Regulatory Compliance

Thermo Fisher Scientific performs complete testing and evaluation of its products to ensure full compliance with applicable domestic and international regulations. When the instrument is delivered to you, it meets all pertinent electromagnetic compatibility (EMC) and safety standards.

Changes that you make to the instrument might void compliance with one or more of these EMC and safety standards. Changes to the instrument include replacing a part or adding components, options, or peripherals not specifically authorized and qualified by Thermo Fisher Scientific. To ensure continued compliance with EMC and safety standards, replacement parts and additional components, options, and peripherals must be ordered from Thermo Fisher Scientific or one of its authorized representatives.

FCC Compliance Statement

THIS DEVICE COMPLIES WITH PART 15 OF THE FCC RULES. OPERATION IS SUBJECT TO THE FOLLOWING TWO CONDITIONS: (1) THIS DEVICE MAY NOT CAUSE HARMFUL INTERFERENCES, AND (2) THIS DEVICE MUST ACCEPT ANY INTERFERENCE RECEIVED, INCLUDING INTERFERENCE THAT MAY CAUSE UNDESIRED OPERATION.

CAUTION Read and understand the various precautionary notes, signs, and symbols contained inside this manual pertaining to the safe use and operation of this product before using the device.

Notice on Lifting and Handling of Thermo Scientific Instruments

For your safety, and in compliance with international regulations, the physical handling of this Thermo Fisher Scientific instrument requires a team effort to lift and/or move the instrument. This instrument is too heavy and/or bulky for one person alone to handle safely.
Notice on the Proper Use of Thermo Scientific Instruments

In compliance with international regulations: This instrument must be used in the manner specified by Thermo Fisher Scientific to ensure protections provided by the instrument are not impaired. Deviations from specified instructions on the proper use of the instrument include changes to the system and part replacement. Accordingly, order replacement parts from Thermo Fisher Scientific or one of its authorized representatives.

For manufacturing location, see the label on the instrument.
WEEE Compliance

This product complies with the European Union’s Waste Electrical & Electronic Equipment (WEEE) Directive 2002/96/EC. It is marked with the following symbol:

Thermo Fisher Scientific is registered with B2B Compliance (B2Bcompliance.org.uk) in the UK and with the European Recycling Platform (ERP-recycling.org) in all other countries of the European Union and in Norway.

If this product is located in Europe and you want to participate in the Thermo Fisher Scientific Business-to-Business (B2B) Recycling Program, send an email request to weee.recycle@thermofisher.com with the following information:

- WEEE product class
- Name of the manufacturer or distributor (where you purchased the product)
- Number of product pieces, and the estimated total weight and volume
- Pick-up address and contact person (include contact information)
- Appropriate pick-up time
- Declaration of decontamination, stating that all hazardous fluids or material have been removed from the product

IMPORTANT This recycling program is *not* for biological hazard products or for products that have been medically contaminated. You must treat these types of products as biohazard waste and dispose of them in accordance with your local regulations.
Conformité DEEE

Ce produit est conforme avec la directive européenne (2002/96/EC) des Déchets d’Equipements Electriques et Electroniques (DEEE). Il est marqué par le symbole suivant:

WEEE Konformität

Dieses Produkt entspricht der EU Waste Electrical & Electronic Equipment (WEEE) Richtlinie 2002/96/EC. Es ist mit dem folgenden Symbol gekennzeichnet:

Contents

Preface ... xi
Related Documentation .. xii
Cautions and Special Notices xiii
Contacting Us ... xv

Chapter 1 Introduction .. 1
Instrument Hardware and Software Components and Connections 2
Autosampler Tray Compartment 3
External Solvent Lines .. 4
Back Panel ... 5
Column Setup Options .. 7
 Two-Column Setup .. 7
 One-Column Setup .. 8
Solvent System Components 10
 Syringe Pumps .. 10
 Pressure Sensors .. 11
 Flow Sensors .. 11
 Six-Port Rotary Valves .. 12
 Check Valve Assemblies 14
 Mixing Tee .. 14
Predefined Steps for Sample Runs 15
 Overview of a Sample Run 15
 Sequence of Events for Each Step of a Sample Run 18
Pump Flow Control .. 31
 Automatic Flow Control System 31
 Intelligent Flow Control System 32
 Load Speed Protection System 33

Chapter 2 Installing the EASY-nLC Instrument 35
Lifting Instructions .. 36
Laboratory Requirements ... 37
 Benchtop Dimensions and Weight Capacity 37
Internet Access ... 39
Power and Fuses .. 39
Temperature and Humidity .. 39
Contents

<table>
<thead>
<tr>
<th>Back Panel Connections</th>
<th>Connecting to Line Power</th>
<th>Connecting to the Mass Spectrometer through Contact Closure</th>
<th>Connecting the Ethernet Communication Cables</th>
<th>Attaching a Mouse and Keyboard to the USB Connections</th>
<th>Attaching Add-on Devices through the P-Bus and RS-232 Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 3 Integrated Instrument Control Software

<table>
<thead>
<tr>
<th>Turning On the EASY-nLC Instrument</th>
<th>Using the Touch Screen</th>
<th>Using the Buttons</th>
<th>Entering Alphanumeric Text</th>
<th>Using Tables and Input Fields</th>
<th>Using the Interactive Graphical Controls</th>
<th>Viewing the System Status</th>
<th>User Interface Layout and Application Menu Structure</th>
<th>Home Menu</th>
<th>Batch Setup Menu</th>
<th>Method Setup Menu</th>
<th>Maintenance Menu</th>
<th>Configuration Menu</th>
<th>Logging In to the EASY-nLC Instrument</th>
<th>Closing Down the EASY-nLC Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Chapter 4 Configuring the EASY-nLC System

<table>
<thead>
<tr>
<th>Setting Up Communication with the Mass Spectrometer</th>
<th>Setting Up the Local Area Network Connection</th>
<th>Modifying User Permissions</th>
<th>Changing the Administrator Password</th>
<th>Creating New User Accounts</th>
<th>Changing Your Password from the Exit Menu</th>
<th>Modifying the Time Settings</th>
<th>Purging the Computer Hard Drive</th>
<th>Setting Up the Properties for the HPLC Device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 5 Preparing the EASY-nLC Instrument for Use

<table>
<thead>
<tr>
<th>Daily and Weekly Maintenance Tasks</th>
<th>Preparing the Solvent Bottles and Waste Containers</th>
<th>Preparing the Solvents</th>
<th>Preparing the Solvent A and B Bottles</th>
<th>Installing the Autosampler Wash Bottles and Waste Beaker</th>
<th>Executing Maintenance Scripts</th>
<th>Purging and Flushing the Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Preface

This guide describes how to operate and maintain the Thermo Scientific™ EASY-nLC™ nanoflow liquid chromatography (LC) instrument by using the integrated touch-screen application.

Before you turn on the instrument for the first time, read the first three chapters in this guide. Before you run your first sample, review the chapters that describe how to configure the software, prepare the system for operation, and submit your first sample set (batch).

Contents

- Related Documentation
- Cautions and Special Notices
- Contacting Us

To suggest changes to the documentation or to the Help

Complete a brief survey about this document by clicking the button below. Thank you in advance for your help.
Related Documentation

In addition to this guide, Thermo Fisher Scientific provides the following documents for the EASY-nLC instrument as PDF files:

- *EASY-nLC 1200 User Guide for the Xcalibur Data System (version 2.1 or later)*
- *EASY-nLC 1200 Preinstallation Requirements Guide*
- *EASY-nLC 1200 Troubleshooting and Maintenance Guide*
- *Safety and Regulatory Guide*

The EASY-nLC 1200 also ships with a printed copy of the *Safety and Regulatory Guide*. This guide contains important safety information about Thermo Scientific liquid chromatography (LC) and mass spectrometry (MS) systems. Make sure that all lab personnel have read and have access to this document.

You can find the EASY-nLC Series manuals in the following locations:

- The USB flash drive provided in the EASY-nLC accessory kit
- The data system computer

❖ **To view the product manuals on the data system computer**

Choose Start > All Programs > Thermo Instruments > Manuals > LC Devices > Thermo.

❖ **To view the EASY-nLC Help**

- From the EASY-nLC view of the Instrument Setup window, choose Help > Thermo EASY-nLC Help to open the Help to the Welcome topic.
- To view the Help topic for the current view, page, or dialog box, press the F1 key for information about setting parameters. Or, from the EASY-nLC view of the Instrument Setup window, choose Help > Help On Current Item.

For more information, visit www.thermoscientific.com.
Cautions and Special Notices

Make sure to follow the safety practices presented in this guide, and observe the safety and special notices that appear in boxes.

Observe all written safety precautions during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument and might result in damage to the instrument, personal injury, or loss of life.

Special Notices

The following two stickers appear on the EASY-nLC instrument:

This sticker warns you that the instrument includes a sharp needle and moving parts that are accessible to the operator. To prevent personal injury or damage to parts of the EASY-nLC instrument, take care when loading samples into the instrument’s tray compartment.

This sticker alerts you to consult this manual for instructions on how to operate the instrument.

The safety and special notices in the documentation include the following:

- **CAUTION** Highlights hazards to humans, property, or the environment. Each CAUTION notice is accompanied by an appropriate CAUTION symbol.

- **CAUTION** Highlights electrical hazards to humans or property.

- **CAUTION** Highlights a sharp object hazard to humans.
CAUTION Highlights an eye hazard to humans.

CAUTION Highlights a chemical hazard to humans, property, or the environment.

CAUTION Highlights lifting hazards.

IMPORTANT Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the system.

Note Highlights information of general interest.

Tip Highlights helpful information that can make a task easier.

IMPORTANT General Residual Hazards

WARNING—Biohazard Human-sourced material, for example microorganisms, cell cultures, tissues, body fluids, and other biological agents can transmit infectious diseases. To avoid infections with these agents:

• Assume that all biological substances are at least potentially infectious.

• Wear personal protective equipment as required by the hazard and follow good laboratory practice.

• Dispose of bio-hazardous waste in an environmentally safe manner that is consistent with local regulations. Follow a regulated, approved waste disposal program.
Contacting Us

There are several ways to contact Thermo Fisher Scientific for the information you need. You can use your smartphone to scan a QR code, which opens your email application or browser.

<table>
<thead>
<tr>
<th>Contact us</th>
<th>Customer Service and Sales</th>
<th>Technical Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(U.S.) 1 (800) 532-4752</td>
<td>(U.S.) 1 (800) 532-4752</td>
</tr>
<tr>
<td></td>
<td>(U.S.) 1 (561) 688-8731</td>
<td>(U.S.) 1 (561) 688-8736</td>
</tr>
<tr>
<td></td>
<td>us.customer-support.analyze@thermofisher.com</td>
<td>us.techsupport.analyze@thermofisher.com</td>
</tr>
</tbody>
</table>

- To find global contact information or customize your request
 2. Click Contact Us, select the Using/Servicing a Product option, and then type the product name.
 3. Use the phone number, email address, or online form.

- To find product support, knowledge bases, and resources
 Go to www.thermoscientific.com/support.

- To find product information
 Go to www.thermoscientific.com/lc-ms.

Note To provide feedback for this document:
- Send an email message to Technical Publications (techpubs-lcms@thermofisher.com).

- To order consumable and spare parts for the EASY-nLC instrument
 For the EASY-nLC 1200 instrument, go to www.thermoscientific.com/nanoLCMS
Introduction

The EASY-nLC instrument consists of a compact binary liquid chromatography instrument that provides split-free flows down to the low nanoLiter/min range, an autosampler that can hold standard sample vials and microtiter plates, and a built-in instrument control application with a touch-screen interface.

The EASY-nLC 1200 instrument operates in the ultra-high-performance pressure range of 0 to 1200 bar (see Figure 1).

Figure 1. EASY-nLC 1200

To familiarize yourself with the EASY-nLC instrument, read this chapter.

Contents

- Instrument Hardware and Software Components and Connections
- Autosampler Tray Compartment
- External Solvent Lines
- Back Panel
- Column Setup Options
- Solvent System Components
- Predefined Steps for Sample Runs
- Pump Flow Control
Instrument Hardware and Software Components and Connections

The EASY-nLC instrument consists of the following hardware and software components (see Table 1).

Table 1. EASY-nLC instrument components

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating pressure range</td>
<td>1 to 1200 bar</td>
</tr>
<tr>
<td>Pumps</td>
<td>3 high-pressure pumps</td>
</tr>
<tr>
<td>Pressure sensors</td>
<td>3 pressure sensors, one for each pump</td>
</tr>
<tr>
<td>Valves</td>
<td>4 high-pressure rotary valves, 4 check valves</td>
</tr>
<tr>
<td>Flow sensors</td>
<td>2 nano-flow sensors</td>
</tr>
<tr>
<td>Autosampler:</td>
<td>• Holds one microtiter plate (96 or 384 wells) plus an additional 6 vials or</td>
</tr>
<tr>
<td></td>
<td>one 6 × 8 vial adapter plus an additional 6 vials.</td>
</tr>
<tr>
<td></td>
<td>• Holds four liquid containers for solvents, rinse, and waste.</td>
</tr>
<tr>
<td></td>
<td>• Can be cooled to a maximum of 20 °C [68 °F] below ambient temperature.</td>
</tr>
<tr>
<td>Computer</td>
<td>Embedded computer</td>
</tr>
<tr>
<td>Monitor</td>
<td>Pressure sensitive screen that you can use with gloves</td>
</tr>
<tr>
<td></td>
<td>Screen size: 12.1 in. (30.7 cm)</td>
</tr>
<tr>
<td></td>
<td>Resolution: 800 × 600 pixels</td>
</tr>
<tr>
<td>Mains power</td>
<td>120/230 Vac, 50/60 Hz, 250 W</td>
</tr>
</tbody>
</table>

Software

EASY-nLC stand-alone, touch-screen application (version 4.0)
Installing the EASY-nLC instrument as part of an LC/MS system requires only four connections:

- Solvent outlet connection to the mass spectrometer’s ion source
- Power cable connection to a grounded line power source
- Contact closure connection between the EASY-nLC instrument and the mass spectrometer (see “Connecting to the Mass Spectrometer through Contact Closure” on page 42)
- Ethernet connection between the EASY-nLC instrument’s built-in computer and an Internet access port (see “Setting Up the Ethernet Connection to the Support Server” on page 47)

To control the EASY-nLC instrument with the Thermo Xcalibur™ data system or Thermo Scientific application, you must also connect the EASY-nLC instrument to the data system computer.

Autosampler Tray Compartment

Figure 2 shows the tray compartment and the waste beaker for the ASC autosampler model. You can open the tray compartment door manually or by using the touch-screen controls.

Figure 2. Tray compartment for the current ASC model (viewed from above)

The tray compartment holds the sample tray and the wash bottles. The tray compartment for the ASC model holds an additional six vials. The compartment to the right of the tray compartment holds the waste beaker.

The autosampler draws solvent from wash bottle W3 to perform a standard wash and ejects the solvent into wash bottle W4, which contains the needle wash insert. The autosampler can also perform a custom wash using the solvents from wash bottles W1–W3.
External Solvent Lines

Two PEEKsil™ or nanoViper™ solvent lines exit from the slot in the right side instrument panel, and two low-pressure Teflon™ solvent lines exit through the solvent bottle holder on the top of the instrument. The Column Out line connects to the column assembly’s inlet, and the Waste In line connects to the column assembly’s venting Tee. The low-pressure solvent lines connect to the solvent A and solvent B reservoir bottles.

Note To use LC columns that have bare fused-silica ends with the EASY-nLC 1200 instrument, order the UHPLC Liquid Junction Kit. This kit contains modified Column Out and Waste In lines as well as the appropriate fittings and unions for 360 μm OD tubing. For information about installing the modified Column Out and Waste In lines, refer to the *EASY-nLC Series Troubleshooting and Maintenance Guide*. For information about the column setups for these types of LC columns, see “Setting Up a Column Assembly with Fused-Silica Columns” on page 98.

Figure 3 shows the right side panel of the EASY-nLC 1200 instrument.

Figure 3. Column Out and Waste In solvent lines and low-pressure, Teflon solvent lines
The connections for system communication (as part of an LC/MS system), contact closure, and line power are on the instrument's back panel (see Figure 4).

Figure 4. Back panel of the EASY-nLC 1200 instrument shipped from the factory in San Jose, California, U.S.A.
Table 2 lists the function of each back panel element.

Table 2. Back panel elements from top to bottom and left to right

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td>Port for keyboard or mouse or removable USB storage device, two (2) provided</td>
</tr>
<tr>
<td>LAN</td>
<td>For 10/100/1000 MB/sec Ethernet connection</td>
</tr>
<tr>
<td>RS-232</td>
<td>For communication with add-on devices, for example a syringe drive</td>
</tr>
<tr>
<td>MONITOR</td>
<td>Output for connection of external display</td>
</tr>
<tr>
<td>P-BUS</td>
<td>For communication with add-on devices</td>
</tr>
<tr>
<td>IN/OUT pins</td>
<td>Contact closure (primarily for communication with the mass spectrometer)</td>
</tr>
<tr>
<td>LAN MAC ADDRESS</td>
<td>MAC address of the embedded computer (Gives the EASY-nLC instrument a unique network identifier on your local network.)</td>
</tr>
<tr>
<td>I/O</td>
<td>Power switch</td>
</tr>
<tr>
<td>Fuse holder below</td>
<td>Replaceable fuse ratings:</td>
</tr>
<tr>
<td>I/O switch</td>
<td>• For 120 V, T 5 AL, 250 V</td>
</tr>
<tr>
<td></td>
<td>• For 230 V, T 2.5 AL, 250 V</td>
</tr>
<tr>
<td>S/N</td>
<td>Instrument serial number</td>
</tr>
<tr>
<td>P/N</td>
<td>Product order code</td>
</tr>
</tbody>
</table>
Column Setup Options

Two solvent lines exit from the right side of the instrument. Behind the instrument's right panel, the solvent line labeled Column Out connects to port 4 of valve S, and the solvent line labeled Waste In connects to port 2 of valve W.

The fittings and columns that ship with the EASY-nLC instruments are suitable for the Nanospray Flex™ ion source. If your LC/MS system has an EASY-Spray™ ion source, use an EASY-Spray column and a precolumn with nanoViper fittings to create a two-column assembly (see Figure 80 on page 115). For information about setting up the column assemblies for the Nanospray Flex and EASY-Spray ion sources, see "Setting Up the Column Assembly" on page 95.

You can connect the EASY-nLC instrument and enable the EASY-nLC software for these column configurations:

- “Two-Column Setup,” next section
- “One-Column Setup” on page 8

Two-Column Setup

A two-column setup consists of a precolumn and an analytical column.

Tip When you install the two-column assembly, make sure that the One Column Setup check box is clear in the EASY-nLC device section on the Devices page of the Maintenance menu (see “Setting Up the Properties for the HPLC Device” on page 80).

When the One Column Setup check box is clear (not selected), valve W moves to position 1–6 during the sample loading step. Excess solvent A exits the venting Tee and passes through valve W to the waste beaker.

Figure 5 shows the two-column assemblies for the Nanospray Flex ion source and the EASY-nLC 1200 instrument, respectively.

Note The EASY-nLC 1200 instrument ships with nanoflow LC columns for both ion sources. When installing the EASY-nLC instrument, a Thermo Fisher Scientific field service engineer uses the appropriate column to test the instrument performance.
One-Column Setup

A one-column setup consists of an analytical column, the venting Tee, and a union and sleeve connection to an emitter. The Column Out solvent line and the analytical column connect to parallel legs of the venting Tee. The Waste In solvent line connects to the perpendicular leg of the Tee.

Tip When you install a one-column setup, select the **One Column Setup** check box in the EASY-nLC device section on the Devices page of the Maintenance menu (see “Setting Up the Properties for the HPLC Device” on page 80).

When the One Column Setup check box is selected, valve W remains in the 1–2 position during the sample loading step. Excess solvent A exits through the emitter tip.

IMPORTANT Make sure that you use the venting Tee for the one-column setup as well as for the two-column setup. Inside the instrument housing, the other end of the Waste In line connects to port 2 of valve W. During the Prepare Gradient step of a sample run, valve W provides pressurized venting to the solvent system through the venting Tee. When the Waste In line is not connected to the venting Tee, the system pressure can only vent through the analytical column. Because venting through the column takes longer than venting through the Tee, the total run time is significantly longer than if you used the venting Tee for a one-column setup.
Figure 6 shows the one-column assembly for the Nanospray Flex source and the EASY-nLC 1200 instrument, respectively.

Figure 6. One-column setup for the EASY-nLC 1200 instrument and Nanospray Flex source
Solvent System Components

The EASY-nLC solvent system has three syringe pumps (A, B, and S); three pressure sensors, one for each pump; two flow sensors, one for pump A and one for pump B; four rotary valves (A, B, S, and W); two check valve assemblies, one for solvent A and one for solvent B; and a mixing Tee where solvents A and B are mixed under high pressure.

For more information about the solvent system's hardware components, see the following descriptions:

- Syringe Pumps (next section)
- Pressure Sensors
- Flow Sensors
- “Six-Port Rotary Valves” on page 12
- “Check Valve Assemblies” on page 14
- “Mixing Tee” on page 14

Syringe Pumps

The syringe pumps perform these functions (see Table 3).

<table>
<thead>
<tr>
<th>Component</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumps A and B</td>
<td>Draw solvent from the solvent bottles on top of the instrument, empty solvent to the waste beaker in the compartment to the right of the autosampler tray compartment, and deliver solvent to the mixing Tee.</td>
</tr>
<tr>
<td>Pump S</td>
<td>Draws solvent from the W3 bottle, draws sample from the specified sample location into the needle, and empties solvent to the W4 bottle in the autosampler tray compartment.</td>
</tr>
</tbody>
</table>

CAUTION Solvent B acetonitrile concentration ≥95% can damage the instrument!

For maintenance purposes, the built-in instrument control software tracks the volume pumped by each pump. For information about recording maintenance for the pumps, refer to the *EASY-nLC 1200 Troubleshooting and Maintenance Guide.*
Pressure Sensors

The three pressure sensors are connected to the solvent path between the syringe pump outlets and the six-port, three-position valves.

Using the strain gauge principle to measure pressure accurately, the pressure sensors are flow-through, zero-dead-volume (ZDV) devices with a wetted path that contains 12 μL of swept volume. The pressure sensors for the EASY-nLC 1200 instrument have an operating range of 0 to 20 000 psi (1379 bar).

Flow Sensors

Two flow sensors provide feedback control for pumps A and B. The two flow sensors are liquid mass flow meters with a patented technology. Each flow meter consists of a length of fused silica capillary, a sensor chip, a heating resistor, and two temperature sensors (see Figure 7).

Figure 7. Flow sensor schematic

The flow sensors determine the flow rate of solvents passing through the solvent system by measuring the heat transfer through the fused silica capillary. Outside the capillary, a heating resistor on a thermally optimized membrane is maintained above ambient temperature. When liquid flows through the capillary, the temperature distribution upstream and downstream of the heating resistor is disturbed. The two temperature sensors measure this temperature asymmetry.
Because the heat transfer depends on both the solvent flow rate and the solvent mixture, you must recalibrate the flow sensors whenever you change the solvent types for solvents A and B. For example, if you use methanol instead of acetonitrile for the solvent B mixture, recalibrate the flow sensors as described in the *EASY-nLC 1200 Troubleshooting and Maintenance Guide*.

CAUTION Solvent B acetonitrile concentration >95% can damage the instrument!

The EASY-nLC 1200 instrument uses two flow sensors with a maximum measuring range of 4.5 μL/min.

Tip When the flow rate produced by pump A or B exceeds the maximum measuring range of the respective flow sensor, use the pump position readback (x.x/140 μL) above the pump graphic to monitor the flow rate.

Six-Port Rotary Valves

The six-port rotary valves can be in three different positions: 1–2 position, 1–6 position, and centered (see Figure 8).

Figure 8. Valve positions

For maintenance purposes, the built-in instrument control software tracks the number of valve shifts for each valve. For information about checking the devices usage counters, refer to the *EASY-nLC 1200 Troubleshooting and Maintenance Guide*.
Depending on the valve position, the rotary valves perform these functions (see Table 4).

Note The valve ports are only compatible with nanoViper fittings. Use of other connections may damage the valve.

<table>
<thead>
<tr>
<th>Valve</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A and B</td>
<td>Direct the solvent flow from syringe pump A and B, respectively.</td>
</tr>
<tr>
<td>1–2 position</td>
<td>Directs the solvent flow toward the check valve. When the rotary valve is in the 1–2 position, the pump draws solvent from the solvent bottle on top of the instrument or empties solvent to the waste beaker.</td>
</tr>
<tr>
<td>1–6 position</td>
<td>Directs the solvent flow toward the mixing Tee.</td>
</tr>
<tr>
<td>Centered</td>
<td>• Prevents backflow into the solvent line upstream of the mixing Tee.</td>
</tr>
<tr>
<td></td>
<td>• Allows the backpressure for the solvent A and B lines to equalize before the gradient step of a sample run.</td>
</tr>
<tr>
<td></td>
<td>• Provides backpressure for several maintenance scripts.</td>
</tr>
<tr>
<td>S</td>
<td>Directs the solvent flow from syringe pump S and the solvent flow from the mixing Tee.</td>
</tr>
<tr>
<td>1–2 position</td>
<td>The solvent flow bypasses the sample loop.</td>
</tr>
<tr>
<td>1–6 position</td>
<td>The solvent flow passes through the sample loop.</td>
</tr>
<tr>
<td>Centered</td>
<td>• Provides backpressure for the Flush Air script for pump S.</td>
</tr>
<tr>
<td></td>
<td>• Provides backpressure for the system leak test.</td>
</tr>
<tr>
<td></td>
<td>• Shuts off the flow to the Column Out line and provides backpressure during the Flow Sensor Calibration script.</td>
</tr>
<tr>
<td>W</td>
<td>Directs the solvent flow through the venting Tee to the waste beaker or provides pressure venting to the solvent system.</td>
</tr>
<tr>
<td>1–2 position</td>
<td>Provides backpressure to direct flow through the column.</td>
</tr>
<tr>
<td>1–6 position</td>
<td>Directs the solvent flow from the venting Tee to the waste beaker.</td>
</tr>
<tr>
<td>Centered</td>
<td>Blocks the solvent flow through the valve to the waste container.</td>
</tr>
</tbody>
</table>
Check Valve Assemblies

When the corresponding high-pressure (6-port rotary) valves for pumps A or B are in position 1–2, the check valves perform these functions:

- The solvent-side check valve prevents backflow into the associated solvent inlet line when the associated pump is emptying solvent to the waste beaker.
- The waste-side check valve prevents backflow from the waste beaker when the associated pump is filling and drawing solvent from the associated solvent bottle.

Figure 9 shows the check valve connections.

Figure 9. Check valve connections

```text
From the solvent reservoir bottle on the top of the instrument

Solvent-side check valve

Connected to port 2 of valve A or B

Waste-side check valve

Routed to the waste beaker
```

Mixing Tee

The mixing Tee mixes solvents A and B before the solvent stream reaches valve S. When connecting the solvent lines to the mixing Tee, connect the solvent A and solvent B lines to perpendicular ports of the mixing Tee.
Predefined Steps for Sample Runs

During sample runs, the EASY-nLC instrument goes through a series of predefined steps.

- “Overview of a Sample Run,” next section, provides a brief overview of the sample steps.
- “Sequence of Events for Each Step of a Sample Run” on page 18 provides a more illustrative explanation of each step.

Overview of a Sample Run

During sample runs, the active steps are highlighted in bold on the Home > Overview page (see Figure 10).

Figure 10. Current step area of the Home > Overview page

<table>
<thead>
<tr>
<th>Pickup sample</th>
<th>Initialize system</th>
<th>Refill AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load sample</td>
<td>Equilibrate precolumn</td>
<td></td>
</tr>
<tr>
<td>Prepare gradient</td>
<td>Equilibrate analytical column</td>
<td></td>
</tr>
<tr>
<td>Gradient</td>
<td>Autosampler wash + refill S</td>
<td></td>
</tr>
</tbody>
</table>

To minimize the cycle time, the instrument runs these steps in parallel:

- Refill pumps A, B, and S
- Column equilibration steps and Pickup Sample step
- Gradient step and Autosampler Wash + Refill S step
Table 5 summarizes the steps of a sample run.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refill A B</td>
<td>Pumps A and B draw solvent from the solvent bottles on top of the instrument. The instrument then zeros the pressure sensors. At beginning of a sample run, the pumps are checked for drawn air after refilling.</td>
</tr>
<tr>
<td>Precolumn and analytical column equilibration</td>
<td>Pump A delivers solvent to the system. For a two-column system, solvent A passes through the precolumn and then out to the waste beaker. After the precolumn equilibration finishes, valve W switches to position 1–2 to direct the solvent flow through the analytical column.</td>
</tr>
<tr>
<td>Pickup sample</td>
<td>The autosampler moves the needle to the sample position specified in the batch table (injection sequence). Then pump S aspirates sample from the specified vial or well position into the sample loop attached to valve S.</td>
</tr>
<tr>
<td>Load sample</td>
<td>With valve S in position 1–6, pump A delivers solvent to the system, flushing sample out of the sample loop and onto the precolumn or the analytical column. Valve W is in position 1–6 for a two-column system and position 1–2 for a one-column system.</td>
</tr>
<tr>
<td>Prepare gradient</td>
<td>The system vents through the Waste In line or builds up pressure to a precalculated pressure. Pump B builds up pressure to match the precalculated pressure of pump A. Pump B pumps a fixed volume of solvent B into the loop to ensure the alignment of solvents at the mixing Tee. Then valves S and W switch to position 1–2. With valves S and W in position 1–2, the solvent flow bypasses the sample loop and is directed through the column.</td>
</tr>
<tr>
<td>Gradient</td>
<td>Pumps A and B deliver solvent to the system. As the percent composition of solvent B increases, analytes elute off the column or columns.</td>
</tr>
<tr>
<td>Autosampler wash + refill S</td>
<td>Pump S draws solvent from one or more wash bottles, washes the autosampler needle and the sample loop, and then refills. At beginning of a sample run, the pump is checked for drawn air after refilling.</td>
</tr>
</tbody>
</table>
Figure 11 shows a flow chart of the sample run steps.

Figure 11. Flow chart of the sample run steps

- Initialize system—check that the hardware is ready.
- Refill pump A.
- Refill pump B.
- Refill pump S.
- Equilibrate precolumn (for a two-column setup).
- Equilibrate analytical column.
- Load sample.
- Prepare gradient.
- Run gradient.
- Wash autosampler needle and refill pump S.
- Pick up sample.
- Refill pump A.
- Refill pump B.
1 Introduction
Predefined Steps for Sample Runs

Sequence of Events for Each Step of a Sample Run

To understand what happens during a sample run, see the following step descriptions:

- “Refill Pumps A, B, and S Step,” next section
- “Pickup Sample Step” on page 20
- “Column Equilibration Steps” on page 22
- “Load Sample Step” on page 24
- “Prepare Gradient Step” on page 26
- “Gradient Step” on page 29
- “Autosampler Wash Step” on page 30

Refill Pumps A, B, and S Step

The instrument refills pumps A and B. With valves A and B in the 1–2 position, the corresponding check valves control the direction of the solvent flow (see Figure 12). When the pump begins to draw solvent from the solvent bottle, the corresponding check valve assembly opens to the solvent bottle and closes to the waste beaker. After a brief waiting period, the instrument zeros pressure sensors A and B.

As pumps A and B are refilling, the autosampler needle moves to the refill location (w3) and pump S draws solvent, if not already full. Once a pump is refilled, the pressure sensor of this pump is zeroed and a check for trapped air inside this pump is performed. During this check the respective valve moves to CENTER position.

During the air check of pump S, the autosampler needle moves to the W4 location.
Figure 12. Valves A and B in position 1–2 and pumps A and B in fully retracted position
Pickup Sample Step

The Pickup Sample step includes this sequence of actions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pump S moves to a fixed position (filled with approximately 100 μL of solvent for an instrument with a 20 μL sample loop) by either dispensing excess solvent to the W4 bottle or drawing solvent from the W3 bottle.</td>
</tr>
<tr>
<td>2</td>
<td>Pump S draws 1 μL of air (the first air segment) into the needle.</td>
</tr>
<tr>
<td>3</td>
<td>The XYZ robot moves the needle holder to the specified sample vial or microplate well location.</td>
</tr>
<tr>
<td>4</td>
<td>The needle descends into the sample solution.</td>
</tr>
<tr>
<td>5</td>
<td>Pump S draws the requested sample pickup volume into the needle. Note The EASY-nLC instrument performs only partial loop injections. To avoid drawing sample into pump S, the application prevents you from entering a sample pickup volume larger than the sample loop size minus two microliters. The extra two microliters are required for the two air segments that bracket the sample.</td>
</tr>
<tr>
<td>6</td>
<td>The XYZ robot raises the needle out of the sample solution.</td>
</tr>
<tr>
<td>7</td>
<td>To transfer the sample into the loop, pump S draws a fixed volume of air into the needle. This fixed volume of air (~10.25 μL) is equal to the needle volume plus the valve port-to-port volume plus an additional 1 μL of air (the second air segment) to bracket the sample solution inside the loop.</td>
</tr>
</tbody>
</table>

Figure 13 shows pump S drawing the first air segment into the needle. Figure 14 shows pump S drawing the first air segment into the sample loop, while drawing the requested sample volume into the needle. Figure 15 shows pump S drawing the second air segment through the needle and into the sample loop. At the end of the Pickup Sample step, the sample loop holds the requested sample volume of 10 μL, two 1 μL air segments, and approximately 8 μL of solvent A.
Figure 13. Pickup Sample step—with pump S drawing the first air segment into the needle

Figure 14. Pickup Sample step—with pump S drawing 10 μL of sample from a sample vial

Figure 15. Pickup Sample step—with the requested sample volume loaded into the loop and bracketed by two air segments
Column Equilibration Steps

For a one-column setup, the sample run includes the analytical column equilibration step. For a two-column setup, the sample run includes both a precolumn equilibration step and an analytical column equilibration step.

The Equilibrate Precolumn step (see Figure 16) includes this sequence of actions.

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Valve A and valve W switch to position 1–6. Valve B switches to the centered position. Valve S switches to position 1–2.</td>
</tr>
<tr>
<td>2 Pump A pushes the specified solvent volume through the precolumn at the specified pressure or flow rate. Excess solvent A exits the venting Tee and passes through valve W to the waste beaker.</td>
</tr>
</tbody>
</table>

The analytical column equilibration step includes this sequence of actions.

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 For a two-column setup, valve A remains in position 1–6, valve B remains in the centered position, and valve S remains in position 1–2. Valve W switches to position 1–2. For a one-column setup, valve A switches to position 1–6. Valve B switches to the centered position. Valve S switches to position 1–2. Valve W switches to position 1–2.</td>
</tr>
<tr>
<td>2 Pump A pushes the specified solvent volume through the analytical column at the specified pressure or specified flow rate.</td>
</tr>
</tbody>
</table>
Figure 16. Equilibrate Precolumn step

Pump A

Pump B

Pressure sensor

Flow sensor

Mixing Tee

Waste beaker

To the autosampler needle

Column Out line

Waste In line

Precolumn

Venting Tee

Analytical column

Flow

Flow

Flow

Flow
Load Sample Step

After pump S draws the sample into the sample loop (see “Pickup Sample Step” on page 20), valve S switches to position 1–6 and pump A pushes solvent A through the sample loop, flushing the sample out of the sample loop into the Column Out line and onto the precolumn for a two-column setup or the analytical column for a one-column setup.

The Load Sample step includes this sequence of actions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | Valve S switches to position 1–6. Valve W does one of the following:
- Switches to position 1–6 for a two-column setup allowing excess solvent A to flow to the waste beaker.
- Remains in the 1–2 position for a one-column setup, directing the solvent flow through the analytical column. |
| 2 | Pump A pushes the specified solvent volume through the sample loop at a specified pressure or the specified flow rate. In a two-column system, solvent A vents to the waste beaker through valve W. |

Figure 17 shows the Load Sample step of a sample run for a two-column setup. Valves A, B, S, and W are in the 1–6 position.
Figure 17. Load Sample step (two-column setup)
Prepare Gradient Step

Before the gradient begins, this sequence of actions occurs.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The built-in instrument control software calculates the volume of solvent A required to complete the gradient program. Pump A refills if it does not contain a sufficient volume of solvent to complete the gradient program.</td>
</tr>
<tr>
<td>2</td>
<td>With valves A, W, and S in position 1–6 and valve B in the centered position, the system vents through the Waste In line to a precalculated pressure, or increases the pressure to the precalculated pressure with valve W in position 1–2. Pump B builds up pressure to match the precalculated pressure of pump A.</td>
</tr>
<tr>
<td>3</td>
<td>Valve B switches to position 1–6. If valve W was in position 1–2 in the previous step, it also switches to position 1–6. The Intelligent Flow Control (IFC™) system now controls pumps A and B at the precalculated pressure. With all of the valves in position 1–6, pump B pumps a fixed volume of 0.5 μL of solvent B toward valve S to ensure correct alignment of solvents A and B up to valve S. See Figure 18.</td>
</tr>
<tr>
<td>4</td>
<td>Valve W switches to position 1–2. The Automatic Flow Control (AFC™) system now controls pumps A and B. To align solvents A and B up to valve S, the system delivers a gradient consisting of a minimum of 2% solvent B or the gradient start solvent B%, whichever is higher, until it pumps 0.4 μL of solvent A into the sample loop (see Figure 19).</td>
</tr>
<tr>
<td>5</td>
<td>Valve S moves to position 1–2, which allows the mobile phase to bypass the sample loop, and the instrument sends the closure signal to the mass spectrometer.</td>
</tr>
</tbody>
</table>

Note During the Prepare Gradient step, a slight amount of solvent B enters the sample loop. This does not affect the next run because the Autosampler Wash step flushes the sample loop before the next run starts.

Figure 18 shows 0.5 μL of solvent B being pumped toward valve S during the Prepare Gradient step. *Figure 19* on page 28 shows 0.4 μL of solvent A being pumped toward valve S during the Prepare Gradient step.
Figure 18. Excess 0.5 μL of solvent B pumped toward valve S during the Prealign Gradient step
Figure 19. The system pumps a mixture of 2% solvent B or higher until it pumps 0.4 μL of solvent A.
Gradient Step

The gradient step includes this sequence of actions.

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The instrument runs the gradient program. Note With valve S in position 1–2, the mobile phase bypasses the sample loop during the gradient program. Therefore, the sample loop does not add any gradient delay volume to the system.</td>
</tr>
<tr>
<td>2</td>
<td>If either pump runs out of solvent during the gradient run, both pumps refill. The refilling process takes approximately 2 minutes.</td>
</tr>
</tbody>
</table>

Figure 20 shows the gradient step of a sample run. Mobile phase from the mixing Tee bypasses the sample loop as it enters and exits valve S through ports 4 and 3, respectively.

Figure 20. Gradient step with valve A and valve B in position 1–6 and autosampler wash step with valve S in position 1–2.
Autosampler Wash Step

The standard autosampler wash step includes this sequence of actions.

<table>
<thead>
<tr>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

The Autosampler Wash and Refill S step occurs in parallel with the Gradient step.

Figure 21. Autosampler wash step with valve S in position 1–2
Pump Flow Control

The EASY-nLC instrument contains split-free, high-pressure syringe pumps capable of delivering flows from 1 nL/min to 300 μL/min.

These flow control systems optimize instrument performance:

- “Automatic Flow Control System,” next section
- “Intelligent Flow Control System” on page 32
- “Load Speed Protection System” on page 33

Automatic Flow Control System

The AFC system (see Figure 22) is active during these processes:

- The gradient step of a sample run
- The execution of the isocratic flow maintenance script

By using the flow sensor feedback to regulate pumps A and B, the AFC system accurately maintains the programmed flow rate and solvent composition, even during sudden pressure changes caused by solvent composition changes. For accuracy, the AFC system requires a minimum pressure of 20 bar.

Figure 22. Schematic diagram of the AFC system
Intelligent Flow Control System

The IFC system (see Figure 23) is active during these processes:

• The column equilibration and sample loading steps of a sample run
• The first part of the prepare gradient step for pumps A and B
• The execution of the precolumn equilibration, analytical column equilibration, leak, and backpressure scripts

By using both the pressure sensor and flow sensor feedback, the IFC system continually regulates pumps A and B. By regulating the pumps A and B with both a flow and pressure feedback system, the IFC system enhances system performance as follows:

• Reduces the loss of productivity caused by instrument stoppage related to overpressure (for instance, stoppage caused by viscous samples during the sample loading step).
• Uses the pressure range of the instrument more effectively. For example, when you set a maximum pressure for the sample loading and column equilibration steps instead of a flow rate, the system automatically adjusts the flow rate to the maximum acceptable value.
• Builds the pressure rapidly during the prepare gradient step.

Figure 23. Schematic diagram of the IFC system
You can program the column equilibration and sample loading steps as follows:

- Specify both a set flow and a maximum pressure. The setting reached first (which becomes the limiting parameter) depends on the dimensions of the attached column or columns. If the system reaches the set pressure before it reaches the set flow rate, the IFC system reduces the flow rate to maintain the pressure. If the system reaches the set flow rate before the pressure limit, the pump maintains the set flow rate.

- Specify only a set flow. The IFC system maintains the set flow rate unless the pressure exceeds the maximum system pressure.

- Specify only a maximum pressure. The IFC system adjusts the flow rate to maintain the set pressure.

The duration of both the equilibration and loading steps depends on the total volume of solvent specified and the actual flow rate. When the set pressure is the limiting factor, the system adjusts the actual flow rate, which varies the duration of these steps.

Tip If the duration of the equilibration and loading steps must be fixed, limit these steps by flow rather than by pressure. Use the appropriate precolumn and analytical column maintenance scripts to determine the appropriate flow rates for your LC columns.

Load Speed Protection System

When the Load Speed Protection system (LSP) is on, the batch run stops if the system reaches the set max pressure before it reaches the set flow during the sample loading step. Stopping the batch run when the system pressure rises above an acceptable level prevents the system from running the remaining samples when the column or tubing has become clogged.

For instructions about how to turn on the Load Speed Protection system, see “Setting Up the Properties for the HPLC Device” on page 80.
Installing the EASY-nLC Instrument

To install the EASY-nLC instrument or move the instrument from one laboratory benchtop to another, follow the installation instructions in this chapter after reviewing the “Cautions and Special Notices” on page xiii.

Note This chapter describes the laboratory requirements and the back panel connections for the EASY-nLC instrument as a stand-alone LC system or as an inlet to a mass spectrometer.

- For information about installing the LC columns, the sample plates, the solvent bottles, and the wash bottles, see Chapter 5, “Preparing the EASY-nLC Instrument for Use.”

- For information about connecting the column assembly to the mass spectrometer’s ion source, refer to the manual provided with the ion source.

- For information about the internal solvent lines, refer to the *EASY-nLC 1200 Troubleshooting and Maintenance Guide*.

Contents

- Lifting Instructions
- Laboratory Requirements
- Back Panel Connections
Lifting Instructions

The EASY-nLC 1200 instrument weighs 35 kg (77.2 lb). For safety reasons, use two people to move the instrument to a table cart for transport and wear gloves.

CAUTION At more than 30 kg (66 lbs), the EASY-nLC instrument is too heavy for one person alone to lift. When moving the instrument, use two people to place it on a table cart for transport.

CAUTION Before you move the EASY-nLC instrument from one benchtop to another, close down the EASY-nLC instrument (see “Closing Down the EASY-nLC Instrument” on page 67), disconnect the EASY-nLC instrument from line power, the detector, and the data system computer (if applicable). For information about installing or removing the column assembly from the mass spectrometer’s ion source, refer to the manual provided with the ion source.

Figure 24 shows the lift points for the EASY-nLC instrument. With one person on each side of the instrument, lift the instrument from the bottom with one hand while stabilizing the top portion of the instrument with the other hand.

Figure 24. Lifting the EASY-nLC 1200 instrument by hand
Laboratory Requirements

This section describes the laboratory requirements for the EASY-nLC instrument. For more information about the requirements for the EASY-nLC instrument, refer to the EASY-nLC Series Preinstallation Requirements Guide. For information about the preinstallation requirements for a Thermo Scientific mass spectrometer, refer to its preinstallation requirements guide.

Requirements:

- “Benchtop Dimensions and Weight Capacity,” next section
- “Internet Access” on page 39
- “Power and Fuses” on page 39
- “Temperature and Humidity” on page 39

Benchtop Dimensions and Weight Capacity

Place the EASY-nLC instrument on a benchtop or movable table that can support a minimum of two times the instrument weight. For the EASY-nLC instrument, make sure that the table can support a minimum of 70 kg (154 lb).

Table 6 lists the dimensions of the EASY-nLC 1200 instruments. Allow for at least 15 cm (6 in.) of free space at the back of the instrument for proper air circulation.

Table 6. EASY-nLC instrument dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>EASY-nLC 1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>36 cm (14.2 in.)</td>
</tr>
<tr>
<td>Depth</td>
<td>38 cm (15.1 in.)</td>
</tr>
<tr>
<td>Height</td>
<td>45 cm (17.7 in.)</td>
</tr>
</tbody>
</table>

To minimize extra column volume between the LC column outlet and the detector inlet, place the EASY-nLC instrument as close as possible to the high-performance liquid chromatography (HPLC) detector, mass spectrometer, or both. However, to avoid exposure to direct heat, place the EASY-nLC instrument away from any detector or mass spectrometer vents.

Figure 25 shows a typical benchtop setup for an EASY-nLC instrument connected to a Thermo Scientific mass spectrometer. Connecting the data system computer to your local area network (intranet) requires an additional network card.

Using the setup shown in Figure 25, you can control the EASY-nLC instrument from the local data system computer or from another data system computer on the intranet; however, the EASY-nLC instrument might not be able to communicate with the remote support server. For information about connecting the EASY-nLC instrument to the remote support server, see “Setting Up the Ethernet Connection to the Support Server” on page 47.
CAUTION Before you move the EASY-nLC instrument from one benchtop to another, close down the EASY-nLC instrument (see “Closing Down the EASY-nLC Instrument” on page 67), disconnect the EASY-nLC instrument from line power, the detector, and the data system computer (if applicable). For information about installing or removing the column assembly from the mass spectrometer’s ion source, refer to the manual provided with the ion source.

Note Figure 25 shows the EASY-Spray source, which gets its power through the P-bus cable connection to the EASY-nLC instrument.

Figure 25. EASY-nLC instrument and LTQ™ Series MS detector setup
Internet Access

For online support and monitoring (remote support), provide Internet access for the EASY-nLC instrument within reach of the laboratory benchtop.

IMPORTANT The EASY-nLC instrument uses Secure Shell (SSH™), a network protocol for secure data communication, to connect to the support server, which uses the Linux™ operating system. Port 22 is the standard TCP port for SSH programs.

To use the remote support feature, the firewalls for your local network must allow outgoing TCP/IP traffic from the EASY-nLC instrument to the support server at IP address 46.226.219.10, port 22.

Power and Fuses

Use the EASY-nLC instrument only with properly grounded appliances and power sources.

You can plug the EASY-nLC instrument into these grounded line power sources:

- 120 Vac, 50/60 Hz, 250 W
- 230 Vac, 50/60 Hz, 250 W

Note To determine the appropriate rating for an uninterruptible power supply (UPS), assume it is 250 W.

The fuse requirements for the EASY-nLC instrument are as follows:

- For 120 Vac, one T 5 AL 250 V fuse (5 × 20 mm, IEC 60127)
- For 230 Vac, one T 2.5 AL 250 V fuse

All fuses supplied with the instrument are UL Listed and CSA certified.

Note Depending on the nanospray ion source, your nanospray system might need an additional power receptacle. The EASY-Spray ion source requires an additional power receptacle, whereas the Nanospray Flex ion source draws its line power from the mass spectrometer.

Temperature and Humidity

Avoid locations with high air humidity or extreme changes in temperature (such as direct sunlight, drafts, directly below an air conditioning or heating vent, or directly next to the mass spectrometer or HPLC detector vent).

For optimal autosampler plate cooling, place the unit in an area where the working temperature is within 5 to 30 °C (41 to 86 °F).

The optimal humidity range is between 20 to 80% RH. Avoid condensing humidity.
Back Panel Connections

To connect the EASY-nLC instrument to a mass spectrometer, the intranet within your facility, the Internet for remote support, and other peripheral hardware, follow these procedures:

- “Connecting to Line Power” on page 41
- “Connecting to the Mass Spectrometer through Contact Closure” on page 42
- “Connecting the Ethernet Communication Cables” on page 44
- “Attaching a Mouse and Keyboard to the USB Connections” on page 48
- “Attaching Add-on Devices through the P-Bus and RS-232 Ports” on page 48

Figure 26 shows an LC/MS system with an EASY-nLC instrument, an LTQ Series mass spectrometer, and a data system computer. The LC system, mass spectrometer, and data system hardware are connected to three separate fourplex outlets that are hardwired to a common protective earth ground. This figure does not show the monitoring system for the nanoflow ion source or the external rotary pumps for the mass spectrometer.
Connecting to Line Power

Each EASY-nLC instrument comes with a 2.5 m (8.2 ft) long power cord.

CAUTION Power cords can become frayed and damaged with use. If the power cord is frayed or damaged, replace it with an equivalent power cord.

To meet compliance and safety requirements, the replacement power cord must be no longer than 2.5 m (8.2 ft) and be certified by recognized organizations for your country (for example, UL, CSA, SEMKO, VDE, or TÜV).

Installing an EASY-nLC instrument requires a minimum of one outlet. The electrical outlet must be earth ground hard-wired to the main panel.

If you are using the EASY-nLC instrument as an inlet to an MS detector, the LC/MS system might require two or more fourplex outlets. The interconnected electrical outlets for the LC/MS system and the data system computer must have a common point to one ground connector (see Figure 26 on page 40).

CAUTION When using the EASY-nLC instrument as an inlet to an LC/MS system, the EASY-nLC instrument, the mass spectrometer, the nanospray ion source (if it connects to line power) and the (optional) data system hardware must have a common ground.

Connecting the hardware to external grounds at different potentials can do the following:

- Create a ground loop that causes noise and interference.
- Damage the EASY-nLC instrument’s built-in computer.

CAUTION Improper grounding of the instrument creates an electrical safety hazard.

❖ **To connect the EASY-nLC instrument to line power**

1. If you are moving an existing instrument from one benchtop to another, make sure that the fuse is installed correctly.

 For information about installing the fuse, refer to the *EASY-nLC 1200 Troubleshooting and Maintenance Guide*.

2. Connect the supplied power cord to the power entry module on the back panel of the EASY-nLC instrument and to a properly grounded electrical outlet.
Connecting to the Mass Spectrometer through Contact Closure

The EASY-nLC touch-screen application contains preconfigured values for most of the standard mass spectrometers used in proteomics. For instructions about setting up the software configuration for the mass spectrometer connection, see “Setting Up Communication with the Mass Spectrometer” on page 69.

IMPORTANT Occasionally, Thermo Fisher Scientific releases new software for the EASY-nLC instrument. Downloading new software files to the EASY-nLC computer erases the mass spectrometer selection.

Figure 27 and Figure 28 show the hardwire connections between the EASY-nLC instrument and an LTQ Series mass spectrometer or Orbitrap Fusion™ mass spectrometer, respectively.

Figure 27. Two-way contact closure connection for an LTQ Series mass spectrometer

<table>
<thead>
<tr>
<th>EASY-nLC 12-pin connector</th>
<th>Mass spectrometer input and output pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>IN1</td>
</tr>
<tr>
<td>OUT2</td>
<td>IN2</td>
</tr>
<tr>
<td>OUT3</td>
<td>TTL</td>
</tr>
<tr>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

Figure 28. Two-way contact closure connection for an Orbitrap Fusion mass spectrometer

<table>
<thead>
<tr>
<th>EASY-nLC 12-pin connector</th>
<th>Mass spectrometer input and output pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT1</td>
<td>IN1</td>
</tr>
<tr>
<td>OUT2</td>
<td>IN2</td>
</tr>
<tr>
<td>OUT3</td>
<td>TTL</td>
</tr>
<tr>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

To make contact closure between the EASY-nLC instrument and the Orbitrap Fusion mass spectrometer, you must modify the Thermo Fisher contact closure cable by replacing one of the two-pin terminal blocks with the 8-pin terminal block provided in the MS Setup Kit.
To modify the contact closure cable for the Orbitrap Fusion mass spectrometer

1. Using a small flat-blade screwdriver, loosen the screws for pins 1 and 2. Then pull the wires out of the terminals.

2. Using a small flat-blade screwdriver, connect the cable wires to the 8-pin terminal block provided in the Orbitrap Fusion MS Setup Kit as follows:
 - Connect the yellow wire to terminal 1.
 - Connect the red wire to terminal 4.

 Figure 29 shows the pin outs for the modified MS connector.

 Figure 29. 8-pin terminal block with wires connected

To connect the contact closure cable

Using a contact closure cable provided by Thermo Fisher Scientific (see Table 7), connect the cable to the mass spectrometer and the EASY-nLC instrument.

For more information, refer to the graphic for the selected mass spectrometer in the Contact Closure area of the Configuration > Connections page.

Table 7. Contact closure cables

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermo Fisher contact closure cable</td>
<td>LC160</td>
</tr>
<tr>
<td>ABI/MDS Sciex™ contact closure cable</td>
<td>LC161</td>
</tr>
<tr>
<td>Bruker™/Agilent™ contact closure cable</td>
<td>LC162</td>
</tr>
<tr>
<td>Waters™/Micromass™ contact closure cable</td>
<td>LC163</td>
</tr>
<tr>
<td>Varian™ contact closure cable</td>
<td>LC164</td>
</tr>
<tr>
<td>(Varian is now a part of Agilent Technologies Inc.)</td>
<td></td>
</tr>
</tbody>
</table>
Connecting the Ethernet Communication Cables

How you set up the Ethernet communication cables depends on the type of communication you are trying to establish.

Follow the appropriate procedure to set up communication between the EASY-nLC computer and the data system computer, the intranet for data exchange, or the remote support server.

- Setting Up the Ethernet Connections to the Data System Computer
- Setting Up the Ethernet Connection to a Local Network for Data Exchange
- Setting Up the Ethernet Connection to the Support Server

Setting Up the Ethernet Connections to the Data System Computer

For an LC/MS system with an EASY-nLC instrument and a Thermo Scientific mass spectrometer, you operate the system from a data system computer with the Xcalibur data system and the device drivers for the EASY-nLC instrument and a Thermo Scientific mass spectrometer.

Note You can create instrument methods and injection sequences, submit and process injection sequences, and monitor the instrument status and injection progress with the external data system. The external data system does not include maintenance scripts or direct controls for the EASY-nLC instrument. To perform tasks such as flushing air from the LC system, you must use the touch-screen application.

Figure 25 on page 38 and Figure 26 on page 40 show a typical benchtop setup for an LC/MS system with an EASY-nLC instrument, a Thermo Scientific mass spectrometer, a data system computer, and an Ethernet switch.

The EASY-nLC computer and the Thermo Scientific mass spectrometer communicate with the data system computer through an Ethernet connection routed through an Ethernet switch connected to the data system computer. To make the Ethernet connections, use the shielded Ethernet cables supplied in the instrument accessory kits.

When you order the EASY-nLC instrument with a Thermo Scientific mass spectrometer, the Ethernet card for the LC/MS system is preset at the factory to this IP address: 172.16.0.101. While installing the LC or LC/MS system, your local Thermo Fisher Scientific field service engineer checks the IP address setting.

If the data system computer has a second network card, you can connect the data system computer to the intranet. After you connect the data system computer to the intranet, you can view the files on the EASY-nLC instrument’s computer hard drive from other computers on the intranet. When you also set up a remote desktop connection, you can monitor and control the LC/MS system from other computers on the intranet.

For information about setting up a remote desktop connection, refer to the Microsoft™ Windows™ operating system Help.
To connect the Ethernet cables for an LC/MS system controlled from a data system computer

1. Connect the EASY-nLC instrument and the Thermo Scientific mass spectrometer to the Ethernet switch as follows:
 a. Plug a shielded Ethernet cable into the LAN port on the instrument’s back panel.
 b. Plug the other end of the cable into the Ethernet switch.

2. Connect the Ethernet switch to the data system computer as follows:
 a. Verify that the IP address for the dedicated Ethernet card is set to 172.16.0.101.
 b. Plug a shielded Ethernet cable into the appropriate Ethernet port in the data system computer.
 c. Plug the other end of the cable into the Ethernet switch.

3. If the Ethernet switch has a power save button, make sure that the button is in the Off position.

The current model of the Ethernet switch that ships with Thermo Scientific mass spectrometers has a power save button labeled ECO friendly.

IMPORTANT When the power-save feature is on, the instrument can lose communication with the data system computer.

4. To connect the data system computer to the intranet, go to the next procedure, “To connect the data system computer to the intranet.”

To connect the data system computer to the intranet

1. If the data system computer does not already have a second network card, install one.

2. Using a shielded Ethernet cable, connect the network card’s LAN port to a laboratory LAN port with intranet access.

When the data system computer is connected to a laboratory LAN port, you can access the admin folder on the EASY-nLC instrument’s computer hard drive.

To control the LC/MS system remotely from another computer on the intranet

1. Connect the hardware as described in these procedures:
 - To connect the Ethernet cables for an LC/MS system controlled from a data system computer
 - To connect the data system computer to the intranet

2. Set up a remote desktop connection between the data system computer and the remote local area computer.

For information about setting up a remote desktop connection, refer to the Windows operating system Help.
Setting Up the Ethernet Connection to a Local Network for Data Exchange

You can access the chromatographic methods and injection batches stored on the EASY-nLC instrument’s computer hard drive after you make the following connections:

- When you connect a stand-alone EASY-nLC instrument to a laboratory LAN port with intranet access, you can access these files from other computers on the intranet.
- When you connect the EASY-nLC instrument to a data system computer through an Ethernet switch, you can access these files from the data system computer.
- When you connect the EASY-nLC instrument to a data system computer through an Ethernet switch and connect the data system computer to a laboratory LAN port with intranet access, you can access these files from other computers on the intranet.

To access the files on the EASY-nLC instrument’s computer hard drive from another computer on the intranet

1. Do one of the following:
 - For a stand-alone EASY-nLC instrument, use a shielded Ethernet cable to connect the LAN port on the back panel of the EASY-nLC instrument to a laboratory LAN port with intranet access.
 - For an EASY-nLC instrument that is part of a Thermo Scientific LC/MS system, connect the Ethernet cables as described in “Setting Up the Ethernet Connections to the Data System Computer” on page 44.

2. Set up the software connection for the EASY-nLC instrument as described in “Setting Up the Local Area Network Connection” on page 72.

 With a Thermo Scientific LC/MS system, you can access the files on the EASY-nLC system from the data system computer. If you are already logged in to the EASY-nLC instrument’s computer, you do not need to reenter the user login and password.

 To access the files on the EASY-nLC instrument’s computer hard drive from a computer on the intranet (other than the local data system computer for an LC/MS system), you must know the IP address and the user login and password for the EASY-nLC instrument.
Setting Up the Ethernet Connection to the Support Server

You can have Thermo Fisher Scientific Technical Support remotely diagnose problems with your EASY-nLC instrument.

Thermo Fisher Scientific recommends the following hardware setup when you want to establish a communication link between the EASY-nLC instrument and the remote support server.

For information about initiating the communication link with the support server, refer to the Remote Support chapter in the *EASY-nLC Series Troubleshooting and Maintenance Guide*.

❖ **To connect the EASY-nLC to the local network that has Internet capability**

1. If the EASY-nLC instrument is connected to a data system computer or an Ethernet switch as shown in Figure 25 on page 38, disconnect the Ethernet cable from the LAN port of the EASY-nLC instrument.

2. Using a Category 6 network cable, connect the EASY-nLC instrument directly to the local network that has Internet capability to access the support server (see Figure 30).

IMPORTANT For remote diagnostics, connect the EASY-nLC instrument directly to the Internet access port using the supplied Category 6 network cable.

To use the remote support feature, the firewalls for your local network must allow outgoing TCP/IP traffic from the EASY-nLC instrument’s computer to the support server at IP address 46.226.219.10, port 22.

Figure 30. EASY-nLC instrument connected to a local network port with Internet capability
Attaching a Mouse and Keyboard to the USB Connections

You can use a mouse and keyboard instead of the built-in touch screen, but Thermo Fisher Scientific recommends using the touch-screen interface. For more information, see “Using the Touch Screen” on page 53.

Connect the USB mouse or keyboard by using the USB connectors on the back panel (see Figure 4 on page 5) of the instrument. The EASY-nLC application detects the mouse or keyboard within 30 seconds. The application does not recognize all USB-based keyboards or mice.

Attaching Add-on Devices through the P-Bus and RS-232 Ports

The EASY-nLC instrument can control and power add-on devices through the P-bus port, the RS-232 interface, or both. These ports are on the back panel of the instrument (see Figure 4 on page 5).

❖ To control the temperature of the EASY-Spray ion source’s column heater

1. Using the P-bus cable shown in Figure 31, connect the EASY-nLC instrument to the EASY-Spray ion source as follows:
 • Connect the P-BUS NLC end of the cable to the P-Bus port on the back panel of the EASY-nLC 1200 instrument.
 • Connect the P-BUS EASY-SPRAY SOURCE end of the cable to the P-Bus port on the bottom of the EASY-Spray ion source.

 Figure 31. EASY-Spray source to EASY-nLC 1200 cable (P/N 70005-63055)

The EASY-nLC instrument provides power to the EASY-Spray ion source through the P-Bus cable.
2. Add the EASY-Spray ion source to the Devices list on the Maintenance > Devices page as described in “Adding Devices to the EASY-nLC Devices List” on page 156.

Tip If the temperature readout on the EASY-Spray ion source is blank, make sure that the P-Bus cable is properly connected and that the EASY-nLC instrument is turned on.

If the temperature readout in the EASY-Spray dialog box (available from the Home > Overview page of the touch-screen application) displays a question mark and the temperature readout on the EASY-Spray ion source displays two vertical bars, make sure that the EASY-Spray column is plugged into the EASY-Spray ion source's Heater port.

For more information about the EASY-Spray ion source, refer to the *EASY-Spray Series Ion Source User Guide*.
The EASY-nLC instrument is controlled by software that runs on an integrated computer; this means you can operate the instrument without the aid of a data system computer.

Note When you are using the EASY-nLC instrument as part of a Thermo Scientific LC/MS system, you can use the Xcalibur data system to create chromatographic methods and batches and to acquire and process mass spectral data from the mass spectrometer.

For information about controlling the EASY-nLC instrument from the Xcalibur data system, refer to the data system Help. You can access Help from most of the user-interface pages by pressing the F1 key on the keyboard connected to the data system computer.

You can use the built-in instrument control application for the EASY-nLC instrument to set up instrument methods (sample processing protocols), schedule batches (injection sequences), view the run progress and instrument status, manage users, and carry out maintenance and repair work.

To familiarize yourself with the touch-screen application, review this chapter.

Contents

- Turning On the EASY-nLC Instrument
- Using the Touch Screen
- Viewing the System Status
- User Interface Layout and Application Menu Structure
- Logging In to the EASY-nLC Instrument
- Closing Down the EASY-nLC Instrument
Turning On the EASY-nLC Instrument

To turn on the instrument

Press the On/Off (I/O) switch on the back panel of the instrument (Figure 32).

Figure 32. On/Off switch on the back panel

The startup procedure takes approximately 5 to 10 minutes while the instrument does the following:

1. Starts the internal computer.
2. Initializes the software components.
3. Checks the hardware components (pumps, valves, autosampler, plate-cooler, flow sensor, and so on).
4. Starts the Linux application.

During this process, a status bar indicates progress on the startup screen.
Using the Touch Screen

You control the EASY-nLC instrument directly from the touch screen.

Note You can attach a USB-based mouse and keyboard to the instrument’s back panel (see “Attaching a Mouse and Keyboard to the USB Connections” on page 48), but the user interface has been optimized for touch-screen interaction.

The instrument monitor is a transparent layer of glass (Figure 33) that detects finger pressure (even when the operator is wearing gloves) and sends the corresponding commands to the computer.

Figure 33. Touch-screen control for the EASY-nLC instrument

The touch-screen controls consist of buttons, tables, input fields, and interactive graphical instrument components. To use the touch-screen controls, see these procedures:

- Using the Buttons
- Entering Alphanumeric Text
- Using Tables and Input Fields
- Using the Interactive Graphical Controls
Using the Buttons

Press buttons only one time for a specific action. If the action is irreversible or could cause a system error if the instrument is not prepared for the action, the EASY-nLC application displays a confirmation box where you can cancel or accept the action. For example, when you press Eject/Insert Tray on the Home > Overview page, a confirmation box appears to remind you to remove obstacles from the area in front of the tray compartment before opening the tray compartment door. To continue the action, you must press Accept.

Entering Alphanumeric Text

In most cases, pressing a button on the touch screen causes the instrument to carry out a certain operation. However, when the application requires text or numeric input, the application displays a keyboard or numeric keypad (Figure 34) in front of the main window so that you can enter values by pressing the appropriate keys. When you press a key, it is highlighted in blue until you press another key.

Figure 34. Touch-screen keyboard and numeric keypad

Using Tables and Input Fields

You can edit many tables (usually when you have entered the data yourself). You can also access single cells by touching the cell twice to open a keyboard/keypad display for changing the entry.

Long tables have vertical scroll bars that you move either by pressing the up or down arrow symbols, or by dragging the scroll bar and moving it explicitly.

In some tables you can select multiple rows by pressing check boxes on several rows or complete columns by pressing the table headings.

If a screen has blank input fields, press inside the field to enter data. The application displays a keyboard/keypad.
Using the Interactive Graphical Controls

The four valves, three pumps, autosampler, and optional EASY-Spray ion source appear as interactive graphical components on the Home > Overview page (see Figure 37 on page 57). When you press a graphical component, a dialog box with direct controls for that component opens.

For information about using the manual controls for the valves, pumps, and autosampler, refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.

To control the temperature of the EASY-Spray ion source when the instrument is not running a method, follow these procedures:

- To open the EASY-Spray (direct control) dialog box
- To modify the temperature setting of EASY-Spray ion source
- To turn off temperature control and return the ion source to ambient room temperature

To open the EASY-Spray (direct control) dialog box

On the Home > Overview page, press the EASY-Spray icon, .

The EASY-Spray dialog box opens (Figure 35).

Figure 35. EASY-Spray dialog box

To modify the temperature setting of EASY-Spray ion source

1. Open the EASY-Spray dialog box as described in the previous procedure.
2. Press the temperature box.

The Set Value dialog box opens (Figure 36).
3. Press the number pad to enter a temperature from 30 to 60 °C.
 The application does not accept temperatures below 30 °C or above 60 °C. The application displays temperatures outside this range in red.

4. After you enter an appropriate temperature, press **Accept**.
 The Set Value dialog box closes and the application downloads the new temperature setting to the EASY-Spray ion source.

5. To close the EASY-Spray dialog box, press **Close** (see Figure 35 on page 55).

 ✷ **To turn off temperature control and return the ion source to ambient room temperature**

 1. Open the EASY-Spray dialog box as described in “To open the EASY-Spray (direct control) dialog box” on page 55.

 2. Press **Disable** (see Figure 35 on page 55).
 The application turns off the EASY-Spray ion source’s temperature control and the ion source’s temperature returns to the ambient laboratory temperature.

 3. To close the EASY-Spray dialog box, press **Close** (see Figure 35 on page 55).
Viewing the System Status

You can view the system status of the system hardware components and the run status on the Home > Overview page (Figure 37).

Figure 37. Overview page of the Home menu
Table 8 describes the system readbacks.

<table>
<thead>
<tr>
<th>Readback</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump</td>
<td>Displays the backpressure, flow rate, and position for the associated pump. The flow rate readback is negative when the pump is refilling.</td>
</tr>
<tr>
<td>Flow sensor</td>
<td>Displays the measured flow rate from the associated pump (see “Flow Sensors” on page 11).</td>
</tr>
<tr>
<td>Mixing Tee</td>
<td>Displays the %B solvent composition.</td>
</tr>
<tr>
<td>Autosampler</td>
<td>Displays the active, pending, and finished samples for a batch run and the temperature of the cooling unit.</td>
</tr>
<tr>
<td>ACN concentration</td>
<td>Displays the current ACN concentration</td>
</tr>
</tbody>
</table>

The valve icon shows the position of the associated valve (see “Six-Port Rotary Valves” on page 12).

For more information about viewing the system status, see “Monitoring the Run” on page 147.

In the reminder area dues are displayed:

- “Flow sensor calibration due” Shows if the last successful calibration was more than 6 months ago.
- “Solvent refresh due” Shows if the last acknowledged solvent refresh was more than 14 days ago.
- “Solvent refreshed” acknowledge button Shows if the last acknowledged solvent refresh was less than 14 days ago.

Click on the reminder for further actions:

The “Flow sensor calibration due” button is linked to the flow sensor calibration script.

Clicking on “Solvent refresh due” and “Solvents refreshed” shows a solvent refresh confirmation.
The application has five menu tabs at the top of the touch screen (see Figure 38) and each menu has two or more pages (vertical tabs at the left).

In this guide, the term *menus* refers to the tabs at the top of the touch screen and the term *page* refers to the screens opened by pressing the vertical tabs.

During a session, the application tracks which page (vertical tab) you selected inside each menu (top tab) and shows that page when you next choose that menu.

The Thermo Scientific logo icon in the upper left corner and the Login button in the lower left corner are always available.

To log in or log off, press **Login** (see “Logging In to the EASY-nLC Instrument” on page 66 and “Closing Down the EASY-nLC Instrument” on page 67).

To view version information for the application, press the **Logo** icon.
To access a specific page of the application, first press the appropriate menu tab and then press the appropriate page tab. In this guide, the following nomenclature describes the navigation to a specific page of the user interface: Menu > Page.

Some of the pages have two or more views. For example, the Batch Setup > Edit page has two views: View Rack and View List. You access these views by pressing View Rack or View List on the page.

The Method Setup > Edit page contains a five-page wizard. You access the wizard pages by pressing the left and right arrows at the bottom of the touch screen.

Figure 39 shows a schematic of the user-interface structure. When you navigate to a Menu > Page, the menu and page tabs are highlighted in light blue.

Figure 39. Menu and page structure
See the following menu descriptions (on pages 61–65):

- **Home Menu**
- **Batch Setup Menu**
- **Method Setup Menu**
- **Maintenance Menu**
- **Configuration Menu**

Home Menu

Use the three pages of the Home menu to view the status of your sample runs and the instrument components; edit batch jobs in the queue; and take direct control of the valves, the pumps, the autosampler's XYZ robot, and the cooler temperature.

<table>
<thead>
<tr>
<th>Page</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>Manually control the valves, the pumps, and the autosampler components.</td>
<td>Refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.</td>
</tr>
<tr>
<td></td>
<td>Monitor the system status.</td>
<td>“Preparing and Loading Samples” on page 123</td>
</tr>
<tr>
<td>Queue</td>
<td>View a list of the batch jobs, currently running or waiting.</td>
<td>“Editing the Running Batch” on page 151</td>
</tr>
</tbody>
</table>
Batch Setup Menu

Use the two pages of the Batch Setup menu to set up sample processing jobs. For information about setting up and submitting a batch run, see these procedures: “Creating a Batch” on page 140 and “Starting Sample Acquisition” on page 146.

<table>
<thead>
<tr>
<th>Page</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>View or change a directory tree of saved batch jobs. You can create or</td>
<td>“Viewing the Batch List and Setting Up a Batch Record” on page 140</td>
</tr>
<tr>
<td></td>
<td>import new jobs and create or delete directories on this page.</td>
<td></td>
</tr>
<tr>
<td>Edit</td>
<td>Set up new batch jobs.</td>
<td></td>
</tr>
<tr>
<td>View Racks view</td>
<td>Select the vial or well positions for the batch job from a graphical</td>
<td>“Specifying the Method, Sample Positions, and Number of Injections” on</td>
</tr>
<tr>
<td></td>
<td>view of the configured plate format.</td>
<td>page 141</td>
</tr>
<tr>
<td>View List view</td>
<td>View the batch job as a list of samples in the order of processing. Each</td>
<td>“Editing the Running Batch” on page 117</td>
</tr>
<tr>
<td></td>
<td>row in the table holds information about the position, name, and method</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for that position.</td>
<td></td>
</tr>
</tbody>
</table>
Method Setup Menu

Use the pages of the Method Setup menu to set up the chromatographic methods for your samples (see “Creating a Method” on page 124).

Note If the method does not control an external device, the Method Setup wizard contains five pages. If the method controls external devices, such as the Advion™ RePlay™ device or the EASY-Spray ion source, the Method Setup wizard includes additional pages. For information about setting up a method that includes the RePlay device, see Chapter 7, “Installing and Controlling External Devices.”

<table>
<thead>
<tr>
<th>Page</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>View a directory tree of saved methods. You can create or import new methods or create or delete directories from this page.</td>
<td>“Browsing for a Stored Method or Creating a New Method File” on page 124</td>
</tr>
<tr>
<td>Edit</td>
<td>Method Setup wizard with six pages—</td>
<td></td>
</tr>
<tr>
<td>1/6</td>
<td>Select the method that you want to edit and enter a description of the method. If you installed external devices, select the external devices that you want the method to control.</td>
<td>“Starting the Method Setup Wizard” on page 126</td>
</tr>
<tr>
<td>2/6</td>
<td>Set up the sample pickup and sample loading steps of the method.</td>
<td>“Setting Up the Sample Pickup and Loading Steps” on page 127</td>
</tr>
<tr>
<td>3/6</td>
<td>Control the liquid chromatography gradient.</td>
<td>“Building the Gradient” on page 130</td>
</tr>
<tr>
<td>4/6</td>
<td>Control the equilibration of the precolumn, the analytical column, or both.</td>
<td>“Setting Up the Column Equilibration Steps” on page 132</td>
</tr>
<tr>
<td>5/6</td>
<td>Control the autosampler wash step.</td>
<td>“Setting Up the Autosampler Wash Step” on page 134</td>
</tr>
<tr>
<td>6/6</td>
<td>Control the column temperature of the EASY-Spray ion source.</td>
<td>“Specifying the Temperature of the EASY-Spray Column Heater” on page 137</td>
</tr>
</tbody>
</table>
Maintenance Menu

Use the pages of the Maintenance menu to perform a number of functions designed to provide and improve system status.

<table>
<thead>
<tr>
<th>Page</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scripts</td>
<td>View a collection of useful maintenance procedures for keeping the instrument functioning properly and to help diagnose and resolve possible problems.</td>
<td>For information about purging and flushing the pump, see “Purging and Flushing the Pumps” on page 91. For information about equilibrating the columns and determining the appropriate flow rate for your chromatographic method, see “Equilibrating Columns” on page 118. For information about other maintenance scripts, refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.</td>
</tr>
<tr>
<td>Log Book</td>
<td>Electronically enter all the service actions that you perform on the instrument.</td>
<td>For information about the log book, refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.</td>
</tr>
<tr>
<td>Support</td>
<td>Set up support from Thermo Fisher Scientific.</td>
<td>Refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.</td>
</tr>
<tr>
<td>Devices</td>
<td>Add an external device to the system.</td>
<td>Chapter 7, “Installing and Controlling External Devices.” For information about the device usage counters, refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.</td>
</tr>
<tr>
<td></td>
<td>Check and reset the device usage counters.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Set up the global configuration for the HPLC.</td>
<td>“Setting Up the Properties for the HPLC Device” on page 80</td>
</tr>
<tr>
<td></td>
<td>Calibrate the autosampler.</td>
<td>Refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.</td>
</tr>
</tbody>
</table>
Configuration Menu

Use the pages of the Configuration menu to control the instrument setup and to manage the system configuration.

<table>
<thead>
<tr>
<th>Page</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
<td>Manage user accounts (create, edit, and delete).</td>
<td>“Creating New User Accounts” on page 76</td>
</tr>
<tr>
<td>Connections</td>
<td>Select the mass spectrometer that is connected to the EASY-nLC instrument, set up the communications protocol, and view a contact closure wiring diagram for the selected mass spectrometer.</td>
<td>“Setting Up Communication with the Mass Spectrometer” on page 69</td>
</tr>
<tr>
<td>Network</td>
<td>Set up or view how the EASY-nLC instrument’s computer is identified in a connected computer network. Consult your IT administrator before making changes to the system.</td>
<td>“Setting Up the Local Area Network Connection” on page 72</td>
</tr>
<tr>
<td>Time</td>
<td>Set the internal clock in the EASY-nLC instrument and the display format used throughout the application to print date and time information.</td>
<td>“Modifying the Time Settings” on page 78</td>
</tr>
<tr>
<td>Data</td>
<td>Purges excess data on the hard drive of the EASY-nLC instrument’s computer. Removing unnecessary data improves the computer’s performance.</td>
<td>“Purging the Computer Hard Drive” on page 79</td>
</tr>
</tbody>
</table>
Logging In to the EASY-nLC Instrument

The EASY-nLC instrument's built-in software has a user management system that assigns specific access rights to each user. When the instrument ships, it contains two predefined users: guest and admin. The default user account is guest (and does not require a password). With this account you can see and monitor the system, but you cannot enter any new information.

❖ To start using or configuring the EASY-nLC instrument's built-in software

1. In the User list, select **admin** (see Figure 40).
2. In the Password box, enter **admin**.
3. Press **Accept** (the factory password for the admin account is also **admin**).

The first time you start the application, it automatically logs you in as a guest. “Guest” appears above the Login button. The user “Production” is for internal purposes only and therefore not accessible.

Figure 40. EASY-nLC login dialog box

4. If security is an issue, change the admin password (see Figure 41).

❖ To log out of the EASY-nLC instrument

1. Press **Exit**.

A confirmation box opens (see Figure 41).

IMPORTANT Change the admin password as soon as possible for security reasons.
2. Press **Logout**.

 An administrator can start a controlled power-down or exit the application from this dialog box. If you are not an administrator, you can only log out or change your password.

Closing Down the EASY-nLC Instrument

With the exception of an emergency shutdown, closing down the instrument in a controlled manner is important to allow all the components to shut down in an orderly sequence. Using this controlled method saves important data so that the instrument starts with the correct information the next time you use it.

CAUTION With the exception of an emergency shutdown, closing down the instrument in a controlled manner is important to allow all the components to shut down in an orderly sequence. If you turn off the power switch during normal operation, you risk damaging essential system components. Follow the procedure outlined here whenever possible.
To turn off the EASY-nLC instrument

1. Press Exit (lower left corner of the touch screen).
 A confirmation box opens (see Figure 41 on page 67).

 The EASY-nLC application displays a white screen with a small progress bar. When the progress bar fills completely and the message prompts you to turn off the instrument, go to the next step.

3. After receiving the message that you can safely turn off the instrument, turn off the power switch on the back panel of the instrument.
Configuring the EASY-nLC System

After turning on the instrument and logging in as a system administrator, you must configure the instrument’s integrated software application for use and define the network connection for the instrument.

To set up the application configuration, follow the configuration instructions in this chapter.

Contents

- Setting Up Communication with the Mass Spectrometer
- Setting Up the Local Area Network Connection
- Modifying User Permissions
- Modifying the Time Settings
- Purging the Computer Hard Drive
- Setting Up the Properties for the HPLC Device

Setting Up Communication with the Mass Spectrometer

After the EASY-nLC injects sample onto the analytical column, it signals the mass spectrometer to start data acquisition.

IMPORTANT Before you connect the EASY-nLC instrument to a mass spectrometer, make sure that the protective grounding is shared between the instruments.

❖ **To set up the mass spectrometer connection**

1. Press **Configuration > Connections**.

 The Configuration > Connections page opens. Figure 42 shows the contact closure graphic for an Orbitrap Fusion mass spectrometer. For information about connecting the contact closure cable for a Thermo Scientific mass spectrometer, see “Connecting to the Mass Spectrometer through Contact Closure” on page 42.
2. From the Instrument (cable no.) list, select the instrument by manufacturer.

Tip The Instrument (cable no.) list contains the most common mass spectrometers (by manufacturer) used in proteomics, but if you cannot find your particular mass spectrometer, select **Generic**.

If your mass spectrometer does not appear on the list and you would like to see it supported in a future release of the EASY-nLC application, provide this information to Thermo Fisher Scientific Customer Service (see “Contacting Us” on page xv).

When you select the instrument, a graphic of the contact closure connections appears in the Contact Closure Settings area, but the default selections remain the same.

3. In the Contact Closure Settings area, do the following:
 a. Check the connections on the graphic for the selected mass spectrometer.
 b. From the Protocol list select **One-way** or **Two-way** synchronization (see Figure 42).

 • If the graphic for the selected mass spectrometer (contact closure cable) shows only Start In signals, select **One-way** synchronization. With a one-way connection, the EASY-nLC instrument sends a start signal to the mass spectrometer.
• If the graphic for the selected mass spectrometer shows two-way communication between the mass spectrometer and the EASY-nLC instrument, select Two-way synchronization. With a two-way connection, the EASY-nLC instrument waits for a ready signal from the mass spectrometer.

c. In the State at Start list, select **Open** or **Closed**.

For a Thermo Scientific mass spectrometer, select **Open**. For other mass spectrometers, refer to the documentation provided with the mass spectrometer or contact Thermo Fisher Scientific Customer Service.

d. In the Start At list, select **Gradient** or **Sample Loading**.

• If you want data acquisition to start when the mobile phase gradient starts, select **Gradient**.

• If you are running the instrument in the one-column mode and you want data acquisition to start when the instrument loads the sample onto the analytical column, select **Sample Loading**.

Note By setting the Start At value to be the sample loading start, you might be able to acquire data for early-eluting peptides that would not ordinarily bind to the column material and elute in the solvent front.

Moving the Start At point to the start of the sample loading step can lead to small retention time variations, due to possible differences in pressure buildup before the A/B mixing starts in the actual gradient.

e. In the Signal Width box, enter an appropriate signal width.

The default signal width is 1 second, which is sufficient for a Thermo Scientific mass spectrometer. For other mass spectrometers, refer to the documentation provided with the mass spectrometer or contact Thermo Fisher Scientific Customer Service.
Setting Up the Local Area Network Connection

If you connect the EASY-nLC instrument to the local network (see “Setting Up the Ethernet Connection to a Local Network for Data Exchange” on page 46) and set up the network configuration for the application, you can access the EASY-nLC instrument’s computer from other computers on the network.

![Network page of the Configuration menu](image)

IMPORTANT Ask your local IT administrator to help you configure the EASY-nLC instrument on the local network. The following information will help you through the process.

- To connect the EASY-nLC instrument to a local network

1. Connect the Ethernet cables as described in (see “Setting Up the Ethernet Connection to a Local Network for Data Exchange” on page 46).

2. Press **Configuration > Network**.

 The Network page (Figure 43) contains the configuration address information.

3. In the Profile list, select one of the following:
 - To connect to a local area network, select **MS LAN**.
 - To connect to the remote support server, select **Internet**.
4. For Configuration, select the **Dynamic** (addressing DHCP) option or the **Fixed** (IP address) option.

Your IT administrator knows which option to select.

If IT asks about a MAC address for the instrument—that is, the instrument’s unique network identifier—it is labeled on the connector panel on the back of the instrument. The identifier is a series of numbers and letters and might look like this:

MAC address: 00:E0:4B:07:89:65

External users can now access the file server in the EASY-nLC instrument’s computer to look at log files, for example. Microsoft Windows Explorer might display the file server as shown in **Figure 44**.

Figure 44. File server access through Windows Explorer

To access the admin folder on the EASY-nLC instrument’s computer hard drive from another computer on the network

1. Type the IP address of the instrument (in the Address list for Windows Explorer), for example, `file:\172.22.50.18`, and then press ENTER.

 A login dialog box appears.

 You need a valid user name and password to enter the file space. The user name and password are the same as those on the EASY-nLC instrument. For example, if you have not changed the default user name and password, the user name is admin and the password is admin.

2. Enter the same user name and password that you use to log in locally to the EASY-nLC instrument.
Modifying User Permissions

The four types of users are Guest (default), Normal, Super User, and Administrator.

Each user type has access to different levels of functionality in the EASY-nLC application (Table 9).

Table 9. User types and permission levels for each menu

<table>
<thead>
<tr>
<th>Menu</th>
<th>Guest</th>
<th>Normal</th>
<th>Super User</th>
<th>Administrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home</td>
<td>Read only(a)</td>
<td>Read/Write(b)</td>
<td>Read/Write</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Batch Setup</td>
<td>Read only</td>
<td>Read/Write</td>
<td>Read/Write</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Method Setup</td>
<td>Read only</td>
<td>Read/Write</td>
<td>Read/Write</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Maintenance</td>
<td>N/A</td>
<td>N/A</td>
<td>Read/Write</td>
<td>Read/Write</td>
</tr>
<tr>
<td>Configuration</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Read/Write</td>
</tr>
</tbody>
</table>

\(a\) User has read-only access.
\(b\) User has read-write access.

Having a Guest user account means you can access the top menu but not enter data or issue instrument commands.

If a feature is not available, the application grays (blanks) it out, so the user cannot access that function.

Follow these procedures to change passwords and create new user accounts:

- “Changing the Administrator Password,” next section
- “Creating New User Accounts” on page 76
- “Changing Your Password from the Exit Menu” on page 77
Changing the Administrator Password

The EASY-nLC application supplies a simple administrator password. Consider changing it to a more secure password as soon as possible.

To change the administrator password

1. Log in as admin (otherwise, see “Logging In to the EASY-nLC Instrument” on page 66).
2. Press Configuration > Users.

The Configuration > Users page opens (Figure 45).

Figure 45. Users page of the Configuration menu

3. Press Open.

The Select User dialog box opens.

4. In the User list, select Admin.

5. Enter the new password as follows:
 a. Press the Password box.

 The Enter Password dialog box opens.
 b. Type a new password, and then press OK.
 c. Press the Re enter box.

 The Enter Password dialog box opens.
 d. Type the password a second time to confirm it, and then press OK.
Creating New User Accounts

Use the Users page to create new user accounts for all the people or groups that will use the instrument. Each user has a private file space for batch jobs and methods that other users (apart from system administrators) cannot see.

In addition, there is a public file space for methods and batch jobs that all users can see and use. Only Super Users and Administrators can copy files into the public spaces and only Administrators can delete files and directories from the public space.

To create a new user account
1. Log in as admin (otherwise, see “Logging In to the EASY-nLC Instrument” on page 66).
2. Press Configuration > Users.
 The Configuration > Users page opens (see Figure 45 on page 75).
 The User Login, Name, Password, and Re enter boxes also become available for data input.
4. Make entries in the User Login and Name boxes.
5. Select the privileges for the user by level: Normal, Super, or Admin. For user privileges by user type, see Table 9 on page 74.
 If you want the user to carry out instrument maintenance, you must select Super User as the user type. If you want the user to restore data to the instrument's computer hard drive, select Admin as the user type.
6. Create an initial password for the defined user by using the Password and Re enter boxes.
 Users can change their passwords from the Login/Exit menu.
7. Press Save.

Note The user “Production” is a factory default user account that is not accessible and cannot be deleted.
Changing Your Password from the Exit Menu

After logging in, all users can change their password from the Exit menu.

❖ To change your password

1. Press Exit in the lower right corner of the touch screen.

 The exit confirmation box opens for the current user (see Figure 46).

 Figure 46. Exit confirmation box for the current user

 ![Exit confirmation box](image)

 2. Press Change Password.

 The Change password for: current user dialog box opens.

 3. Make the appropriate entries.

 4. Press Accept to accept the new password and close the dialog box.
Modifying the Time Settings

Use the Configuration > Time page (Figure 47) to set both the internal clock in the EASY-nLC instrument and the display format used throughout the application for date and time information.

❖ To set the time zone

1. Press Configuration > Time.

 The Configuration > Time page opens (see Figure 47).

 Figure 47. Time page of the Configuration menu

2. Select a time zone from the continent/city list.

 The Set Time Zone button becomes available.

3. Press Set Time Zone.

❖ To change the display format for the time and date

1. Select a format from the Presets list.

2. Press Set Format.

 The time and date format changes immediately on the Maintenance > Log Book page.
Purging the Computer Hard Drive

Use the Configuration > Data page to remove excess data from the computer's hard drive. Purge the hard drive when the instrument becomes less responsive or sluggish, as removing excess data improves system performance.

To remove unnecessary files from the instrument's computer

1. Press Configuration > Data.

 The Configuration > Data page opens (Figure 48).

Figure 48. Data page of the Configuration menu

2. Select the check boxes for the data that you want to keep.

 The application deletes the excess data. When the purge is complete, the Linux application restarts.

Note Perform the System Purge only when necessary. In the case of errors the system data facilitates troubleshooting.
Setting Up the Properties for the HPLC Device

Use the Properties page for the EASY-nLC instrument on the Devices page of the Maintenance menu to set the global instrument configuration settings such as the one- or two-column setup, loop size, idle flow settings, and load speed protection.

To set up the global instrument configuration for the HPLC device

1. Press Maintenance > Devices.
2. In the Devices list, select EASY-nLC (HPLC).
3. Press the Properties tab.

The Properties view for the HPLC device on the Maintenance > Devices page opens (Figure 49).

4. Press the corresponding box to open the keypad and enter the appropriate numeric values for these parameters: Loop Volume, Idle Flow Rate, and Idle Mixture.

5. Make the appropriate selections for these check boxes: One Column Setup, Load Speed Protection (LSP), and Automatic Pre-run Maintenance.

Table 10 describes the parameters in the Properties view for the EASY-nLC instrument on the Devices page of the Maintenance menu.
Table 10. HPLC parameter descriptions (Sheet 1 of 2)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loop Volume</td>
<td>Specifies the nominal size of the installed sample loop.</td>
</tr>
<tr>
<td></td>
<td>Take care to specify the correct loop size. If you specify a smaller loop size than the</td>
</tr>
<tr>
<td></td>
<td>installed loop size, the instrument might draw sample into the sample pump.</td>
</tr>
<tr>
<td>Idle Flow Rate</td>
<td>Specifies the solvent flow rate when the instrument is idle.</td>
</tr>
<tr>
<td></td>
<td>This feature activates when the last sample in a batch is done.</td>
</tr>
<tr>
<td></td>
<td>If you do not want a solvent flow through the instrument when it is idle, type 0 in the</td>
</tr>
<tr>
<td></td>
<td>Idle Flow Rate box.</td>
</tr>
<tr>
<td></td>
<td>Maintaining long-term emitter stability (with glass emitters) might require constant flow</td>
</tr>
<tr>
<td></td>
<td>through the system.</td>
</tr>
<tr>
<td>Idle Mixture</td>
<td>Specifies the solvent mixture as a percentage of solvent B when the instrument is idle.</td>
</tr>
<tr>
<td></td>
<td>For best results, use a minimum of 70% B to help prevent deposition on the emitter tip, both</td>
</tr>
<tr>
<td></td>
<td>metal and borosilicate.</td>
</tr>
<tr>
<td>One Column Setup</td>
<td>Specifies the one-column setup.</td>
</tr>
<tr>
<td></td>
<td>The diagram on the Overview page of the Home menu displays the column setup.</td>
</tr>
</tbody>
</table>
Load Speed Protection

When this check box is selected, the instrument uses the flow rate entered in the Sample Loading area on page 2 of the Method Setup wizard (see “Setting Up the Sample Pickup and Loading Steps” on page 127) to load the sample onto the precolumn (or the analytical column for a one-column setup). During a batch run, the sequence stops immediately if the system reaches the maximum pressure limit entered in the Sample Loading area.

The LSP feature ensures that the solvent delivery system loads each sample onto the column at the same flow rate. Because the flow rate used to load the sample onto the column can affect sample-to-sample reproducibility for quantitation experiments, use the LSP feature to maximize sample-to-sample reproducibility for quantitation experiments.

LSP is only active during the sample loading step of a run.

To use the LSP feature correctly, you must enter both a flow and a maximum pressure limit for sample loading in the method file. To determine an appropriate flow rate for your LC columns, use the precolumn and analytical column equilibration scripts.

Automatic Pre-run Maintenance

Selecting this check box turns on the automatic Flush Air script. When you start a new batch from the touch-screen application or a new Xcalibur sequence from a data system computer, the instrument runs the automatic Flush Air script if the previous batch (or sequence) started more than 8 hours ago.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load Speed Protection</td>
<td>When this check box is selected, the instrument uses the flow rate entered</td>
</tr>
<tr>
<td></td>
<td>in the Sample Loading area on page 2 of the Method Setup wizard</td>
</tr>
<tr>
<td></td>
<td>to load the sample onto the precolumn (or the analytical column for a one-</td>
</tr>
<tr>
<td></td>
<td>column setup). During a batch run, the sequence stops immediately if the</td>
</tr>
<tr>
<td></td>
<td>system reaches the maximum pressure limit entered in the Sample Loading</td>
</tr>
<tr>
<td></td>
<td>area.</td>
</tr>
<tr>
<td></td>
<td>The LSP feature ensures that the solvent delivery system loads each sample</td>
</tr>
<tr>
<td></td>
<td>onto the column at the same flow rate. Because the flow rate used to load</td>
</tr>
<tr>
<td></td>
<td>the sample onto the column can affect sample-to-sample reproducibility for</td>
</tr>
<tr>
<td></td>
<td>quantitation experiments, use the LSP feature to maximize sample-to-sample</td>
</tr>
<tr>
<td></td>
<td>reproducibility for quantitation experiments.</td>
</tr>
<tr>
<td></td>
<td>LSP is only active during the sample loading step of a run.</td>
</tr>
<tr>
<td></td>
<td>To use the LSP feature correctly, you must enter both a flow and a maximum</td>
</tr>
<tr>
<td></td>
<td>pressure limit for sample loading in the method file. To determine an</td>
</tr>
<tr>
<td></td>
<td>appropriate flow rate for your LC columns, use the precolumn and</td>
</tr>
<tr>
<td></td>
<td>analytical column equilibration scripts.</td>
</tr>
<tr>
<td>Automatic Pre-run</td>
<td>Selecting this check box turns on the automatic Flush Air script. When you</td>
</tr>
<tr>
<td>Maintenance</td>
<td>start a new batch from the touch-screen application or a new Xcalibur</td>
</tr>
<tr>
<td></td>
<td>sequence from a data system computer, the instrument runs the automatic</td>
</tr>
<tr>
<td></td>
<td>Flush Air script if the previous batch (or sequence) started more than 8</td>
</tr>
<tr>
<td></td>
<td>hours ago.</td>
</tr>
</tbody>
</table>
Preparing the EASY-nLC Instrument for Use

To prepare the EASY-nLC instrument for use, log in to the instrument with either Super User or Administrator privileges (see “Logging In to the EASY-nLC Instrument” on page 66), and then follow these procedures.

Daily and Weekly Maintenance Tasks

For optimal system performance, check the solvent levels, draw fresh solvent through the solvent system, and flush air out of the system on a daily basis.

Because the vapor pressures of formic acid, water, and acetonitrile differ, the solvent composition changes over time. Refill the solvent bottles with fresh solvent to maintain a consistent solvent composition on a weekly basis.

To check the solvent levels

1. Visually inspect solvent bottle A, solvent bottle B, and the autosampler bottle in position W3 (and the bottles in position W1 and W2 if used). Refill the bottles with fresh solvent if necessary.
Preparing the EASY-nLC Instrument for Use
Preparing the Solvent Bottles and Waste Containers

2. Visually inspect the autosampler wash bottle in position W4 and the waste container in the pump compartment, and empty them if necessary.

Tip You can also inspect the purity of the solvent to ensure no visible precipitates have formed that might lead to blockages in the pump line.

Note A solvent refresh reminder (“Solvent refresh due”) is shown on the left menu bar, if the last acknowledged solvent refresh is more than 2 weeks ago.

If the solvent refresh was acknowledged within the last 2 weeks, a “Solvents refreshed” button is shown.

To acknowledge that both solvents have been refilled, press either the “Solvent refresh due” or the “Solvents refreshed” button and choose “Yes”.

![Solvents Refreshed](image)

To draw fresh solvent into the system and to flush air out of the system

1. Run the Purge Solvent with two purge iterations. Then run the Flush Air script with a flush threshold of 12 μL.

2. Repeat step 1 until the flush volume falls below the threshold.

 For more information, see “Purging and Flushing the Pumps” on page 91.

Preparing the Solvent Bottles and Waste Containers

As you prepare the solvent bottles and empty the waste containers, you work with hazardous solvents and chemicals such as methanol, acetonitrile, formic acid, and so on. Before working with hazardous solvents and chemicals, review the specific hazards for each substance by reading the Material Safety Data Sheets (MSDSs) provided by the manufacturer. When working with solvents and chemicals, wear the appropriate safety gear.
Preparing the Solvent Bottles and Waste Containers

Before shipment, the EASY-nLC instrument’s solvent system is flushed with methanol.

CAUTION Methanol (CAS number: 67-56-1) is highly flammable and toxic by inhalation, ingestion, or skin absorption. Take appropriate measures to protect yourself and your equipment. Make sure that the mobile phases are miscible with methanol or flush the A and B solvent lines with an intermediate solvent.

To set up the two bottles that contain the mobile phase solvents, the four autosampler bottles, and the waste beaker, follow these procedures:

- “Preparing the Solvents,” next section
- “Preparing the Solvent A and B Bottles” on page 86
- “Installing the Autosampler Wash Bottles and Waste Beaker” on page 88

Preparing the Solvents

The installation solvents for the EASY-nLC 1200 instrument are as follows:

- **Solvent A:** 0.1% formic acid in water
- **Solvent B:** 0.1% formic acid in a mixture of 80% acetonitrile in water
- **Wash solvent 3:** 0.1% formic acid in water

Note Acetonitrile concentrations greater than 95% in water can shorten the lifetime of components.

To prepare these solutions, order the appropriate UHPLC-MS or LC/MS-grade solvents or solvent blends. Table 11 lists the solvents and solvent blends that you can order from Thermo Fisher Scientific.

Table 11. Solvents

<table>
<thead>
<tr>
<th>Solvent/reagent</th>
<th>Grade</th>
<th>Size</th>
<th>Catalog number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Optima™ UHPLC-MS</td>
<td>1 L</td>
<td>A956-1</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>Optima™ UHPLC-MS</td>
<td>1 L</td>
<td>A458-1</td>
</tr>
<tr>
<td>Formic acid (99.5%)</td>
<td>Optima™ LC/MS</td>
<td>10×1mL</td>
<td>A117-10X1AMP</td>
</tr>
<tr>
<td>Water with 0.1% formic acid</td>
<td>Optima™ LC/MS</td>
<td>1 L</td>
<td>LS118-1</td>
</tr>
</tbody>
</table>
Preparing the Solvent Bottles and Waste Containers

Table 11. Solvents

<table>
<thead>
<tr>
<th>Solvent/reagent</th>
<th>Grade</th>
<th>Size</th>
<th>Catalog number</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% acetonitrile, 20% water with 0.1% formic acid</td>
<td>Optima™ LC/MS</td>
<td>500mL</td>
<td>LS122-500</td>
</tr>
<tr>
<td>0.1% formic acid in acetonitrile</td>
<td>Optima™ LC/MS</td>
<td>1L</td>
<td>LS120-1</td>
</tr>
</tbody>
</table>

CAUTION Solvent contaminants can cause system blockages and poor spray stability. To minimize instrument problems caused by solvent contaminants, follow these guidelines for the EASY-nLC instrument:

- Use only UHPLC-MS or LC/MS-grade solvents.
- Use only commercially manufactured LC/MS-grade solvent blends, as mixing solvents in a typical laboratory environment can introduce contaminants as well as solvent concentration errors.
- Do not filter UHPLC-MS-grade solvents, as filtering solvents can introduce contaminants.
- Do not use HPLC-grade solvents, as HPLC-grade solvents contain more contaminants than LC/MS-grade solvents.
- Do not use water from laboratory purification systems, as laboratory purified water contains more contaminants than UHPLC-MS-grade water.

CAUTION Store and handle all chemicals in accordance with standard safety procedures.

The Optima LC/MS mobile phases can be ordered through www.fishersci.com (search for Optima LC/MS)

Preparing the Solvent A and B Bottles

Follow these recommended steps to prepare the two solvent bottles.

- **To prepare the solvent A and B bottles**
 1. Fill the 25 ml Schott Duran™ blue cap bottles with the mobile phase solvents.
 2. Degas the solvents by sonicating the solvent bottles in a sonication bath or by sparging the solvents with helium gas.
 3. Place the bottles in the holder on top of the instrument: solvent A bottle in the front and solvent B bottle in the back position.
4. Mount the inline filter assembly on the blue cap lids as shown in Figure 50 and Figure 51.

Figure 50. Inline filter assembly (exploded view)

Figure 51. Assembled inline filter

IMPORTANT To establish proper surface wetting, prime the filters with methanol or acetonitrile.
The autosampler compartment holds the sample trays, up to four wash bottles, and a waste beaker (see Figure 52). You can operate the instrument after installing the wash bottle that the autosampler uses for needle cleaning (position W4), the wash bottle that contains solvent A for pump S (position W3), and the waste beaker that collects the waste from pumps A and B and from the venting Tee through valve W.

To access the autosampler compartment, you can manually open the tray compartment door or you can press the Eject/Insert Tray button on the Home > Overview page.

Figure 52. Autosampler compartment

- **To install the waste beaker and prepare and install the wash bottles**
 1. Fill one of the wash bottles with solvent A and degas it.
 2. Turn on the instrument and make sure that the area in front of the tray compartment door is free from obstruction.
 3. Press **Home > Overview**. Then press **Eject/Insert Tray**.

 A confirmation box appears to remind you to remove obstacles from the area in front of the tray compartment before commanding the instrument to open the tray compartment door.
4. Press **Accept**.

The tray compartment door opens.

5. Put the bottle with the needle wash insert into position W4 (see Figure 53).

| CAUTION | You must place the wash bottle with the needle wash insert in position W4. Placing this bottle in any other position will cause irreparable damage to the autosampler needle during an injection cycle. |

Figure 53. Wash bottle with needle wash insert and view of the four positions on the autosampler bottle holder

6. Put a wash bottle that contains solvent A into position W3.

 Pump S draws solvent from this position. You can place wash solvents for customized washing procedures in positions W1 and W2.

7. Make sure all the bottles are installed with the lids fitting tightly.

8. Place the waste container (a 250 mL plastic beaker) into the compartment on the right side of the autosampler compartment.

9. Press **Eject/Insert Tray** to move the plate back into the instrument.
Executing Maintenance Scripts

The EASY-nLC application has a set of maintenance scripts that you can access from the Scripts page (Figure 54) of the Maintenance menu.

Use the scripts in the Prepare category for common tasks such as drawing fresh solvent through the solvent system, flushing air out of the system, and equilibrating the columns.

Before you start any of the maintenance scripts, prepare the instrument as described in “Preparing the Solvent Bottles and Waste Containers” on page 84.

Note You cannot execute maintenance scripts when the EASY-nLC instrument is running batches.

Figure 54. Scripts page of the Maintenance menu

The green START button is active when a job or script is ready to execute. After you press START, the STOP button replaces the START button and remains active until the job or script ends. During execution you can terminate a job or script by pressing the red STOP button.

When the Schedule button is available, you can automate the start of the Flow Sensor calibration script and all of the scripts in the Prepare category. You cannot schedule the remaining scripts because they require supervision or hardware changes to the instrument.
Purging and Flushing the Pumps

Because the EASY-nLC pumps are purged with methanol before delivery, thoroughly purge the pumps with the mobile phase solvents before doing any analytical runs. In addition, purge the pumps when switching to a new solvent.

The purge pump job fills the selected pump or pumps with solvent and then ejects the solvent into the waste container. You can specify how many iterations of this job you want performed.

After purging the pumps, flush them to remove any air that might be trapped inside. You can specify the maximum number of iterations for this job, the period of time that the pumps are being pressurized, and the success criteria for stopping the operation earlier than scheduled.

❖ To purge and flush pumps A and B

1. Before you purge the pumps with fresh solvent, make sure that the solvent bottles A and B on the top of the instrument are filled with solvent.

 The Scripts page of the Maintenance menu opens.

3. Set up the purge solvents job as follows (see Figure 55):
 a. In the Category list, select Prepare.
 b. In the Name list, select Purge Solvent.
 c. Press the Parameters tab.
 d. In the Purge Iterations box, enter 10. This is the number of times that the pumps will completely refill and eject the solvent.

 Tip To enter the number of purge iterations, press the empty cell in the Value column. The Set Value dialog box appears. Use the numeric keypad to type the number of purge iterations that you want. Then press Accept. The new value appears in the Value column.

 f. The option “full purge” sets the purge iterations for pumps A & B to 10 iterations and for pump S to 5 iterations. The “full purge” option is recommended for thorough refreshment of solvents in a pump subsystem.
4. To save these settings and continue, press **Schedule**.

The Queue page of the Home menu appears.

5. Set up the flush air job as follows (see **Figure 56**):
 a. Press **Maintenance > Scripts**.
 b. In the Category list, select **Prepare**.
 c. In the Name list, select **Flush Air**.
 d. Press the **Parameters** tab.
 e. In the Flush Vol. Threshold [μL] box, enter 12μl.

 This value helps to ensure an acceptable amount of solvent compressibility.

 Tip To enter the flush volume, press the empty cell in the Value column. The Set Value dialog box appears. Use the numeric keypad to type the volume that you want. Then press **Accept**. The new value appears in the Value column.

 f. Select the **Flush Pump A**, **Flush Pump B**, and **Flush Pump S** check boxes.
6. Press Schedule.

The Queue page (Figure 57) of the Home menu appears.
7. In the Jobs list, make sure the check box in the Auto-Continue column is selected for **Flush Air**.

8. Press **Overview**.

 The Overview page of the Home menu opens.

9. Press **START**.

 The default selections appear in the two graph windows on the Scripts page of the Maintenance menu, but you can change the selection for a window from its corresponding list. These graphs help you to monitor the job.

10. Wait for the jobs to end (the flush air job continues until the flush air volume values are below the specified threshold).

 Note While a maintenance job or a script is running, you cannot start other jobs or scripts.
Setting Up the Column Assembly

To integrate the EASY-nLC instrument with a Thermo Scientific mass spectrometer, Thermo Fisher Scientific provides two nanospray ion sources: the Nanospray Flex source and the EASY-Spray source.

You use different columns for these two sources. The Nanospray Flex source uses standard nanoflow columns for both the one- or two-column setup. The EASY-Spray source uses an EASY-Spray column as the analytical column in both the one- or two-column setup. To create a two-column setup for the EASY-Spray source, use a standard nanoflow column with nanoViper fittings as the precolumn.

To set up the column assembly for your nanospray source, follow the appropriate procedure:

- “Setting Up the Column Assembly for the Nanospray Flex Source,” next section
- “Setting Up the Column Assembly for the EASY-Spray Source” on page 112

Setting Up the Column Assembly for the Nanospray Flex Source

If your LC/MS system has a Nanospray Flex ion source, follow the appropriate procedures to set up the column assembly.

- “Setting Up the Column Assembly for an EASY-nLC 1200 Instrument,” next section
- “Setting Up the Column Assembly for an EASY-nLC 1200 Instrument” on page 95
- “Setting Up a Column Assembly with Fused-Silica Columns” on page 98
- “Connecting a Sleeved Emitter to the Analytical Column” on page 111

CAUTION Wear protective gloves and safety glasses when handling the solvent lines. To prevent contamination, use lint-free and powder-free gloves.

Setting Up the Column Assembly for an EASY-nLC 1200 Instrument

For an EASY-nLC Instrument with a Nanospray Flex ion source, you can use standard columns with nanoViper fittings or fused-silica columns.

Depending on the columns you are installing, follow the appropriate procedure:

- “Setting Up a Standard Column Assembly,” next section
- “Setting Up a Column Assembly with Fused-Silica Columns” on page 98

Setting Up a Standard Column Assembly

Use this procedure for an EASY-nLC 1200 instrument with a Nanospray Flex ion source and standard columns that have nanoViper fittings.
Table 12 lists the columns, fittings, and unions that make up the two-column assembly. The standard analytical column (P/N 164704) provided with the EASY-nLC 1200 instrument has nanoViper fittings.

Note The EASY-nLC 1200 instrument ships with two analytical columns: an EASY-Spray column and a standard analytical column with nanoViper fittings. For set up a two-column assembly, you must order the precolumn.

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precolumn (trap column) with nanoViper fittings</td>
<td>Acclaim™ PepMap™ 100, 2 cm length, 75 μm ID, 3 μm particle size, C18 column packing</td>
<td>Thermo Scientific Dionex™ 164705</td>
</tr>
<tr>
<td>Analytical column with nanoViper fittings</td>
<td>Acclaim PepMap RSLC, 15 cm length, 50 μm ID, 2 μm particle size, C18 column packing</td>
<td>Thermo Scientific Dionex 164704</td>
</tr>
<tr>
<td>PEEK ZDV union with fittings</td>
<td>0.76 in. length, 0.035 in. thru-port, for 1/32 in. OD tubing</td>
<td>IDEX P-771</td>
</tr>
<tr>
<td>Stainless steel union, ZDV (Viper™ union)</td>
<td>For 1/16 in. OD tubing (HPLC-to-Column connector)</td>
<td>SC900</td>
</tr>
<tr>
<td>Venting Tee</td>
<td>Stainless steel, 0.15 mm bore, for 1/16 in. OD tubing (nanoliter-dead-volume-tee)</td>
<td>SC901</td>
</tr>
<tr>
<td>PEEK sleeves (black) for 280 μm fused-silica</td>
<td>330 μm ID, 1/32 in. OD</td>
<td>SC903</td>
</tr>
</tbody>
</table>

Make sure that you connect the venting Tee to the Waste In line for both the one-column and two-column setups.

To connect the column assembly for the Nanospray Flex source to the EASY-nLC 1200 instrument

1. Do one of the following:
 - For a one-column setup, go to step 2.
 - For a two-column setup, go to step a.
 a. For a one-column setup, connect the Column Out line directly to the venting Tee (Figure 58). Then go to step 3.
2. For a two-column setup, do the following:
 a. Connect one end of the precolumn to the receiving port of the venting Tee that is parallel to the analytical column. Slowly tighten the fitting until you feel resistance.
 b. Connect the Viper union (stainless steel ZDV) to the free end of the precolumn. Slowly tighten the fitting until you feel resistance.
 c. Insert the nanoViper fitting on the Column Out line into the free end of the Viper union. Slowly tighten the fitting until you feel resistance.
 d. Tighten the nanoViper fittings by an additional 45 degrees (1/8-turn). Do not tighten the fittings by more than a 1/4-turn (see “Using nanoViper Fittings” on page 115 and “Using the Viper Union” on page 117).

 CAUTION Because the fittings seal against each other inside the union, do not tighten them by more than 90 degrees (1/4-turn). Overtightening the fittings can irreparably damage their sealing surfaces.

3. Connect the Waste In line to the venting Tee as follows:
 a. Remove the plug from the third port of the venting Tee.
 b. Insert the nanoViper fitting at the end of the Waste In line into the free port of the Tee (see Figure 58 and Figure 59). Slowly tighten the fitting until you feel resistance. Then tighten the fitting by an additional 1/8- to 1/4-turn. Do not tighten the fitting by more than a 1/4-turn (see “Using nanoViper Fittings” on page 115).

 Figure 59 shows the two-column setup. Both the one-column and two-column setups use the venting Tee.
Setting Up a Column Assembly with Fused-Silica Columns

Use this procedure for an EASY-nLC 1200 instrument with a Nanospray Flex ion source and columns that have exposed fused-silica ends.

When you are using the Nanospray Flex ion source (P/N ES071) and you want to use a pulled fused-silica analytical column, you must modify the EASY-nLC 1200 instrument and install the column using the components in the EASY-nLC UHPLC Liquid Junction Kit.

For information about modifying the EASY-nLC instrument by installing the Column Out and Waste In lines that are supplied in the EASY-nLC UHPLC Liquid Junction Kit, refer to the EASY-nLC 1200 Troubleshooting and Maintenance Guide.

Table 13 lists the items in the UHPLC Liquid Junction Kit (ES269).

Table 13. UHPLC Liquid Junction Kit contents (Sheet 1 of 3)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Out line with a nanoViper fitting at one end and bare fused-silica tubing at the other end</td>
<td>6041.5290</td>
</tr>
<tr>
<td>Waste In line with a nanoViper fitting on one end and bare fused-silica tubing at the other end</td>
<td>6041.5289</td>
</tr>
</tbody>
</table>
Table 13. UHPLC Liquid Junction Kit contents (Sheet 2 of 3)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHPLC liquid junction cross with a platinum electrode and two-piece protective cover</td>
<td>N/A</td>
</tr>
<tr>
<td>Tightening tool used to torque internally-threaded knurled nut fittings (quantity: 2)</td>
<td>(IDEX) P-278</td>
</tr>
<tr>
<td>Microferrules (quantity: 3)</td>
<td>(IDEX) PK-152</td>
</tr>
<tr>
<td>Blind plug microferrule</td>
<td>(IDEX) P-116</td>
</tr>
</tbody>
</table>
5 Preparing the EASY-nLC Instrument for Use

Setting Up the Column Assembly

Table 13. UHPLC Liquid Junction Kit contents (Sheet 3 of 3)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHPLC fused-silica union, which consists of the following:</td>
<td>ES272</td>
</tr>
<tr>
<td>• PEEK holder</td>
<td></td>
</tr>
<tr>
<td>• Two internally-threaded knurled nuts</td>
<td></td>
</tr>
<tr>
<td>• Two microferrules</td>
<td></td>
</tr>
<tr>
<td>• Stainless steel cartridge with coned ports and a 280 μm thru-hole</td>
<td></td>
</tr>
</tbody>
</table>

Note The UHPLC fused-silica union has two functions:

- For a two-column setup, it connects the Column Out line to the inlet of a 360 μm OD precolumn.
- For system leak testing and backpressure testing, it connects the Column Out line to the Waste In line. For information about leak testing, refer to the *EASY-nLC Series Troubleshooting and Maintenance Guide*.

Figure 60 shows a one-column setup with the modified Column Out and Waste In lines and a fused-silica column with an integrated emitter.

Figure 60. One-column setup with the modified Column Out and Waste In lines

![Diagram of one-column setup with modified Column Out and Waste In lines](image)
Figure 61 shows a two-column setup with the modified Column Out and Waste In lines and an analytical column with an integrated emitter. Both the precolumn and analytical column have bare fused-silica ends. The UHPLC fused-silica union connects the Column Out line to the precolumn’s inlet.

Figure 61. Two-column setup with the modified Column Out and Waste In lines and an analytical column with an integrated emitter

The UHPLC fused-silica union is designed for a two-column assembly that includes nanoflow columns with fused-silica ends. Figure 62 shows an enlarged cross section of this union. The ends of the externally-threaded PEEK holder have different internal depths. The stainless steel cartridge, which has coned ports and a 280 μm thru-hole, fits within the deeper end of the PEEK holder. The microferrules are designed for sleeveless use with 360 μm OD fused-silica tubing. The two internally-threaded knurled nuts secure the tubing to the PEEK holder.

Figure 62. UHPLC fused-silica union (enlarged cross section)
Figure 63 shows a two-column setup with the modified Column Out and Waste In lines and an analytical column with an external emitter.

Figure 63. Two-column setup with the modified Column Out and Waste In lines and an analytical column with an external emitter

Use the following tools and materials to set up the column assembly.

<table>
<thead>
<tr>
<th>Tools</th>
<th>Parts and materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Small flat-blade screwdriver</td>
<td>• UHPLC Liquid Junction Kit (P/N ES269)</td>
</tr>
<tr>
<td>• Tightening tool (in kit)</td>
<td>• Powder-free safety gloves</td>
</tr>
</tbody>
</table>

To install the column assembly and prepare the system for operation, follow these procedures:

1. To connect the column assembly to the UHPLC liquid junction cross, do one of the following:
 - “To connect a two-column assembly to the UHPLC liquid junction cross,” next procedure
 --or--
 - “To connect a one-column assembly to the UHPLC liquid junction cross” on page 105
2. “To mount the UHPLC liquid junction cross onto the DirectJunction” on page 106
3. “To prepare a system with the UHPLC liquid junction cross for operation and optimize its performance” on page 108
To connect a two-column assembly to the UHPLC liquid junction cross

1. Slip an internally-threaded nut and a microferrule (components of the UHPLC fused-silica union) onto the Column Out line (Figure 64).

 Figure 64. Column Out line with nut and ferrule

 ![Column Out line with nut and ferrule](image)

2. Insert the stainless steel cartridge into the deeper end of the externally-threaded PEEK holder (see Figure 62 on page 101). Then insert the Column Out line into the deeper end of the PEEK holder and hand-tighten the nut (Figure 65).

 Figure 65. Column Out line connected to the deeper end of the PEEK holder

 ![Column Out line connected to the deeper end of the PEEK holder](image)

3. Slip an internally-threaded knurled nut and a ferrule onto the inlet end of a precolumn. Then insert the inlet end of the precolumn into the PEEK holder and hand-tighten the nut (Figure 66).

 Figure 66. Column Out line and precolumn connected to the PEEK holder

 ![Column Out line and precolumn connected to the PEEK holder](image)

4. Using the tightening tool provided in the UHPLC Liquid Junction Kit, tighten the internally-threaded knurled nuts an additional one-quarter turn (Figure 67).

 Figure 67. Using the tightening tools to tighten the nuts an additional one-quarter turn

 ![Using the tightening tools to tighten the nuts an additional one-quarter turn](image)
5. Remove the internally-threaded knurled nuts and the microferrules from the UHPLC liquid junction cross. Using these nuts and ferrules, connect the precolumn, the analytical column, and the Waste In lines to the UHPLC liquid junction cross as follows:

- Connect the outlet of the precolumn and the inlet of the analytical column to the parallel ends of the cross.
- Connect the Waste In line to the perpendicular end of the cross.

Figure 68 shows the plumbing connections for the UHPLC liquid junction cross. Make sure that the columns connect to the parallel ends of the cross.

6. Using the tightening tool, tighten the three internally-threaded knurled nuts an additional one-quarter turn.
To connect a one-column assembly to the UHPLC liquid junction cross

CAUTION Before handling the UHPLC liquid junction cross, make sure that it is disconnected from line power.

1. Remove the externally-threaded knurled nuts and the microferrules from the UHPLC liquid junction cross. Then, using these nuts and ferrules, connect the Column Out line, the analytical column, and the Waste In lines to the UHPLC liquid junction cross as follows:
 - Connect the Column Out line and the inlet of the analytical column to the parallel ends of the cross.
 - Connect the Waste In line to the perpendicular end of the cross.

 Figure 69 shows the plumbing connections for the UHPLC liquid junction cross. Make sure that the Column Out line and the analytical column connect to the parallel ends of the cross.

 Figure 69. UHPLC liquid junction cross connections for a one-column setup

2. Using the tightening extender tool, tighten the three internally-threaded knurled nuts an additional one-quarter turn.
To mount the UHPLC liquid junction cross onto the DirectJunction

CAUTION During operation, the UHPLC liquid junction cross is at high voltage. To avoid personal injury, make sure that the UHPLC liquid junction cross is securely mounted inside its two-piece protective cover.

1. Using a flat-blade screwdriver, remove the two screws that secure the top of the protective cover to its body.

 Figure 70 shows a profile view of the two-piece protective cover.

 Figure 70. Protective cover (profile view)

 ![Protective cover (profile view)](image)

 - **Top**
 - **Compression screw**
 - **Mounting hole (slides onto the Direct Junction's metal rod)**

2. Slide the protective cover’s body onto the DirectJunction’s metal rod. If necessary, loosen the compression screw in the body until the hole in the body fits over the rod, and then tighten the screw.

3. Mount the UHPLC liquid junction cross onto the body of the protective cover (Figure 71). Then, place the top of the protective cover over the liquid junction cross.

 Both the top and the body of the cover contain two magnets. When you place the top onto the body, the magnetic attraction holds the two pieces together.

 Figure 71. UHPLC liquid junction cross mounted onto the body of the protective cover

 ![UHPLC liquid junction cross mounted onto the body of the protective cover](image)
4. Using the two screws that you removed in step 1 on page 106, secure the top of the protective cover to its body (Figure 72).

Figure 72. UHPLC liquid junction cross secured within the protective cover

5. If necessary, connect an emitter to the outlet of the analytical column as described in “Connecting a Sleeved Emitter to the Analytical Column” on page 111.

6. Mount the emitter on the DirectJunction and secure it with the clamp (Figure 73).

Figure 73. Column assembly mounted on DirectJunction
7. If the column is longer than the DirectJunction, use a 1/32 in. PEEK connector (IDEX P/N P-771) to secure the emitter tip (Figure 74).

Figure 74. PEEK connector used to secure a long analytical column

8. Connect the high voltage cable from the UHPLC liquid junction cross to the socket underneath the ion source (Figure 75).

Figure 75. High-voltage cable connected to the ion source

❖ **To prepare a system with the UHPLC liquid junction cross for operation and optimize its performance**

1. Turn on the EASY-nLC instrument and log in (see “Logging In to the EASY-nLC Instrument” on page 66).

2. Remove air from the Waste In and Column Out lines by running the Precolumn Equilibration script. Do the following:
 a. Open the Precolumn Equilibration script as follows:
 i. On the touch screen, press **Maintenance > Scripts**.
 ii. In the Category list, select **Prepare**.
 iii. In the Name list, select **Precolumn Equil**.
b. Set up the script parameters as follows:
 i. Press the **Parameters** tab.
 ii. Enter the following settings:
 - **Volume**: 30 μL
 - **Flow**: (Leave Empty)
 - **Max Press**: Set to the maximum pressure rating of the installed columns.

c. Press **Start**.

IMPORTANT To maintain optimal system performance, be aware of the following:

- Repeatedly connecting and disconnecting the same fused-silica column to the UHPLC fused-silica union or UHPLC liquid junction cross can damage the polyimide protection layer of the column and cause column blockage.

- The Liquid Junction Kit is designed for 360 μm OD columns. Using the kit with columns of other dimensions can cause leakage, delayed elution, and non-reproducibility of chromatographic performance.

- Use only IDEX brand Very High Pressure (VHP) ferrules for 360 μm OD tubing to connect tubing to the UHPLC fused-silica union and the UHPLC liquid junction cross. Using ferrules that are not specifically designed for ultra-high pressure, 360 μm OD, fused-silica tubing can cause leaks and add swept volume.

- A poor connection between the analytical column and the emitter can cause broad chromatographic peaks.
For routine applications with the UHPLC liquid junction cross, follow these guidelines:

- Apply a high voltage potential from 2.0 to 2.5 kV. The actual voltage applied once the spray has been optimized depends on the length and ID of the analytical column.

- Use formic acid rather than acetic acid as a mobile phase modifier to avoid the formation of peptide-Fe cluster ions with acetic acid \([\text{C}_2\text{H}_4\text{O}_2]_n^-n\text{H}+3\text{Fe}+\text{O}^+\) as well as the water clusters of these ions \([\text{C}_2\text{H}_4\text{O}_2]_n^-n\text{H}_2\text{O}+3\text{Fe}+\text{O}^+\). You can distinguish ions that contain iron by their isotope distribution (Figure 76).

Figure 76. Spectrum of peptide-Fe cluster ions and the theoretical isotope distribution of these ions

When you use the UHPLC liquid junction cross, Thermo Fisher Scientific recommends that you maintain a supply of spare parts (see Table 14).

Table 14. Spare parts for a column assembly with a pulled fused-silica column

<table>
<thead>
<tr>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHP sleeveless cross for 360 μm OD tubing</td>
<td>UH-752 (IDEX)</td>
</tr>
<tr>
<td>VHP microferrule for 360 μm OD tubing</td>
<td>PK-152 (IDEX)</td>
</tr>
<tr>
<td>UHPLC spare blind plug</td>
<td>P-116 (IDEX)</td>
</tr>
<tr>
<td>Tightening tool to tighten internally-threaded knurled polymer fittings</td>
<td>P-278 (IDEX)</td>
</tr>
<tr>
<td>Column Out tubing (modified)</td>
<td>6041.5290</td>
</tr>
<tr>
<td>Waste In tubing (modified)</td>
<td>6041.5289</td>
</tr>
<tr>
<td>PEEK connector (red) for 1/32 in. OD tubing</td>
<td>P-771 (IDEX)</td>
</tr>
</tbody>
</table>
Connecting a Sleeved Emitter to the Analytical Column

Before you mount the column assembly onto the ion source, connect an emitter to the analytical column. Borosilicate emitters require sleeves. Stainless steel emitters come pre-inserted into microsleeves.

For information about ordering stainless steel emitters sleeves, visit www.proxeon.com/productrange/nano_ES_emitters/online_offline_emitters/index.html

Table 15 lists the sleeves for 1/32 in. fittings that you can order to install a borosilicate emitter.

Table 15. Thermo Fisher Scientific sleeves for 1/32 in. fittings and borosilicate emitters

<table>
<thead>
<tr>
<th>Color</th>
<th>Use</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>For 360 μm OD tubing</td>
<td>SC603</td>
</tr>
<tr>
<td>Black</td>
<td>For 280 μm OD tubing</td>
<td>SC903</td>
</tr>
</tbody>
</table>

CAUTION Because the emitter tip is sharp enough to puncture skin and easily damaged, do not touch it.

To connect an emitter to the PEEK union

1. If you are using the preassembled column assembly, disconnect the analytical column from the PEEK union (IDEX P/N P-771).

2. Connect the white distance-gauge plug to one end of the PEEK union.

3. Connect the emitter to the other end of the PEEK union as follows:
 a. For a glass emitter, thread the blunt end of the emitter through the adapter sleeve. Ensure that the blunt end of the emitter does not protrude from the (20 mm length) sleeve by more than 1 mm (Figure 77).

 Figure 77. Sleeved emitter (4x scale)

 ![Sleeved emitter diagram](image)

 - Blunt end of the glass emitter
 - Adapter sleeve
 - Emitter tip
 - 1 mm protrusion

 b. To ensure proper seating, slide the blunt end of the sleeved emitter through the PEEK nut until it protrudes slightly (approximately 1 to 2 mm) from the front of the fitting.
c. As you gently press the sleeved emitter against the union port, screw the nut into the port until fingertight (Figure 78). For a stainless steel emitter, turn the nut an additional half-turn (180 degree) once you feel resistance.

d. Verify that the connection is secure.

Figure 78. Sleeved emitter connected to the PEEK union

4. Remove the gauge from the PEEK union and reconnect the analytical column to the union.

Setting Up the Column Assembly for the EASY-Spray Source

If your LC/MS has an EASY-Spray source, follow the appropriate procedure to connect either a one- or two-column setup.

- “Connecting an EASY-Spray Column to an EASY-nLC 1200 Instrument” on page 113

The EASY-Spray Ion Source Kit contains the fittings and sleeves for the plumbing connections (see Table 16).

Table 16. Fittings and sleeves in the EASY-Spray Ion Source Kit

<table>
<thead>
<tr>
<th>Image</th>
<th>Description</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A/B mixing/venting Tee, stainless steel, with three attached ferrules and nuts</td>
<td>SC901</td>
</tr>
<tr>
<td></td>
<td>Sleeves, PEEK, 1/16 in. OD</td>
<td>IDEX™, F-233</td>
</tr>
<tr>
<td></td>
<td>Viper union (for the EASY-nLC 1200 instrument)</td>
<td>Thermo Scientific Dionex, 6040.2304</td>
</tr>
</tbody>
</table>

CAUTION Wear protective gloves and safety glasses when handling the solvent lines. To prevent contamination, use lint-free and powder-free gloves.
Connecting an EASY-Spray Column to an EASY-nLC 1200 Instrument

Follow the appropriate procedure for a one- or two-column setup. The two-column setup includes a precolumn in the column-out flow path to the venting Tee.

- “To connect an EASY-Spray column for a one-column setup to the EASY-nLC 1200 instrument,” next procedure
- “To connect a two-column setup with a precolumn and an EASY-Spray column to an EASY-nLC 1200 instrument” on page 114

IMPORTANT The venting Tee (P/N SC901) supplied in the EASY-Spray Ion Source Kit has three ports with attached fittings (stainless steel nut and ferrule). The attached fittings must not be used with the EASY-nLC 1200 instrument; however, to keep the internal components of the union aligned, remove only one of the three fittings at a time. Use the two parallel ports to connect the sample transfer line. Use the perpendicular port to connect the waste line.

- To connect an EASY-Spray column for a one-column setup to the EASY-nLC 1200 instrument

Connect the nanoViper fittings at the ends of the Column Out and Waste In solvent lines and the nanoViper fitting at the inlet end of the EASY-Spray column to the venting Tee as follows:

- Remove the fitting (stainless steel nut and ferrule) from one of the venting Tee’s parallel ports. Insert the Column Out solvent line’s nanoViper fitting into the free port. Slowly tighten the fitting until you feel resistance. Then tighten the fitting by an additional 1/8- to 1/4-turn. Do not tighten the fitting by more than a 1/4-turn (see “Using nanoViper Fittings” on page 115).

- Remove the fitting from the venting Tee’s perpendicular port. Insert the Waste In solvent line’s nanoViper fitting into the free port, and then carefully tighten the fitting.

- Remove the fitting from the remaining parallel port. Insert the nanoViper fitting at the inlet end of the EASY-Spray column into the venting Tee’s free parallel port, and then carefully tighten the fitting.

Figure 79 shows the one-column setup for an EASY-Spray column and an EASY-nLC 1200 instrument.
To connect a two-column setup with a precolumn and an EASY-Spray column to an EASY-nLC 1200 instrument

1. Connect the Column Out line to the precolumn inlet with a Viper union as follows:
 a. Insert the nanoViper fittings on the ends of the tubing into the Viper union.
 b. Because the nanoViper fittings seal against each other inside the ZDV union, alternate tightening each fitting in increments until you feel resistance (see “Using the Viper Union” on page 117).
 c. Tighten both fittings by an additional 45 degrees (1/8-turn). Do not tighten the fittings by more than a 1/4-turn (see “Using nanoViper Fittings” on page 115).

2. Connect the outlet end of the precolumn, the inlet end of the EASY-Spray column, and the Waste In line to the venting Tee as follows:
 - Insert the nanoViper fitting on the outlet end of the precolumn into one of the venting Tee's parallel ports, and then carefully tighten the fitting.
 - Connect nanoViper fitting on the inlet end of the EASY-Spray column to the venting Tee's free parallel port, and then carefully tighten the fitting.
 - Insert the fitting on the end of the Waste In line into the venting Tee's perpendicular port, and then carefully tighten the fitting.
Figure 80 shows a two-column setup for an EASY-nLC 1200 instrument and an EASY-Spray source.

Figure 80. Two-column setup for an EASY-nLC 1200 instrument and an EASY-Spray source

Tip When you install the two-column assembly, clear the **One Column Setup** check box in the EASY-nLC device section on the Devices page of the Maintenance menu (see “Setting Up the Properties for the HPLC Device” on page 80).

Using nanoViper Fittings

IMPORTANT The EASY-nLC 1200 requires the current version of nanoViper fitting systems with a specified pressure range up to 1200 bar. Older versions are only specified up to 1000 bar. The new 1200 bar nanoViper fitting system consists of blue PEEK tubing, which distinguishes it from the beige 1000 bar version, see Figure 81.

Figure 81. Visual difference between 1000 bar (top) and 1200 bar nanoViper fitting (bottom)
For the EASY-nLC 1200 instrument, most of the plumbing connections are made with nanoViper fittings (see Figure 82).

Figure 82. nanoViper fitting

Even though nanoViper fittings can withstand UHPLC backpressures of up to ~1034 bar (~15,000 psi), they are fingertight fittings, which require only very small torques to seal. To avoid damage by overtightening, you must follow this procedure.

To connect a nanoViper fitting to a receiving port

1. Insert the nanoViper fitting into the target port and slowly rotate the screw clockwise until you feel resistance.

2. Using the black, knurled tightening tool, turn the screw clockwise to an angle between 0 and 45 degrees (1/8-turn).

3. Run the Leaks script for the system as described in the *EASY-nLC Series Troubleshooting and Maintenance Guide*.

When the leak test ends, the system is at atmospheric pressure.

IMPORTANT To extend the lifetime of the nanoViper fittings, open and close connections at atmospheric system pressures only. Opening and closing connections at high system pressures can reduce the lifetime of the fitting system.

4. If the Leaks script fails because the new connection is not leak tight, use the black knurled nut to turn the screw up to an additional 45 degrees. Do not turn the screw beyond an angle of 90 degrees from where you felt the initial resistance.
Using the Viper Union

For an EASY-nLC instrument with the standard Column Out and Waste In lines, use a Viper union to connect the Column Out line to the Waste In line during a system leak test or to connect the Column Out line to the precolumn of a two-column assembly. The Viper union is a true zero-dead-volume (ZDV) union, which means that the fittings connected to its receiving ports seal against each other inside the union.

- **To connect tubing with nanoViper fittings to the Viper union**

 1. Insert the nanoViper fittings on the ends of the tubing into the Viper union.
 2. Alternate tightening each fitting in increments until you feel resistance.
 3. Tighten both fittings by an additional 45 degrees (1/8-turn). Do not tighten the fittings by more than a 1/4-turn (see “Using nanoViper Fittings” on page 115).

CAUTION Because the nanoViper fittings seal against each other inside the union, do not tighten them by more than 90 degrees (1/4-turn). Overtightening the fittings can irreparably damage their sealing surfaces.

Figure 83 shows two solvent lines with nanoViper fittings connected to the Viper union. The Viper union makes a zero-dead-volume connection between the two nanoViper fittings.

Figure 83. Viper union connecting tubing with nanoViper fittings

Figure 84 shows an internal view of the Viper union with nanoViper fittings connected to both ports. The two nanoViper fittings seal against each other in the center of the union, and a portion of the last thread on each nanoViper fitting is visible.

Figure 84. Viper union with nanoViper fittings connected to both ports (internal view)
Equilibrating Columns

After you initially install the column assembly, equilibrate the column or columns and determine an appropriate flow rate for the sample loading step (see “Setting Up the Sample Pickup and Loading Steps” on page 127) of the chromatographic method.

Follow these procedures to equilibrate the columns and to determine the appropriate flow rate for your chromatographic method:

- “Equilibrating the Precolumn,” next section
- “Equilibrating the Analytical Column” on page 120

Equilibrating the Precolumn

To equilibrate the precolumn and determine the flow rate for sample loading

1. Open the Parameters view of the Precolumn Equilibration script as follows:

 The Maintenance > Scripts page opens.
 b. In the Category list, select Prepare.
 c. In the Name list, select Precolumn Equil.
 d. Press the Parameters tab.

 The Parameters view opens (see Figure 85).

 Figure 85. Precolumn equilibration parameters
2. Set up the script parameters as follows:
 a. In the Volume [μL] box, enter the volume of solvent A to be used to equilibrate the precolumn.
 For best results, use at least 10 column volumes to equilibrate the precolumn.
 b. In the Flow [μL/min] box, enter the flow rate for the precolumn equilibration step.
 If the flow field is left empty, the pump operates at the set pressure.
 c. In the Max Pressure [bar] box, enter the maximum allowed pressure for the equilibration step.
 If the pressure field is left empty, the pump operates at the set flow (as long as it is below the instrument maximum pressure of 1180 bar). If both a flow and a max pressure are specified, the pump flow is limited by whichever parameter is reached first.

 CAUTION The maximum pressure rating for the columns is as follows:

 - The maximum pressure rating is 1200 bar for the PepMap columns supplied with the EASY-nLC 1200 instrument.

 Running the instrument at pressures higher than the column's maximum pressure rating reduces the column lifespan.

 Thermo Fisher Scientific recommends running the equilibration at a set pressure rather than a set flow, to make sure the column pressure limit and the instrument pressure limit are not exceeded (see Figure 85 on page 118). If the flow field is left empty, the pump will run at the specified pressure. For best results, use an equilibration volume of 10 column volumes.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maximum pressure (in bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASY-nLC 1200 instrument</td>
<td>1180</td>
</tr>
<tr>
<td>PepMap column</td>
<td>1200</td>
</tr>
<tr>
<td>EASY-Spray column</td>
<td>Refer to the specifications provided with the column.</td>
</tr>
</tbody>
</table>

3. Press START.

 The default graphs appear in the two graph windows, but you can change the selections from their corresponding lists. These graphs help you to monitor the progress.

4. Monitor the actual flow rate to become familiar with the flow/pressure relationship on your particular column.
Equilibrating the Analytical Column

To equilibrate the analytical column

1. Open the Parameters view of the Analytical Column Equilibration script as follows:
 The Maintenance > Scripts page opens.
 b. In the Category list, select Prepare.
 c. In the Name list, select Analytical Col equil.
 d. Press the Parameters tab.
 The Parameters view of the Analytical Column Equilibration script opens (see Figure 86).

Figure 86. Analytical column equilibration parameters

2. Set up the script parameters as follows:
 a. In the Volume [μL] box, enter the volume of solvent A to be used to equilibrate the analytical column.
 For best results, use at least 10 column volumes to equilibrate the analytical column.
 b. In the Flow [μL/min] box, enter the flow rate for the analytical column equilibration step.
 If the flow field is left empty, the pump operates at the set pressure.
c. In the Max Pressure [bar] box, enter the maximum allowed pressure for the equilibration step.

If the pressure field is left empty, the pump operates at the set flow (as long as it is below the instrument maximum pressure of 1180 bar).

If both a flow and a maximum pressure are specified, the pump flow is limited by whichever parameter is reached first.

CAUTION The maximum pressure rating is 1200 bar for the PepMap columns supplied with the EASY-nLC 1200 instrument. Running the instrument at pressures higher than the maximum pressure rating for the column reduces the column lifespan.

Thermo Fisher Scientific recommends running the equilibration at a set pressure rather than a set flow, to make sure the column pressure limit and the instrument pressure limit are not exceeded. If the flow field is left empty, the pump will run at the specified pressure. For best results, use an equilibration volume of 10 column volumes.

<table>
<thead>
<tr>
<th>Item</th>
<th>Maximum pressure (in bar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EASY-nLC 1200 instrument</td>
<td>1180</td>
</tr>
<tr>
<td>PepMap column</td>
<td>1200</td>
</tr>
<tr>
<td>EASY-Spray column</td>
<td>Refer to the specifications provided with the column.</td>
</tr>
</tbody>
</table>

3. Press **START**.

The default graphs appear in the two graph windows, but you may change the selections from their corresponding lists. These graphs help you to monitor the progress.

4. Monitor the actual flow rate to become familiar with the flow/pressure relationship on your particular column or columns.
Running Samples Using the Integrated Software

To create a method and run your first sample batch by using the integrated instrument control software, follow these procedures.

Preparing and Loading Samples

The EASY-nLC instrument ships with adapters for vials (54 vials in a 6 × 8+6 configuration), microplates (96- and 384-well), and PCR strips.

If you are using a new plate format, you must add the plate format to the list of configured plate formats and calibrate the plate as described in the *EASY-nLC Series Troubleshooting and Maintenance Guide*.

To prepare the sample vials or microplates

1. Fill some vials or microplate wells with your sample, preferably a known standard.
2. Make sure that no air is trapped in the sample vials or the microplate wells and that the sample is in the bottom of the vials or wells. To do this, tap the vial or microplate gently against a hard surface to have the sample move to the bottom.
3. Put on the vial cap or plate mat.
To load a microwell plate or vials into the autosampler tray compartment

1. To open the tray compartment door, do one of the following:
 • Manually open the tray compartment door.

 —or—

 • Use the touch-screen controls to open the tray compartment door as follows:
 i. On the Home > Overview page, press Eject/Insert Tray.
 A confirmation box appears to remind you to remove obstacles from the area in front of the tray compartment before opening the tray compartment door.
 ii. Make sure that the area in front of the tray compartment is clear, and then press Accept.
 The tray compartment door opens and the plate holder moves forward.

2. Load your microwell plate or sample vials.

Creating a Method

To create a method, follow these procedures:

1. “Browsing for a Stored Method or Creating a New Method File,” next section
2. “Starting the Method Setup Wizard” on page 126
3. “Setting Up the Sample Pickup and Loading Steps” on page 127
4. “Building the Gradient” on page 130
5. “Setting Up the Column Equilibration Steps” on page 132
6. “Setting Up the Autosampler Wash Step” on page 134
7. (Optional) “Specifying the Temperature of the EASY-Spray Column Heater” on page 137
8. “Saving the Method Settings” on page 138

Browsing for a Stored Method or Creating a New Method File

Use the Method Setup > File page to browse for stored methods or to select the file folder and enter a name for the new method.

To browse for a stored method

 The Method Setup > File page opens (see Figure 87).
To view the methods in the folder, press the file folder name in the Path column.

3. To view a description of the method (if available), press the method name.

To create a new method

1. Open the Method Setup > File page (see Figure 87).
2. Press **New Method**.
 - The Create New File dialog box opens.
3. In the Folder box, browse to the directory where you want to store the new method.
4. In the New Name box, enter a method name.
5. (Optional) In the Description box, enter a description of the method.
6. Press **Save**.
Starting the Method Setup Wizard

The Method Setup wizard consists of five or more pages that guide you through all the parameters required for a working LC method.

Use first page of the Method Setup wizard to select the method that you want to edit and the external devices that want to control.

❖ To start the Method Setup wizard

1. Press Method Setup > Edit.

2. If you are not already on the page 1 (see Figure 88), go to page 1 by pressing the appropriate arrow near the bottom of the touch screen.

 Figure 88. Method Setup > Edit page 1

3. Press Open.

 The Select Method to Open dialog box opens.

4. Select the method that you want to edit.

5. Press Accept.
To control an external device

In the Method extensions area, select the check box for the device.

- To control the column temperature of the EASY-Spray ion source, select the EASY-Spray check box.

- To control the Replay device, select the RePlay check box.

By default, the Method Setup wizard contains five pages. For each external device that you add, the wizard increases by one page.

To continue setting up the method, press the right arrow to go to the next page of the Method Setup wizard (page 2/\(x\), where \(x\) equals the total number of pages).

Setting Up the Sample Pickup and Loading Steps

Use the Method Setup > Edit 2/\(x\) page (see Figure 89) to set the parameters for picking up the sample from the well plate and loading it onto the precolumn.

Figure 89. Edit 2/\(x\) page of the Method Setup wizard
To set up the sample pickup parameters

1. In the Sample Pickup area, press the Volume box and enter the default amount of sample to be picked up.

The autosampler withdraws the requested sample volume; it does not pick up excess sample.

To prevent contamination of pump S, the maximum volume is set to the configured sample loop size minus 2 μL. For example, the maximum sample pickup for an instrument with a 20 μL sample loop is 18 μL.

You can overwrite this setting when you set up the injection sequence from an external Thermo Scientific data system such as the Xcalibur data system.

2. Press the Flow box to set the flow rate at which the autosampler picks up sample.

Range: 0 to 40 μL/min

Set the speed according to the sample viscosity and accuracy needed. For typical samples, 20 μL/min is optimal. Setting the flow rate too high can draw air bubbles into the sample plug.

To set up the sample loading parameters

1. In the Sample Loading area, press the Volume box and enter the volume of solvent A to be used to load the sample from the sample loop onto the precolumn (or analytical column in a one-column setup).

Range: 0 to 137

Normally it is sufficient to load the precolumn with $2 \times \text{sample pickup volume} + 2 \mu L$ or a minimum of 6 μL, whichever is larger.

2. Press the Flow box and enter the flow rate for sample loading onto the precolumn (or analytical column in a one-column setup).

If you leave the Flow box empty, the pump operates at the set pressure.

Range: 0 to 100μL/min

Tip: The application accepts values from 0 to 100 μL/min, but the IFC algorithm (see “Intelligent Flow Control System” on page 32) prevents the flow rate for the sample loading step from exceeding 25 μL/min based on the backpressure produced by the system tubing alone without the columns attached.

Use the column equilibration scripts to determine the appropriate flow rate for your application.
3. Press the Max. Pressure box and set the maximum allowed pressure.

If you leave the Max. Pressure box empty, the pump operates at the set flow (as long as it is below the maximum instrument pressure of 1180 bar).

Tip If you specify both a flow rate and a maximum pressure, the pump flow is limited by the parameter that is reached first. If you leave the flow and max pressure boxes empty, the IFC algorithm allows pump A to run at the maximum system pressure.

IMPORTANT If you enable the LSP feature and specify a maximum pressure, the batch run stops if the system reaches the maximum pressure setting before it reaches the specified flow rate during sample loading.

To continue setting up the method, go to the Edit 3/x page by pressing the right arrow.
Building the Gradient

Use the Method Setup > Edit 3/x page to build the gradient. This page consists of a schematic view for setting parameters and a graph view showing the gradient as a function of time (see Figure 90).

Use the four buttons at the bottom of the page to add lines to the gradient, move lines up and down, and delete lines. To move or delete lines, first select the line by pressing it.

The rest of this tutorial guides you through building a gradient for analyzing a BSA digest on a C18 column. Because this tutorial is intended to help you set up a method, make sure to set the parameters appropriately for your analyte and column characteristics.

Figure 90. Edit 3/x page of the Method Setup wizard

Note: When you press a cell in the gradient table, the keypad dialog box opens.

To build a gradient

1. In the first row of the gradient table, do the following:
 a. Press the Flow column cell and enter 300 nL/min. Then press ACCEPT.
 b. Press the % B column cell and enter 5 (%). Then press ACCEPT.

 The gradient is now set to start at 300 nL/min and 5 %B.

2. Press ADD to add another row.
3. In the second row of the gradient table, do the following:
 a. Press the Duration column cell and enter 10 minutes. Then press ACCEPT.
 b. Press the Flow column cell and enter 300 nL/min. Then press ACCEPT.
 c. Press the % B column cell and enter 35 (%). Then press ACCEPT.

4. Press ADD to add another row.

5. In this new row, set duration to 2 min, flow to 300 nL/min, and % B to 100.

6. Press ADD to add another row.

7. In this new row, set the duration to 8 min, flow to 300 nL/min, and % B to 100.

Note The Method Setup wizard includes a separate page for setting up the column equilibration parameters, so you do not need to add a column equilibration step to the end of the gradient program. The column equilibration steps run parallel with the sample pickup step at the beginning of a sample run.

To continue setting up the method, go to the Edit 4/x page by pressing the right arrow.
Setting Up the Column Equilibration Steps

Use the Method Setup > Edit 4/x page to set up the parameters for the column equilibrations (see Figure 91).

Figure 91. Edit 4/x page of the Method Setup wizard

To set up the precolumn equilibration

1. In the Precolumn Equilibration area, press the Volume box to set the amount of solvent A to use for equilibration of the precolumn.

 For best results, use a least 10 column volumes for to equilibrate the precolumn.

2. Press the Flow box to set the flow rate for performing the equilibration of the precolumn.

 If you leave the Flow box empty, the pump operates at the set pressure during a sample run.

3. Press the Max. Pressure box to set the maximum allowed pressure.

 If you leave the Max. Pressure box empty, the pump operates at the set flow (as long as it is below the instrument pressure of 1180 bar).

Note If you specify both a flow rate and a maximum pressure, the pump flow is limited by the parameter that is reached first.
To equilibrate the analytical column

1. In the Analytical Column Equilibration area, press the Volume box to set the amount of solvent A to use for equilibration of the analytical column.

 For best results, use at least 10 column volumes to equilibrate the analytical column.

 Range: 0 to 137

2. Press the Flow box to set the flow rate for performing the equilibration of the analytical column.

 If you leave the Flow box empty, the pump operates at the set pressure during a sample run.

3. Press the Max. Pressure box to set the maximum allowed pressure.

 If you leave the Max. Pressure box empty, the pump operates at the set flow (as long as it is below the instrument pressure of 1180 bar).

Note If you specify both a flow rate and a maximum pressure, the pump flow is limited by the parameter that is reached first.

To continue setting up the method, go to the Edit 5/x page by pressing the right arrow.
Setting Up the Autosampler Wash Step

Use the Method Setup > Edit 5/x page for setting up the autosampler washing procedures (see Figure 92). The EASY-nLC instrument conducts the wash while the gradient is running.

Use the standard wash step or set up a custom wash cycle as described in these procedures:

- Setting Up a Standard Wash Step
- Setting Up a Custom Wash Program

Setting Up a Standard Wash Step

For most samples in low concentrations, flushing the needle and loop with solvent A is sufficient. You can set the amount of solvent for this action in the Flush Volume box.

Use 100 μL as the default flush volume.

Note: This equation defines the minimum flush volume that you can set:

\[\text{loop volume} + \text{needle volume} + 1 \mu L. \]

Figure 92. Edit 5/x page of the Method Setup wizard
To set up a standard wash step

1. Do not select the **Custom Wash** check box.

2. In the Flush Volume box, type the volume of solvent A (from wash bottle 3) that the autosampler uses to flush the needle and the sample loop.

 The range depends on the sample loop size. For the 20 μL sample loop, the range is 30.25 to 100.75 μL.

Setting Up a Custom Wash Program

For a more thorough wash of the needle and loop, select the **Custom Wash** check box. Use this option to set up a user-definable procedure for washing the loop and needle.

Tip The custom wash program automatically ends with a preset volume of solvent A from bottle W3.

The Custom Wash table consists of three user-editable parameters (see Table 17). The Order column lists the order in which the autosampler performs the steps. To change the order, use the Up and Down buttons.

Table 17. Custom wash parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order</td>
<td>Defines the order of the wash steps. To change the order of the wash steps, use the Up and Down buttons.</td>
</tr>
<tr>
<td>Source</td>
<td>Specifies the wash solvent source for the current wash step.</td>
</tr>
<tr>
<td></td>
<td>Selections: Bottle 1, Bottle 2, or Bottle 3</td>
</tr>
<tr>
<td></td>
<td>Bottles 1 and 2 contain custom wash solvents. Bottle 3 contains solvent A.</td>
</tr>
<tr>
<td>Volume</td>
<td>Specifies the volume that pump S draws from the source location for each wash cycle.</td>
</tr>
<tr>
<td></td>
<td>To avoid drawing solvent into pump S, for a 20 μL sample loop, the maximum volume is 28 μL.</td>
</tr>
<tr>
<td></td>
<td>[\text{needle volume} + \text{loop volume} - 2 \mu\text{L}]</td>
</tr>
<tr>
<td>Cycles</td>
<td>Specifies the number of wash cycles for the wash step.</td>
</tr>
<tr>
<td></td>
<td>For each cycle, the autosampler draws the specified volume of wash solvent from the specified source, and then ejects the wash solvent into wash bottle 4.</td>
</tr>
</tbody>
</table>

When the custom wash has ended, the autosampler automatically empties the pump and refills with solvent from bottle 3 to be ready for the next injection.
To set up a custom wash program

1. Select the Custom Wash check box.

 The custom wash table becomes available.

2. For each row that you want to add to the program, press Add Line.

 You can select a different wash solvent for each row.

3. Edit each row as follows:

 • In the Source column, select the wash solvent source.

 The selections are Bottle 1, Bottle 2, or Bottle 3.

 Note The EASY-nLC autosampler holds up to four bottles: three for washing solvents and the fourth for ejecting waste and cleaning the outside of the injection needle.

 • Bottles 1 and 2 in positions W1 and W2 contain custom wash solvents.
 • Bottle 3 in position W3 contains solvent A.
 • Bottle 4 in position W4 contains the needle wash insert.

 • In the Volume column, type a volume from 0 to the sample loop size plus 8 μL.

 • In the Cycle column, type a value from 0 to 10.

4. To edit an existing wash program, do the following:

 • To add a row to the program, press Add Line.

 • To remove a row from the program, press Delete Line.

 • To copy a selected line, press Copy Line.

 • To move a selected row up or down, press Up or Down, respectively.

When you finish setting up the method parameters, save the method as described “Saving the Method Settings” on page 138.
Specifying the Temperature of the EASY-Spray Column Heater

If your LC/MS system includes the EASY-Spray ion source, use the Method > Edit \(6/x\) page to specify the temperature of the EASY-Spray column heater.

Figure 93. Edit page \(6/x\) of the Method Setup wizard

❖ **To specify the column temperature**

1. Press the temperature box.

 The Set Value dialog box opens.

2. Press the number pad to enter a temperature from 30 to 60 °C.

 The application does not accept temperatures below 30 °C or above 60 °C.

3. After you enter an appropriate temperature, press **Accept.**
Saving the Method Settings

After you enter the method settings, save the method.

❖ To save the method

1. Press **Save** in the top right corner of the Method Setup wizard.
 The Save File dialog box opens.
2. Select the folder where you want to store the method as follows:
 a. Press the Folder box.
 The Select Folder dialog box opens (Figure 94).
 Figure 94. Select Folder dialog box

 ![Select Folder Dialog Box]

 b. Select the appropriate folder.
 c. Press **Accept**.

 The Select Folder dialog box closes and the folder location appears in the Save As dialog box.
3. Enter the method name as follows:
 a. Press the Name box.
 The virtual keyboard opens.
 b. Use the virtual keyboard to type the method name.
 c. Click **OK**.

 The virtual keyboard closes and the new method name appears in the Save File dialog box (Figure 95).
4. (Optional) In the Save As dialog box, enter a description for the method in the Description box.

5. Click Save to save the method.

The Save File dialog box closes. If the method already exists, the Overwrite Method dialog box opens.

6. If the Overwrite Method dialog box opens, press Yes to overwrite the existing method or press No to close the Save File dialog box without saving the method.
Creating a Batch

Use the Batch Setup > Edit page to set up and schedule batches for sample acquisition on the EASY-nLC instrument. (See also “Preparing and Loading Samples” on page 123 and “Creating a Method” on page 124.)

To create a batch, follow these procedures:

- “Viewing the Batch List and Setting Up a Batch Record,” next section
- “Specifying the Method, Sample Positions, and Number of Injections” on page 141

Viewing the Batch List and Setting Up a Batch Record

Use the Batch Setup > File page to view a list of stored batches, import a batch from another EASY-nLC instrument, and create an empty batch record (that is, name a new batch and select its folder location).

To view a list of batches

The Batch Setup > File page opens (see Figure 96).

Figure 96. File page of the Batch Setup menu

2. To view your batches, in the Path column, press the folder where you store your batches.
To specify the batch name and folder location

 The Create New File dialog box opens.
2. In the Folder box, browse to the folder where you want to store the batch.
3. In the New Name box, enter a name for the batch.
4. (Optional) In the Description box, enter a description of the batch.
5. Press Save.
 The batch name appears under the selected folder.

To set up the batch, go to the next section, “Specifying the Method, Sample Positions, and Number of Injections.”

Specifying the Method, Sample Positions, and Number of Injections

A batch lists the sample injection order, the vial or well positions where the samples are located, the number of injections per sample, and the method used to run the sample.

To create a batch by using the View Racks view

1. Press Batch Setup > Edit.
2. If you do not see a plate overview, press View Racks.
 A plate view for the selected plate format appears. Figure 97 shows the plate view for the 6 × 8 vial plate format.
3. If the plate format is not set to your installed plate, do the following:
 a. Press the Plate button.

 Note The Plate button is the rectangular button imprinted with the plate name on the lower left side. The default plate is 6 x 8 vials.

 The Autosampler Rack Configuration dialog box opens.

 b. Select a plate format from the list.

 c. Press Accept.

 The new plate format appears on the rectangular Plate button.
4. If you have already created a name and selected a folder location for the batch, do the following:
 a. Press Open.
 b. Select the batch.
 c. Press Accept.

 The batch name appears in the batch name box.

5. In the Injections box, enter the number of injections per sample.

 Default: 1

6. Browse the methods list next to the Injections box, and select the method that you want to use for the entire batch or for a subset of sample runs in the batch.

 If you have not already created a method, create one by following the instructions in “Creating a Method” on page 124.

 Tip To use different methods in the same batch, select the method, select the vial or well positions that you want to run with this method (see step 7), and then press Add.

7. Select the vials or wells that contain the samples that you want to run in the order that you want the instrument to process them.

 - To select an individual vial or well, press the vial or well position in the graphic.
 - To select an entire column, press the DOWN ARROW above the column. For example, press the arrow labeled “1” to select all the vials (A1 to F1) or wells (A1 to H1) from the first column (and first quadrant of a 384-well plate). For the third or fourth quadrant of a 384-well plate, press the UP ARROW below the column.
 - To select the well positions on a 384-well plate, use the quadrant selection box to move between quadrants (see Figure 98).
 - To select wells A1 to P1, do the following:
 a. In the quadrant selection box, press the first quadrant, ○ ○ ○ .
 b. Press the DOWN ARROW, ▼, above the first column.
 c. In the quadrant selection box, press the third quadrant, ○ ○ ○ .
 d. Press the UP ARROW, ▲, below the first column.

 Tip You can clear the vial or well selections by pressing them again.
8. Press Add to link the selected vials or wells with the selected method.

9. To save the batch, do the following:
 a. Press Save.

 The Save File dialog box opens.
 b. If you have not already done so, select the appropriate folder and enter a name for the batch.
 c. Press Save.
10. Press **Schedule** (see Figure 97 on page 142) to submit the batch to the queue.

The application switches to the Queue page of the Home menu (see Figure 99).

Figure 99. Queue page of the Home menu, showing the queued jobs

<table>
<thead>
<tr>
<th>#</th>
<th>Auto-continue</th>
<th>Submitter</th>
<th>Job name</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ready</td>
<td>admin</td>
<td>6 x BSA 30 min</td>
<td>11:04:15</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>admin</td>
<td>admin-20100824-1714</td>
<td>11:04:15</td>
</tr>
</tbody>
</table>

11. If necessary, move any scheduled batch in the job queue by selecting it and pressing **Up** or **Down**.

You can also delete batches from the Queue by selecting the batches and pressing Delete.

For a batch run to start automatically after the previous batch is finished, you must select its corresponding check box in the Auto-Continue column. In the case shown in Figure 99, the admin-20100824-1714 job does not auto-continue when the 6 × BSA 30 min job is done.
Starting Sample Acquisition

Before starting the sample acquisition, make sure that the LC/MS system is properly set up. This includes having contact closure (see “Connecting to the Mass Spectrometer through Contact Closure” on page 42). Also make sure that you have set up the mass spectrometer or any other detector to acquire data during the sample run.

❖ To start a batch run

1. Create a batch and submit it to the queue as described in the previous procedure.

2. Press **Home > Overview**.

 The Overview page of the Home menu opens.

3. Press **START** to start running the batch.

 A message box opens, prompting you to check that you have installed the sample plate, filled solvent bottles A and B, installed the W3 bottle with solvent A, installed the W4 bottle with the needle insert, and emptied the waste beaker (see Figure 100).

Figure 100. Start Queue message box

4. Press **Accept**.

 If the Automatic Pre-run Maintenance feature (touch-screen application version 3.2 or later) is turned on and more than 8 hours have elapsed since the last sequence began, the instrument automatically runs the Flush Air script. After the Flush Air script finishes, the instrument starts processing the batch. For information about turning on the Automatic Pre-run Maintenance feature, see “Setting Up the Properties for the HPLC Device” on page 80.
Monitoring the Run

You can monitor the run and the system status during analysis from two different pages of the Home menu: Overview or Graphs.

Follow these procedures to monitor the run and view the system status:

- “Using the Overview Page in the Home Menu,” next section
- “Using the Graphs Page in the Home Menu” on page 149

Using the Overview Page in the Home Menu

The Overview page provides a full schematic overview of the system, complete with real-time updating of all critical component data (Figure 101).

Figure 101. Overview page of the Home menu
The system schematic provides information on these items:

- Hardware parts in the system:
 - Position, pressure, and flow for pumps A, B, and S
 - Valve positions (1–2, 1–6, or centered)
 - Percentage of solvent B being delivered
 - Actual flow being measured by the flow sensors

 Note When pumps A and B are delivering solvent to the mixing Tee, the flow sensors measure the actual flow rate. During the refill A B step, pumps A and B are drawing solvent from the solvent bottles.

- Samples to be analyzed, plus their current status
- Current sample and job, plus the next sample and job
- Current step in the sample run
- If the EASY-nLC instrument controls the temperature of the EASY-Spray ion source’s column heater, the column temperature setting appears (in Centigrade) in the third column of the run step area.

<table>
<thead>
<tr>
<th>Pickup sample</th>
<th>Initialize system</th>
<th>Refill AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load sample</td>
<td>Equilibrate precolumn</td>
<td></td>
</tr>
<tr>
<td>Prepare gradient</td>
<td>Equilibrate analytical column</td>
<td></td>
</tr>
<tr>
<td>Gradient</td>
<td>Autosampler wash + refill S</td>
<td></td>
</tr>
</tbody>
</table>

When the batch starts, the green START button is grayed out and the red STOP button becomes active. When the instrument is running, three counters measure the time for job, sample, and gradient.
Using the Graphs Page in the Home Menu

The Graphs page displays up to four graphs with time-dependent data for the currently active sample (see Figure 102).

Figure 102. Graphs page of the Home menu

Table 18 describes the different types of graphs that are available. To change graphs, select from their corresponding lists.

Table 18. Graphical data types

<table>
<thead>
<tr>
<th>Graph</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump A, pump B, and pump S</td>
<td>Shows the desired flow (black line), real flow (blue line), and pressure (red line) over time for each of the three pumps.</td>
</tr>
<tr>
<td>Valves A, B, S, and W</td>
<td>Shows the valve position over time for each of the four valves.</td>
</tr>
<tr>
<td>Gradient</td>
<td>Shows the theoretical gradient (dotted red line) and the actual gradient dynamically calculated on the feedback values from the pump flow sensors plus the actual flow calculated on the feedback values from the pump flow sensors.</td>
</tr>
<tr>
<td>Temperature</td>
<td>Shows the measured temperature on the plate cooler over time.</td>
</tr>
</tbody>
</table>
You can change the graph size as follows:

- Touch the graphs to enlarge them and then touch them again to minimize the view.

 Figure 103 shows the enlarged flow graph for pump B.

- Touch the y axis of each graph to cycle the Flow axis through several preset scales.

Figure 103. Pump B graph enlarged

Stopping Sample Acquisition

You can stop the sample acquisition during the run by pressing the red STOP button on the Home > Overview page. This halts all actions on the HPLC system and the following buttons become active:

- **Restart Sample:** Runs the method from its beginning again. Only press this button if you are sure you have enough sample in the vial or microtiter plate.

- **Cancel Sample:** Cancels the current sample and skips to the next sample in the batch job.

- **Cancel Batch:** Cancels the entire current batch job.

- **Eject Plate:** Ejects the plate for your inspection to help you determine how to proceed.
Editing the Running Batch

You can edit the running batch if you want to add samples or remove samples that the instrument has not already run.

- **To edit the running batch**

 1. Press **Home > Queue**.

 The Queue page of the Home menu opens (see **Figure 104**).

 Figure 104. Queue page of the Home menu

 ![Queue page of the Home menu](image)

 2. Select the batch job from the list and press **Edit**.

 The Batch Setup > Edit page opens (see **Figure 105**).
3. Edit the batch—that is, add, change, or remove samples that are not yet tested.

4. Press **Reschedule**.

The batch continues running.

IMPORTANT If you do not reschedule the batch after you complete the batch edit, the instrument stops after the current sample run.

5. (Optional) Check the sample list as follows:
 a. Press **Home > Queue**.
 b. Press **Properties** (see Figure 104 on page 151).
 c. Press **Show Samples**.

 The Job Properties box opens (see Figure 106) and the Show Batch button appears in place of the Show Samples button.
Figure 106. Sample list job properties on the Queue page

d. Click **Close**.
Troubleshooting a Sample Run

If a problem occurs during a sample analysis, the EASY-nLC instrument displays the error in a pop-up box and stops the sample processing.

- To troubleshoot an error condition that stops the sample processing
 1. Press Cancel Batch.
 2. Refer to the troubleshooting tips or follow the troubleshooting procedures in the *EASY-nLC Series Troubleshooting and Maintenance Guide.*

After you fix the problem, reschedule the batch (possibly changing the number of samples, their well positions, or both).
Installing and Controlling External Devices

The EASY-nLC instrument (with the 3.2 version of the touch-screen software) can control the Advion Replay device and the EASY-Spray ion source's column temperature.

To add the EASY-Spray device to the EASY-nLC device list or to install and use the optional Advion RePlay device, follow the instructions in this appendix.

The RePlay device was specifically developed for nanoflow LC/MS analyses. It splits the sample from one injection, so a second analysis is provided with no additional sample required. The RePlay device consists of a primary column, a six-port valve, a flow sensor, tubing, a control panel, and a secondary column/emitter. It performs a second analysis of one sample without a reinjection, which allows for twice the analytical possibilities from every nanoLC injection. For more information, visit the Advion website:

www.advion.com/biosystems/replay/index.php

Thermo Fisher Scientific does not offer support for—or is in any way responsible for—the functionality of the RePlay device itself and the associated tubing and columns that it requires.

For information about connecting the EASY-Spray ion source to the EASY-nLC instrument, refer to the EASY-Spray Series Ion Source User Guide.

Contents

• Adding Devices to the EASY-nLC Devices List
• Connecting the RePlay Device to the EASY-nLC Instrument
• Setting Up a Method with the RePlay Device
• Monitoring the Run of a RePlay Method
• Effect of Additional Run Time for a RePlay Experiment
Adding Devices to the EASY-nLC Devices List

The EASY-nLC instrument (with the 3.2 version of the touch-screen software) can control the Replay device and the EASY-Spray’s column heater.

❖ To add a device to the device list in the EASY-nLC application

1. Press Maintenance > Devices and check that the device is not already present in the Devices list. If not, add the device as described in the following steps.

2. For each device that you want to add, do the following:
 a. Press Add Device.
 The Select a Device to Add dialog box opens.

 Figure 107. Select a Device to Add dialog box

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advion RePlay</td>
<td>Fluid Storage</td>
</tr>
<tr>
<td>Autosampler (ASA)</td>
<td>Autosampler</td>
</tr>
<tr>
<td>Autosampler (ASC)</td>
<td>Autosampler</td>
</tr>
<tr>
<td>EASY-Spray</td>
<td>Column Heater</td>
</tr>
<tr>
<td>EASY-nLC</td>
<td>HPLC</td>
</tr>
<tr>
<td>New Era NE-1000</td>
<td>Syringe Drive</td>
</tr>
</tbody>
</table>

 b. Do one of the following:
 • To add the Replay device, select Advion RePlay and press Accept.
 • To add the EASY-Spray device, select EASY-Spray and press Accept.

3. Verify that the Devices list includes the added device.

Selecting the device displays information about the device driver on the About page (see Figure 108 and Figure 109).
Figure 108. About information for the Replay device

<table>
<thead>
<tr>
<th>Devices</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Piston Pump (Pump G)</td>
<td>Piston Pump</td>
</tr>
<tr>
<td></td>
<td>RePlay</td>
<td>Fluid Storage</td>
</tr>
<tr>
<td></td>
<td>Rotary Valve (Valve A)</td>
<td>Rotary Valve</td>
</tr>
</tbody>
</table>

About

RePlay

- **Manufacturer:** Advion BioSciences, Inc.
- **Product:** RePlay
- **Type:** Fluid Storage
- **Driver Info:** 0.1.0
- **Firmware info:** <N/A>
- **Serial Number:** <N/A>
- **Usages:** Capture/Playback Eluent
- **Slaves:** <N/A>

Figure 109. About information for the EASY-Spray device

<table>
<thead>
<tr>
<th>Devices</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EASY-Spray</td>
<td>Column Heater</td>
</tr>
<tr>
<td></td>
<td>EASY-nLC™ [HPLC]</td>
<td>HPLC</td>
</tr>
<tr>
<td></td>
<td>Piston Pump (flow/feedback) (Pump A)</td>
<td>Piston Pump (flow/feedback)</td>
</tr>
</tbody>
</table>

About

EASY-Spray

- **Manufacturer:** Thermo Scientific
- **Product:** EASY-Spray
- **Type:** Column Heater
- **Driver Info:** 0.1.1
- **Firmware info:** devType 3; fwVersion N/A; serialNumber 1
- **Serial Number:** serialNumber 1
- **Usages:** Column heating
- **Slaves:** <N/A>
Connecting the RePlay Device to the EASY-nLC Instrument

Before you can use the RePlay device with the EASY-nLC instrument, you must connect the contact closure cables and the solvent lines.

The RePlay device has a remote port on its back panel and a six-port valve (see Figure 110) on its front panel.

Figure 110. Front panel of the RePlay device (courtesy of the Advion Inc. website)

To connect the RePlay device to the EASY-nLC instrument

1. Turn off the EASY-nLC instrument.

2. Connect the Remote cable port on the back panel of the RePlay device to the Out3 pins on the back panel of the EASY-nLC instrument (see Figure 111).

Figure 111. RePlay device connection to the EASY-nLC contact closure port
3. Connect the solvent lines to the valve on the front panel of the RePlay device (see Figure 112) as follows:
 - Connect the output end of the EASY-nLC analytical column to position 5 of the RePlay valve.
 - Connect position 4 of the RePlay valve to the secondary column/emitter.

 Note For more information about connecting and using the RePlay device, refer to the *Advion RePlay User's Manual* supplied by Advion Biosystems, Inc.

 Figure 112. Valve connections for the standard plumbing configuration

4. Turn on the EASY-nLC instrument.
Setting Up a Method with the RePlay Device

To set up a method with the RePlay device

1. To use the RePlay device, enable the method extension on page 1 of the Method Setup wizard (you can also open an existing method and enable its extension).

 An extra RePlay Method Setup page is now available (see Figure 113).

 Figure 113. Page 1/7 of the Method Setup wizard

2. On page 3 of the Method Setup wizard, properly set up the gradient. For more information, see “To build a gradient” on page 130.

 The RePlay device uses a nanoflow splitter and a valve to split the EASY-nLC eluent to a direct online analysis and to a Capture Cartridge in the device. The RePlay valve switches to direct the captured chromatogram to the mass spectrometer for a second analysis of the same injection. To acquire the second analysis, the gradient has to be prolonged.
3. On page 6, enter the playback delay relative to the MS START signal (which can be the start of either sample loading onto the columns or the start of the gradient, and set from the Configuration > Connections page).

This value, as shown in Figure 114, indicates how long into the gradient to switch back to playback mode. At the end of the gradient, the contact closure control reverts to capture mode.

Figure 114. RePlay Playback Delay setting
Monitoring the Run of a RePlay Method

The readback for a RePlay method displays Capture or Replay.

To monitor the run of a RePlay method

1. When running a sample using a method with the RePlay extension, press Home > Overview.

2. View the RePlay (“RP”) mode readback in the center status box (see Figure 115).

Figure 115. RePlay method readback
Effect of Additional Run Time for a RePlay Experiment

For a typical RePlay application—injecting and loading 5 µL of sample with a gradient of 60 minutes + 30 minutes RePlay—the full timing is as follows:

- 2 minutes – Refilling pumps at 100 µL/min
- 2 minutes – Injecting 5 µL at 20 µL/min and waiting for pressures to settle
- 12 minutes – Loading the sample onto the analytical column with 15 µL at 1.25 µL/min
- 60 minutes – Gradient + autosampler wash
- 30 minutes – RePlay while also reequilibrating the analytical column

In total, you can achieve an MS utilization rate of close to 85 percent (90/106), despite the fact that the EASY-nLC/MS system cannot overlap (parts of) two runs in parallel.
Index

A
accessing
 EASY-nLC manuals xii
 files on the instrument’s hard drive 46, 72
 support server 47
accounts, adding new users 76
acetonitrile, solvent requirements 85
admin folder, accessing 46, 73
admin, changing password 75
air segments, sample pickup 20
air, removing 123
alphanumeric text, entering 54
analytical column
 column setup options 7
 equilibration step, method 22
 installing
 EASY-Spray column
 EASY-nLC 1200 instrument 113
 with a Nanospray Flex source 96
 pulled, fused-silica columns with a Nanospray Flex
 source 102
 preparation for use 120
 application version 59
Automatic Flow Control (AFC) description 31
Automatic Pre-run Maintenance check box 80, 146
autosampler
 sample pickup method parameters 128
 tray compartment, accessing 3
 wash step, method 30, 134

B
back panel, instrument 5, 40
backpressure
 analytical column rating 121
 precolumn rating 119
backup, system 79
Batch Setup menu 62
batches
 editing on the Home > Queue page 151
 setting up and scheduling 140
 starting 146
 beaker, plastic waste 88
 black knurled nut tool, nanoViper fitting 116
 blending solvents 86
 bottles
 for solvents A and B, filling 86
 wash 88

C
cables
 contact closure 43
 Ethernet 44
 P-Bus 48
 power cord 41
carryover, reducing 135
clock, computer file system 79
clock, internal 78
Column Out line
 modified with bare fused-silica tubing at one end 98
 standard with nanoViper fittings at both ends 4
columns
 See analytical column or precolumn
compliance
 FCC iii
 regulatory iii
 WEEE v
components, system 2
computer, embedded
 cause of damage to 41
 purging data from 79
Configuration 78
Configuration menu 65
configuring
Index:

D

daily maintenance 83
data system computer
 connecting to the Ethernet switch 45
 connecting to the laboratory LAN port 45
 using to access folders on the system computer 46
data types, graphs 149
data, removing excess 79
date and time format, setting 78
devices, configuring 80
dimensions, EASY-nLC system 37
documentation
 accessing xii
 additional xii

E

EASY-Spray source
 adding to the Devices list 156
 column assembly for 112
 direct control of 55
Eject 124
Eject/Insert Tray button, using 54, 88, 124
electromagnetic compatibility iii
emitter, installing 111
equilibrating
 analytical column 22, 120
 precolumn 22, 118
Ethernet cables, connecting
 data system computer 45
 EASY-nLC system to the intranet 46
 EASY-nLC system to the support server 47
 Ethernet switch 45
 Exit button 68

F

FCC compliance iii
Fe-containing ions 110
file system, computer cleanup 79
filtering solvents 86
firewalls, laboratory network access 39
flow rate
 gradient 130
 measuring 11
 monitoring 148
 sample loading 128
 sample pickup 128
flow sensors, description 11
formic acid, solvent requirements 85
fused-silica tubing, bare 98

G

global configuration settings 80
gloves, wearing 112
gradient
 delay volume 29
 method step 29
 setting up the method 130
 graphical data types 149
 grounding requirements 41

H

Home > Overview page 57
Home menu 61
HPLC-grade solvents 86
HPLC-to-column connector
 See Viper union
humidity specification 39

I

injections
 number per sample 143
 pickup sample step 20
 sample pickup volume 128
Insert Plate button, using 89
insert, needle wash 3, 89
Intelligent Flow Control (IFC) system description 32
Index: K

K
keyboard connection 48
keyboard, touch-screen software 54
kit, UHPLC Liquid Junction 98

L
LC connections
 EASY-nLC 1200, connecting to 113
 EASY-nLC II, connecting to 113
tools and supplies 112
LC/MS-grade solvents 86
leak testing
 the nanoViper connections 116
 UHPLC fused-silica union for the modified solvent lines 100
lifting instructions 36
liquid junction cross, UHPLC 99
Load Speed Protection option 33, 82
loading samples into the autosampler 124
logging in to the application 66
Logo icon, Thermo Scientific 59
Loop Volume box 81

M
Maintenance menu 64
maintenance, daily 83
manuals, accessing xii
mass spectrometer, contact closure configuration setting 69
hardware connection 42
menu structure 61
menus
 Batch Setup 62
 Configuration 65
 Home 61
 Maintenance 64
 Method Setup 63
 structure 60
Method Setup menu 63
method, LC
 accessing from another computer 46, 73
 analytical column equilibration parameters 133
 gradient table 130
 method editor, starting 126
 precolumn equilibration parameters 132
microwell plates, preparing samples 123
mixing solvents 86
mixing Tee
 connections 14
 readback 57–58
monitoring the run 147
 See also RePlay, monitoring the run
mouse connection 48
MS Setup Kit 42

N
Nanospray Flex source, column assembly for 95
nanoViper fittings
 connecting to Viper union 117
 using 116
needle wash insert 3, 89
network card, installing in data system computer 45
network connection 72
noise and interference, cause of 41
numeric keypad 54

O
On/Off switch 52
one-column setup
 configuration check box 80
description 8
installation
 EASY-nLC 1200 instrument
 Nanospray Flex source 96
 EASY-nLC 1200 instrument
 EASY-Spray source 113
Orbitrap Fusion contact closure connection 42
ordering information
columns 96
contact closure cable 43
product order code, instrument 6
sleeves, PEEK 112
UHPLC Liquid Junction Kit 98
venting Tee 96, 112–113
Viper union 112
overtightening nanoViper fittings 116

P
password
 changing 75
 initial 66
peptide-Fe cluster ions 110
port 22, firewall setup for 39, 47
power requirements 39
Index: Q

quadrant selection box, 384-well plate 144

Q

R

regulatory compliance iii
remote desktop connections 45
remote support 47
RePlay
 additional run time 163
 configuring 156
 connecting to EASY-nLC 155
 monitoring the run 162
rotary valves, description 12
run time, excessively long 8
running batch, editing 151

S

safety
 handling emitters 111
 handling the UHPLC liquid junction cross 104–105
precautions for the EASY-nLC system xiii
safety standards iii
sample
 loading, method parameters 128
 pickup method parameters 128
sample loop
 bypassed during gradient program 29
 configuring 81
 maximum capacity 20
 washing 30
sample runs
 predefined steps 15
troubleshooting 154

sample trays, installing 3, 54, 124
sealing surface, nanoViper fitting 117
Secure Shell (SSH) network protocol 39
sequence, injection 140
sharp objects, emitter 111
sleeves
 for 1/16 in. OD tubing 112
 for 1/32 in. ID fittings 111
sluggish system performance 79
software, integrated
description 51
solvent A and B bottles, preparing 86
solvents
 checking levels 83
 filtering 86
solvent-side check valve 14
Source column, autosampler wash 135
Standard option, autosampler wash 135
Start button, green 90, 148
starting the EASY-nLC 52
Stop button, red 90, 148, 150
stopping sample acquisition 150
support server, setting up the hardware connections 47
system overview, monitoring 147

t

Tees
 mixing 10, 14
 UHPLC liquid junction cross 99
venting 4, 7–8, 13
temperature
 EASY-Spray direct control 55
 environment specification 39
terms used in this guide 59
Thermo Scientific logo icon 59
tightening tool
 internally-threaded knurled nut 99
 nanoViper fitting 116
time zone, setting 78
tools and supplies, connecting the LC 112
touch screen, using 53
trap column
 See precolumn
tray compartment, accessing 3, 54, 88, 124
trays, sample 88
troubleshooting, sample runs 154
turning off the EASY-nLC 68
two-column setup
description 7
Index: U

U

UHPLC-MS grade solvents, ordering 85

URLs
consumable parts xv
ordering information
stainless steel emitters 111
USB flash drive with manuals xii
USB ports, EASY-nLC 6
user documentation xii
user permissions 74

V

valves
check valves, description 14
rotary valves, description 12
venting Tee
connections 4, 8, 96–97, 112–114
function 7, 13, 88
purpose 22
version, application 59
vials, preparing sample 123
Viper union
description and part number 96
in a two-column assembly 98
in the EASY-Spray Ion Source Kit 112
internal view 117
nanoViper fittings, connecting 117
volume, maximum
custom wash solvent volume per step 135
sample loading step 128
sample pickup step 128

W

wash bottles
description 3
preparing 88
wash step, autosampler 30, 134
waste beaker, installing 88
Waste In line
modified with bare fused-silica at one end 98
standard with nanoViper fittings at both ends 4

waste-side check valve 14
water, solvent requirements 85
WEEE compliance v
well plates, preparing 123
Windows Explorer 73

Z

zero-dead-volume fittings
Viper union 117