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ABSTRACT
Nowadays a huge number of user-generated videos are uploaded to
social media every second, capturing glimpses of events all over the
world. These videos provide important and useful information for
reconstructing events like the Las Vegas Shooting in 2017. In this
paper, we describe a system that can localize the shooter location
only based on a couple of user-generated videos that capture the
gunshot sound. Our system first utilizes established video analy-
sis techniques like video synchronization and gunshot temporal
localization to organize the unstructured social media videos for
users to understand the event effectively. By combining multimodal
information from visual, audio and geo-locations, our system can
then visualize all possible locations of the shooter in the map. Our
system provides a web interface for human-in-the-loop verification
to ensure accurate estimations. We present the results of estimat-
ing the shooter’s location of the Las Vegas Shooting in 2017 and
show that our system is able to get accurate location using only
the first few gunshots. The full technical report, all relevant source
code including the web interface and machine learning models are
available 1.
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1 INTRODUCTION
With the growing use of camera phones all over the world, public
events can now be captured and shared via social media instantly.
In a big public event with a large crowd of people, video recordings
would capture different moments of the event at different posi-
tions from different perspectives. These large amount of videos
enable research in semantic concept detection [10, 16–18], video
captioning [5, 6], intelligent question answering [4, 9, 13], 3D event
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Figure 1: Visualization results of shooter localization using
the our system for LasVegas Shooting in 2017. It is computed
based on only three video recordings as marked on the map
and single gunshot. The red and yellowdonut is the heatmap
probability of the shooter location in horizontal distance.
Our system also estimates that the shooter is likely to be
within the light blue hyperbola lines. As we see, the over-
lapping area of all estimations points to the shooter’s actual
location - the north wing of the Mandalay Bay Hotel.

reconstruction [1, 11], and activity detection [2, 14]. These videos
also provide important information for the authorities if a public
safety event occurs. For example, Boston Marathon Bombing, Dal-
las Shooting and Las Vegas Shooting all have hundreds or even
thousands of attendees upload videos of the event that could be
useful for first-responders and investigators. However these con-
sumer videos are captured “in the wild", often with few metadata
that we could recover once they are uploaded to social media [3].
These videos are noisy and sometimes with low quality. Analysts
often need to go over a large number of these videos as useful
information about the event may spread across different segments
of different videos.

In this paper, we build the shooter localization system to solve
this problem, which utilizes machine learning models like video
synchronization [12] for event reconstruction [1, 8, 11] and gun-
shot detection [15, 19, 20] to help analysts quickly find relevant
video segments to look at. we present how the our system can
geo-localize the shooter given a few video recordings that only
captures the gun shot sound, as shown in Figure 1. Our system first
uses automatic video synchronization [12] and a web interface for
manual refinements to put all unstructured videos into a global
timeline. Our interface allows users to engage with multimodal
information effectively to understand the event. Then our system
performs automatic gunshot detection [15] to temporally localize
the gunshot segments within each video. Based on the supersonic
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Figure 2: Video synchronization into a global timeline.
bullet physics [21] and a more general sound travel physics as de-
scribed in Section 3, our system identifies the exact time of each
video hearing the shockwave sound and muzzle blast sound, then
computes the possible distances and directions of the shooter from
each of the videos. After putting each video on the map, our system
can visualize all possible areas of the shooter location.

Our system provides the first open source frameworkwith human-
in-the-loop paradigm to solve this problem. Our contributions are
three folds. Firstly, we propose a framework that is physically sound
and has been verified on real events for shooter localization using
only social media videos without any metadata. Secondly, we pro-
vide a web interface that allows human verification at each step
to ensure the accuracy of the estimations. Last but not least, we
point out important areas within our framework that call for future
researchers and engineers to build models to reduce human efforts
and improve the system.

This paper is organized as follows. In Section 2, we describe the
video synchronizationmodule. In Section 3, we describe the gunshot
detection system and how we can estimate shooter location based
on gunshot sound. In Section 4 we explain our system architecture.
In Section 5 we discuss the future directions to improve the system.

2 VIDEO SYNCHRONIZATION
We don’t assume the videos from social media have any metadata
like global time stamps or GPS that we could use. Therefore we will
need put the videos into a global timeline first. After user uploads all
relevant videos to our system, an automatic video synchronization
model is utilized to organize the videos. Currently, the automatic
system synchronizes the videos using sound. Please refer to [12]
for more technical details. However, in order to use these videos
for shooter localization, we need the videos synchronized based
on visual cues, as light travels much faster than sound. Our system
provides an easy-to-use interface, in which users can manually ver-
ify and synchronize pairs of videos as precise as at the frame-level.
Assuming the users match the video pair to the exact frame pairs
and the video FPS is 30, the error margin of the synchronization is
within 33 milliseconds. The pairwise synchronization results are
aggregated automatically into global results as shown in Figure 2.
Users can play the videos in a global timeline to understand the
events in a coherent manner.

3 SHOOTER LOCALIZATION
3.1 High-level Design
Now that we have all the videos put into a global timeline, we could
estimate the shooter distances from each of the videos based on
Section 3.2 if the bullet is supersonic and for each pair of the videos
we could estimate the shooter directions and locations based on the

Figure 3: A shadowgraph of a supersonic bullet. Taken from
wikipedia.

Figure 4: The physics model of how the shockwave sound
andmuzzle blast sound of a supersonic bullet reach the cam-
era. Taken from [21].

Figure 5: Method 1 math notation.

time differences of the muzzle blast sound reaching the two videos
as explained in Section 3.3. These aforementioned estimations are
computed for each video (Method 1) and each pair of videos (Method
2), for one single gunshot. Each estimation provides an area of
possible locations and the area where all estimations overlap is the
most likely location of the shooter. Users can apply such estimations
to multiple gunshots to get even more accurate localization results.

3.2 Method 1
This method requires the bullet to be supersonic. The main idea is
that a supersonic bullet creates two distinctive sounds, shockwave
sound and muzzle blast sound, if identified temporally, one can
use the time difference of the two sound reaching the camera to
estimate the distance between the camera and where the bullet is
fired from.
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Figure 3 shows a shadowgraph of a supersonic bullet. The shad-
owgraph basically shows how the air looks like when a bullet is
travelling beyond the speed of sound. As we see, the bullet creates a
cone-like shockwave wall that expands as the bullet travels. When
this wall arrives the camera, it records the shockwave sound. The
physics model of how the shockwave sound and muzzle blast sound
of a supersonic bullet reach the camera is shown in Figure 4. For
more details, please refer to [21].

Based on the physics model, we can derive the computation
graph as in Figure 5. Suppose Vs is the speed of sound, Vb is the
speed of the bullet, α is the angle between the camera to the shooter
and the bullet trajectory. Tdif f is the time difference between the
camera records the shockwave sound and the muzzle blast sound.
For the camera to record the shockwave sound, after the bullet
is fired, the bullet travels T1 under Vb to point X, and then the
shockwave travels at speed of sound Vs for time T2 to reach the
camera. We have:

AB = VbT1 +VsT2sinθ = Vs (T1 +T2 +Tdif f )cosα

BM = VsT2sinθ = Vs (T1 +T2 +Tdif f )sinα
(1)

Hence, we have:
(Vb −Vscosα)T1 + (Vssinθ −Vscosα)T2 = VsTdif f cosα

(−Vssinθ )T1 + (Vssinθ −Vssinα)T2 = VsTdif f sinα
(2)

In Eq 2, the unknown variables are T1 and T2. Based on the two
equationswe can solveT1 andT2. Then the distance from the camera
to the shooter, i.e. AM, could be computed by Vs (T1 +T2 +Tdif f ).
Currently in our system, we ask users to input the range of the speed
of soundVs , the speed of the bulletVb and the angleα . In practise the
range of α is usually set from zero to fifteen, which already covers
30 degrees of freedom since the graph could be flipped. θ is given
by arcsin(Vs/Vb ) according to [21]. Tdif f is currently marked by
the users, aided by a spectrogram of the gunshot sound in the web
interface. Since we have a range of Vs , Vb and α , we use the Monte
Carlo method (random sampling) to uniformly sample a value for
each variables at a time to getT1 andT2, repeat many times (10k for
example) and then report back the minimum, maximum and mean
of the distance D. Please refer to the code for more details. Note
that the distance is direct distance from the camera to the shooter.
In order to have accurate visualization on the map which requires
horizontal distanceDh , users can enter the elevation of the shooter
De , and the horizontal distance is computed by Dh =

√
D2 − De

2.
Hence we get a donut-like possible area of the shooter for each
video as shown in Figure 7. In future work, we could automate the
process of gettingVb by automatic gun type detection based on the
gunshot sound. We could get the speed of sound if we can estimate
the temperature of the event location.

It is important to note that we assume the bullet travels at con-
stant speed Vb until the camera hear the shockwave sound. Clearly
this assumption is bad since bullet speed may drop to its half after
traveling for 700 meters. Currently in the our system, we recom-
mend users to use a wider range of bullet speed to compensate for
this assumption.

To sum up, Method 1 operates under the assumption that the
bullet is supersonic, constant speed, and the users can reliably mark
out the time of the shockwave sound and the muzzle blast sound
on the spectrogram of the video.

Figure 6: Example of gunshot spectrogram and power graph
on the web interface.

Figure 7: Example shooter localization using Method 1.

Figure 8: Hyperbola math notation. Taken from wikipedia.
3.3 Method 2
This method applies to a pair of videos that capture the muzzle
blast sound of the gunshot, which includes all types of gunshot
sound or sound in general. Method 2 makes use of the definition of
a hyperbola as shown in Figure 8. The points (P) anywhere on the
hyperbola satisfy that | |PF2 |−|PF1 | | = 2a, and satisfy |PF2 |−|PF1 | =
2a if we only consider points on the right part of the hyperbola.
In the shooter localization case, for each pair of videos, since we
have synchronized them and mark the muzzle blast sound in the
videos’ timeline, we know the time difference between video 1 and
video 2 hearing the gunshot Tdif f . Given the speed of sound Vs ,
essentially we can compute the value of 2a = VsTdif f . After we
put the two video camera locations on the map (F1 and F2), we can
draw a hyperbola, where the shooter is likely on.

As shown in Figure 9, we can see three hyperbola lines. Recall in
Section 2 we mention that the error margin of the video synchro-
nization is 33 milliseconds, given that the frame matching could be
off by half a frame. Also, currently in our system we ask users to
enter the range of the speed of sound. Therefore we draw three hy-
perbola lines using three different value of 2a:Vsmin (Tdif f −0.033),
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Figure 9: Example shooter localization using Method 2.
(Vsmin +Vsmax )(Tdif f − 0.033)/2.0 and Vsmax (Tdif f + 0.033). The
second hyperbola is green colored while the others are light blue.
The shooter is possible to be within the light blue lines, with the
most likely locations are on the green line.

To sum up, method 2 relies on accurate video synchronization,
camera locations and markings of the muzzle blast sound.

3.4 Comparing Method 1 and 2
When testing the system in real-world scenario like the Las Vegas
Shooting, we find that method 1 is sensitive to the timing of shock-
wave sound and the muzzle blast sound, i.e., method 1 requires that
Tdif f to be accurate, while method 2 estimation is sensitive to the
camera locations. Meanwhile method 1 is not sensitive to the errors
of the camera locations.

3.5 Camera Locations
Currently in our system, we provide a Google Map interface and
ask the users tomanually mark the camera locations at the time
of the video hearing the gunshots. In future work, we could utilize
Google Street View images or 45 degree view images to automati-
callymatch video frames to a GPS hencewe get the camera locations
without manual labor.

4 SYSTEM ARCHITECTURE
We utilize production-ready web server - Apache server for serving
the web requests and a flexible back-end Python server to leverage
multi-CPU and multi-GPU computing cluster. Future researchers
could plug their machine learning components into the system
seamlessly and efficiently. Please refer to the Github site and the
technical report [7] for more details.

5 CONCLUSION AND FUTUREWORK
In this paper, we present our shooter localization system.We demon-
strate that our framework combined with machine learning and
physics models can help geo-localize the shooter using only un-
structured videos from social media. We show that with only three
videos, we are able to correctly localize the shooter location in the
case of Las Vegas Shooting in 2017. Currently our shooter local-
ization system has many parts that require human operation. In
future work, we plan to make those parts automatic.
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