with
negative ratings of operational characteristics, perhaps more than the mere presence of the technologies.

Lastly, we replace operational characteristics on the left hand side of specification (2) by using the overall vehicle assessment to
estimate its relationship with fuel-saving technologies.

3.2. Potential estimation concerns

Including the fixed effects is useful for identifying the relationship between fuel-saving technologies and reviewed operational
characteristics by addressing a variety of potential confounders. Yet, we recognize that there remains a possible selection bias. For
instance, if some technologies were put into low-quality vehicles, and the low quality is not fully controlled for by the fixed effects,
the estimated coefficient would be biased upward. As a result, we describe the results as correlations between technologies and
operational characteristics rather than claiming causality. We thus focus on whether statistically significant positive coefficients are
consistently estimated from our regression models.

It is important to note that absence of a mention in a review does not mean that the technology is absent; it means that the
reviewer did not mention it. It is plausible that auto reviewers would notice and comment on undesirable features more than on
positive features. If so, the estimated relationship between a technology and a hidden cost may be biased upward.

In addition, one concern with LPM is that estimated probability may be not bounded between −1 and 1. However, with binary
dependent variables, LPM has some advantages over logit models in that causal analysis is valid and does not require functional form
assumptions about the error term (Angrist and Pischke, 2009). In fact, almost all of our estimated coefficients in this study are
between -1 and 1.

Last, while robust standard errors are generally used for non-constant error variance with LPM, they are subject to small sample
bias and high sampling variance (Angrist and Pischke, 2009, p. 307). As a result, robust standard errors may be too small by accident
and thus increase rejection of the null hypothesis. In this study, in additional to using conventional robust standard errors, we follow
the suggestion of Angrist and Pischke (2009) of using the maximum of the conventional standard error and a robust standard error as
our best measure of precision.

4. Estimated relationship of technologies and operational characteristics

This paper focuses on examining whether the estimated relationships using multiple datasets (MY 2014, MY 2015, and pooled)
with a rich set of fixed effects are consistent and robust. For each dataset, we run a separate regression of each of 22 operational
characteristics on all fuel-saving technologies examined and a set of fixed effects. There are 20 technologies for MY 2014 data and 21
for MY 2015 data. Thus, we have 440 estimated coefficients for the fuel-saving technologies for MY 2014 data (20 coefficients for
each operational characteristic), and 462 estimated coefficients for MY 2015 and for the pooled data (21 coefficients for each
operational characteristic).

In this section, first, we present the estimated results of the initial specification, separately for each model year. Second, we report
detailed results using the pooled data, with its advantage of more observations as well as additional fixed effects (i.e., website-year,
class-year, and make-year). This section also includes robustness checks.

4.1. Overview of the results across datasets

Fig. 3 provides the number of significant coefficients in the 22 regressions across alternative datasets based on significance at the
10% level, and use of the measure for standard errors suggested by Angrist and Pischke (2009); the detailed estimated results are

2 To be precise, the presence of the technology is assumed from its being mentioned in the review, rather than from independent identification of
its presence in the specific vehicle.
3 In this study, a technology would be coded as negative when a passage of text contained a negative evaluation of the technology in an auto

review. For instance, CVTs would be coded as negative for “the CVT isn't particularly responsive (Autotrader 2015),” “the CVT keeps the engine
droning away at high revs to make any sort of power (Motortrend, 2014),” or “should you opt for the CVT, the trio of cylinders will grumble in
protest every time you try to accelerate (Caranddriver, 2014).”

H.-H. Huang et al. 7UDQVSRUWDWLRQ�5HVHDUFK�3DUW�'��������������²���

���



reported in Appendix Table A.1 and Table A.2 for MY 2014 and MY 2015 vehicles, respectively. Recall that a positive coefficient
indicates that fuel-saving technology is associated with a negative review of operational characteristic. As Fig. 3 shows, only 2.7% (12
out of 440) of coefficients for the

MY 2014 data, and 4.5% (21 out of 462) of coefficients for both the MY 2015 and the pooled data are positive and statistically
significant. The results for positive relationships, our focus, do not seem to be sensitive to the standard errors we use. The general
pattern of MY 2014 results, of few positive and statistically significant coefficients, continues for MY 2015.

Only four of the 12 coefficients, or about 1% of the 440 coefficients for MY 2014, that are positive and statistically significant
using MY 2014 data remain positive and statistically significant using MY 2015 data: hybrid is associated with a negative rating for
brake feel, plug-in hybrid electric is associated with a negative rating for powertrain noise, and CVT is associated with negative
ratings for general drivability and powertrain noise. The small number of consistently significant associations between technologies
and negatively reviewed characteristics raises the question whether they are significant by chance. On the other hand, in a single
model-year, the small sample sizes for some technologies may make statistically significant relationships difficult to detect.

Except with the maximum of the conventional standard error and a robust standard error for the MY 2015 data, there appear to be
more statistically significant negative coefficients than positive ones: that is, there may be more cases of hidden benefits than hidden
costs. It is noteworthy that the number of negative relationships is substantially reduced (from over 60 to under 20 in either MY 2014
and MY 2015 reviews) using the approach suggested by Angrist and Pischke compared to the estimated results using robust standard
errors. This observation demonstrates how this approach can affect interpretation of results by creating a more stringent standard for
significance.

4.2. Results of pooled data

The results from estimating specification (1) with the pooled data from MY 2014 and MY 2015 include year, year-by-website,
year-by-class, and year-by-make fixed effects, in addition to the fixed effects from the individual-year analyses. The estimation results
for all operational characteristics are summarized in Fig. 3 and detailed in Table 6.

Similar to the results with single-year datasets, there continue to be relatively few cases of fuel-saving technologies correlated
with a negative rating for an operational characteristic, i.e., positive coefficients. Out of 462 coefficients, 21 coefficients are positive
and statistically significant using the measure of precision suggested by Angrist and Pischke; with robust standard errors as our
measure of precision, 24 coefficients are statistically significant and positive. In addition, the magnitudes are small; only 5 of the 462
coefficients are associated with an increased probability of a negative impact of more than 0.15.

Among the 21 positive and significant coefficients, five coefficients associate CVT with negative evaluations, for cornering ability,
general drivability, acceleration capability, wind noise, and powertrain noise. These coefficients are fairly small: the maximum
estimated increased probabilities are 0.14, for acceleration capability and powertrain noise. Plug-in hybrid vehicles have three of the
largest positive significant coefficients, for brake feel (0.21), range (0.22), and powertrain noise (0.4).

We note again that the correlations may be affected by unobserved variables. For instance, it is possible that, instead of CVT itself,
lower quality implementation of CVT contributes to the negative associations with negative rating of operational characteristics.
Also, it is possible that CVTs were put into vehicles with a relatively loud powertrain noise or other problems that are not captured by

Fig. 3. Overview of estimation results using alternative datasets and standard errors (10% significance level).
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the fixed effects. We consider these concerns in the next two subsections.

4.2.1. Variation in implementation quality for fuel-saving technologies?
The analyses above are based on the presence of the technology; negative effects associated with the presence of the technology

may be due to an inherent property of the technology. In contrast, specification (2) seeks to distinguish between problems that are
inherent to a technology, and problems associated with particular use, installation of the technology, or other adjustments made to
the vehicle with the technology. We do so by including variables for both the presence of the technology (βk) and for a negatively
reviewed technology (αk).

Complete estimated results of αk, the coefficient for negatively reviewed technology k, are reported in Table 7, while complete
estimated results of βk, the coefficient for any mention of technology k, are in Appendix Table A.3. Summarized in Fig. 4, the results
using the pooled data and the Angrist and Pischke measure of precision find 57 out of 462 α sk are positive and statistically significant,
while five coefficients are negative and statistically significant. In addition, for βk, eight out 462 are positive and statistically sig-
nificant, substantially less than the 21 positive coefficients from estimating specification (1). Because a positive coefficient indicates a
fuel-saving technology (either mentioned (βk) or negatively reviewed (αk)) is associated with a negative review of an operational
characteristic, the results suggest that negatively reviewed technologies, instead of the presence of the technologies themselves, are
more likely to be associated with negative ratings of operational characteristics. The results suggest that vehicles that did not get
negative evaluations on fuel-saving technologies may have been able to implement the technologies without harm to operational
characteristics. We repeat, though, that these data are not sufficient to demonstrate causality. For instance, it is possible that
technologies are negatively reviewed most often in the context of a negatively reviewed operational characteristic.4

Using CVT as an example, Table 7 shows that eight of the 57 positive coefficients (and one of the 21 negative coefficients) of αk
are with CVT, and there are no positive coefficients (but two negative coefficients) of βk with CVT. One explanation for this finding is
that poor implementation of CVT (from the negative reviews of CVT in certain models, α )k , rather than CVT itself (from mention of
the technology, βk), is related to negative rating of operational characteristics. Recall that specification (1) found that the presence of
CVT was associated with negative ratings for five operational characteristics; specification (2) suggests that negatively evaluated
CVTs may contribute to negative ratings related to drivability, acceleration, noise, ride comfort, and fuel economy, as shown in
Table 7.

Similarly, negatively reviewed high speed automatic and turbocharging technologies are associated with negative ratings of 13
and 7 operational characteristics, respectively, while the presence of the two technologies shows little relationship to negatively
reviewed operational characteristics based on both specifications (1) and (2). This observation suggests that specification (2) may
provide a clearer signal of the difference between the effects of the presence of a technology, and the effects of a poorly reviewed
technology, on operational characteristics.

These results are consistent with Helfand et al. (2016)’s proposal that quality of implementation, rather than technologies
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Fig. 4. Overview of estimation results for variation in implementation quality (10% significance level).

4 For instance, one coded segment reads, “With the CVT and direct-injection engine technology new to the 2015 CR-V, some owners have reported
experiencing a vibration through the driver's seat, and unfortunately I’m among them. The subtle vibration is intermittent, but when it happens, it
does so while the crossover is idling” (Gale, 2015). This is coded negative for CVT, for GDI, and for general vibration. Here, the CVT is rated
negatively due to its association with vibration.
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themselves, is associated with vehicle qualities.

4.2.2. Potential model-by-class-by-year specific unobserved vehicle attributes
Another potential concern that could affect our findings is that fuel-saving technology put into vehicles might be systematically

related to other attributes or issues that are unobserved by researchers. To assess the concern, we adjust specification (2) by using
model-by-class fixed effects interacted with model year, instead of using make-by-year and class-by-year fixed effects.5 Coefficients of
αk and βk are identified within model-class-year variation in whether the fuel-saving technologies we examine are present or not.
These fixed effects control for all vehicle characteristics that stay constant for the model-class in a model year. For example, vehicle
characteristics in the error term in the previous specifications that are common to the Toyota Highlander standard SUVs in MY 2014
and would affect the operational characteristics will be controlled by these fixed effects separately from vehicle characteristics
common to Toyota Highlander small SUVs.

The inclusion of these fixed effects still does not completely address the potential for selection bias. For instance, if a CVT were put
into a trim that is already noisy, our estimates of βk would be biased upward for the relationship between powertrain noise and the
technology. In addition, these fixed effects will reduce the variation of fuel-saving technologies for some models. For instance, there is
no variation of hybrid technology within the model Toyota Prius C; the estimated results would be based on other models adopting
hybrid technology. We present the analysis for the purpose of a robustness check. If the results show a different pattern of the
relationships between fuel-saving technologies and operational characteristics, our findings above may be affected by selection bias.

Using model-by-class fixed effects interacting with model year, estimated results of adjusted specification (2) are similar to the
results in subsection 0. Here, 41 out of 462 coefficients of the negatively reviewed technologies (αk) are positive and statistically
significant, as reported in Table A.4, compared to 57 with the more limited fixed effects (in Table 7); as in the previous specification,
5 out of 462 coefficients of the presence of the technologies (βk) are positive and statistically significant, as reported in Table A.5.
Negatively rated CVT, turbocharging, and high speed automatic show a pattern of relationships with negative ratings of operational
characteristics consistent with the results in Table 7.

In sum, controlling for the model-class-year-specific effects provides a similar pattern of relationships between fuel-saving
technologies and operational characteristics. That is, positive and significant relationships between the presence of fuel-saving
technologies and negative rating of operational characteristics are a small proportion of the possible relationships, and are out-
numbered by the 18 negative and significant relationships. Also, we continue to find that negatively reviewed technologies, instead of
the presence of the technologies themselves, are more likely to be associated with negative ratings of operational characteristics. The
results suggest that there might be no serious selection bias, though we still cannot rule out a potential bias arising from the
possibility that the presence of a new technology is endogenous for a trim within a vehicle model.

5. Relationship of technologies and overall assessment of the vehicle

We have shown in the previous section that the presence of fuel-saving technologies is infrequently associated with negative
evaluations of operational characteristics; when there is a relationship, it is slightly more likely negative, implying hidden benefits,
than positive. Although some technologies show a positive relationship with several negative operational characteristics, problems
with implementation of the technologies may be a better explanation for the relationship than the existence of the technology.

It may also be useful to know how the technologies are associated with the overall summary evaluation of a vehicle – the
recommendation whether a vehicle is worth buying. Auto reviewers’ overall rating is usually highlighted after consideration of
vehicle characteristics and comparison with similar vehicles in the same vehicle segment. It is expected to summarize all positive and
negative impacts on vehicle quality, including any impacts not separately addressed in the review. The overall rating is expected to
matter for vehicle buyers’ decisions, as it provides a recommendation about whether it is reasonable or not to purchase the vehicle
among the models sharing similar features in the market.

In this section, we investigate the relationship between the overall rating and fuel-saving technologies, using a coded variable
denoting that the overall assessment provided by a reviewer is positive, negative, or mixed. We begin by substituting the left hand
side of specification (2) with I NegativeOverall( ), an indicator variable for whether the vehicle reviewed got a negative overall as-
sessment, to obtain the following specification:∑ ∑= + + + ∊I NegativeOverall α I NegativeTech β I Tech FixedEffects( ) ( ) ( )i t k k i k t k k i k t i t, , , , , , (3)

Columns (1a) and (1b) of Table 8 report the results of estimating specification (3) using the maximum of conventional and robust
standard errors as our measure of precision. We do not find evidence that the presence of fuel-saving technologies is positively related
to negative overall assessments, as shown in (1a). Instead, we find that the presence of three technologies – turbocharged, cylinder
deactivation, and high speed automatic – is associated with a reduced likelihood of a negative overall assessment. In addition, all
estimated coefficients are less than 0.1 in absolute value no matter whether they are statistically significant. The fairly small coef-
ficients indicate that the overall rating of a vehicle appears not to be responsive to the presence of the fuel-saving technologies.

Column (1b) of Table 8 shows six negatively reviewed technologies – low resistance tires, CVT, electronic power steering, hybrid,
high speed automatic, and turbocharged – are significantly correlated with negative overall assessments. The results again raise the
possibility that poorly implemented technologies (1b) in some vehicle models, instead of the technologies themselves (1a), are

5We use only specification (2) because specification (1) is nested in it.
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associated with an increased likelihood of a negative overall assessment.
Next, instead of using negatively reviewed technologies as controls in specification (3), we include the 22 negatively reviewed

operational characteristics as controls. A negative operational characteristic I NegativeOper( )i j t, , equals 1 if the operational char-
acteristic j was negatively reviewed, and equals 0 otherwise. It is sensible that negative operational characteristics would contribute
to negative overall qualitative assessment. If operational characteristics are correlated with the presence of the technologies, our
estimates of the technologies may be biased. We examine whether our technology estimates are robust by controlling for the potential
confounders.

Columns (2a) and (2b) of Table 8 report the estimated results of the revised specification. Conditional on the negatively reviewed
operational characteristics, the estimates of fuel-saving technologies shown in column (2a) are consistent with the results of column
(1a); the estimates are fairly small, and all of the statistically significant coefficients are negative. That is, the presence of turbo-
charged, cylinder deactivation, and diesel, are associated with a reduction in the likelihood of a hidden cost. The results continue not
to find the technologies themselves associated with negative overall evaluations.

Column (2b) of Table 8 reports that a negative overall review, conditional on the presence of the technologies, has a positive
association with ten negatively reviewed operational characteristics: steering feel, general drivability, general handling, acceleration
feel, acceleration capability, brake feel, powertrain noise, powertrain vibration, ride comfort, and fuel economy. The results not only
suggest that operational characteristics in the study are the major factors in a reviewer’s overall assessment, but suggest a potential
explanation for the association between negatively reviewed technologies and the negative overall rating shown in column (1b). In
particular, these results are consistent with a scenario that a negatively reviewed technology leads to a negatively reviewed op-
erational characteristic, which in turn leads to a negative overall assessment. Subsection 0 and Table 7 indicate that negatively
reviewed CVT and high speed automatic are positively correlated with several negatively evaluated operational characteristics re-
lated to handling, acceleration, braking, noise, ride comfort, and fuel economy. Negatively reviewed technologies may be associated
with negative overall assessment through their associated negative operational impacts.

In sum, we do not find evidence that the presence of technologies is associated with negative overall assessments of a vehicle’s
quality. Rather, it may be that the inclusion of the technologies in some vehicle models affects overall quality via their effects on
operational characteristics. With little evidence that the technologies by themselves are associated with negatively evaluated char-
acteristics, and somewhat stronger suggestions that quality of implementation, rather than technologies themselves, affect vehicle
characteristics, it appears that hidden costs are not an inevitable effect of fuel-saving technologies.

Table 8
Relationship between the presence of a fuel-saving technology, a negatively reviewed technology and operational characteristic, and the overall
assessment of the vehicle.

(1a) (1b) (2a) (2b)
Technology Presence of

Technology
Negative Review of
Technology

Presence of
Technology

Operational
Characteristics

Negative Review of Operational
Characteristics

Active Air Dam −0.02 0.00 0.00 Steering Feel 0.06***

Active Grill Shutters −0.08 −0.02 0.00 Cornering Ability −0.01
Active Ride Height −0.02 0.00 −0.02 General Drivability 0.15***

Low Resistance Tires −0.03 0.29* 0.08 General Handling 0.09***

Electronic Power Steering −0.02 0.08** −0.01 Acceleration Feel 0.07***

Turbocharged −0.04*** 0.12** −0.03* Acceleration Capability 0.08***

GDI −0.03 0.02 −0.03 General Acceleration 0.06
Cylinder Deactivation −0.07* −0.06 −0.07* Brake Feel 0.09***

Diesel −0.05 −0.08 −0.06* Stopping Ability 0.02
Hybrid −0.04 0.21** 0.00 General Braking −0.02
Plug-In Hybrid Electric 0.03 −0.05 −0.04 Tire−Road Noise 0.03
Full Electric −0.04 0.03 −0.05 Wind Noise 0.02
Stop-Start −0.03 −0.00 −0.01 Interior Noise 0.07
High Speed Automatic −0.04*** 0.19*** −0.00 Powertrain Noise 0.06***

CVT −0.05 0.23*** 0.01 General Noise 0.02
DCT −0.00 0.07 −0.00 Chassis Vibration −0.02
Elec Assist Or Low Drag

Brakes
−0.06 0.08 −0.05 Powertrain Vibration 0.11*

Lighting-LED −0.00 −0.09 −0.01 General Vibration −0.05
Mass Reduction −0.04 −0.16 −0.04 Ride Comfort 0.04**

Passive Aerodynamics −0.02 0.16 0.00 Fuel Economy 0.07***

Fuel Cell −0.06 0.00 0.05 Range −0.01
Charging 0.00

Notes: There are 2238 observations for the two specifications. Dependent variable for the two specifications is an indicator variable for negative
overall assessment. Independent variables of the first specification include the presence of the technologies (column 1a) plus negatively reviewed
technologies (column 1b). Independent variables of the second specification include the presence of the technologies (column 2a) plus negatively
reviewed operational characteristics (column 2b). Number in a cell indicates the estimated coefficient. All specifications include a set of fixed effects,
including year, website, vehicle class, vehicle make, year-by-website, year-by-class, and year-by-make. Asterisks indicate the level of statistical
significance using the maximum of robust standard errors and conventional standard errors as the measure of efficiency: 10% (*), 5% (**), and 1%
(***) levels.
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6. Limitations

The limitations of this analysis are the same as those in Helfand et al. (2016). First, this study relies on opinions of professional
auto reviewers rather than vehicle buyers. We suspect that auto reviewers are more likely to notice negative vehicle characteristics
and operational impacts and better able to make comparisons across vehicles than the general vehicle buyers. If so, this study may
overestimate negative impacts. Second, our analysis is short-run in that we do not capture longer-term issues, such as reliability or
maintenance, which are not experienced by auto reviewers. Third, vehicle models that have undergone a significant redesign may be
more likely to be selected to be reviewed. If redesigned vehicles are more likely to adopt new fuel-saving technologies, our data may
over-represent the presence of new technologies in MY 2014 and MY 2015. Fourth, as discussed elsewhere in this paper, our data are
not sufficient to consider our results causal. Finally, and perhaps most importantly, this study relies on the assumption that auto
reviews contain useful information and are not systematically biased. The fact that results are very similar between MY 2014 and MY
2015 suggests that reviewers are, at a minimum, consistent rather than random in their evaluations.

Also, it is important to note that, for some rarely mentioned technologies with small sample sizes in our data, this paper cannot
answer questions about their relationships with operational characteristics. Nevertheless, we demonstrate that the use of the max-
imum of robust and conventional standard errors can affect conclusions drawn from the analysis, and may be especially influential for
interpretation when sample sizes are small.

7. Conclusion

Energy and transportation policies have been enacted to improve vehicle fuel economy and reduce vehicle GHG emissions in
many countries, including the U.S. As a variety of fuel-saving technologies have been implemented under the standards, under-
standing the potential hidden costs and benefits due to adoption of fuel-saving technologies contributes to understanding the full
impacts of these policies.

In this paper, using professional auto reviewers’ evaluations of MY 2014 and 2015 vehicles, we find that fewer than 20% of
evaluations of fuel-saving technologies in individual vehicle models were negative. We then estimate the relationships of a variety of
fuel-saving technologies to operational characteristics. Our results, which serve to check and validate the findings of Helfand et al.
(2016), suggest that it is possible to implement these technologies without imposing hidden costs. In addition, they suggest that
problems with implementation in some vehicle models, rather than something inherent in the technologies, may contribute to
occasional negative operational impacts.

This paper also examines the association of the technologies with auto reviewers’ overall assessments of vehicle quality. The
results similarly do not provide evidence that the presence of the technologies leads inherently to negative overall ratings, but rather
that negatively reviewed technologies in some vehicle models are associated with negative overall ratings. Further, the overall
assessment of vehicle quality is more strongly associated with reviewers’ evaluation of vehicle characteristics than the presence of the
technologies. Our results suggest the importance of operational characteristics for vehicles’ overall assessment.

Thus, based on MY 2014 and MY 2015 vehicles, fuel-saving technologies appear to have been adopted without significant tra-
deoffs for other operational characteristics. Rather than technologies themselves, the quality of implementation of the technologies in
some vehicles is more likely to be associated with the quality of operational characteristics and the overall assessment. If problems
arise due to implementations, rather than the inherent natures of the technologies, then it appears that automakers have the ability to
mitigate any problems arising with these fuel-saving technologies.

This paper explores whether negative operational characteristics were associated with fuel-saving technology from the per-
spective of vehicle consumers who operate the vehicles. On the production side, successful deployment of fuel-saving technology
involves costs, strategies, and the diligence of the manufacturer. This analysis suggests that manufacturers have, for the most part,
risen to this challenge.
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