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Abstract

This dissertation is motivated by the urgency to rapidly and deeply reduce global greenhouse

gas emissions. We have the set of technologies at our disposal to address this complex

environmental objective, but their deployment is complicated by the evolving political,

social, and economic landscapes that present challenges as well as opportunities. I fo-

cus on two mitigation technology approaches—low-carbon energy generation and vehicle

electrification—with consideration of their broader influences and impacts.

In the first study (Chapter 2), I examine how socio-technical constraints affect the most

feasible technology pathways for decarbonization. I develop a probabilistic representation of

social acceptance characterized by technological risk tolerance and pair it with an energy

system optimization model to evaluate techno-economic projections of energy technologies

within the context of societal processes. The integration of these two models, demonstrated

through an illustrative example of nuclear power in the U.S., finds that overall system costs

may increase and select technology availability may decrease due to the presence of societal

preferences. This work asserts that quantitative modeling of energy and economic systems

can be supported by insights into real-world processes and socio-technical influences.

In the second study (Chapter 3), I assess how labor demand (measured in hours) differs

between internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV)

manufacturing for powertrain components. I collect detailed data on the production process

steps required to build key ICEV and BEV powertrain components and the labor required

for each process step from the existing literature and the shop floors of leading automotive

manufacturers. I then use this data to build a production process model that determines

the labor hours required to produce ICEV and BEV powertrain components in a variety of

scenarios subject to different production volumes and labor efficiency levels. I find that BEV

powertrains require more labor hours, at least in the short- to medium-term. These results

emphasize the importance of using process step-level information about manufacturing

processes and labor requirements to estimate the labor impacts of vehicle electrification.

In the third study (Chapter 4), I evaluate how worker skill requirements differ between
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ICEV and BEV manufacturing, again for powertrain components. I interview ICEV and

BEV shop floor workers (i.e., operators, technicians, supervisors) on the labor tasks required

for the powertrain production steps from the previous study. I use the O*NET survey

instrument and comparative descriptive statistics to evaluate the level of skills required for

the two different vehicle technologies. I find that the skill requirements for manufacturing

BEV powertrain components lie within the range of skill requirements for ICEV powertrain

components and that production practices used by BEV manufacturers may increase demand

for fuller worker skillsets.

These studies can support decision-making by energy and automotive firms, policymakers,

organized labor, and other stakeholders and enable more effective strategies for achieving

decarbonization and vehicle electrification goals. They also contribute to a more complete

understanding of the potential socio-technical constraints facing and impacts by technologies

within the ongoing low-carbon transition.
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Chapter1
Introduction

Rapid and deep greenhouse gas (GHG) emissions reductions are necessary to meaningfully

address climate change [1]. Collective proposed climate actions by all countries may not

be sufficient to limit warming below 1.5°C above pre-industrial levels (i.e., goal of the

Paris Agreement), nor are most countries on track to meet their individual commitments

[2]. These facts increase the urgency for transformative action through two approaches

to slashing emissions—deploying renewable energy generation systems and electrifying the

vehicle fleet—that I focus on. However, these technological approaches may be complicated

by technical and social interactions that limit their adoption and diffusion.

This dissertation investigates some of the interactions between socio-technical constraints

and energy technologies. Specifically, it examines the feasibility of decarbonization pathways

and the labor implications of manufacturing electrified vehicles. It uses a combination of

simulation, optimization, statistical, and elicitation techniques to yield critical insights for

informing stakeholder decision-making.

Technology transitions in the electricity sector

The first study (Chapter 2) is motivated by the need for decision-making models that

extend beyond techno-economic analysis and incorporate behavioral, social, political, and

institutional dynamics. Numerous analytical models that prescribe low-carbon pathways

are limited in their ability to represent real-world constraints on technology adoption and

diffusion that are informed not by the technical potential, economic feasibility, or policy

mechanisms, but instead by social imperatives, including public acceptance of a technology

[3]–[7]. By ignoring these real-world constraints, least-cost or least-emission optimization

models generate socially infeasible results.

I combine two models to evaluate techno-economic projections of energy technologies

within the context of societal processes: TEMOA, an energy system optimization model

that minimizes the cost of energy supply [8], and the self-developed Social Risk Tolerance
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model that probabilistically evaluates whether concern for technological risk drives the

amount of electricity generation by a particular technology that a society will accept. In

an application of these integrated approaches to a case study of nuclear power in the

U.S., I find that projections of nuclear power deployment may need to be constrained

below economic equilibrium due to socio-technical limits. Further, the generation portfolios

and emissions pathways in a set of scenarios vary, depending on the existence of a long-

term decarbonization policy and the influence of public acceptance. This work asserts that

understanding achievable rates of system transitions is fundamental to developing meaningful

energy and climate change policy and that quantitative modeling of energy and economic

systems can be supported by insights into real-world processes and socio-technical influences.

Technology transitions in the automotive sector

The second (Chapter 3) and third (Chapter 4) studies concentrate on the transition to

electrified vehicles. Electric vehicles (EVs) are widely regarded as a promising means to

reduce transportation’s contribution to climate and the increasingly consequential impacts

of GHG emissions [9]. Transportation represents 15% of global GHG emissions and 23%

of energy-related CO2 emissions [1], which is primarily due to contributions by light-duty

passenger vehicles [10], [11]. Although EVs do not avoid all emission contribution activities,

the well-to-wheel emission contributions of EVs configurations are less than those of internal

combustion engine vehicles (ICEVs) [12]–[19]. While EVs are not the end-all solution to

address the root cause of climate change, they are an indispensable component of the

comprehensive solution that requires all emission reduction technologies to be available and

implementable [20], [21].

The majority of automakers have committed, with the support of regional and national

governments, to transition to producing EVs from ICEVs in the coming decades—a massive

departure from the industry’s ICEV-centered strategy of just a few years ago [22]. New and

existing OEMs and suppliers are increasingly competing on the basis of unique electric vehicle

designs, while key markets for EV sales—primarily China, Europe, and the U.S.—contribute

to further product differentiation [23], [24]. As the automotive industry electrifies its vehicles,

it is likely to affect both the number and the nature of employment in the automotive and

parts sectors [25]. While most OEMs and suppliers have already had some level of modern

EV manufacturing in place for several years, the cross-firm labor implications of ICEV versus

BEV manufacturing have not been comprehensively studied, in part because of the rarity of

the disclosure of industry data.

The second study (Chapter 3) evaluates how labor demand (measured in hours) differs

between ICEV and BEV manufacturing for powertrain components. I focus on the powertrain

system, where the majority of component differences between the two vehicle technologies

are contained [26]. I construct an engineering process-based cost model (PBCM) developed
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to simulate the production process steps of required to manufacture automotive powertrain

components and estimate their production consequences at varying volumes. I model

production and operations input estimates collected for 78 production process steps from

various public literature sources with the PBCM and find that the BEV powertrain may

require more labor hours, but this determination depends on which battery cost model from

the literature most accurately represents current labor requirements. My modeling of data

collected from the public literature reveals the limited extent to which the labor impacts of

electrification are publicly known and reflects an area for additional research to contribute.

I then supplement these manufacturing inputs from the literature with information on 252

powertrain process steps collected from the shop floors of leading automotive manufacturers.

With this industry data the BEV powertrain, in all possible scenarios, requires more labor

hours than the ICEV powertrain, largely because of battery pack manufacturing requiring

high labor content. However, although I demonstrate that BEV powertrains having greater

labor hour requirements, the transition to electrified vehicles could still lead to job losses

across the country, due in part to a projected industry value-added shift from OEMs to

suppliers, geographic disparities between plant developments and closures, and uncertainty

in the extent to which battery cell production will be managed domestically.

The third study (Chapter 4) considers worker skill requirement differences between ICEV

and BEV powertrain manufacturing. Technological change and economic sustainability

implications are concerning for workers [27], [28], particularly given the rise in robotics

and automation in automotive manufacturing [29]. I select seven manufacturing-relevant

skills representing physical, cognitive, and social skills from the Department of Labor’s

“Occupational Information Network” (O*NET) instrument to interview shop floor workers

[30]. I collect 48 survey responses through individual interviews with shop floor workers (i.e.,

operators, technicians, and supervisors), representing a majority coverage of the powertrain

production steps from Chapter 3. I use comparative statistics methods, including box plots,

two-sample t-tests, and correlation coefficients, to examine skill requirements between and

within vehicle types. Results indicate that BEV production practices may increase demand

for mid- to upper-level skills in powertrain manufacturing. Furthermore, production practices

by BEV manufacturers may involve higher and more homogeneous skill levels, on average,

for operators and lower skill levels, on average, for technicians. I demonstrate that skill

requirements for BEV powertrain components lie within the skill requirement range for

ICEV powertrain components and that skill interdependencies are more important for BEV

operators than ICEV operators, suggesting the importance of preparing BEV operators for

a full suite of skills.
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Synthesis

In Chapter 5, I synthesize the findings from these three studies and provide a discussion of

the possible policy recommendations and areas for future research. The combination of these

three studies empirically contributes to ongoing national dialogues surrounding the future

of mobility and decarbonization. I conduct these analyses in the early stages of ongoing

low-carbon transitions to inform and enable the proactive development of appropriate

policies. This dissertation emphasizes the need for a strong national strategy to coordinate

the deployment of low-carbon energy technologies and the development of a domestic EV

supply chain, alongside continuous support for public infrastructure upgrades, high-quality

manufacturing jobs, and forward-looking climate change solutions.
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Chapter2
Applying risk tolerance and socio-technical

dynamics for more realistic energy

transition pathways

This chapter was developed with co-authors Mitchell Small, Stephen Wilson, Ahmed Abdulla,

and Gabrielle Wong-Parodi and is published in Applied Energy.

Abstract

Many energy systems models have sought to develop pathways for deep decarbonization of

the global energy system. Most often, these pathways minimize system costs or greenhouse

gas emissions; with few exceptions, they ignore the constraints imposed by political, social,

and economic factors that slow transition processes, making them prone to producing implau-

sible decarbonization pathways. This paper integrates a key socio-technical factor—social

acceptance of low-carbon nuclear power—into an energy systems model to illustrate how it

alters the optimal energy generation mix. The United States was chosen as the example,

but the approach itself is designed to be general and applicable to any region of interest.

An empirically grounded risk tolerance model is developed to characterize acceptance of

nuclear power and estimate an upper-bound deployment limit for the technology. Illustrative

scenarios are presented to improve our understanding of how the socio-technical constraints

that exist in the real world can alter deep decarbonization pathways. The cost-optimal

generation portfolio to achieve net zero CO2 emissions by 2050 primarily relies on nuclear

power. If risk tolerance concerns constrain nuclear deployment to socially acceptable levels,

deep decarbonization scenarios are up to 11% more expensive than the reference scenario and

require low-carbon options to be available and replace the reduced nuclear share. Results

from this novel framework improve our representation of the effect of social acceptance

on the adoption and diffusion of energy technologies. They also contribute to a growing
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literature that seeks to firmly embed the social sciences in climate and energy policy.

2.1 Introduction

Averting the worst consequences of climate change will require rapid and substantial reduc-

tions in greenhouse gas (GHG) emissions, the scale of which will likely be unprecedented.

Numerous energy systems models have projected that such levels of GHG emissions reduc-

tions are likely to be attainable with the implementation of emissions policies (e.g., carbon

taxing, cap and trade), existing technologies (e.g., renewable energy resources), and substan-

tial investment [31]. Despite this fact and growing recognition of the cost and performance

improvements across many low-carbon energy technologies, national commitments to GHG

emissions reductions, as enshrined in the Paris Agreement, fall far short of the levels needed

to avoid a global temperature increase of more than 2°C [32]. Moreover, progress towards

these inadequate targets remains slow [33]. There exists a discrepancy, in other words,

between technically feasible and socially realistic global decarbonization pathways, the latter

reflecting the constraints imposed by behavioral, political, and economic factors that slow

transition processes.

Developing more realistic global decarbonization pathways is crucial: It requires industry,

policymakers, and the public to consider both social and technical constraints to technology

deployment, enabling more sustainable energy transition planning. A rapid socio-technical

transition to a low-carbon future will require the development and deployment of new physical

infrastructure to support effective integration with evolving economic and energy systems. A

number of specific technical challenges remain, including the need for long-duration storage

for variable wind and solar power [34]. In addition, a socio-technical transition would

consider broader social, behavioral, and political factors that affect lifestyle, purchasing,

production, marketing, regulatory, and related choices made by individuals, households,

communities, firms, and nations. These socio-technical factors may result in limitations in

available capital, disincentives to technical innovation, delays in regulatory approval, public

opposition to facility siting, and bottlenecks in the supply of materials and labor needed to

help overcome inertia in a low-carbon transition [35]–[37]. Efforts to address these outcomes

can only be effective when they are understood and anticipated.

Growing recognition of the complexity of the global energy system and the imperative of

its decarbonization—aided by new knowledge and data—have helped spawn an elaborate

suite of models that map pathways for future energy transitions. These energy systems

models, which have largely relied on equilibrium or cost-minimization frameworks [38], [39],

offer the formal structure and evidence necessary to inform decision-making, for example by

developing cost-optimal electricity generation portfolios. While these analytical models have

performed their task rather well within this usual scope, they are limited in their ability to

represent real-world constraints on technology adoption and diffusion rates that are informed
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not only by the technical potential, economic feasibility, or hard policy mechanisms that

constrain carbon-intensive energy generation, but also by societal and political imperatives.

Some modelers, keenly aware of the importance of societal preferences, have sought

to explicitly incorporate social acceptance using exogenous choices, often by excluding

certain technological options like nuclear power or carbon capture and storage entirely

and contrasting those results with full portfolio, least-cost scenarios [40], [41]. Other

attempts to overcome these limitations have developed “socioeconomic” pathways, often

in the form of a narrative that is then transformed into model parameters using modeler

or expert judgment [42], [43]; incorporated historical technological growth dynamics to

provide insights into modeling projections [44], [45]; constructed models with alternative

assumptions and structures (e.g., agent-based models [46], [47]); improved representation

of investment decisions, which are known to be dependent on institutional quality [48];

employed “bridging strategies” between the quantitative and socio-technical disciplines [3],

[4], [49]; and developed tools for specific technologies to identify where either technical or

social constraints preclude siting [50], [51].

While important strides have been made in recent years to better characterize these

factors, major gaps remain in assessing and predicting how human behavior will change under

evolving social, economic, and environmental conditions [5], [52]. Addressing the co-evolution

of social and technical elements in a low-carbon transition will thus require decision-making

models that extend beyond techno-economic analysis and incorporate behavioral, social,

political, and institutional dynamics [7], [53]. This work advances the growing and important

field of socio-technical energy transition modeling [54], [55]. It does this by incorporating

an extended, albeit highly idealized, representation of the influence of human behavior on

the adoption and diffusion of energy technologies [56], [57]. These behaviors are difficult

to capture in the equilibrium and cost-minimization frameworks discussed earlier, though

they play a critical role in describing realistic pressures on societal transitions. Not only are

they major drivers of model uncertainty [58], but also ignoring them may give analysts and

policymakers misplaced confidence in the amount and pace of decarbonization that can be

achieved for the global energy system.

The objective of this paper is to illustrate how a focused set of quantitative methods

can be used to provide insights into the effects of including socio-technical processes in

energy systems models. To that end, we propose a framework to link a technical model

of the energy system to a bottom-up representation of social acceptance characterized by

technological risk tolerance. The demonstration is focused on the role of nuclear power, with

risk tolerance driven by a general model for the distribution of the perceived probability

of another major accident, similar to that of Three Mile Island, Chernobyl, or Fukushima.

While other social and economic factors have and may continue to contribute to opposition

to nuclear power [59], [60], many of these concerns can arise from, or act synergistically with,

the fear of catastrophic accidents. Given the potential restrictions on nuclear power, the
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implications for the overall U.S. electricity portfolio are analyzed using an energy system

optimization model through the year 2050. These simulations are not intended to provide

predictions of the future U.S. energy system. Rather they demonstrate how linkages can be

explored between analytical models for energy transitions and models for socio-technical

processes, recognizing that behaviorally realistic models for the latter are at a much earlier

stage of conception, formulation, and testing.

In the period since the Fukushima disaster, socio-technical processes have notably

influenced energy policy with respect to nuclear energy in several countries; that major

events in one country can affect technology deployments in other countries is a reminder

of the international character of socio-technical processes. Nuclear energy is perhaps the

most notable example of a technology where socio-technical effects cross national boundaries,

although it is not the only such technology. Surveys conducted in a number of countries

measuring the change in public sentiment towards nuclear power before and after the

Fukushima disaster have been used to inform the model of social risk tolerance described in

this paper. The U.S. is used to provide an illustrative example, but the approach can be

applied to other regional and national contexts. The approach could be applied in several

ways, for example by exploring the effect of socio-technical processes on the energy mix of a

selected country of interest or by comparing the significance of the effect on a technology

type between countries. An important aspect of the method for such applications is the

non-linearity of the effect with respect to the share of any given technology.

To represent social acceptance for nuclear power we apply a stochastic model for major

accident occurrences, postulate an equivalence between uncertainty in the accident rate

and the heterogeneity in perceived risk across individuals in the population, and consider

a range of plausible accident rates that would be considered socially tolerable. The model

is formulated and calibrated using summary information from recent and historic public

opinion studies. These efforts lead to modified scenarios for energy systems simulation

in which restrictions on CO2 emissions and socially-driven limitations on nuclear power

deployment are considered alone and together. The remainder of this paper is organized as

follows: Section 2.2 describes the rationale for energy system optimization modeling and our

choice of a model. Section 2.3 introduces the framework of the probabilistic approach to

socio-technical analysis, in this case motivated by social risk aversion to a particular energy

technology. Section 2.4 illustrates the application of these combined methods by means of

a scenario-based example of the future of the U.S. energy supply, and Section 2.5 offers

conclusions.

2.2 Energy system optimization modeling with TEMOA

Within the context of energy transition planning, energy system optimization models

(ESOMs) are widely used to model the system impacts of energy technology deployments
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[61], [62]. ESOMs include granular, technological details and use linear programming

methods to minimize the costs of energy supply by adjusting energy technology capacity

and activity, which allows for the exploration of technological substitution dynamics in

transitions. Outputs include projections of electricity generation and capacity and GHG

emissions across the energy system.

We choose to build upon an existing ESOM framework, Tools for Energy Model Opti-

mization and Analysis (TEMOA), for our work [63], [64]. This established, state-of-the-art

model is open source, thereby ensuring that our results are broadly accessible and can be

replicated by other researchers. The model source code and documentation are publicly

available [65]. At its core, TEMOA is an ESOM that minimizes the present cost of energy

supply by optimizing the deployment and use of energy technologies over a user-defined

time period. The model’s optimal solution is driven by an objective function, displayed in

Equation 2.1, that calculates the cost of energy supply (Ctotal), under the assumption that

capital costs are debt-financed. TEMOA operates with a set of system performance criteria

and user-defined assumptions related to the technical performance and cost of different

energy technologies, which include parameters critical to project financial engineering, such

as discount rate and loan amortization.

Ctotal = Cloans + Cfixed + Cvariable (2.1)

The input database used in this analysis represents the continental U.S. as a single region.

The model is simulated for the period from 2017 to 2050 with five-year time steps beginning

in 2020. The database covers the electric, transportation, industrial, commercial, and

residential sectors, although results reported in this paper are primarily specific to the

electric sector. Costs for the energy generation technologies are largely drawn from the 2019

NREL Annual Technology Baseline [66]. Temporal variation in renewable resource supply

and end-use demands is represented by parameters covering three seasons (i.e., summer,

winter, intermediate) and four times of day (i.e., a.m., p.m., peak, night). A subset of the

parameter values used for TEMOA simulations is provided in Appendix A, while additional

database information is provided by Eshraghi et al. [63].

We integrate societal preferences into the optimization model by employing an additional

parameter for each energy technology of interest—a maximum electricity generation con-

straint, MaxActivity. The MaxActivity parameter enables a modeler to constrain a particular

technology t to an upper bound in time period p, thereby ensuring that the maximum total

generation of a technology class remains less than this specified value. We also employ a hard

emissions constraint within the model by activating the EmissionLimit parameter, which

ensures that the model finds a solution that satisfies a specified limit of GHG emissions e in

time period p. Although TEMOA is able to consider a range of GHG emissions, we limit

our interest to CO2 because it comprises the majority of warming gases emitted globally.

TEMOA provides a high degree of technological and sectoral detail to support a low-
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carbon transition analysis. The model, however, like other state-of-the-art ESOMs, ignores

non-market factors and qualitative social norms when determining which technologies to

deploy and to what extent. We address this limitation by mapping theMaxActivity parameter

in TEMOA to the output of a complementary method that elicits social acceptance; this

complementary method is described in the following section.

2.3 A risk tolerance model for social acceptance

Societal preferences are a critical element in determining the set of technologies that can

be deployed in an economy. Social acceptance has consistently been demonstrated to be

a key determinant in the success of the adoption and diffusion of energy technologies [67],

[68], including nuclear power, carbon capture and storage [69], and wind power [70]. Social

acceptance involves a range of attitudes and behaviors, including resistance (e.g., protests

or boycotts), tolerance, acceptance, or support, that continuously evolve given social and

cultural events and trends [71]. In its most demonstrative form, public opposition to a

technology can delay, or even preclude, its deployment, thereby affecting progress towards

meeting energy, environmental, and societal objectives. In contrast, active public support

can help to overcome barriers and accelerate deployment, and efforts are often made by

proponents to communicate the benefits and risks of a technology with greater accuracy and

clarity [72], or in some cases to allay public concerns regarding the risk [73], [74].

We develop the Social Risk Tolerance (SRT) model, described in greater detail in

Appendix B, to characterize social acceptance of an energy technology within a population.

Building on the framework developed by Wüstenhagen et al. [75], we focus on the socio-

political acceptance dimension of the concept of social acceptance and use risk tolerance as

a measure to quantify the influence of social acceptance on a technology’s adoption and

diffusion. The model probabilistically evaluates whether concern for technological risk drives

the amount of electricity generation by a particular technology that a society will accept.

The SRT model generates a cumulative distribution function (CDF) of perceived risk for a

particular time period that can be used to predict the fraction of a population that would

find a certain amount of a technology’s deployment unacceptable. The perceived risk in

this model is assumed to be driven by the number of major accidents experienced by the

technology in recent decades, with heterogeneity in the distribution of individual perceptions

reflecting the uncertainty in the event rate associated with this historical record. The

perceived event rate is scaled to the amount of nuclear generation during this period, and

compared to a socially acceptable rate to determine the individuals’ support or opposition

to further reliance on nuclear power at the proposed future level. The risk acceptability

threshold thus determines which portion of the population will support continued investment

and use of the technology (i.e., those with a perceived future event rate below the acceptable

accident threshold) and which will oppose continued use and expansion (i.e., those with a
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perceived future event rate above the threshold).

To evaluate the achievability of technological projections, the SRT model is used to assess

the occurrence and implications of one critical socio-technical process—social acceptance

of an energy technology—on the scenarios simulated by TEMOA. The conceptual linkage

between the SRT and TEMOA models is illustrated in Figure 2.1, in which the TEMOA

projections for technology deployments will be influenced by the socio-technical processes

embodied by the SRT model. The socio-technical factors discussed earlier, which are

not adequately captured by an ESOM framework, represent realities that can influence

decision-making to either impede or accelerate the deployment of an energy technology.

Figure 2.1: The SRT model assesses socio-technical constraints due to social acceptance,
which TEMOA then includes within its optimization function to determine energy technology
deployments.

To formulate the SRT model, functional relationships are required for two primary compo-

nents: 1) the distribution of perceived accident risk as affected by the historic accident

record; and 2) a risk acceptability threshold for the number of major accidents in a

given future period of time that remains within the limit of social tolerance.

A population’s perceived accident risk is represented by its distribution across the

members of the population. Here the perceived accident risk is assumed equivalent to the

perceived occurrence rate of major accidents, which is derived from the historical rate of

major accidents per unit of electricity generation. A Bayesian method is used to estimate

this rate, its uncertainty, and a subsequently inferred distribution of the perceived accident

risk across the population. Major accidents are assumed to follow a Poisson process [76],

with the rate of their occurrence defined per unit of electricity generated, λ [TWh−1], based

on recent history and calibrated to the current level of the technology’s deployment. Each

individual in a population is assumed to have a similar understanding of the number of

historical accidents that have occurred in a given period of time (e.g., three major nuclear

accidents in the past 40 years). If this Poisson outcome is paired with a flat gamma prior

distribution for λ, then the Bayesian posterior uncertainty distribution for λ is likewise

gamma (i.e., λ follows a conjugate gamma distribution) as given by Equation 2.2, with the

indicated expressions for the posterior gamma parameters a and b. This model assumes that

the accident rate is unknown, though stationary in time, and that the population’s inference

from the historical record is collectively rational, with the variability in the perceived accident

rate equal to the uncertainty that an individual would express given no prior experience
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and knowledge, but only consideration of the recent accident history. Equation 2.2 is thus

assumed to represent the individual-to-individual variability in the perceived Poisson rate.

f(λ) =
1

Γ(a)ba
λa−1e−λ/b (2.2)

where f(λ)[year] = the posterior probability density function for the accident rate λ[year−1]

a = number of major accidents that occurred during the historical

time period of T years

b = 1/(time period of T years)

The second component comprising the model is a risk acceptability threshold for

comparison with the expected number of major accidents in a given future period of time.

This threshold demarcates the range of acceptable versus unacceptable perceived accident

rates for individuals, each varying in their perceived rate, as informed by the uncertainty

that derives from the historic record. The risk acceptability threshold is calculated as the

acceptable number of events per year per unit of electricity generated by the technology;

its value is assumed to be socially negotiated and thus constant for the entire population.

Based on the share of the population expected to object to a given level of a technology, an

upper-bound achievability limit is derived for its deployment.

The integrated approach linking these two models can characterize technology projections

as unrealistic due to socio-technical influences if TEMOA projections exceed the SRT model’s

achievability limit, or potentially able to be accelerated with the mobilization of additional

resources (e.g., regulations, financing) if they fall below it. Calculations further clarifying this

modeling approach are provided in the following section and in Appendix B. This approach,

though, is highly simplified. Only one source of risk—major accidents—is considered,

without delineation of specific human health, ecological, resource, or economic impacts.

Furthermore, the relative risks and benefits of nuclear power versus competing technologies

are not addressed, though some are included indirectly by their contributions to observed

and projected costs for system design and management included in TEMOA. Nonetheless,

accidents represent marquis symbols of public concern for the safety and feasibility of nuclear

power, and public opinion studies continue to find that the largest and most sustained

reductions in public support for nuclear energy followed each of the three most damaging

and widely-covered events on the global stage [59].

Current areas of active research may allow for the development of more detailed, higher-

dimensional models of risk perception for energy technologies, including factors such as

proximity to facilities and infrastructure (e.g., NIMBY) [72], [77], interactions of a divided

public with polarized sources of news coverage on energy and the environment [78], [79],

chronic concerns regarding costs and cost overruns [80], and increasing expectations for
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facilities to maintain a “social license to operate” [81], [82]. We anticipate that incorporating

one or more of these factors in future models could improve their predictive capabilities

and overall credence. Even with our initial formulation that considers only a theory-based

approach for risk, risk perception, and risk tolerance for nuclear accidents, reasonable distri-

butions for nuclear power opposition are predicted, as shown below. This supports a major

objective for this paper, to provide a proof-of-concept for linking models of risk perception,

social preference, and technology costs and performance to assess energy transitions.

2.4 Nuclear power scenarios and modeling for the U.S. ex-

ample

2.4.1 Scenario description

In this section, we focus on how societal preferences influence the role that one energy

technology—nuclear power—plays in the decarbonization of the U.S., one of the world’s

largest CO2 emitters. Six scenarios of U.S. nuclear power deployment—summarized in

Table 2.1—are introduced and their implications are evaluated in terms of changes in

electricity generation portfolios and CO2 emissions. A copy of the files used to produce this

analysis is archived through Zenodo [83].

In the reference case Scenario A0, TEMOA identifies the least-cost electricity generation

pathway in the U.S. without exogenous intervention. Scenario B0 implements a restrictive

climate policy to achieve net zero CO2 emissions by 2050 and adjusts the optimal generation

mix in the process.

Next, the potential influence of social acceptance in constraining the deployment of

nuclear power technologies is assessed. The SRT model is used to construct a deployment

limit for the technology, given an illustrative, albeit realistic, estimate of the U.S. population’s

risk tolerance level for nuclear energy, comparable to that expressed in referenced survey

studies. Exogenous constraints provided to TEMOA align projections of nuclear power’s

deployment with the upper limit determined by the SRT model. This effort produces two

additional scenarios: Scenario A1 represents the original reference scenario with social

acceptance limitations on nuclear generation included; Scenario B1 represents the deep

decarbonization scenario—again, with social acceptance effects included.

Finally, to account for the possible occurrence of future nuclear accidents to which the

U.S. population would react, two major nuclear accidents are assumed to occur sometime

between 2020 and 2030. The perceived accident risk is adjusted within the SRT model due to

these events and further reduces nuclear power deployments from 2030 onwards. Scenarios

A2 and B2 resemble Scenarios A1 and B1, respectively, albeit with more restrictive nuclear

limitations implemented from 2030 to 2050.
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Table 2.1: Six scenarios are presented to compare long-term electricity generation projections
in the U.S. with and without CO2 emissions restrictions, and with and without deployment
limits imposed on nuclear power in response to social acceptance pressures.

Scenario Emissions con-
straint

Technology
availability

Ratio of cumulative
CO2 emissionsa

to that in Scen. A0

Ratio of discounted
total system costs
to that in Scen. A0

A0 No constraint Full portfolio 1.00 (38,474 MMT) 1.00 ($34.2T)
B0 Net zerob Full portfolio 0.46 1.09
A1 No constraint Nuclear limit 1.01 1.01
B1 Net zerob Nuclear limit 0.46 1.11
A2 No constraint Nuclear limit,

stricter
1.01 1.01

B2 Net zerob Nuclear limit,
stricter

0.46 1.11

a Refers to cumulative values for the period 2020 to 2050.
b Refers to achieving a net zero target for U.S. energy-related CO2 emissions by 2050.

2.4.2 Scenario A0: Economics drive the solution

Scenario A0 allows CO2 emissions to continue unabated in the absence of climate mitigation

policies. Figure 2a presents the model’s forecast of the electricity generation mix in the

U.S. until 2050. Coal, natural gas, and solar power dominate the U.S. electricity generation

system, supplemented by smaller contributions from nuclear and other renewables. Total

annual electricity generation is projected to reach 6,400 TWh by 2050, of which nuclear

power is expected to contribute 590 TWh in 2050, a 9% share of total generation.

2.4.3 Scenario B0: Implementing CO2 emissions restrictions

The efficacy of a national policy in reducing emissions from the U.S. power sector is assessed

in this scenario. Beginning in 2020, CO2 emissions constraints are imposed by means of

the EmissionLimit parameter to achieve net zero CO2 emissions in the U.S. by 2050 [84].1

Figure 2b illustrates the effect of this restriction on the U.S. electricity generation mix,

in which total electricity generation is projected to be much higher by 2050 (i.e., 17,800

TWh). This marked increase in generation is attributed to the emissions limit, to which the

model reacts by electrifying end-use sectors (e.g., light-duty vehicles, heating services in the

residential and commercial sectors) in order to displace fossil fuels. To meet the need for

additional generation, nuclear power expands to contribute 12,900 TWh, or approximately

73% of the total system mix, by 2050. Coal and natural gas use are largely eliminated by

the end of the time period in favor of nuclear, wind, solar, and other renewable energy

technologies. The overall system cost for this scenario is 9% more expensive than Scenario

1While CO2 emissions restrictions consistent with Princeton University’s Net Zero America study are
implemented, other GHG restrictions are not modeled because of limited capabilities within TEMOA.
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Figure 2.2: a) Scenario A0 presents the least-cost mix of electricity generation
technologies in the U.S in which nuclear power provides 9% of total generation
by 2050. b) Scenario B0 presents a policy intervention in which CO2 emissions
are restricted. Nuclear power provides 73% of total generation by 2050; fossil fuels are
largely eliminated in favor of low-carbon resources like renewables and nuclear power. A
large volume of additional electricity is needed to support the electrification of end-use
sectors, like transportation and buildings, in the transition from A0 to B0.

A0.

A key question to answer, then, is the extent to which social acceptance will govern the

achievability of the technological projections produced by TEMOA in Scenarios A0 and B0,

in particular the share of generation provided by nuclear power.

2.4.4 Defining social acceptance limits for nuclear power

Social acceptance of nuclear power systems has been demonstrated to be positively shaped by

the technology’s climate and economic benefits, but negatively by its perceived environmental

harm and fear of catastrophic disaster [85], [86]. This fear of catastrophic disaster is informed

by how many major accidents have happened in recent decades and could constrain the

deployment of nuclear power technologies regardless of their representation in decarbonization

pathways [87], [88]. Observing the influence of social processes, Alvin Weinberg, former

Director of Oak Ridge National Laboratory, offered the perceptive insight in 1976 that “The

most serious question now facing nuclear energy is its acceptance by the public” [89]. The

individual and collective societal beliefs that influence the success of nuclear power projects

are not adequately captured by TEMOA and other ESOM frameworks.
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To illustrate the proposed approach to integrating social preferences in ESOMs, the SRT

model is used to generate a set of CDFs representing public opposition to nuclear power

deployment every five years for the period from 2020 to 2050. The number of historical

nuclear power accidents that have occurred and can easily be recalled is provided as an

input to the model to construct the distribution of perceived accident risk. In this case,

we assume that the Three Mile Island (1979), Chernobyl (1986), and Fukushima (2011)

disasters are the most memorable nuclear accidents for the majority of the U.S. population2

[90]; therefore, three events in the approximately 40 years between Three Mile Island and

the simulation’s 2017 start year is used to characterize the distribution of perceived major

accident risk for Scenarios A1 and B1. To characterize the risk acceptability threshold

metric, we select an illustrative value of one event in 30 years (i.e., a mean rate of 0.033

events/year); a sensitivity analysis of the effect of varying this value on the upper-bound

deployment limit for nuclear power is presented in Figure B.1 in Appendix B.

Next, values from Scenario A0 are used to calibrate the SRT model to projections of

nuclear power in the U.S. Figure 2.3 displays the CDFs generated for several years, in which

the shape of each distribution is representative of the U.S. population’s collective opposition

towards varying shares of nuclear power.3 To interpret the CDFs, the system share of

nuclear power generation (relative to the total) is read from the x-axis and translated to the

fraction of the population in opposition on the y-axis; the level of opposition grows as the

technology’s share of system generation increases. A particular level of deployment yields a

given distribution of accident rate across the population and a fraction of the population find

their perceived rate exceeding the socially acceptable rate, and thus oppose the proposed

deployment level.

We begin by examining studies surveying international reactions to the most recent large-

scale nuclear disaster in Fukushima, Japan to identify the critical fraction of a population

capable of restricting nuclear deployment. WIN-Gallup International conducted an extensive

poll from March to April 2011 in 47 countries to measure the change in public sentiment

towards nuclear power before and after the Fukushima disaster [92]. Table 2.2 presents the

results for the four countries that began phasing out their nuclear power programs following

the incident (Germany, Italy, Spain, and Switzerland) as well as for the global average.4

We use the polling data in the countries that opted to phase out their nuclear programs after

Fukushima as a first proxy measure of the influential role of public opposition. However,

we recognize that social acceptance is not the only influential variable that affects decision-

2The seven-point International Nuclear and Radiological Event Scale (INES), developed by the Inter-
national Atomic Energy Agency, is used here to determine the number of “memorable” historical nuclear
events. Nuclear events classified at a Level 5 (“Accident with Wider Consequences”) or above on the INES
scale are assumed to be easily recallable by the majority of the U.S. population.

3The CDFs produced by the SRT model are similar in shape to observed distributions derived by Abdulla
et al., who employed a large-N survey to quantify what the public might allow as reasonable limits to nuclear
deployment [91].

4This attitudinal data, collected by the WIN-Gallup survey, considers only respondents who responded
in favor or opposition to nuclear power and excludes respondents who didn’t provide responses.
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Figure 2.3: The SRT model generates CDFs representing the relationship between a popula-
tion’s opposition towards nuclear power and the share of electricity generation the technology
provides for a given time period (presented here for 2020, 2030, 2040, and 2050).

making around nuclear programs, that nuclear programs do exist in multiple countries with

high levels of public opposition, and that country-level situational contexts are important.

We observe that in the four countries that phased out their nuclear programs, public

opposition after Fukushima ranged from 52 - 76%. Therefore, we use the approximation in

our illustrative application of the SRT model that opposition by 60% of the population is

the tipping point at which societal preferences negatively restrict nuclear development.

Since our focus is on risk perception and preferences toward nuclear power in the

U.S., we next consider a multi-decadal aggregation of surveys compiled by Gupta et al.

[59]. Their results, spanning the period from 1973-2016, demonstrate the distinct effect of

major accidents, though they also suggest an effect from concern for energy security in the

U.S. (based on prices for alternative sources of energy) as a factor increasing support and

decreasing opposition. Overall, opposition to nuclear power was low at the beginning of the

study period, but grew from 1977 until 1991, suggesting strong effects on risk perception

from the Three Mile Island (1979) and Chernobyl (1986) events. Opposition decreased from

1991 until 2009, but has grown since then, with apparent influence from the Fukushima

event (2011). The U.S. public opposition currently stands at approximately 60%, at the cusp

of the value suggested for a social roadblock. Such an opposition level was also expressed in

the period of primary influence from Three Mile Island and Chernobyl accidents (1982-1991),

and most likely contributed to the downturn in the planning and siting of U.S. nuclear power

plants that began during that period, as well as the increased number of premature plant
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Table 2.2: The four countries that shut down their national nuclear power programs after
the Fukushima accident are presented alongside their respective populations’ opposition
levels.

Country
Opposed before
Fukushima (%)

Opposed after
Fukushima (%)

Germany 65 73
Italy 72 76
Spain 52 52
Switzerland 58 65

Global average 36 47

closures following Fukushima [93].

Applying the perceived accident risk and risk acceptability threshold values specified

earlier, we extend insights from the SRT model in Appendix B to suggest that nuclear power

in the U.S.—restricted at or below 11% of the energy supply for the period from 2020 to

2050—would yield a critical mass of 60% of the population in opposition.

2.4.5 Scenarios A1 and B1: Providing social acceptance limits to TEMOA

The approach described above is used to produce a set of maximum attainable limits for

nuclear power in the U.S. at five year intervals from 2020 to 2050. Scenarios A1 and B1,

then, are the result of TEMOA simulations provided with these nuclear power restrictions.

The generation mix of Scenario A1 shown in Figure 4a represents a replication of Scenario

A0 (i.e., reference case), in which low-cost fossil fuels still dominate the grid mix. Now,

however, nuclear power is restricted from exceeding the prescribed limit. The difference

in generation profiles between Scenarios A0 and A1 is apparent for nuclear power, which

supplies as much as 18% of total generation in Scenario A0 in the period of simulation,

while the technology’s output is restricted below cost optimal dispatch values in Scenario

A1. Coal, natural gas, and solar power largely take nuclear power’s place in Scenario A1 as

a consequence of the low social acceptance confronting the latter technology, while system

costs increase by 1% over Scenario A0.

Scenario B1 represents a replication of Scenario B0 (i.e., deep decarbonization case with

no restrictions on technology deployment). Here, solar and wind largely dominate the grid

mix because of the need for deep decarbonization of the electric power system, combined

with the deployment limit to nuclear power, as illustrated in Figure 4b. The difference in

generation profiles between Scenarios B0 and B1 is evident in the replacement of nuclear

by solar, wind, and natural gas. Also demonstrated is a marked reduction in output from

coal power over time, further confirming that any deep decarbonization scenario hinges on a

complete phaseout of electricity generation from unabated coal plants.
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Figure 2.4: a) Scenario A1 replicates Scenario A0 but adds an upper-bound
constraint on nuclear power beginning in 2020. Solar power and fossil fuels provide
the majority of generation. b) Scenario B1 includes constraints on both CO2

emissions and nuclear’s share. Solar and wind provide the majority of generation while
coal, natural gas, and nuclear decline in output.

2.4.6 Scenarios A2 and B2: Envisioning future accident occurrences

Given the potential for additional large-scale nuclear power accidents to occur in the future,

Scenarios A2 and B2 evaluate reactionary responses in risk tolerance of the U.S. population

to these hypothetical events. Previously in Scenarios A1 and B1, an event rate of three

events in 40 years was used to characterize the perceived accident risk for the SRT model.

Now, we consider the possibility of two additional significant accidents, comparable to

Three Mile Island, Chernobyl, or Fukushima, occurring sometime between 2020 and 2030.

Because of timing delays in the social and legal systems to fully respond to these catastrophic

occurrences [59], we evaluate the effect of these new events beginning in 2030 by adjusting

the SRT model’s perceived accident risk upwards: five events (three original events plus

two new events) are assumed to occur in 50 years (approximate number of years between

2030 and Three Mile Island). This update to the gamma parameters of the SRT model

subsequently suggests that nuclear power in the U.S. is restricted at or below 7% of total

system generation from 2030 to 2050 due to adjusted social tolerance sentiments.

The generation mix of Scenario A2 is shown in Figure 5a, in which nuclear power is

subject to more stringent restrictions than that of Scenario A1 beginning in 2030. As

a consequence, natural gas and solar power increase in their overall system contribution.

Similarly, as presented in Figure 5b, Scenario B2 resembles Scenario B1 with a reduced
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social appetite for nuclear power from 2030 to 2050. Natural gas and solar and wind power

replace nuclear power’s reduced role. The system costs for Scenarios A2 and B2 increase

marginally over Scenarios A1 and B1. Future outcomes in the technology’s performance can

be expected to affect its deployment in relation to alternative energy technologies.
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Figure 2.5: a) Scenario A2 resembles Scenario A1, albeit with a more stringent
cap on nuclear power from 2030 to 2050. The stringent cap depresses nuclear’s final
generation share by a further 2%. b) Scenario B2 includes upper-bound constraints
on both CO2 emissions and nuclear output, allowing the latter to contribute only 2%
of system generation by 2050.

2.4.7 Scenario synthesis

Although nuclear power could offer significant contributions to a low-carbon future [94]–[96],

the technology’s contribution to deep decarbonization is dependent upon socio-technical

enabling factors [60]. While the technology offers the ability to accommodate and support

renewables [97], nuclear waste management, cost and time overruns, accidents, and market

competition may diminish its overall attractiveness [98], [99], particularly if safety concerns

and social aversion remain unaddressed [100].

The electricity generation portfolios of each of the six scenarios vary dramatically

depending on the existence of a long-term decarbonization policy and the influence of social

acceptance of nuclear power; broadly, three key results emerge. First, the introduction of

net zero CO2 emissions targets in Scenarios B0, B1, and B2 shifts the bulk of the generation

mix to renewable energy resources. Second, introducing the socio-technical restrictions

on nuclear power in Scenarios A1, B1, A2, and B2 incentivizes the next least-cost energy
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technologies to replace nuclear power’s output. Third, any further accidents, such as the two

we assumed between 2020 and 2030 in Scenarios A2 and B2, could reduce the technology’s

share of total generation by a further 1-2%. A reduced contribution from nuclear power due

to social acceptance may or may not be justified, but would mean the availability of one

fewer energy option in a system that needs to radically expand its low-carbon generation.

Finally, the buildout of the six different energy supply portfolios over three decades results

in unique total system costs and cumulative CO2 emissions, as summarized in Table 2.1.

The emissions constraint in Scenario B0 incurs an additional $3.2 trillion in discounted total

system costs over Scenario A0. Scenarios A1 and B1 are $0.3 and $3.7 trillion more expensive

than Scenario A0, respectively, while Scenarios A2 and B2 are $0.3 and $3.8 trillion more

expensive than Scenario A0. The difference in system costs between two scenarios represents

the “premium” associated with a particular restriction; for instance, the additional $480
billion to implement Scenario B1 instead of B0 is indicative of the discounted cost of the

social acceptance constraint over the modeled time period.

2.5 Conclusions and directions for future research

Rapid and deep decarbonization of the global energy system is complicated by the fact that

some technologies face profound socio-technical constraints, such as social acceptance, that

could dramatically affect the extent to which their widespread deployment is viable. Public

perception or risk, including the risk of future accidents can be a factor in social acceptance

of nuclear energy. This is a practical concern not only for nuclear energy in particular,

but also for the field of applied energy in general, because the extent of the availability

or unavailability of nuclear energy can have a material effect on system reliability, costs,

and emission outcomes. Equally important to applied research is the fact that, despite the

urgency of meeting global emissions reduction targets and the proliferation of complex energy

systems models that seek to map the transition, these socio-technical constraints remain

largely unintegrated in modeling efforts, limiting their value in applied energy studies.

The original and quantitative linkage advanced in this paper between a risk tolerance

model and an established open-source model for energy system optimization and analysis

provides an initial framework for assessing the extent to which one key socio-technical con-

straint—social acceptance of the risk of major accidents from nuclear power—might impact

the energy generation mix of deep decarbonization pathways. We constructed scenarios using

the most extreme decarbonization objective (i.e., massive end-use electrification and net

zero CO2 emissions by 2050) in order to investigate the role of technology deployment limits

on the most conservative transition pathway. The estimated social acceptance constraint for

nuclear power increases overall system costs by as much as 11% and reduces the technology’s

share in the final generation mix by up to 71%. The constraint is also influential in terms of

the mix of technologies that emerge as a result of the reduced contribution by nuclear power,
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but the overall decarbonization objective is shown to be achievable in the United States, so

long as other low-carbon sources, such as solar and wind, are available and affordable as

anticipated. Those technologies could also be subject to socio-technical constraints of their

own related to transmission and storage infrastructure, land-use competition, and ecological

impacts, for example. Therefore, to reduce potential barriers facing the technologies, there is

a need for research leading to a more complete understanding of the socio-technical impacts

of co-evolving energy technologies, social norms, risk outcomes, and risk perception.

Understanding achievable limits to system transitions is fundamental to developing

meaningful energy and climate change policy and guiding ongoing decarbonization efforts.

Taken independently, energy systems modeling and socio-technical analysis approaches

may fail to consider some of the critical dynamics in a low-carbon transition. Integrating

the two approaches in scenario development can offer more nuanced and robust results

to support energy decision-making for government and industry stakeholders. Moreover,

it can prevent the misplaced confidence that might arise from theoretical assessments of

deployment potential, revealing instead how deployment could unfold in the real world.
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Chapter3
The transition to electrified vehicles:

Evaluating the labor demand of

manufacturing conventional versus battery

electric vehicle powertrains

The contents of this chapter are a working paper co-authored with Erica Fuchs and Katie

Whitefoot in preparation for journal submission.

Abstract

The ongoing shift from traditional internal combustion engine vehicles (ICEVs) to electric

vehicles (EVs) has raised questions about whether this transition will be economically as well

as environmentally sustainable. In particular, one concern is the impact on manufacturing

labor. Prior studies of the anticipated impacts of vehicle electrification on manufacturing

labor requirements are mixed, with some suggesting that producing EVs may require fewer

labor hours and jobs than conventional gasoline vehicles and some suggesting that there

will be no limited impacts on labor outcomes. These analyses have been hindered by a lack

of shop floor-level data about labor hours required for ICEV and EV manufacturing. We

collect detailed data on the production process steps required to build key ICEV and battery

electric vehicle (BEV) powertrain components and the labor required for each process step.

The data include information for 252 process steps, which we collected from the shop floors

of leading automotive manufacturers and combine with information on a further 78 process

steps found in the existing literature. We then use this data to build a production process

model that determines the labor hours required to produce ICEV and BEV powertrain

components in a variety of scenarios of different production volumes and labor efficiency
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levels. We find that, in most scenarios we explore, there are larger labor hours required

for the manufacturing of EV powertrain components compared to those of ICEVs. Our

results imply that vehicle electrification may lead to more jobs in powertrain manufacturing,

at least in the short- to medium-term. These results emphasize the importance of using

information about manufacturing process tasks and labor requirements to estimate the labor

impacts of EVs, rather than recent approaches concentrating on part counts.

3.1 Introduction

Personal transportation is undergoing the largest transition in over a century with global

sales of electrified vehicles projected to outpace those of conventional internal combustion

engine vehicles (ICEVs) by as early as 2030 [101], [102]. In the U.S., the White House joined

with the Big Three U.S. automakers and the United Auto Workers (UAW) to announce

plans for 40-50% of U.S. vehicle sales to be electrified by 2030 [103]. Internationally, more

than 20 countries have electrification targets or internal combustion engine bans in place

to accelerate the phase-out of ICEVs [22]. And several original equipment manufacturers

(OEMs) have announced plans to solely produce electric vehicles (EVs), phasing out new

production of conventional ICEVs within the next 10 - 15 years [22].

The shift from ICEVs to EVs has raised questions about whether the transition will be

economically as well as environmentally sustainable, particularly with respect to manufac-

turing labor. Recent studies have suggested that EV production will lead to manufacturing

job loss because EVs have fewer parts than ICEVs in final assembly [104]–[106]. Others

have countered this conclusion, arguing that EVs require additional steps in the production

of batteries and power electronics that will require a comparable amount of labor as ICEVs

[107].

In the U.S., consideration of the impact of EVs on manufacturing labor is heightened by

historical trends in manufacturing. Approximately one million workers are involved in vehicle

and parts manufacturing in the automotive industry [108]. U.S. automakers historically

provided well-paying jobs that supported the build-out of domestic manufacturing and the

rise of the middle class [109], [110]. Average hourly earnings for these one million workers

ranged from $20 to 30 in 2021, higher than the national average wage [108]. However, the

number of workers employed in the U.S. manufacturing sector has decreased over the last

two decades, even while the sector’s value has increased [111]. Median wages for autoworkers

are falling faster than for manufacturing workers as a whole [110].

As the automotive industry electrifies its vehicles, it is likely to affect both the number

and the nature of employment in the automotive and parts sectors [25]. Occupational

demands of shop floor workers may evolve as a historically mechanical production process

characterized by machining and assembly steps necessary to manufacture ICEV powertrain

components is replaced by a more electrochemical production process for manufacturing
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battery cells and power electronics in EVs [112], [113]. Employment effects of technology

changes can be decomposed into effects due to changes in demand, changes in production

costs, and changes in labor intensity between the technologies [114]. We focus on the latter in

this paper. Recent analyses of policies encouraging EVs have recognized that EV production

may have different labor intensity than ICEV production [25]. However, examination of the

potential differences in labor intensity between these technologies has been hindered by a

lack of detailed data of manufacturing labor requirements for EV production.

In this research, we investigate the comparative labor hours required in the manufacture

of ICEV and battery electric vehicle (BEV) powertrains through production and operations

data collected from the shop floors of leading automotive OEMs and suppliers and battery

manufacturers.1 We collect detailed operations and production information (e.g., cycle

times, batch sizes, yields, material usage, machine prices) from manufacturing firms for 252

production steps necessary to produce key ICEV and BEV powertrain components.2 We

then combine this data with information on a further 78 production process steps from

existing literature. These data are provided as inputs to a process-based cost model (PBCM),

an engineering operations model that is used to inform manufacturers of the implications of

different technologies on production inputs including labor. Results do not support that

BEV powertrains require less manufacturing labor than ICEV powertrains. In contrast, we

find that more labor is required to manufacture BEV powertrain components than those of

ICEVs. Our collection and synthesis of vehicle manufacturing data from public and industry

sources offers a novel comparative assessment of the labor hours needed for ICEV versus

BEV powertrain designs and suggests that BEVs may lead to more demand for labor in

powertrain manufacturing, at least in the short- to medium-term.

3.2 Background: Industry claims of vehicle manufacturing

changes on worker labor requirements are conflicting

Determining the magnitude of labor requirement differences between producing an ICEV

versus a BEV—as well as identifying the primary levers responsible for those differences—is

important for developing realistic and appropriate electrified vehicle deployment targets

and preparing the manufacturing workforce to make that transition. We did not identify

any studies in the peer-reviewed literature that address this topic, likely because of a

lack of data on labor requirements for manufacturing EVs. Previous studies from the gray

literature and industry statements on this topic rely on different input assumptions and reach

1We concentrate on modeling those electric vehicle components specific to BEVs. Our results and insights,
therefore, are confined to BEVs. However, other studies referenced throughout this work may be more general
in their vehicle focus. For those studies that are not specifically BEV-focused, we use the terms electric or
electrified vehicles to distinguish their vehicle categorization choice.

2We restrict our focus to the powertrain, the automotive system responsible for generating the kinetic
power to move the vehicle forward, because electrified powertrain components will be more dissimilar from
their conventional counterparts than in any other automotive system.
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conflicting conclusions. However, all agree that ICEV and BEV manufacturing requirements

are inherently different because of their unique material and component compositions. The

most fundamental difference between ICEVs and BEVs is that ICEVs feature engines,

transmissions, and fuel systems in their powertrains, which are replaced by electric motors

and battery packs in BEVs. In addition, BEVs have fewer parts, less mechanical complexity,

and a greater amount of electrical and electronic content.

Many industry statements and studies have asserted that producing BEVs will require

less labor than producing ICEVs. Ford’s president of global operations announced that

“Electric vehicles will mean auto factories can have . . . 30 percent fewer labor hours per car”

[104], [115]. Bosch finds that “ten employees are needed to build a diesel system, three for a

gasoline system, and only one for an electric vehicle” [116]. A study by Fraunhofer IAO and

Volkswagen concludes that “labour requirements are 70 percent higher for the production of

a conventional powertrain than for the production of a powertrain for an electric vehicle”

[106].

Multiple industry analyst and academic analyses have concluded that BEVs will have

reduced labor requirements based upon the argument that BEVs contain a fewer number of

parts. Germany’s Friedrich Ebert Stiftung finds that an ICEV powertrain contains 1,400

components versus the 200 in an EV [117]. A UBS teardown of the Volkswagen Golf (ICEV)

and the Chevrolet Bolt (BEV) models counts 167 moving and wearing parts in the Golf’s

powertrain versus 35 in the Bolt [118]. The UAW, in just one example of supporting this

prevalent argument’s logic, states that “This simplicity could reduce the amount of labor,

and thus jobs, associated with vehicle production” [119]. The soundness of this part-count

argument alone, however, depends on how and which components are counted in each vehicle.

It also ignores the nuance that unique components have different numbers and types of

manufacturing steps and require different quantities of workers with varying skillsets. Indeed,

it is not the number of parts but rather the process steps, and their cycle times and labor

hours per part, that determine the labor hour content of a final assembled component.

At the same time, not all analysts have agreed that EV labor content will be lower.

Wards Automotive industry analyst John McElroy asserts that “the claim that all electric

cars are much easier to build just isn’t true” because “[EVs] require other assembly steps

that piston engines don’t.” However, McElroy concedes that “EVs will eliminate a lot of

factory jobs” because “The engineering skills needed to design [battery packs], the materials

and the manufacturing processes used to make them, are completely different. Companies

that are adept at making crankshafts, pistons, spark plugs, radiators and so many other

traditional components have no role to play in an electric world” [120]. Relatedly, in its

comparison of the ICEV versus BEV powertrain, UBS Evidence Lab finds that BEVs contain

6 to 10 times more embedded semiconductor content [118]. Growth in the demand for these

electronic technologies, which are extensively used in batteries, electric motors, and power

electronics, are introducing new processes and techniques previously unknown to automotive
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manufacturing.

Finally, a study by the Boston Consulting Group lands in the middle of the debate: The

authors examine labor content in the production activities of OEMs and Tier 1 suppliers

and find that “the labor requirements for assembling BEVs and ICEVs are comparable”

[107]. Specifically, they find that “current BEV labor requirements are about 1% less than

those for ICEVs.” They also conclude that “the value added in automotive manufacturing

will shift from OEMs to tier one suppliers, particularly battery cell makers” because OEM

manufacturers are expected to focus more on final assembly and shift component manufacture

to their suppliers.

Several additional studies examine employment projections due to vehicle electrification

for particular regions, such as the U.S. [109], [121]–[123], Germany [105], [106], [124], Europe

[125], and Thailand [126]. While these studies project employment changes, their findings

are not based on labor intensity but rather anticipated plant closures of ICEV-specific

component facilities without the opening of new plants or transition of existing plants

to BEV component production. In contrast, we focus on the labor intensity of BEVs in

comparison to ICEVs in this work.

3.3 Methods: Modeling the labor implications of technology

change

3.3.1 Selecting a modeling method: Process-based cost model

Process-based models are well-suited for accounting for the influence of technology choices

on production step-level variables in manufacturing, including labor intensity. Technical

cost modeling methods were developed to explore the economic implications of emerging

technologies and evaluate how new technologies, concepts, and materials affect production

costs prior to large-scale investment [127]–[129]. Process-based cost modeling—one class

of this genre of models—evaluates the economics of manufacturing operations and the

implications of alternative manufacturing decisions, including alternative products with

different types of embedded technologies, by simulating each step of the production process

and the interaction across these steps for a given product design [130]–[133]. This approach

offers a forward-looking perspective for how emerging technologies may affect production

costs and inputs, including labor.

Process-based cost models have been extensively applied to evaluate material, design,

labor, process, and location decisions in contexts ranging from semiconductor chip design

[132], [134] to additive manufacturing [135]. With regard to automotive manufacturing,

these models have been used to estimate the costs of fabrication for composite materials

[136]–[140] and batteries [141] among many other components; investigate the dynamics of

the magnesium market [142]; quantify product development efforts and lead-times [143];

examine the cost impacts of learning improvements [144]; demonstrate the significance of
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location-specific production differences [133]; and evaluate potential risks of decreased rare

earth element availability for automotive fleets [145], [146]. Most recently, Combemale et.

al. applied a combination of process-based cost models and a process-step level adaptation

of the O*NET skills survey instrument to quantify the labor hours and skills implications of

emerging technologies prior to large-scale investments [147].

We construct an engineering process-based cost model (PBCM) developed to simulate

the production process steps of required to manufacture automotive powertrain components

and estimate their production consequences at varying volumes, using data at the individual

machine level for each of the process steps. We use per-process step inputs specific for

each production stage of a particular component (e.g., batch size, cycle time, yield rate,

scrap rate, price of machine, energy consumption, floor space, fractional use of labor).

Complementing the per-process step level modeling and data, we use select plant-wide

inputs for all equipment and production lines, specifically annual operating days, downtime,

number of shifts, wages by occupation, price of energy, discount rate. [148]. The sources of

the facility-wide and per-process step input data are described in Section 3.4. We calculate

the input (material, labor, energy, equipment, building space) requirements for producing

a pre-selected annual volume of “good” units in the simulated production facility, given

yields, downtimes, and scrap rates. Given these required inputs to achieve a number of good

units per year, we can then calculate per unit production cost by multiplying the required

quantity of production inputs by the prices of these resources.

This modeling technique improves our understanding of the labor impacts of vehicle

electrification through two key features: First, labor requirements for an annual volume

of “good” parts can be decomposed by component and process to determine the primary

contributor(s) to labor hours for overall production. Second, the model calculates per

unit labor time requirements by accounting for each component’s per-process step cycle

times, setup times, batch size, and use of labor during that cycle time and set-up time. In

addition, when calculating the number of laborers required, the model also incorporates how

per-process step reject rates and downtimes will affect the overall labor required per “good”

part produced.3 The labor time requirement, whose cumulative formula across all process

steps for a given design is expressed in Equation 3.1, is representative of the number of worker

labor hours required to produce a given technology design (i.e., powertrain component)

and allows us to empirically compare the relative labor demand of producing different

components.4

3The fractional use of labor variable contained within Equation 3.1 is determined by multiplying the
required number of workers (e.g., operators, technicians, supervisors) for process step i by the percentage of
the time while process step i is operating that these workers must be present.

4While our analysis determines the direction of labor content change for manufacturing workers at constant
production volumes, we do not predict changes in overall workforce employment, which is appreciably affected
by changes in production volumes.
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n∑
i=1

Labor time requirementi = fractional use of labori ×
(cycle timei + setup timei)

batch sizei

(3.1)

where i = process step i for a given powertrain component

n = total number of process steps for a given component

To capture the uncertainty that exists within individual input variables (e.g., reject

rates) and its impact on final modeling outcomes, we run multiple scenarios with varying

input values for each design. In addition to each base input value for the model we specify

alternate “most efficient” (i.e., highest total factor productivity) and “least efficient” (i.e.,

lowest total factor productivity) values to be able to run sensitivity analyses and account

for the full range of plausible outcomes through the model.5

We present results for annual production volumes of 100,000 units, which is the quantity

at which economies of scale are small in the per unit cost of each component.

We use three techno-economic BEV battery cost models from the literature to model the

production of the battery pack and present their empirical results for base, most efficient,

and least efficient cases: A PBCM of prismatic pouch battery and pack designs constructed

by Sakti et al. [141] and Versions 4.0 (2019) and 5.0 (2022) of the Battery Performance

and Cost model (BatPaC) developed at Argonne National Laboratory, a bottom-up cost

and design model [149]. Within each of these models we specify the manufacture of a 60

kWh lithium nickel manganese cobalt oxide (NMC) battery pack with prismatic cells.67 We

determine through sensitivity analyses of each of the three battery models that changes in

the labor intensity of battery cell production are small at production volumes higher than

100,000 packs produced per year.8

3.3.2 Identifying model scope: Production component differences between

ICEVs and BEVs

The systems and components that make up an ICEV are, for the most part, similar to

those that comprise an BEV. The exterior, interior, and chassis systems—despite evolving

innovations in material design and electronic technologies—remain fundamentally comparable

5We use base case to refer to an average representation of current industry practices and most efficient
case and least efficient case to refer to least and highest, respectively, labor hour, laborers required, and
production cost outcomes.

6The average usable battery capacity across available BEV models at the time of this writing is 60.3
kWh [150].

7For the base case of each battery model we assume a prismatic cell capacity of 67 Ah, a cell voltage of
4.07 V, 220 cells per 60 kWh NMC battery pack, and 300 production days per year, each with three 8-hour
shifts [149].

8Similarly, Mauler et al. demonstrate constant returns to scale for NMC cell production at annual
production volumes of 1.8 GWh [151], equivalent to 30,000 60-kWh packs.
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between the two vehicle categories [26]. The most significant differences between the two

vehicle categories are concentrated in the powertrain, in which the internal combustion

engine’s complex and mechanical structure of pistons, cylinders, rods, and gears with its

gasoline fuel system is substituted out in favor of an electric motor and various power

electronics powered by a battery pack. Single-speed transmission systems are also typically

used in BEVs instead of the multi-speed gearboxes used in ICEVs. The powertrain itself

represents a significant portion of a vehicle’s overall production cost: Munro & Associates

estimates that an ICEV powertrain represents less than a quarter of its respective vehicle’s

overall cost, while the EV powertrain represents greater than half of the vehicle cost [152]. For

our comparative analysis of vehicle manufacturing we focus solely on the powertrain—which

contains the majority of components that are unique to each vehicle type—rather than the

entire vehicle. We also primarily concentrate on the manufacturing efforts by OEMs and

Tier 1 suppliers to produce and assemble powertrain components [107], [124], [153].

We select the components located within the powertrains of both of these vehicle types

for our comparative analysis that most impact overall production cost and labor hour

count. The components examined in our analysis as well as the sources of data for these

components (i.e., public literature and/or industry) are illustrated in Figure 3.1. We selected

these components through conversations with industry experts and reviewing automotive

teardown studies.9 We consider the engine block, crankshaft, camshaft, cylinder head,

transmission, exhaust system, driveunit, and fuel injection systems as our principal ICEV

components. The electric drive, representing the electric motor plus inverter (i.e., most

expensive power electronic device to produce), and the lithium-ion battery pack constitute

our model of the BEV powertrain. The electronic stability unit for braking is contained

in both systems. This set of components, while not exhaustive in terms of containing all

possible components found in powertrain designs, represents the lion’s share of powertrain

production costs and labor requirements.10

9The literature sources that most inform our selection of components are as follows: Veloso catalogs those
components found in an ICEV by mass and approximates their production costs and worker requirements
[154]; the U.S. Environmental Protection Agency, FEV, and Munro & Associates specify the incremental
direct manufacturing costs for various ICEV components [155]; Hawkins et al. develop a transparent inventory
of components found in the Mercedes A-series (ICEV) and Nissan Leaf (BEV) and detail their respective
masses, material compositions, and environmental lifecycle impacts [12]; UBS provides a high-level teardown
analysis of the Volkswagen Golf (ICEV) and Chevrolet Bolt (BEV) [156]; and McKinsey & Company details
the machines used in the production of ICEV and BEV powertrain components [153].

10A few of these components (e.g., electronic stability for braking, fuel injection) are not the most cost- or
labor-influential components of the powertrain but are included in our sample set because their details were
provided by our industry partners. We do not claim to have captured the entire production processes of
these components. For example, we have not included metal fabrication steps (e.g., forging, casting) for some
components of the powertrain system because these steps are completed by firms other than those we worked
with. We do not include an estimate of the labor content of final powertrain assembly, although the magnitude
of labor hours for these processes between ICEVs and BEVs may be comparable [107]. However, we contend
that our collection of components and process steps represents the majority of production requirements and
is balanced in terms of production stages between ICEV and BEV components, thereby offering more than
sufficient insights into comparative powertrain production labor consequences.
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Figure 3.1: Eight ICEV-specific and two BEV-specific powertrain components, as well as one
component found in both systems, are evaluated for their production implications. These
components are selected on the basis of their relative importance to overall powertrain
production cost and labor involvement as well as data availability. The data for modeling
these components originate from a combination of industry and literature sources.

3.4 Data

3.4.1 Powertrain production input data: Public sources

Bottom-up data of automotive manufacturing processes (e.g., process flows, production

costs and requirements) are typically scarce when publicly available and inaccessible when

developed by industry stakeholders (e.g., OEMs, suppliers, consulting groups). Because

of the competitive nature of the industry in the race to produce and market the next

best electrified vehicle, much of the proprietary data that belongs to the manufacturers

is held tightly and rarely publicly disclosed [157]. Disentangling the production cost and

requirements of each component’s process step is made further complicated by the complex

network of the industry’s structure, in which OEMs and suppliers are responsible for their

own piece of the vehicle production puzzle and manufacturing operations occur in separate

geographic locations than assembly processes.11 While Tier 1 and 2 suppliers are generally

responsible for component production, OEMs also produce various individual components

in house for their own operations; all of these components ultimately arrive at an assembly

plant to be fabricated into a complete vehicle [158].

In the absence of accessible industry data for the initial phase of this project, we

evaluate powertrain manufacturing requirements by modeling production and operations

input estimates collected for 78 production process steps from various public literature

sources. We collect these modeling input estimates from academic papers and dissertations

11OEMs (e.g., Ford, Toyota, BMW) produce some original equipment, but their business operations are
primarily focused on designing and assembling vehicles. Tier 1 suppliers (e.g., Bosch, Continental) supply
components directly to OEMs. Tier 2 suppliers (e.g., Intel and NVIDIA produce computer chips) have
expertise in a specific domain but don’t sell directly to OEMs and may instead support other non-automotive
customers. Finally, Tier 3 suppliers provide raw materials (e.g., metal, plastic) to OEMs, Tier 1, and Tier 2
firms.
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and reports produced by government, industry, and consulting affiliates. The sources of

the collected input data are provided in abbreviated form in Table 3.1. The sources of the

financial and plant input parameter values for our PBCM are provided in the appendix. For

those modeling inputs where no information could be located from the public domain, we

provide our personal best estimates based on our experience with the automotive industry

and developing techno-economic models that simulate manufacturing operations. Our

modeling of data collected from the public literature, despite its general scarcity, reveals the

extent to which the labor impacts of electrification are publicly known and identifies areas

in which future research efforts should focus and contribute.

Table 3.1: Production process steps and modeling input variables collected from public
literature sources (abbreviated version).

Component Combined process steps References

Engine block Casting, grinding, drilling, milling Nof 1999 [159], Veloso 2001 [154],

Euro. Alum. Assoc. 2002 [160],

Omar 2011 [161], DOE 2011 [162],

Hawkins et al. 2013 [12], Laureijs et

al. 2017 [135], Salonitis et al. 2019

[163], Burd 2019 [164], McKinsey

2021 [153]

Crankshaft Forging, grinding, honing, drilling,

milling, turning

Nof 1999 [159], Veloso 2001 [154],

Omar 2011 [161], DOE 2011 [162],

Hawkins et al. 2013 [12], Mandwe

2013 [165], Laureijs et al. 2017 [135],

Burd 2019 [164], Pal and Saini 2021

[166], McKinsey 2021 [153]

Camshaft Forging, grinding, drilling, milling,

turning

Nallicherri et al. 1990 [167], Nof

1999 [159], Veloso 2001 [154], Omar

2011 [161], DOE 2011 [162], Hawkins

et al. 2013 [12], Laureijs et al. 2017

[135], Burd 2019 [164], McKinsey

2021 [153]

Cylinder head Casting, grinding, honing, drilling,

milling

Nof 1999 [159], Veloso 2001 [154],

Omar 2011 [161], DOE 2011 [162],

Hawkins et al. 2013 [12], Laureijs

et al. 2017 [135], Burd 2019 [164],

McKinsey 2021 [153]

Transmission Housing: Casting, drilling, milling;

shaft: forging, turning, impregna-

tion, coating, punching, drilling,

milling, surface hardening; planet

carrier: drilling, milling; gear wheels:

forging, surface hardening

Nof 1999 [159], Veloso 2001 [154],

Nabekura et al. 2006 [168], Omar

2011 [161], DOE 2011 [162], Hawkins

et al. 2013 [12], Laureijs et al. 2017

[135], Burd 2019 [164], McKinsey

2021 [153]
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Exhaust system Intake manifold: Turning, punch-

ing, drilling, milling, laser cutting,

grinding, honing; exhaust manifold:

forging, turning, laser cutting, sur-

face hardening; tail pipe: punching,

grinding, honing, cutting, surface

hardening

Nof 1999 [159], Veloso 2001 [154],

Omar 2011 [161], DOE 2011 [162],

Hawkins et al. 2013 [12], Laureijs et

al. 2017 [135], Abosrea et al. 2018

[169], Burd 2019 [164], McKinsey

2021 [153]

Electric motor, drive Housing: Casting, turning, drilling,

milling; rotor: Turning, impreg-

nation, coating; stator: Winding,

punching, laminating; rotor-shaft:

forging, turning, drilling, milling,

laser cutting, grinding, honing

Nof 1999 [159], Veloso 2001 [154],

Omar 2011 [161], DOE 2011 [162],

Hawkins et al. 2013 [12], Rao 2014

[170], Nordelöf et al. 2016 [171], Lau-

reijs et al. 2017 [135], Burd 2019

[164], Grunditz et al. 2020 [172],

McKinsey 2021 [153]

Power electronics (inverter) Turning, punching, drilling, milling,

grinding, honing

Nof 1999 [159], Veloso 2001 [154],

Omar 2011 [161], DOE 2011

[162], Bryan & Forsyth 2012 [173],

Hawkins et al. 2013 [12], Laureijs et

al. 2017 [135], Domingues-Olavarria

et al. 2017 [174], Burd 2019 [164],

McKinsey 2021 [153]

Battery cells, pack Receiving, materials prep, coating,

solvent recovery, calendering, materi-

als handling, slitting, drying, control

lab, cell winding, canister, stacking,

welding, enclosing, filling, dry room,

formation, testing, sealing, module

assembly, pack assembly & testing,

scrap recycle, shipping

Sakti et al. 2015 [141]

BatPaC (2019) [149]

BatPaC (2022) [149]

3.4.2 Powertrain production input data: Industry sources

We build upon Section 3.4.1 and collect novel data on shop floor production and operations

from leading manufacturers of the primary components found in ICEV and BEV powertrain

designs. Our sample comprises nine firms in total: Four automotive OEMs, three automotive

suppliers, and two battery manufacturers. These firms have globally-reaching operations

and include several of the largest firms in the industry by revenue as well as volume. The

identifiers used to represent these firms throughout this work are provided in Table 3.2. Data

were collected through virtual exchanges with company representatives as well as direct

observation on the shop floors in five production facilities. Battery manufacturing labor

demand estimates were collected at a presentation by manufacturing experts at the 2022

International Battery Seminar. We also engaged with the UAW and multiple industry trade

associations representing automotive manufacturers and include some of their perspectives

in this work.
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Table 3.2: Identifiers for industry data sources.

Code Source type
Provided process
step production
data? (Y/N)

Provided
higher-level

insights? (Y/N)

A Automaker Y Y
B Automaker N Y
C Automaker N Y
D Automaker N Y
E Auto supplier Y Y
F Auto supplier Y Y
G Auto supplier Y Y
H Battery manufacturer Y Y
I Battery manufacturer Y Y
J International Battery

Seminar (IBS) experts
N Y

Details on the process steps and modeling input variables we collected from each firm are

displayed in Table 3.3 (a more complete version decomposed by individual process step and

input variable is contained in the appendix). We do not provide the names of these firms

or any other details that could link their identities with the results shown throughout this

work to respect the confidentiality agreements we established. For those primary powertrain

components for which we did not collect industry data, we rely on component-specific

manufacturing inputs collected in our previous effort from the public literature. In sum, we

collect details on 252 unique industry process steps.

Table 3.3: Production process steps and modeling input variables collected from confidential
industry sources (abbreviated version).

Component Combined process steps References

Transmission Deburring, drilling, cutting,

lapping, rolling, straightening,

tempering, turning, washing,

laser welding, balancing, pre-

assembly, final assembly, test-

ing

Auto supplier E

Driveunit Turning, marking, cutting,

rolling, shot peening, lapping,

washing, laser cleaning, test-

ing, packing

Auto supplier F

Fuel injection Machining, washing, debur-

ring, oiling, plastic injection,

pre-assembly, final assembly,

inspection, pack out

Auto supplier G

Braking Machining, component assem-

bly, final assembly

Auto supplier G
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Electric motor, drive Turning, hobbing, skiving,

washing, grinding, deburring,

milling, machining, balancing,

pre-assembly, assembly, test-

ing, packing

Auto supplier E

Auto supplier F

Auto supplier G

Battery cells, pack Materials prep, coating, calen-

daring, slitting, drying, canis-

ter, stacking, welding, enclos-

ing, filling, formation, module

assembly, pack assembly

Battery manufacturer H

Battery manufacturer I

IBS experts (J)

3.5 Results and discussion

3.5.1 Modeling with literature inputs: BEV powertrain may require

greater labor involvement, primarily due to battery production

We assess the per unit worker labor hours required for each powertrain design using our

PBCM and the three battery cost models, each evaluated for base, most efficient, and least

efficient scenarios. The set of ICEV components we selected requires 4-11 worker hours

per powertrain, as shown in Figure 3.2, depending on the scenario. The BEV powertrain

components require 2-4 hours for the combined electric motor and inverter and 5-22 hours

for the battery pack, depending on the battery model we employ.

Figure 3.2: Determining which powertrain type requires greater labor involvement depends
on selecting the battery cost model from the literature which most accurately represents
current battery manufacturing labor demands. Note that the axes are different across each
of the panes.
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Figure 3.3 compares the aggregate labor hour comparisons between the two powertrain

types. Determining which powertrain requires greater labor demand depends, then, on which

battery cost model from the literature most accurately represents current labor demands.

The Sakti model, which may reflect earlier battery manufacturing setups that were less

automated than those of current facilities, suggests that BEV powertrains are far more labor

intensive. Both versions of the BatPaC model suggest that the labor demands between the

two powertrain types are roughly equivalent.

Figure 3.3: Modeling with literature inputs suggests that the BEV powertrain may require
more labor hours, but this depends on the battery model employed.

We further investigate the labor hour contribution by battery manufacturing because of

its dominant role in BEV powertrain manufacturing as well as the differences in labor hour

estimates between the three battery models. In Figure 3.4 we decompose each of the three

battery cost models into their labor requirements by individual process step. Each battery

model contains 25-31 unique process steps, ranging from cell production to pack assembly.

Several steps (e.g., control lab, formation) contribute more significantly to the overall labor

hour count than other steps. The horizontal black lines in each column represent the division

in the manufacturing process flow between those steps specific to cell production (below the

line) and those steps specific to module and pack assembly (above the line).

Although the calculated total number of labor hours exhibits variation across the

three models, each agrees that a greater percentage of labor hours are contained in cell

manufacturing rather than module and pack assembly processes. We note, however, that
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Figure 3.4: Labor hours are distributed differently over the battery manufacturing steps
of the three battery cost models from the literature, but each model agrees that a larger
portion of labor hours are concentrated in cell manufacturing steps compared to module
and pack assembly steps.

these three models share assumptions and are structurally similar. We present the results of

all three models to illustrate the range of possibilities suggested by the present literature.

3.5.2 Evaluating the influential role of BEV battery manufacturing

We collect from two battery manufacturers—one which manufactures cells on a pilot line

and is in the process of scaling its operations (Firm H), and one which is responsible for all

process steps at scale from cell manufacturing to pack assembly (Firm I)—estimates of their

per battery pack worker labor hour requirements. We illustrate their estimates alongside

the previous estimates from the three battery cost models in Figure 3.5. Data from the

pilot line of Firm H indicate that its cell manufacturing operations require considerably

more labor demand—estimated at over 200 worker labor hours for a 60 kWh system—than

the estimates from the literature. However, the company predicts that their efficiency and

throughput would improve at scale and require approximately 17 hours per pack, which is

similar to the combined cell manufacturing and assembly estimates suggested by the Sakti

battery model.

Firm I estimates that their cell manufacturing processes require 12 worker labor hours

for an approximately 60 kWh pack. While this manufacturer did not provide quantitative

estimates of their pack and module assembly processes, they claim that assembly requires

greater labor involvement than cell manufacturing because of assembly operations’ reduced

reliance on automated equipment. In a visit to one battery manufacturing facility, we

confirmed firsthand the large number of workers and worker involvement required in the
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pack and module assembly processes. To represent Firm I’s assembly processes, we have

conservatively estimated these processes equivalent to that of their cell manufacturing

processes—35 worker labor hours—thereby bringing their total labor hour count to 24 hours

per pack.

Lastly, a panel of manufacturing experts at the 2022 International Battery Seminar (IBS)

responsible for the completed and ongoing development of gigafactories of many of the largest

battery manufacturers in the industry agreed that these plants require approximately 150

workers per GWh of capacity, while in a heavily automated situation, 100 workers per GWh

may be possible. Using back-of-the envelope estimates of production and pack design12,

these plants would require approximately 22 worker labor hours per GWh of production for

the base case and 14 hours for the more automated case.

Figure 3.5: Estimates of battery pack worker labor hours from three industry sources indicate
that their operations at scale require greater labor involvement than suggested by the three
battery cost models from the literature.

While the IBS experts did not indicate whether these estimates include all production

steps (i.e., cell manufacturing through module and pack assembly), the magnitude of their

more automated estimate is on par with the least efficient case of BatPaC (2019), while

their base case estimate is higher than either of the least efficient case outcomes of the two

versions of BatPaC. These industry results suggest that BatPaC tends to underestimate

labor hours, although the model’s cost estimates are similar to current industry averages;

researchers should be cautioned when using BatPaC to assess labor demands from battery

production.13 Furthermore, the Sakti model, which uses a PBCM architecture, is line

12We assume a cell capacity of 67 Ah, a cell voltage of 4.07 V, 220 cells per 60 kWh NMC battery pack,
300 production days per year, and three 8-hour shifts per day [149].

13The BatPaC manual states that “The main goal of the BatPaC model is to estimate the unit cost.
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with industry estimates. The BatPaC model, meanwhile, relies on a scaling approach to

estimating labor demand, which may not accurately estimate current plant requirements.

The magnitude of the worker labor requirement of battery packs matters because of the

sheer number of new giga-scale battery manufacturing plants scheduled to come online within

the next few years. We take the case of the U.S. in the remainder of this work to explain the

potential labor implications for its automotive manufacturing industry, although the topic of

production onshoring is of equal concern to major national players in Europe and Asia. The

Department of Energy reports that 13 new plants, most of which are being planned as joint

ventures between automakers and battery manufacturers, will be operational in the U.S.

within five years [175]. This estimate may not capture the full extent of the battery plants

under development in the U.S. and across North America [176]. Battery labor requirements

are directly and strongly related to anticipated overall BEV manufacturing demands because

of the dominant contribution of battery manufacturing to powertrain worker labor hours.

The division between the labor content involved in cell manufacturing versus module

and pack assembly steps is important for determining the share of value in the battery

supply chain available to the national economy. 77% of the battery cells and 91% of the

battery packs supplied to the U.S. BEV market as of 2020 originated from domestic sources

[177]. However, the large share of domestic production is due to a single player—the

Tesla-Panasonic venture—which accounted for 88% of U.S. pack production capacity in

2020 [177]. Tesla, to date, has handled its battery module and pack assembly domestically

and purchased its cells from Panasonic and other nationally- and internationally-located

suppliers [178]. The question for the large number of battery plants coming online and

contributing to the national manufacturing strategy is whether they will follow the Tesla

model by purchasing cells from suppliers and having their workers assemble these cells into

modules and packs, or perform all process steps in house and capture most of the available

worker labor hours in the emerging battery production value chain. These firms have not

disclosed the exact process steps that will be performed within their U.S. facilities, but their

decisions will almost certainly be made on the basis of internal profitability forecasts.

The global battery supply chain is in its infancy and still learning how to improve

efficiencies and yield rates. Manufacturers look to automation less to reduce labor costs and

more to improve product yields, quality, and consistency [179]. It is probable that as its

plants scale and implement greater levels of automation technologies they will drive down

per unit worker labor hours requirements, as evident in the differences between Firm H’s

pilot line and scaled estimates [151]. Sharma et al. review existing battery module assembly

processes and find that, with the exception of some manual assembly requirements, they

are highly amenable to automation [180]. However, the IBS experts’ automated scenario,

In estimating some of the items, costs are determined as percentages of other costs rather than directly
estimating the capital or labor required. Thus, although the total unit cost is our best estimate, the total
plant investment and the number of laborers required per shift are probably underestimated by 10 to 20%.”
[149].
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which estimates a greater number of labor hours per battery pack than the two versions

of the BatPaC model, represents a likely floor to the extent to which labor hours can be

reduced. Workers will likely remain indispensable for many critical functions of battery

plants, including equipment operation and quality inspections.

3.5.3 Modeling with industry data: Comparing powertrain labor hour

requirements

We model the per unit labor requirements of the selected powertrain components, again at

annual production volumes of 100,000 units for multiple plausible scenarios. We use collected

industry data for this analysis, supplemented by modeling estimates using literature input

values for any components not collected through our industry partnerships. Figure 3.6

illustrates that supplementing previous literature modeling estimates with production data

collected from industry firms changes the magnitude of labor demand estimates. The

introduction of industry data only marginally reduces the uncertainty in ICEV labor demand

based on modeling of literature inputs, but it greatly reduces the uncertainty for BEV labor

demand estimates. Furthermore, the magnitude of BEV labor demand based on industry

data shifts upward in a base case scenario relative to previous estimates based on modeling

literature inputs.
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Figure 3.6: Production data collected from industry sources marginally reduces the uncer-
tainty in ICEV labor demand from previous literature estimates, but it greatly reduces the
uncertainty for BEV labor demand estimates.

The differences in ICEV labor demand estimates between literature-only sources and

industry-supplemented-by-literature sources are nuanced: Industry data has added additional

components (e.g., driveunit) into the comparison, but it has also slightly reduced the

magnitude of aggregate ICEV labor demand estimates by refining the labor hour estimates

for select components (e.g., transmission).

The differences between the two data sources for BEV labor demand, meanwhile, are

stark. Modeling industry data for the electric drive has produced lower labor demand

estimates than modeling literature inputs. More importantly, though, industry data has

increased the base case magnitude of battery labor hours and reduced its uncertainty. While

the Sakti battery model estimates are similar to industry estimates, BatPaC estimates are

much lower than industry estimates.

Finally, we compare in Figure 3.7 the labor demand estimates of ICEV versus BEV

powertrain manufacturing based on industry data supplemented by modeling of literature

inputs. In the case of the BEV powertrain labor hours estimate, the least efficient case

assumes the data provided for at-scale manufacturing of batteries by Firm I, the base case

assumes the base case data provided for at-scale manufacturing by IBS, and the most efficient

case assumes the IBS automated estimate. With this industry data, the BEV powertrain, in
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all possible scenarios, requires more labor hours than its counterpart, largely because of the

high labor content of battery pack manufacturing.

Figure 3.7: Industry data suggests that BEV powertrain manufacturing will
require more labor hours than ICEVs under all expected scenarios. Note: In
the figure, stacked outputs represent labor hours required for manufacturing of the full
powertrain. In the case of the BEV powertrain labor hours estimate, we label the sources of
battery data for each scenario on the plot. Here, we do not include estimates of the pilot
plant information from Firm H. Rather, the least efficient case assumes the data provided
for at-scale manufacturing of batteries by Firm I, the base case assumes the base case data
provided for at-scale manufacturing by IBS, and the most efficient case assumes the IBS
automated estimate.

These findings based on process step-level analysis stand in contrast to several industry

comparative estimates of powertrain labor demand. For example, in the case of Bauer et

al., the authors determine that a reduction in the number of employees required to produce

BEV powertrains relative to ICEV powertrains [124]. However, these authors ignore battery

cell manufacturing steps, which our industry sources indicate represent a large portion of

BEV powertrain labor hours.

3.6 Conclusions

Transportation represents 15% of global greenhouse gas emissions and 23% of energy-related

CO2 emissions [1], and vehicle electrification is widely regarded as a critical means to reduce
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the industry’s environmental impacts [181]. At the same time, the implications of vehicle

electrification for jobs and the nature of work has been uncertain, with many academics and

industry analysts arguing that jobs will be lost.

Leveraging process step-level production inputs (e.g., cycle times, yields, labor require-

ments) for ICEV versus BEV powertrains, we find that vehicle electrification leads to more

labor hours in powertrain manufacturing, at least in the short- to medium-term. We first

model the implications of powertrain electrification leveraging process step-level estimates of

production requirements available in published literature. Using these inputs, it is uncertain

whether ICEV or BEV powertrains have more labor content, but either is a viable outcome.

We then collect process step-level production data from manufacturing firms across the

industry. Using the industry data combined with the information in the literature, under all

scenarios there are more labor hours in the manufacturing of BEV than ICEV powertrains.

Despite BEV powertrains having greater labor hour requirements, the shift to BEVs could

still lead to job losses in the industry and in the U.S.: For example, jobs with traditional

automakers and their suppliers may be lost as new third-party suppliers (such as battery

manufacturers) enter the industry, who may not be located in the U.S. For example, while

battery production capacity is dramatically increasing in the U.S., battery cell and material

production represents a large proportion of labor content, and without changes in the current

geographic distribution of cell manufacturers, non-U.S. suppliers would increasingly represent

larger contributions of overall labor content [23], [182].

Prior research has also shown that labor efficiency increases as manufacturers gain

experience producing more units of their products over time and move down the learning

curve [129], [183]–[185]. It is possible that future learning in BEV powertrain component

manufacturing may reduce the labor hours demanded over time [186]. That said, our

data includes manufacturers that have produced over a million units of BEV powertrain

components, so we do not expect further reductions in labor hours from moving further

down the learning curve will be large enough to overturn the conclusions of the analysis in

the near term.

This paper quantifies the impact of vehicle electrification on manufacturing labor, with

a focus on the production of components by OEMs and Tier 1 suppliers that will be most

affected by the transition to BEVs. We did not consider other electrified vehicle types such

as hybrid electric vehicles (HEVs) or plug-in electric vehicles (PEVs). We hypothesize that

these vehicles, due to being more similar to ICEVs, would not have as large of increases in

labor requirements. We also expect, based on other research, that the majority of vehicles

will be BEVs in the future [181]. Beyond the manufacturing phase, vehicle electrification will

assuredly have impacts on labor in the vehicle use and services phases as well as upstream

labor impacts in the supply chain (such as in extraction, mining, and refining). These

additional labor impacts beyond manufacturing are important for further study, but beyond

the scope of this research.
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Chapter4
The transition to electrified vehicles:

Implications for the future of automotive

manufacturing and worker skills and

occupations

The contents of this chapter are a working paper co-authored with Erica Fuchs, Mitchell

Small, and Katie Whitefoot.

Abstract

The automotive industry’s transition to large-scale production of electric vehicles brings

with it a transition of worker skills. We examine the changes in labor skills demanded for

battery electric vehicle (BEV) powertrains in contrast to traditional internal combustion

engine vehicle (ICEV) powertrains. We collect detailed shop floor data on the labor tasks

required for powertrain production steps from automotive manufacturers. Using the O*NET

survey instrument and comparative descriptive statistics, we are able to evaluate the level

of skills required for the same occupations across the different technologies. We examine

statistical differences between the technologies and the extent to which skills within the

same vehicle technology are correlated. The results show that production practices used

by BEV manufacturers may increase demand for middle-level to upper-level skills for some

physical, cognitive, and social skills relative to ICEV powertrains, but the range of BEV

powertrain skills required is not outside of the range of skills required for ICEV powertrains.
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4.1 Introduction

Major automakers have committed to producing 50 - 100% of their vehicles with electrified

powertrains over the next 20 years—in what some are calling the largest transition in the

100-year-plus history of the automobile [22], [101]. Globally, 350 - 650 million passenger and

commercial electric vehicles (EVs) are estimated to be on the road by 2040 [187]. And, the

growth of EVs is expected to continue as further cost reductions in lithium-ion batteries are

made possible [187].

This technology transition has potentially large impacts for the automotive workforce.

Recent vehicle policy analyses have noted that electrification of the vehicle fleet is likely

to affect both the number and the nature of employment in the automotive sector [25].

The industry’s transition to EVs brings with it a restructuring of production processes

and of supply chains. The industry is shifting from a historically mechanical production

process characterized by machining and assembly steps to a more electrochemical production

process necessary to manufacture battery cells and packs [112], [113]. The production of

EV components, especially those related to the powertrain system, is also moving beyond

the purview of original equipment manufacturers (OEMs) to third-party suppliers [188].

Such restructuring of production processes may significantly change job requirements for

occupations within the industry.

Because of a lack of accessible data on worker skills in automotive production facilities,

it has been difficult to examine the implications for the transition to EVs on the nature of

work within the industry. Prior studies of the technology’s impact on the labor market have

concentrated on whether EVs change the quantity of firm-level labor demand [25], [189]. In

previous work, we investigated the comparative labor hours required to produce internal

combustion engine vehicle (ICEV) and battery electric vehicle (BEV) powertrains using a

process-based cost model (PBCM) and industry data collected from nine manufacturing

firms [189]. In contrast to previous studies, the results showed that labor hours for BEV

powertrain production do not decrease relative to traditional ICEV powertrain production.

However, without skills data, this previous work was not able to distinguish whether BEVs

cause changes in skill demands that may influence labor composition, wages, and training

requirements.

In this paper, we collect and analyze shop floor worker skill requirements for battery

electric vehicle and internal combustion engine vehicle powertrain production.1 We interview

shop floor workers (i.e., operators, technicians, supervisors) from automotive firms using the

O*NET survey instrument to empirically compare the level of worker skills required of these

two production environments.2 Because the study is a comparative analysis between ICEVs

1We focus on BEV components for our analysis. However, we use the terms electric and electrified
vehicles when referring to studies that do not explicitly focus on BEVs.

2Because of the competitive nature of this industry, we prioritize maintaining data confidentiality and
sensitivity in this research and only report anonymized results that do not identify specific firms and
individuals.
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and BEVs, we focus on the manufacture of the key powertrain components that are different

across these vehicle technologies. Our sample of shop floor worker skill requirements covers a

large percentage of all production steps of these powertrain components, with approximately

60% of their production steps represented in our worker skills data.

The results indicate that skill requirements for manufacturing BEV powertrain compo-

nents lie within the range of skill requirements for ICEV powertrain components. Further,

we find that the distribution of the level of skills required for certain physical, cognitive,

and social skills has smaller variance for BEV than ICEV powertrains, indicating that BEV

production may increase demand for mid-level to upper-level skills within automotive factory

floors. The results provide unique insights to guide the transition to EVs and support labor

outcomes and workforce training.

4.2 Background

In this section we review the effects of technology change on wages, employment, and skill

demand, including the limited applicability of the existing literature to answer questions for

automotive manufacturing. We conclude by examining estimates of the worker skills that

will be needed for BEV manufacturing.

4.2.1 Technological change and economic sustainability implications for

workers

A substantial body of literature shows that technological change—including transitions

to environmental as well as other types of technologies—can significantly affect wages,

employment, and labor outcomes [190]–[193]. This literature offers a basis for evaluating

and anticipating the labor consequences of electrification for automotive manufacturing.

Technological change has historically been the key driver of economic productivity

improvements and decreasing prices, but contributions by worker skills were never extensively

included in this story [27], [192]. The skill-biased technical change (SBTC) hypothesis is

offered by economists to propose that recent improvements in information technologies

(e.g., computers, machine learning, artificial intelligence) have also generally increased

inequalities among workers, with a growth in the demand for skilled (e.g., more educated,

more experienced) over unskilled labor [194]–[196], although this is neither a hard and

fast rule nor necessarily a modern phenomenon [197], [198]. A key implication of this

theory is that technological progress may benefit only a subset of workers and contribute to

polarization and inequality in income distribution [199].

A more recent literature has emerged to link the tasks that workers perform on the job to

the skills needed to perform these activities and demonstrate that technological change can

be task-biased as well as skill-biased [200]–[202]. Autor, Levy, and Murnane conceptualize

job skill demands as a bundle of tasks, some of which are more influenced by technologies

Chapter 4 47



than others [200]. Automated and digital technologies can serve as a complement for those

workers performing non-routine tasks (e.g., tasks requiring flexibility, creativity, and complex

communication) but a substitute for those workers performing routine cognitive and manual

tasks (e.g., repetitive information processing tasks) [196]. The careful and intentional

application of information technologies, though, could potentially separate tasks so that jobs

can be reorganized around those tasks that are difficult to automate [203].

Emerging technologies within the automotive manufacturing context may dramatically

reshape industry employment opportunities: While technology generally leads to productivity

improvements, it both creates and destroys jobs [27]. Jacobson, LaLonde, and Sullivan

determine that manufacturing workers that are displaced by technological change, plant

closures, or other industry restructuring experience large earnings losses that persist for

many years [28]. Bessen et al. find that the most consequential impacts of automation may

not be unemployment but, instead, greater levels of worker transitions that require adjusting

to new skills and knowledge [204].

Recent and historical technological changes, moreover, have been shown to change the

demand of workforce skill types and levels. Skill requirements of occupations are dynamic

and may change with investments in new technologies [205]. Bartel et al. find that the

adoption of information technologies in production plants increases the skill requirements

of machine operators, particularly technical and problem-solving skills [206]. Combemale

et al., in contrast, show that automating production processes polarizes skill demand (i.e.,

greater demand for low and high skills), whereas part consolidation, a separate form of

technological change, converges skill demand (i.e., greater demand for middle skills) [147].

Others, meanwhile, suggest that technology change and skill demand are jointly determined

[207], [208].

The toolkit offered by these studies is limited in its ability to forecast the labor outcomes

of vehicle electrification because of its retrospective focus and coarse methods of measurement.

Evaluating historical technology changes and their labor market consequences is important

for developing qualitative insights, but it may not provide the forward-looking or predictive

takeaways needed by policymakers and company decision-makers for managing emerging

technologies and transformations [147]. Technology change is commonly measured in

economic models by capital expenditures [209], [210], while education and wages serve as

coarse proxies for skill [201], [211], [212]. These aggregate statistics can lack the resolution

necessary to distinguish between different jobs and the detail to measure skill content directly

[213]. The literature also conflates different types of technology change, thereby masking

their specific skill outcomes and potentially drawing inexact conclusions of these technologies

[147], [193].

The verdict is out on the overall impact of vehicle electrification on employment, wages,

and skills, although the adoption of robotics and automation technology for vehicle production

and assembly is on the rise [214], [215]. These industrial robots may reduce employment
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and wages [29] and contribute to further bifurcation in the earnings gap between skilled and

non-skilled occupations [213], [216]. Through our collection of shop floor-level skills data,

our study seeks to provide empirical insights into how the transition to BEV manufacturing

will affect the nature of automotive jobs and may require retooling particular skill sets for

shop floor workers.

4.2.2 Automotive sector predictions of labor skill requirements to support

transition to EVs

When it comes to the transition to BEV technologies, it is not certain whether and how the

demand for worker skills will be affected. The skill needs for BEV shop floor manufacturing

may look different than those previously necessary for ICEV manufacturing and will likely

continue to evolve. New technologies can transform occupations as tasks, and therefore skill

demands, change (e.g., some tasks will become automated) [27]. Effective and continuous

education and training systems (e.g., vocational programs) and strategic workforce plans

can provide support to ensure workers are not left behind during the transition [217]–[219].

It has been difficult to systematically and empirically study shifts in skill demands

between ICEV and BEV production because of a lack of shop floor level data data [220]. The

rarity of data on BEV manufacturing workforce skills, and especially battery-specific data,

can be explained by the recent growing prevalence of vehicle electrification technologies.

Predictions of manufacturing skill requirements for BEVs in the gray literature have

been mixed. Occupations involving new technologies may demand computer (e.g., program-

ming) in combination with softer (e.g., cognitive, social) skills [27]. Australia’s House of

Representatives cites the need for “higher level technical skills” and “higher level ‘soft’ skills

(e.g., communication, teamwork, ability and willingness to learn)” as well as “more frequent

updating of skills” for its automotive manufacturing industry [217]. The International Labour

Organization states that “In addition to STEM skills, specific technical skills will be required

to deploy, operate and maintain new digital technologies” [221]. McKinsey & Company notes

that new mobility companies have “software- or electronics-first” attitudes and seek talent

with existing digital skills [222]. The European Commission emphasizes “technical core

competencies such as interacting with human-machine interfaces, data management skills,

and specialised and interdisciplinary knowledge of technologies and processes” coupled with

“a general mindset for continuous improvement and lifelong learning” and “non-technical

skills such as critical thinking, creativity, communication skills, and working in teams” [223].

Specific to battery production, EIT RawMaterials recommends training for “skills relevant

for large-scale production” and “cross-cutting (digital, system view, soft skills, etc.)” skills

[218]. The Alliance for Batteries Technology, Training and Skills identified, in order, the

most important soft and transversal skills for industrial stakeholders as problem-solving,

teamwork, and computer literacy [224]. The CFO of EnerDel predicted that “Five out of six

jobs in the advanced battery industry will require middle- to high-skill workers,” with the
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majority of this workforce involved in middle-skill operations work [188]. And, reinforcing

the expected demand for middle-skills, Australia’s Future Battery Industries anticipates

that, as the battery industry becomes more established and automated, there will be “a

reduction in the need for university qualified workers and more need for vocational workers”

[219].

In general, most studies agree that worker upskilling or reskilling will be necessary:

McKinsey & Company estimates that demand for existing skill sets will decrease by 30%

by the end of this decade [222]. A recent survey of battery firms by the National Alliance

for Advanced Technology Batteries noted that 90% of respondents “found that there were

a limited number of applicants with required skills for recent postings” [225]. Bauer

et al. and their German automotive industry partners recommend that “measures for

upskilling and retraining” should be considered [124]. A midwestern U.S. labor research

consortium contend that for production workers in powertrain facilities, “working on advanced

technologies requires only a few hours more training than would be needed for any new

product introduction,” while acknowledging that “the occupations that are in demand today

and poised for high growth in the future are those requiring expanded skill sets and higher

levels of education and training” [226]. These skill profiles that firms will seek in employees,

though, may not be common knowledge: A Detroit community leader interviewed by The

Roosevelt Project attested that, “the automotive companies, including the battery makers

and so forth, they’re really going to have to explain what kind of skill sets they need in

order to make this industry work” [227].

4.3 Methods and data

4.3.1 Scope of analysis: ICEV and BEV powertrain differences

We evaluate the differences between ICEV and BEV manufacturing through a focus on

the powertrain system, which represents the source of the largest differences between

these vehicle technologies. We begin our comparative analysis by selecting those key

components—illustrated in Figure 4.1—that represent the majority of labor hours required

for vehicle powertrain production. We follow Cotterman et al. in the selection of these

components.3 For ICEVs, we include the engine block, crankshaft, camshaft, cylinder head,

transmission, exhaust system, driveunit, and fuel injection system. For BEVs, we include

the electric drive—representing the electric motor plus power electronics—and the battery

pack. The electronic stability unit for braking is contained in both technology types. The

powertrain components for which we collect worker skills data, as discussed in Section 4.3.3,

are colored in Figure 4.1.

3Interested readers can find an in-depth discussion of the selection of the components in Cotterman et al.
[189].
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Figure 4.1: Eight ICEV-specific and two BEV-specific powertrain components, as well as
one component found in both systems, are included for analysis because of their relative
importance to overall powertrain production cost and labor involvement. Worker skills data
were collected for colored components, with the number of unique interviews listed beside
these components.

The battery chemistry and geometry selected for the comparative analysis is a 60 kWh

lithium nickel manganese cobalt oxide (NMC) battery pack using prismatic cells. Lithium

ion chemistry is expected to be the dominant chemistry through at least 2035, and NMC is

the most commonly used cathode material [101]. The choice of battery capacity represents

the sales-weighted average BEV battery capacity currently available on the market.

4.3.2 Selection of O*NET skills for elicitation through shop floor worker

interviews

We collect data on worker skill demand using the Department of Labor’s “Occupational

Information Network” (O*NET) survey instrument [228]. The instrument rates a variety of

occupational skills along a scale of 1 to 7, where numerical ratings of skill levels are anchored

with a commonly understood example task.4

While the O*NET database contains some data on workforce skills in the automotive

industry and has been used in recent labor studies [213], for our purposes of performing a

comparative analysis of worker skills across ICEV and BEV technologies, it is necessary

to collect our own data. Most significantly, the existing O*NET database provides aggre-

gated descriptions of occupations, making differentiation between workers within the same

occupation difficult [201]. For instance, the listing for “Machine Tool Setters, Operators,

and Tenders” is relevant for automotive manufacturing but would not distinguish between

operators on battery pack versus transmission assembly lines.

4O*NET’s detailed taxonomy of skills for major occupations across the economy draws on an extensive
literature for measuring and categorizing worker skills and job requirements [30], [229].
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We build on the approach of Combemale et al. [147] and identify our own set of relevant

O*NET skills to measure in worker interviews. We select a set of seven skills representing

physical (finger dexterity, near vision, static strength), cognitive (operation and control,

complex problem solving), and social (instructing, social perceptiveness) skills—detailed in

Table 4.1—relevant to current and evolving automotive manufacturing demands.5 These

seven skills were selected to represent common skill categories that are required across

production processes for both ICEV and BEV powertrain components while maintaining

a reasonable interview length for respondents to help ensure complete and reliable data

responses.

5The O*NET survey instrument classifies finger dexterity, near vision, and static strength as physical
abilities rather than skills. However, because of our application-specific focus and departure from the O*NET
database, we label our entire selection as skills.

Chapter 4 52



Table 4.1: Seven O*NET skills representing physical, cognitive, and social skills were selected
for worker interviews. Interviewees were presented with each skill name as well as a definition
and scale anchoring examples.

Skill O*NET definition Examples of job-related ac-

tivities at different levels

Finger dexterity The ability to make precisely

coordinated movements of the

fingers of one or both hands to

grasp, manipulate, or assemble

very small objects. hi

2 = Put coins in a parking me-

ter; 4 = Attach small knobs to

stereo equipment on assembly

line; 6 = Put together the inner

workings of a small wristwatch

Near vision The ability to see details at close

range (within a few feet of the

observer).

2 = Read dials on car dash-

board; 5 = Read fine print of

a legal document; 6 = Detect

minor defects in a diamond

Static strength The ability to exert maximum

muscle force to lift, push, pull,

or carry objects.

1 = Push an empty shopping

cart; 4 = Pull a 40-pound sack

of fertilizer across the lawn; 6

= Lift 75-pound bags of cement

onto a truck

Operation and control Controlling operations of equip-

ment or systems.

2 = Adjust copy machine set-

tings; 4 = Adjust speed of as-

sembly line based on product;

6 = Control aircraft approach

and landing at large airport

Complex problem solving Identifying complex problems

and reviewing related informa-

tion to develop and evaluate op-

tions and implement solutions.

2 = Lay out tools to complete

a job; 4 = Redesign a floor lay-

out to take advantage of new

manufacturing techniques; 6 =

Develop and implement a plan

to provide emergency relief to a

major metropolitan area

Instructing Teaching others how to do some-

thing.

2 = Instruct a new employee in

use of a time clock; 4 = Instruct

a coworker in how to operate a

software program; 6 = Demon-

strate surgical procedure to in-

terns at a teaching hospital

Social perceptiveness Being aware of others’ reactions

and understanding why they re-

act as they do.

2 = Notice that customers are

angry because they have been

waiting too long; 4 = Be aware

of how a coworker’s promotion

will affect a work group; 6 =

Counsel depressive patients dur-

ing a crisis period
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We interview three of the primary occupations responsible for shop floor production

tasks: Operators, technicians, and supervisors.6 We ask respondents to self-rate the skill

requirement level that their job demands along the seven different selected skills described

above.7 The complete set of O*NET skills as well as background questions that we ask of

respondents are provided in the appendix.

4.3.3 Data: O*NET worker skill demands

We collect from automotive OEMs and suppliers and battery manufacturers details on

the backgrounds, job responsibilities, and skill requirement scores of shop floor workers

responsible for producing powertrain components for ICEVs and BEVs. These data enable us

to comparatively study how the demands for worker skills change as the industry transitions

from large-scale ICEV to BEV production.

In sum, we collect 48 survey responses through individual interviews with shop floor

workers (i.e., operators, technicians, and supervisors), shown in Figure 4.2. The tasks

performed by the respondents in this sample cover a large portion of all production steps

required to produce our set of powertrain components. We collect production data on 252

process steps from manufacturing firms and we cover 60% of these steps with skills data. We

examine the consistency of responses from employees that work on the same process steps

and find that the standard deviation in responses is low (0.52 on average for the O*NET

scale of 1 - 7). We estimate that those steps not covered by our data require similar levels of

worker skills to the steps for which we collected data. Table 4.2 lists the components and

their corresponding production process steps for which we collected skills data.

6We have made every effort to appropriately categorize each worker occupation. In many cases, these
occupations are known by different titles between companies. For example, an operator may be referred to as
an operator technician, setup operator, machinist, production associate, or crew/team lead ; a technician as a
setup technician, skilled associate, job setter, or setup mechanic; and a supervisor as a front line manager or
foreman. The operator is primarily responsible for working on the line with machines and loading parts; the
technician for keeping the machines running and addressing issues as they come up; and the supervisor for
general productivity and worker management.

7In general, many of the respondents are responsible for only a single task on the production line (i.e.,
station-specific). Or, if they cover multiple tasks, we note that there is limited heterogeneity in skill differences
between their tasks; therefore, these responses offer information at the occupation-task level.
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Figure 4.2: Collected O*NET skills data represent requirements for multiple powertrain-
related occupations and production responsibilities.

These interviews were conducted in person, over the phone, and via videoconferencing

with workers located in the U.S., Germany, Poland, and China. A summary of the interviewee

profiles is presented in Figure 4.2 by occupation and by component. Specifically, we ask of

these interviewees their current and previous work experiences, educational backgrounds,

on-the-job training programs, shift responsibilities, and occupational skill requirements, the

latter of which allows us to estimate skill demand requirements. The exact questions used

in these interviews are contained in the appendix.
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Table 4.2: Powertrain-specific production process steps for which O*NET worker skills data
was collected.

Powertrain component Skill data source Covered process steps

Transmission Auto supplier E Deburring, drilling, cut-

ting, straightening, tem-

pering, turning, balanc-

ing, pre-assembly, final as-

sembly, testing

Driveunit Auto supplier F Turning, marking, cut-

ting, rolling, shot peening,

lapping, washing, laser

cleaning, testing, packing

Fuel injection Auto supplier G Machining, washing, de-

burring, oiling, plastic in-

jection, pre-assembly, fi-

nal assembly, inspection,

pack out

Braking Auto supplier G Machining, component as-

sembly, final assembly

Electric motor, drive Auto supplier E

Auto supplier F

Auto supplier G

Turning, washing, pre-

assembly, assembly, test-

ing, packing

Battery cells, pack Automaker B

Battery manufacturer H

Battery manufacturer I

Materials prep, coating,

calendaring, stacking,

welding, formation, test-

ing, module assembly

4.4 Results and discussion

Skill requirement results are analyzed across the seven skill areas and reported by occupation

class (i.e., operator, technician, supervisor) and vehicle type (i.e., ICEV, BEV).8 We present

all plots and tables in this section by vehicle-occupation to enable detailed data comparisons.

Three descriptive methods are used to illustrate the distribution of assigned skill scores

across respondents and differences between them:

1. Distribution dot plots and box plots displaying each respondent’s reported O*NET

skill scores;

2. Two-sample t-tests to compare differences in the mean values between vehicle power-

train technologies; and

3. Correlation coefficients to highlight vehicle-specific skill interdependencies.

The distribution dot plots provide an unfiltered empirical representation of the values

reported by respondents, as well as a qualitative indication of differences between skill

8Note that the responses specific to the braking component found in both ICEV and BEV technologies
have been removed in these comparisons to focus only on differences between the two vehicle types.
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categories, occupation classes, and vehicle types. However, these plots provide only limited

insight into differences and correlations between categories. The boxplots and their calculated

statistics, then, present succinct quantitative measures of distribution differences, facilitating

consistent interpretation of the sample results (but less appreciation of the sample data

collection process). The t-test evaluation compares whether the average occupational

differences between vehicle types is significant. Lastly, the correlation matrices highlight the

extent to which relationships between skills within the same vehicle powertrain type exist.

The current distributions may also be used to simulate the potential impact of interventions,

such as worker education and training programs and changes in automation.

4.4.1 Distribution dot plots and box plots: Comparing skill requirements

between vehicle powertrain types

We show a dot distribution plot in Figure 4.3 of the raw O*NET skill results collected

through interviews with shop floor workers. Additional visualizations of these results in

alternative decompositions are provided in the appendix. Figure 4.3 presents these results

categorized by occupation class.

ICEV scores are, for the most part, more distributed across all possible values than BEV

scores. For many of the skills, technicians generally report higher scores than operators,

which could be because technicians have more difficult or time-critical responsibilities (e.g.,

repairing broken machines to return the line to operation as quickly as possible). In

many cases, too, technicians begin as operators within their company and advance to the

technician role after acquiring additional and sufficient abilities and knowledge. Supervisors,

for whom we have more limited data points, generally report lower scores than operators

and technicians. We posit that this could be because of their broader exposure to workers of

different skill levels, the importance of honest evaluation in their work, and their role’s less

hands-on nature.
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Figure 4.3: The dot distribution plot offers initial skill comparisons empirically in raw form.

Figures 4.4 and 4.5 offer additional insights for operators and technicians, respectively,

than provided through the dot distribution plot.9 As shown in Figure 4.4, interquartile

ranges are more narrowly distributed for BEV operators than ICEV operators for five

out of seven of the skills. The assessment of skill levels by operator respondents is more

homogeneous for BEV technologies than the assessments of skill levels for ICEV technologies.

The mean values are also larger for BEV operators than ICEV operators for five out of

seven skills, which may suggest an upward shift in skill level requirements due to production

practices used by BEV firms.

9We ignore results specific to supervisors going forward because of a limited sample size relative to the
operator and technician samples.
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Figure 4.4: O*NET skills data by vehicle powertrain type for operators indicates
that BEV scores are generally more narrowly distributed than ICEV scores and have higher
mean values for most skills.

Greenfield BEV plants under development have the opportunity to optimize the design

of their new manufacturing setups to product-specific requirements. Therefore, it is plausible

that the limited number of lower score BEV responses is because tasks requiring lower skill

levels have been assigned to automated equipment within these facilities. The lack of higher

score BEV responses could be due to the nature of manufacturing BEV components; for

instance, multiple industry contacts attested that battery pack assembly requires continuously

repeating non-complex processes.

Figure 4.5 examines BEV and ICEV differences specific to technicians. We find that the

mean values for BEV technicians are smaller than ICEV technicians for six out of seven of

the evaluated skills. It depends, then, on the class of worker occupation as to whether there

is a general upwards or downwards shift in skill level requirements due to BEV production

practices.
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Figure 4.5: O*NET skills data by vehicle powertrain type for technicians indicates
that BEV mean values are generally less than those of ICEV values.

4.4.2 Two-sample t-tests: Comparing mean differences between sample

sets by vehicle type

We perform two-sample t-tests to determine whether the means of each of the seven skills

between the two vehicle powertrain types are sampled from independent distributions

(i.e., whether the differences are statistically significant). The t-tests are based on the

null hypothesis that the two groups are equal (Equation 4.1). We conduct these tests for

operators and technicians. Comparisons between ICEV and BEV supervisors have not been

evaluated because of the limited sample size for this particular occupation class. Table 4.3

presents the p-values of the results of these inter-vehicle type comparisons by occupation

class.

H0 : x̄ICEVi = x̄BEVi (4.1)

H1 : x̄ICEVi ̸= x̄BEVi

where i = occupation class

Significance level : α = 0.05
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Table 4.3: Each of the p-values of the two-sample t-tests comparing the mean values of
O*NET skills between ICEV and BEV operators and technicians are greater than the tested
significance level and do not reject the null hypotheses (i.e., samples are not statistically
different).

p-value by occupation

O*NET skill Operator Technician

Finger dexterity 0.181 0.407

Near vision 0.837 0.577

Static strength 0.376 0.874

Operation and control 0.064 0.177

Complex problem solving 0.732 0.660

Instructing 0.167 0.829

Social perceptiveness 0.064 0.454

For all tested combinations, the p-values are not less than the tested significance level (α

= 0.05). We do not have sufficient evidence to be able to reject the null hypotheses of these

combinations, meaning that the means of these distributions of ICEV and BEV responses

are not significantly different. Therefore, we determine that the skill levels of our selected

powertrain components are not statistically different between ICEV and BEV technologies.

However, in three cases (operator: finger dexterity, instructing; technician: operation

and control) the operator and technician skill means are significantly different at a p-value

≤ 0.2, representing weak evidence of significant differences in the means. Two additional

comparisons (operator: operation and control, social perceptiveness) yield p-values ≤
0.1, representing modest evidence of a difference in the operator means. These further

comparisons suggest sample similarities determined through an individual occupation-skill

basis.

4.4.3 Correlation coefficients: Evaluating vehicle-specific skill interdepen-

dencies

We investigate in this section correlations among skill requirements within the same vehicle

type and occupation class. We use correlation matrices, displayed in Tables 4.4, 4.5, and 4.6,

and labeled with p-values to denote statistical significance levels, to evaluate the relationships

between O*NET skills. The values entered are the correlation coefficient between the row

and column skill scores. Shaded boxes (in either blue or green colors) are statistically

significantly different from zero at the 0.05 level or below (see number of asterisks). We do

not include correlations for BEV technicians, ICEV supervisors, or BEV supervisors because

of limited sample sizes for these categories.
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Table 4.4: Correlation matrix for ICEV operator skills (n = 11) with labeled p-values
to indicate significance. We identify two statistically significant skill pairs.

Finger Vision Strength Op ctrl Prblm

slv

Instruct Social

Finger 1.00 – – – – – –

Vision -0.40 1.00 – – – – –

Strength -0.21 0.76** 1.00 – – – –

Op ctrl -0.10 0.53 0.45 1.00 – – –

Prblm

slv

0.40 0.01 -0.28 0.01 1.00 – –

Instruct -0.08 -0.03 -0.23 -0.29 0.74** 1.00 –

Social 0.25 0.32 0.04 0.14 0.38 0.09 1.00

*p < .05, **p < .01, ***p < .001

Table 4.5: Correlation matrix for ICEV technician skills (n = 7) with labeled p-values
to indicate significance. We identify four statistically significant skill pairs.

Finger Vision Strength Op ctrl Prblm

slv

Instruct Social

Finger 1.00 – – – – – –

Vision -0.10 1.00 – – – – –

Strength 0.16 0.06 1.00 – – – –

Op ctrl -0.04 0.61 -0.56 1.00 – – –

Prblm

slv

-0.08 0.83* -0.36 0.92** 1.00 – –

Instruct 0.66 0.14 0.01 0.01 0.04 1.00 –

Social 0.32 -0.79* 0.49 -0.74 -0.80* -0.12 1.00

*p < .05, **p < .01, ***p < .001
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Table 4.6: Correlation matrix for BEV operator skills (n = 18) with labeled p-values
to indicate significance. We identify 15 statistically significant skill pairs.

Finger Vision Strength Op ctrl Prblm

slv

Instruct Social

Finger 1.00 – – – – – –

Vision 0.42 1.00 – – – – –

Strength 0.53* 0.33 1.00 – – – –

Op ctrl 0.60** 0.53* 0.17 1.00 – – –

Prblm

slv

0.78*** 0.53* 0.55* 0.74*** 1.00 – –

Instruct 0.45 0.50* 0.30 0.68** 0.84*** 1.00 –

Social 0.49* 0.80*** 0.19 0.68** 0.75*** 0.73*** 1.00

*p < .05, **p < .01, ***p < .001

The results for ICEV occupations exhibit significant (positive) correlations for two skill

pairs for operators and four skill pairs for technicians (labeled by blue-colored cells in each

matrix). The results for BEV operators exhibit significant positive correlations for 15 of the

21 skill pairs (labeled by green-colored cells in each matrix).

These results suggest that there are interdependencies between ICEV skills, but that it is

even more important to prepare BEV workers for a full set of physical, cognitive, and social

skills, particularly given the extent to which cognitive and social skills feed into relationships

with physical skills. Multiple BEV operator skill relationships are statistically significant

with p-values less than .001. These results may suggest that the ICEV worker may need to

have a more specialized or targeted skillset, while the BEV worker needs to be highly skilled

with multiple cross-skill competencies. We further note that all BEV operator correlation

coefficients are positive, which further reinforces the suggestion for BEV workers to have

proficiencies in multiple skill dimensions that are positively correlated with one another.

4.5 Conclusions

The growth of BEV manufacturing offers opportunities to redesign the role of the worker

within the automotive industry. New and incumbent firms are experimenting and competing

with one another on various electrified designs and manufacturing approaches, offering a wide

landscape for innovation. This work examines early indicators of some of these skills-specific

changes occurring throughout powertrain production facilities.

Our assessment of worker skills using the O*NET survey instrument, as well as through

extensive conversations with industry representatives in the midst of the transition, suggests

that BEV manufacturing may increase the demand for some physical, cognitive, and social

skills, at least for operators, in automotive factories. The more narrowly distributed and
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homogeneous interquartile ranges for BEV operator skill responses relative to ICEV operator

responses, meanwhile, suggests that the skill requirements for manufacturing BEV powertrain

components lie within the range of skill requirements for ICEV powertrain components.

The results of the two-sample t-test indicate that the mean values of the vehicle powertrain

samples are not statistically different, but that select means that approach the tested

significance level suggest similarities for particular cases.

Correlations between skills for the same vehicle-occupation indicate that BEV operators

have more skill interdependencies than their ICEV counterparts. A technical skillset may

not be suitably sufficient for the demands of BEV manufacturing: Employees may be

expected to have broader skill proficiencies for the physical, cognitive, and social skills

we identified. We demonstrate significant correlations between physical, cognitive, and

social skills for BEV operators and suggest that “softer” skills have an influential role

in employee performance alongside technically-oriented skills and knowledge. Workforce

retraining programs in combination with the automotive industry’s traditional in-house

training approach [221] may provide some of the institutional capacities for investing in a

workforce facing new technologies and the changes and challenges that accompany it.

This paper demonstrates the viability of evaluating the impact of vehicle electrification on

changes in shop floor worker skills. We did not evaluate the skill requirements of all powertrain

components determined to be important for production cost and labor consequences. We

hypothesize that production practices specific to these additional components, particularly

those ICEV components with high tolerance and testing requirements (e.g., crankshafts,

camshafts), may further reinforce the more specialized nature of ICEV worker skills over BEV

worker skills. Results may be impacted by possible ambiguity in what different skills and

scores are that are interpreted differently by our set of respondents and by a limited sample

size for select component-occupation categories. Additional O*NET skills for elicitation

as well as alternative methods for characterizing worker skill levels may be appropriate for

further study.

Data availability

Additional plots and summaries of skills data as well as our worker interview template is

contained in the appendix.
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Chapter5
Conclusions

This dissertation provides a critical perspective into how realistic, socio-technical (e.g.,

political, social, economic) constraints affect and influence technological development and

contribute to confronting broader environmental challenges. While technologies have a role

in shaping societal transitions, they are likewise and fundamentally influenced by decisions

made through the interactions between individuals, communities, markets, and institutions.

Addressing climate change and other highly consequential environmental challenges requires

strategically directing technology development as well as anticipating its multi-faceted

impacts across regions and time scales. In this final chapter, I highlight major findings from

each of my three studies, suggest policy recommendations informed by these findings, and

identify potential areas for future research.

5.1 Technology transitions in the electricity sector

In Chapter 2, I propose a framework to link an energy system optimization model to a

bottom-up representation of social acceptance characterized by technological risk tolerance.

I demonstrate the framework’s application in the case of nuclear power in the U.S., with

risk tolerance driven by a general model for the distribution of the perceived probability of

another major accident.

I analyze the implications for the overall U.S. electricity portfolio, with scenarios em-

ploying decarbonization objectives (e.g., net zero CO2 emissions by 2050) and restrictions

on nuclear power due to public acceptance. The CO2 emissions target shifts generation to

primarily renewable energy technologies, while the socio-technical restrictions on nuclear

power incentivize the next least-cost energy technologies to replace nuclear power’s output

and increase overall system costs. I demonstrate that deep decarbonization in the U.S.,

even when faced with potential social acceptance constraints, is feasible so long as other

low-carbon energy technologies, such as solar and wind, remain available and publicly

acceptable themselves.
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Future work and policy recommendations

Public policy making has grown increasingly reliant on complex analytical models that,

while valuable, rarely integrate socio-technical constraints in theoretically appropriate or

practically relevant ways. By offering an overly simplified representation of the real world,

these models risk producing unrealistic results. Moreover, when these models and socio-

technical analysis are taken independently, they may fail to consider some of the critical

dynamics in a low-carbon transition. I have demonstrated through scenario development that

it is possible to quantitatively integrate the two approaches. This integration can prevent the

misplaced confidence that might arise from theoretical assessments of deployment potential

and produce more realistic representations of how deployment could unfold.

I recommend that future modeling of energy-economy systems deliberately consider the

representation of realistic behaviors on the adoption and diffusion of energy technologies and

their role in driving model uncertainty. There is potential for improvements in characterizing

how human behavior may respond to evolving social, economic, and environmental conditions

and in constructing more detailed, higher-dimensional models that anticipate how energy

technologies could be affected by these factors.

Similarly, I suggest that policymakers seek out modeling approaches that account for

social constraints and the feasibility of particular pathways when deciding which technologies

and how much capacity to incentivize.

5.2 Technology transitions in the automotive sector

The transition to EVs will entail shifting away from traditional ICEV components (e.g.,

engine blocks, transmissions) and towards electric motors, power electronics, and battery

packs. One of the implications of this shift is that different occupational demands and skills

will be necessary for these newer manufacturing processes.

In Chapter 3, I evaluate how labor demand differs between ICEV and BEV manufacturing

for powertrain components. Leveraging process step-level production inputs (e.g., cycle

times, yields, labor requirements) for ICEV versus BEV powertrains, I find that vehicle

electrification leads to more labor hours in powertrain manufacturing, at least in the short-

to medium-term. Then, in Chapter 4, I examine how worker skill requirements differ between

the manufacture of these two technologies. I find that 1) skill requirements for manufacturing

BEV powertrain components lie within the range of skill requirements for ICEV powertrain

components and that 2) BEV production practices may increase demand for mid-level to

upper-level skills in automotive factories.

Policy recommendations

The majority of passenger vehicles are expected to transition to electric power over the

coming three decades, largely due to national regulation seeking to reduce CO2 emissions.
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That said, organized labor and multiple policy, industry and academic observers have

argued that this transition will hurt labor. These perceived negative effects for labor have

contributed to political resistance to such a transition as well as to broader goals, such as

decarbonization.

In contrast to past findings, our shop floor-level data representing ICEV and BEV

powertrain manufacturing and our modeling of that data finds that BEVs have more, not

less, labor content. These findings suggest that under the right policy settings, BEVs could

help, rather than hurt, labor. However, a number of factors would have to also align for

labor to benefit. Here, three facts are most important:

1. The majority of labor hours in battery production are concentrated in cell production

instead of module and pack assembly.

2. BEV manufacturing activities may not be in the firms or regions (i.e., local, state, or

national) where ICEV powertrain manufacturing currently happens.

3. BEV manufacturing through new suppliers could be leveraged to reduce organized

labor content and involvement.

For each of the above facts, the appropriate policy response depends on policymakers’

objectives.

Economic security (e.g., ensured access), national security (e.g., ensured quality and

access), and political viability (including jobs for those regions where jobs are being lost

due to low-carbon transition efforts) might all be reasons for policymakers to incentivize

domestic manufacturing of a greater portion of the BEV powertrain. For example, in the

case of labor, if only the module and pack assembly steps of BEV battery manufacturing

take place in the U.S., as early indicators of domestic manufacturing activities suggest, my

data suggests there would be approximately 4 - 7 worker labor-hours available per BEV

powertrain (assuming a 60 kWh NMC battery pack and base case values). In contrast, if

the full BEV powertrain were manufactured domestically, there would be approximately 22

worker labor-hours available per powertrain.

The locations of expected job losses are not the same locations of expected job gains

within the U.S., representing a geographic imbalance and potentially significant community

disruptions presented by vehicle electrification. ICEV manufacturing has traditionally been

concentrated in the general Midwest region. EV plants, meanwhile, are being built across the

entire country, including some on former ICEV sites. Battery plants, in particular, are tending

towards new locations in the Southeast. Labor and infrastructure availability and workforce

policies are driving industry siting decisions. I recommend that policymakers consider these

imbalances when valuing future investments to expand manufacturing opportunities.

Organized labor has expressed a keen interest in being at the center of manufacturing

EVs. Changes in federal- and state-level manufacturing incentives can ensure a place for

organized labor at the table, with policies at a minimum neutral towards organized labor.
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In addition, I show in Chapter 4 that the skills required for manufacturing BEVs are the

same, if not greater, than for manufacturing ICEVs. This comparative analysis provides an

argument for organized labor as to why worker wages and the quality of work should not

be lower in new EV facilities, thus adding potential value to organized labor and helping

attract workers to the unions and the better wages they are able to fight for.

Limitations and future work

Uncertainty in labor demand and worker skill requirement estimates motivated my collection

of process step-level production inputs from the shop floors of OEMs, suppliers, and battery

manufacturers. Considerable effort over the course of almost two years was needed to collect

these novel datasets of manufacturing inputs and worker skills involving company agreements,

site visits, and open-ended interviews and elicitation. Nonetheless, these datasets have

potential limitations due to:

• Exclusion of metal fabrication steps for some powertrain components and final power-

train assembly steps;

• Representativeness of O*NET skill categories for all potential requirements of power-

train shop floor workers;

• Limited sample size of skill responses for select occupations and components; and

• Non-stationarity of BEV industry and its ongoing experimentation of manufacturing

processes and product designs (i.e., trying to characterize a moving target).

This work advances public understanding of the impact of vehicle electrification on labor

demand and worker skill requirements within the manufacturing context and highlights the

need for additional contributions to this area. There is value in examining the evolving

deployment and long-run effects of automation and robotic technologies on manufacturing

shop floor operations and personnel. Relatedly, additional research is needed to inform

the mitigation of regional dislocations in ICEV jobs, given that EV manufacturing will be

concentrated in different parts of the country.

5.3 Final thoughts

Decarbonization and vehicle electrification offer acute strategic opportunities to meaningfully

reduce the emissions intensity of energy supply, invest in competitive domestic manufacturing

capabilities, and drive regional growth and employment. However, the scale and pace of their

respective transitions—involving new opportunities and jobs for some and losses and risks for

others—are unparalleled and demand nuanced attention to their anticipated consequences.

It is my hope that this dissertation will inspire additional research focused on technology

transitions and their socio-technical contexts as well as support decision-making by affected

stakeholders at the heart of these transitions.
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AppendixA
Selected TEMOA database input values

A selection of the TEMOA database parameters used for the scenario simulations in Section

2.4 is presented in Table A.1. Investment costs for energy generation technologies from

Scenario A0, which are based on 2019 NREL Annual Technology Baseline values [66], are

presented in Table A.2. The complete set of data inputs used for the analysis is available

through Zenodo [83].

Table A.1: Selected set of TEMOA database parameters used for scenario analyses.

Parameter name Description Valuea Units

CapacityFactorTech Tech-specific capacity
factors

Biomass: 80; coal: 80-
85; geothermal: 64-80;
hydro: 37-46; natural
gas: 85; nuclear: 92; so-
lar: 19-71; wind: 28-62

Percentage

CostInvest Tech-specific investment
costs

Provided in Table A.2 $M/GW

DiscountRate Tech-specific interest
rate on investment

6 Percentage

Efficiency Tech-specific efficiencies Battery storage: 85-90;
biomass: 24-39; coal: 33-
80; hydro: 75-100; nat-
ural gas: 33-53; nuclear:
33

Percentage

GlobalDiscountRate Global rate used to cal-
culate present cost

5 Percentage

LifetimeTech Tech- and vintage-
specific lifetimes

Battery storage: 15;
coal: 35-50; geothermal:
25; hydro: 50; natural
gas: 30-40; nuclear: 40-
60; solar: 30; wind: 25

Years

StorageDuration Storage duration per
technology

4 and 8 Hours

a The ranges of values reflect variability within technology categories, for instance due to seasonal and time
of day operation.
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Table A.2: TEMOA investment costs for energy generation technologies by vintage. Values
are specific to Scenario A0.

Investment cost, by vintage ($M/GW)

Energy generation technology 2020 2025 2030 2035 2040 2045 2050

Biomass 4,034 3,951 3,951 3,951 3,951 3,951 3,951

Biomass, with carbon capture & storage 5,566 5,566 5,566 5,566 5,566 5,566 5,566

Coal, integrated gasification combined cycle 4,180 4,068 3,954 3,863 3,774 3,688 3,575

Coal, integrated gasification combined cycle,
with carbon capture & storage

5,566 5,566 5,566 5,566 5,566 5,566 5,566

Coal-fired steam 3,903 3,850 3,802 3,755 3,704 3,659 3,578

Geothermal 2,365 2,301 2,301 2,301 2,301 2,301 2,301

Light water nuclear 6,402 6,205 6,059 5,895 5,729 5,571 5,364

Natural gas, combined cycle 907 870 852 838 826 817 801

Natural gas, combined cycle, with carbon cap-
ture & storage

2,222 2,076 1,987 1,914 1,852 1,797 1,726

Natural gas, combustion turbine 896 874 852 836 821 806 786

Solar, concentrating thermal 6,498 6,089 5,679 5,396 5,111 4,827 4,544

Solar PV, residential 2,870 2,240 1,610 1,456 1,304 1,238 1,223

Solar PV, utility 1,220 1,099 978 924 869 822 775

Wind 1,502 1,434 1,381 1,343 1,320 1,312 1,320
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AppendixB
Constructing a CDF with the Social Risk

Tolerance model

We provide in this section the calculations contained within the Social Risk Tolerance model

used to construct the distributions described in Section 2.3 and illustrated in Figure 2.3.

We focus here on risk tolerance implications specific to nuclear power to be consistent with

the energy scenarios presented in Section 2.4, although other energy generation technologies

could be evaluated with this same approach. While only future generation curves are used

in the simulations in Section 2.4, we present here approaches to construct both current and

future generation curves based on changes in perceived risk and system generation. We

conclude by illustrating the results of a sensitivity analysis around the selection of a risk

acceptability threshold.

We first collect from energy systems modeling projections the current electricity generation

of nuclear power and the total system generation over the time period of analysis. In the case

of Scenario A0 implemented in TEMOA, the current (i.e., 2017) generation for nuclear power

is 831 TWh, while the values for total system generation from 2017 - 2050 are presented in

Table B.1.

The risk acceptability threshold for the expected number of major accidents in a given future

period of time is assumed to remain the same as it is today. We assume the base case value

for this threshold to be yA = 1 event and TA = 30 years, yielding an acceptable occurrence

rate of λA = yA/TA = 0.03 events/year. We examine the implications of alternative values

of λA at the end of this section.

The perceived accident risk distribution is given by a gamma distribution, derived as the

posterior Bayesian distribution for the rate of a Poisson process, λ. The parameters of the

distribution assume a flat, information-less prior for the rate, with posterior parameters

calculated from the perceived number of historical events that have occurred in the past

T years. Here we assume a = 3 events and T = 40 years, with this information known
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and accepted by all members of the population (i.e., their individual perceived risks are

sampled from the same posterior gamma distribution). The parameters of this posterior

gamma distribution, a and b, are found in Equation 2.2, and repeated here:

f(λ) =
1

Γ(a)ba
λa−1e−λ/b

where f(λ)[year] = the posterior probability density function for the accident rate λ[year−1]

a = number of major accidents that occurred during the historical

time period of T years

b = 1/(time period of T years)

This distribution of perceived accident risk applies to the current period in time, with the

current history of recent major accidents and inferred risk at the current level of nuclear power

generation. We define the current generation ratio, CGR, of nuclear power in Equation B.1.

Nuclear power’s share of total generation can be varied to construct a distribution of possible

generation values.

CGR =
(Nuclear power’s share of total generation) · (Current total system generation)

(Current generation of nuclear power)
(B.1)

However, we recognize that the analysis needs to account for changes in perceived risk that

might accompany major increases or decreases in nuclear generation. Such changes are

possible and do occur in our scenarios as well as those of others. The analysis presented in

Section 2.4 restricts nuclear power’s future output (i.e., beginning in 2020), instead of its

current output (i.e., 2017). We assume that individuals are aware of the level of nuclear

generation, present and planned, and adjust their perceived accident risk accordingly in a

proportional manner. To implement this first-order perceptual assumption, we define the

future generation ratio, FGR, of nuclear power as:

FGR =
(Nuclear power’s share of total generation) · (Future total system generation)

(Current generation of nuclear power)
(B.2)

We then assume that the value of λf , the future perceived accident rate for each individual

in the population, is equal to the current value, λ, multiplied by the FGR:

λf = λ · FGR (B.3)
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Given this uniform multiplicative shift for every individual in the population, the mean

and standard deviation of the perceived risk distribution are each multiplied by FGR (i.e.,

the coefficient of variation remains unchanged). As such the parameters of the gamma

distribution adjust as follows for a future period:

The value of a remains the same: af = a (B.4)

The value of b is multiplied by FGR: bf = b · FGR (B.5)

Having defined the acceptable risk tolerance applicable to all individuals in the population,

λA, and the parameters of the gamma distribution of perceived risk, λ, for major nuclear

accidents, both for the current generation rate (a and b), and for a future generation rate (af

and bf ), we are able to estimate the fraction of the population that will support (or oppose)

an energy portfolio with a given amount of nuclear generation. This fraction is equivalent

to the fraction of individuals with a perceived nuclear accident risk below (or above) the

acceptable risk. For the current level of nuclear deployment these are calculated as:

Fraction of population supportive of deployment = Fg(λA, a, b) (B.6)

where Fg() is the cumulative distribution function of a gamma random variable with

parameters a and b, evaluated at the value of λA. The fraction opposing deployment is then

simply:

Fraction of population opposed to deployment = 1− Fg(λA, a, b) (B.7)

The equations for a future time period with a modified nuclear generation rate are the same,

with a and b replaced by af and bf , respectively. Table B.1 lists the upper limits to nuclear

deployment constructed using the SRT model for the future time period 2020 - 2050 for

Scenarios A1/B1 and A2/B2.

Finally, we illustrate the difference in the shape of CDFs based on the selection of the

risk acceptability threshold. In Figure B.1, we plot the CDFs produced by the SRT for

the year 2040 assuming a risk acceptability threshold of one event in 30 years (i.e., the

baseline assumption used in Section 2.4), as well as for thresholds of one event in 20 years

and one event in 40 years. As the population’s risk aversion increases (i.e., the acceptable

risk decreases from one event in 20 years to one event in 30 and 40 years), the amount of

technology penetration needed to exceed a particular level of public opposition (e.g., 60%)

likewise decreases (e.g., from a current level to the value determined by the intersection of

each of the three curves with the 60% public opposition line). Lowered risk tolerance (e.g.,

requiring perceived accident rates of one event in 40 years or less) leads to reduced socially
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Table B.1: Total system generation values from Scenario A0 are presented alongside the
CDF-derived upper limits to nuclear power for Scenarios A1/B1 and A2/B2, assuming 60%
of the population opposes the technology’s deployment.

Year System
generation
(TWh)

Scenarios A1/B1:
Allowable nuclear
power share (%)

Scenarios A2/B2:
Allowable nuclear
power share (%)

2017 3,875 Not implemented in
analysis

Not implemented in
analysis

2020 4,352 11.1 11.1
2025 4,324 11.0 11.0
2030 4,407 10.8 7.4
2035 4,696 10.1 7.0
2040 5,176 9.5 6.5
2045 5,707 8.5 5.8
2050 6,366 7.6 5.2

allowable amounts of the technology penetration. Furthermore, if the socially-motivated

reductions in nuclear deployment lead to increased costs for siting, construction, operations,

and regulatory compliance, further declines in nuclear power deployment and its share of

the electric power energy supply, could be expected. The effects of these cost increases

could be analyzed by the TEMOA model. Inclusion of such a process for iterative cost

adjustments over time represents a potential target for further advancement of the linked

modeling framework.
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Figure B.1: The SRT model is used to construct CDFs representative of a
population’s opposition towards nuclear power in a given year. In this case, the
model produces three unique curves for 2040 using the risk acceptability values of one
event in 20, 30, and 40 years, illustrating varying levels of collective societal appetite for
technological risk.
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AppendixC
Powertrain cost-related outputs of

process-based cost modeling

C.1 Comparing literature cost estimates to outputs of the

PBCM populated with public manufacturing inputs

We compare in Figure C.1 literature cost estimates (gray color) of the components identified

earlier in Section 3.3.2 to the production cost estimates produced by our PBCM populated

with public manufacturing inputs (orange color). Note that the y-axis scales are different

between the three panels. We present this preliminary comparison to gauge the general cost

estimation differences between our approach and that of others from the literature. The

literature cost estimates represent point estimates of the production cost of a particular

component. For example, UBS presents the cost of an electric motor as $800 without further

explanation as to the electric motor’s design or their methodology for arriving at this value

[156]. The ranges in literature cost estimate values are derived from the variety of literature

sources we compile. The PBCM modeling outputs are generated by the model described in

Section 3.3.1 provided with the manufacturing inputs we collect from the literature. We run

the model with base, most efficient, and least efficient case values of collected public inputs

to produce a range of possible production costs.

The differences between literature cost estimates as well as compared to PBCM outputs

can be attributed to differences in the accounting of all production costs (e.g., we don’t

include retail markup costs in our estimates, although this may be built into the costs

produced by other sources), the accounting of all process steps (e.g., resource extraction and

metallurgical processes typically attributed to Tier 2 or 3 suppliers may not be included in

estimates), modeling assumptions (e.g., discount rates, production volumes at which costs

are reported), the outdated nature of select data, or how components are named or counted

(e.g., some firms produce electric motors while others produce electric drive systems that
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Figure C.1: Literature cost estimates of key powertrain components are compared to the
production cost outputs of our PBCM populated with public manufacturing inputs. The
differences between these two data types highlight the uncertainty between estimates, while
the areas of overlap emphasize the similarities in modeling approaches. Note that the axes
are different across each of the panes.

comprise the electric motor, power electronics, and other components). For example, the

differences in the battery estimates presented in the rightmost panel, which are all calibrated

for battery packs with capacities of 60 kWh and NMC chemistry designs, could be partially

explained because our three battery models consider a larger set of design combinations

than those of the point cost estimates collected from the literature.

The overlapping areas between the two data sources on the plot, while limited, reflect

the degree of consensus between our cost modeling approach and the various approaches

used by public literature sources.

C.2 Modeling with literature inputs: BEV powertrain may

be more expensive, primarily due to battery costs

We examine the production costs from our PBCM and from the three battery cost models,

each evaluated for base, most efficient, and least efficient case scenarios. The sum of the

primary ICEV powertrain components, shown in the blue colors in Figure C.2, ranges in

cost from $0.8-3.7 thousand, depending on the scenario selected. The BEV powertrain

components, meanwhile, cost $0.4-1.7 thousand for the combined electric motor and inverter

and $6-12 thousand for the 60 kWh NMC battery pack. Therefore, the BEV powertrain is

far more expensive than the ICEV powertrain because of the dominating cost of the battery

pack. We further identify the most expensive ICEV powertrain components to produce as
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the transmission, engine block, exhaust system, and cylinder head, while the battery pack

and electric motor are the most expensive for the BEV powertrain.

Figure C.2: Modeling with literature inputs indicates that the production cost of the
BEV powertrain may be more expensive than the ICEV powertrain, due to battery pack
manufacturing. On the ICEV side, the engine block and transmission are the most expensive
powertrain components to produce. Note that the axes are different across each of the panes.

We decompose the production costs across all powertrain components into their specific

cost categories (i.e., material, labor, energy, machines, auxiliary equipment, tooling, building

space, maintenance, and overhead) in Figure C.3. Material and machine costs, followed by

labor and overhead costs, drive the costs of producing ICEV components. Material costs are

far more influential for both BEV non-battery and battery components, followed by machine

costs. The considerable importance of material costs for BEV production provides direction

for continued research and innovation in driving down BEV costs and achieving cost parity

with ICEVs.

While the cost of labor for BEV components is proportionally less than for ICEV

components, worker efficiency on the shop floor influences material costs indirectly through

the yield and scrap rate variables incorporated into the PBCM relationships. For instance,

in manufacturing environments with limited numbers of workers or with workers without

adequate manufacturing training and preparation, yield rates across the plant could decrease,

and thereby increase material costs. The labor aspect of BEV manufacturing, especially if

provided through high wage jobs, will be an important piece in overall production costs.
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Figure C.3: Modeling with literature inputs indicates that material and machine costs are
the largest cost categories for ICEV powertrain production, while material is the largest
cost for BEV powertrain production.

C.3 Modeling with industry data: Comparing powertrain

production costs

Using collected industry data we model the per unit production cost of the selected powertrain

components at annual production volumes of 100,000 units for base, most efficient, and

least efficient case scenarios. Figure C.4 compares these costs by vehicle type, with ICEV

components shown in blue colors (left) and BEV components in green (right). Depending on

the scenario, we estimate that the ICEV powertrain costs approximately $2 - 5.5 thousand to

manufacture, and the BEV $7 - 8 thousand. The gray bars in the graphic represent industry

teardown estimates that we use to compare against our results.1 We use collected industry

data for modeling these results as much as possible, but rely on the public literature to

supplement any gaps in our representation of the powertrain. For example, the battery pack

costs are outputs of BatPaC (2022).

The BEV powertrain appears to be considerably more expensive to manufacture than

its counterpart, which is consistent with the higher purchase cost of BEVs over ICEVs for

consumers. BEV powertrain manufacturing costs are overwhelmingly driven by the battery,

which itself is primarily due to cell material costs [231].

BEV manufacturers have not yet converged on common designs for key components,

potentially explained by the large number of firms involved in the global manufacturing

1Munro & Associates estimates that 51% of the cost of an BEV is due to its powertrain, compared to
18% for an ICEV [152]. We combine these percentages with the manufacturing costs of passenger vehicles
approximated by Oliver Wyman to produce our industry powertrain cost estimates [230].
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Figure C.4: Modeling with industry data indicates that the production cost of the BEV
powertrain is more expensive than the ICEV powertrain, primarily due to battery pack
manufacturing. These modeled costs are largely aligned with those of industry teardown
estimates.

competition and the relatively nascent nature of this industry. This heterogeneity can be

seen in our results, for example in the case of the manufacturing costs of the electric drive

in Figure C.5. We collect production data for this component from four sources—three

automotive suppliers and the public literature. While the per unit cost range bands of each

source share some overlapping areas with each other, the base case costs differ from each

other by up to several hundred dollars. Further, we illustrate on the far right-hand side of

the plot point cost estimates of this component collected from the literature, which, too,

exhibit large variations from each other. We can explain the largest difference between the

costs of Firm G and those of Firms E and F as a component classification difference: Firm

G produces an electric motor, while Firms E and F produce electric drives, which contain

an electric motor, inverter, and potentially other pieces. Therefore this difference is largely

attributed to the cost of the power electronics. However, as with the literature’s point cost

estimates (generally offered without explanation as to how these costs are calculated), the

same component produced by different firms may have sizeable configuration, cost, and

performance differences.

The PBCM approach allows us to investigate some of these differences by cost category.

Figure C.6 represents each of these four electric drives and motors modeled at annual

production volumes of 100,000 units. Modeling inputs collected from the literature (rightmost

pane) indicate that material is the largest cost driver, while the costs of Firm E (leftmost

pane) are largely due to labor and the costs of Firm F (second pane from the left) to

its machines. These differences further underscore the heterogeneity between powertrain
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Figure C.5: Even in producing the same component, manufacturers may differ in their
designs and costs. In the case of the electric drive, per unit costs of three industry sources
and inputs from the public literature differ from one another, as well as from point cost
estimates collected from the literature (right-hand side).

components and their respective production techniques.

Figure C.6: The breakdown of costs by categories of these electric drives and motors
underscores the differences in approaches and techniques by manufacturers.
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AppendixD
Process-based cost modeling input values

Table D.1: Cost estimates by component collected from the public literature and visualized
in Figure C.1.

Component Source

Engine block [155], [162], [232]
Crankshaft [155], [162]
Camshafts [162], [167]

Cylinder head [155], [162], [232]
Transmission [162], [233]

Exhaust system [155], [156], [162], [234]
Electric motor, drive [26], [156], [172], [233], [235]–[238]

Inverter [156], [172]
Battery pack [156]

Table D.2: Plant-wide input parameters used in the process-based cost model.

Scenario
Parameter Units Least

efficient
Base Most

efficient

Number of shifts shifts/day 2 2 2
Time per shift hrs/day 8 8 8
Time with unpaid breaks per shift hrs/shift 0.55 0.5 0.45
Time with paid breaks per shift hrs/shift 0.55 0.5 0.45
Operating days per year days/yr 211.5 235 258.5
Facility-wide planned downtime

and maintenance
days/yr 3.3 3 2.7

Facility-wide unplanned downtime days/yr 3.3 3 2.7

Sources: [141], [148], [239], [240]
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Table D.3: Financial model input parameters used in the process-based cost model.

Scenario
Parameter Units Least efficient Base Most efficient Source(s)
Price of aluminum $/kg 2.53 2.17 1.77 [170], [241]
Price of copper $/kg 6.59 6.17 4.96 [170], [241]
Price of steel $/kg 0.83 0.60 0.46 [170], [241]
Price of iron, fer-
rous

$/kg 0.03 0.03 0.02 [241]

Price of iron, ore $/kg 0.12 0.10 0.08 [241]
Price of iron, scrap $/kg 0.36 0.27 0.22 [241]
Price of lead $/kg 2.52 2.20 1.98 [241]
Price of lithium $/kg 17.00 12.70 8.00 [241]
Price of nickel $/kg 14.00 13.11 9.59 [241]
Price of tin $/kg 20.66 19.14 17.42 [241]
Price of electric
steel

$/kg 2.00 2.00 2.00 [170], [241]

Wage for line or op-
erator labor

$/hr 23.83 20.42 17.00 Industry

Wage for technician
and maintenance la-
bor

$/hr 33.54 31.27 28.99 Industry

Price of electricity $/kWh 0.08 0.07 0.06 [148]
Price of building
per unit area

m2 1,500 1,500 1,500 [148]

Equipment life (or
recovery period)

yrs 15 20 25 [148]

Tooling life (or re-
covery period)

yrs 5 5 5 [148]

Building life (or re-
covery period)

yrs 15 20 30 [148]

Discount rate % 20 15 10 [141], [148], [239],
[242]

Price of auxiliary
equipment as a per-
cent of equipment
capital cost

% 10 10 10 [148]

Overhead cost as
a percent of other
fixed costs

% 35 32.5 30 [148]
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AppendixE
Additional O*NET skills data visualizations,

statistical data summaries, and interview

template

Figure E.1: Dot distribution plot of O*NET skill scores presented by powertain component.
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Figure E.2: Dot distribution plot of O*NET skill scores for operators presented by vehicle
powertrain type.

Figure E.3: Dot distribution plot of O*NET skill scores for technicians presented by vehicle
powertrain type.

The values of the mean, standard deviation, and standard error of mean of each of the

three elicited occupations are shown in Tables E.1 and E.2 for ICEV and BEV responses,

respectively. Note that summarized values are nonexistent or limited for supervisors because

of limited interview responses for this particular occupation.

The mean values for the operator class are higher for all BEV skills except for near vision

and instructing, while the mean values for the technician class are higher for all ICEV skills
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except static strength. These results suggest that vehicle electrification may increase the

general expected values of skills for operators but not for technicians.

The standard deviations are larger for ICEV operators for all skills except for static

strength and social perceptiveness. Standard deviations are larger for ICEV technicians

for static strength, instructing, and social perceptiveness. The distribution of responses is

generally narrower for BEV operators than ICEV operators and also for ICEV technicians

than BEV technicians.

Table E.1: Statistical summary (i.e., mean, standard deviation, standard error of mean) of
ICEV skills and occupations. Insufficient data is available for complete supervisor class
comparisons.

Operator (n = 11) Technician (n = 7) Supervisor (n = 1)

O*NET skill Mean SD SE Mean SD SE Mean SD SE

Finger dexterity 3.45 2.10 0.63 4.21 1.47 0.55 3.50 – –

Near vision 4.68 1.76 0.53 5.07 1.02 0.38 2.50 – –

Static strength 3.14 1.21 0.36 3.36 1.55 0.58 1.50 – –

Operation and

control

2.91 1.51 0.46 4.29 0.57 0.21 3.00 – –

Complex prob-

lem solving

3.23 1.60 0.48 4.14 0.63 0.24 4.50 – –

Instructing 4.18 1.10 0.33 4.36 0.94 0.36 4.00 – –

Social percep-

tiveness

3.23 0.82 0.25 4.00 1.50 0.57 4.50 – –

Table E.2: Statistical summary (i.e., mean, standard deviation, standard error of mean) of
BEV skills and occupations.

Operator (n = 18) Technician (n = 4) Supervisor (n = 2)

O*NET skill Mean SD SE Mean SD SE Mean SD SE

Finger dexterity 4.42 1.06 0.25 3.21 1.93 0.97 3.00 1.41 1.00

Near vision 4.56 1.21 0.29 4.50 1.73 0.87 4.00 1.41 1.00

Static strength 3.64 1.80 0.42 3.50 1.29 0.65 2.75 0.35 0.25

Operation and

control

3.97 1.22 0.29 3.38 1.03 0.52 4.25 0.35 0.25

Complex prob-

lem solving

3.42 1.06 0.25 3.88 1.03 0.52 4.00 0.00 0.00

Instructing 3.61 0.92 0.22 4.25 0.65 0.32 4.00 0.00 0.00

Social percep-

tiveness

3.92 1.09 0.26 3.50 0.58 0.29 3.75 1.06 0.75
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Table E.3: Collection template for O*NET worker background and job requirements ques-
tions.

Background and Job Requirements

Category Question

Education Highest grade completed

Date of schooling completion

School name and location

Focus area/vocational specialty (if any)

List any other formal education/training, pro-

gram name and location, and date completed

Employment Title of current position

Description of responsibilities

List any previous positions at current company

Number of years at current company

List previous employers, years at that company,

and positions held

On-the-job training Description of training program

Length of training program (# days? weeks?)

Trained for specific types of stations, process

steps, or machines?

Shift or job position Please list / describe which process steps you

would be assigned to in a single shift and/or in

a single job position

Typical number of employees assigned to these

process steps (fewest? most?)
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[57] P. Upham, C. Oltra, and À. Boso, “Towards a cross-paradigmatic framework of

the social acceptance of energy systems,” Energy Research & Social Science, vol. 8,

pp. 100–112, 2015.
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social acceptance of electricity generation sources,” Energy Policy, vol. 46, pp. 246–

252, 2012.

[68] F. J. Van Rijnsoever, A. Van Mossel, and K. P. Broecks, “Public acceptance of energy

technologies: The effects of labeling, time, and heterogeneity in a discrete choice

experiment,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 817–829, 2015.

[69] D. M. Reiner, “Learning through a portfolio of carbon capture and storage demon-

stration projects,” Nature Energy, vol. 1, no. 1, p. 15 011, 2016.

[70] N. Hall, P. Ashworth, and P. Devine-Wright, “Societal acceptance of wind farms:

Analysis of four common themes across Australian case studies,” Energy Policy,

vol. 58, pp. 200–208, 2013.

[71] N. M. Huijts, E. J. Molin, and L. Steg, “Psychological factors influencing sustainable

energy technology acceptance: A review-based comprehensive framework,” Renewable

and Sustainable Energy Reviews, vol. 16, no. 1, pp. 525–531, 2012.

[72] S. Carley, D. M. Konisky, Z. Atiq, and N. Land, “Energy infrastructure, NIMBYism,

and public opinion: A systematic literature review of three decades of empirical survey

literature,” Environmental Research Letters, vol. 15, no. 9, p. 093 007, 2020.

107

https://temoacloud.com/temoaproject/Documentation.html
https://temoacloud.com/temoaproject/Documentation.html
https://data.nrel.gov/submissions/115
https://data.nrel.gov/submissions/115
https://doi.org/10.11578/1544562


[73] J. Eyles and J. Fried, “‘Technical breaches’ and ‘eroding margins of safety’–Rhetoric

and reality of the nuclear industry in Canada,” Risk Management, vol. 14, no. 2,

pp. 126–151, 2012.

[74] Y. Guo and Y. Wei, “Government communication effectiveness on local acceptance

of nuclear power: Evidence from China,” Journal of Cleaner Production, vol. 218,

pp. 38–50, 2019.
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