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Abstract 
 
In the United States, buildings i.e. both residential and commercial are responsible for about 40% of total 
U.S. energy consumption, and as a result, a large amount of greenhouse gas and criteria air pollutants. 
Energy efficiency has been identified as a low-cost resource of reducing energy use and hence the carbon 
footprint in the buildings sector. As a result, a myriad of policy actions has been put in place to ensure 
that energy reduction goals can be achieved through energy efficiency. This dissertation performs a 
critical examination of some of these programs and policies that have been put in place with the aim of 
ensuring that their intended efforts are indeed achieved. This work also provides a prospective look into 
other considerations e.g. the inclusion of broader health and environmental benefits needed to be made 
when making the decision about building energy efficiency. 
 
In Chapter 2, I use a panel data approach to measure the association of policy implementation at different 
levels of the government with increases in green building adoption. I find that the effectiveness of green 
building policies is dependent on both the nature of the policy as well as the background federal policy 
context. I corroborate existing research by finding that local policies especially requirement and density 
bonuses are essential in driving green building certification. I also highlight the importance of federal 
policies (e.g. federal funding like the American Recovery and Reinvestment Act – ARRA) and private 
actions (e.g. through improvements to the building rating system process) in driving green building 
adoption. These findings highlight that local policy, federal policy, and private actions need to work in 
tandem to drive green building growth.  
 
In Chapter 3, I explore a similar line of questioning, however, focusing on the associations of different 
energy efficiency programs with reductions in electricity and gas usage. Using the difference-in-
difference and event history modeling approaches, I find that behavioral programs are associated with the 
largest increases in energy reductions even when compared to financial incentive programs. I also provide 
a means of detecting unexpected program impacts (i.e. changes that occur at the same time as the 
introduction of a new technology leading to biased estimates of program impacts) using electricity and 
gas usage data. I find gas reductions for some electricity-only programs thereby indicating that energy 
reductions may have occurred in the absence of the program. I highlight here that energy efficiency 
programs have the potential to significantly reduce electricity and gas use in buildings. However, the ex-
post evaluation of these programs need to be appropriately measured to ensure that these reductions are 
indeed associated with policy implementation as significant amounts of money and time is invested in 
program implementation.   
 
While Chapters 2 and 3 focus on the evaluation of past energy efficiency programs and policies, in 
Chapter 4, I focus on other considerations that need to be made when making the decision about building 
energy efficiency. Specifically, I focus on the incorporation of other health and climate impacts when 
addressing the issue of climate change in the building sector. I investigate the energy reductions, 
greenhouse gas and other air emission reductions, as well as the private net costs and benefits of 
implementing a myriad of energy efficiency measures using the case study of the state of Pennsylvania. I 
find significant energy reductions compared to 2017 baseline levels - 36%, 44%, 19%, and 43% 
reductions of electricity, gas, propane, and fuel oil. More importantly, I estimate significant social 
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benefits of $2.4billion per year and highlight the energy efficiency measures which maximize both the 
private and social benefits for the state.  
 
In Chapter 5, I discuss overarching conclusions and some considerations for policy revealed in Chapters 2 
to 4. Findings in Chapters 2 and 3, for example, show the benefits of non-economic programs and 
incentives in driving building energy efficiency. I corroborate the nascent research on behavioral 
programs on energy reductions and recommend that utility evaluators examine non-financial program and 
policy approaches to reducing energy use as it also offers a low-cost alternative to promoting energy use 
reductions. More specifically, In Chapter 2, I learn that policy actors i.e. local and federal policy makers, 
as well as private bodies, need to work together in driving green building adoption. However, highlighted 
is the need for more transparency in ensuring that green building certifications are indeed translating to 
energy reductions. In Chapter 3, I learn the importance of more robust analyses when using data-driven 
approaches in the energy measurement and verification process of energy efficiency programs. In Chapter 
4, I find that energy efficiency measures which yield the highest private benefits may not necessarily 
yield the highest social benefits therefore highlighting the need for a more holistic look when making the 
decision between competing energy efficiency measures.   
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1. Introduction 
 
One of the most critical issues facing the world today is the risk of climate change. Human activities, 
especially through the burning of fossil fuels (i.e. coal, oil, and gas) as well as other contributions from 
agriculture, forestry, and other land-use activities have driven atmospheric greenhouse gas concentrations 
higher than any time in at least 800,000 years e.g. historic levels of global energy-related emissions were 
recorded in 2018[1], [2]. As a result, the Earth has warmed at very high rates over the past century, with 
average temperatures increased by 1.00C above pre-industrial levels, and likely to reach 1.50C between 
2030 and 2052 if left unchecked[3]. As rising greenhouse gas (GHG) concentrations are expected to have 
a wide range of effects such as rising sea levels which affect populations living low-lying coastal areas 
due to increasing flooding, increase in prevalence of disasters such as hurricanes or typhoons as a result of 
changing weather patterns, increased pressure on water and food production, political instability as a 
result of food insecurity, as well as human health risks such as premature deaths due to air pollution, it is 
pertinent that significant changes are being made to limit these dangerous impacts that will come with 
climate change[4].  
 
To combat climate change, different countries around the world have begun to work together to set goals 
to combat these reductions. For example, the Paris Climate Agreement which went into force in 
November of 2016 where world leaders representing 195 nations came to a consensus on an accord aimed 
at combating climate change. The United States, for example, which is the world’s largest historical 
emitter and the second-biggest current emitter after China – committed to cutting overall greenhouse gas 
emissions by 26% to 28% below 2005 levels by 2025[5]. The roadmap to reducing these emissions in the 
U.S. have mostly fallen under three broad categories: cutting energy waste through energy efficiency 
improvements, electricity “decarbonization” through the implementation of low carbon technologies, and 
changing land use and management[1].  
 
Energy efficiency, particularly building energy efficiency has long been touted as a significant way to 
reduce promote GHG reductions in the U.S. Buildings are the largest and second-largest contributor to 
energy consumption and carbon dioxide emissions at 40% and 36% of total energy consumption and 
emissions respectively[6], [7]. Although projections show that residential and commercial energy use will 
increase by 0.2% per year between 2018 and 2050 as a result of increase in the number of households and 
increased air conditioner use due to migration to warmer regions of the country, I find that these projected 
increases could have been magnified if not for potential contributions of energy efficiency and other 
distributed generation methods[8]. Through the use of different research and modeling approaches, 
various literature has identified the energy savings, emissions reduction potential, and costs associated 
with energy efficiency policies indicating the need for large investments in energy efficiency as they tend 
to be a cost-effective approach to achieving GHG reductions.  
 
Not surprisingly, large investments in building efficiency have been recorded in recent years. In 2016, for 
example, building efficiency in the U.S. accounted for $68.8 billion in revenues at an 8% annual growth 
increase over the past five years[9]. These gains have been as a result of different factors, such as market 
forces as well as policy impacts[10]. For example, stricter building codes have been developed along with 
growing interest in greening buildings such as ENERGY STAR or Leadership in Energy and 
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Environmental (LEED) buildings. Utility energy efficiency programs are also growing in popularity 
especially as more states are implementing energy efficiency resource standard (EERS) which mandate 
that utilities or independent statewide program administrators must meet specific targets through customer 
energy efficiency programs. Similarly, appliance standards have improved dramatically through the 
combined effects of federal and state appliance standards, utility energy efficiency programs, and tax 
incentives that encourage manufacturers to develop more efficient products. As increased investments are 
being made in building energy efficiency, it is critical to ensure that programs and policies are indeed 
achieving their intended effects. While most energy efficiency policies are estimated to lead to energy 
savings, with some having cost per kWh estimates lower than private marginal electricity supply costs, 
recent academic literature is finding mixed results with ex-post evaluation indicating higher costs per 
kWh saved[11].  
 
This thesis performs both a retrospective and prospective examination of different energy efficiency 
programs and policies with the aim of informing future decisions in the building sector. Specifically, it 
focuses on how future energy efficiency programs and policies should be evaluated to ensure that their 
intended goals are achieved. I also provide insight into future considerations that need to be evaluated 
when making the decision to implement energy efficiency programs.  
 
In Chapter 2, I employ a panel data approach to examine the relationship between policies and growth in 
commercial green building retrofits. Specifically, I examine whether local and federal policies aimed at 
encouraging green building certifications are associated with increases in LEED certification in retrofitted 
commercial buildings in the U.S. Aggregating data at the Metropolitan Statistical Area (MSA) level, I 
find that local requirement and density bonuses are significant tools in driving commercial green retrofits. 
Although the effects are difficult to disentangle, I also observe the influence of federal policies and 
improvements to the rating system certification in driving commercial green building retrofit adoption. 
Our results suggest that governments (i.e. through local and federal policy) and private organizations (e.g. 
through streamlining the rating system process) can work in concert in driving green building adoption.  
 
While Chapter 2 is based on the premise that green building certifications are associated with energy 
reductions, the proprietary nature of energy consumption data before and after the certification process 
makes it very difficult to measure in practice. In Chapter 3, I leverage the availability of energy 
consumption data to measure the associations of energy efficiency program implementation with 
reductions in energy usage. Specifically, I focus on biases that may occur when using data-driven 
approaches to examining energy efficiency program implementation, for example, the assumption that 
reductions would not occur without the implementation of the new technology. By examining concurrent 
electricity and gas reductions from residential buildings energy efficiency implementation using a panel 
data of month electricity and gas usage from 2010 to 2016 in the City of Palo Alto, I can examine the 
reductions in gas usage for electricity-only programs and vice versa. I find significant gas reductions from 
electricity-only programs indicating that data-driven approaches may also not be adequately estimating 
program impacts. I also highlight the importance of behavioral programs over financial incentive 
programs in promoting energy efficiency reductions in buildings.   
 
Having examined the role of energy efficiency programs and policies in driving reductions in the 
commercial and residential building sector, I shift to investigating the considerations which are pertinent 
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when choosing between competing energy efficiency measures. In a bid to promote reductions through 
energy efficiency, many states in the U.S. have developed EERS standards which mandate that utilities 
must meet specific targets through customer efficiency. However, when understanding the potential for 
energy efficiency in these states, most studies focus on just electricity reductions with little or no regard to 
public health, environmental and climate benefits. In Chapter 4, I quantify the energy reductions, 
greenhouse gas and other air emission reductions, as well as private and social benefits that result from 
the implementation of different energy efficiency measures (EEMs) using the residential single-family 
(SFD) housing stock in Pennsylvania as a case study. While I find significant health and climate change 
benefits through the implementation of these EEMs compared to the baseline, these reductions contribute 
to a very small percentage of total reductions needed if Pennsylvania will meet its set aggressive climate 
reduction goals. Furthermore, I find that many of these measures are cost-intensive and highlight the need 
for appropriate incentive and/or financing options.  
 
Chapter 5 synthesizes the findings from these three studies and provides a discussion of the possible 
policy recommendations. As varied stakeholders e.g. consumers, government, utilities etc., make the 
decision on how energy efficiency is implemented, it is pertinent that the appropriate considerations are 
put in place. In this work, I provide insight as to how energy efficiency is presently implemented and 
provide recommendations on the way energy efficiency can be thought of in the future e.g. through 
incorporating other health and climate decisions into the decision and policy making process. I hope that 
with this project, the set goals of a more sustainable future can be more readily achieved.  
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2. Federal policy, local policy, and green building 
certifications in the U.S. 
 
Abstract 
Buildings account for a large proportion of total U.S. energy consumption, and as a result, greenhouse gas 
and criteria air pollutant emissions. Concerns about these emissions have led federal, state, and local 
governments to pass policies aimed at reducing energy use in buildings. In this paper, we examine 
whether policies aimed at encouraging green building certifications are associated with an increase in the 
square footage of Leadership in Energy and Environmental Design (LEED) certifications in retrofitted 
commercial buildings. Using a panel data approach, we find that metropolitan statistical areas (MSAs) 
with local policies, particularly requirement and density programs, are associated with significant 
increases in commercial LEED retrofits. Specifically, we find that the switch of an MSA from having no 
requirement policy to having a requirement policy is associated with an increase of 0.22 LEED sqft/capita 
in that MSA (a marginal increase of 37% of total per capita LEED square footage in 2016). We also find 
that federal policies and improvements to the LEED rating system are associated with increases in LEED 
certifications. While the impacts of federal policy and LEED rating system updates are difficult to 
separate, our work suggests that local policy, federal policy, and modifications to the LEED rating system 
can work in concert to drive green building adoption. 
 
A version of this chapter is currently under review in the Energy and Buildings Journal as: Adekanye 
O.G., Davis A. & Azevedo I.L. “Federal policy, local policy, and green building certifications in the 
U.S.”. 
 

2.1. Introduction 
 
In the United States (U.S.), residential and commercial buildings account for around 40% of total energy 
consumption and over 70% of total electricity use, resulting in substantial CO2 emissions[12], [13]. 
Commercial buildings alone account for approximately 18% of total U.S. energy consumption with 
projections indicating the growth in energy consumption in commercial buildings at 0.3% per year from 
2017 to 2050[12], [14]. To lower CO2 and air pollution-related emissions, a number of local, state, and 
federal policies have been implemented as a way to reduce energy use in buildings. One popular strategy 
has been to encourage existing buildings to attain green building certifications. Here, we focus on the U.S. 
Green Building Council’s (USGBC) Leadership in Energy and Environmental Design (LEED) 
certification, which is a third-party green building certification program aimed at recognizing high-
performance buildings with respect to a number of characteristics, including energy use. LEED is the 
most widely used green building certification system in the world and is the building benchmark of choice 
for many U.S. federal government buildings [15], [16].   
 
By the end of 2015, 273 different regulatory policies had been enacted at the city, county, and state levels 
in the U.S. to induce LEED certifications of commercial buildings[17]. For example, On December 16, 
2009, the City of Morgan Hill established a tiered requirement rating system for commercial building 
renovations and tenant improvements of different sizes (where buildings >1000sqft must achieve 16 
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LEED points, > 5000sqft must be certified LEED Silver, ≥ $350,000 permit valuation must achieve 10 
LEED points, ≥ $500,000 permit valuation must be LEED Certified and ≥ $1,500,000 must be certified 
LEED Silver)[18]. In a second example, on June 11, 2013, the State of Nevada offered a 25% - 35% 
reduction on property taxes for one year based on the level of LEED certification[19].  
At the same time, federal policies have aimed to improve the energy profile of the U.S. more broadly, 
including the Energy Policy Act of 2005 (EPAct 2005), The Energy Independence and Security Act of 
2007 (EISA 2007), and the American Recovery and Reinvestment Act of 2009 (ARRA 2009). EPACT’s 
section 109 established energy efficiency goals for new federal buildings and provided tax deduction for 
commercial buildings that reduced energy and power use, then EISA furthered these goals by increasing 
the federal energy reduction goal from 2% per year (as stated in EPACT 2005) to 3% per year from 2008 
to 2015, for an overall reduction goal of 30% relative to the baseline year of 2003[20]–[22]. EISA also 
established a “Zero Net Energy Commercial Building Initiative” intended to achieve zero net energy 
performance in all newly constructed commercial buildings by 2030, in 50% of the commercial building 
stock by 2040, and in all commercial buildings by 2050. ARRA was established in 2009 and through the 
Energy Efficiency Conservation Block Grant Program helped states, units of local government, and 
Native American tribes develop energy efficiency and conservation strategies, financial incentives for 
energy efficiency improvements (e.g. loan and rebate programs), and retrofits of municipal buildings and 
utility infrastructure. 
 
Sweeping changes to the LEED rating system have coincided with some of these federal policies. The 
LEED Existing Building: Operation and Maintenance (EB) rating system, for example, was publicly 
launched in 2004 with major updates in 2008, minor updates in 2009 (LEEDv2009 formerly known as 
LEED v3) and version 4 LEED v4 launched in 2013[23]. LEED-EB over time has focused on improving 
performance requirements, reducing reporting burden as well as updating prerequisites and credits for 
certification1. LEED v4 provided more flexibility, such as tailoring certifications to different building 
types, more streamlined documentation processes, and improving credit categories and prerequisites2. 
Few studies to date have examined the relationship between policy implementation and commercial green 
building certification. Among the existing studies, a consistent finding is that a mandatory requirement to 
obtain LEED is an effective way to encourage the growth of commercial buildings[24]–[28]. In other 
studies, the mere presence of a local policy – regardless of policy type is associated with LEED 
adoption[29], [30]. Recent studies examine the impact of other factors other than policy in driving 
commercial green building adoption. York et al., found that apart from policy, private organizations such 
as social movement organizations, market intermediaries, and environmental entrepreneurs play an 
important role in encouraging adoption[31]. However, these studies did not take federal policies and 
changes to the LEED rating system into account –  with the exception of Sanderford et. al. who examined 
ARRA funding as a predictor of Energy Star adoptions in the U.S. single-family housing stock[32].  
 
In this work, we examine the impact of local and federal policies while taking into account the 
simultaneous effect of USGBC LEED rating system improvements in encouraging green building 

                                                        
1 Some articles have attributed the increase in LEED EBOM to be as a result of improvement of the LEED 

certification process: https://buildingefficiencyinitiative.org/articles/second-look-green-buildings-rise-certifications-
around-world, https://continuingeducation.bnpmedia.com/article_print.php?L=5&C=465, 
https://www.greenbiz.com/news/2008/07/02/renovation-leed-eb  

2 https://www.usgbc.org/resources/leed-v4-user-guide  
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retrofits. We use existing buildings because green retrofitting is important for meeting national 
sustainability goals. For example, a recent study by Nadel shows that for the U.S. to achieve energy use 
reductions by 50% by 2050 through energy efficiency, 75% of existing commercial buildings would need 
to be retrofitted[33]. We use city, county, state, and federal level policies specifically aimed at 
encouraging LEED adoption in the U.S. from 2002 to 2016. We measure adoption as the added square 
footage of commercial LEED buildings in a Metropolitan Statistical Area (MSA) in each year during this 
time frame. Data on the square footage of retrofitted commercial LEED buildings comes from the U.S. 
Green Building Council’s (USGBC) database[34],[35]. The information regarding the policies comes 
from the Database of State Incentives for Renewables and Efficiency (DSIRE) and the USGBC policy 
databases. Economic data (e.g. Population, GDP, Unemployment rates) comes from the various sources 
that report US Statistics (such as US Census, US Bureau of Economic Analysis, US Bureau of Labor 
Statistics) for each MSA[36]–[38]. Other controls that measure an area’s demand for green products such 
as the non-residential solar PV installations (from the Lawrence Berkeley National Laboratory Tracking 
the Sun dataset) and the count of Electric Vehicle fuel stations in an MSA (from the US Department of 
Energy’s Energy Efficiency and Renewable Energy Datasets) are also included. We leverage the 
availability of multiple years of data in each MSA to remove time-invariant confounding effects of 
endogenous policy choices. Specifically, we use location and year fixed effects to account for omitted 
variables that are constant for each MSA across time and for all MSAs in each year.  
 
The work extends the existing literature in several novel ways. First, we use panel data from years 2002 to 
2016 using the change in annual LEED square-footage as our unit of observation. Secondly, we account 
for not only local policies but also federal policies and changes to the LEED rating system. Finally, we 
examine policy effects separately for owners and tenants. The rest of this paper is organized as follows: 
first we explain our data and methods then we follow with our findings and a discussion of our results in 
the last section. 
 

2.2. Data and Methods 
 
2.2.1. LEED building and policy characteristics  
 
LEED buildings and certifications: The added squared footage of LEED-certified buildings is our 
metric of interest. We use data on the number and type of retrofitted commercial buildings from the 
USGBC LEED projects database[39]. Between its inception in 2000 and October of 2018, the USGBC 
has certified over 137,000 U.S. buildings. However, a major portion of LEED buildings is certified as 
“confidential” (for example military-owned buildings) or residential buildings. Our study looks into 
10,420 existing buildings that received LEED certification under existing buildings: operations and 
maintenance (EB), commercial interiors (CI), and core and shell (CS) rating system categories (See 
Appendix A.1.-A.2. for more details,). In Figure 2.1, we show buildings that registered and went on to 
pursue certification annually between 2002 and 2016 broken down by count and total added square  
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Figure 2.1 - Number of retrofitted commercial buildings added each year for the different rating systems by 
count (left) and total square footage (right) from January 2002 to December 2016. CI – Commercial Interiors, 
CS – Core and Shell, EB – Existing Buildings: Operations and Maintenance. Source: Produced by the 
authors using data from USGBC Policies database[39] 
 
footage. While we have data through October 2018, we chose 2002 as the beginning year of our analysis 
when a pilot version of the LEED program began. 
 
USGBC LEED Rating System Updates. We include dummy variables in our model for the launch dates 
of new USGBC LEED rating systems, coded as 1 during the years the LEED rating system version was in 
place and 0 otherwise. Some important events were the LEED-EB update in 2008 which as it was a major 
overhaul from the initial LEED version, as well as the LEED v4 program in 2013. While updates to the 
CI and CS program were made in 2009 through the LEED v2009 update, the dummy variable indicator 
would have been confounded with the ARRA-EECBG Federal program as discussed above so it was 
excluded from the analysis (See Appendix A.1. for more details,).  
 
City, county and state level policies. We identify 273 relevant government policies enacted by the year-
end 2015 specifically aimed at encouraging LEED certification among existing commercial buildings. Of 
these 273 policies, 224 are city-level programs, 34 are county-level programs, and 15 are state-level 
programs.  Based on our literature review of related papers, we grouped these into 5 major categories: (1) 
requirements, (2) recommendations, (3) height/density bonuses, (4) financial incentives, and (5) non-
financial incentives. In Appendix A.3., we provide a detailed description of the different policies under 
each of these categories as well as a breakdown of the policies by MSA. In Figure 2.2, we show the 
different categories of policies in the U.S. over time. The most common policy types are recommendation 
policies where buildings are encouraged to build LEED without any form of enforcement in place, for 
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example, a LEED checklist program where a checklist is filled out to adhere to LEED standards but no 
formal certification is mandated. Financial incentives range from as little as a LEED certification fee 
reimbursement to substantial property tax reductions. Non-financial incentives, such as an expedited 
permitting process for LEED construction, and requirement programs, such as a mandatory requirement 
to obtain LEED in a city or county above specified square footages, are also relatively common. The 
majority of the policies were enacted between 2007 and 2009, particularly in 2009, during the ARRA 
implementation. Also, the incentives vary widely by state, with California and Florida implementing the 
highest number of policies. 
 

Figure 2.2 - Number of state, city and county policies in effect in each year from 1999 to 2015 related to 
existing commercial LEED building certifications. Source: figure produced by the authors using data from 
USGBC Policies database[17] 
 
2.2 Model Approach 
 
We deviate from our primary and preregistered analysis (presented in osf.io/e7qzk) because we observed 
very large lagged effects three years after policy implementation. Upon further examination, we realized 
that USGBC LEED updates as well as federal policy implementation needed to be explicitly included in 
the model (See Appendix A.10. for more details on the initial model as well as results preplanned for this 
study). In this section, however, we present the final model used to inform our results.  
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We use a panel approach at the level of the metropolitan statistical area (MSA). Specifically, some MSAs 
implement a policy (e.g. financial incentive) and we observe the change in the square footage of LEED 
certified building space per capita in that MSA over time. To understand our analysis, we discuss two 
topics in turn: 1) our method for determining the degree to which an MSA is treated by a policy, and 2) 
mathematical representation of our final model. 
 
2.2.2. Method for determining the degree to which an MSA was treated by a policy 
 
Because the policies were enacted at the city, county, or state level, but our level of analysis was the 
MSA, we look at the proportion of people potentially affected by the presence of a policy in the MSA as 
our treatment variable. For example, if San Mateo city, CA, enacts a density bonus in 2004, the fraction 
of San Francisco-Oakland-Hayward MSA that gets treated in 2004 is calculated by dividing San Mateo’s 
city population by the total San Francisco-Oakland-Hayward MSA population. However, if San Francisco 
county (which contains San Mateo) gets treated by a density bonus in 2006, we calculate the density 
bonus treatment in 2006 as the fraction of the total county population divided by the total MSA 
population, ignoring San Mateo city. This method is implemented to avoid double counting, as cities are 
nested within counties, which are nested within MSAs. On the other hand, if a state-level density bonus is 
implemented in CA on the other hand, then the total MSA gets treated by the policy and the fraction of 
the MSA treated assumes a value of 1.  
 
2.2.2 Mathematical representation of final models 
 
We compare the change in square footage for MSAs that implemented a policy to the change in square 
footage for MSAs that don’t implement a policy, adjusting for time-varying economic covariates (e.g., 
GDP in the MSA). We look at changes between MSAs treated by a policy and MSAs not treated to  
mitigate the effect of any time-invariant unobserved differences between MSAs that might affect both 
policy choice and LEED certifications. Our main model specification (with results presented Table 2.1) 
is: 

 

"#,% = '()*+#,% + -()./0#,% + 123454#,% + 64/23454#,% + 78)493+"#,% + :;8<	 +
											>?4)0<@/"#,% + 	A9/@5(<B#,% + 	A)B./?4+#,% + 	7% + 095#																						 2.1   
 
where i represents an MSA and t represents the time period (2002 – 2016). "#,%represents the change in 
LEED square footage per capita in each MSA from one year to the next. ()*+#,%,  ()./0#,%, 23454#,%,  
4/423454#,% , and 8)493+"#,% range between 0 and 1 and represent the change in fraction of MSA 
population i affected by the presence of a requirement, recommendation, financial incentive, non-
financial incentive, and density bonus policy from one year to the next.	;8<#,%, ?4)0<@/"#,% ,  
9/@5(<B#,% , and )B./?4+#,% represent the Gross Domestic Product (GDP) , Unemployment rates, total 
non-residential solar PV installations (excluding utility-scale solar), and total number of Electric Vehicle 
(EV) charging stations for an MSA in a year. 095#, 7%,	and F#,%	represent MSA dummy variables, time 
dummy variables and the error term, respectively.  
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Our control economic variables include the gross domestic product and unemployment rates across for 
MSA in a year. The real GDP by metropolitan area was sourced from the U.S. Bureau of Economic 
Analysis (BEA) and is an inflation-adjusted measure of the economic activity of each metropolitan area 
based on the national prices of the goods and services produced within that MSA. Because the GDP itself 
is computed using dimensions that are affected by LEED construction (which would be problematic in 
our regression model because of conditioning on an effect), such as construction GDP (i.e. contribution of 
the GDP to residential and commercial building structures), manufacturing GDP (includes wood 
products, fabricated metals and furniture), and real estate GDP (includes contributions to rentals and 
leasing) we removed those portions of the GDP in our analysis. The unemployment rate statistic is 
obtained from the U.S. Bureau of Labor Statistics (BLS). BLS provides annual estimates of the 
unemployment rates at the county level, which we averaged over MSAs.  
 
We also include environmental control variables to account for areas who demand for more green 
products and services. We include non-residential solar PV installations and the total EV counts in an 
MSA in a given year. The Solar PV data was obtained from the Lawrence Berkeley National Laboratory 
(LBNL) Tracking the Sun Dataset which includes information on solar PV installations for different 
customer segments. We aggregated non-residential solar PV installations at the zip code and city levels to 
the MSA level for the purpose of our analysis. The total EV count data was obtained from the Office of 
Energy Efficiency and Renewable Energy (EERE) through the U.S. Department of Energy (See Appendix 
A.4 for more details on these controls).  
 
We replicate equation (2.1) four times by changing the dependent variable to account for existing 
commercial buildings (1) irrespective of LEED rating system type, (2) under the LEED-EB rating system, 
(3) under the LEED-CI rating system, and (4) under the LEED-CS rating system. The results of these 
regressions are presented in Columns (1), (2), (3), and (4) of Table 2.1 respectively.  
Alternative model specifications are presented in Appendix A.5. – A.8.  Firstly, we attempted to include 
the impact of federal policies as well as the USGBC LEED rating system updates in our main model. 
However, the time dummy variables are confounded the federal policy and USGBC LEED rating system 
update indicators. We modify equation (1) by dropping the time dummy variables as follows: 
 
"#,% = '()*+#,% + -()./0#,% + 123454#,% + 64/23454#,% + 78)493+"#,% + :;8<#,% +
												>?4)0<@/"#,% + 	A9/@5(<B#,% + 	A)B./?4+#,% + 	G52+)(HIJKLM,N + O52+)(HPQJM,N +
												R52+)(JSSJM,N + 095# + F#,%																														(2.2)  
 
Equation (2.2) represents the base case situation where the dependent variable accounts for all existing 
commercial LEED buildings irrespective of the rating system type. 52+)(HIJKL#,% and  52+)(HPQJ#,% 
and are policy indicators for EPACT and EISA that takes on a value of 1 and onwards for years 2005 and 
2007 respectively for all MSAs and all years. 52+)(JSSJ#,% takes on the value of 1 between the years 
2009 and 2012 (to account for the disbursement of EECBG funds) and 0 otherwise. In Appendix A.6, we 
replicate Equation (2.3) to include LEED-EB update in 2008 as well as the LEED v4 update in 2013. 
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We also examine the effect of local policies on commercial green buildings using a first differences 
approach (with results presented in Appendix A.8) as follows: 
 

"#,% − 		"# %WX 	= '(()*+#,% − 	()*+# %WX ) 		+ -(()./0#,% − 	()./0#, %WX ) + 1(23454#,%
− 	23454#, %WX ) + 6(4/23454#,% − 		4/23454#, %WX ) + 7(8)493+"#,%
− 	8)493+"#, %WX ) + 	:(;8<#,% − 	;8<#, %WX ) 	+ >(?4)0<@/"#,%
− ?4)0<@/"#, %WX ) 	+ 	A(9/@5(<B#,% − 		9/@5(<B#, %WX ) + 	A()B./?4+#,%
− 	)B./?4+#, %WX ) 	+ 	7% + 095# + F#,%																													(2.3)										 

 
Finally, we use the Anderson-Hsaio estimation model to examine violations to strict exogeneity as it is 
possible that LEED certifications in the previous year has an effect on LEED certifications in the present 
year. To implement Anderson-Hsaio, we firstly implement a first-differenced estimation as in Equation 
(2.3) then use a 2 year lagged dependent variable as an instrument variable in the model as there is no 
correlation of the errors and regressors with a 2 year lagged dependent variable. The Anderson-Hsaio 
model (presented in Appendix A.8) is implemented as: 
 
"#,% − 		"# %WX 	= Z("[ %W\ ) + 	'(()*+#,% − 	()*+# %WX ) 		+ -(()./0#,% − 	()./0#, %WX )

+ 		1(23454#,% − 	23454#, %WX ) + 6(4/23454#,% − 		4/23454#, %WX )
+ 	7(8)493+"#,% − 	8)493+"#, %WX ) + 	:(;8<#,% − 	;8<#, %WX ) 	
+ 	> ?4)0<@/"#,% − ?4)0<@/"#, %WX + 	A 9/@5(<B#,% − 		9/@5(<B#, %WX
+ 	A()B./?4+#,% − 	)B./?4+#, %WX ) + 	7% + 095# + F#,%													(2.4)		 

 
We settle on equation (2.1) as the correct model specification as it was the most reasonable given the 
trends seen in the exploratory analyses of the dataset made using plots such as those in Figures 2.1 and 
2.2 of the main paper. Appendix A.8 also gives a more detailed explanation of the fixed effects (our 
model) versus the first differences model, providing more credibility to our model selection approach. 
 
For all the models implemented, we estimate the standard errors using a clustered bootstrap approach, 
which allows for correlation between the errors in the same MSA.  
 
 

2.3. Results 
 
Table 2.1 presents the results of the effects of different local policy types on retrofitted LEED square 
footage accounting for year and MSA effects in 4 columns: Column (1) presents results in all commercial 
building projects – irrespective of LEED rating system type. Column (2) presents results for commercial 
projects certified under the LEED-EB rating system. Column (3) presents results for  
commercial projects certified under LEED-CI rating system, and Column (4) presents results for 
commercial projects certified under LEED-CS.  
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Table 2.1 - Model results examining the effects of different local policy types on retrofitted LEED square 
footage in commercial building projects 1) irrespective of rating system type 2) certified under the LEED-EB 
rating system, 3) certified under the LEED-CI rating system 4) certified under the LEED-CS rating system 
 
Variable 

 
Coefficient and robust standard errors 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
Requirement 

    0.22** 
(0.10) 

  0.07* 
(0.04) 

0.03 
(0.02) 

0.08 
(0.08) 

 
Density/Height bonus 

0.03 
(0.10) 

  0.13** 
(0.06) 

  0.04* 
(0.02) 

-0.11 
(0.08) 

 
Financial incentive 

0.02 
(0.03) 

-0.01 
(0.01) 

-0.0004 
(0.005) 

0.03 
(0.03) 

Non-financial 
incentive 

0.09 
(0.08) 

0.01 
(0.06) 

-0.004 
(0.01) 

0.09 
(0.10) 

Recommendation 
0.003 
(0.06) 

0.02 
(0.06) 

0.02 
(0.01) 

-0.03 
(0.03) 

GDP 
(in billions of dollars) 

      0.004*** 
(0.001) 

  0.002** 
(0.0009) 

      0.0005*** 
(0.0001) 

    0.0009** 
(0.0005) 

PV System Size 
(in GW) 

-0.006 
(0.02) 

-0.005 
(0.007) 

0.001 
(0.002) 

-0.002 
(0.01) 

EV charging stations 
(Count) 

-0.0005 
(0.001) 

0.0003 
(0.0009) 

 -0.0002* 
(0.0001) 

-0.0005 
(0.0005) 

Unemployment rate 
(%) 

-0.004 
(0.005) 

0.003 
(0.004) 

-0.001 
(0.0006) 

      -0.006 *** 
(0.002) 

Intercept 
     -0.24*** 

(0.07) 
     -0.11*** 

(0.04) 
   -0.03** 

(0.01) 
-0.08 
(0.06) 

 
MSA dummies 

 
Included 

 
Included 

 
Included 

 
Included 

Year dummies Included Included Included Included 
Observations 5730 5730 5730 5730 
Number of groups 382 382 382 382 

Robust standard errors in parentheses. 
*** p < 0.01, **p< 0.05, *p<0.1. 

Notes: Values in bold represent statistically significant coefficients (at least p < 0.10). GDP = Gross Domestic 
Product, EV = Electric Vehicle 

 
In Column (1), when examining all commercial building retrofits, we find that only requirement policies 
have a significant effect in increasing retrofitted commercial LEED square footage, with an increase of 
0.22 LEED sqft/capita. To put this in context, about 166M square feet of retrofitted commercial LEED 
space was added in 2016 with a total population of 270M – yielding an average of  
0.6 sqft/capita, so if an MSA switches from having no requirement policy to having a requirement policy, 
there is a marginal increase of as high as 37% of LEED sqft/capita in that MSA. We also find  
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that an increase in GDP by 1 billion dollars is associated with a smaller 0.004sqft/capita increase of 
retrofitted commercial LEED sqft/capita. We find smaller non-significant effects of other local policies 
with non-financial incentives, density bonuses, financial incentives, and non-financial incentives 
associated with increases of 0.09sqft/capita (95%CI: -0.07 to 0.25), 0.03sqft/capita (95% CI: -0.17 to 
0.23), 0.02sqft/capita (95% CI: -0.04 to 0.08), and 0.003sqft/capita (95%CI: -0.11 to 0.12) respectively. 
Other covariates which measure an MSA’s economic and environmental appear to have little effect on 
commercial green building retrofits. There are almost zero effects with increases in non-residential solar 
PV installations, count of EV charging stations, and unemployment rates.  
 
From Column (2), requirement policies, density bonuses, and GDP are associated with significant 
increases in LEED sqft/capita for commercial building retrofits certified under LEED EB. There are 
increases of 0.07sqft/capita, 0.13sqft/capita, and 0.002sqft/capita respectively. While we lumped LEED 
policies and LEED program types in Column (1), we are cognizant that the motivation to retrofit as green 
may vary widely depending on project type. For LEED-EB, it appears that density bonuses also are 
important in driving commercial LEED retrofits. Just like Column (1), GDP and requirement policies 
have a significant effect of LEED sqft/capita increases.  
 
Column (3) which examines the effect of local policies on LEED sqft/capita in the CI space show 
significant effects with the implementation of density bonus policies only. These effects are much smaller 
than Column (1) and Column (2) effects as explained in the data section above, LEED-CI mostly targets 
interior spaces as opposed to whole building projects resulting in smaller added LEED sqft/capita. Just 
like Columns (1) and (2), GDP has a significant effect on commercial building retrofits in the CI space as 
well. 
 
In Column (4), none of the local policies have a significant effect on encouraging commercial LEED-CS 
retrofits. While average estimates of requirements and non-financial incentives are large at 0.08sqft/capita 
and 0.09sqft/capita respectively, there is a large variation in the standard errors. We hypothesize that this 
may be due to low variation in the number of projects who get the LEED-CS certification compared to 
other LEED rating system types.  

 
Figure 2.3 shows a plot of the year-over-year estimates of Column (1) of our main regression results to 
tease out the effect of federal policies as well as USGBC LEED rating system updates with the year 2002 
being the base year. We do not find a significant effect on added LEED sqft/capita until 2007. We 
hypothesize that this is partially due to the implementation of federal policies such as EISA and ARRA 
which began in 2007 and 2009 respectively. However, federal policy implementation also coincides with 
LEED rating system updates as seen in Figure 2.3. For example, the highest year effect occurred in 2008 
which may be due to the launch of LEED-EB v2 as it was majorly overhauled from the pilot version to 
streamline the certification process and reduced overlap with the LEED new construction rating system. 
In 2012 and 2013, there is a slight drop-off of the year effects which indicate the end of ARRA funding 
and the beginning of LEED v4 respectively. Therefore, we hypothesize that some of these year effects are 
driven by federal policies as well as LEED rating system updates. We also find similar results when 
examining year-over-year effects for individual LEED rating system types (with results presented in 
Appendix A.5).  
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Overall, our results show greater rates of commercial green building certifications among MSAs that  
implement requirement and density bonus policies. We also find that increased economic health in an area 
(i.e. GDP) is associated with increases in LEED certifications on the average as areas that are more 
financially buoyant may be willing to invest in more green infrastructure as compared to areas that as not 
as wealthy. Additionally, federal policies and USGBC LEED rating system updates play a large role in 
motivating building owners and tenants in certifying green. However, the impacts of federal policies are 
hard to separate from LEED rating system updates. 
 
2.4. Discussion and Policy Recommendation 
 
In this work, we examine the relationship between local policies, federal policies, and growth in 
commercial green building retrofits. By using a panel data model with location and year effects, we find 
that overall, requirement policies are the most effective in driving commercial green building retrofits. 
More specifically, requirement and density bonuses are most-effective in driving the LEED-EB rating 
system type while density bonus policies are the most significant in driving projects certified under 
LEED-CI. However, none of the local policies have a significant effect on driving projects certified under 
the LEED-CS rating system type. We also find that federal policies and USGBC LEED rating system 

Figure 2.3 - Year-over-year estimates showing the effects of federal and USGBC LEED rating system updates 
between 2003 and 2016 using 2002 as the base year. Blocks in green represent federal polices while blocks in 
yellow represent internal USGBC rating system updates. 
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improvements also play a major role in green building certifications. The extent of this effect is more 
difficult to quantify compared to the role of local policies because federal policies occur simultaneously 
with changes to the LEED rating system.  
 
Our results are consistent with earlier work that finds that requirement policies are significant tools for 
promoting green building development. While other papers have mostly focused on policies in relation to 
new construction growth, our work shows that requirement policies are also successful with regards to 
existing building retrofits. Requirement policies may be successful in part due to the penalization of 
buildings that fail to implement mandatory LEED standards set by the city. Cites in the U.S. such as 
Portland and Washington (D.C.) implemented “feebates” and performance bond programs,  
respectively, that penalize commercial buildings that fail to meet the LEED regulatory requirement in 
their respective cities. In 2013, for example, 78% of projects certified in Washington DC was certified 
under LEED-EB3. Our analysis also shows that a requirement policy could account for as much as a 37% 
increase in retrofitted commercial floor space thereby indicating the significance of the policy type in 
driving commercial green buildings.  
 
Density bonuses are significant in promoting certifications under the LEED-EB rating system where we 
find an average increase of 0.11sqft/capita with the implementation of a density bonus policy. As the 
LEED-EB rating applies to the entire building, building owners may be incentivized to retrofit as green to 
take advantage of the extra floor to area bonuses that is conferred if a building is certified as LEED. These 
may lead to increased monetary benefits for the building owner especially in areas with a dense 
population as commercial space is highly sought after and even more so when the commercial space is 
certified as green4.  
 
The impact of local policies on LEED-CI certification is similar where we find smaller significant effects 
of density bonuses. The LEED-CI rating system applies to projects which are a complete interior fit-out, 
therefore, renovations or additions to an existing building may qualify to be certified under this category. 
Because LEED-CI does not apply to a whole building, the amount of space added under LEED-CI is 
much smaller than that of LEED-EB, lending credibility to our results. From our dataset, there is a four-
fold increase in LEED-EB space certified compared to LEED-CI space certified in the time frame of 
analysis although the count of CI spaces certified is almost double that of EB. This highlights the 
importance of taking into account the types of building spaces that are being certified, which could range 
from small spaces such as a restaurant that is a few thousand square feet, to large offices that account for 
hundreds of thousands of square feet.  
 
For LEED-CS, we find no significant effects of local policies on commercial green building certifications. 
We hypothesize that this is due in part to less significant variation in the number of buildings certified 
under the LEED-CS space, as only 1802 out of around 10420 spaces were certified as LEED-CS. If we 
examine estimates of local policies as in Column (4) of Table 2.1, we find that requirements and non-
financial incentives have the highest effect on added LEED-CS space. LEED-CS is mostly used when the 
developers control the building’s design and construction of the mechanical, plumbing, and fire protection 

                                                        
3 https://www.usgbc.org/articles/taking-sustainability-seriously-washington-dc  
4 https://www.usgbc.org/articles/business-case-green-building  
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system but not the design and construction of the interior fit-out5. As the review and permitting processes 
for different jurisdiction varies widely from one to the next, in some cases taking as long as one and half 
years, expedited permitting may indeed yield significant cost savings to the developer. Overall, with 
LEED-CS, requirements and expedited permitting policies seem to be the most promising6.  
 
Surprisingly, we do not find large or significant effects of financial incentives and recommendation 
policies for the different rating system categories. Recommendation policies are only put in place to 
encourage LEED certification, but there is no enforcement, therefore we might find an effect on the 
number of LEED registered buildings who do not actually go on to certify their projects. The results of 
financial incentives being a predictor of LEED certifications are consistent with previous studies that have 
not found an effect in financial incentives in promoting green construction[24], [40]. We attempted to 
code the financial value of city-level financial incentives for achieving LEED Gold Status and estimated 
about $0.01 per sqft in Chattanooga, TN to $6.3 per sqft in Onondaga County, NY (See Appendix A.9 for 
more details). However, due to difficulties in building specification as most incentives are estimated on a 
case-by-case basis, we were unable to estimate the financial range for all financial incentive programs in 
our dataset.  
 
Federal policies, as well as USGBC LEED updates also play a significant role in encouraging commercial 
green building retrofits. We attempt to quantify the size of these effects by conducting linear regressions 
including dummy variables for federal and internal LEED policies, however, these results are confounded 
with the year dummies (See Appendix A.6 for more details). Therefore, examining year-on-year effects 
show a clearer picture of the federal policies as well as internal LEED updates (as presented in Figure 2.3 
in the main paper and in Appendix A.5 for individual LEED rating systems). For all rating systems, we 
find a generally increasing trend following EISA and ARRA. However, not only federal policies but also 
LEED rating system updates are associated with green retrofits. For LEED-EB for example, we find a 
significant increase during its first major LEED update. LEED-CI and LEED-CS largest effects are 
observed around 2009 which coincides with the LEED-CI and LEED-CS update to LEED v2009 as well 
as ARRA implementation. We also find small increases after LEED v4 update in 2013 indicating that 
some increases in LEED certifications may also be due to improvements in LEED rating systems as 
LEED has been focused on improving prerequisites, credits, as well as overall user experience through 
the LEED process7. USGBC also started the LEED Volume project in 2011 which streamlines the LEED 
certification process for buildings of similar types8. Companies such as Starbucks, PNC, Wells Fargo 
have taken advantage of the LEED Volume program which has also made the certification process a lot 
easier especially in the case of companies with a large portfolio. We attempted to capture the effects of 
LEED Volume by examining an alternative specification model using the counts of LEED buildings 
certified under the different rating systems as opposed to the added LEED sqft/capita added (See 
Appendix A.7 for more details) and found that LEED Volume is also a significant player in driving LEED 
certification. Further research into these companies also shows that companies who took advantage of the 

                                                        
5 https://www.usgbc.org/discoverleed/certification/bd-c-core-and-shell/  
6 https://www.usgbc.org/articles/good-know-green-building-incentive-strategies-0  
7 https://www.usgbc.org/resources/summary-changes-leed-2009-v4-om  
8 https://www.usgbc.org/articles/leed-volume-program-myth-vs-fact  
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LEED Volume program also have sustainability commitments in place9. While we were not able to 
examine each of the companies in the LEED projects database sustainability portfolios, we have some 
evidence that the LEED Volume program has provided an easier means of achieving a company’s 
sustainability goals.  
 
Our analysis is subject to several limitations that highlight opportunities for additional research. Our data 
was focused on existing buildings as opposed to new construction because the base rate of new 
construction in each MSA was not known. Future analysis could expand these analyses by examining 
these effects (especially the federal policies and USGBC LEED updates) on new construction (NC) as 
opposed to existing buildings. Significant challenges were also faced when categorizing policies as 
existing building policies as opposed to new construction policies as the language used in the policy 
documents could be confusing. Similarly, the LEED project directory did not specifically state if 
buildings certified under LEED-CI or LEED-CS program was in a new or an existing building. Through 
conversations with USGBC officials, we characterized the buildings and policies as we thought 
appropriate. However, our results may be more significant if those distinctions between NC and EB are 
specifically delineated. We had difficulties estimating the actual value of the financial incentives in our 
dataset as in many cases, significant documentation of building is needed. Therefore, future research 
could focus on estimating the financial value of the financial programs to better capture its effects. 
Additionally, we also do not have energy consumption information on these certified buildings before and 
after the certification process as this information is proprietary making it more difficult to measure the 
real impacts of greening a retrofitted building. Studies have shown varied effectiveness of LEED 
certification with some earlier research indicating that LEED may not be achieving the savings it claimed. 
However more recent research has indicated significant energy savings therefore as standards are getting 
more stringent, LEED certifications appear to be achieving energy reduction goals[41]–[46]. Therefore, 
future research could focus on also specifically quantifying the amount of energy and carbon savings 
from implementing local and federal policies. Finally, while we were able to look at different LEED 
rating system types, the motivation for various project types may be different – office spaces motivation 
to certify as green could be separate from that of a warehouse. Future work could look further drill down 
and examine different project types so policies could be specifically tailored to meet the needs of various 
building categories. 
 
Policies that promote the certification of green buildings, such as LEED, have the potential to meet 
energy efficiency and carbon reduction goals. The effectiveness of these policies depends on their nature 
(the type of policy) and the background federal policy context. We find that requirements and density 
bonuses are a useful tool in promoting green building retrofits. Similarly, the implementation of federal 
policies and funding such as EISA and ARRA are associated with increases in commercial green building 
retrofits. Also, as the LEED process gets better tailored to different building types and allows for a better 
focus on user experience, building certification becomes less intimidating and more achievable. While we 

                                                        
9 Sustainability commitments for: Starbucks: https://www.starbucks.com/responsibility/environment/leed-

certified-stores;  
Kohls: https://corporate.kohls.com/news/archive-/2018/october/kohl-s-recognized-for-industry-leading-

sustainability-practices;  
Wells Fargo: https://newsroom.wf.com/press-release/community/wells-fargo-ranks-no-1-leed-projects-

financial-industry  
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have only begun to examine the extent to which different stakeholders help in promoting green buildings, 
this study highlights the importance of the different roles of public policy and private actions in 
encouraging green building certifications. 
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3. Do LED lightbulbs save natural gas? Detecting 
unexpected program impacts using electricity 
and natural gas billing data 
 
Abstract 
Energy efficiency programs have been implemented at the local and state levels to promote reductions in 
residential energy use. Ex-post evaluation using data-driven approaches is commonly used to complement 
ex-ante engineering estimates in determining the extent to which these programs are associated with 
energy reductions. A critical assumption made during these evaluations is that these reductions would not 
occur without the implementation of the new technology. This assumption is difficult to test, especially if 
other technologies being implemented are not simultaneously being observed. We provide a means of 
detecting unexpected impacts on program estimates by examining concurrent electricity and gas 
reductions from energy efficiency implementation using a panel data of monthly electricity and gas usage 
from 2010 to 2016 in the City of Palo Alto, California. Using difference-in-differences and event history 
approaches, we find evidence of significant gas reductions estimated for electricity-only programs, 
indicating that using only data-driven approaches may not adequately estimate program impacts and the 
value of simultaneous electricity and natural gas measurements for detecting unexpected effects. Lastly, 
we present evidence that energy savings from behavioral interventions can exceed those which offer 
financial rewards for energy efficiency.  
 
A version of this chapter is currently under review in the Environmental Research Letters Journal as: 
Adekanye O.G., Davis A. & Azevedo I.L. “Do LED lightbulbs save natural gas? Detecting 
unexpected program impacts using electricity and natural gas billing data” 
 

3.1. Introduction 
Energy efficiency is a cost-effective way of reducing energy use, with billions of dollars invested 
annually in reducing energy use [47]–[49]. With buildings responsible for about 41% of total U.S. energy 
consumption and around one-third of CO2  emissions, there is the potential of using building energy 
efficiency as a tool in long term energy and carbon reduction goals[1], [6], [50]–[59]. While different 
local and state government bodies across the U.S. have implemented many financial incentives and 
technical support programs in a bid to promote building energy efficiency, the question remains on how 
much is ultimately delivered by a program or technology.  
 
In quantifying the savings of new energy efficient technologies, most studies use a deemed-savings 
approach. For example, a new light emitting diode (LED) lightbulb should reduce energy use in a 
building depending on the number of hours it is used multiplied by the difference in energy use per hour 
compared to a prior technology (such as a CFL or incandescent bulb). Such analyses will be accurate to 
the degree that their assumptions are met in the real world, and will be inaccurate when those assumptions 
are wrong, for example, if LEDs are used more frequently than CFLs. Many studies have compared 
engineering analyses to actual consumption data, finding lower savings in practice than estimates[60]–
[69].  
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Complementing engineering analyses are data-driven approaches, that provide empirical estimates of the 
energy savings of new technology in specific contexts, such as residential households. With the use of the 
appropriate statistical models, it is possible to empirically determine the impact of these new technologies 
on energy use. One of the most fundamental, and difficult to test, is the assumption that the adoption of 
new technology occurs in the absence of other changes to a building’s energy profile. For example, 
estimating the energy savings of installing a few LED lightbulbs requires an assumption that other 
energy-saving approaches are not installed simultaneously, otherwise, some of the energy savings from 
those alternative approaches will be attributed to LED lightbulbs if those alternatives are not included in 
the model. Without observing technologies that are implemented simultaneously with technologies of 
interest, it is impossible to remove that bias from estimates, or even detect whether such a bias is present.  
 
In this study, we provide a means of detecting unexpected program impacts by examining monthly 
electricity and gas billing data from approximately 27,000 households in the City of Palo Alto, California 
(CPA) from 2010 to 2016.  While studies have shown that the substitution to higher efficiency lightbulbs 
may lead to additional heating and reduced cooling needs due to change in change in total heating, 
ventilation, and air conditioning (HVAC) use, the California Public Utilities Commission show that the 
additional HVAC electricity and reduced gas savings for the City of Palo Alto’s climate zone is only 
around 4% and 2% respectively[70]–[72]. Therefore, significant impacts of an LED lightbulb program on 
gas usage is a first-level indication of unexpected program impacts.  
 
3.2. Methods 
 
The primary data for this study is panel data of approximately 27,000 household level (i.e. residential 
single-family homes) monthly electricity and gas consumption billing records from 2010 to 2016 from the 
CPA. Table 3.1 provides more detailed information on the different energy efficiency programs available 
during the timeframe of observation.  
 
Energy program characteristics: We divide the dataset for our analysis into 3 parts: exploratory (20%), 
training (60%), and test (20%) to avoid problems with overfitting. We use 20% of the dataset for 
exploratory analysis to generate models that reasonably fit the data. We preregistered the models using 
the Open Science Framework (https://osf.io/jtnqf/), then used cross-validation to test these models against 
each other on the training 60% of the data. We choose the model with the lowest cross-validation error to 
predict the last 20% of the data (test set). Statistical inference for the candidate models (standard errors, 
confidence intervals) is calculated using the last 80% of the data. We focus on 80% of the dataset 
(excluding exploratory data) for the rest of this paper.  
 
Figure 3.1 shows the average electricity consumption (in kWh/day) and gas consumption (in therms/day) 
for the middle 60% of the data (approximately 16,000 households). We observe seasonal trends both for 
electricity and gas consumption, with the seasonal trends more apparent for gas consumption compared to 
electricity consumption, where consumption is higher on average for both electricity and gas during the 
winter months. We use a log-transformation for both electricity and gas consumption as there are heavy 
right tails in their distributions. Figure 3.2 shows the average electricity and gas consumption information 
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for the year 2016 with and without the log transformation respectively where the log transformation 
yields a more normal distribution pattern. The patterns of heavy right tails in the base case and normal 
distribution in the log transformation case are also seen for all years (see Appendix B.1. for more details). 
 
Table 3.1 - Energy Efficiency program description in the CPA between 2010 and 2016[73] 
 
From the sample of 16,000 households, 3480 households applied for at least one energy efficiency 
program between 2008 and 2015. Figure 3.3 shows the distribution of the energy efficiency programs 
applications over the time frame of our analysis and quarters over which these energy efficiency programs 
were received. The highest number of energy efficiency programs were received in the second quarter of 
2010 when the LED 2/$8 program was rolled out. However, this program was rolled out in  
 
 

 
2010 and ended in 2011. Similar patterns are seen for the Home Energy Kit and CFL programs which 
were implemented over a one to two-year time frame. This yields significant implications for the 
purpose of our analysis as the lack of enough pre-treatment observations may affect the interpretation of 
the results. Other programs like the Smart Energy and LED Holiday lights program are relatively stable 
over the timeframe of our analysis. Collectively these two programs make up the largest percentage of 
energy efficiency programs received (about 86% of the total program enrollment) over the timeframe of 
consideration. Overall, the appliance rebate programs (i.e. Smart Energy program) and lighting programs 

Figure 3.1 - Average electricity consumption (in kWh/day) and gas consumption (in therms/day) for our 
sample in the City of Palo Alto from January 2010 to December 2016 
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(LED Holiday Light, LED 2/$8) account for the highest percentage of energy efficiency programs 
received. Refrigerator Recycling accounts for a much smaller percentage - 8% of total energy efficiency 
programs while Green@home Acterra (i.e. education of residents on green at home practices) accounts 
for only approximately 6% of total energy efficiency programs received (Appendix B.1. contain more 
details).  
 

 
 
 
 

Figure 3.2 - A) Histogram of average electricity consumption per day in 2016. B) Histogram of logged average 
electricity consumption per day in 2016. C) Histogram of average gas consumption per day in 2016 D) 
Histogram of logged average gas consumption per day in 2016. 
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Figure 3.3 - Energy Efficiency programs implemented by the City of Palo Alto between 2010 and 2015 
 
Modeling Strategy: The decision to participate in an energy efficiency program is voluntary, which 
raises concerns about issues such as selection bias. Selection bias occurs where participants of a study 
may share a characteristic which makes them different from non-participants thereby biasing the study 
estimates. Households, for example, may be more concerned about environmental issues – a study in 
2017, indicates that more than six in ten adults favor California making its own policies to address global 
warming[74]. For example, households may be more conscious about environmental issues and therefore 
have a different trajectory of energy use before the implementation of the energy efficiency program.  
 
To account for these issues, we use a combination of difference-in-differences and an event history 
approach to address the issues of selection bias, following the approach used by earlier studies as Ito, 
Fowlie et al., Boomhower and Davis, Novan and Smith, and Zivin and Novan[62], [63], [75]–[77]. 
Firstly, we implement the difference-in-differences approach by comparing the change in electricity and 
gas consumption for households that received an energy efficiency program to those that did not receive 
an energy efficiency program adjusting for time-varying covariates (such as weather). Using a fixed 
effects approach, we examine these changes to reduce the effect of time-invariant unobserved differences 
between households that may affect both energy efficiency program applications and electricity or gas 
usage. We start with a simple difference-in-differences model: 



 24 

 
^_ `aℎc% = ' + -(defghc)	+	1 0e_iℎ4fjkhl% 	+ 		mn ))c% n + Fc%													(3.1)  
 
^_ iℎhljgc% = ' + - defghc + 	1 0e_iℎ4fjkhl% + 		mn ))c% n + Fc%									(3.2)  
 
In Equation (3.1), kWh represents the electricity consumption per day of household p in month t where t 
ranges from month 1 to month 84 (as we have data over a 7-year time frame). defghc and  
0e_iℎ4fjkhl%	represent the household and month-in-timeframe fixed effects to account for time-
invariant household and month effects. As weather patterns are observed monthly do not vary by region 
as all data are obtained from the same area, we capture weather patterns by including the MonthNumber 
variable. ))c% represents the different energy efficiency programs as described in Table 3.1 in the main 
paper and is an indicator variable which takes on a value of 1 onwards after an energy efficiency program 
is implemented and 0 otherwise. Fc%	represents the error term. Equation (3.2) notation is the same as that 
of Equation (1) with the exception of looking into gas consumption in therms instead of electricity 
consumption in kWh. 
 
A key assumption when implementing the difference-in-differences model is the assumption that the 
treatment groups have similar trends to the control groups in the absence of the treatment. In our case, we 
assume that those who receive an energy efficiency program would follow a similar trend to the control 
group if they had not received the program – known as the parallel trends assumption. The difference-in-
differences approach also assumes that the electricity and gas reductions roughly follow a step function 
(evidenced by the pre-post treatment indicators).  
 
Because we have seven-years’ worth of data, we are able to examine the pre and post-treatment trend 
patterns to ensure that the treatment and control groups do not violate the parallel trends assumption. As 
different households receive the energy efficiency program at different times, we standardize the 
modeling framework by implementing an alternate event history modeling framework to account for a 
time 0 for the month a household receives an energy efficiency program as well as 1-12 month windows 
before and after energy efficiency program implementation for the different programs. Months after the 
12-month window is coded as 12+ while months before the 12-month window coded as -12+. We modify 
equations (3.1) and (3.2) for electricity and gas consumption as:  
 
 

^_ `aℎc% = ' + - defghc 	+	1 0e_iℎ4fjkhl% 	+ 	mn op+cpX
pqr +	θt Apucpv

pqX 	+
																												Fc%										(3.3)  
 

^_ iℎhljgc% = ' + - defghc 	+	1 0e_iℎ4fjkhl% 	+ 		mn op+cpX
pqr +	θt Apucpv

pqX 	+
																																	Fc%										(3.4)  
 
where w = (j,… , 3, 2, 1, 0, 1, 2,3, … , z) and +#p are interactions of the energy efficiency program 
indicator (which equals 1 if household p ever adopted the specific energy efficiency program and time 
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dummies for all periods before time 0. Likewise, u#p is the treatment indicator interacted with time 
dummies for all time periods after time 0.  
 
For all models in this study, we include the month number over the entire timeframe of observation to 
capture monthly changes that can impact building energy consumption (such as weather). We also cluster 
the standard errors at the household level to account for autocorrelation between errors of the households 
over different months.  
 
Robustness checks: We conduct several robustness checks to ensure the accuracy of our program 
estimates by using the difference-in-differences modeling framework to implement alternative model 
specifications. Specifically, we compare models (3.1) and (3.2) in the previous section with the results of 
all our robustness checks. Firstly, we examine the sensitivity of the model estimates to account for 
seasonality effects as energy efficiency program impacts may be stronger in the winter, for example, 
compared to the summer. As some of the household-level data contain missing information for some 
months in our timeframe, we examine the electricity and gas reductions with a subset of households with 
more consistent data over the program timeframe. Specifically, we implement a long and short-run 
approach by taking into account shorter (12-month time window before and after program 
implementation) and longer (entire program timeframe) time windows to ensure that our results are not 
driven by outliers from households with inconsistent energy information. We also implement this 
approach to ensure that the reductions captured are indeed as a result of the energy efficiency program 
implementation and not of other factors implemented too in the future. Appendix B.2. provides more 
details of this approach.  
 
We also perform a “shuffle test” where we redistribute information on control and treatment households 
to inspect if we get a non-significance of our model estimates. Due to publicly available reports in 
accordance with the SB 1037 bill implemented by the State of California, we also have access to the 
annual reports documented by the CPA for specific energy efficiency programs [34]. As a result, we are 
able to compare the savings from our data-driven approach with savings from the evaluation, 
measurement and verification process (EM&V) presented by the CPA for some energy programs 
available during the timeframe of our analysis. Finally, we compare the difference-in-differences and 
event history model using the remaining 20% of the data i.e. the test data. We make predictions about the 
test data comparing both model approaches and calculate the residuals to get the root-mean square error 
(rMSE) (See Appendix B.3-5 for more detailed approach and results). 
 

3.3. Results 
 
Energy savings of energy efficiency programs: Figure 3.4a, b shows the regression results on electricity 
and gas consumption respectively using Models (3.1) and (3.2) in the Methods Section (see Appendix 
B.2. for full model results).  
 
From Figure 3.4a, b, we find varied effectiveness of the energy efficiency programs. Of all the programs, 
the Green@Home Acterra program is associated with the highest significant reductions in both electricity 
and gas usage at 6% (95%CI: 2% to 11%) and 6% (95%CI: 2% to 10%) respectively.  
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Figure 3.4 - Regression estimates of energy efficiency program impacts on (a) log electricity consumption 
(kWh/day) and (b) log gas consumption (therms/day) using the difference-in-differences model. Energy 
efficiency programs in green target electricity and gas reductions while programs in gold target only 
electricity reductions. (Green Acterra = Green@ Home Acterra, HEK = Home Energy Kit, Refr. Recycl. = 
Refrigerator Recycling, LED Hol. = LED Holiday Light, CFL = CFL Bulb). Error bars represent 95% 
confidence intervals clustered at the household level. 
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We find significant reductions for electricity but not gas usage at 2% (95%CI: 1% to 3%) and 1% 
(95%CI: -1% to 2%) respectively for the Smart Energy program while the REAP low-income program 
does not show significant reductions in either electricity or gas use. From the program description, a lot of 
appliances qualify for the Smart Energy rebate program and a significant number of appliances can be 
upgraded in households which qualify for the REAP program indicating that savings can vary widely 
from household to household. As a result, the wide ranges estimated for the REAP and Smart Energy 
program may be as a result of the grouping of a large number of appliances which have varied energy 
savings. Surprisingly, we find increases rather than decreases for the Home Energy Kit program. As the 
Home Energy Kit program was implemented and ended in 2010, the first year of the time frame for our 
dataset, there may be a lack of pre-treatment observations to appropriately estimate its effect. We also 
find that the Refrigerator Recycling program is associated with significant reductions in electricity usage, 
however, shows significant increases in gas use. It is unclear why this would be the case as we expect 
significant reductions in electricity use but non-significance with respect to gas use. We implement 
robustness checks in the section below to examine why this might be the case. 
 
We find unexpected effects of some electricity-only programs on natural gas usage. The LED 2/$8 
program shows no significant reductions with respect to electricity use but a small reduction effect with 
gas usage of 3% (95%CI: -0.4% to 5%). The LED Holiday light program shows both significant 
electricity and gas reductions of 4% (95%CI: 1% to 6%) and 2% (95%CI: 0.2% to 5%) respectively. Our 
results indicate that households that receive the LED lighting programs may also be undergoing other 
changes in their households which may be associated with both electricity and gas reductions. 
  
Exploratory investigation of unexpected effects: From the previous section, we find unexpected effects 
of the LED 2/$8 and LED Holiday Light programs on natural gas usage. We hypothesize two of  
the reasons for this effect that might be artifacts of our estimation approach: 1) differences in the number 
of observations for each month over the timeframe of observation and 2) long and short-run effects. The 
observed electricity and gas data for most households in our dataset contain missing data for some 
months. Although these electricity and gas reductions are averaged when estimating different energy 
efficiency program impacts, there is the possibility that these reductions are unusually higher in some 
months compared to others thereby misattributing program impacts. To test this  
hypothesis, we subset our dataset to households who have at least 12 months out of 18 months of pre and 
post-treatment information. We implement this method of subsetting to ensure that we are capturing 
households with at least one full year of data before and after energy efficiency program 
implementation10.  
 
We also assume that significant effects may be estimated as a result of long-run effects as we may be 
capturing other effects too far into the future that may not be as a result of the implementation of the 
energy efficiency program. To compare the long-term impacts with the short term, we subset households 
with at least a full year of pre and post data to capture only the 12-month window pre and post-program 
                                                        
10 Programs such as the Home Energy Kit, CFL Bulb, and LED 2/$8 do not have enough pre-treatment information 
so we subset households with 6 months, 9 months, and 6 months of pre-treatment information respectively (See 
Appendix B.2. for more detailed results). 
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implementation. (Appendix B.2. provides more detailed results). Figure 3.5a, b compares the results of 
the base case (as evidenced in Figure 3.4a, b), long and short-run effects of those with a full year of pre 
and post-treatment information.  
 
As the number of households who qualify for these programs reduces as a result of the constraints on the 
long and short term effects, we examine not only the statistical significance of the programs but also the 
variation in estimates. From Figures 3.5a, b, we find that the majority of the program estimates do not 
significantly vary as a function of the model specification – the Green@Home Acterra program, for 
example, still is the most significant when examining electricity and gas reductions with estimate ranges 
only varying about 1% for electricity and 3% for gas (For electricity reductions – base: 6% (95%CI: 2% 
to 11%), long-run: 6%(95%CI: 1% to 10%), short-run: 7%(3% to 11%) ; For gas reductions - base: 
6%(95%CI: 2% to 10%), long-run: 9% (95%CI: 4% to 14%), short-run: 7%(2% to 11%). Concerns such 
as increases in consumption for the Home Energy Kit and Refrigerator Recycling program, however, 
reduces significantly when examining the long-run and short-run effects indicating that the large number 
of post-treatment data and outliers may indeed impact program estimates. The Home Energy Kit 
electricity estimates, for example, reduces from a -4% (95%CI: -0.3% to -7%) slightly significant 
decrease in the base case to a -1% (95%CI: 4% to -3%) and 2% (95%CI: 2% to -4%) non-significant 
decrease in the long and short-run estimates. 
 
As the detection of unexpected program impacts is a major concern, we examine the LED Lights program 
estimates. The LED 2/$8 program is highly sensitive with respect to the choice of model specification. 
From Figure 3.5b, we find that the short-run estimates are significantly smaller than the base and long-run 
estimates. The LED 2/$8 program gas estimates go from a 3% (95%CI: 0.4% to 5%) and 3% (95%CI: 
0.04% to 6%) reduction in the base and long-run estimates to a 1% (95%CI: -1% to 4%) non-significant 
reduction in short term estimates. Just like the Home Energy Kit program, the LED 2/$8 program was 
implemented in 2010 and 2011, therefore, we hypothesize that we may be capturing other effects in the 
long-term which may be associated with significant gas reductions. The LED Holiday light program, 
however, show more consistent estimates irrespective of the model choice specification and still shows 
somewhat significant reductions in the short term. We find a 2% (95%CI: -0.2% to 5%) and 5% (95%CI: 
2% to 7%) reduction in the LED holiday light gas estimates in the base and long-run case while the short 
term also shows a 2% (95%CI: 5% to -0.2%) reduction.  
 
Event history model approach:  We implement the alternative event history model specification to 
examine individual monthly trends before and after program implementation. We find that generally, the 
event history models for each of the energy efficiency programs roughly approximate a step function 
indicating that the difference-in-differences approach may be appropriate for our analyses (Appendix B.2. 
shows the event history plots).  
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Figure 3.5 - Regression estimates comparing base case, long-run, and short-run estimates of different energy 
efficiency programs impacts on (a) electricity consumption and (b) gas consumption using the difference-in-
differences model. (Green Acterra = Green@ Home Acterra, HEK = Home Energy Kit, Refr. Recycl. = 
Refrigerator Recycling, LED Hol. = LED Holiday Light, CFL = CFL Bulb). Error bars represent 95% 
confidence intervals clustered at the household level 
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3.4. Discussion 
 
In this study, we find evidence of unexpected effects where we observe significant gas reductions for 
electricity-only programs. While ex-ante engineering estimates are being used to estimate the savings 
from the implementation of new technologies, a lot of academic research has begun to use data to 
examine the predicted versus actual savings, with a majority realizing that actual savings are significantly 
lower compared to estimates[62], [77]–[80]. Although varied statistical approaches are used to examine 
the actual impacts of these programs, we find that data-driven approaches need to also be appropriately 
examined as its results may also be biased. Earlier research has mostly used electricity savings (in kWh) 
or energy (KBtu) to examine program impacts, as it is expected, for example, that an electricity-only 
program should ideally only show significant kWh reductions. As randomized control approaches are 
very difficult to design for energy efficiency intervention programs as households decide to opt into a 
program, it is very difficult to tease out if reductions are indeed a function of program implementation of 
other factors [81]–[83]. This is not to say these programs are not effective, as they are meant to serve as 
an introduction to a new energy-efficiency measure. However, households who opt into this program may 
have reduced energy use regardless of whether they got this new energy efficiency measure. Without 
further surveys, the exact reasons for these reductions are unknown, but by using natural gas 
measurements, we are able to provide a first-level indication of unexpected program impacts. We note 
here that we are able to examine unexpected effects because we have access to both electricity and gas 
use data which may not be available for other studies. However, other proxies such as water use can also 
be used in situations where gas use data is not available. We recommend that future work using ex-post 
approaches implement this method of program impacts detection to ensure that savings using actual data 
is indeed accurate.  
 
Our results also contribute to the existing literature on the importance of behavioral programs in energy 
efficiency interventions. We find the highest reductions in electricity and gas usage from the 
Green@Home Acterra program which performs a walk-in energy audit and trains residents on energy 
consumption reduction methods. Here, we find average reductions of 6% on the average of those who 
engaged in the energy audit program offered by the CPA. Our results are in line with earlier research that 
has found reductions in electricity consumption through the use of behavioral approaches[77], [84]–[86]. 
Although it is impossible to detect, by using energy consumption data, if households simply changed their 
behavioral patterns or replaced old equipment to newer more-efficient equipment, we add to the body of 
existing literature which highlights the importance of information provision versus financial incentives to 
reducing energy use. 
 
Our results are subject to some limitations which yield opportunities for future research. While we have 
attempted to disentangle the effects of the program using quasi-experimental approaches, our work would 
be subsequently improved with access to customer demographic and behavioral information which may 
characterize the types of customers and situations surrounding the reasons for opting into a program. 
While this may be cost-intensive, it provides a way of better tailoring programs to the needs of customers 
and helps reduce unexpected program impacts which are measured when examining program 
effectiveness.   
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Energy efficiency programs have the potential to significantly reduce electricity and gas use in buildings. 
However, the ex-post evaluation of these programs need to be appropriately measured to ensure that these 
reductions are indeed associated with policy implementation as significant amounts of money and time is 
invested in the implementation of these programs. Our work, in addition to corroborating existing 
research on energy efficiency program effectiveness, provides a simple approach of detecting unexpected 
program impacts, which can be difficult to identify. 
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4. Using time-varying load profiles to quantify 
the health and climate benefits of energy 
efficiency: Application to residential buildings in 
Pennsylvania 
 
Abstract 
One of the well-established ways of reducing energy consumption and pollutant emissions is through 
energy efficiency. In considering the energy efficiency reduction potential for buildings, most studies 
focus on electricity reductions while impacts on public health, environmental, and climate change are 
often neglected. In this work, we quantify the energy reductions, greenhouse gas and other air emission 
reductions, as well as private net costs and social benefits that would result from implementing energy 
efficiency measures (EEMs) in the residential single-family detached (SFD) housing stock in 
Pennsylvania. We estimate reductions of 36%, 44%, 19%, and 43% of electricity, gas, propane, and fuel 
oil consumption compared to 2017 baseline levels. These EEMs are also associated with total avoided 
emission reductions of 14M metric tons of CO2, 16K metric tons of SO2, 1.4K metric tons of PM2.5, and 
6K metric tons of NOx per year with total health, environmental, and climate change benefits of 
$2.4billion per year (assuming a 7% discount rate). While these EEMs could reduce the SFD carbon 
footprint by 34% compared to 2017 baseline levels, it only meets 6.3% of the total carbon reduction goal 
that has been set by Pennsylvania in 2050 compared to 2005 levels. As many of these measures are cost-
intensive, we recommend that Pennsylvania focus on providing appropriate financing and/or incentive 
options for drill-and-fill insulation, ductless heat pumps (DHPs), LED lighting, and air sealing upgrades 
as these four EEM technologies provide the best balance of private and social benefits for the state. 
 
The contents of this chapter is currently a draft working paper.  
 

4.1. Introduction 
 
In the United States (U.S.), decreasing energy consumption through energy efficiency has become a 
major focus for policymakers at all levels of the government. In 2017, for example, U.S. states spent 
approximately $7.9 billion on utility sponsored energy-efficiency programs with total estimated savings 
of approximately 27.3 million megawatt-hours (MWh) – accounting for 0.72% of total electricity sales 
[87], [88]. Residential building energy efficiency has been identified as one of the most cost-effective 
approaches for not only energy but also emission reductions because residential buildings are responsible 
for about 37% of total electricity sales in the U.S.[89], [90]. Various studies have identified the potential 
for different residential energy efficiency measures such as improved attic insulation, ENERGY STAR 
appliances, lighting upgrades, and other weatherization programs---in reducing not only private energy 
expenditures but also public energy use externalities[54], [56], [91].  
 
In quantifying the benefits from energy efficiency, many studies focus on the economic value of annual 
energy reductions without regards to the time-of-day of these reductions. For example, a study by 
Boomhower and Davis notes that the U.S. Department of Energy (DOE) has historically only considered 



 33 

annual energy savings when examining new appliance energy efficiency standards and building 
codes[75]. Similarly, when states commission analyses to identify potential savings within their 
jurisdictions, they typically focus on total energy savings[92]–[95]. Using the Commonwealth of 
Pennsylvania as an example, analysis was done in 2015 to evaluate the electric energy efficiency potential 
savings for its 7 largest Electric Distribution Companies (EDC). The analysis focused on the independent 
effects of season (summer and winter) and time-of-day (on-peak and on-peak hours, ignoring the time-of-
day variation within each season. Many other studies also examine the economic potential for energy 
efficiency in Pennsylvania but do not include time-of-day effects[94], [96], [97]. When generation, 
demand, and price for electricity vary throughout the day, the timing of demand—and demand reductions-
-becomes more important[98]. Although states like California are beginning to incorporate the use of 
hourly electricity load profiles in utility-sponsored energy-efficiency programs, end-use load profiles are 
very limited across energy-saving measures as well as geographically [99].  
 
Environmental costs associated with electricity consumption vary by time-of-day, season, and location. 
As electricity generation is a major source of air pollution--including criteria pollutants (e.g. PM2.5, SO2, 
and NOx) and greenhouse gas emissions (e.g. CO2), significant health and environmental benefits can be 
achieved by energy efficiency. However, few energy efficiency potential studies consider these emission 
reductions, let alone how they vary with time-of-day. Some studies use an “average emissions factor” 
(AEF) approach which divides total annual electricity production by the total annual emissions[100]–
[105]. By using the AEF approach, these studies assume that decreased energy use has the same impact 
on emission reductions at any time of day. Alternatively, the “marginal emissions factor” (MEF) approach 
is a significant improvement to the traditional AEF method as it accounts for varying generation that is on 
the margin (e.g. coal vs wind) hour by hour [106]–[108]. Studies that have used the MEF approach to 
estimating energy reductions focus only on a few energy efficiency measures at a national scale--e.g. 
residential insulation[109], [110], air conditioners and lighting[111]. Others assume that the success of 
national or regional demand-side management programs will have large effects on reducing peak 
load[103], [112].  
 
While the potential benefits of building energy efficiency with regards to electricity reductions, air 
quality, and health impacts are generally understood, the lack of granular data--e.g. local (sub)hourly load 
profiles--hinders the accurate quantification of these benefits. We find that most studies either do not have 
access to more detailed energy data or quantify the benefits in a way that may be misleading--e.g. the use 
of AEF vs MEF when quantifying social benefits. In this study, we improve upon these existing 
approaches by using publicly available hourly energy and emissions level data to measure the energy 
reductions and associated health and environmental impacts in residential single-family detached (SFD) 
homes using Pennsylvania as a case study. Specifically, we focus on understanding the best energy 
efficiency measures (EEMs) which balance both private and social benefits and the extent to which 
Pennsylvania should encourage SFD homes to invest in these measures. We estimate that Pennsylvania 
could reduce its CO2 emissions by 34% and its annual environmental health damages by $2.4billion 
compared to the 2017 baseline levels through residential EEMs in its building stock. However, many of 
these EEMs are cost-intensive, therefore we recommend that PA support these EEMs through equity-
oriented programs. While our results are specific to Pennsylvania, the method can be applied to other 
states or cities in the United States and can help identify the most cost-effective EEM investments for 
meeting broader public environmental goals. 
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The rest of this paper is organized as follows. First, we explain our data and methods. Next, we present 
our results, which includes the energy savings, emission reductions, private net costs, and social benefits 
of 14 different energy efficiency improvements. We then analyze the impacts of discount rates on energy 
reductions. Finally, we discuss the implications and limitations of our results.  
 

4.2. Data and methods 
 
We estimate the energy reductions, CO2, SO2, PM2.5, and NOx emission reductions, private net costs, and 
social benefits of 14 different EEMs to PA’s SFD baseline stock. Table 4.1 provides a description of the 
different upgrades considered as well as the baseline--or reference scenario--for the different upgrades. 
See Appendix C.1. for more detail. As the different upgrades have different lifetimes, we present all 
results in annualized values. We assume that all upgrades are available for implementation immediately 
with a baseline discount rate of 7%, which is the average discount rate used presently in Pennsylvania in 
determining the cost-effectiveness threshold utilities must meet[113]. However, we conduct a sensitivity 
analysis varying the discount rates at 3% and 15%. Our analysis approach is shown in Figure 4.1 and 
summarized as follows: (1) we use NREL’s ResStock methodology via the Open Studio Parametric 
Analysis tool (PAT) to characterize PA’s baseline housing stock, baseline energy consumption as well as 
upgrade energy consumption scenarios for each EEM considered,  (2) we estimate the energy savings for 
each EEM by subtracting the baseline/reference case from upgrade scenarios, (3) we estimate the 
emission reductions for the different EEMs, (4) we quantify the private net cost of each upgrade by 
subtracting the incremental cost of the EEM from the cost of energy savings, and (5) we monetize the 
avoided emissions by estimating the avoided damages associated with reduced emissions using a reduced 
form air quality model. In Table 4.2, we summarize the different data sources used in this analysis. We 
describe each of the model components in the sections that follow, with more information about the 
modeling assumption in Appendix C.1.  
 
Table 4.1 - Description of the different energy efficiency upgrades considered in this paper 

Upgrade Category Upgrade Name Upgrade Description Reference** 

Enclosure Air Sealing 

 
25% reduction in building 

enclosure filtration 
Baseline 

(do nothing) 

Enclosure 
Drill-and-fill wall 

insulation 

 
Add fiberglass cavity insulation to 

uninsulated wood frame walls 
Baseline 

(do nothing) 

Enclosure Duct Sealing 

 
Seal and insulate ducts in 

unconditioned spaces 
Baseline 

(do nothing) 

Enclosure Low-E Storm Windows 

 
Install low-E Storm windows on 
single and double pane windows 

(DIY) 
Baseline 

(do nothing) 

Enclosure R-10 Finished Basement  
Baseline 

(do nothing) 
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Add R-10 interior XPS to walls 
and rim joists of unfinished 

basements 

Enclosure R-10 Unfinished Basement 

 
Add R-10 interior XPS to walls 

and rim joists of finished 
basements 

Baseline 
(do nothing) 

Enclosure R-49 Attic Insulation 

 
Add R-49 blown-in insulation to 

attic floor 
Baseline 

(do nothing) 

HVAC* 

Ductless Heat Pumps 
(DHP) -(displaces electric 

baseboard) 
Displace electric baseboard with 

DHP (SEER 19.3, HSPF 14) 
Baseline 

(do nothing) 

HVAC* 
Heat Pump Water Heater 

(HPWH) 

 
Upgrade electric water heater (≤55 
gal) to HPWH (50 gal) at wear out 

Federal minimum 
standard 
(EF 0.95) 

HVAC* 
Central Air Source Heat 

Pumps(ASHP) 

Upgrade conventional heat pump 
to variable speed heat pump 

(SEER 22 HSPF 10) 

Federal minimum 
standard 

( SEER 14 HSPF 7.7) 

Appliance AC,SEER 18 

 
Upgrade central air conditioner to 

SEER 18 at wear out 

Federal minimum 
standard 

(SEER 13) 

Appliance 
ENERGY STAR Clothes 

washer 

Upgrade clothes washer to 
ENERGY STAR at wear out 

(123kWh/yr) 

Federal minimum 
standard 

(387 kWh/year) 

Appliance 
ENERGY STAR 

Refrigerator 

Upgrade refrigerator to ENERGY 
STAR at wear out 

(EF 19.9) 

Federal minimum 
standard 
(EF 17.6) 

Lighting LED Lighting 

 
Replace lamps with LED (80 

lumens/watt) 
Baseline 

(do nothing) 
* HVAC = Heating, Ventilation, and Air Conditioning, 
** Reference scenario represents the business-as-usual point of comparison for upgrade scenarios. For some 
upgrades, such as insulation upgrades, the reference is the existing condition. For other upgrades, such as equipment 
upgraded at wear out, the reference is the current federal standard. 
 
 
4.2.1. Characterizing Pennsylvania’s baseline housing stock and energy consumption of 
baseline and upgrade scenarios 
 
We use NREL’s ResStock tool to characterize the baseline housing stock and baseline/upgrade energy 
consumption for SFD homes in Pennsylvania. ResStock is an energy simulation tool that uses probability 
distributions of SFD homes across the country to simulate representative samples of the housing stock 
across different locations in the U.S. We choose ResStock because it provides a detailed level of 
granularity mostly unavailable in other energy efficiency potential studies. To characterize the baseline 
building housing stock in the U.S., NREL uses building characteristics curated from multiple data sources 
such as national residential consumption surveys and other data from field studies to develop a data model 
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needed to represent the energy-related characteristics of the U.S. SFD housing stock. Next, they use a 
modified Latin Hypercube sampling approach to select representative homes defined by the housing stock 
data model. With a sampling approach, they identify 350,000 homes as the number of building/location 
models needed to represent the current U.S. housing stock. Weighting factors used to scale 350,000 to the 
80 million SFD homes are included in the analysis. Next, they leverage the capabilities of EnergyPlus, the 
Department of Energy’s flagship energy simulation energy to determine the subhourly annual (i.e. 
electricity, natural gas, fuel oil, and propane) usage using the building characteristics defined. This 
housing stock model was also validated by comparing modeled consumption against the U.S. EIA’s 
Residential Energy Consumption Survey 2009 with iterative changes made to bring modeled 
consumption closer to the reference consumption[114]. In Appendix C.2, we provide a more detailed 
explanation of their modeling procedure, and for more details, the reader can refer to Wilson et. al[57]. 
Apart from the advantage of the detailed level of granularity, the tool allows for the ability to analyze 
different scenarios of interest even for a specific utility or service territory by selecting different input 
combinations. 
 

 
 
We characterize Pennsylvania’s baseline housing stock and energy consumption using the ResStock tool 
as follows. First, we select 8 out of the 216 TMY3 regions presented in the tool which capture the 
Pennsylvania area. With the capabilities of Energy Plus, the tool outputs the hourly energy consumption 
of the representative baseline homes (16,168 homes in Pennsylvania’s region). These hourly resolution 
outputs are then combined and scaled up to represent the 2.9 million residential SFD homes in 
Pennsylvania. Next, we re-simulate the baseline housing stock using the tool with the assumption that the 
baseline homes have been “replaced” with the new EEM. With these simulations, we are able to compare 
the baseline energy consumption with that of the energy efficient case for the different EEMs. 
  

Figure 4.1 - Flow diagram depicting all components in our simulation approach 
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Table 4.2 – Inputs and Data Sources used in the analysis 

Variable Source Reference 

Building load profile 
Simulations run using NREL ResStock 

tool [57] 
Utility rates (Electricity, Natural Gas, 

Propane, and Fuel Oil) EIA 2017 Residential Rates for PA [115]–[117] 

Equipment Upgrade Cost NREL Energy Efficiency Measures 
Database [118] 

Emissions Factors from Electricity 
Generation Center for Climate and Decision Making 

Electricity Marginal Factor Estimates  [119] 
Emission factors from Natural 

Gas/Propane/Fuel Oil Combustion 
U.S. Environmental Protection Agency 

(EPA) Emission Factors [120] 

Health and Environmental Damage Factors 
EPA Social cost of Carbon, AP3 Model [121], [122] 

 
4.2.2. Energy savings for EEMs 
 
We estimate the total annual electricity savings for the different EEMs by subtracting the hourly 
electricity demand of the baseline from that of the upgrade case for the subset of the housing stock which 
qualify for that upgrade. Using the R-49 Unfinished Attic Insulation as an example, we know that 30% of 
homes in Pennsylvania have Attic insulation levels of R-49 and the remaining 70% have insulation levels 
of R0 (Uninsulated) to R-38 levels. Therefore, to determine the total electricity savings for the R-49 
upgrade, we calculate the following: 
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16168 			(4.1) 

   
Since 70% of homes qualify for the R-49 attic insulation upgrade (11317 = 70% × 16168 baseline homes 
in Pennsylvania) , we subtract the individual baseline electricity savings for those homes from the 
upgrade scenario (i.e. )^h{Ç�ÉÑ − )^h{Öcv), sum them up on the hourly level and then scale up by 
(2.9M/16168 ~= 180)  to determine the total electricity savings for R-49 unfinished attic upgrades in the 
Pennsylvania’s housing stock. For natural gas, propane, and fuel oil savings, we use yearly consumption 
estimates before and after the implementation of the upgrade to determine the total savings for the subset 
of homes which qualify for the upgrade. We aggregate on a yearly level as we are not concerned about the 
timing of the savings for these energy use types.  
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4.2.3. Avoided Health, Environmental, and Climate Change Emissions 
 
To determine the total avoided emissions from reducing pollutants of CO2, SO2, PM2.5, and NOx for the 
different EEMs, we perform two analyses: first, we estimate the avoided emissions from pollutant 
reductions through electricity reductions, then we estimate the emission reductions from the residential 
combustion of natural gas, propane, and fuel oil savings.  
 
To determine the avoided emissions from electricity reductions, we use the Marginal Emissions Factor 
(MEF) approach. We estimate the avoided marginal emissions by using MEF estimates from the Center 
of Climate and Energy Decision Making (CEDM) “Electricity Factors Emissions” website by Azevedo et. 
al.[119].These estimates, similar to that used in the Siler-Evans et. al. paper uses a regression model 
approach which uses the Continuous Emissions Monitoring System (CEMS) Environmental Protection 
Agency’s data for 8 NERC regions in the U.S. to calculate the change in fossil generation and emissions 
by hour of day and by season[123]. We use 2017 Marginal Emission factor estimates for the Reliability 
First Corporation Region (RFC) region (in kg of pollutant per MWh) to determine the avoided emissions 
per hour. Therefore, total emission reductions of pollutant per EEM from electricity reductions can be 
presented mathematically as:   
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where ïe^	is the pollutant type and MEF is the marginal emissions factor for the different pollutants. 
Next, we estimate the emission reductions from the residential combustion of natural gas, propane, and 
fuel oil using the EPA’s National Emissions Inventory database which includes emission factor estimates 
of CO2, SO2, PM2.5, and NOx. Reductions from the residential energy combustion are presented 
mathematically as: 
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where òi is the fuel type and  9|}~_zgñ%			is the annual energy savings of the fuel type (i.e. annual natural 
gas, fuel oil, or propane savings) while )2 is the emission factor value for the fuel type. Total avoided 
emission reductions are then estimated by summing up emissions reductions from electricity reductions 
and that from residential energy combustion.  
 
4.2.4. Private net-cost of energy efficiency upgrades 
 
The private net cost of an EEM equals the upgrade cost minus the energy savings. We estimate the 
upgrade cost as the cost of improving the baseline stock to the more energy-efficient equipment. Using 
the R-49 attic insulation example, we estimate the total cost of upgrading to R-49 insulation by summing 
up the individual upgrade costs of Uninsulated, R-13, R-19, R-30, R-38 to R-49 insulation from the 
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baseline/reference scenarios for the appropriate subset of the baseline housing stock. As explained above, 
these results are scaled up to capture the total costs for the subset of homes which qualify for the attic 
insulation upgrade. We consider only installation costs for this analysis (maintenance costs are excluded) 
and annualize the cost results as the lifetime for upgrades vary by equipment. We obtain measure cost and 
lifetime data for each of the equipment upgrades from the NREL Residential Energy Efficiency Measures 
database and use a baseline discount rate of 7% with alternative rates of 3% and 15% (we assume 3% is 
the social discount rate and 15% represents a discount rate closer to EPA’s participant’s discount 
rate)[57], [113], [124], [125]. We estimate the annual energy cost (in $) by multiplying the total energy 
(i.e. electricity, natural gas, propane, and fuel oil savings) by the average electricity, natural gas, propane, 
and fuel oil price respectively in the Pennsylvania’s region for the year 2017 as provided by the Energy 
Information Administration (EIA)[115]–[117].  
 

The private net costs can be presented mathematically as:  
 

4hi	?ïzl|ëh	.egiHHì[
$
Ål] = 	5__. ?ïzl|ëh	.egiHHì[

$
Ål] − 5__. )_hlzÅ	9|}~_zgHHì[

$
Ål]				(4.4)	

	
where 5__. ?ïzl|ëh	.egiHHì and 5__. )_hlzÅ	9|}~_zgHHì	is the annualized upgrade cost and 
annualized energy savings of the EEM.  
 

4.2.5. Avoided Health, Environmental, and Climate Change Emissions and Monetized 
Damages 
 
To determine the monetized benefits from reducing pollutants of CO2, SO2, PM2.5, and NOx for the 
different EEMs, we perform two analyses: first, we estimate the benefits from pollutant reductions 
through electricity reductions, then we estimate the monetized benefits from the residential combustion of 
natural gas, propane, and fuel oil savings.  
 
To obtain the monetized benefits from reduced pollutant emissions from electricity generation, we use the 
marginal damage factor values expressed in dollars per ton of emissions of SO2, PM2.5, and NOx for the 
year 2017. We obtain the location-based marginal damage factors from the AP3 model  - the updated 
version of the Air Pollution Emissions Experimental and Policy analysis model (APEEP) as described in 
the paper by Muller N.[121] This model estimates the dispersion of pollutants and the resulting 
concentration at different resolutions – from block groups up to the national level, and relies on the dose-
response function to estimate physical impacts. This model then monetizes the impacts by using inputs 
such as the values of statistical life (which is assumed to be $9.8M in 2017 USD) for SO2, PM2.5, and NOx 

.We assume that marginal damages for CO2 are $40 per ton following EPA’s Social Cost of Carbon for 
Regulatory Impact analysis[122]. Next, we multiply the location-based marginal damage factor values 
obtained on the state level and the time of day marginal emission factor estimates explained in 4.2.3 
above to obtain a $ per kWh value – which is then multiplied by the avoided hourly electricity 
consumption for the different EEMs for each hour in the year. The hourly estimates are then combined to 
obtain yearly value estimated of monetized benefits. This can be expressed mathematically as: 
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We then estimate the avoided damages from the residential combustion of propane, fuel oil, and natural 
gas for the different pollutants by multiplying the marginal damage factor values from the AP3 model by 
the avoided marginal emission estimates obtained in equation (4.3) above. This can be expressed 
mathematically as: 
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where 08ñ% is the marginal damage value of the fuel type. The avoided damages from electricity 
generation and residential energy combustion are then summed up to get total avoided monetized 
estimates from reduced pollutant emissions.  
 

4.3. Results 
 
4.3.1. Total electricity potential and avoided emissions for different energy efficiency 
measures 
 
In Table 4.3, we show our baseline consumption and total reduction potential of implementing the 
different EEMs for residential SFD homes in Pennsylvania. We estimate a baseline consumption of 
39TWh of electricity, 1.3 billion therms (130MMBTu) of natural gas, 36MMBTu of propane, and 
74MMBTu of fuel oil accounting for a total of 373.4MMBTu site energy consumption in the residential 
SFD housing stock in Pennsylvania. Comparing our estimates 2017 EIA estimates for residential homes 
in Pennsylvania, with the assumption that 58% of total consumption is from residential SFD homes11, 
electricity and natural gas consumption are 32TWh of electricity and 132MMBTu of natural gas 
respectively. These EEMs also result in about $3.4 billion per year in energy bill savings. The total 
avoided marginal emissions associated with these EEMs amount to approximately 14M metric tons of 
CO2, 16K metric tons of SO2, 1.4K metric tons of PM2.5, and 6K metric tons of NOx per year. Putting this 
number in context, Pennsylvania established its first statewide goal in 2019 of reducing total greenhouse 
gas emissions by 80% in 2050 compared to 2005 levels12. While this paper estimates that EEMs could 
reduce Pennsylvania CO2 emissions by 34% compared to 2017 baseline levels in the residential sector, it 
would reduce the total Pennsylvania CO2 emissions—including all end-use sectors-- by just 6.3% in 2050 
compared to 2005 levels, while accounting for 21% of total emissions in just the residential sector.  

                                                        
112018 baseline study for Pennsylvania indicates that 58% of total residential consumption comes from SFD homes: 
http://www.puc.pa.gov/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf 

12 https://www.governor.pa.gov/governor-wolf-establishes-first-statewide-goal-reduce-carbon-pollution-
pennsylvania/ 
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Table 4.3 - Baseline consumption and reductions through energy efficiency measures in the residential SFD 
stock in Pennsylvania 

Source Baseline consumption Reductions through EEMs (% 
reduction) 

Electricity  39TWh  14TWh (36%) 
Natural gas 130MMBTu 57MMBtu (44%) 

Propane 36MMBtu 7MMBtu (19%) 
Fuel Oil 74MMBTu 31.5MMBtu (43%) 

 

4.3.2. Mitigation supply curves for CO2, SO2, PM2.5, and NOx 
 
In Figure 4.2, we provide mitigation supply curves from the implementation of the different EEMs where 
we compare the private cost per ton of pollutant avoided to the total magnitude of CO2, SO2, PM2.5, and 
NOx saved. The width of each block is the net cost of avoided emissions (i.e. cost of upgrade minus utility 
savings from the upgrade) and the height of the block is the total metric tons of pollutant saved from the 
implementation of the upgrade. Therefore, tall blocks have very good economics and wide blocks have 
large potential savings. 
 
From Figure 4.2, we find that at a 7% discount rate, not all EEMs considered are cost-effective (e.g. low-
storm windows, duct sealing, and R-10 basement insulation upgrades are not cost-effective). Also, we 
find that EEMs which make the most economic sense do not necessarily save the largest amount of 
emissions. Drill-and-fill insulation and high-efficiency ductless heat pumps (DHPs), for example, save the 
largest amount of pollutants among all the EEMs considered though they are relatively expensive. More 
interestingly, we find that the choice of an EEM is dependent on the type of pollutant reduction that is 
being considered. For example, LED lighting is more cost-effective than drill-and-fill wall insulation 
when considering CO2 and SO2 emission reductions, while the reverse is the case when considering NOx 
and PM2.5 emission reductions. As pollutant emissions vary to different degrees by hour and time of year 
e.g. NOx emissions are highest in non-summer months, therefore EEMs which result in significant 
heating savings (e.g. drill-and-fill insulation) may save higher NOx pollutants  
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compared to loads which are more constant throughout the year (e.g. lighting loads). Overall, for all 
EEMs, we find that LED lighting, Central Air Source Heat Pumps (ASHP), DHPs, and Drill-and-fill wall 
insulation consistently provide the highest economic opportunities to reduce all pollutants. However, 
these results are sensitive to the choice of the discount rate selected. Because the magnitude of emissions 
reductions does not vary with the choice of discount rate, we compare the economic benefits i.e. $/ton of 
pollutants avoided for the different upgrades with discount rates of 3%, 7%, and 15%. Figure 4.3 
compares these estimates for CO2 emission reductions where we find that while all EEMs are cost-
effective at very low discount rates (3%), only Central Air Source Heat Pumps (ASHP), LED lighting, 
DHPs, and ENERGY STAR refrigerators pass the cost-effectiveness criteria at much higher discount 
rates (15%). Appendix C.3 provides a sensitivity analysis for the different pollutant types with varying 
discount rates. These results are not surprising because the choices that were cost-effective at lower 
discount rates have very high lifetime values with annualized costs spread out over a long time. However, 
the options with lower lifetime values become more cost-effective as the discount rates increase. Other 
work finds that households may choose not to invest in options with long lifetime values as consumer 
implicit discount rates13 are very high and would rather choose options with much lower lifetime values. 
It is very important for policymakers to take into consideration the key differences such as lifetime values 

                                                        
13 The implicit discount rate can be defined as “…the value of the discount rate for a hypothetical net-

present- value-maximizing consumer that best matches observed choice behavior”)  
 

Figure 4.2 - Mitigation supply curves comparing the private net-cost of different EE upgrades with the 
annual avoided CO2, SO2, NOx, and PM2.5 emissions (metric tons) for different energy efficiency (EE) 
upgrades in the state of PA. Each block represents an EE upgrade. The width of each block indicates the 
emission savings provided by the implementation of the upgrade, while the height of the block represents the 
net cost of conserved pollutant.   
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and especially the choice of discount rates when making decisions between competing energy efficiency 
upgrades 
 
4.3.3. Comparison of marginal and average emission reduction 
 
We compare the estimates of the avoided average emission reductions from electricity generation for the 
different EEMs to serve as a comparison to our marginal emission factor estimates. Here, we find 
deviations of average emissions to marginal emissions for the different pollutants as CO2: +11% to +13%, 
SO2: -46% to +13%, PM2.5: +1% to +3%, and NOx: -3% to +2% (see Appendix C.4 for more details). For 
example, the largest discrepancy is in SO2 emission estimates because of a greater difference between 
peak and off-peak marginal emission rates driven by the frequency of coal being the marginal generator. 
Because air conditioners are mostly used in the summer, with lower marginal rates compared to the rest of 
the year, avoided emission reductions using average values of SO2 for air conditioners are overestimated 
by 13%. However, for upgrades like ductless heat pumps which have higher winter consumption 
compared to the summer, we underestimate the SO2 emission reductions using average values compared 
to marginal values.  
 

 
 

Figure 4.3 - Comparison of the net cost of avoided CO2 for different EE upgrades using 3%, 7%, and 15% 
discount rates. Estimates less than 0 are cost-effective while those greater than 0 are not cost-effective. 
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4.3.4. Social benefits of energy efficiency upgrades 
 
We monetize the total avoided emission reductions through the implementation of different EEMs. In 
Figure 4.4, we provide a comparison of the net cost of the different upgrades to the social benefits from 
the upgrades using our baseline discount rate of 7% (see Appendix C.5 for discount rates of 3% and 
15%). Here, we sum the social benefits from CO2, SO2, PM2.5, and NOx into a total avoided damage $ 
value. Overall, we estimate total social benefits on the order of $2.4 billion per year with from CO2, SO2, 
PM2.5, and NOx savings accounting for 26%, 54%, 19%, and 1% of total benefits respectively (See 
Appendix C.5 for a breakdown of the benefits by EE upgrade and pollutant type). We find that majority 
of social benefits are from reductions of SO2 which has been shown to have very harmful effects both to 
the health and the environment, for example, through its contribution to respiratory illnesses, acid rain, 
reduction of visibility in certain locations in the U.S.14  
 

 
Figure 4.4 - Comparison of total net upgrade cost to total avoided damages from all pollutant emission 
reductions for different EE upgrades at a 7% discount rate 
 
We also find that all the EEMs yield higher social benefits than private benefits which vary widely 
depending on the type of EEM considered. For example, it is more beneficial for the government to 
subsidize heat pump water heater (HPWH) upgrades even though it is not as cost-effective as central air 
source heat pumps (ASHP) upgrades as the social benefits for HPWH is higher than that of central ASHP 

                                                        
14 https://www.epa.gov/so2-pollution/sulfur-dioxide-basics 
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upgrades (Total private net cost for HPWH vs central ASHP: +$4M vs -$40M, Avoided damages for 
HPWH vs central ASHP upgrades: $70M vs $53M). Overall, we find that with a discount rate of 7%, the 
top 4 upgrades which yield both high private net benefits as well as social benefits are drill-and-fill 
insulation, DHP, LED lighting, and air sealing upgrades. However, just like in section 4.3.2, the choice of 
these upgrades (especially when considering net private benefits) will change depending on the choice of 
the discount rates. 
 

4.4. Discussion 
 
In this work, we estimate the potential energy generation, emission reductions, private net benefits, and 
social benefits of implementing a variety of EE upgrades in the residential SFD housing stock in PA. 
Results from our analysis estimate a baseline consumption of 39TWh of annual electricity generation 
serving about 2.9 million homes in the state. We estimate reductions of 36%, 44%, 19%, and 43% in 
baseline electricity, gas, propane, and fuel oil consumption from the implementation of these different EE 
upgrades. These reductions are also associated with total avoided marginal emission reductions of 14M 
metric tons of CO2, 16K metric tons of SO2, 1.4K metric tons of PM2.5, and 6K metric tons of NOx per 
year. Putting this number in context, we estimate that the different EEMs could reduce the SFD carbon 
footprint by 34% compared to 2017 baseline levels and meet 6.3% of the total carbon reduction goal that 
has been set by Pennsylvania in 2050 compared to 2005 levels. Within the scope of our analysis, our 
discussion falls into three main categories. 
 

4.4.1. The choice of marginal versus average emissions are important in estimating the 
potential for energy efficiency 
 
From our analysis, we find deviations of average emissions to marginal emissions from the different 
pollutants ranging from as high as +11% to as low as -46% depending on the EE upgrade and the 
pollutant considered. These results indicate that the method chosen for an emission estimate can have 
serious implications for its results. As explained in section 3.2, because of the frequency of coal as the 
marginal generator in the U.S., there is a greater difference in on-peak and off-peak marginal emission 
rates. We note here that these results are not typical to the Pennsylvania region alone – for example, 
Smith and Hittinger estimated the differences between AEF and MEF reductions of CO2 lighting 
upgrades by almost a factor of three in the upstate New York region (AEF reduction was estimated at 
300kg/year compared to MEF reductions of 800kg/year)[111]. As NY’s electricity is mostly composed of 
nuclear, natural gas, and hydro, the AEF emission, especially for upstate NY, is low as hydropower and 
nuclear plants produce no emissions. However, in NY, natural gas plants are the marginal power plant 
meeting demand when lighting is in use. As a result, the marginal emission reductions are higher than the 
average emission reductions as natural gas is meeting demand when the LED lights are in use. Therefore, 
it is beneficial to accurately capture these emission reductions as simpler AEF estimates may be 
misleading.  
 
This is not to say that our estimation method is perfect. For example, our MEF estimates are gotten from 
the CEMS database which is limited to fossil-fuel generators greater than 25MW. Therefore, the MEF 
estimates do not account for renewable energy sources or small fossil-fuel generators indicating that our 
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estimates are only valid if a CEMS-exempt generator does not operate on the margin[123]. As more 
renewables are being included in electricity dispatch, there is the possibility of the displacement of the 
marginal generator e.g. natural gas may be used more frequently instead of petroleum during peak 
periods. Similarly, we note that these estimates are based on 2017 power-plant data, indicating that these 
results may change as plants go out of commission or new ones are installed. It is therefore very 
important for future work to keep track of changes to the generation mix especially with the displacement 
of marginal generators as results may largely differ depending on these factors.  
 
 

4.4.2. Bridging the gap between private and social benefits through energy efficient 
measures 
 
Our analyses indicate that the selection of an EEM is highly dependent on the stakeholder and the type of 
reductions that they are most concerned about. For example, homeowners are more inclined to consider 
upfront investments when making their decision to choose an EEM while the government may be more 
interested in broader health and climate change implications. In 2015, Pennsylvania passed Act 129 where 
it set for Investor Owned Utilities (IOUs) amounting to yearly statewide electric energy incremental 
savings of 0.8% for 2016-2020 [126]. Since then, lighting programs have been overwhelmingly 
implemented --accounted for 70% of overall gross savings from energy efficiency in the state in 2018--as 
it has been identified as the greatest opportunity for demand reductions in the state[126], [127]. However, 
as the state is thinking more critically about broader climate impacts e.g. through the new greenhouse gas 
reduction goal in January 2019, it is important to examine which of the EEMs can provide both the 
private benefits i.e. in terms of cost reduction potential as well as provide the highest social benefits. Our 
results indicate that drill-and-fill insulation, DHP, LED lighting, and air sealing upgrades balance the 
choice of net-private and social benefits for the state. These results, however, are very sensitive to the 
choice of the discount rates e.g. drill- and-fill and air sealing upgrades are not cost-effective at higher 
discount rates of 15% as seen in Figure 3. Results have shown that the implicit discount rates15 for 
consumers when making the choice of purchasing an EEM can range from as low as 0% to as high as 
825% depending on the EEM considered[128], [129]. Therefore, it is highly important that the state 
identifies the implicit discount rates for households who may intend to purchase these EEMs and provide 
adequate financing to encourage households to invest in these EEMs.  
 
4.4.3. Other considerations: Marginal Emissions Estimation approach, Social Cost of 
Carbon, and other co-benefits from energy efficiency 
 
From this work, we highlight the importance of the use of the MEF approach to estimating emission 
reductions from the implementation of different EE upgrades. While we use an integrated air quality 
model (i.e. the AP3 model) to estimate the different emission reductions, we recognize that other dispatch 
or regression models exist[123], [130]–[136]. Although some studies have compared different integrated 
air quality models with results showing little sensitivity, we suggest that future work compare multiple 
models to ensure that the results are qualitatively identical[122].  
                                                        

15 The implicit discount rate can be defined as “…the value of the discount rate for a hypothetical net-
present- value-maximizing consumer that best matches observed choice behavior”)  
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Secondly, we acknowledge that our valuation of social benefits may very low. For example, we value 
CO2 reductions at $40 per metric ton[122]. While this number has been widely recognized and accepted, 
researchers and experts argue that it is far lower than the true cost of carbon pollution[137]–[139]. 
Therefore, it is important for future work to take into account the changes in the valuation of these 
different pollutants. 
 

4.5. Conclusion 
 
Based on our case study, we estimate that Pennsylvania could reduce its CO2 emissions by 34% compared 
to 2017 baseline levels and its environmental health damages by $2.4 billion per year through residential 
EEMs in its SFD building stock. However, many of the EEMs examined in our study are relatively 
expensive and have relatively low private benefit. Given our results, we would recommend focusing on 
drill-and-fill insulation, DHP, LED lighting, and air sealing EEM technologies, which could reduce total 
Pennsylvania CO2 emissions by 37% and its environmental health damages by $1.6 billion per year at a 
much lower abatement cost. Because our results are sensitive to the choice of discount rate, we suggest 
that Pennsylvania support these 4 EEM investments by offering the appropriate incentive and/or financing 
programs. However, it is important that these programs are structured equitably. A recent study by 
Jacobsen, for example, shows significant variation in the types of subsidies received by income levels. He 
compares tax credits, manufacturer/retailer rebates, and utility rebates and found the highest concentration 
of tax credits in higher-income households with the lowest concentration for utility rebate[140]. These 
results suggest that energy efficiency benefits may be disproportionately flowing to higher-income 
households if, for example, a larger amount of funds is allocated to tax credits compared to utility rebate 
programs.  While different states in the U.S. are delivering specialized programs for low-income 
customers as a way to reduce the high energy burden experienced by these groups, it is also pertinent that 
the strategies being used are indeed effective.  
 
Through the Act 129, Pennsylvania stipulated that each EDC obtains at least 5.5% of its consumption 
reduction from programs solely directed at low-income customers, available at no cost. We find that 
efficiency lighting and LED saturation is significantly higher in low-income homes than non-low-income 
homes. These results are not surprising because over 70% of gross savings in Pennsylvania came from 
lighting measures[127]. On the contrary, we find that low-income households have significantly higher 
(i.e. less efficient) air leakage rates compared to non-low income households. These results suggest that 
Pennsylvania’s mandates may maximize participation rates and not achieve deep savings by individual 
households e.g. through the overwhelming number of lighting upgrades being implemented[141]. 
Although some low-income upgrades in Pennsylvania have focused on drill-and-fill wall insulation, air 
sealing, and DHPs upgrades, more penetration is needed so that these EEMs achieve the required health 
and climate change benefits. For example, only 4 out of the 7 EDC’s implemented some DHP upgrades 
for low-income households in 2018.  
 
We recommend that Pennsylvania also specifically align with existing efforts to serve low-income 
households. While Pennsylvania has begun attempts to coordinate the Weatherization Assistance Program 
(WAP) with its Low-Income Usage Reduction Program (LIURP) as well as its Act 129 Low-Income 
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Program in 2012, with an MOU in 2016 implemented to facilitate data sharing between all the agencies 
weatherization programs, this MOU has not been posted or made publicly available[142]. States such as 
Ohio and Massachusetts, however, have had successful low-income programs which benefited from a 
streamlined and effective delivery of state coordination serving low-income households e.g. through the 
Massachusetts Low-Income Energy Affordability Network (LEAN) and the Columbia Gas of Ohio’s 
Warm Choice Program. LEAN works to standardize eligibility requirements, procedures, and standards to 
enable the delivery of various programs through Community Action Partnership agencies throughout the 
state[143], [144]. Ohio’s Warm Choice program shares resources with Ohio’s Home Weatherization 
Assistance Program and implementation contractors for both programs are reimbursed based on the 
services they provide[142], [143]. Similarly, states like Vermont supplement their Weatherization 
Assistance Programs with specific add-on measures which have included offerings such as mini-split heat 
pumps[142], [145]. However, it ensures that customers interact only with one program as these measures 
offered as part of the weatherization program. In this way, participation is convenient and more accessible 
to its customers. By adopting some of these best practices, Pennsylvania may be well on its way to 
delivering reductions needed through energy efficiency in its residential SFD homes.  
 
Apart from the type of incentive programs, it is also very important to consider the size of these programs. 
Studies, for example, have shown the “free-rider” effect for many energy efficiency programs where 
participants would receive subsidies for programs that they would have done anyway[81], [146]. 
Although Pennsylvania conducts willingness-to-pay studies, it is beneficial to ensure that more targeted 
questions e.g. surrounding appliance purchase patterns and size of incentives are asked. For example, 
Pennsylvania residents indicate that they prioritize the performance of new measure and electricity bill 
savings for insulation and air sealing upgrades while for measures such as heat pumps, they prioritize 
improved reliability and reduced maintenance cost for the new EEMs[141]. Therefore, subsidies may 
indeed not be needed for some households, but more targeted information on performance, bill savings, 
and maintenance reductions may be adequate.  
 
While our results are specific to Pennsylvania, the method can be applied to other states or cities in the 
United States and can help identify the most cost-effective EEM investments for meeting broader public 
environmental goals. 
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5. Conclusions and Policy Implications 
 
This dissertation provides a critical look at the design and implementation of energy efficiency programs 
and policies. Specifically, I examine programs and policies that have been implemented in the past to 
provide insight into designing better policies in the future. I also examine the benefits of incorporating 
broader societal impacts into future policy design when examining the potential for energy efficiency. In 
this chapter, I highlight some of the main findings from each section along with some opportunities for 
informing policy making or advancing future research.  
 

5.1. Public Policy Dilemma: to invest or not? 
 
In Chapter 2, I examine the impact of various stakeholders in driving green building adoption. 
Specifically, I examine the impacts of local and federal policies while taking into account the 
simultaneous effect of USGBC LEED rating system improvements in encouraging green building 
retrofits. The conclusions of this study point to several areas of focus for policy makers: 
  

Non-financial policies. After considering various local policies types, I find that non-monetary 
policies (i.e. requirement and density bonuses) are the most effective in driving commercial green 
building retrofits. More importantly, I find that non-monetary policies are more effective than policies 
which offer financial rewards for commercial building retrofits. The results suggest that as policy makers 
make decisions about the policies needed to driving green building adoption e.g. offering financial 
rewards or mandates, it is important to review the landscape which will yield the great impact for the 
building type. For example, while I was able to tease out the drivers for some LEED rating system types, I 
recommend that more analysis is done to examine the specific drivers for end-use building types e.g. 
commercial offices of different sizes will have varied needs compared to warehouses thereby allowing for 
more-tailored policy implementation.  
  

The role of private actors in driving green building adoption. In this study, I also observe a 
significant role of the LEED rating system in driving green building adoption. I find significant 
improvements in green building adoption as the LEED certification process became more streamlined and 
easier to use. Although the government has been taking strides to encourage green building adoption e.g. 
through policy making and LEAD by example, where mandates where government-owned or certified 
buildings are required to be LEED certified, more collaboration between third-party certification systems 
such as LEED and the government may be very beneficial. For example, the government could help in 
playing a role in determining the kind of credits which would yield energy and/or carbon reduction points 
under the LEED rating system types. This could even be streamlined by location as studies have shown 
the potential for energy efficiency to vary by building location and type. 
   

Better standardization of building policies. One of the most significant limitations in this study 
was the difficulty in categorizing the various policy types across different levels of the government e.g. 
making the distinction between policies affecting retrofits vs new construction for city, local, and federal 
policies. In moving this study forward, it will be very beneficial for states to have a standard format of 
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delineating the building policies to ensure that adequate tracking and analysis can be made when 
examining program impacts. 
  

Public disclosure of data. In Chapter 2, I assume that a LEED-certified building is more energy-
efficient as the LEED documentation specifies that certain levels of energy reductions need to be 
achieved before the building can receive the stamp of approval as a LEED building. However, due to the 
proprietary nature of the energy data in many of these commercial buildings, this assumption is difficult 
to disprove. While 7 states in the U.S. have a commercial building disclosure policy which may make it 
easier to track energy consumption patterns in LEED-certified buildings16, I recommend that policy 
makers strongly encourage the public disclosure of buildings to ensure that energy reductions are indeed 
being achieved as significant amount of time and/or money is being invested in promoting green 
buildings. 
 

5.2.  Evaluating Energy Efficiency Programs 
 
As energy efficiency has been identified as a low-cost and reliable utility system resource and policy 
strategy to meet long-term energy and climate goals, significant investments have been made to 
encourage the implementation of a portfolio of energy efficiency programs and projects. However, this 
has also called for increased excellence in the way these programs are evaluated, measured, and verified. 
In Chapter 3, I shed light on some of the methods used in evaluating residential energy efficiency 
programs using a case study of a city in the U.S. The conclusions of this study provide the following 
insights for policy guidance. 
 
 Consider more robust mechanisms for estimating savings from energy efficiency programs. 
Most states in the U.S. require that program administrators conduct independent, third-party evaluation, 
measurement, and verification (EM&V) for their energy efficiency programs. However, due to time and 
expenses incurred, there is the risk of inadequately measuring the extent of these savings. For example, 
when using data-driven approaches to measure savings from energy efficiency programs, one could either 
use the randomized control trial (RCT) approach which is more accurate but expensive and time 
consuming or the quasi-experimental method (QEM) which is not as rigorous but is increasingly subject 
to some bias. Not surprisingly, many states, if at all, use some form of QEM for their EM&V process. 
Our study uses a first-level detection approach and finds evidence of bias even when using the QEM 
approach. Therefore, while policy makers are taking the right step to safeguard the EM&V process, it is 
also pertinent to ensure that the appropriate methods are implemented when measuring these energy 
efficiency program impacts. Using novel modeling processes, for example, studies are beginning to find 
evidence that ex-post evaluation of energy programs are much smaller than ex-ante estimates. With better 
data sharing, states and evaluators could collaborate with academic and research organizations in ensuring 
that the appropriate mechanisms are used in evaluating the portfolio of these energy efficiency programs.  
 

                                                        
16 https://database.aceee.org/state/building-energy-disclosure 
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 Survey implementation considerations. While the QEM approach was used to disentangle the 
effects of programs, this study would have been substantially improved if there was a better 
understanding of the motivation behind the reasons a customer is opting into a program. With this 
information, one can better understand the extent of factors such as free ridership, participant spillover, or 
other behavioral changes that may occur as a result of one joining a program. Similarly, program 
administrators are able to able to better tailor these energy efficiency programs to the needs of the 
customers. I suggest that adequate pre and post-tracking is implemented to program and non-program 
participants thereby significantly improving the energy efficiency evaluation process.  
 
 Non-financial energy efficiency programs. Just like in Chapter 2, I find evidence that 
behavioral programs provide more benefits than programs which offer financial rewards for energy 
efficiency. Although financial incentives are beneficial in promoting the use of more energy-efficiency 
equipment, more studies are beginning to lend support to the significant role of informational programs in 
promoting energy reductions. Therefore, policy makers should consider bridging the knowledge-gap so 
consumers are well equipped with the information needed to pursue energy efficiency – with or without 
financial incentive mechanisms in place. I also recommend that decision makers put appropriate survey 
and tracking mechanisms in place to determine the extent of changes that were implemented after these 
informational campaigns are put in place.  
 
 

5.3. Inclusion of Health and Climate Benefits 
 
The integration of health and climate impacts when examining energy efficiency reductions offers the 
opportunity to incorporate broader societal impacts when deciding to implement energy efficiency and 
may bolster support for these reductions. In Chapter 4, I explore not only the energy reductions but also 
examine the private and social benefits of implementing a wide range of energy efficiency upgrades to the 
residential building stock. I identify many areas for policy makers from this study and elaborate on two 
main points here   
  
 Designing policies with health and environmental considerations. Without explicitly 
estimating the reductions from the implementation of energy efficiency measures, it is expected that 
significant benefits will occur when considering the benefits to health and climate. However, it is 
important that the real extent of the benefits is captured as there are significant regional variations in the 
way energy is produced which may yield to suboptimal design of policies if neglected. In our study, for 
example, I find that policies which yield the highest private benefit may not necessarily yield the highest 
social benefits. As decision makers make the tradeoff between cost-effective measures and those which 
would yield the highest energy reductions, added considerations also need to be given to broader health 
and climate benefits.  
  
 Equitable distribution of energy efficiency incentives. In Chapter 4, I find that many of the 
energy efficiency measures are cost-intensive highlighting the need for better financing and/or incentive 
options. However, it has also been well documented that lower income homes are those that are more 
likely to have less energy-efficient homes but also find it very difficult to incorporate energy efficiency 
due to high costs. Also, some financing options have been realized to flow disproportionately to higher-
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income households indicating that without the proper design of energy efficiency programs, then climate 
goals would not be reached. Therefore, policy makers need to consider strategies that would reduce 
inequality in the distribution of financing and/or incentive options for these programs. For example, 
ensuring that energy efficiency programs are specifically tailored to lower-income households through 
adequate benchmarking and characterization of their needs.  
 
 

5.4. Conclusion 
 
This thesis offers both a retrospective and prospective look into the way energy efficiency programs and 
policies are designed with the aim of promoting energy reductions and ensuring the realization of broader 
climate goals. The three studies contained in this thesis provide insight into the considerations that need to 
be put in place by different actors when designing future energy policies and programs and provides 
insight on how to incorporate health and climate impacts into the decision- and policy making process. 
Ultimately, this thesis aims to provide a critical look into the way energy efficiency is viewed and 
designed thereby ensuring that decision makers can make more informed considerations to ensure a more 
sustainable future.  
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Appendix A. Supplemental Information for 
Chapter 2 
 

Appendix A.1. LEED Building Certification: summary information 
and characteristics 
 
The U.S. Green Building Council (USGBC) was established in 1993 with a mission of promoting 
sustainable building practices in the building industry. The LEED version 1.0 was launched in 1998 and 
since then has evolved from the development of one standard for new construction to multiple standards 
across various building types[147].  Since its inception, there have been multiple versions of the LEED 
rating system ranging including v1.0, v2.0, v2.2, v2009 (previously named v3) and v4. 
 
Until October 31, 2016 new projects were able to choose between LEED 2009 and LEED v4. Projects 
registering after October 31, 2016 must adhere to LEED v4 standards[147].  
 
LEED standards apply to buildings of various types and categories. Under the LEED v4 standards, 
buildings can apply under the[148]: 

• Building Design and Construction (D+C) applies to buildings that are newly constructed or going 
through a major renovation including New Construction, Core and Shell, Data Centers, 
Healthcare, Hospitality, Retail, Schools, and Warehouse and Distribution Centers. 

• Buildings Operations and Maintenance (O+M) applies to existing buildings (i.e. buildings that 
are fully operational and have been occupied for at least one year) that are undergoing 
improvement with little to no construction, including Existing Buildings, Schools, Retail, 
Hospitality, Data Centers, and Warehouse and Distribution Centers.  

• Interior Design and Construction (ID+C) applies to projects which interior spaces are a complete 
interior fit-out including Commercial Interiors (interior spaces that aren’t dedicated to retail or 
hospitality functions), Retail, and Hospitality.  

• Neighborhood Development (ND) applies to new land development or redevelopment projects 
that contain residential uses, non-residential uses or a mix 

• Homes applies to single-family homes, low-rise and mid-rise multi-family homes (one to six 
stories). 

 
In our work, we consider buildings certified under the LEED O+M (which we term LEED-EB), LEED 
Commercial Interiors(LEED-CI), and LEED Core and Shell (LEED-CS) rating systems. These rating 
systems updates, however, are not all implemented at the same period. Pilot testing for LEED-EB began 
in 2002 and in 2003 for LEED-CI17.  LEED-EB and LEED-CI were launched together in November 2004 
while the LEED-CS program launched in October 2003. LEED-EB got its first major update in 2008 and 
then a minor update with other rating system types with the introduction of LEED v2009. In November 

                                                        
17 LEED-EB: https://www.usgbc.org/articles/more-decade-high-performing-buildings-out-now-edcs-february-issue; 

LEED-CI & LEED-CS: https://www.usgbc.org/articles/part-2-green-building-explosion-2003-2009  
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2013, all rating systems were updated to the LEED v4 program18. Therefore, there is the possibility to 
examine the effects of these updates on existing building certifications as they occurred in different years. 
However, LEED v2009 to LEED v4 coincides with ARRA-EECBG implementation as discussed in the 
main text. We decided to code ARRA instead of the LEED v2009 to LEED v4 while being cognizant that 
there may be bundled effect of the LEED update and federal funding disbursement.  
 
LEED buildings can earn one of the four LEED rating levels: Certified, Silver, Gold, or Platinum[149]. 
These different rating levels can be pursued by earning points across several categories including energy 
use, air quality, water efficiency, and sustainable site development. The different points across different 
levels are as follows: 

• LEED Certified: 40-49 points 
• LEED Silver: 50-59 points 
• LEED Gold: 60-79 points 
• LEED Platinum: 80+ points  

 
USGBC publishes information of buildings that have received LEED certifications under different LEED 
rating systems. The USGBC dataset collects information on building characteristics including project 
name, address, country, certification level, certification date, building type, and square footage. For this 
study, we extracted information on non-confidential building types that were certified from January 2000 
to December 2016 to inform our results. 
 
As of October 27, 2018, the USGBC had 137,140 buildings that had been registered who may have/have 
not received certifications. We subset those who registered and went on to certify their buildings data by 
1) Location: US, 2) Non-confidential (as project owners may choose to have their projects confidential), 
and (3) Owner types: Non- Government. We also excluded “recertified buildings” as existing buildings 
have to undergo recertification every 5 years.  
 
After all these exclusions, we were left with a total of 10,420 buildings certified under the LEED-EB, 
LEED-CI, and LEED-CS programs. Table A.1 provides a breakdown of the top 10 rating system versions 
considered in our dataset while Table A.2 provides the distribution of the top 10 LEED project types in 
our dataset. From Table A.1, we see that the highest versions of LEED buildings certified are from the 
LEED-CI and LEED-EB version 2009 programs. These results are intuitive because as stated above, 
projects could register for the LEED v2009 program till October 31, 2016. Also, from Table 2.1 in the 
main text, LEED has seen more significant growth especially in the CI program in more recent years. 
From Table A.2, we see that most of the buildings certified under the LEED existing buildings program 
are offices and retail spaces. Because our analysis is conducted at the Metropolitan Statistical Area level 
while the USGBC data has information on building data at the city level, we aggregate data up to the 
MSA level and use the information from 2002 to 2016 as explained in the methods section in the main 
text.  
 
 
 

                                                        
18 LEED-v4: https://www.usgbc.org/articles/part-3-challenges-and-opportunities-2010-present  
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Table A.1 Top 10 rating system versions for existing buildings certified under the USGBC LEED rating 
system between 2002 and 2016 

Rating System Version Count Percent of Total 
LEED-CI v2009 2475 24% 

LEED-EB:OM v2009 2305 22% 
LEED-CI 2.0 1188 11% 

LEED-CS v2009 998 10% 
LEED-CI Retail v2009 948 9% 

LEED-CS v2.0 710 7% 
LEED-EB:OM 654 7% 

LEED for Retail (CI) 
Pilot 

633 
6% 

LEED-EB 2.0 274 3% 
LEED-CS 1.0 Pilot 94 1% 

 
 
Table A.2 – Top 10 project types for existing buildings certified under the USGBC LEED rating system 
between 2002 and 2016 

Building Project Type Count Percent of Total 
Office: 

Administrative/Professional 
2321 

22% 

Commercial Office 1817 17% 
Office: Mixed Use 866 8% 

Retail 741 7% 
Retail: Fast Food 687 6% 

Retail: Other Retail 616 6% 
Retail: Bank Branch 524 5% 

Retail: Open Shopping Center 312 3% 
Office: Financial  308 3% 

Office: Other Office 288 3% 
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Appendix A.2. LEED building certifications by state and MSA 
 
In Figure A.1, we show a map of the number of retrofitted commercial LEED by state and MSAs between 
2002 and 2016. There is high regional variability in LEED certified buildings by state with majority of 
the LEED certified buildings in California. Within the different states, there is also a significant 
distribution of retrofitted LEED certified buildings by MSA, with majority of the retrofits clustered in 
larger MSAs (by population), such as Washington DC, New York, Los Angeles, and San Francisco. 
 

 
Figure A.1 - Total number of retrofitted commercial LEED buildings by state and variation by MSA from 
January 2002 to December 2016. The green background map indicates the number of retrofitted commercial 
buildings in the state. The pie charts show the distribution of the LEED certification levels for the different 
MSAs with the size of the pie chart indicating the total number of retrofits in each MSA. Compiled by 
authors from USGBC Policies database3. 
 
 
 
 
 
 
 
 
 
 
 
 



 64 

Appendix A.3. LEED policy categories by state and MSA 
 
Based on the review of recent literature, we grouped the policies aimed at green building retrofits into 5 
policy groups: 

1) Requirements, meaning that new/renovated commercial buildings must meet LEED. 
2) Recommendations that encourage LEED certifications, but buildings are not mandated to 

build LEED.  
3) Density/Height bonus is a zoning tool that allows developers to build more housing units, 

taller buildings, or more floor space than normally allowed. 
4) Financial incentives are monetary incentives e.g. tax credit programs, grant programs.  
5) Non-financial incentives, incentives that are not necessarily monetary. Most policies in this 

category are expedited permitting policies.  
 
Table A.3 shows the total count of initial policies added in each year by city, county, and state between 
1999 and 2015. As stated in the main text, there was a ramp-up of policies enacted between 2007 and 
2009 with a majority of policies enacted in 2009 coinciding with ARRA implementation. Figure A.2 
shows a distribution of the policies by state and MSA.  
 

 
Figure A.2 - Total number of LEED certifications by state and total variations by MSA from Jan 2000 to 
December 2014. The blue background map indicates the number of incentives and policies available for the 
state. The pie charts show the type of policies available for the different MSAs with the size of the pie chart 
indicating the total number of policies available. Compiled by authors from USGBC Policies database3. 
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Table A.3 – Policy counts by city, county, and state 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

LEED Policy Type 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Grand Total
Recommendation 0 0 1 0 1 1 4 4 15 19 10 12 5 1 1 0 0 74
Financial Incentive 1 1 1 0 0 0 0 5 14 9 22 7 2 3 4 2 0 70
Non Financial Incentive 0 0 0 1 2 1 3 4 5 11 21 3 3 1 1 0 0 56
Requirement 0 0 0 0 1 1 1 3 10 9 14 6 0 1 0 0 2 48
Density Bonus 0 0 0 0 0 0 2 3 5 2 9 1 1 1 1 0 0 25
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Appendix A.4. Control Variables 
 
Unemployment Data  
 
We use unemployment data from the Bureau of Labor Statistics dataset at the county level and aggregated 
it to the MSA level for the purpose of our analysis.  
 
GDP data 
 
We use GDP data from the Bureau of Economic Analysis dataset available at the MSA level for the 
purpose of our analysis. We subtract Construction, Manufacturing, and Real Estate data from the GDP 
data as explained in the main manuscript 
 
Solar PV Installations 
 
We use data from the Lawrence Berkeley National Laboratory’s Tracking the Sun Dataset for the size of 
solar PV installations in an MSA. We performed the following data cleansing tasks: 

• Subset commercial/non-residential data from the dataset 
• Matched zip code to county. In situations where zip code level information was not provided, we 

matched city to county 
• All county information was then matched to the MSA level 

 
This dataset of 30831 rows for solar PV installations (between 2000 and 2017) was then used for further 
analysis.  
 
Alternative Fuel Stations dataset 
 
We use data from the Alternative Fuel Station’s dataset from the Office of Energy Efficiency and 
Renewable Energy for the total count of EV stations in an MSA. We perform the following data cleansing 
tasks: 

• We select all “ELEC” stations from the “fuel_type_code” column 
• We select all publicly available stations from the “groups_with_access code” column. 
• We match zip code to city to county to the MSA level. 

 
This dataset of 6017 rows for EV fuel stations (between 2000 and 2017) was then used for further 
analysis.  
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Appendix A.5. Year-over-year effects individual program types 
 
We replicate Figure 2.3 in the main paper to show year-over-year effects for all years between 2002 and 
2016 in an attempt to tease out federal and USGBC LEED updates. Figures A.3, A.4, and A.5 show the 
year-over-year effects for the LEED EB, CI, and CS rating system types. From Figures A.3, A.4, and A.5, 
we see the highest program impacts around 2008 and 2009.  
 

Figure A.3 - Year-over-year estimates showing the effects of federal and USGBC LEED rating system 
updates on programs certified under LEED-EB between 2003 and 2016 using 2002 as the base year. Blocks in 
green represent federal polices while blocks in yellow represent internal USGBC rating system upgrades. 
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Figure A.4 - Year-over-year estimates showing the effects of federal and USGBC LEED rating system 
updates on programs certified under LEED-CI between 2003 and 2016 using 2002 as the base year. Blocks in 
green represent federal polices while blocks in yellow represent internal USGBC rating system upgrades.  
 
 



 69 

Figure A.5 - Year-over-year estimates showing the effects of federal and USGBC LEED rating system 
updates on programs certified under LEED-CS between 2003 and 2016 using 2002 as the base year. Blocks in 
green represent federal polices while blocks in yellow represent internal USGBC rating system upgrades.  
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Appendix A.6. Alternative model specification: federal and LEED 
rating system dummies 
 
Table A.4 compares the estimated linear regression coefficients and standard errors from the main paper 
with one which excluded the year dummies (due to confounds with dummies related to federal policies 
and USGBC LEED updates). For all models, we include federal dummies for EPACT, EISA, and ARRA 
as explained in the main paper. We also include dummies indicating the start of LEEDv4 program in 
2013. We also specifically add a dummy for the LEED-EB update in 2008 as articles in the LEED space 
indicated its significance. We modify equation (2.2) in the main paper for LEED-EB as: 
 
"#,% = '()*+#,% + -()./0#,% + 123454#,% + 64/23454#,% + 78)493+"#,% + :;8<#,% +
>?4)0<@/"#,% + 	A9/@5(<B#,% + 	A)B./?4+#,% + 	G52+)(HIJKLM,N + O52+)(HPQJM,N +
R52+)(JSSJM,N + 	ü@))8H†\ääáM,N + 	O@))8°¢M,N + 	095# + F#,%																	(91)													  
 
where ü@))8H†\ääáM,N is a dummy variable that takes on the value of 1 between 2008 and 2013 and 0 
otherwise indicating the LEED-EB update in 2008 . O@))8°¢M,N is also a dummy variable that takes on 
the value of 1 between 2013 and 2016 and 0 otherwise indicating the start of LEED version 4. 
 
For the LEED-CI and LEED-CS programs, equation (2.2) is modified as: 
 
"#,% = '()*+#,% + -()./0#,% + 123454#,% + 64/23454#,% + 78)493+"#,% + :;8<#,% +
>?4)0<@/"#,% + 	A9/@5(<B#,% + 	A)B./?4+#,% + 	G52+)(HIJKLM,N + O52+)(HPQJM,N +
R52+)(JSSJM,N + 	O@))8°¢M,N + 	095# + F#,%																	(92)													  
 
From Models (S2) in Table A.4, we specifically note the positive impact of programs occurring in 2008 
(specifically LEED-EB update) and the negative impact of ARRA programs. However, from the year-
over-year effects estimate in Figures S3-S5, we see that the 2009 effect is positive but smaller than the 
2008 effect. Therefore, the ARRA dummy is capturing the reduction between 2008 and 2009 as negative 
even though the impact is still overall positive. We decide to go on with the Year-over-year estimate in 
the main paper as the results, although similar, is more difficult to interpret in Model (S2).  
 

Appendix A.7. Alternative model specification: LEED Volume 
program 
 
We attempt to capture the effect of the LEED Volume program by examining the count of buildings 
certified under the different rating system types. As stated in the main paper, LEED Volume aims at 
certifying projects of the similar type making the certification process easier. Therefore, in the case of 
LEED-CI projects for example, the impacts may not be seen in terms of square footage but counts of 
buildings certified.  
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We modify the dependent variable of equations S1 and S2 to be the count per 100,000 persons in the 
MSA population. As a sensitivity analysis to capture the effects of LEED Volume, we exclude companies 
who participated in the LEED pilot program for the LEED-EB rating system as well as top companies 
who have certified buildings under each of the rating systems and are a part of the LEED Volume 
program. 
 
For the LEED-EB program we exclude: Stop and Shop, MEPT-Bentall Kennedy, Kohl’s Department 
Stores, Cushman and Wakefield, Wells Fargo Bank North America, and Bank of America. For the LEED-
CI program, we exclude: Verizon Wireless, Wells Fargo Bank North America, PNC, and Starbucks. For 
the LEED-CS program, we exclude Prologis and Liberty Property Trust1920.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                        
19 LEED Volume program participants: https://www.usgbc.org/articles/potential-retrofits-launch-leed-volume-program-

operations-maintenance 
20 LEED Volume participants as of 2014: https://www.usgbc.org/articles/green-tools-leed-users-project-certification-

options  
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Table A.4 -  Alternative model specifications –  Model results examining the effects of different local policy 
types on retrofitted LEED square footage in commercial buildings (1) accounting for MSA and year effects 
and (2) including federal and USGBC LEED program updates excluding year effects 

 
 
Table A.5 compares the estimated linear regression coefficients and standard errors for the counts of 
LEED certified buildings per 100,000 persons in the MSA with the sensitivity model which excludes  
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Table A.5 - Alternative model specifications –  Model results examining the effects of different local policy 
types on count of LEED buildings per 100,000 persons in the MSA accounting for MSA, federal, and USGBC 
LEED upgrades for (1) all buildings and (2) excluding top LEED volume participants  

 
 
the companies stated above for the different rating systems. Since LEED Volume was implemented in 
2011 and LEED v4 in 2013, we are expected to see reductions, if any, in the LEED v4 dummy estimates 
as there are no year effects in the model specification. From Table A.5, comparing models (1) and (2) for 
the different rating systems, we note significant reduction in estimates of the LEED v4 program especially 
in the LEED-EB and LEED-CI case. Therefore, LEED Volume has a big role to play in also encouraging 
commercial green building adoptions. We do not see reductions in the LEED-CS case which we 
hypothesize is due to lack of observations in buildings certified under this rating system type 
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Appendix A.8. Alternative model specification: First Differences 
and Anderson-Hsaio Model 
 
Table A.6 examines the sensitivity of our model approach and provides the estimated linear regression 
coefficients for using the first differences and Anderson-Hsaio estimator for our main regression model. It 
specifically examines the first differences and Anderson-Hsaio estimates and standard errors for Column 
(1) of Table (2.1) of the main paper. We find large discrepancies from Table A.6 where the first 
differences and Anderson-Hsaio estimates are similar but very different from the fixed effects estimates. 
Upon further examination, we realize that the first-differences model is not appropriate for our analysis. 
Hence, a lagged model such as the Anderson-Hsaio cannot be used for this work. We provide a sample 
case comparing the fixed effects and first differences model in the sub-sections below 
 
Explanation of First Differences(FD) and Fixed Effects (FE) Model 
 
For the FE and FD models, we examine two cases: 1) where an entire MSA gets a policy which is enacted 
midway through the timeframe of the program and LEED-sqft increases immediately, and 2) lagged 
effects case where policy effects are not seen in the first year of the program  
 
First Differences Model 
 
Table A.7 shows a case of no-year lags i.e. program effects are seen immediately the policy is enacted. 
We implement the first differences (as seen on the right side of the table) by subtracting our estimates of 
each year from its previous year.  
 
Figure A.6 provides a visual representation of Table A.7. Here, we see that although the LEED-sqft is 
increasing, the first differenced approach shows a negative trend. The negative trend is worse when we 
have a lagged effect as seen in Table A.8 and Figure A.7. These results however, are different from the 
fixed effects model where a positive trend is seen.  
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Table A.6 - Alternative model specifications – (2) Model results examining the effects of different local policy 
types on retrofitted LEED square footage in commercial buildings accounting using the 1) fixed efffects 
approach , 2)  first differences approach, 3) Anderson Hsaio approach 

 
 
 
Fixed Effects Model 
 
We implement a similar model structure as the FD model where we have cases of no-year and one-year 
lags in Tables A.9 and Table A.10. The FE model was estimated by subtracting each estimate from its 
time-averaged mean value. The results depicted in Figures A.8 and A.9 respectively are very different 
from the FD approach as it better captures the trends we expect to see. We also see consistent results in 
the case of one-year lags as well as the FE results still captures that increasing trend. We settle on the 
fixed effects model as it better captures the time trends we expect to see compared to the first differences 
approach. 
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Table A.7 - Base and first difference cases with no-year lags of policy implementation and LEED-sqft 
increase 

Case 1a:  No Year Lags   First Differences 
Year Policy LEED-sqft  Policy LEED-sqft 

1 0 0  NA NA 
2 0 0  0 0 
3 1 200  1 200 
4 1 500  0 300 
5 1 900  0 400 
6 1 1100  0 200 

 
Table A.8 - Base and first differences case with one -year lags of policy implementation and LEED-sqft 
increase 

Case 1b: 1 Year Lag 

 

First Differences 
Year Policy LEED-sqft Policy LEED-sqft 

1 0 0 NA NA 
2 0 0 0 0 
3 1 0 1 0 
4 1 200 0 200 
5 1 500  0 300 
6 1 900  0 400 

 
Table A.9 - Base and fixed effect cases with no-year lags of policy implementation and LEED sqft increase  

Case 1: No Year Lag  Fixed Effects 
Year Policy LEED-sqft  Policy LEED-sqft 

1 0 0  -0.67 -450 
2 0 0  -0.67 -450 
3 1 200  0.33 -250 
4 1 500  0.33 50 
5 1 900  0.33 450 
6 1 1100  0.33 650 

 
 
Table A.10 - Base and fixed effect cases with one-year lags of policy implementation and LEED-sqft increase 

Case 1b: 1 Year Lag  Fixed Effects 

Year Policy LEED-sqft  Policy LEED-sqft 
1 0 0  -0.67 -266.67 
2 0 0  -0.67 -266.67 
3 1 0  0.33 -266.67 
4 1 200  0.33 -66.67 
5 1 500  0.33 233.33 
6 1 900  0.33 633.33 
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Figure A.6 - Relationship between policy implementation and LEED-sqft using the FD 
approach with policy effects seen the year policy was implemented 
 

Figure A.7 - Relationship between policy implementation and LEED-sqft using the FD 
approach with policy effects seen one year after the year policy was implemented 
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Figure A.8 - Relationship between policy implementation and LEED-sqft using the fixed 
effects approach with policy effects seen one year after the year policy was implemented 
 

Figure A.9 - Relationship between policy implementation and LEED-sqft using the fixed effects 
approach with policy effects seen one year after the year policy was implemented 
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Appendix A.9. Evaluation of specific financial incentive LEED 
programs 
 
We attempt to quantify the level of incentives that different existing commercial buildings across the US 
will receive if LEED certified by examining policies which could potentially be estimated e.g. tax 
abatement policies. In estimating these costs, we use the following simplifying assumptions: first, we 
assume a hypothetical 10,000-square-foot building. This assumption is needed as some incentives vary 
their benefits depending on the building size, while others vary benefits depending on building value. We 
use $178/sqft as the base sale price; the average sales price of a typical green commercial building in 
Philadelphia, PA over the past 10 years21. We then use the 2014 RSMeans Building Construction Costs 
Handbook, which has information on construction cost indices (CCI), as a proxy for sale price indices that 
we can use to scale costs in other cities relative to Philadelphia. We thus assume the sale prices for 
different cities to be:  

9|^hïl~{hÄ#%£# =
9|^hïl~{hIJ ∗ ..3Ä#%£#

..3IJ
 

 
We use these different sale prices to estimate the monetary benefits that commercial building 
owners/developers will receive if they become LEED certified under the rating systems stated in the data 
section above. We also assume varied land values by state retrieved from the Lincoln Institute of Land 
and Property values database22. 
 
Note: The ($) estimates calculated from the incentives were for a 10,000sqft LEED building. The 
amounts presented in the paper was then divided by 10,000sqft to elicit a ($/sqft) value.  Lower end 
estimates (in situations where there are ranges of incentives that could be gotten) were used in presenting 
the results in the paper. While we have estimates of financial incentive costs for 36 different cities, 
counties, and states, we show example calculations for four different policy categories below. 
 
8.1 Building Permit Fee Refunds 
 
Policy Name: US-NC-Mecklenburg County-2007-Mecklenburg County Green Building Rebate Program 
County: Mecklenburg County, North Carolina 
Magnitude of Incentive: Rebates increase proportionate to the level of certification achieved: 10% 
reductions for LEED Certified, 15% for LEED Silver, 20% for LEED Gold and 25% for LEED Platinum.  
Link to Incentive Calculation: 
http://charmeck.org/mecklenburg/county/LUESA/CodeEnforcement/Documents/fees.pdf 
 
Using sale price of $126, a land value percentage of 31.6%, the total building value is $1,658,000 for a 
10,000sqft building. Permit fee rebates are estimated and presented in Table A.11 and we see that permit 
fee savings range between $720 - $1800.  

                                                        
21Sourced from CoStar real estate company: http://www/costar/com/  
22 Retrieved from Land and Property Values in the US, Lincoln Institute of Land and Policy,   
http://datatoolkits.lincolninst.edu/subcenters/land-values/   
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8.2 Tax Credit/Abatement Program 
 
Policy Name: US-NY-Onondaga County-2013-Onondaga County Uniform Tax Exemption Policy 
County: Onondaga, New York 
Magnitude of Incentive: UTEP provides LEED Gold and LEED Platinum certified buildings to receive 
tax exemptions in accordance with the Community PILOT schedule. The Community PILOT schedule 
offers a tax exemption percentage schedule of 100% down to 10% on a graduated basis, and for a period 
of 12 years. 
Link to policy: http://syracusecentral.com/Onondaga/media/Onondaga/OCIDA/OCIDA-Handbook-
update-3-3-15.pdf  
 
With a total estimated value of $1, 284, 448 (where land value is estimated at $305,448 and building 
value is estimated at $979,000), the amount of tax saved in $ in seen in Table A.12. The estimated tax 
saved is about $63,000 over 12 years.  
 
8.3 Certification fee refunds 
 
Policy Name: US-TN-Chattanooga-2009-Engineering and Water Quality Sustainable Sites Program 
City: Chattanooga, TN 
Magnitude of Incentive: Commercial and residential projects that achieve LEED certification with at least 
5 points under the Sustainable Sites category (including SS 6.1 and 6.2), will receive a fee credit up to 
60%. 
 
With an impervious building area of 10,000sqft, estimated savings are around $150 as seen in Table A.13.  
 
8.4 Grant program 
 
Program Name: US-PA-2013-High Performance Building Program 
State: Pennsylvania 
Magnitude of Incentive:  Grants of up to $500,000 or 10% of the total project cost (whichever is less) are 
available to appropriate projects, with loans of up to $2 million (small businesses) and up to $100,000 
(residential projects) are also offered. Amortizations can be structured to a maximum of 25 years and a 
10-year loan term. In order to receive these funds, all projects must achieve one of the following or 
higher: LEED Gold certification 
 
Assume: 40% of building was renovated 
Total building costs: (40% * 95% * $153/sqft * 10000) = $581,400 
Incentive: 10% of building cost: $58,140 
 
Total incentive costs estimated for this grant program is around $58,000.  
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Table A.11 - Certification level percentage and incentive amount for a building permit refund program in 
Mecklenburg County 

Certification level Rebate (%) Incentive Amount ($) 
Certified 10 $718 

Silver 15 $1077 
Gold 20 $1437 

Platinum 825 $1796 
 
 
Table A.12 - . Estimated tax savings calculation for a Tax Credit program in Onondaga County 

Year 
Tax 
Abatement 

Tax 
Paid Deduction 

Taxable 
AV 

Tax 
Rate  Tax Paid  

 Tax 
Saved  

1 100% 0%  1,284,448   -    0.8032  $-     $10,317  
2 100% 0%  1,284,448   -    0.8032  $-     $10,317  
3 100% 0%  1,284,448   -    0.8032  $-     $10,317  
4 90% 10%  1,156,003   142,000  0.8032  $1,141   $9,285  

5 80% 20%  1,027,558   284,000  0.8032  $2,281   $8,253  
6 70% 30%  899,114   426,000  0.8032  $3,422   $7,222  
7 60% 40%  770,669   568,000  0.8032  $4,562   $6,190  
8 50% 50%  642,224   710,000  0.8032  $5,703   $5,158  
9 40% 60%  513,779   852,000  0.8032  $6,843   $4,127  
10 30% 70%  385,334   899,114  0.8032  $7,222   $3,095  
11 20% 80%  256,890   1,027,558  0.8032  $8,253   $2,063  
12 10% 90%  128,445   1,156,003  0.8032  $9,285   $1,032  

            
Total Tax  
saved  $63,042  

 
 
Table A.13 - Estimated savings calculation for a certification fee refund program in Onondaga county 

in Equivalent Residential 
Units (ERU)  3.125 ERU 

Water Quality fee ($) 221.4 in 2009 
Fee credit ($) 249.075 in 2016 

   Fee credit (60% of total fees) $149.445  
 
 

Appendix A.10. Initial LEED model specification results 
 
As stated in the results section of our main paper, our primary analysis was a deviation from our 
preplanned and preregistered analysis (osf.io/e7qzk) because we observed very large lagged effects three 
years after policy implementation. Upon further examination, we realized USGBC LEED updates as well 
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as federal policy implementation needed to be explicitly included in the model. This section details the 
initial model used for this study.  
 
Initial model specification 
 
The preplanned model is documented at the Open Science Framework (osf.io/e7qzk). In our initial model, 
we implemented a first differences approach with time and MSA fixed effects to examine the relationship 
between LEED policies and LEED square footage. The first differences, time and MSA fixed effects 
allowed us to eliminate first order time trends, time, and MSA invariant heterogeneity that may have been 
observed in our model thereby leading to omitted variable bias and causing errors in our coefficient 
estimates. The base model specified was:  
 
Δ"#,% = 	'∆()*+#,%	 + 	-∆)4.(;#,%	 + 	1Δ.d).u#,%		+	δΔBNUS#,% + 	λΔ)¨<)8#,%	 + 	>∆23454#,%	 +
	:∆/+d)(#,%	 + O∆<(/;#,% + ≠∆;(54+#,% + 	Æ∆<(0+(ó+#,% + 		Ø∆()*+34.)4#,% +
	∞∆)¨<)834.)4#,% + 	g(∆;8<#,%) 	+ g(Δ?4)0<@/"#,%) 	+ 	7% + ò|{iel 095 	+ 	∆F#,%																		(93)   
 
here i represents an MSA and t represents the time period (2000 – 2014)  ±"#,%	represents the change in 
LEED square footage per capita in each MSA from one year to the next. ∆()*+#,% , ∆)4.(;,%,  
∆.d).u#,%, ∆ó4?9#,% , ∆)¨<)8#,% , ∆23454#,% , ∆/+d)(#,%, ∆<(/;#,%, ∆;(54+#,%, ∆()*+34.)4#,%, 
and ∆)¨<)834.)4#,%range between 0 and 1 and represent the change in the fraction of total MSA 
population i affected by the presence of the respective policies from one year to the next including  
requirement, encouragement, LEED project checklist, height/density bonus, expedited permitting, other 
incentive, LEED program/initiative, grant program, permit fee rebate, requirement with incentive, and 
expedited permitting with incentive, respectively.   ±;8<#,% and ±?4)0<@/"#,%represent the changes in 
GDP and unemployment rate respectively in each MSA from one year to the next. 7%∆F#,%represent time 
dummy variables and the error term, respectively.  
 
We also included a model with lagged effects between policy implementation and LEED certifications as 
noted by Bond and Devine[26], who show that green incentive policies elicit the greatest change two to 
three years after their implementation. We slightly modified the preplanned analysis model as: 
 
 
 Δ"#,% = 	 (≤qå

WX '∆()*+#,%W≤	 + 	-∆)4.(;#,%W≤	 + 	1Δ.d).u#,%W≤		+	δΔBNUS#,%W≤ + 	λΔ)¨<)8#,%W≤	 +
	:∆/+d)(#,%W≤	 + O∆<(/;#,%W≤ + ≠∆;(54+#,%W≤ + 	Æ∆<(0+(ó+#,%W≤ + 	Ø∆()*+34.)4#,%W≤ 		+
			∞∆)¨<)834.)4#,%W≤ + 	g(∆;8<#,%W≤) 	+ g(Δ?4)0<@/"#,%W≤)	) + 		7% + ò|{iel 095 +
		∆F#,%							(94)                         
 
where k is the number of years. 
 
We also calculated the average effects and 95% confidence intervals of our model using a clustered 
bootstrap approach, which allows for within-group dependence of errors[150]. To do this we resampled 
the MSAs with replacement, estimated the model, and repeated 1000 times to get a distribution of 
estimated model parameters. The average effect and 95% confidence interval estimates were then the 
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mean, 2.5, and 97.5 quantiles of the distribution. To calculate the total effect of each policy we sum the 
estimated model parameters from a lag of 0 to 3 years after policy implementation, with average and 
quantiles calculated similarly. Figure A.10 presents the results of the regression analysis for the top 5 
policy types. Figure A.11 presents results of the total effects of the policy three years after 
implementation using our initial model specification. We also include some sensitivity analysis where we 
drop a few highly influential variables that may affect our regression results thereby leading to high 
leverage and overestimating our regression results. We assess the sensitivity of our preplanned model by 
including these dropped variables in our model, and also by performing the regressions without the 
control variables as seen in Figure A.12. 
 
Requirements had the total largest effect of 2 sqft/capita (95% CI: -0.2 to 8.2) (which is very large 
compared to our updated model which showed that requirement policies had an average effect of 
0.12sqft/capita before ARRA and 0.46sqft/capita after ARRA). Density bonuses, tax credits, and “other 
incentive” programs in this model also show slightly smaller total increases of 1.2 sqft/capita (95%CI: -
1.6 to 4.8), 0.9sqft/capita (95%CI: -1.7 to 3.3), and 0.4 (95%CI: -1.2 to 1.6) respectively.  
 
We noticed that we were estimating very large effects for most of these policies three years after policy 
implementation with quite large confidence intervals. While these results were consistent with some 
studies which have found lagged effects of the policies, we were wary of the interpretation of the results 
because for many of the policies, that lag occurred around 2009. Our updated model then included federal 
policies including the Energy Policy Act of 2005 (EPAct), the Energy Independence and Security Act of 
2007 (EISA), and the American Recovery and Reinvestment act of 2009 (ARRA).  Also, we collapsed the 
initial 12 policy groups into 5 policy groups for the final model specification as we realized that there was 
not enough variation in some of the policies to make a definitive conclusion.  
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Figure A.10 - Regression results including one year-lead, and one to three year lags of policy 
implementation. Titles refer to policy names. They y-axis represents the coefficient estimates (from 
Model 2 as described in the methods section) for each policy variables in LEED-sqft per capita. The 
x-axis describes the coefficient outcome as a function of years from one year before policy 
implementation to three years after policy implementation. Point represent the average effect and 
error bars represent the 95% confidence intervals. 
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Figure A.11 – Total average effects of LEED-sqft per capita three years after policies implementation. Errors 
represent 95% confidence interval.  
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Figure A.12 – Sensitivity analysis of total average effects of LEED policies. Orange, blue, and red 
points represent the mean total effects with no covariated included, influential observations included, 
and influential observations removed respectively. The error bars represent the 95% confidence 
intervals. 
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Appendix B. Supplemental Information for 
Chapter 3 
 

Appendix B.1. Energy program overview 
 
Transformation for electricity and gas consumption 
 
Figure B.1a, b compares the base and log transformation of electricity and gas consumption respectively 
for all years i.e. 2010 to 2016 in our dataset. Just like Figure 3.2 in the main text, the log-transformation 
for both electricity and gas yields a more normal distribution pattern and hence is used for the purpose of 
our analysis.  
 
Energy Efficiency programs by quarter 
 
Table B.1 shows a table of the number of households that received an energy efficiency program by the 
quarter of the year the program was received.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 88 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B.1 – Number of energy efficiency programs received by households by quarter 
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Figure B.1 - (a) Histogram of average electricity consumption per day (left) and log average 
electricity consumption per day (right) for all years in timeframe – 2010 to 2016. (b) 
Histogram of average gas consumption (left) and log average gas consumption for all years in 
timeframe – 2010 to 2016 
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Appendix B.2. Alternative model specifications 
 
Full model results 
 
Table B.2 presents the full model results from Equations (3.1) and (3.2) in the main text.  
 
Table B.2 - Effects on energy efficiency programs on (1) electricity consumption per day and (2) gas 
consumption per day 

 ln (kWh/day) ln (therms/day) 
Independent variable (1) (2) 

REAP 
-0.06 
(0.04) 

-0.04 
(0.03) 

Smart Energy 
-0.02*** 

(0.01) 
0.01 

(0.01) 

Home Energy Kit 
0.04 

(0.02) 
0.04** 
(0.02) 

Refrigerator Recycling 
-0.04** 
(0.02) 

0.06*** 
(0.02) 

CFL Flood Light  
-0.01 
(0.02) 

-0.01 
(0.02) 

Green@Home Acterra 
-0.06*** 

(0.02) 
-0.06*** 

(0.02) 

LED 2/$8 
(-0.004) 
(0.01) 

-0.03** 
(0.01) 

LED Holiday Light 
-0.04*** 

(0.01) 
-0.02* 
(0.01) 

Observations 722,108 722,108 
Groups 15,968 15,968 

Household effects Yes Yes 
Month Number dummies Yes Yes 

Robust standard errors in parentheses 
*** p<0.01, **p<0.05, *p<0.1 

 
Seasonality effects 
 
We implement an alternative model approach where we account for seasonality effects. We modify 
equations (3.1) and (3.2) in the main text by subsetting the heating degree days in terciles of low, 
medium, and high temperatures. Table B.3 provides regression results for the different temperature 
groups for electricity and gas consumption. From Table B.3, we find that estimates do not vary 
significantly as a result of the different temperature ranges, therefore we are not concerned about 
seasonality effects.  
 
 



 91 

Table B.3 - Effects on energy efficiency programs on electricity and gas consumption per day accounting for 
periods of low, medium, and high temperatures. 

 ln(kWh/day) ln(therms/day) 

Independent 
variable 

Low Med. High Low Med High 

REAP 
-0.07 
(0.05) 

-0.08* 
(0.05) 

-0.06 
(0.04) 

-0.03 
(0.04) 

-0.10** 
(0.05) 

-0.03 
(0.04) 

Smart Energy 
-0.03*** 

(0.01) 
-0.01 
(0.01) 

-0.02** 
(0.01) 

0.02 
(0.01) 

0.03** 
(0.01) 

0.01 
(0.01) 

Home Energy 
Kit 

0.04 
(0.03) 

-0.15 
(0.03) 

0.06*** 
(0.02) 

0.02 
(0.03) 

0.002 
(0.03) 

0.08*** 
(0.02) 

Refrigerator 
Recycling 

-0.06*** 
(0.02) 

-0.04 
(0.03) 

-0.02 
(0.02) 

0.08*** 
(0.02) 

0.07*** 
(0.03) 

0.06** 
(0.03) 

CFL Flood 
Light  

-0.002 
(0.02) 

0.01 
(0.03) 

-0.02 
(0.02) 

-0.01 
(0.03) 

-0.01 
(0.04) 

-0.01 
(0.02) 

Green@Home 
Acterra 

-0.07** 
(0.03) 

 
-0.05* 
(0.03) 

 

-0.05** 
(0.03) 

-0.06** 
(0.03) 

-0.03 
(0.03) 

-0.06*** 
(0.02) 

LED 2/$8 
0.01 

(0.03) 
0.004 
(0.02) 

-0.01 
(0.01) 

0.03 
(0.03) 

0.01 
(0.02) 

0.002 
(0.01) 

LED Holiday 
Light 

-0.05*** 
(0.02) 

-0.04** 
(0.02) 

-0.02 
(0.01) 

-0.01 
(0.02) 

-0.02 
(0.02) 

-0.03* 
(0.02) 

Observations 239,655 241,798 240,655 239,655 241,798 240,655 
Groups 14,699 14,991 15,176 14,699 14,991 15,176 

Household 
effects 

Yes Yes Yes Yes Yes Yes 

Month Number 
dummies 

Yes Yes Yes Yes Yes Yes 

Robust standard errors in parentheses 
*** p<0.01, **p<0.05, *p<0.1 

 
 
Long and Short-run effects 
 
Figure B.2 shows a plot of the total number of households for each month in the time frame of our 
analysis. We find here that the total number of households is not constant, as some months contain less 
number of households compared to others e.g. November and December 2014 which contains around 
7500 households as opposed to the average of about 9000 households per month. Although electricity and 
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gas consumption data will usually average out when estimating results, we are concerned about the 
presence of outliers e.g. data available for only one month, which may influence our results.  
 

 
 
For each energy efficiency program, we subset households with at least one year of pre and post-
treatment data in an 18-month window to account for long and short-run effects as explained in the main 
text. The Home Energy Kit, CFL Flood Light, and LED 2/$8 program did not have enough pre-treatment 
information so we subset households with at least 6months, 9months, and 6 months of pre-treatment 
information respectively. For those who never got a program, however, we subset households with at least 
2years of data. Table B.4 provides more details on the number of treated and control groups in the base 
case and long/short run case. As we have more than one energy efficiency program and households 
receive programs at different times, we use the number of households that meet the criteria for each 
program in evaluating its long and short run effects. For example, we have 4744 (69+4675) unique 
households in the REAP program while the Smart Energy program has 5507 (832+4675) unique 
households. Models (3.1) and (3.2) in the main text is then re-run for each program and we extract the 
estimate and standard errors for the energy efficiency program of interest. Table B.5 presents the full 
model results for the long and short-run estimates for electricity and gas consumption. The explanation of 
these results is presented in the main text.  

 
 

Figure B.2 - Number of households in each month from 2010-2016 from the City of Palo Alto 
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Table B.4 - Number of households in the treated and control groups for the base and long/short run case for 
each energy efficiency program 
 Base Case Long/Short run case 

Energy Efficiency 
Program 

Treated Control Treated Control 

REAP 104 15864 69 4675 

Smart Energy 1878 14090 832 4675 

Home Energy Kit 155 15813 92 4675 

Refrigerator 
Recycling 

267 15701 133 4675 

CFL Flood Light 119 15849 59 4675 

Green@Home 
Acterra 

195 15773 112 4675 

LED 2/$8 649 15315 300 4675 

LED Holiday 
Light 

86469 15104 138 4675 

 
 
Event History Modeling 
 
We present results of the event history modeling approach for electricity and gas consumption in Figures 
B.3 and B.4. From Figure B.3, we find that the results approximate roughly a step function as expected 
with the difference in differences approach. We find evidence of not enough pre-treatment observations 
with the CFL, Home Energy Kit, and LED 2/$8 programs as expected. From Figure B.4, we also find the 
step function reductions of the gas programs with the exception of the LED 2/$8 which has a weird cyclic 
pattern. We are not able to explain the results for the cyclic pattern obtained in this case but overall, 
results are pretty consistent. As a result, we use the difference-in-differences approach for the 
interpretation of our results.  
 
Table B.5 - Effects on energy efficiency programs on electricity and gas consumption per day accounting for 
long and short-run effects 

 ln (kWh/day) ln (therms/day) 

Independent variable Long-run Short-run Long-run Short-run 

REAP 
-0.08** 
(0.04) 

-0.08*** 
(0.03) 

-0.06 
(0.04) 

-0.04 
(0.03) 

Smart Energy 
-0.05*** 

(0.01) 
-0.03*** 

(0.01) 
-0.02 
(0.01) 

-0.01 
(0.01) 

Home Energy Kit 
-0.004 
(0.02) 

0.01 
(0.01) 

0.01 
(0.03) 

0.01 
(0.02) 

Refrigerator Recycling -0.06** -0.06*** 0.03 0.02 
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(0.03) (0.02) (0.03) (0.02) 

CFL Flood Light 
-0.05 
(0.03) 

-0.004 
(0.02) 

-0.03 
(0.03) 

0.02 
(0.02) 

Green@Home Acterra 
-0.06** 
(0.02) 

-0.07*** 
(0.02) 

-0.09*** 
(0.02) 

-0.06*** 
(0.02) 

LED 2/$8 
-0.03** 
(0.02) 

-0.01 
(0.02) 

-0.03** 
(0.02) 

-0.01 
(0.01) 

LED Holiday Light 
-0.06*** 

(0.02) 
-0.02 
(0.01) 

-0.05*** 
(0.02) 

-0.02 
(0.01) 

Observations Varies by IV Varies by IV Varies by IV Varies by IV 
Groups Varies by IV Varies by IV Varies by IV Varies by IV 

Household effects Yes Yes Yes Yes 
Month Number 

dummies 
Yes Yes Yes Yes 

Note: IV = Independent variable, the number of groups for each Independent variable is in columns (3) and (4) in 
Table B.3 and the number of observations for each group is the number of groups multiplied by 84 months. 

Robust standard errors in parentheses 
*** p<0.01, **p<0.05, *p<0.1 
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Figure B.3 - Event history plots accounting for 12 months before and after program implementation for 
electricity consumption 
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Figure B.4 - Event history plots accounting for 12 months before and after program implementation for gas 
consumption 
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Appendix B.3. Shuffle test 
 
We implement the “shuffle test” to ensure our model specification is indeed correct. The shuffle test 
includes a mixing of the treatment and control group information such that households which originally 
receive a treatment become controls (i.e. behave as if they did not receive a treatment) while some control 
households randomly receive a treatment using a random selection process. As the number of households 
in the control group is much higher than that in the treated group, we randomly shuffle the control group 
multiple times so that different households which originally were not treated randomly “receive” a 
treatment in different iterations. We expect that this mixing approach would yield no significant 
reductions in electricity or gas use if the energy efficiency program indeed has an effect. However, if we 
see reductions with this mixing approach, then it indicates an error with the model selection approach. 
 
We provide an illustration of the shuffle test in Table B.6 below. In Table B.6, under the original data 
columns, we find that the treatment group reduces its value over time by 2 units while the control group 
has no changes over time. If we shuffle the values, as in the shuffle data columns, there is a mixing of 
effects such that the treatment then has no effect as the control group is acting as if “treated” and the 
treated group is now given a “control” value. We implement this approach for our full dataset where we 
randomly shuffle control households which get a treatment, repeat model (3.1) and model (3.2) 
regressions in the main text 25 times, then average the estimates and robust standard errors with results 
presented in Table B.7. We find that, as expected, none of the results are significant lending credibility to 
our regression approach. 

 
 

Table B.6 – Illustration of the shuffle test 
  Original Data Shuffle data 

Time Group Treat/Control Value Group Value 
1 A Control 20 Treat C. 20 
2 A Control 20 Treat C. 18 
3 A Control 20 Treat C. 18 
1 B Control 25 A 20 
2 B Control 25 A 20 
3 B Control 25 A 20 
1 C Treat 20 Control B. 25 
2 C Treat 18 Control B. 25 
3 C Treat 18 Control B 25 

*For original data: treatment effect is a reduction of 2, For shuffled data: treatment effect is an increase of 1 
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Table B.7 - Effects of energy efficiency programs on electricity and gas consumption using shuffle test 
approach 

Energy Efficiency Program ln (kWh/day) ln(therms/day) 
REAP -1% (95%CI: -9% to 7%) -1% (95%CI: -10% to 7%) 

Smart Energy -2% (95%CI: -4% to 1%) -1% (95%CI: -3% to 2%) 
Home Energy Kit -0.1% (95%CI: -7% to 7%) -1% (95%CI: -9% to 8%) 

Refrigerator Recycling -1%(95%CI: -6% to 4%) -1% (95%CI:: -7% to 5%) 
CFL Flood Light -1% (95%CI: -8% to 6%) 2% (95%CI: -7% to 11%) 

Green@Home Acterra -2% (95%CI: -9% to 4%) -2% (95%CI: -9% to 5%) 
LED 2/$8 -1% (95%CI: -4% to 2%) -2% (95%CI: -6% to 2%) 

LED Holiday Light -1% (95%CI: -5% to 3%) -1% (95%CI: -5% to 4%) 
 
 
 

Appendix B.4. Comparison of study estimates with ex-ante and ex-
post savings from the CPAU 
 
In accordance with the SB 1037 California State bill, the CPAU produces an annual report detailing all 
utility program expenditures, expected, and annual energy savings. These savings are conducted by 
independent contractors also in accordance with the State’s 2021 Assembly bill which indicates that 
independent evaluations for these energy efficiency programs must be adequately measured and verified. 
As a result, we have access to information on the annual electricity and gas savings from its programs 
over the years: 
 
2010 report: https://www.cityofpaloalto.org/civicax/filebank/documents/25906  
2011 report: https://www.cityofpaloalto.org/civicax/filebank/documents/30481 
2012 report: https://www.cityofpaloalto.org/civicax/filebank/documents/31809 
2013 report: https://www.cityofpaloalto.org/civicax/filebank/documents/42470 
2014 report: https://www.cityofpaloalto.org/civicax/filebank/documents/47266 
2015 report: https://www.cityofpaloalto.org/civicax/filebank/documents/52187  
2016 report: https://www.cityofpaloalto.org/civicax/filebank/documents/58115  
 
Therefore, we are able to compare the electricity and gas savings claimed by some of these energy 
efficiency programs over the years. We compare the results of our main result estimates i.e. models (1) 
and (2) of the main text with that of the CPA to examine the differences in our study estimates with that 
of the CPA and presented in the Table B.8. We calculate our study estimates as follows: 
 

!""#$%	'$()"*' = %-./#01)2"	× $(.-$*.	02"'#451)2"/$6 	× 365/$6'6.$- 	 
 
We use Table B.8 to determine the percentage reductions for each of the electricity and gas programs and 
use the average consumption for all households which did not receive a program (i.e. control group) to 
determine the average kWh/day and therms/day estimates.  
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Table B.9 compares the energy savings the results of our statistical analyses (i.e. savings from Figure 
3.4a, b) with that of Table B.8. Our estimates include the average and 95% confidence intervals for the 
different energy efficiency programs. As the energy efficiency programs implemented by the CPAU 
lasted for at least a year, we are able to obtain a range of energy savings for some of the programs. We did 
not make comparisons for the Green@Home Acterra and Home Energy Kit program as these savings 
were not available in the annual reports. As the Green@Home Acterra program is a volunteer program, 
the CPAU could not estimate immediate results from the audits and therefore did not provide energy 
savings for this program. We also could not find claimed savings in the annual reports for the Home 
Energy Kit programs but hypothesize that since this program contained a variety of energy saving 
measures, the CPAU did not feel the need to separately estimate the savings for these programs. We also 
did not compare savings for the Smart Energy and REAP programs as a variety of appliances potentially 
qualify for rebates and are eligible for low-income upgrades respectively. Therefore, these savings would 
vary widely from appliance to appliance. Although we can estimate the average savings per unit, we are 
wary to compare their results directly.  
 
Table B.8 – CPA’s energy efficiency program estimates 

 Report Year Annual elec. savings Annual gas savings 
Refr. Recycling 2013 842 0 

 2014 616 0 
 2015 620 0 
 2016 643 0 

CFL Flood light 2013 32 0 
LED 2/$8 2010 38-40 0 

LED Holiday light 2010 24 0 
 2013 40 0 

 

From Table B.9, we find some differences when comparing our study estimates with that of the CPAU. 
We find much smaller average reductions with the Refrigerator Recycling program of our estimates 
compared to that of the CPAU (although our upper bound estimate is almost the same as the CPAU’s 
lower bound estimate). While the LED 2/$8 lower estimates from the CPAU are about the same as our 
study estimates i.e. 38kWh and 32kWh respectively, we find a wider range of savings of our estimates 
compared to that of the CPAU. The LED Holiday Light program, as expected shows a stark difference in 
both estimates with respect to electricity and gas use. The CPAU in its estimates uses an engineering 
modeling approach where it estimates reductions from the substitution of incandescent lightbulbs to LED 
lightbulbs. Using California Public Utilities Commission interactive effects which capture change in 
HVAC electricity and gas usage from the installation of an energy saving measure of 1.02kWh/kWh and -
0.02therms/kWh respectively for a 40W to 7W LED to CFL lightbulb switch, we find estimated 
reductions of 19kWh (33W × 541hours/year × 1.04) but increased gas consumption of 0.4therms (33W 
× 541hours/year ×	-0.02). These values show that our mean study estimates for around 32kWh for 2 LED 
bulbs in indeed plausible. We can, in fact, get annual electric savings of up to 190kWh for 2 lightbulbs if 
the bulbs are turned on for up to 2770hours in a year. However, these electricity savings also be 
associated with an annual gas consumption increase of 3.7therms. From Table 3.2 in the main paper, we 
find simultaneous decreases rather than increases in gas consumption estimates. Our study results go on 
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to indicate that the extreme savings we see for LED bulbs are highly implausible to be due to just lighting 
replacement. However, data-driven approaches may reveal other characteristics of households who opt 
into energy efficiency programs, for example, households undergoing renovations may be the ones taking 
advantage of the rebates. This is not to say that the LED programs have no impact, as they are meant to 
serve as an introduction to a new energy efficiency measure that households may otherwise have not 
known about. It is, however, difficult to use data to disentangle if this is indeed the case. 
 
Table B.9 - Annual electricity and gas savings from the City of Palo Alto estimates and our study estimates. 
Numbers in parenthesis correspond to negative values, i.e., an energy consumption increase. 

 City of Palo Alto own estimates Our Study average effect estimates 
Program KWh/unit Therms/unit kWh/unit Therms/unit 

Refrigerator Recycling 620 – 840 0 320: 30 – 610 34: 11 - 57 
CFL Bulb 91 0 38: (260) – 330 6: (21) – 33 
LED 2/$8 38 - 80 0 32: (130) – 190 17: 2 – 32 

LED Holiday Light 24 - 40 0 270: 70 – 460 13: (1) – 28 
*  Individual annual savings are 19 - 40KWh/unit,  
** Numbers in parentheses indicate an increase rather than a decrease in consumption. 
 *** Numbers after colon indicate 95% confidence bands. 
 
 

Appendix B.5. Difference-in-differences and event history 
approaches using test data 
 
We use our trained data to predict the last 20% of our dataset using the difference-in-differences and 
event history model approaches. We estimate the root- mean squared error (rMSE) for both electricity and 
gas consumption. For electricity consumption, the calculated rMSE is:  

• Difference-in-differences: 7.36 
• Event history: 7.34 

For gas consumption the rMSE is: 
• Difference-in-differences: 0.5358  
• Event history: 0.5355 

Since the event history only performs slightly better than the difference-in-differences model, we use the 
difference-in-differences model results for ease of interpretation 
 
 
 
 
 

Appendix C. Supplemental Information for 
Chapter 4 
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Appendix C.1. Energy Efficiency Measures 
 
We consider 14 different energy efficiency measures (EEMs) for upgrades to the residential single-family 
detached housing stock in Pennsylvania. These upgrades were chosen for two main reasons: they have 
been identified by NREL ResStock as upgrades which present the highest savings in terms of economic 
potential in the state of Pennsylvania (as presented in Figure D-36 of the attached NREL Residential 
Building Stock Documentation) and these upgrades can be reasonably modeled using the ResStock’s 
Parametric Analysis Tool (PAT). The description of these upgrades can be found in the attached ResStock 
Documentation with some slight modifications to some of the EEMs specified as follows:  
 
Ductless Heat Pump: This upgrade involves installing one or more high-efficiency ductless heat pump 
(DHPs) in homes heated with electric baseboards. While the ResStock documentation indicates a 60% 
load displacement, we use a 100% load-displacement for ease of analysis.  
 
LED: While the ResStock Documentation replaces 95% of the lamps in every home with high-efficacy 
light-emitting diode (LED) lamps, we assume that 100% of the lamps in every home will be replaced 
instead. 
 
Table C.1 provides the incremental cost and lifetime values for the different EEMs which was imputed 
into the ResStock PAT tool. These values were specified either through the ResStock Documentation or 
averages from NREL’s Residential Efficiency Measures Database.  
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Table C.1 - Incremental costs and life time values for different EEMs 

Upgrade Name 
 

Lifetime 
PAT Tool 

Option 
(Upgrade) 

Upgrade Description 
Cost  
($) 

Reference 

Air Sealing 999 
Wall Area, 

Above-Grade 
Conditioned 

25ACH50 – 20ACH50 1.2 
Baseline 

(do nothing) 
20ACH50 – 15ACH50 1.2 
15ACH50 – 10ACH50 1.2 
10ACH50 – 8ACH50 0.5 

Drill-and-fill 
wall insulation 

999 
Wall Area, 

Above-Grade 
Conditioned 

Uninsulated – R-13 2.21 
Baseline 

(do nothing) 

Duct Sealing 999 
Duct Surface 

Area 

L: 10% Uninsulated – 10% R-8 1.4 

Baseline 
(do nothing) 

L: 20% Uninsulated – 10% R-8 1.8 
L: 30% Uninsulated – 10% R-8 2.2 

L: 20% R-4 – 10% R-4 0.4 
L: 30% R-4 – 10% R-4 0.81 
L: 20% R-6 – 10% R-6 0.4 
L: 30% R-6 – 10% R-6 0.81 
L: 20% R-8 – 10% R-8 0.4 
L: 30% R-8 – 10% R-8 0.81 

Low E-Storm 
Windows 

30 Window Area 
Clear,Double,Metal, Air – Low-EStorm on 

Double,Metal Air 
8.3 

Baseline 
(do nothing) 

R-10 Finished 
Basement 

999 Wall Area, 
Below-Grade 

Unfinished – R 10 Wall 3.1 Baseline 
(do nothing) 

R-10 Unfinished 
Basement 

999 Wall Area, 
Below-Grade 

Unfinished – R-10 Wall 3.1 Baseline 
(do nothing) 

R-49 Attic 
Insulation 

999 
Floor Area, 

Attic 

Uninsulated – R-7 2.4 

Baseline 
(do nothing) 

Uninsulated – R-13 1.9 
Uninsulated – R-19 1.6 
Uninsulated – R-30 1.4 
Uninsulated – R-38 0.87 
Uninsulated – R-49 0.5 

Ductless Heat 
Pumps (DHP) -

(displaces 
electric 

baseboard) 

15 
Heating 
System 
(kBtu/h) 

Electric Baseboard – MSHP,SEER 29.3, 14 
HSPF 

95 
Baseline 

(do nothing) 

Heat Pump 
Water Heater 

(HPWH) 
12 Fixed 

Electric Standard OR Electric Premium – 
Electric Heat Pump, 50 gal 

1700 

Upgrade baseline to 
Electric Premium, Fixed 

Cost at $590, 
$4.5/Water Heater Gal 

capacity. 

Central Air 
Source Heat 

Pumps(ASHP) 
15 

Fixed 
ASHP: SEER 10, 6.2HSPF; SEER 13, 

7.7HSPF; SEER 15, 8.5HSPF to SEER 22, 
10 HSPF 

4200 Upgrade baseline to SEER 
14, 8.2HSPF at $3200 and 

$4.2/Heating System 
capacity 

Heating 
System 
(kBtu/h) 

42 

 
AC,SEER 18 

 
16 

 
Fixed 

AC: SEER 8, SEER 10, SEER 11, SEER 12, 
SEER 13 to SEER 18 

3200 Upgrade baseline to SEER 
13 
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Heating 
System 
(kBtu/h) 

 (SEER 13) at $2700 at 
$42/Heating System 

capacity 

ENERGY 
STAR 

Clotheswasher 
14 Fixed 

Usage: 80% STANDARD to 80% ENERGY 
STAR 

880 
Upgrade to Fed. Min. 

Standards (387kWh/yr) at 
$560 

Usage: 100% Standard to 100% ENRGY 
STAR 

880 

Usage: 120% Standard to 120% ENERGY 
STAR 

880 

ENERGY 
STAR 

Refrigerator 
17.4 Fixed Upgrade to EF 19.9 670 

Upgrade to Fed. Min. 
Standards (EF 17.4) at 

$660 

LED Lighting 
78.28 Lighting Floor 

Area 
Upgrade to 100% LED  0.12 Baseline 

(do nothing) 
* HVAC = Heating, Ventilation, and Air Conditioning, 
** Reference scenario represents the business-as-usual point of comparison for upgrade scenarios. For some upgrades, such as 
insulation upgrades, the reference is the existing condition. For other upgrades, such as equipment upgraded at wear out, the 
reference is the current federal standard. 
 
 

Appendix C.2. Modeling Approach 
 
ResStock Building Simulation background  
 
The NREL ResStock analysis framework was developed in an attempt to develop a high level of 
granularity when understanding the technical and economic potential of end-use energy efficiency in the 
U.S. single-family detached (SFD) housing stock. As a majority of studies either rely presently on 
average savings values from literature or simulations from a small number of prototype buildings, these 
results may not depict actual energy consumption in a particular location or the actual building 
characteristics in an area. For example, there may be more direct interactions between envelope efficiency 
upgrade and HVAC equipment efficiency whereas an envelope component upgrade savings may only be 
weakly influenced by the level of insulation of the rest of the envelope. It is therefore very important not 
only to understand the baseline housing characteristics in a particular location but also the interactions 
between the different household characteristics when implementing an upgrade as they vary from one 
building type to the other.  
 
The ResStock methodology involved 6 major steps to characterize and understand the technical and 
economic potential for the U.S. RSF baseline housing stock: 1) Housing Stock Characterization where a 
data model was used to represent the energy-related characteristics of the U.S. Single family detached 
(SFD) housing stock. A hierarchical process was used which defined over 100 components of a building 
which was aggregated from 11 different sources including the U.S. Census, U.S. EIA Residential energy 
consumption survey and many others, 2) Statistical Sampling which involves a Latin hypercube sampling 
method which selected representative homes defined by the housing stock data model. Using convergence 
testing, 350,000 homes are selected as the number of building/location models needed to represent the 
current U.S. housing stock. Weighting factors were then used to scale these results from 350,000 to the 80 
million SFD homes included in the analysis. 3) Baseline Building Simulation which used EnergyPlus 
building simulations for each of the 350,000 building location models to evaluate detailed subhourly 



 104 

annual energy consumption for the baseline housing stock, 4) Validation comparing the modeled 
consumption against the U.S. EIA Residential Energy Consumption Survey 2009 with iterative changed 
to make sure modeled results were in better agreement with the reference consumption, and 5) Energy 
Efficiency Upgrade Simulations which defined over 50 energy efficiency upgrades for application to the 
baseline housing stock. Each upgrade applied only to a subset of the 350,000 building/location models as 
an upgrade may not be appropriate for a home e.g. a home may already have the upgrade needed so is 
excluded from the analysis. Using a combination of EnergyPlus input files, corresponding models, and 
incremental costs for the base case and upgrade scenarios, detailed energy consumption results were 
defined for the baseline and upgrade scenarios, and 6) Technical and Economic Potential Calculations 
where technical potential was calculated as the aggregated annual savings in all homes which qualify for 
an upgrade. Economic potential was calculated as the aggregated annual savings for upgrades which pass 
a cost-effectiveness threshold of NPV > 0 or a simple payback period of less than 5 years. This economic 
potential for each state was then aggregated annually and presented in the attached ResStock 
documentation.  More detailed results of this approach is also in the attached ResStock documentation 
and can be found at Wilson et. al.[57]  
 
Our approach for using ResStock Building Simulation tool 
 
The ResStock technical and economic potential estimates presented by NREL, although granular, is 
estimated on an aggregate annual level. As our analysis needs more granular/detailed results and PAT tool 
is publicly available, we can obtain hourly resolutions needed for our work in estimating hourly 
resolutions for the baseline and upgrade scenarios. We follow the ResStock methodology very closely as 
presented in Figure C.1.: 
 
First, we select 8 out of the 216 TMY3 regions presented in the PAT tool which capture the Pennsylvania 
area. With the capabilities of Energy Plus, the PAT tool determines the hourly energy consumption of the 
representative baseline homes. These hourly resolution outputs are then combined and scaled up to 
represent the 2.9 million residential SFD homes in Pennsylvania. Next, we re-simulate the baseline 
housing stock using the PAT tool with the assumption that the baseline homes have been “replaced” with 
the new EEM. With these simulations, we can compare the baseline energy consumption with that of the 
energy efficient case for the different EEMs. These results are then utilized for further analyses.  
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Figure C.1 - Modeling approach: (A.1) We select inputs to be used in estimating the baseline and upgrade 
scenarios for PA’s housing stock using the NREL ResStock PAT tool (A.2, A.3) NREL’s PAT tool uses 
underlying housing characteristics for the region of PA to estimate baseline and upgrade hourly consumption 
scenarios for different upgrade’ 
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Appendix C.3. Sensitivity Analysis: Mitigation Supply Curves and 
Economic Benefit Plots 
 
Here, we compare the mitigation supply curves and economic benefit plots for all EEMs at varying 
discount rates. In Figures C.2 and C.3, we show the mitigation supply curves at discount rates of 3% and 
15% respectively. In Figures C.4-C.6, we compare the economic benefits (i.e. $/ton of pollutant avoided) 
for SO2, NOx, and PM2.5. As expected, with lower discount rates, all EEMs are considered cost-effective. 
However, as the discount rates increase, more EEMs become not cost-effective. We find that only Central 
Air Source Heat Pumps (ASHP), LED lighting, DHPs, and ENERGY STAR refrigerators pass the cost-
effectiveness criteria at much higher discount rates (15%). 
 
 

 
Figure C.2 - Mitigation supply curves comparing the private net-cost of different EE upgrades with the 
annual avoided CO2, SO2, NOx, and PM2.5 emissions (metric tons) for different energy efficiency (EE) 
upgrades in the state of PA at a 3% discount rate. Each block represents an EE upgrade. The width of each 
block indicates the emission savings provided by the implementation of the upgrade, while the height of the 
block represents the net cost of conserved pollutant. 
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Figure C.3 - Mitigation supply curves comparing the private net-cost of different EE upgrades with the 
annual avoided CO2, SO2, NOx, and PM2.5 emissions (metric tons) for different energy efficiency (EE) 
upgrades in the state of PA at a 15% discount rate. Each block represents an EE upgrade. The width of each 
block indicates the emission savings provided by the implementation of the upgrade, while the height of the 
block represents the net cost of conserved pollutant. 
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Figure C.4 - Comparison of the net cost of avoided SO2 for different EE upgrades using 3%, 7%, and 15% 
discount rates. Estimates less than 0 are cost-effective while those greater than 0 are not cost-effective. 
  

 
Figure C.5 - Comparison of the net cost of avoided NOx for different EE upgrades using 3%, 7%, and 15% 
discount rates. Estimates less than 0 are cost-effective while those greater than 0 are not cost-effective 
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Figure C.6 - Comparison of the net cost of avoided PM2.5 for different EE upgrades using 3%, 7%, and 15% 
discount rates. Estimates less than 0 are cost-effective while those greater than 0 are not cost-effective 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 110 

 

Appendix C.4. Comparison of average to marginal emissions 
 
In Table C.2, we compare the deviation of the avoided average to marginal emissions reduction estimates 
for CO2, SO2, PM2.5 and NOx. Here, we find deviations of average emissions to marginal emissions for 
the different pollutants as CO2: +11% to +13%, SO2: -46% to +13%, PM2.5: +1% to +3%, and NOx: -3% to 
+2%. These results indicate that average emissions estimates could deviate from the marginal factor 
estimates by a significant amount thereby misleading us to think that EE upgrades are saving more (or 
less) than they are. As explained in the main text, the largest discrepancy is in SO2 emission estimates 
because of a greater difference between peak and off-peak marginal emission rates driven by the 
frequency of coal being the marginal generator. For example, because air conditioners are mostly used in 
the summer, with lower marginal rates compared to the rest of the year, avoided emission reductions 
using average values of SO2 for air conditioners are overestimated by 13%. However, for upgrades like 
ductless heat pumps which have higher winter consumption compared to the summer, we underestimate 
the SO2 emission reductions using average values compared to marginal values. Therefore, while average 
emission estimates may be used for back of the envelope calculations, marginal emission values are more 
appropriate in quantifying the size of interventions especially due to variability in the demand profile over 
the year.  
 
Table C.2 - Deviations of avoided average to marginal emission estimates for CO2, SO2, NOx, and PM2.5 
reductions 

Upgrade Name CO2 SO2 NOx PM2.5 

Air Sealing 11% -45% 1% 4% 
DHP (displaces electric baseboard) 11% -46% 1% 4% 

Drill-and-fill wall insulation 12% -41% 1% 4% 
Duct Sealing 12% -24% 0% 3% 
LED Lighting 12% -20% 0% 3% 

Low E-Storm Windows 12% -23% 2% 3% 
R-10 Finished Basement 11% -37% 1% 3% 

R-10 Unfinished Basement 11% -32% 1% 3% 
R-49 Attic Insulation 12% -33% 1% 3% 

AC, SEER 18 13% 13% 0% 2% 
ENERGY STAR Clothes washer 11% -26% -3% 4% 

HPWH 11% -15% -1% 3% 
ENERGY STAR Dishwasher 12% -28% 0% 2% 

Central ASHP 11% -38% 1% 3% 
ENERGY STAR Refrigerator 11% -22% 1% 1% 
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Appendix C.5. Social discount rates  
 
In Figures C.7 and C.8, we provide comparisons of the net cost of the different upgrades to the social 
benefits from the upgrades using our baseline discount rate of 7%. As expected, the results are sensitive to 
the choice of discount rates because as the discount rate increases, the social benefits become higher than 
the private benefits of the upgrades. At a 15% discount rate, it is beneficial to implement all these EEM 
measures.  
 
 

 
Figure C.7 - Comparison of total net upgrade cost to total avoided damages from all pollutant emission 
reductions for different EE upgrades at a 15% discount rate 
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Figure C.8 - Comparison of total net upgrade cost to total avoided damages from all pollutant emission 
reductions for different EE upgrades at a 15% discount rate 
 
 
 
 


