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Abstract
Wholesale electricity market and retail tariff design often uses anachronistic assumptions based on

existing technology characteristics or historical computational and data limitations. This dissertation

conducts four categories of analysis on how electricity market design can be modernized to increase

efficiency and avert roadblocks to economy-wide deep decarbonization. First, electric utilities can

capture most of the system benefit of customer-sited energy storage resource (ESR) adoption with

critical peak pricing (CPP). CPP is proposed as a simple and Pareto-improving rate design for

commercial and industrial customers with ESRs, similar to time-of-use rates for electric vehicle owners.

Second, previous research quantifying correlated generator failures in the PJM Interconnection can

be incorporated in both resource adequacy and scarcity pricing using an operating reserve demand

curve (ORDC). Because correlated failures occur at very high and low temperatures when electricity

demand is highest, there are substantial effects on target winter and summer planning reserve

margins and increased social welfare from better accounting for generator failure probability when

designing ORDCs. Third, as electricity markets evolve toward higher shares of variable, low marginal

cost resources with ESRs new rules are needed to ensure resources’ full, competitive participation. A

bi-level model implemented on a realistic, high renewables nodal test system highlights strategies

ESRs and hybrids can use to raise prices, particularly cross-product and decongestion strategies,

and suggests offer uniformity over co-optimized temporal intervals as a remedy. Fourth, metrics

like effective load carrying capability (ELCC) are increasingly common for quantifying the system-

dependent contribution of variable generation and ESRs to resource adequacy. Extending these

methods to a zonal evaluation of resource adequacy using data from the Midcontinent Independent

System Operator (MISO) shows transmission and ESRs have a complementarity benefit in zonal

resource adequacy that is not realized by variable nor conventional generators, suggesting the

importance of increased zonal representation in planning with ESRs.
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Chapter 1 Introduction
Wholesale electricity market and retail tariff design often uses anachronistic assumptions based on

existing technology characteristics or historical computational and data limitations. This dissertation

conducts four categories of analysis across six chapters on how electricity market design can be

modernized to increase efficiency and avert roadblocks to economy-wide deep decarbonization.

Chapter 2 develops an approach for optimizing the use of customer-sited energy storage resource

(ESR) to increase electric utility avoided costs. Most of the system benefits of customer-sited ESR

can be captured by the utility through peak pricing in a small subset of hours with minimal effect

on the value of the ESR to the customer. However, these tariffs remain uncommon nationally, even

for commercial and industrial customers. For policy simplicity, critical peak pricing can be thought

of as appropriate for ESR-oriented retail rate design in a manner similar to the applicability of

time-of-use tariffs for electric vehicle owners. More generally, ESRs may serve as an impetus for

forward-thinking rate design modifications in coming years.

Chapters 3 and 4 draw on a model of generator failures developed by Sinnott Murphy [1] during

his doctoral research to conduct two published analyses: one on resource adequacy implications in

the PJM Interconnection as Chapter 3 [2], and one on better incorporating correlated generator

failures in PJM’s energy markets through dynamic operating reserve procurement as Chapter 4 [3].

Both papers apply insights from Dr. Murphy’s research to an existing wholesale electricity market;

the latter paper specifically proposes improvements to PJM’s formulation of its operating reserve

demand curves (ORDC) to better endogenize reserve procurement at the high and low temperatures

when demand is highest and scarcity most commonly occurs.

Chapters 5 and 6 contribute insight for ongoing discussion at North American system operators

on holistic competitive participation of energy storage resources (ESRs) with ability to set price

for services of which they are technically capable in markets. In Chapter 5 we develop a modeling

approach for identifying profit-maximizing bidding strategies for ESR- or hybrid-owning entities in

a realistically parameterized multi-node, two-settlement electricity market with high penetration
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of variable, low marginal cost resources. We identify cross-product and decongestion strategies by

which ESRs and hybrids can commonly raise clearing prices above competitive levels. We propose an

offer uniformity remedy that helps maintain competitive outcomes in delivering customers low-cost,

reliable service under increasing ESR and hybrid penetrations.

Chapter 6 extends the model developed in Chapter 5 to focus on a specific, profitable strategy

using resource hybridization to decongest generation pockets. Cases are developed to highlight the

profitability of this strategy. Chapter 6 can be bypassed by readers of Chapter 5 without missing

the general findings from the dissertation.

Chapter 7 quantifies concerns about incorporating ESRs in zonal resource adequacy (RA)

constructs common in North American markets with centralized capacity auctions. RA modeling

typically considers contributions of generators with limited or no representation of the transmission

system. The ability of ESRs to substitute for transmission by time-shifting load makes it increasingly

important to consider transmission limits in computing resource adequacy to accurately quantify

the relative contribution of ESRs and generators to reliability metrics. We show how ESRs and

transmission have a complementarity benefit in RA that does not apply for generators using a

realistic zonal test system based on data from the Midcontinent Independent System Operator

(MISO).
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Chapter 2 The Importance of Peak Pricing in
Realizing System Benefits From Distributed
Storage*

Abstract

A fundamental policy question for distributed energy resources (DER) is whether they create system benefits

shared by all utility customers in addition to being profitable for the installing customer. This question has

received considerable attention in “value of DER” and net metering reform proceedings for behind-the-meter

solar photovoltaics in recent years. Commercial customer-sited lithium-ion batteries with a primary use case

of demand charge management are forecast to greatly increase in the coming decade due to falling storage

costs, making comparison of their customer and system benefits a timely topic in DER valuation. We conduct

a national overview of the system benefits of commercial customer-sited storage and find system benefits

will not be realized for many commercial customer-sited storage installations in the absence of incentives for

storage dispatch during the top 50-100 annual hours that drive grid infrastructure investment. Regulatory

implementation of default peak pricing during a small subset of annual hours for customer-sited storage

can realize additional system benefits and offer Pareto improvement. Additional transparency in regulatory

estimates of these system benefits helps catalyze longer-term visions for increased competition at the retail

level using DERs.

* This paper is in review as L. Lavin and J. Apt “The Importance of Peak Pricing in Realizing System Benefits from
Distributed Storage,” Energy Policy. An earlier version received the 2019 Herbert L. Toor award for best EPP Part A
qualifying paper.
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Abbreviations and acronyms

5CP 5 coincident Peak hours in PJM
AMI Advanced Metering Infrastructure
BTM Behind the Meter
C&I Commercial and Industrial
CBP Capacity Bidding Program
ComEd Commonwealth Edison, an Illinois-based electric distribution utility
CP Coincident Peak
CPP Critical Peak Pricing
CPR Critical Peak Rebate
CPUC California Public Utilities Commission
DER Distributed Energy Resources
DLCO Duquesne Light Company, a Pennsylvania-based electric distribution utility
DRAM Demand Response Auction Mechanism
DRV Demand Reduction Value
DRIPE Demand Reduction Induced Price Effect
eGRID Emissions and Generation Resource Integrated Database
EIA United States Energy Information Administration
ERCOT Electricity Reliability Council of Texas
FERC Federal Energy Regulatory Commission
IOU Investor-Owned Utility
LMP Locational Marginal Price
LSE Load-Serving Entity
LSRV Locational System Relief Value
NARUC National Association of Regulatory Utility Commissioners
NCP Non-Coincident Peak
NEM Net Energy Metering
NPV Net Present Value
NREL National Renewable Energy Laboratory
PCT Participant Cost Test
PG&E Pacific Gas and Electric, a California-based electric distribution utility
PURPA Public Utilities Regulatory Policy Act
PV Photovoltaic
REV Reforming the Energy Vision
RIM Ratepayer Impact Measure
RPS Renewable Portfolio Standard
RTP Real-Time Pricing
SGIP Self-Generation Incentive Program
T&D Transmission and Distribution
TOD Time-of-day
TOU Time-of-use
TRC Total Resource Cost Test
VDER Value of Distributed Energy Resources
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2.1 Introduction

Rapidly falling costs of stationary battery storage, particularly lithium-ion chemistries [1], are

driving increasingly aggressive forecasts for deployment at scale in the coming decade [2]. Private

storage owners will tend to operate their storage assets to minimize their costs. That operation

may either increase or decrease benefits to the system as a whole. Here we examine whether simple

updates to customer rate structures can offer Pareto improvement for private customer and public

system benefits.

We focus on behind-the-meter (BTM) battery storage, the deployment of which may be significant

in the coming decade [2]. BTM storage can be further segmented into residential and non-residential

segments; we focus on non-residential customers. Non-residential utility customers’ electric tariffs

typically have demand charges (a levy on their highest period of electricity consumption during a

time period, often 15 minutes of every month). Non-residential customers also more commonly have

time-of-use (TOU)1 tariffs for their energy consumption than residential classes. For both demand

and time-varying energy charges, the time-differentiation of billing creates an opportunity for storage

to shift the customer’s metered energy consumption and lower bills.

Previous literature focuses on the combination of storage cost, demand charges, and TOU bill

management that make storage installation cost-effective from the customer perspective [3,4]. In

the parlance of distributed energy resource (DER) cost-effectiveness [5, 6], this literature evaluates

whether distributed storage passes the Participant Cost Test (PCT), which compares the installing

customer’s (“participant”) savings on their electricity bill to the cost the customer pays to install the

DER subject to assumptions about future electricity bills and DER financing and lifetime. Passing

the PCT under realistic assumptions is a key first screen for potential DER adoption, but a logical

next step is to look at how the DER fares under a Total Resource Cost (TRC) or Ratepayer Impact

Measure (RIM) Test. The TRC evaluates whether a DER creates benefits for society by comparing

avoided costs against the costs of installing and maintaining the DER, while the RIM evaluates

whether the DER creates benefits for the utility and/or non-participating utility customers on the on
1Both TOU and time-of-day (TOD) typically refer to “usage over broad blocks of hours (e.g., on-peak=6 hours for
summer weekday afternoon; off-peak = all other hours in the summer months) where the price for each period is
predetermined and constant” (REF: https://www.smartgrid.gov/recovery_act/time_based_rate_programs.html).
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the system where the DER is installed by comparing participant bill savings against avoided costs.

The RIM is particularly relevant because it provides a window into how utilities and load-serving

entities (LSEs) might respond to increased penetration of distributed storage on their system and,

ultimately, it is those entities who propose the electricity rates on which the customer-sited cost-

effectiveness of installation depends. Distributed solar photovoltaics (PV) installation has been

generally cost-effective for customers when credited under net energy metering (NEM) at the full

applicable retail rate. However, as installation has increased, studies have shown mixed results on

whether full retail compensation accurately reflects the system value of distributed PV [7–9].

When full retail compensation is found to exceed a DER’s system value, this can beget cost-

shifting (or cross-subsidization): because a utility is guaranteed full cost recovery from its customers,

rates are raised on non-participants to pay for the gap between DER compensation and its value to

the system for participants who install that DER, though the financial details of this mechanism

vary [10]. Utilities and state regulatory commissions, proffering this cost-shifting argument [11–13],

have responded by moving away from full retail compensation or changing underlying rate structures

to better reflect marginal cost of service for classes with significant distributed PV penetration

in numerous jurisdictions in recent years. Because rate design can change in response to DER

installation [14] and the key argument for doing so revolves around those resources doing poorly

under the RIM, it is useful to evaluate distributed storage in the RIM framework before accepting

that the combination of falling costs and current rate designs will lead to high levels of penetration.

This paper seeks to fill that lacuna in the published literature on distributed storage.

We show that, in general, customer operation of storage leads to operation at times that do

not relieve the peak system load and thus does not avoid system costs. This is because customer

peaks that storage can reduce often occur in the early afternoon but system avoided cost peaks are

in the late afternoon. In areas that install both storage and solar, large quantities of midday low

marginal cost solar generation move system net load peaks and associated capacity-related avoided

costs toward evening, further reducing the match between storage operation and system peak load.

We find that dynamic rates are a simple and effective way to ensure that customer storage helps the

grid. A full move to more complex real-time pricing may not be required to realize most system
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avoided costs from customer-sited storage. Simpler critical peak pricing (CPP) rates targeted at the

top 50-100 avoided cost hours can improve alignment of customer and system benefits for storage

adoption.

2.2 Background

We include background on avoid costs and rate design to contextualize our research contribution.

2.2.1 Avoided Costs

Avoided costs are generally defined as a LSE’s marginal cost of service, and are often used

as a proxy for system value of a DER in the applicable service territory. Common monetized

avoided cost components include energy, losses, ancillary services, capacity, and transmission and

distribution (T&D) deferral, though many other components may be considered [15]. Some of these

cost components are difficult to estimate and vary at a sub-jurisdictional level; for example, how

to estimate distribution system value of DERs has been an area of debate [16] and focus of policy

initiatives like New York’s Value of DER (VDER) proceedings [17]. Additional jurisdiction-dependent

components can include avoided policy compliance costs, such as Renewable Portfolio Standard

(RPS) obligations. Avoided costs may also include societal components not directly monetized by

the LSE; common societal avoided costs include greenhouse gases and other pollutants. Financial

avoided costs like the market price response2 [18,19] and avoided fuel price hedging costs may also be

considered. Reliability and resilience benefits are another potential avoided cost; avoided customer

outages may be particularly germane to storage if properly configured for islanded operation during

outage events [20]. Our work considers only the main set of monetized avoided costs as a base

case excluding financial and reliability/resilience related avoided costs, with jurisdiction-relevant

monetized adders and consideration of societal avoided costs in sensitivity analysis. This focus

allows for more direct evaluation of rate design alternatives but may not comprehensively include all

avoided costs relevant to a particular jurisdiction.

2Sometimes also called Demand Reduction Induced Price Effect (DRIPE) in the context of energy efficiency programs,
and the merit order effect in the context of wholesale markets.
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2.2.2 Rate Design

Economics and policy literature have for decades considered the efficiency of electric utility rate

structures balanced against other goals such as equity, transparency, stability, and ease or technical

feasibility of implementation. This general framework for ratemaking is often said to follow the

Bonbright Principles [21] and continues be applied in industry documents [22]. In the past decade

diffusion of advanced metering infrastructure (AMI) has lowered technical barriers to implementation

of more complicated and economically efficient rate designs; simultaneously, increasing adoption

of DERs has created impetus for re-considering cost-causation in rates. [23] lays out the general

parameters and parties of this debate over the future of rate design, centered around fixed cost

recovery. More comprehensive reviews of alternative rate designs with a focus on future applications

are available in [24, 25]. We note the importance of considering multiple objectives in rate design in

interpreting our results.

2.3 Methods

We quantify the system benefits achieved by behind-the-meter C&I storage installation under

realistic parameterizations of current rate design and avoided costs. Six different utility tariffs are

each applied to 30 or more customer load shapes representative of common C&I customer types.

BTM storage is then sized to 20% of the customer’s peak load and its dispatch optimized as a linear

program to minimize the customer bill. We compare customer bill savings to estimates of utility

avoided costs from the optimized BTM storage dispatch and identify simple changes to rate structure

that offer Pareto improvement by increasing system avoided costs without reducing customer bill

savings.

We adopt a Ratepayer Impact Measure (RIM) framework comparing customer (participant) bill

savings from a storage installation to bulk-system avoided costs from that same storage installation.

Importantly, neither side of this comparison says anything about the cost of the installed storage

device; we assume the combination of falling costs, subsidies, and rate design identified in region-

specific adoption-focused market research [20, 26] and higher-level national evaluations [3, 27, 28] can
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make customer-sited storage an attractive economic proposition in many US utility jurisdictions.

Bill savings are reductions in the customer’s annual utility bill and depend on a jurisdiction’s rate

design for the applicable customer. Avoided costs consist of avoided energy, generation capacity,

losses, transmission and distribution deferral, again in the applicable jurisdiction, and are discussed

in more detail below and in Appendix A.3. Typical non-residential utility customer bills are made

up of customer or fixed charges ($/month), energy charges ($/kWh), and demand charges ($/kW).

Applicable demand and energy charges may additionally vary by time period. For example, when

energy charges vary according to predetermined time periods, this is known as a “time-of-use” (TOU)

rate. When energy charges vary hourly with wholesale prices on the bulk electric grid, this is known

as “real-time-pricing” (RTP) [29].

To reduce customer bills we size a four-hour duration battery to 20% of the applicable customer’s

peak load. While it is possible to optimize battery size as a function of battery costs, customer

load, and applicable customer rate [30–32], this process adds considerable computational overhead,

and [30] ultimately finds 3-5 hour duration batteries to be optimal at medium and high battery cost

levels across a few of the most common representative Department of Energy (DOE) commercial

load shapes [33] in four climate locations. For battery capacity we follow [4] in sizing to 20% of

peak load in our base cases. Customer load shapes are explained further in the Section 2.4 Data

and Appendix A.1, and are not assumed to be modified by the addition of any other DERs, though

in practice co-siting batteries with solar PV to take advantage of the federal investment tax credit

or state and local incentives may be common. We also assume load shapes are not modified by

behavioral responses to battery installation.

Given a battery size, customer load shape, and applicable customer rate, the battery is dispatched

to minimize the customer’s bill. Dispatch is implemented as a cost-minimizing linear program in

Pyomo with the open-source GLPK solver, minimizing the objective function of the customer’s

annual bill shown schematically below and detailed fully in Appendix B.

Min
∑

t=1...8760

Loadt ∗ $Energyt +MaxLoad ∗ $Demand+ $Customer (2.1)
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Where Loadt is the customer load net of battery dispatch, MaxLoad is the customer’s peak

load net of battery dispatch, and Energyt, $Demand, and $Customer are the customer’s energy

($/kWh), demand ($/kW), and customer or fixed ($/kW-mo.) charges on the applicable rate schedule.

Battery dispatch is optimized on a monthly basis with perfect foresight in the base case. Twelve

months of dispatch are summed for annual bill savings totals. Monthly optimization with hourly

dispatch resolution is chosen for the optimization because demand charges are commonly levied

on the customer’s highest 15-60 minutes of electricity use in a month [34]. A perfect foresight

assumption is common in literature and sets an upper bound on customer bill savings, but of course

will not be achieved in practice; industry contacts suggest contracts for commercial storage more

commonly guarantee 70-80% reduction in demand charges compared to perfect foresight [35]. In

sensitivity analysis included in Appendix C we set a lower bound on customer bill savings with

persistence forecast dispatch for two cases. Persistence forecast dispatch achieves 57-63% of bill

savings for load shapes used in our base case. Finally, dispatch is implemented with consideration of

battery degradation as future foregone revenue by setting the marginal benefit of use to $5/MWh

for our peak shaving and bill management applications based on [36].

Avoided costs are calculated after the battery is sized and dispatched to minimize the customer’s

bill. Avoided costs are also annual with hourly granularity. To the best of our knowledge, the only US

jurisdiction to historically release generic hourly avoided costs for its investor-owned utilities (IOUs)

is the California Public Utilities Commission (CPUC) [37], though new estimates are available for

New York as part of the Value of DER (VDER) proceedings [17, 38]. Other utilities or jurisdictions

often file avoided costs for either energy efficiency programs or qualifying facility tariffs under the

Public Utilities Regulatory Policy Act (PURPA), but are at either an annual or seasonal time-of-day

granularity. Because of the short duration of battery storage charge and discharge cycles compared

to availability of more common DERs like rooftop PV, combined heat and power, and energy

efficiency, it is more important to evaluate avoided costs at (sub-)hourly granularity for batteries.

Therefore, one recommendation coming from this work is for jurisdictions across the country to

estimate time-dependent avoided costs hourly to better ascertain the cost-effectiveness of DERs.

These estimates have additional benefits beyond batteries for other DERs, for example, [39] highlights
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the importance of time-dependent valuation of energy efficiency measures.

In the absence of this information, we hew to the CPUC framework for allocating energy, losses,

capacity, and T&D deferral avoided costs on an hourly basis for a recent year; details of this

calculation for specific utilities included in Section 5 Results are in Appendix A.3. In the base cases

of our results we assume inclusion of T&D deferral avoided costs at levels consistent with those

used by the CPUC and developed by New York’s IOUs as part of the VDER proceedings in their

Demand Reduction Value (DRV, similar to transmission-level avoided costs) and Locational System

Relief Value (LSRV, similar to distribution-level avoided costs) tariff components. However, we

include sensitivities in Section 5.3 Avoided Cost Sensitivity without these avoided costs, which may

depend on system-specific ability to avoid or defer upgrades to grid infrastructure due to near-term

reductions in peak demand. For example, [9] finds only 1% of Philadelphia-based electric utility

PECO’s annual distribution capital expenditures to be growth-related, suggesting an upward limit

on the ability of DERs to avoid or defer distribution costs strictly via load management outside of

targeted planning processes. Generally, if transmission and distribution systems have significant

excess capacity, the ability of DERs including storage to avoid or defer those costs may be more

limited than assumed in the Section 5 Results base case.

Figure 2.1 is a schematic of our method.
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Figure 2.1: Method flowchart with key data inputs. After selection of a customer rate and load
shape, a battery is sized to 20% of the customer’s peak load and optimized with a linear program
at monthly resolution to minimize the customer’s bill. Bill savings and avoided costs can then be
calculated. This process is then iterated as a new set of cases under changes to the customer’s rate
schedule.

2.4 Data

As shown in Figure 2.1, the three major input choices for conducting our analysis are the

applicable customer rate, load shape, and estimate of utility avoided costs. Additionally, we size and

parameterize battery dispatch. Data sources for these components are in Table 2.1, and described in

more detail in Appendix A.

Because the main use case for customer-sited storage is reducing demand charges, we highlight

the variation in demand charges by displaying in Figure 2.2 the rate with the highest demand charge

by utility in each county across the United States. In counties with multiple utilities serving the

county, we take a simple average of the utilities serving the county.
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Table 2.1: Data Overview

Category Sources

Customer Rate
OpenEI utility rates database [40];

40,000+ rates can be used by our tool based on OpenEI database;
vetting and detailed info for chosen cases in Appendix A

Hourly Load Shapes
30 DOE buildings, 1998-2014 (17 years) of loads, 16 climate zones [41]

500 Duke (SC/NC) Commercial and Industrial
Load Shapes (2012-2013) used as validation

Avoided Costs
California: 3 Utilities, 2018-2047, 16 climate zones [37].

Others: Build hourly avoided costs from LMP,
Losses, Capacity, T&D, pollutants; detail in Appendix A

Figure 2.2: Average maximum commercial demand charge ($/kW-mo.) by county. Grey counties
have no available data. Data from [40].

Figure 2.2 lends credence to the idea that, as noted by Manghani [3], Fisher and Apt [4],

NREL [28], and others, deployment may happen outside traditional policy-forward jurisdictions

due to heterogeneity in existing rate design as battery costs fall. For our cases, more than 40,000

utility-specific rates are pulled from OpenEI’s Utility Rates Database [40] and shaped to hourly

granularity using a set of scripts developed by the authors.
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For customer load shape inputs, like [30] and other publications on the economics of commercial

DERs [42], we use the 30 representative commercial customer load shapes developed by DOE in [33].

We verify that these DOE commercial load shapes are reasonable by comparison with metered load

data in 2012-2013 for approximately 500 C&I customers in Duke Energy Carolinas’ (NC/SC) service

territory in Appendix A.

We estimate hourly avoided costs in a recent year for non-California jurisdictions where this level

of detail is not available in avoided cost filings. Base case avoided cost estimates consist of marginal

avoided energy, losses, capacity, and transmission and distribution (T&D) at hourly granularity for

a utility’s service territory. Hourly avoided CO2 is also estimated at an Environmental Protection

Agency (EPA) Emissions and Generation Resource Integrated Database (eGRID) subregion level

using [43], monetized with the social cost of carbon used by [37],3 and included as a sensitivity.

Avoided CO2 is not included in base cases because most utilities do not face CO2 pricing as part of

their cost of service. Further details of this estimation method are given in Appendix A.3.

Our method allows us to evaluate customer bill savings and avoided costs for any rate structure

across the country given hourly customer load and avoided costs. However, three difficulties prevent

us from realizing a fully representative study of commercial customers across the country

1. Representative hourly commercial customer load data is difficult to obtain.

2. Even when load data is obtained, the applicable rate for specific customers may be unknown,

though we can make educated guesses.

3. For non-California jurisdictions we make generic assumptions to obtain hourly resolution

avoided costs.

Additionally, the above criteria are not static; over time loads, rates, and avoided costs change.

However, our main results showed enough consistency in the locations examined and with the

sensitivity analyses performed to give confidence in the basic conclusions.

3$63/ton CO2 in nominal 2018$
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2.5 Results

2.5.1 Case Selection

We present results for six cases shown in Figure 2.3. The cases are meant to achieve a broad

representation of the included continental United States temperatures (data from [41]) and the

demand charges shown in Figure 2.2. Included utility service territories shaded in dark red in

Figure 2.3A are Austin Energy (TX), Boston Edison (MA),4 Commonwealth Edison (ComEd, IL),

Dominion (VA), Duquesne Light Company (DLCO, PA), and Pacific Gas & Electric (PG&E, CA).

4The service territory shown on the map is NSTAR, which included Boston Edison Company, Cambridge Electric Light
Company, Commonwealth Electric Company, and NSTAR Gas Company. NSTAR is now part of Eversource Energy,
which includes additional utility service territories in Western Massachusetts, Connecticut, and New Hampshire.
Cases throughout the text are referred to as Boston Edison to highlight that Boston-specific rate schedules and
avoided costs are assigned for these customers.
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Figure 2.3: Six evaluated utility service territories (A) and annual average daily maximum
temperature with isotherms (B). Gray dots (A) show the representative city for the climate load
shape from DOE. Service territories are matched to the geographically closest dot for load shapes
except Boston Edison (matched to Minneapolis for climate representation) and Dominion (matched
to Atlanta for climate representation).
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All results are presented in a RIM framework comparing percentage customer bill savings to

system avoided costs from the customer-sited battery. We use percentages instead of absolute bill

savings and avoided costs in results to better compare across customers with very different electricity

consumption, though absolute savings are discussed in Section 2.5.4 Installation Likelihood. Violin

plots (probability density plots of the data at different values) visualize a best-fit distribution and

box-and-whisker plot assuming equal weight for each modeled customer load shape on the applicable

utility tariff, commonly the 30 DOE load shapes for the applicable geography. The main result is

presented Figure 2.4, and shows a critical peak price (CPP) tariff can increase avoided costs without

decreasing customer bill savings, offering Pareto improvement. The policy implication is a full move

to more complex real-time pricing may not be required to realize most system avoided costs from

customer sited storage. Simpler critical peak pricing (CPP) rates targeted at the top 50-100 avoided

cost hours realizes most system benefits and is more readily designed to ensure the storage adopting

customer is not worse off.

Our main result is highly sensitive to which avoided cost components are considered; for this

reason, a set of sensitivities on avoided costs are included in Figure 2.6. Other sensitivities are

included in Appendix A and C.
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2.5.2 Critical Peak Pricing

Figure 2.4: Critical Peak Pricing (CPP) can better match avoided costs and bill savings. Percent
of Bill refers to the percent reduction in the customer’s energy and demand bill before storage
installation. Details of CPP are in Table 2.2. The distribution of values are shown as best-fit
probability densities surrounding box plots.

Table 2.2: Figure 2.4 Case Parameterization.

Case Label Load Shapes Rate Avoided
Costs

Critical
Peak Pricing

Base

Houston, Minneapolis,
Chicago, Atlanta,

Baltimore, San Francisco
DOE shapes (n=30)

Austin Energy Commercial 10-300kW,
Boston Edison Time-of-Use G-3,
DLCO General Service >25kW,

ComEd BES Large Load,
Dominion GS-2 Demand,
PG&E E-19 Medium TOU

Energy,
losses,

capacity,
T&D

None

Base+CPP Ibid Ibid Ibid
$0.50/kWh adder
for optimal 15 four
hour annual calls

Figure 2.4 suggests a well-targeted critical peak price (or rebate)5 helps ensure storage dispatch

during hours with the highest avoided costs. The re-dispatch of storage to achieve these avoided

5A critical peak price is levied on a customer’s entire consumption during a set of hours. A rebate is a payment made
to a customer associated with reducing load from a pre-defined baseline during those same hours. In principle, the
two are economically equivalent if appropriately designed; in practice, the political economy of implementation and
behavioral response may differ. We use CPP throughout the rest of the paper.
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costs need not reduce customer bill savings from installation; in fact, additional battery revenue

from the CPP hours outweighs foregone revenue from re-dispatch in most cases.

Figure 2.4 shows the highest incremental CPP avoided costs in the service territories in PJM

ISO (ComEd, DLCO, Dominion) primarily because load serving entities in PJM allocate generating

capacity costs to customers on the basis of five annual coincident peak hours (5CP, Appendix A.3

Avoided Costs). Bill savings are highest in PG&E due to higher, more granular demand charges (see

Figure 2.2) and additional temporal resolution in time-of-use energy charges on PG&E’s default

commercial tariff. The CPP has the least effect in Austin Energy (TX) because the applicable

wholesale market for the Electricity Reliability Council of Texas (ERCOT) does not have a capacity

payment for the CPP to target and avoid.

We next investigate why a tariff such as the CPP is needed to achieve higher avoided costs from

customer-sited storage in many jurisdictions. The primary reason the base cases achieve much higher

customer bill savings than avoided costs is that many commercial customers have load shapes where

monthly customer peak demand (which often determines their demand charge) does not align well

with avoided costs. Results for the six jurisdictions are presented in Figure 2.5.

Figure 2.5: Density of annual hourly average avoided costs and peak hour by commercial load
shape. Avoided cost peaks tend to lag commercial customer load peaks in most jurisdictions; the
effect is most pronounced in California where increasing solar penetration has pushed avoided cost
peaks toward the evening. Appendix A.3.
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If customer peaks occur in the early afternoon but system avoided cost peaks are in the late

afternoon (Figure 2.5), both these sets of hours may fall during the afternoon peak periods of even

“smart” non-residential rates with coincident peak demand charges or more granular pre-defined

TOU peak periods [44]. Smart non-residential rate design for storage, therefore, may require an

additional level of granularity provided by CPP calls specifically targeted at peak avoided cost hours.

Further, as data for PG&E in Figure 2.5 suggests, increasing penetrations of variable renewable

energy (VRE) have additional implications for correlation between customer loads and avoided costs.

Large quantities of midday low marginal cost solar generation move system net load peaks and

associated capacity-related avoided costs toward evening [45]. As a result, whatever misalignment

currently exists between storage dispatch for minimizing customer bills and system avoided costs

under current rates may be exacerbated by VRE, and could undermine presumed co-benefits of

storage and VRE deployment if rate design does not adapt.

2.5.3 Avoided Cost Sensitivity

Our result on the value of CPP is sensitive to the question of which system costs can be avoided

by battery dispatch. The base case in Figure 2.4 considered marginal energy, losses, generation

capacity, and T&D costs avoidable. Figure 2.6 shows the incremental value of these avoided costs

under CPP. An additional sensitivity analysis adds avoided marginal CO2 emissions.
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Figure 2.6: Inclusion of peak-driven avoided investment costs in generation capacity and T&D
infrastructure are necessary for realizing the system benefits of CPP from storage. Including non-
monetized marginal environmental benefits like avoided CO2 has little further effect. As for Figure
2.4, the distribution of values are shown as probability densities surrounding box plots. Details of
cases are in Table 2.3.

Table 2.3: Figure 2.6 Case Parameterization.

Case Label Load Shapes Rate Avoided Costs Critical
Peak Pricing

LMP

Houston, Minneapolis,
Chicago, Atlanta,

Baltimore, San Francisco
DOE shapes (n=30)

Austin Energy Commercial 10-300kW,
Boston Edison Time-of-Use G-3,
DLCO General Service >25kW,

ComEd BES Large Load,
Dominion GS-2 Demand,
PG&E E-19 Medium TOU

Energy, losses
$0.50/kWh adder
for optimal 15 four
hour annual calls

LMP+Cap Ibid Ibid Energy, losses,
generation capacity Ibid

Base Ibid Ibid
Energy, losses,

generation capacity,
T&D

Ibid

+CO2 Ibid Ibid
Energy, losses,

generation capacity,
T&D, CO2

Ibid

Peak-driven investments at the bulk system, transmission, and distribution levels concentrated in

just a few dozen hours create the greatest opportunity for CPP to avoid costs often not reflected in

current rates. Avoided energy costs alone do not readily justify CPP, so jurisdictions should be careful

to consider which investment costs are avoidable. Many jurisdictions are located within wholesale
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electricity markets with well-defined capacity costs at the bulk system level, but avoidable T&D costs

on a utility’s sub transmission or distribution system are much less well-defined. Quantifying these

avoided costs has been a subject of considerable attention in proceedings like New York’s Value of

DER (VDER) proceedings, resulting in tariffs with a utility (DRV) and sub-utility locational (LSRV)

component broadly reflecting T&D avoided cost magnitude estimates and tariff dispatch criteria for

DERs to accrue these avoided costs [17]. Figure 2.6 suggests distributed storage deployment should

serve as an impetus for more utilities to consider developing similar estimates.

Additional results highlighted by Figure 2.6 include that consideration of avoided CO2 costs6

using a marginal emissions factor (MEF) framework has little effect on the difference between avoided

costs and bill savings. Avoided CO2 emissions when dispatching storage to minimize customer bills

are small in the evaluated territories for current electric grid MEFs; this confirms more detailed

research in [46,47]. However, even the most detailed and accurate marginal emissions factors assess

only dispatch on the current electric grid, though adjustments can be made to better forecast future

grid generation mixes [48]. Also, investment effects are exogenous to the MEF approach. Bistline

and Young [49] show that for storage technologies like the distributed batteries this paper considers,

investment-related emissions effects considered in capacity expansion models are much larger than

dispatch-related emissions effects considered by MEF or dispatch models under a wide range of

future scenarios, with increased storage penetration generally yielding increased emissions reductions

as cost declines allow or policy requires more VRE on the grid. The MEF approach may therefore

significantly underestimate the magnitude of emissions reductions associated with distributed storage

deployment, though this does not affect our main set of conclusions about rate design.

2.5.4 Installation Likelihood

Considerable other literature has focused on cost-effectiveness for the customer or third-party

storage owner and forecast increasing penetrations of distributed battery storage. For this reason,

we take the policy relevance of increasing penetrations of distributed battery storage as a given and

focus on cost-effectiveness from the utility perspective in previous parts of Section 2.5 Results. To

6Climate avoided costs are monetized avoided CO2 based on a $63/ton CO2 damages, drawing on [37]

23



enable comparisons across utilities and customers Figure 2.4-Figure 2.6 weight all customer load

shapes equally and are normalized by customer bills. However, certain types of commercial customers

in certain utility territories are clearly more likely to install distributed storage than others. Some of

the reason for a customer being more likely to install battery storage will be financial, which we

highlight in Figure 2.7.

Figure 2.7: Absolute and per battery kWh installed savings for grouped DOE load shapes across
the six modeled utilities. The 15 DOE cases are grouped into the 8 plotted groups as described in
Appendix C.6. Black dashed lines show break-even storage installed costs in $/kWh assuming a 10
year battery lifetime and 10% discount rate, with annual payments occurring at the end of each
calendar year. Points in region above line have bill savings exceeding that levelized installed cost
(“profitable” excluding operating costs). Bill savings are without CPP and assume perfect foresight.
All customers have four-hour duration batteries sized to 20% of peak load.

Generally we can infer lower load factors, higher demand charges, and economies of scale in

battery installation costs mean customers make customers with higher savings per battery kWh

installed as well as higher total bill savings more likely to install, all else equal. Figure 2.7 shows that

among modelled DOE load shapes the customers with both high total bill savings and high per kWh

installed bill savings are on PG&E’s electric rates, particularly the Large Office and Secondary School

load shapes. These customers are characterized by the highest demand charges (PG&E’s) among

the six modelled utilities, diurnal peak loads on regular weekday operating hours, and comparatively

large overall loads among the modelled load shapes. The dashed black lines in Figure 2.7 suggest
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retail bill savings alone can support a $400/kWh breakeven upfront installed cost for the most

lucrative modelled customers assuming a 10 year battery lifetime, constant annual bill savings,

and a 10% discount rate. This is a simplified view of the customer or third-party storage owner’s

financial decision that does not consider the full stack of costs (e.g., operations and maintenance),

policy (e.g., tax credits), financing options, available revenue streams (e.g., enrollment in a demand

response program), and non-monetized benefits (e.g., avoided customer outages). The simplified

view highlights consideration of other aspects of the installation decision can help further target rate

design at those customers most likely to install. For example, the utility might assume a customer

with large critical loads like a hospital will place a higher value on avoided outages and be more

likely to install. Or the utility might assume that all customers will place a higher value on avoided

outages after recently experiencing extended mandatory interruptions in utility service, as occurred

during the Public Safety Power Shutoffs affecting many California IOU customers in 2019 and 2020.

2.6 Conclusions and Policy Implications

We find that dynamic rates are a simple and effective way to ensure that customer storage helps

the grid through generation capacity and T&D avoided. A full move to more complex real-time

pricing may not be required to realize most system avoided costs from customer-sited storage.

Simpler critical peak pricing (CPP) rates targeted at the top 50-100 avoided cost hours can improve

alignment of customer and system benefits for storage adoption and offer Pareto improvement.

Therefore, utilities and regulators should consider these rate options as part of storage-oriented

policy.

CPP rates are currently offered to commercial customers on at least an optional or pilot basis in

some jurisdictions, but are not generally common (Figure 2.8). For example, non-residential storage

installations receiving SGIP incentives in California are often on CPP rates, or other event-based

programs targeted at peak hours like the capacity bidding program (CBP) and demand response

auction mechanism (DRAM) [26]. In New York, Consolidated Edison is piloting a rider (Q) to their

standard commercial rate allowing for an as-used daily demand period “that aligns demand charges
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with when network peaks occur” [38,50]. All New York IOUs now offer a Value Stack Tariff, with

the locational LSRV component of this tariff accrued based on dispatch during minimally 10 annual

1-4 hour calls announced with at least 21 hours advanced notice [17]. As California generally and the

densely populated parts of New York have among the highest demand charges (Figure 2.2) and have

additional incentives for storage deployment, options for rates that fit the criteria outlined in this

work are notable. However, options for CPP, critical peak rebates (CPR), and/or real-time pricing

(RTP) rates remain generally uncommon (Figure 2.8), and are much less common than simpler TOU

rates, leaving considerable room for ambition in rate design beyond current policy.

Figure 2.8: Availability of dynamic rate options for commercial customers among the top 100 IOUs
by commercial customer count in the United States in 2019. Data from 2019 EIA 861 [51]. 25 of the
top 100 IOUs (29% of customers) do not report data on this form in 2019.

Finally, we make three points about the broader effects of changes to rate design to better

accommodate battery storage.

First, if distributed storage encourages a move toward default advanced rate designs for C&I

customers, this has broader effects for C&I customers without storage. Econometric studies often

find the broader effects of advanced rate design to be positive at the class level [52,53]. Therefore,

we follow Linvill and Lazar [34] in recommending the time has come for these advanced rate designs

in C&I customer classes.
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Second, we considered only a limited set of revenue streams potentially available to distributed

storage. We noted earlier the existence of a potentially sizable and salient but difficult to quantify

avoided customer outage value stream, as well as some non-monetized benefits. Additional monetiz-

able revenue streams may be available through aggregation of customer-sited storage, particularly

with the implementation of FERC Orders 841 and 2222 [54,55] respectively enabling broader storage

and DER aggregation participation in wholesale markets. However, wholesale market revenue streams

are available to storage sited at the distribution or bulk system level, customer-sited aggregation has

transaction costs, and economies of scale may be realized by larger battery installations that can

access these revenue streams.

Last, there are regulatory barriers to implementation of some of the incentives and rate designs

suggested by this work. Two tensions are the incentive structure of a regulated monopoly that earns

rate-of-return on its capital investments, and additional flexibility afforded to distribution utilities in

setting both interconnection rules and rate design beyond the scope of our analysis. Regarding utility

incentives for encouraging third-party or customer-owned assets, remedies are extensively explored

in literature on revenue decoupling and performance-based ratemaking. Slow, costly interconnection

processes for customer-sited storage and increased fixed or sufficiently onerous standby charges

are potential disincentives for storage adoption and the value of dynamic rate design. Here we

simply note these approaches, which have been tried in some jurisdictions seeing distributed solar

PV adoption, are generally unpopular, undermine customer choice, and may not be justified by

cost-causation. More dynamic rate designs can realize increased benefits for customers and utilities

from customer-sited storage installation in the near-term, and have potentially increasing co-benefits

beyond storage in a smarter, more transactive grid.
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A Data Appendix

A.1 Customer Load Shapes

Comparison to Actual Load Data in Duke Energy Carolinas

As a preliminary validation of the use of the DOE commercial load shapes in for the territories,

we compare results for the 2013 Baltimore DOE shapes against approximately 500 Duke Energy

Carolinas C&I customer load shapes from 2013.

Figure A-1: Duke Energy Carolinas load shape comparison with DOE commercial loads.

Table A-1: Duke Energy Carolinas comparison inputs.

Case Label Load Shapes Rate Avoided Costs

Duke Low LF
Duke Energy
Carolinas Load
Factor <0.5

Dominion GS-2 Demand Dominion 2013

Duke Medium LF
Duke Energy

Carolinas 0.5<Load
Factor<0.65

Dominion GS-2 Demand Dominion 2013

Duke High LF
Duke Energy
Carolinas Load
Factor >0.65

Dominion GS-2 Demand Dominion 2013

DoE Loads Baltimore
DoE shapes Dominion GS-2 Demand Dominion 2013
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Similar results between the Duke 2013 load shapes with the lowest load factors and the DOE

loads suggest the DOE shapes are broadly representative of the customers most likely to install

storage. A customer’s load factor is the ratio of their average to peak demand; a lower load factor

suggests the customer pays a larger portion of their bill as demand charges and have more scope to

install storage and reduce their demand charge.

Main Case Parameterization

Details about the DOE load shapes [33] used for the six cases in the main text are provided

below.

Table A-2: Parameterization of main six cases.

Case Utility Representative City Shapes Climate Zonea Year Weight

Austin Energy (TX) Houston DOE (n=30) 2A 2006 All 30 shapes
weighted equally

Boston Edison (MA) Minneapolis DOE (n=30) 6A 2006 All 30 shapes
weighted equally

Commonwealth Edison (IL) Chicago DOE (n=30) 5A 2006 All 30 shapes
weighted equally

Dominion (VA) Atlanta DOE (n=30) 3A 2006 All 30 shapes
weighted equally

Duquesne Light Company (PA) Baltimore DOE (n=30) 4A 2006 All 30 shapes
weighted equally

Pacific Gas & Electric San Francisco DOE (n=30) 3C 2003 All 30 shapes
weighted equally

a See https://www.energy.gov/eere/buildings/commercial-reference-buildings

In the main text the shapes are listed by their representative city. The cities are representative

of 16 modeled climate zone profiles in the United States. These 16 zones are further subdivided

into 8 general climate regions. We include one shape from each of the five most common climate

zones, matched to a utility for which we could develop avoided cost data. An additional shape is

included in climate zone 3 because of differentiation between the west and east coast. The climate

regions not included (1,7,8) are the hottest and coldest zones of the United States, respectively, and

are less common. The representative cities for those zones are 1-Miami (FL), 7-Duluth (MN), and

8-Fairbanks (AK).

Years for the shapes are selected to match the weekday/weekend profile of the year for which we
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develop avoided costs. For example, 2006 and 2017 are both common years beginning on a Sunday.

Shapes are weighted equally in all cases to achieve a broader representation of customer shapes.

In practice, certain shapes may make up a larger portion of a utility’s load than others. Additionally,

some types of customers may be more likely to adopt storage for behavioral or cost-benefit reasons.

Further information on DOE Load Shapes

Log average hourly loads for each of the 30 shapes across the six areas used in the main cases

are shown below for time-of-day and monthly resolution.

Figure A-2: Time of Day Shapes.
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Figure A-3: Month of Year Shapes.

A.2 Customer Rates

Rate Choice: Southern California Edison Sensitivity

In the main text all customers in a utility’s service territory are assigned the same commercial

rate schedule. In practice, multiple rate schedules may be available to commercial customers; for

example, customers with larger loads (e.g., hospital) may be on a different schedule than small

commercial loads (e.g., restaurant).

To help ascertain the importance of the assigned rate schedule, we conduct a sensitivity using

multiple types of rate schedules available to commercial customers in the Southern California Edison

(SCE, CA) service territory. SCE is chosen because of the multiplicity of rate schedules available to

commercial customers in the service territory of a large Californian utility.
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Figure A-4: Southern California Edison commercial rate analysis.

Table A-3: SCE Case Labeling.

Case Label Load Shapes Rate Avoided Costs

Flat Los Angeles DOE SCE GS-1 SCE Climate Zone 6 2018
Time-of-Use Los Angeles DOE SCE TOU-8 Option B SCE Climate Zone 6 2018
CP Demand Los Angeles DOE SCE GS-2 Demand SCE Climate Zone 6 2018
Super Off-Peak Los Angeles DOE SCE TOU-GS-3-SOP SCE Climate Zone 6 2018

We see that in terms of bill savings, the only outlier among the tested rate is the flat rate. This

is because the flat rate, meant for small commercial customers, has no time-differentiation of energy

charges nor a demand charge. There is no incentive for customers to install storage on such a rate,

and these types of rates are not considered in the main text. The other rates achieve similar bill

savings regardless of the details of how their time-dependent energy and demand charges are levied,

the most notable difference is that the super-off peak rate achieves higher avoided costs because

the super-off peak energy rate encourages battery charging at times when avoided costs are lowest.

Overall, results suggest there are not significant differences in bill savings given rate schedules of

similar levels of complexity.
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Main Case Parameterization

Table A-4: Electricity Tariff Schedules.

Case Utility Tariff ID Energy Charge
($/kWh)

Demand Charge
($/kW)

Customer Charge
($/mo.)

Austin Energy (TX)
Commercial - Secondary

Voltage 10kW-
300kW - Inside

$.058 $12.49 NCP $27.5

Boston Edison (MA)
Boston Edison Company
General Service Time
of Use G-3 (B3, B6)

$.16109
$17.96/$23.93
Winter NCP/
Summer NCP

$237.07

Commonwealth
Edison (IL)

BES-Large Load
Delivery Class (Secondary)

$.07927/.07679
Winter/Summer $7.05 NCP $121.24

Dominion (VA) GS-2 Demand $.0798-$.0363
(declining block)

$9.908/$11.346
Winter NCP/
Summer NCP

$21.17

Duquesne Light
Company (PA)

General Service Medium
More Than or
Equal to 25 kW

$.0903 $7.09 NCP $54

Pacific Gas &
Electric (CA)

E-19 Medium
General Demand
TOU (Secondary)

$.08717/.10165/.14726
Off-peak/part-peak
summer & peak
winter/peak

summer Weekdays

$17.33/+$.13/+$5.23
+$18.74 NCP/winter peak/

summer part peak/
summer peak Weekdays

$599.59

Tariff IDs are as listed in OpenEI’s Utility Rates Database [40]. Customer charges vary con-

siderably based on the selected rate within a service territory, rates meant for larger consumption

customers have larger fixed charges. Because customer charges for the above-selected rate schedules

may thus not represent the customer charge faced by a customer, they are excluded when calculating

the percent reduction in bill in the main text figures.

A.3 Avoided Costs

Hourly average avoided costs in PG&E Climate Zone 3A (San Francisco) for 2018 from the

CPUC avoided cost calculator are shown below [37]. We assume a 2018 resource balance year.
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Figure A-5: CPUC Avoided Cost Calculator PG&E Climate Zone 3A 2018 avoided costs.

We similarly stack hourly average avoided costs for all jurisdictions below without differentiation

of avoided cost components. Component estimates are explained in subsequent sections.

Figure A-6: Hourly average avoided costs for six main cases.
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Energy and Losses

Table A-5: LMP Nodes for energy avoided costs and losses.

Case Utility LMP Node ISO Distribution
Losses Adder Year

Austin Energy (TX) LZ_SOUTH ERCOT 5% 2017
Boston Edison (MA) .ZNEMASSBOST ISO-NE 5% 2017
Commonwealth Edison (IL) COMED PJM 5% 2017
Dominion (VA) DOM ANACONDA115 KV PJM 5% 2017
Duquesne Light Company (PA) AES DUQ 13 KV MAIN PJM 5% 2017

Pacific Gas & Electric TH_NP15_GEN-APND CAISO CPUC Avoided
Cost Calculator 2017

Energy costs are approximately by locational marginal prices (LMPs) in nodal competitive

wholesale markets in many parts of the United States. LMPs account for losses at the bulk system

level, but most losses occur below the resolution of ISO pricing nodes as resistive losses on distribution

feeders. We add 5% to LMPs to account for this effect of losses, except in the California case, where

we default to the values in the CPUC Avoided Cost Calculator [37]. Borenstein and Bushnell [56]

find average US distribution losses to be 6.2%, though marginal losses are higher at 8.9% due to the

reality that marginal MWhs are served at higher load than the average MWh, with considerable

variation across the country and distribution feeders.

Shapes for the LMPs (excluding distribution losses) for the six main cases are shown below as an

annual hourly price duration curve, with an inset adding resolution on the top 100 hours.
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Figure A-7: Price Duration Curve for LMPs at nodes for six main cases.

Generation Capacity, Transmission and Distribution

Generation capacity values in markets with capacity remuneration mechanisms and the allocation

method for these costs are listed below.

Table A-6: Generation capacity avoided cost assumptions.

Case Utility Capacity Zone ISO Capacity
Price Year Allocation

Method

Austin Energy (TX) N/A ERCOT N/A 2017 N/A
Boston Edison (MA) NEMA-BOSTON ISO-NE $493.15/MW-day 2017 PCAF
Commonwealth Edison (IL) COMED PJM $153.61/MW-day 2017-18 5CP
Dominion (VA) DOM PJM $153.61/MW-day 2017-18 5CP
Duquesne Light Company (PA) DLCO PJM $153.61/MW-day 2017-18 5CP

Pacific Gas & Electric (CA) CAISO (bilateral) CAISO CPUC Avoided Cost Calculator
2018 Resource Balance Year 2018 CPUC Avoided

Cost Calculator

Marginal transmission and distribution costs and the allocation method for these costs are listed

in the table below.
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Table A-7: Transmission and Distribution avoided cost assumptions.

Case Utility Value Allocation
Method

Allocator
Shape

Austin Energy (TX) $80/kW-year PCAF LZ_SOUTH 2017 Load
Boston Edison (MA) $80/kW-year PCAF LD.ALEWIFE 13.8
Commonwealth Edison (IL) $80/kW-year PCAF COMED 2017 Zonal Load
Dominion (VA) $80/kW-year PCAF DOM 2017 Zonal Load
Duquesne Light Company (PA) $80/kW-year PCAF DUQ 2017 Zonal Load

Pacific Gas & Electric (CA) CPUC Avoided Cost
Calculator ( $130/kW-year)

CPUC Avoided Cost
Calculator (uses PCAF)

CPUC Avoided
Cost Calculator

The magnitude of avoidable generation capacity costs is based on capacity market clearing

prices in PJM and ISO-NE for the relevant year. ERCOT does not have a capacity remuneration

mechanism. California does not have a centralized capacity market, load-serving entities contract for

capacity bilaterally to meet obligations. We follow the CPUC Avoided Cost Calculator in setting

the cost of the marginal capacity contract to the net cost of new entry (net CONE), and assume

capacity is needed on the margin in the near-term by setting the resource balance year to 2018.

Generation capacity costs are allocated using the year’s five coincident peak (5CP) days in PJM

that are used to allocate these costs to customers. 5CP days are calculated after the summer season,

so in practice customers and load-serving entities must make educated guesses about which days will

count toward the 5CP allocation. Our approach implicitly assumes 15 CPP calls will be enough to

accurately target the 5CP days.

On actual systems the magnitude of avoidable or deferrable T&D costs vary by feeder [57] [58].

We choose a central non-California estimate of $80/kW-year based on review of [17], [20], [37], [59] [60].

Allocations of this cost, which determine whether storage installations can avoid it, are as described

below.

Avoided T&D costs and generation capacity in ISO-NE are allocated using the peak capacity

factor allocation (PCAF) method. The PCAF method was developed by Pacific Gas & Electric in

1993 for their General Rate Case, and has been in use since for these applications [37], [61]. The

PCAF method sets a load threshold above which avoided grid infrastructure costs are allocated,

generally based on either the standard deviation in loading on the feeder or a percent of annual

hours. We base our threshold on the standard deviation in load on the assigned allocation shape
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(e.g., the LD.ALEWIFE 13.8 bus for Boston Edison) as compared to the peak load. The threshold

calculation for a year y of hourly loads is thus

Thresholdy = max(Loady)− σLoad (A.1)

Allocation weights are then calculated as

PCAFy,h =
max(Loady,h − Thresholdy,h, 0)∑

h=1...8760max(Loady,h − Thresholdy, 0)
(A.2)

where y is the year for which the PCAF is calculated, and h is the hour of the year.

Using these methods, the generation capacity and T&D avoided costs are allocated on an hourly

basis. Below, we show the annual distribution of the hours to which the generation capacity and

T&D avoided costs are assigned.

Figure A-8: Avoided Capacity, T&D hourly distribution.

This shows the effect of the 5CP allocation method for generating capacity avoided costs in PJM

on the figures in the main text. Because the 5CP allocates avoided capacity in just five hours, these

costs are more easily targeted and avoided by an optimized CPP rate.
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Carbon Dioxide Sensitivity

We conduct a sensitivity on climate-related damages associated with emissions of CO2. Marginal

emissions factors for CO2 are taken from Azevedo et al. [43] for the five utilities outside California.

These emissions factors are shown below:

Figure A-9: Hourly marginal emissions factors for non-California cases.

In California, we use the CPUC Avoided Cost Calculator emissions factors. In all jurisdictions we

apply a $63/ton (2018$) carbon price to monetize the emissions, this value is used to be consistent

with the CPUC Avoided Cost Calculator and is broadly consistent with social cost of carbon (SCC)

estimates [62], though some more recent estimates develop a higher SCC [63]. Because inclusion of

CO2 has little effect on avoided costs, we do not conduct further sensitivity to the SCC.

Other

Additional avoided costs are included in the California case for avoided cap and trade allowances,

ancillary services, and societal criteria pollutants. Cap and trade is California state policy, and the

other two components are small (<$1/MWh).

Three other important categories of avoided costs are sometimes considered, but not included in

this study. They are
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1. Other avoided environmental damages

2. Financial avoided costs

3. Avoided customer outages

Other environmental damages include health damages associated with SOx, NOx, and other

emissions harmful to human health. Though these damages may be considerable [64], they are not

generally part of a utility’s internalized cost of service, and would likely move in a similar direction

to the CO2 sensitivity we do conduct, as in Fisher and Apt [4].

Financial avoided costs include the market price effect, fuel price hedging, and other risks [15].

The market price effect, or demand reduction induced price effect (DRIPE) results from a reduction

in inframarginal rents earned by still-operating generators in competitive wholesale markets with a

market clearing price based on the marginal generator bid. If DERs decrease market prices, increase

in consumer surplus associated with this effect can be sizable [18]. Because storage, unlike efficiency

or behind-the-meter solar PV, increases metered customer load in some hours and decreases it in

others, it is less clear what the direction of this effect would be. Additionally, the market price effect

is arguably a short-run transfer from producers to consumers, rather than an avoided cost, though

to the extent it corrects existing market inefficiencies it can be a durable benefit [15]. Fuel price

hedging is meant to defray risks of gas price volatility, some of which could arguably be avoided by

decreasing reliance on natural gas as the marginal generation fuel due to DERs.

Finally, avoided customer outages are a potentially sizable customer benefit of storage installation

if appropriately configured to provide this service [20]. We do not consider this benefit partially

because it is difficult to estimate and likely varies across customers, but also because it does not have

direct impact on a utility’s avoided costs because served by storage during an outage is by definition

not load that could be served by the utility. However, this benefit may have important implications

for customer-sited storage adoption, particularly in jurisdictions like parts of the California IOU

service territories during the 2019 Public Safety Power Shutoffs where customers have recently

endured long duration outages.
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Sensitivity to CPP Rate

An example case shown below for a San Francisco climate zone Primary School on PG&E’s E-19

rate demonstrates the general effect of CPP implementation on battery dispatch and avoided costs.

As in the main text, CPP calls for this figure are 4 hours in duration, 15 times per year, optimized

by the tool to be during the 15 periods with highest avoided costs.

Figure A-10: Detailed storage dispatch (A,B) and avoided costs (C,D) for Primary School on
PG&E E-19 rate without (A,C) and with (B,D) peak pricing. Positive storage dispatch is charging
battery, negative storage dispatch is discharging battery.
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Re-dispatch is small in MWh terms, but has large effects on the avoided costs because those

handful of hours during the 15 four-hour CPP calls are so valuable.

We also consider the sensitivity of the cases to the level the CPP rate adder is set at. In the

main text, the CPP is implemented as a $.50/kWh adder during the CPP calls. This level is chosen

for some consistency with existing rates in California plus adjustment for relatively lower rates in

most other jurisdictions. For example, the CPP is $.862/kWh on PG&E’s Peak Day Pricing rate.7

However, we note our optimization is very sensitive to inclusion of the CPP price; a very low CPP

adder achieves most benefits from battery re-dispatch.

Figure A-11: Difference between bill savings and avoided cost for example customer on CPP rate.
PSEG is Public Service Electric and Gas, a New Jersey utility. LMP cases consider only avoided
energy and losses.

In practice, CPP rates will have to overcome transaction and informational costs, and the setting

of a higher CPP rate may allow for decreases in off-peak prices resulting in the same overall bill for

customers who do not respond at all to a CPP rate.

7https://www.pge.com/en_US/business/rate-plans/rate-plans/peak-day-pricing/peak-day-pricing.page
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A.4 Correlation of Avoided Costs and Load Shapes

The DOE load shapes are weather-normalized, while avoided cost data is based on a specific

year (often 2017) of marginal energy, capacity, T&D, and CO2 costs. This creates concern about

whether the weather-normalization process is underestimating customer loads on realized peak days

(e.g., in 2017) in the avoided cost data. As a check on robustness to this concern, we again compare

with metered 2013 data for approximately 500 C&I customer loads in Duke Energy Carolinas. We

check whether this load data is any more correlated with loads and LMPs in the nearest PJM zone

(Dominion) for which there is hourly wholesale pricing data than are the DOE shapes (Baltimore)

assigned to our Dominion case. Results do not suggest meaningful differences in the correlation

between loads and prices associated with using metered data vs. the weather-normalized shapes.
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Figure A-12: Correlation plot comparing metered and DOE customer loads to Dominion zonal
loads and prices in 2013. Duke Energy Carolinas metered loads are weighted both by the average
and median customer load for comparison.
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B Optimization Formulation and Computational Methods Appendix

B.1 Optimization Formulation

Constants and Parameters

Constant or Parameter Definition Base Case Value Units

η
Round-trip efficiency

of battery 85 %

Deg
Marginal benefit of usage

(or levelized cost of degradation) $5 [36] MWh−1

Ei,t
Cost of electricity

in period i at time t Varies by customer tariff $/kWh

C Customer charge Varies by customer tariff $/mo.
D Cost of peak demand across all t Varies by customer tariff $/kW
Dj Cost of peak demand in time period j Varies by customer tariff $/mo.
NLt Native load at time t Varies by customer tariff kWh
NML Native maximum customer load Varies by customer tariff kW
P Rated power of battery 0.2 ∗NML kW
DU Duration of battery 4 hours

SOCmax maximum state of charge of battery P ∗DU kWh
SOCmin minimum state of charge of battery 0.2 ∗ P ∗DU kWh
SOC0 initial SOC of battery entering first time period SOCmin kWh

Variables

Variable Definition Units

Ct Battery charging at time t kW
Dt Battery discharging at time t kW

SOCt State of charge of battery at time t kWh
Lt Customer net load at time t kWh
ML Customer net max load across all t kW
MLj Customer net max load in time period j kW

Sets

Set Definition

t ∈ T Hour of the year. Optimization is run monthly
and added together to obtain annual totals

j ∈ J Set of demand charge periods;
are a subset of the hours of the year

i ∈ I Set of energy charge periods;
are a subset of the hours of the year
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Objective Function

Min
∑

t=1...8760

Lt ∗ Ei,t +MLj ∗Dj +ML ∗D + C + (Ct +Dt) ∗Deg (B.1)

Constraints

Lt = NLt + Ct −Dt (B.2)

SOCt = SOCt−1 + Ct ∗
√
η − Dt√

η
(B.3)

ML ≥ Lt, ∀t (B.4)

MLj ≥ Lt,j ,∀t, j ∈ J (B.5)

0 ≤ Ct ≤ P (B.6)

0 ≤ Dt ≤ P (B.7)

SOCmin ≤ SOCt ≤ SOCmax (B.8)

Further Explanation

Ct and Dt are the hourly battery charge and discharge decision variables; other variables attain

their value as per the constraints based on these decision variables. We do not constrain the battery to

exclusively be either charging or discharging, as the formulation of the problem makes this constraint

dominated in all hours (i.e., the optimal solution will never include charging and discharging in the
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same hour). Constraints (B.4) and (B.5) linearize non-coincident and period-based demand charges,

allowing formulation of the dispatch as a linear program. They result in an equivalent solution to

implementing a non-linear max() statement for positive loads and demand charges. Defining SOC0

as SOCmin ensures the initial and final battery state of charge will be the same without additional

constraints because the objective function minimizes the customer’s bill, so a battery without any

forward-looking degradation costs for subsequent time periods will always end in its minimum state

of charge.

B.2 Computational Methods

The above optimization is implemented as a linear program in Pyomo. It is solved using GLPK8,

an open-source solver.

C Results Sensitivities Appendix

C.1 Perfect Foresight Sensitivity

Our battery dispatch optimization has monthly perfect foresight as implemented in the main

cases. Because customer peak loads cannot be perfectly forecast, these results set an upper bound

on bill savings. We use a more naïve persistence forecast of customer load to set a lower bound on

bill savings for the PG&E and Dominion cases. Persistence forecast cases assume that customer

loads will be exactly equivalent to the previous day’s loads, except for adjustment when a weekday

follows a weekend day or holiday (and vice-versa), in those cases the forecast load is equivalent to the

previous day of the same day type. Persistence sets a lower-bound as, in practice, a better forecast

(e.g., including forecast temperature variables) could improve on peak load forecasting, though never

doing quite as well as perfect foresight. Results are in Figure C-1.

8https://www.gnu.org/software/glpk/
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Figure C-1: Persistence sensitivity.

Table C-1: Figure C-1 Case Parameterization.

Case Label Load Shapes Rate Avoided Costs Critical Peak Pricing Optimization Dispatch Logic

Perfect Baltimore, San Francisco,
DOE shapes (n=30)

Dominion GS-2 Demand,
PG&E E-19 Medium TOU

Energy, losses,
capacity, T&D None Perfect knowledge of

customer peak load hours

Perfect+CPP Ibid Ibid Ibid $0.50/kWh adder for optimal
15 four-hour annual calls Ibid

Persist Ibid Ibid Ibid None Expect customer load to be
the same as previous day’s load

Persist+CPP Ibid Ibid Ibid $0.50/kWh adder for optimal
15 four-hour annual calls Ibid

Median bill savings in persistence cases are 57-63% of perfect foresight bill savings across the two

utilities and for cases with and without CPP. These are the anticipated lower and upper bounds of

savings. Median avoided costs are largely unaffected, though the distribution changes in some cases

with the re-dispatch of the customer’s battery. The relatively unchanged median across CPP cases

and increase in avoided costs versus non-CPP cases shows a persistence forecast can still do well

in targeting battery dispatch to the very highest system avoided cost hours during which critical

peaks occur, assuming the utility properly targets its critical peaks and sends the appropriate price

signal in advance. Therefore, while relaxing the perfect forecast assumption significantly reduces

bill savings, negatively affecting whether a customer will realize sufficient savings to make installing

a battery financially worthwhile [4], it has less effect on the savings accrued by the utility under

smarter non-residential rate designs.

53



C.2 Persistence Comparison of DOE and Actual Duke Load Shapes

Figure C-2: Persistence sensitivity using Duke Energy Carolinas 2013 load shapes.

As in Appendix A for the main results, Figure C-2 compares the main results, which use the

DOE representative commercial load shapes, with metered load data for approximately 500 C&I

customers in Duke Energy Carolinas’ service territory in 2013. As is the case for the main persistence

sensitivity, bill savings decline substantially under a persistence rather than perfect foresight forecast

of customer loads, while median avoided costs are mostly constant, though with a shift in the

distribution. However, while median persistence forecast bill savings in are 57% of perfect foresight

forecast bill savings in the Dominion cases (left panel of Fig. C-1), they are only 22% of perfect

foresight forecast bill savings in the Duke Energy Carolinas cases. This suggests actual metered

customer loads are peakier than the representative DOE shapes, and therefore more affected by

imperfect forecasts of when customer peak loads will occur. As in the main persistence sensitivity,

this affects the customer’s financial proposition for installation more than the utility’s avoided

cost-based proposition.
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C.3 Demand Charge Temporal Resolution

All our cases are run at hourly resolution, so demand charges are also levied at hourly resolution

on a customer’s peak monthly load hour. In practice, many customers’ demand charges are levied

on shorter time increments of 30 or 15 minutes, though 60 minute resolution also exists [34]. We

plan to run sensitivities to the resolution of the demand charge before submitting for publication,

but do not anticipate large changes to results.

C.4 Battery Sizing

All customers have four-hour duration batteries sized to 20% of their annual peak load in the

main cases. Customers may size batteries differently than this assumption, both in terms of duration

and capacity. Reasons for these sizing parameters are given in the main text. We may conduct

additional sensitivities to battery sizing as time allows, but because we are explicitly not evaluating

adoption or the cost-effectiveness of installation from the customer’s perspective, we think the sizing

of the battery within reasonable bounds is unlikely to matter in our RIM framework.

C.5 Optimization Degeneracy of Time-of-Use Periods

Some customers in our main cases, such as those on the PG&E E-19 rate, face energy charges

with pre-defined time-of-use periods. TOU periods are often longer than the duration of the battery,

so the solution to the battery dispatch optimization may be degenerate regarding when the battery

charges or discharges during a given TOU period with no binding demand-related constraint. An

example of how our optimization responds to this situation is shown below for dispatch on the PG&E

E-19 rate:
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Figure C-3: Three days of customer-sited storage dispatch on a TOU rate.

In the absence of adding a penalty to the objective function for deviation from an ideal state of

charge for the battery, we consider the results above to be the most sensible outcome. The battery

charges as soon as the lowest price TOU period begins, even though charging any time during this

period would be equivalent form a customer bill perspective. The reason to prefer earlier charging

is, in practice, lack of forecast of future customer load will slightly preference charging the battery

earlier to guard against an unforeseen load spike (or, if the battery were enabled for it, avoidance of

a customer outage).

C.6 Installation Likelihood Assumptions

All cases in Figure 2.7 assume a 10-year battery lifetime over which to accrual bill savings, 10%

real discount rate, bill savings equivalent in each of the ten years, and ten payments for the upfront

battery costs made as an annuity at the end of each year based on the discount rate. The purpose of

this figure is explicitly not to conduct a Participant Cost Test, so we show only a few breakeven

upfront installed costs for comparison and do not try to estimate actual installation costs faced by

the customer or a third-party battery owner. For the same reason we conduct no further sensitivities

on battery lifetime and discount rate.

To make Figure 2.7 more legible while still plotting all 30 DOE load shapes across the six modeled

utilities we group similar types of buildings into 8 labels, as described in Table C-1.
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Table C-2: DOE Load Shape labels in Figure 2.7.

Shape Name in Figure 2.7 Included DOE Load Shapes

Apartment MidriseApartmentNew2004, MidriseApartmentPre1980
Hospital HospitalNew2004, HospitalPre1980

Hotel SmallHotelNew2004, SmallHotelPre1980,
LargeHotelNew2004, LargeHotelPre1980

Office SmallOfficeNew2004, SmallOfficePre1980, MediumOfficeNew2004,
MediumOfficePre1980, LargeOfficeNew2004, LargeOfficePre1980

Restaurant QuickServiceRestaurantNew2004, QuickServiceRestaurantPre1980,
FullServiceRestaurantNew2004, FullServiceRestaurantPre1980

Retail SuperMarketNew2004, SuperMarketPre1980, StripMallNew2004,
StripMallPre1980, Stand-aloneRetailNew2004, Stand-aloneRetailPre1980

School PrimarySchoolNew2004, PrimarySchoolPre1980,
SecondarySchoolNew2004, SecondarySchoolPre1980

Warehouse WarehouseNew2004, WarehousePre1980
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Chapter 3 Resource Adequacy Implications of
Temperature-Dependent Electric Generator
Availability*

Abstract

Current grid resource adequacy modeling assumes generator failures are both independent and invariant to

ambient conditions. We evaluate the resource adequacy policy implications of correlated generator failures in

the PJM Interconnection by making use of observed temperature-dependent forced outage rates. Correlated

failures pose substantial resource adequacy risk, increasing PJM’s required reserve margin from 15.9% to

22.9% in the 2018/2019 delivery year. However, PJM actually procured a 26.6% reserve margin in this

delivery year, translating to excess capacity payments of $315 million and an implied value of lost load of

approximately $700,000/MWh, a figure two orders of magnitude greater than typically used in operational

contexts. Capacity requirements vary by month, with more than 95% of loss-of-load risk accruing in July.

Setting monthly capacity targets could reduce annual PJM procurement by approximately 16%. We examine

the resource adequacy implications of the ongoing replacement of nuclear and coal in PJM with combined-cycle

gas generators, finding moderate benefits: approximately 2% reduction in capacity requirements. We identify

modest resource adequacy risks from potential future climate scenarios, modeled as temperature increases of

1 and 2 degrees Celsius relative to our study period. Holding loads fixed, these scenarios increase capacity

requirements by approximately 0.5% and 1.5%, respectively.

* This paper was published as S. Murphy, L. Lavin, and J. Apt, “Resource Adequacy Implications of Temperature-
Dependent Electric Generator Availability,” Applied Energy, 2020. 262: 114424. doi:https://doi.org/10.1016/j.apenergy.
2019.114424
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Abbreviations and acronyms

CC Combined cycle natural gas generator type
CDD Cooling degree days
DR Demand response
EFDH Equivalent forced derating hours
EFOF Equivalent forced outage factor
FOH Forced outage hours

EFORd
Equivalent demand forced outage rate, a measure of the probability
a generating unit will that not be available due to forced outages or
forced deratings when there is demand on the unit to generate

ELCC Effective load carrying capability, a measure of the additional load the power
system can serve at equivalent reliability due to the addition of a generator

EUE Expected unserved energy, the aggregate quantity of load
expected to be unmet during the delivery year due to generation insufficiency

FEF Forecast error factor
FERC Federal Energy Regulatory Commission
GADS Generating Availability Data System
HDD Heating degree days
HE Hour Ending

LOLE Loss of load expectation, the number of occurrences of generation
insufficiency per year for a given forecast peak load and forecast generator fleet

MPP Most probable peak, in a week
NERC North American Electric Reliability Corporation
NU Nuclear generator type
PH Period hours

PJM The PJM Interconnection, the largest system operator by installed
generation capacity and load in North America

RECAP Renewable Energy Capacity Planning Model

RRS PJM’s annual Reserve Requirement Study, which determines
the reserve margin required to achieve 0.1 LOLE reliability target

ST Steam turbine generator type
VOLL Value of lost load, the valuation of a unit of unmet load

XEFORd Equivalent demand forced outage rate but excluding causes of outages
that are outside management control (for example, loss of a transmission line)

3.1 Introduction

Significant attention has been given to the question of how much generation capacity is required

to ensure power system reliability. In the U.S., system operators1 have formalized probabilistic

approaches for determining capacity requirements in their balancing areas, termed resource adequacy

1We use this term to refer to both Independent System Operators (ISOs) and Regional Transmission Organizations
(RTOs).
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modeling. These methods are designed to comply with resource adequacy standards established by

the North American Electric Reliability Corporation (NERC) and approved by the U.S. Federal

Energy Regulatory Commission (FERC) [1]. Probabilistic resource adequacy methods have existed

since the mid-20th century. For example, [2] uses probability theory to calculate loss of load

expectation for small power systems using pooled forced outage rates and assuming independent

generator failures. Hall et. al [3] develops a method of calculating cumulative generator availability

probabilities that assumes exponentially distributed available and unavailable residence times for

individual generators. This capacity availability model is combined with a Markov model of load

states in [4] to calculate cumulative capacity reserve state probabilities. Authoritative volumes

describing established practice had been written by the end of the century [5, 6]. Common to these

methods is the representation of generators using Markov models whose probability of unscheduled

failure can be represented by an availability statistic such as the forced outage rate [7]. The earliest

methods for calculating resource adequacy requirements were analytical, with simulation methods

developed subsequently [8].

After the creation of the PJM market, increasing data and computational power, variable

renewable energy penetrations, and experience with market mechanisms for capacity procurement

have expanded the scope of resource adequacy modeling. Felder [9] identifies common-cause failures

and temperature as important for resource adequacy, but is able to analyze only test cases in

the absence of system level data available in our study. Dragoon and Dvortsov [10] proposes a

heuristic method for calculating marginal adequacy contributions of resources; we describe here

quantitative methods based on observed correlated failure statistics to calculate marginal resource

adequacy contributions. In more recent years research has focused on improving quantification of

variable renewable energy (predominately wind and solar photovoltaics) contributions to resource

adequacy [11,12], with additional attention paid to methods for crediting these resources in capacity

markets [13, 14] and whether these resources create a need to better incorporate intertemporal

resource flexibility in resource adequacy modeling [15]. Finally, capacity markets and market design

around resource adequacy are an active area of research. Attention has focused better quantifying the

economic cost of shedding firm load due to generation insufficiency [16]; variance in these estimates
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is important in setting reliability criteria [17]. The relative merits of energy-only constructs with

scarcity pricing [18] versus longer time horizon fixed payments in capacity markets [19, 20] is an

ongoing debate in market design. Within the forward capacity market framework, research has

focused on articulating prices and quantities on a demand curve for a capacity product [21,22], with

a sloped demand curve [23] and performance incentives [24,25] identified as important attributes.

The present paper contributes to these ongoing market design debates by quantifying a key source

of uncertainty in articulating a demand curve for capacity.

In recent years, many system operators have capacity well in excess of their NERC target. The

2018 NERC Summer Reliability Assessment reports that most assessment areas have anticipated

planning reserve margins (hereafter, simply reserve margins) well in excess of their NERC reference

summer target [26]. Similarly, the PJM Interconnection LLC (PJM), the largest system operator by

installed generation capacity and load in North America, forecasts a reserve margin of approximately

25-29% over the period of 2019-2028, while its annual Reserve Requirement Study calls for no more

than 16% over that period [27].2

Higher procurement improves reliability and therefore may be justified by a low cost of maintaining

excess supply or in response to systematic under-forecasting of high-demand or large-outage events.

In PJM’s case, several recent weather events have stressed the grid, including Hurricane Sandy

(2012), the Polar Vortex and subsequent cold weather of January 2014, and cold snaps in subsequent

winters. That such events could pose reliability challenges despite high reserve margins suggests that

current approaches to resource adequacy modeling are not capturing important reliability risks, such

as correlated generator failures. Better understanding of the determinants of generator availability,

and incorporation of these considerations into resource adequacy modeling, is the focus of this paper

and could improve system operators’ ability to determine capacity requirements.

Current approaches to resource adequacy modeling in North America, including in PJM, assume

that each generator in the power system has a constant failure probability that captures its outage
2A 25% reserve margin indicates capacity procurement 25% greater than the forecast peak load for the planning period
of interest. Reserve margins are typically reported in terms of installed (nameplate) capacity, which does not account
for expected reductions in generator availability under peak load conditions (e.g. deflating by the forced outage rate
for thermal generators). The resource adequacy modeling process determines the minimum reserve margin necessary
for achieving a desired risk of generation insufficiency (e.g. a loss-of-load expectation of one generation insufficiency
event in 10 years, termed 0.1 LOLE).
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risk during all hours of the planning year [27]. This implies that generator failures are unconditionally

independent of one another and invariant to environmental conditions. Recent research examined the

independence assumption using four years of Generating Availability Data System (GADS) data for

the eight North American reliability regions [28]. The analysis demonstrated that large generation

outage events occur much more often than is consistent with the constant failure probability

assumption—i.e., generator failures are correlated. The current practice of assuming unconditional

independence lowers the computed probability of large-outage events at the system level [29]. If

elevated generator failure probabilities occur during times of high load, current resource adequacy

modeling practice could underestimate power system capacity requirements.

To identify a plausible mechanism to explain observed correlated failures, subsequent research

explicitly modeled generator transition probabilities. Based on 23 years of PJM GADS data, [30]

used logistic regression to demonstrate significant correlations between transition probabilities, load,

and ambient temperature. At both very cold and very hot temperatures, PJM’s fleet is less available

than on average. For example, nuclear generators are less available at high temperatures, likely due

to cooling water constraints, while natural gas generators are less available at low temperatures, in

part due to fuel unavailability. The regression specification captured about 45% of weekly average

variation in unavailable capacity from unscheduled generator failures on the holdout dataset. It

also picked up nearly all correlated failure events observed in PJM over the data period, with the

exception of Hurricane Sandy, which was not an extreme-temperature event. Given that extreme

temperatures tend to be associated with high loads, and that temperatures are highly spatially

correlated at the scale of an individual balancing area such as PJM, it follows that temperature

dependence could pose significant resource adequacy risks for PJM.

Here we examine the resource adequacy implications of temperature-dependent generator avail-

ability, a potential source of risk that is not currently considered by PJM [27]. To do this we use the

temperature dependence of the six types of generators identified in [30] and a modified version of the

Renewable Energy Capacity Planning Model (RECAP) [31], an open-source resource adequacy tool

originally developed by Energy+Environmental Economics (E3) in collaboration with the California
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Independent System Operator.3 Like the resource adequacy planning tools used by PJM, RECAP

computes loss of load expectation (LOLE), a measure of generation insufficiency for a power system,

given a parameterized fleet of generators and a load forecast. We modify RECAP to allow each

generator’s forced outage rate to depend on ambient temperature, rather than fixing it at an average

value for every hour within a given month or year as is common industry practice.

We use this modification to compute capacity requirements for PJM under two scenarios: 1)

current practice (representing assumptions of unconditional independence and constant failure

probabilities); and 2) when allowing generator availability to depend on temperature. By comparing

these two sets of results, we can identify the magnitude of latent resource adequacy risk introduced

by overly optimistic generator failure assumptions (no correlated temperature-dependent failures).

Given that extreme temperatures are seasonal, we also use RECAP to set monthly capacity targets

to achieve the same reliability metric and quantify the reductions in capacity that could be obtained

as opposed to the current annual procurement approach. Finally, we explore how various bounding

changes to the resource mix and future temperature increases under climate change scenarios may

affect resource adequacy in PJM, given the temperature dependence found in [30]. To our knowledge,

the resource adequacy implications of temperature dependence of conventional generator resources

has not been previously studied, nor is it accounted for in the resource adequacy modeling practices

of any system operator in North America.

In brief, we find that relaxing the assumptions of unconditionally independent generator failures

and constant generator failure probabilities uncovers substantial latent resource adequacy risk: a 6%

increase in annual procurement (corresponding to a 7 percentage point increase in the reserve margin)

is required to maintain the 0.1 LOLE reliability target in the 2018/2019 delivery year. This is due to

reduced generator availability during peak-load hours, driven by high summer temperatures. When

accounting for temperature dependence of generator availability, monthly capacity procurement

targets would substantially reduce annual average reserve procurement in PJM with negligible impact
3E3 includes the following disclaimer with the user guide to the public version of the model: “RECAP is open-source
and not a commercial software package, thus users are welcome to modify or tailor any part of the RECAP model
to their needs. RECAP has a complicated set of inputs and model settings and E3 takes no responsibility for the
validity of results produced by third parties using this model, which requires some intuition and knowledge of the
methodology to use successfully.” We change the underlying RECAP Python source code to enable input of hourly
generator forced outages dependent on ambient conditions.
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on LOLE. This is because spring and fall months experience mild temperatures, leading to both

lower loads and increased generator availability.

The remainder of the paper is organized as follows. Section 2 reviews how resource adequacy

modeling is currently conducted in PJM. Section 3 describes the RECAP model. Section 4 describes

data development, modeling, and RECAP parameterization. Section 5 presents results. Section 6

concludes.

3.2 Overview of resource adequacy modeling in PJM

Resource adequacy is concerned with ensuring sufficient forward procurement of generation

capacity to serve firm load within the operational parameters of the grid. Where capacity markets

exist, as in PJM, capacity obligations for load-serving entities in the balancing area may be used

to parameterize the demand curve for the capacity market [22,32]. Capacity markets are intended

to help provide generators with revenue sufficiency and stability in support of long-term resource

adequacy [33, 34]. Each year PJM conducts a resource adequacy planning analysis that seeks to

determine the level of capacity required to limit the frequency of loss-of-load events to once in

10 years, termed 0.1 loss of load expectation (0.1 LOLE) [1].4 Each analysis forecasts capacity

requirements for the next 11 delivery years, which begin June 1 and end the following May 31.

The modeling process considers historical generator forced outage rates, generator maintenance

requirements, load forecast error, peak load variability, interzonal transmission constraints, and

emergency transfer capacity from neighboring synchronous balancing authorities [27,36]. The reserve

margin is the quantity of capacity required to meet the reliability criterion, reported as a percentage

above the forecast 1-in-2 peak load, corresponding to the median forecast peak load [27,37].

PJM forecasts the 1-in-2 peak load for the delivery year using an econometric model in conjunction

with historical temperature profiles [27,37–39]. Load uncertainty is modeled weekly based on at least

seven years of historical data, with each week having a normalized daily peak based on its modeled

4The LOLE metric used by PJM does not consider either the duration or magnitude of the load-shed event. Some
U.S. system operators instead interpret “once in ten years” to mean 24 total hours of expected load shed per 10 years;
some international systems consider load-shed magnitude by using a quantity of expected unserved energy as the
reliability metric [35].
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mean and standard deviation. These normalized daily peak values are used to sort the 52 weeks of

each historical load year in descending order by weekly peak by season. After magnitude-ordering the

weeks, the normalized weekday peak-load observations for each calendar week are used to calculate

a mean and standard deviation, defining a Gaussian distribution for that week, assumed to apply to

each weekday of the week. This information, along with the forecast peak load and a forecast error

factor, is used to calculate the most probable peak load for each week of the delivery year. The most

probable peak for week i (MPPi) is calculated as:

MPPi = µi + 1.163 ∗ ψi (3.1)

where µi is the mean of the Gaussian distribution for week i, ψi =
√
σ2
i + FEF 2 is the standard

deviation after including the forecast error factor (FEF ), σi is the standard deviation of the Gaussian

distribution for week i, and 1.163 is a multiplier that relates the expected value of the maximum of a

sample drawn from a Gaussian distribution to the mean and standard deviation of that distribution,

based on the number of draws [40].5 Uncertainty in each weekly peak load is assumed to follow a

Gaussian distribution centered at µi with standard deviation ψi. For purposes of calculating LOLE,

PJM represents each week’s Gaussian as a probability mass function using 21 equally spaced points

spanning +/- 4.2 standard deviations. As described in detail below, the goal of PJM’s procedure is

to determine whether sufficient generation capacity will be available to meet each of the 21 points in

each week of the delivery year. Points for which this is not true accrue LOLE.

With the 21 possible peak load values for each week of the delivery year established, PJM next

forecasts the performance of its generator fleet. For each generator expected to serve the balancing

area during the delivery year, PJM uses the most recent five years of GADS data to calculate

the forced outage rate.6 Each generator is modeled as a two-state homogeneous Markov model,

with available and unavailable states, where the forced outage rate is assumed to represent the

(constant) probability of the generator being unavailable when needed by the system. To determine

the probability distribution of available capacity for the power system, all possible combinations

5Here, 1.163 is the first Gaussian order statistic for n=5 draws, corresponding to five weekdays in each week.
6Generators with fewer than 5 years of historical data are supplemented by class-average data.
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of generator states are enumerated [27, 38]. The probability of a given state is computed as the

product of the relevant generator-level probabilities. This forecast distribution of available capacity

is then compared to the forecast peak load distribution in each weekday (approximately 260 days),

described previously, to compute the total LOLE for the delivery year (Equation 3.2):

LOLE =

260∑
i=1

LOLEi =

260∑
i=1

21∑
j=1

LOLPj =

260∑
i=1

21∑
j=1

P (Dj) ∗ P (G < Dj) (3.2)

where LOLEi is the aggregate loss of load expectation for weekday i of the delivery year, LOLPj

is the loss of load probability (LOLP) at the load value corresponding to the jth position in the

21-point Gaussian representing weekday i’s MPP, P (Dj) is the probability of the jth load value

occurring, and P (G < Dj) is the probability of available generation (i.e., generation not on forced,

maintenance, or planned outage) being insufficient to meet the jth load value.7 The forecast peak

load is then scaled until aggregate loss of load expectation (Equation 3.2) precisely satisfies the

reliability criterion (0.1 LOLE), and then the final reserve margin for the delivery year is calculated.

As discussed in detail below, our contribution is to evaluate the resource adequacy implications

of relaxing the assumption of an invariant G, based on previous research demonstrating that the

distribution of available capacity depends strongly on temperature [30].

3.3 Overview of the RECAP model

RECAP [31] was developed by Energy+Environmental Economics (E3) in collaboration with the

California Independent System Operator to improve resource adequacy valuation of unconventional

capacity resources like wind and solar. RECAP is similar in scope and capabilities to PJM’s own

resource adequacy tools and has been used by system operators and utilities. We briefly describe the

main functionality of the open-source version of the model used in this paper and our modifications.

RECAP calculates the reserve margin required to achieve a desired reliability metric, which we set

7As PJM accounts for ambient deratings during the summer and planned outages in its resource adequacy analysis, it
would be more precise to use Gi to represent the distribution of available capacity in Equation 3.2. However, we
refrain in order to emphasize that PJM currently assumes generator availability from unscheduled failures is constant
throughout the delivery year.

66



to 0.1 LOLE for consistency with PJM’s target. While PJM’s modeling approach considers only the

peak load hour of each weekday, RECAP models all hours of the delivery year. By default, RECAP

divides the delivery year into 576 time-slice bins: month (12) x hour (24) x weekday/weekend (2).8

The user may define additional bins by load percentile within the month x hour x weekday/weekend

time-slices to improve the model’s ability to represent peak loads; we use three such bins (0-80%,

80-90%, and 90+%), yielding a total of 1,728 bins. Using historical data on hourly load and wind and

solar capacity factors in each time-slice bin, RECAP produces an empirical distribution of net loads

(gross load less contemporaneous variable renewable generation) as the convolution of load, wind,

and solar in each time-slice. RECAP then fits a user-selected probability distribution to the net load

data in each bin to model load uncertainty; we employ Gaussian distributions for consistency with

PJM.

Consistent with PJM’s resource analysis approach, RECAP uses the forced outage rate for each

conventional generator to compute a probability distribution of available capacity for the power

system in each time-slice bin. By default, RECAP can consider annual or monthly forced outage

rates; if annual values are used, the distribution of available capacity is invariant across time-slice

bins just as G is invariant across all weekdays of the delivery year in Equation 3.2. We modify

the RECAP source code to instead consider hourly ambient temperature when generating this

probability distribution. In this way we relax the incorrect assumption that available capacity of

conventional generation is invariant to temperature in PJM [30].

RECAP computes the LOLP in each time-slice bin through convolution of the corresponding

net load and available generation probability density functions. Results are aggregated across any

additional user-defined load bins, weighting appropriately to obtain the final annual LOLE result.9

By default, RECAP sums up resulting LOLP over all hours of the delivery year; however, to better

match PJM’s definition of LOLE, we modify RECAP to consider only the peak LOLP hour in each

day.

8While PJM does not include weekends in its resource adequacy analysis, there is little discrepancy introduced by this
difference: we find that weekends represent less than 0.1% of total LOLE.

9For example, if three load bins were used, with splitting occurring at the 80th and 90th percentiles, the three LOLP
values for each month x hour x weekday/weekend time-slice bin would be weighted by 80%, 10%, and 10%.
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3.4 Data development, modeling and parameterization

We parameterize RECAP with PJM’s conventional generator fleet, hourly wind and solar

generation profiles, hourly temperature data, and normalized historical PJM hourly load data. We

discuss the development of each set of inputs below.

3.4.1 Conventional generator fleet

We use the PJM GADS database [41] to define currently operating conventional generators serving

the PJM balancing area, which includes all generators other than wind, solar, and behind-the-meter

resources. From PJM GADS we obtain the full operating history of each such generator for the

period 1995-2018Q1, totaling 1.94 million events records affecting 1,845 generators. Reporting to

PJM GADS is mandatory for all conventional resources participating on PJM’s markets, so we have

complete coverage of these resource types. In RECAP we parameterize conventional generators by

their nameplate capacity and generator type, both of which are reported in PJM GADS, and their

forced outage rates, which we calculate from PJM GADS.

We develop both temperature-dependent and unconditional forced outage rates for each generator

as described in [30]. In brief, temperature-dependent hourly generator transition probabilities are

calculated using logistic regression. Separate models are fit to hour-over-hour transitions when a

generator can experience a failure (i.e., the generator begins in the available state) versus when it

can experience a recovery (i.e., the generator begins in the outage state). In both cases, the model

specification includes linear and quadratic terms for both cold and hot temperatures (delineated

using a threshold of 18.3 degrees Celsius), as well as a linear load term, though we apply backward

elimination to remove statistically insignificant covariates. Models are fit using all available data. To

reduce bias, we require that generators have at least one full year of data reporting and at least 10

failures and recoveries per final model covariate to be retained [42]. Using this procedure, we retain

78% of the capacity that has ever reported to PJM GADS.

To obtain temperature-dependent forced outage rates, we evaluate each retained generator’s

fitted models at a temperature of interest, along with the median load value at that temperature.10

10Median load values are determined by linking historical PJM metered load data to contemporaneous historical
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This yields a transition probability matrix governing failures and recoveries for each generator at

that temperature. Eigendecomposition of this matrix allows us to obtain the ergodic probability of

the generator being unavailable at that temperature. We repeat this procedure over a temperature

range of -30 degrees Celsius to 40 degrees Celsius for each generator in 5-degree increments and

then compute the capacity-weighted average forced outage rate at each temperature by generator

type. See Procedure 4 of [30] for more information. We apply these generator-type averages to all

generators reporting to PJM GADS that were in service as of 2018 Q1, even generators with too

little data to be retained in the modeling procedure described in the previous paragraph.

We calculate unconditional forced outage rates using the following equation [43]:

EFOFi = (FOHi + EFDHi)/PHi (3.3)

where EFOFi is the equivalent forced outage factor for generator i, FOHi (forced outage hours)

is the count of hours where generator i experiences a forced outage, EFDHi (equivalent forced

derating hours) is the count of hours where generator i experiences a forced derating, reported

on a full-outage-equivalent basis, and PHi (period hours) is the total number of hours of data

reporting for generator i. EFOF provides an approximation of the forced outage rate statistic

used by PJM that allows us to circumvent data reporting limitations in PJM GADS prior to 2004.

While resource adequacy studies in PJM are conducted using the five most recent years of GADS

data, here we use all historical data for each generator, consistent with our approach for computing

temperature-dependent forced outage rates. As with the temperature-dependent forced outage rates,

we then compute averages by generator type. We use the unconditional forced outage rates to

establish a baseline representing current PJM practice. This allows us to quantify latent resource

adequacy risk from temperature-dependent generator availability.

Temperature-dependent distributions of available capacity for PJM’s conventional generator fleet

are shown in Figure 3.1. The distributions of available capacity at both cold and hot temperatures are

shifted to the left of the distributions at moderate temperatures, indicating less available capacity on

temperature data and then taking the median value over all hours with temperatures within a 10-degree “neighborhood”
of the temperature of interest. For example, the median load at 20 degrees Celsius is calculated based on all historical
loads occurring between a temperature of 10 degrees Celsius and 30 degrees Celsius.
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average; they are also shorter and wider than the distributions at moderate temperatures, indicating

greater risk of large deviations from the average.

Figure 3.1: Distributions of available capacity as a function of temperature for PJM’s conventional
generator fleet (narrow curves, various colors). Note reduced availability at both cold and hot
temperatures. Wide black curve is the distribution of the 1-in-2 (median) load forecast. Dashed
black line is the peak value from the median load forecast.

A comparison of available capacity for selected hours in July for the temperature-dependent

and unconditional forced outage rate scenarios is shown in Figure 3.2. The temperature-dependent

afternoon distribution is shifted to the left of, and has a higher variance than, the unconditional

distribution due to the high temperatures that prevail. As described in Section 3.2, current resource

adequacy modeling practice does not account for this shift in the available capacity distribution.
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Figure 3.2: Illustration of how temperature-dependent forced outage rates can identify latent
resource adequacy risk. Distributions of available capacity for selected July hours using temperature-
dependent forced outage rates are shown in red and orange; the distribution of available capacity
when using unconditional forced outage rates is shown in blue. Black and gray curves indicate load
distributions for corresponding July hours. HE indicates hour-ending. Current resource adequacy
modeling practice does not recognize that the distributions of available capacity will differ between
morning and afternoon due to different prevailing temperatures, and consequently understates the
risk of not being able to serve load.

3.4.2 Wind generation

To model wind generation and its coincidence with peak load, RECAP requires an hourly

normalized historical generation profile and total quantity of installed wind capacity for the modeled

delivery year. Because of the relatively recent vintage and sparse public hourly generation data for

most wind plants in PJM, we choose to model wind generation rather than use empirical profiles.

To develop normalized wind generation profiles, we first identify online wind plants serving PJM

as of December 2017 using Energy Information Administration (EIA) Form 923 (EIA-923) [44].

Plants are subset by their plant identification number recorded in EIA-923. Identified plants are

then matched against the U.S. Wind Turbine Database [45] to obtain information about physical

location, generator online date, turbine hub height and turbine technology, as well as to verify

installed capacity. We exclude all plants with less than 4 MW capacity and those that could not be

matched, leaving 89 wind plant locations in PJM representing 8.368 GW of installed capacity, more
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than 97% of the total capacity recorded in EIA-923. The 89 retained wind plant locations have an

average installed capacity of 94.0±72.2 MW, with a median of 80 MW and a maximum of 305.8

MW.

To simulate hourly output, we match each wind site to the closest available 100-meter hub height

wind speeds from the National Renewable Energy Laboratory’s (NREL) Wind Integration National

Dataset Toolkit [46], which contains 5-minute wind speeds for 2007-2012 at an assumed 100-meter

turbine hub height. Matched 100-meter wind speeds are scaled to individual generator hub heights

using Equation 2 of [47], reproduced for our use case as Equation 3.5 below. Wind speeds are

then converted to power output using an appropriate power curve given the vintage and type of

installation [46]. To account for degradation in wind turbine performance over time, we apply a

historical degradation factor as a function of generator age in 2018 using Figure 39 of Lawrence

Berkeley National Laboratory’s 2017 Wind Technologies Market Report [48]. Equations specifying

and a table describing this process are included below.

NormWindGent,g = WindSpeedt,g,hh ∗ PowerCurveg ∗Degradationg ∗Derate (3.4)

WindSpeedhh = WindSpeed100 ∗
ln(hh)/.03

ln(100)/.03
(3.5)

Table 3.1: Wind Plant Generation.

Variable (Units) Description

WindSpeedt,g,hh (m/s) Wind speed at time t for location of plant g at its hub height hh of plant’s
turbines, scaled from 100-meter hub height Wind Speed per equation 3.5.

PowerCurveg (MW − s/m) Wind speed at time t for location of plant g at its hub height hh of plant’s
turbines, scaled from 100-meter hub height Wind Speed per equation 3.5.

Degradationg (%) Wind speed at time t for location of plant g at its hub height hh of plant’s
turbines, scaled from 100-meter hub height Wind Speed per equation 3.5.

Derate (%) Wind speed at time t for location of plant g at its hub height hh of plant’s
turbines, scaled from 100-meter hub height Wind Speed per equation 3.5.

hh
Hub height of generator g. Used to scale 100-meter hub height

windspeeds from NREL dataset. 3.5.
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Our resulting simulated wind generation output for 2007-2012 has a 39% capacity factor compared

to a reported capacity factor of 32.6% for installations in the Great Lakes region and 44.4% for

installations in the interior region of the USA (Figure 41 of [48]). Because most PJM wind capacity

is located in Illinois, Indiana, and Ohio, closely mapping to the Great Lakes region, we derate our

simulated hourly profiles to match the Great Lakes Region capacity factor.11 While RECAP can

calculate the capacity value of each wind generation site in PJM individually, for study scope and

model runtime reasons we aggregate generation into a single shape for input into RECAP. The

8.368 GW of installed wind capacity with this generation profile has a marginal effective load carry

capability (ELCC) of 16.9% in the base case, reflecting its lower availability during peak summer

load hours with non-zero LOLE.

3.4.3 Solar generation

As with wind generation, RECAP takes two key inputs for solar generation: hourly normalized

generation profile(s) and a total quantity of installed capacity corresponding to each profile for the

modeled delivery year. Given our focus on conventional resources and the relatively small quantity

of utility-scale solar capacity in PJM, we model a single aggregate solar generation profile.

To develop the hourly normalized solar profile for PJM, we obtain solar radiation and weather

data from NREL’s National Solar Radiation Database [50,51] and convert it to alternating current

(AC) generation output using Pacific Northwest National Laboratory’s (PNNL) GridLab-D solar

panel and inverter objects [52]. GridLab-D uses the same solar modeling as NREL’s System Advisory

Model [53], a widely used engineering-economic tool.

Key assumptions for our PJM solar shape are given in Table 4.2. Panel tilt, efficiency, and other

variables convert solar irradiance to a DC power output, which is then converted to AC power output

based on assumptions about inverter efficiency and inverter loading ratio. The full set of equations

for this conversion are complex, so we refer to [51] for further information. Hourly modeled profiles

are adjusted to account for daylight savings time and leap years. The resulting annual average AC

capacity factor for this PJM shape is 19.3%.
11Reasons for simulated generation exceeding actual performance may include curtailment, turbine down time for
maintenance, wake effects, and icing on blades [49].
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Table 3.2: Solar Generation Key Assumptions.

Parameter Assumption

Solar panel tilt Fixed, 30 degrees
Inverter loading ratio 1.2
Inverter Efficiency 96%
Panel Efficiency 17%
emphPower Factor Constant, 1.0

Using EIA Form 923 [44] we identify approximately 2 GWAC of installed utility-scale solar

capacity online in PJM as of December 2017. This includes 1.3 GWAC of capacity in Maryland,

Virginia, Delaware, Ohio, Pennsylvania, Indiana, Illinois, and Kentucky, and an additional 0.7 GWAC

in North Carolina that may be deliverable to PJM. We assume behind-the-meter solar generation

is accounted for in the input load profiles. At this level of installation in the base case the utility

scale solar has a marginal ELCC of 51.6%, reflecting its higher availability during peak summer load

hours with non-zero LOLE.

3.4.4 Temperature data

We use temperature data for two purposes: 1) to specify a load regression and obtain a

time trend for PJM loads (Section 3.4.5); and 2) to estimate the ambient temperature in PJM

for the 2018 delivery year so that we can model generator availability in each time-slice bin in

the temperature-dependent scenario. We obtain historical temperature data from the National

Oceanic and Atmospheric Administration [52]. We select weather stations corresponding to Chicago,

Cleveland, Philadelphia and Washington, D.C. for 2006-2017, the time period of our historical

load data. We process each station’s raw observations into hourly time series and then average

the four series to obtain our input temperature series for PJM. Over this period, only 25 hourly

observations were missing across the four weather stations. We interpolate each weather station’s

missing observations by forward propagation of its nearest non-missing observation. The final

temperature time series is used in conjunction with the temperature-dependent forced outage rates

described in Section 3.4.1 to determine unavailable capacity from unscheduled events for PJM’s

conventional fleet in each time-slice bin in the temperature-dependent scenario. The temperature
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time series is not used in the current practice scenario because current resource adequacy modeling

practice assumes that generator outage risk is invariant to ambient conditions (Equation 3.3).

3.4.5 Load Forecast

We obtain hourly historical metered load data from PJM by zone for 2006-2017 and aggregate to

a PJM-wide load shape for input into RECAP. We select January 1st, 2006 as a starting point for

historical loads because the years immediately prior saw significant expansion of PJM’s footprint.

Since 2006, three zones have been added to PJM: American Transmission Systems Inc. (ATSI, 2011),

Duke Energy Ohio and Kentucky (DEOK, 2012), and East Kentucky Power Cooperative (EKPC,

2013). To account for these missing zonal loads, we develop a correlation matrix between ATSI,

DEOK, EKPC, and the zones that were present since January 1st, 2006. We then match ATSI,

DEOK, and EKPC to the zone with which each is most highly correlated. ATSI and DEOK most

closely match Dayton Power and Light, while EKPC most closely matches American Electric Power.

The correlation of each of the three zones with their matched zone is always greater than 0.95. We

then fill in the unobserved loads in ATSI, DEOK, and EKPC using the corresponding load in the

matched zone, scaling by the ratio of the average loads.

With the unobserved loads incorporated, we next estimate the time trend in the historical PJM

load data so that we can make the historical values comparable to loads in our delivery year. We

model daily loads using the following linear regression specification:

Loadt = Chi_HDDt + Chi_CDDt + Cle_HDDt + Cle_CDDt +DC_HDDt

+DC_CDDt + Phi_HDDt + Phi_CDDt +Weekdayt + Tt

(3.6)

where Loadt is the sum of the hourly PJM loads in day t, Chi, Cle, DC, and Phi are abbreviations

of the four cities representing geographic diversity in PJM’s footprint for which we obtain temperature

data (Chicago, Cleveland, Washington, D.C., and Philadelphia), CDDt is cooling degree days in day

t, HDDt is heating degree days in day t, Weekday is a Boolean variable indicating whether day t is

a weekday, and T is a linear time trend. More detail is in Table 3.3. After fitting this model we use
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the coefficient on T to de-trend the historical loads to the 2018 delivery year for input into RECAP.

Table 3.3: Load Regression Specification.

Variable (Units) Description

Chi_HDDt (◦C)
Average hourly temperature above 18.3◦C on day t at Chicago weather station (O’Hare International
Airport, Weather Bureau Army Navy (WBAN) Code 94846). 0 if average temperature below 18.3◦C.

Chi_CDDt (◦C)
Average hourly temperature below 18.3◦C on day t at Chicago weather station (O’Hare International
Airport, Weather Bureau Army Navy (WBAN) Code 94846). 0 if average temperature above 18.3◦C.

Cle_HDDt (◦C)
Average hourly temperature above 18.3◦C on day t at Cleveland weather station (Cleveland-Hopkins

International Airport, WBAN Code 14280). 0 if average temperature below 18.3◦C.

Cle_CDDt (◦C)
Average hourly temperature below 18.3◦C on day t at Cleveland weather station (Cleveland-Hopkins

International Airport, WBAN Code 14280). 0 if average temperature above 18.3◦C.

DC_HDDt (◦C)
Average hourly temperature above 18.3◦C on day t at Washington, D.C. weather station (Ronald

Reagan International Airport, WBAN Code 13734). 0 if average temperature below 18.3◦C.

DC_CDDt (◦C)
Average hourly temperature below 18.3◦C on day t at Washington, D.C. weather station (Ronald

Reagan International Airport, WBAN Code 13734). 0 if average temperature above 18.3◦C.

Phi_HDDt (◦C)
Average hourly temperature above 18.3◦C on day t at Philadelphia weather station (Philadelphia

International Airport, WBAN Code 19739). 0 if average temperature below 18.3◦C.

Phi_CDDt (◦C)
Average hourly temperature below 18.3◦C on day t at Philadelphia weather station (Philadelphia

International Airport, WBAN Code 19739). 0 if average temperature above 18.3◦C.
Weekdayt(Boolean) 1 if day t occurs during a non-holiday weekday, 0 otherwise.

Tt(GWavg)
Daily time trend in load t on day T after 12/31/2005, the day on which our load data timeseries begins (i.e., Tt=1

for hours on 1/1/2006, Tt=366 for hours on 1/1/2007, etc.). Helps account for changing electricity consumption due to reasons
other than weather and daytype (e.g., due to energy efficiency, demographics) in delivery year compared to historical years.

In addition to the historical loads, RECAP takes in the forecast peak load and forecast total

annual load for the delivery year. The 1-in-2 (median) unrestricted forecast peak load for our delivery

year is 152.1 GW and the forecast total annual load is 806.7 TWh (92.1 GWavg) [54].

3.4.6 RECAP parameterization

Finally we parameterize RECAP with the developed generator fleet and load forecast for the

modeled delivery year. We summarize our base parameterization in Table 3.4, matching PJM’s

parameterization reported in the 2018 Reserve Requirement Study (RRS) to the extent feasible [27].
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Table 3.4: Parameterizing the RECAP model.

Metric Value

Conventional generationa,b 207.5 GW installed capacity
Solar generation 2.0 GW installed capacity
Wind generation 8.4 GW installed capacity
Demand responsec 0 GW
Emergency importsd 0 GW
Footprint All current PJM zones
Zonal disaggregation None
Scheduled outages Average historical requirements by generator type and month
Peak load forecaste 152.1 GW
Load binsf 0-80, 80-90, 90-100
Reliability metric 0.1 LOLE
Capacity addition resourceg Combined-cycle gas generator
a We enforce a 2.5 GW reduction to thermal generator capacity June-August. This roughly corresponds
to the 2.5 GW of thermal capacity that PJM puts on planned outage during weeks 6-15 of the
delivery year to account for capability reductions driven by high temperatures and humidity.

b This includes all non-retired conventional resources reporting to PJM GADS as of 2018 Q1, both
resources located in the PJM footprint as well as external resources that have obtained firm
transmission and available transfer capability into PJM [27]. For comparison, 209 GW of installed
capacity was eligible to be offered into the 2018/2019 Base Residual Auction [55].

c We do not include demand response (DR) due to the difficulty of parameterizing it in RECAP;
PJM similarly omits it from their resource adequacy analysis.

d Represents emergency capacity from neighboring power systems. PJM assumes 3.5 GW of emergency
import capacity [27].

e Corresponds to the forecast peak load used by PJM to model the 2018/19 delivery year [27].
f Percentiles of the load used to disaggregate each hour x month x weekday/weekend time-slice bin.
g This is the resource assumed to be built if the load forecast results in greater than 0.1 LOLE for
the existing fleet.

Our parameterization does not account for all modeling details that are included in PJM’s

resource adequacy analysis. In particular, we do not include transmission constraints nor emergency

imports from neighboring power systems. We also do not include demand response (DR) due to the

difficulty of modeling duration-limited resources in RECAP. However, PJM similarly omits DR from

the RRS, so no inconsistency is introduced. We also present a table of the temperature-dependent

and unconditional forced outage rates employed in the modeling of conventional generator availability

(Table 3.5) [30].
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Table 3.5: Temperature-dependent and unconditional forced outage rates for conventional generator
types. Values drawn from [30]. CC is combined cycle gas, CT is simple cycle gas, DS is diesel, HD is
hydroelectric and pumped storage, NU is nuclear, ST is steam turbine (coal).

Temperature (◦C) CC CT DS HD NU ST

-15 14.9% 19.9% 21.2% 7.0 % 1.9% 13.3%
Temperature -10 8.1% 9.9% 17.0% 4.3% 1.8% 11.2%
-dependent -5 4.8% 5.1% 13.7% 3.2% 1.7% 9.9%

forced 0 3.3% 3.1% 11.6% 2.7% 1.8% 9.1%
outage 5 2.7% 2.4% 10.6% 2.6% 1.8% 8.6%
rates 10 2.5% 2.2% 10.2% 2.6% 1.9% 8.3%

15 2.8% 2.4% 10.4% 2.7% 2.1% 8.4%
20 3.5% 2.7% 13.6% 2.7% 2.7% 8.6%
25 3.5% 3.1% 13.5% 2.5% 3.7% 9.4%
30 4.1% 3.9% 14.3% 2.9% 6.6% 11.4%
35 7.2% 6.6% 17.5% 8.2% 12.4% 14.0%

Unconditional forced
outage rates All 3.3% 2.8% 10.9% 2.4% 2.6% 9.4%

3.5 Results and discussion

Several RECAP runs were conducted in order to examine the resource adequacy implications of

temperature-dependent generator availability. First capacity requirements to achieve the 0.1 LOLE

reliability target were compared under unconditional and temperature-dependent forced outage rates

to quantify the magnitude of latent resource adequacy risk from current resource adequacy modeling

practice in PJM. We then look at capacity requirements for achieving reliability targets ranging from

0.02 LOLE to 0.18 LOLE and compare those values to PJM’s actual procurement in the 2018/2019

delivery year. Next, we examine potential reductions in capacity requirements when setting monthly

targets, rather than a single annual target, to achieve 0.1 LOLE. We then quantify the value of

lost load (VOLL) implied by the same range of reliability targets to examine the cost of achieving

these levels of resource adequacy. Given the economic pressure on nuclear and coal generators in

PJM, we consider the resource adequacy implications of their retirement. Finally, given that all

PJM generator types exhibit reduced availability during hot temperatures, we examine the resource

adequacy implications of plausible future temperature scenarios for PJM’s conventional fleet.
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3.5.1 Aggregate effect of accounting for temperature dependence

Our first step is determining capacity requirements for achieving the 0.1 LOLE reliability target

when treating generator forced outage rates as invariant to temperature. In this scenario, 174.5 GW

of conventional generation capacity, corresponding to a 15.9% reserve margin, is required to cover the

forecast 1-in-2 peak load.1213 For comparison, PJM reports that a 16.2% reserve margin achieves 0.1

LOLE for the 2018/2019 delivery year [27].14 The close agreement between these two results gives

us confidence that we have captured the primary drivers of LOLE in PJM despite not accounting for

emergency imports or zonal transmission constraints, nor using PJM’s internal modeling tools.

When using temperature-dependent forced outage rates, capacity requirements to achieve 0.1

LOLE increase by 10.6 GW to 185.1 GW, corresponding to a 22.9% reserve margin. This difference

represents substantial latent resource adequacy risk from the simplifying assumption that conventional

generator availability is invariant to temperature. However, even the higher 185.1 GW figure is less

than the 192.6 GW of total capacity (26.6% reserve margin) PJM procured for the 2018/2019 delivery

year [55,57]. Using a capacity price of $184/MW-day ($67.2/kW-year), this translates to $315 million

in additional capacity payments beyond what is required to achieve 0.1 LOLE when accounting for

temperature dependence in generator availability.15 While greater reliability is desirable, a demand

curve for forward capacity procurement in markets like PJM’s is meant to balance the incremental

costs and benefits of capacity, and should be articulated as accurately as possible to achieve this

aim. The method presented here offers a means of more precisely quantifying capacity requirements

for achieving a target LOLE and therefore of improving the articulation of the demand curve for

forward capacity procurement. We note that the economic benefits reported here do not consider

dynamic impacts. In particular, reduced capacity procurement would likely increase the prevalence

12We report installed capacity values rather than unforced capacity values. Unforced capacity deflates installed
capacity by the generator’s forced outage rate and is used by PJM to determine capacity payments for generators
that clear the capacity market.

13We focus on conventional generation requirements (i.e., capacity requirements net of wind and solar resources) when
reporting quantities of capacity. However we include the capacity value of wind and solar resources when reporting
the corresponding reserve margin.

14PJM finds that the reserve margin would increase by 1.9 percentage points if no emergency imports were available;
its base-case analysis assumes 3.5 GW of import capability [56].

15$184/MW-day is the average of PJM’s 2018/2019 final zonal capacity market clearing prices, weighted by zonal
capacity obligations [36]. PJM capacity prices have fluctuated in recent years but generally clear in the range of
$100-200/MW-day; other centralized capacity markets have experienced similar or more price volatility [58].
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of scarcity pricing events, increasing energy and operating reserves costs and thereby reducing the

realized level of benefits.

Next, we determine the quantity of capacity required to achieve a range of reliability targets,

from 0.02 LOLE (one loss-of-load event per 50 years) to 0.18 LOLE (nearly one loss-of-load event

per 5 years) (Figure 3.3). Achieving a lower target requires that additional capacity be procured;

progressively larger increments of capacity are required as the reliability target becomes more

stringent. The difference in capacity requirements between the unconditional and temperature-

dependent forced outage rates scenarios is reasonably constant, but increases as the reliability target

becomes more stringent. PJM’s procurement of 192.6 GW is nearly 16 GW more than what our

model finds is necessary to achieve the 0.1 LOLE reliability target when assuming unconditional

generator availability, and is sufficient to achieve 0.02 LOLE even accounting for temperature

dependence.
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Figure 3.3: Incremental generation capacity required to achieve various LOLE targets under
unconditional (hollow blue circles) and temperature-dependent (solid red circles) forced outage rates.
Values are calculated with respect to the 0.1 LOLE reliability target under unconditional forced
outage rates. Circle size indicates corresponding reserve margin; reserve margins are also indicated
above each dot. For a fixed reliability target, the distance between the hollow blue circle and the
red circle indicates the magnitude of latent resource adequacy risk in PJM during the 2018/2019
delivery year when incorrectly treating forced outages as invariant to temperature. Note that 0.02
LOLE in the unconditional forced outage rates scenario is a less stringent reliability target than 0.18
LOLE in the temperature-dependent forced outage rates scenario.

To examine the cost implications of current resource adequacy standards, we compute the implied

incremental VOLL for each reliability target included in the previous analysis (Figure 3.4). These

values offer a means of determining a desirable level of resource adequacy, balancing the cost of

procuring additional capacity with the benefit of reduced load-shed. We compute each implied

VOLL by calculating the change in capacity procurement required to achieve the reliability target

of interest, along with the corresponding change in EUE. These values can be combined with an

assumed cost of incremental capacity procurement to obtain an implied VOLL. We calculate the

VOLL for both 0.08 LOLE and 0.12 LOLE using 0.10 LOLE as the baseline, and proceed “outward”
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from there.16 We again use a capacity value of $184/MW-day ($67.2M/GW-year).

Implied VOLLs for these reliability targets range from $100,000/MWh to $700,000/MWh,

approximately two orders of magnitude higher than price caps employed in operational contexts in

U.S. wholesale electricity markets [59]. As PJM’s current procurement is at the lower (more reliable)

end of our explored LOLE range, its implicit VOLL corresponds to the upper end of our estimated

VOLL range. However, even at the 0.1 LOLE reliability target the VOLL is $200,000/MWh. This

result adds to previous studies that have argued that 0.1 LOLE may overvalue unserved energy

and lead to a higher reserve margin than is economically optimal, e.g. [60]. Misalignment between

valuation of reserves in planning and operational contexts has operational consequences, and may

help to explain why PJM has rarely triggered its operational scarcity pricing, even during recent

extreme weather events [61]. By this same logic, enhancements to scarcity pricing on operational

timescales, including ongoing efforts at PJM [62], may increase energy market revenues, lessen

capacity market clearing prices, and therefore reduce the implied VOLL as well as economic benefits

of capacity market reforms.

16For example, the VOLL for 0.06 LOLE is computed from a starting point of 0.08 LOLE, while the VOLL for 0.14
LOLE is computed from a starting point of 0.12 LOLE. The VOLL corresponding to 0.1 LOLE is calculated as the
arithmetic mean of the VOLLs for 0.08 LOLE and 0.12 LOLE.
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Figure 3.4: Implied incremental VOLL, in $/MWh, as a function of the reliability target, under the
temperature-dependent (solid red circles) and unconditional (hollow blue circles) forced outage rate
scenarios. Values calculated using $184/MW-day cost of incremental capacity. With the exception
of 0.1 LOLE, the VOLL at each reliability target is calculated with respect to the immediately
adjacent reliability target in the direction of 0.1 LOLE; for example, the VOLL at 0.06 LOLE is
calculated using 0.08 LOLE as the baseline. The VOLL corresponding to 0.1 LOLE is calculated
as the arithmetic mean of the VOLLs for 0.08 LOLE and 0.12 LOLE. The substantial increase in
VOLL as the reliability target is tightened is driven both by lower incremental EUE reductions and
higher incremental capacity procurement requirements.

3.5.2 Resource adequacy implication of monthly capacity targets

Accounting for temperature dependence in generator availability significantly increases capacity

procurement requirements over PJM’s computed reserve margin (but as previously noted not above

their procured reserves). Given the strong seasonality of extreme temperatures, we next consider

whether and to what extent capacity requirements could be reduced through monthly procurement

targets rather than the current PJM practice of annual procurement.

To conduct this analysis, we begin by looking at accumulated LOLE in each calendar month
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under an annual procurement approach, using both unconditional and temperature-dependent forced

outage rates. In any month accounting for at least 0.01% of the total annual LOLE (i.e., 0.00001

LOLE given a 0.1 LOLE annual target), we retain the annual capacity procurement level as that

month’s requirement. For the remaining months—i.e., those with zero, or effectively zero, LOLE—we

allow RECAP to reduce capacity procurement until each achieves the 0.01% LOLE contribution

limit.17 In this way, we can quantify opportunities for reducing capacity procurement in mild,

low-load months without increasing overall LOLE in the delivery year.

In the unconditional forced outage rates scenario, only July and August have more than 0.01%

of annual LOLE, so we allow RECAP to decrease capacity procurement until the threshold value is

achieved in the other 10 months. This results in an average monthly procurement of 148.5 GW, a

15% reduction in capacity requirements on an annual basis. The result in the temperature-dependent

forced outage rates scenario is similar, with again only July and August having more than 0.01%

of annual LOLE. Here, decreasing procurement in the other 10 months to our threshold results in

an average monthly procurement of 156.2 GW, a 16% reduction in capacity requirements on an

annual basis. This capacity requirement is 10% below annual base-case procurement in even the

unconditional forced outage rates scenario, demonstrating the extent to which LOLE is concentrated

in a small subset of months, resulting in over-procurement in other months when procuring on an

annual basis. A barplot showing monthly procurement requirements for achieving 0.1 LOLE under

both forced outage rate scenarios is Figure 3.5.

17This is an arbitrary but reasonable threshold intended to ensure that total LOLE in the delivery year is not
significantly increased while working within the confines of RECAP to estimate monthly capacity requirements. In
the worst case (where only one month accrues more than 0.01% of total LOLE), this threshold would increase total
LOLE in the delivery year by 1.1%.
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Figure 3.5: Monthly capacity requirements for achieving 0.1 LOLE under unconditional (blue
hatching lines) and temperature-dependent (red) forced outage rates. Annual capacity requirements
in each scenario indicated by dashed horizontal lines and correspond to the height of the respective
July bars. Monthly procurement levels for April, October and November are slightly lower in the
temperature-dependent forced outage rates scenario than in the unconditional forced outage rates
scenario due to mild prevailing temperatures.

The 16% reduction obtained when procuring to achieve 0.1 LOLE on a monthly basis in the

temperature-dependent scenario is a lower bound on the reduction that would be obtained by PJM

if it continues to procure sufficient capacity to achieve 0.02 LOLE (corresponding to PJM’s 26.6%

realized reserve margin). This is because capacity requirements increase non-linearly in LOLE

reductions. While we do not attempt to quantify the market implications of monthly procurement

for capacity prices, economic fundamentals suggest that to the extent monthly procurement better

enables inherently time-varying resources like wind, solar, and seasonally available demand-responsive

loads to participate in the capacity market, monthly procurement should increase efficiency and

reduce costs in the aggregate. However, we caveat that extreme temperatures are not the only cause

of correlated failures, although they explain most correlated generator failures. Further analysis

on additional drivers of correlated failures should be conducted prior to implementing seasonal or

monthly procurement.
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3.5.3 Resource adequacy implications of future generation resource scenarios

The results presented thus far have considered capacity requirements for PJM’s existing con-

ventional generator fleet. Given the economic pressure on nuclear and coal generators as a result

of low natural gas prices [63–65], we next consider illustrative bounding scenarios on future fleet

composition. In particular, we consider the resource adequacy implications of replacing the following

with combined-cycle gas generators: 1) all existing nuclear generators; 2) all existing coal generators;

and 3) all existing nuclear and coal generators. In each case, the replacement combined-cycle gas

generator is made to be the same size as the retired coal or nuclear generator and has the same forced

outage rates as PJM’s existing combined-cycle gas generators.18 Any of these fleet composition

changes could increase or decrease capacity requirements, depending on how the change affects the

system-level distribution of available capacity, particularly during peak-load hours.

In the unconditional forced outage rates scenario, replacing existing nuclear generators with

combined-cycle gas generators results in a very slight increase in capacity requirements, while replacing

existing coal generators reduces capacity requirements by approximately 5 GW. This is because

combined-cycle gas generators’ unconditional forced outage rates are slightly higher than those of

nuclear generators but much lower than those of coal generators. In the temperature-dependent

forced outage rates scenario, replacing existing nuclear generators reduces capacity requirements by

approximately 2 GW, while replacing existing coal generators again reduces capacity requirements

by approximately 5 GW. This is because combined-cycle gas generators’ temperature-dependent

forced outage rates are lower than those of nuclear and coal generators during the hot, high-load

hours that contribute overwhelmingly to LOLE. Results are summarized in Table 3.6.

18Assuming gas generators are of equal nameplate capacity as the nuclear and coal generators they replace, rather
than the more realistic scenario of a larger number of smaller generators, yields a lower bound on the reliability
benefits achieved by the replacement scenario because it maximizes the variance in the system-level distribution of
available capacity.
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Table 3.6: Resource adequacy implications of fleet composition change scenarios under unconditional
and temperature-dependent forced outage rates. Values reflect annual procurement. CC is combined
cycle gas, NU is nuclear, ST is steam turbine (coal).

Case Unconditional Temperature-dependent

Base case 174.5 GW 185.1 GW
Replace NU with CC 174.8 GW 183.2 GW
Replace ST with CC 169.1 GW 179.5 GW
Replace NU and ST with CC 169.5 GW 178.9 GW

The inconsistent resource adequacy implication of retiring nuclear generators under the two

scenarios illustrates the importance of robust modeling of generator availability during high-load

hours. As high-load hours occur in conjunction with very hot and very cold temperatures in

PJM, ignoring the effects of extreme temperatures on generator availability underestimates capacity

procurement requirements. We caution that if winter resource adequacy risks, particularly natural

gas supply deliverability risks, are insufficiently captured by the logistic regression model of [30]

then nuclear generators may provide reliability value not accounted for here. Increases in gas-fired

generation capacity could exacerbate fuel supply constraints during cold weather events, particularly

affecting the availability of gas generators employing interruptible contracts [66]. In contrast, nuclear

generators do not experience reduced availability during cold weather events [30].

3.5.4 Resource adequacy implications of future temperature scenarios

Given that all PJM generator types exhibit reduced availability during hot temperatures [19], we

next examine the resource adequacy risks of increased temperatures for PJM’s existing fleet. Previous

research examining the implications of climate change for power system reliability has focused on

understanding changes in heatwave frequency influencing peak loads [67], changing seasonal load

shapes [68], as well as generator-level effects, such as increased deratings needed to comply with

thermal pollution regulations [69,70], with some work aggregating the implications for power systems

planning [71]. Here we consider the resource adequacy implications of temperature increases as they

translate to reduced generator availability for PJM’s conventional fleet. We examine two simplified

scenarios: 1) where the temperature in each hour increases by 1 degree Celsius; and 2) where the
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temperature in each hour increases by 2 degrees Celsius.19 This approach is reasonable given that

nearly all resource adequacy risk in PJM accrues in the summer, particularly during the hottest

hours of July. These temperature scenarios increase capacity requirements by approximately 1 and

3 GW in the temperature-dependent forced outage rates scenario.20 Increased temperatures are

assumed to have no effect on generator availability in the unconditional forced outage rates scenario.

Results are summarized in Table 3.7.

Table 3.7: Resource adequacy implications of temperature increases under unconditional and
temperature-dependent forced outage rates. Values reflect annual procurement.

Case Unconditional Temperature-dependent

Base case 174.5 GW 185.1 GW
+1 degree Celsius 174.5 GWa 186.1 GW
+2 degrees Celsius 174.5 GWa 188.0 GW
a Increased temperatures are assumed to have no effect on generator avail-
ability in the unconditional forced outage rates scenario, so these values
are identical to the base case.

3.5.5 Resource adequacy implications of future temperature scenarios in con-

junction with future generation resource scenarios

Finally, we consider capacity requirements under increased temperatures in conjunction with

replacement of all nuclear and/or coal generators by combined-cycle gas generators. This combines

the three generator replacement scenarios from Section 3.5.3 with the +2 degrees Celsius case from

Section 3.5.4. In the unconditional forced outage rates scenario, increased temperatures are again

assumed to have no effect on generator availability, so each fleet replacement case matches the

corresponding result from Table 3.6. In the temperature-dependent forced outage rates scenario, the

capacity reductions from generator replacement offset the capacity increases required from increased

temperatures to various extents; the net effect ranges from a reduction of 2 GW when replacing

19These temperature increases are with respect to the average temperatures occurring during 2006-2017, the period of
our historical temperature data. Global temperatures during this time were already approximately 1 degree Celsius
above the pre-industrial reference point [72]. Under business-as-usual emissions trajectories, an additional 1 and 2
degrees of temperature increase could be realized in approximately 2050 and 2100, respectively, though outcomes
are highly sensitive to future emissions scenarios [73].

20We do not account for load increases as a result of temperature increases. This would increase capacity requirements
in both scenarios, and creates an important interaction for consideration in power systems planning [71].
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all coal and nuclear generators, to an increase of 1.5 GW when replacing only nuclear generators.

Results are summarized in Table 3.8. While these resource adequacy risks appear modest, they

warrant consideration in power systems planning. The method demonstrated here offers a tractable

means of doing so.

Table 3.8: Resource adequacy implications of temperature increases under unconditional and
temperature-dependent forced outage rates. Values reflect annual procurement.

Case Unconditional Temperature-dependent

Base case (current temperature, current fleet) 174.5 GW 185.1 GW
+2 degrees Celsius with no fleet change 174.5 GWa 188.0 GW
+2 degree Celsius with NU to CC 174.8 GWa 186.6 GW
+2 degree Celsius with ST to CC 169.1 GWa 184.3 GW
+2 degree Celsius with NU and ST to CC 169.5 GWa 183.0 GW
a Increased temperatures are assumed to have no effect on generator availability in the unconditional
forced outage rates scenario, so these values are identical to the corresponding fleet change element of
Table 3.6.

3.6 Discussion

The results presented here demonstrate the importance of incorporating temperature dependence

of conventional generator availability into resource adequacy modeling in PJM. While we have

endeavored to parameterize our model to be consistent with PJM practice, this analysis is not a

substitute for PJM’s own resource adequacy modeling process. For example, we do not account

for transmission constraints nor emergency imports from neighboring systems due to a lack of

publicly available data, but both were important during the Polar Vortex of 2014 [74]. Were the

necessary data made available, a combined transmission and generation adequacy analysis for PJM

and adjacent power systems could likely further improve the practice of resource adequacy modeling.

In addition, we make the following caveats about our efforts to quantify the risks of correlated

generator failures in PJM. First, the regression specification employed may not capture the full extent

of winter resource adequacy risk, particularly the risk of interruptions to non-firm gas transportation.

That effect becomes even more important under the various retirement scenarios in which coal

and/or nuclear generators are replaced by additional gas capacity. In addition, we note that the
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temperature-dependent forced outage rates are calculated on as much as 23 years of PJM GADS

data. PJM’s Capacity Performance program, which enacted penalties for resources that fail to

perform when called, was implemented only after the Polar Vortex of 2014, and has led to significant

investment in generator maintenance, dual-fuel capabilities, and firm gas supply contracts. Thus, it

is possible that the relationship between extreme temperatures and forced outages has weakened

in recent years. However, in analysis not presented here, we have found remarkably consistent

temperature dependence of generator availability across vintages of coal generators in PJM. We

also caution that extreme temperatures are not the only driver of correlated failures. For example,

PJM is occasionally affected by hurricanes during fall months, which are typically accompanied

by moderate temperatures. Despite these caveats, this analysis demonstrates the importance of

considering ambient conditions in resource adequacy modeling.

3.7 Conclusions and Policy Implications

We have examined the implications of temperature-dependent generator availability for resource

adequacy in the PJM Interconnection. By combining PJM’s Generating Availability Data System

(GADS) database with an open-source resource adequacy modeling tool and publicly available

datasets, we demonstrate that the increased failure probabilities previously shown to affect PJM’s

conventional generator fleet at extreme temperatures [30] pose significant reliability risks not

considered in standard resource adequacy modeling. Temperature dependence increases PJM’s

required reserve margin from 15.9% to 22.9% to achieve the 0.1 loss of load expectation (LOLE)

reliability target in the 2018/2019 delivery year. However, PJM actually procured a 26.6% reserve

margin for this delivery year, sufficient to achieve 0.02 LOLE and resulting in capacity payments

of $315 million more than for a 22.9% reserve margin. Our estimate of the economic benefits that

could be realized from reduced capacity procurement does not consider dynamic impacts, such as

increases in energy and operating reserve costs associated with any increase in the prevalence of

scarcity pricing events.

While greater procurement of generation capacity reduces the probability of loss-of-load events,
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the incremental reliability benefits should be weighed against the incremental costs of procuring

that capacity. We estimate that the value of lost load (VOLL) implicit in PJM’s selected level of

capacity procurement during the 2018/2019 delivery year is approximately $700,000/MWh, two

orders of magnitude above values commonly used in operational contexts. This excess procurement

helps explain why PJM has rarely triggered scarcity pricing, even during recent extreme weather

events [61], and creates doubt as to whether current initiatives on scarcity pricing reform [62] will have

meaningful effects. However, increased scarcity prices could reduce capacity market clearing prices,

reduce implied VOLL, and therefore reduce economic benefits associated with resource adequacy

reforms.

To the extent PJM understands that extreme temperatures increase generator failures and that

this effect cannot be accounted for in its current resource adequacy modeling approach, the decision

to procure additional capacity is prudent. The key contribution of this work is to demonstrate a

tractable method for incorporating correlated failures into resource adequacy modeling, such that

their reliability implications can be quantified directly, rather than accounted for heuristically.

Given the seasonality of temperatures, we examine the potential benefits of monthly, rather than

annual, capacity procurement for PJM. We find that monthly capacity targets could reduce annual

capacity procurement by approximately 16% without increasing LOLE. While we do not estimate

the economic benefits of a monthly capacity market, we note this potential reduction in capacity

requirements is substantial. Further, a monthly or seasonal structure should allow for improved

efficiency in the supply offers of inherently seasonal resources, such as solar, wind, and some demand

response. However, some of the benefits associated with increased efficiency may be offset by increased

risk premiums for firms, given decreased certainty around annual capacity revenue. [75] finds annual

capacity markets reduce resource risk asymmetrically, advantaging resources with a higher share of

operating costs (e.g., most natural gas-fired generation), suggesting a more granular capacity market

may differentially increase resource risk premiums and affect longer-term procurement in PJM.

Because economic pressure is exerted on nuclear and coal generators by low wholesale electricity

prices due to inexpensive natural gas, we examine the resource adequacy implications of their

retirement and replacement by combined-cycle gas generators. Assuming the new combined-cycle
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gas generators have forced outage rates equal to PJM’s existing combined-cycle fleet, the system

experiences moderate resource adequacy benefits of approximately 1% and 3%, respectively. This

result is driven by the lower forced outage rates of combined-cycle gas generators during the

hot, high-load hours that contribute overwhelmingly to LOLE in PJM. The inconsistent resource

adequacy implication of replacing nuclear generators with combined-cycle gas generators under our

two scenarios illustrates the importance of robust modeling of generator availability during high-load

hours.

Since all PJM generator types exhibit reduced availability during hot temperatures, we examine

the resource adequacy implications of future climate change scenarios, operationalized as temperature

increases of 1 and 2 degrees Celsius. Holding other factors constant, these scenarios result in increased

capacity requirements of approximately 0.5% and 1.5%, respectively. Combining the 2-degrees Celsius

temperature increase with the retirement cases results in a 1% increase and 0.5% decrease in capacity

requirements when replacing nuclear and coal generators, respectively. While these resource adequacy

risks appear to be mild in PJM, it is only by explicitly modeling generator availability as a function

of temperature that the magnitude of the risk can be determined.

Planning models such as RECAP (Renewable Energy Capacity Planning Model) and PJM’s

own resource adequacy tools do not perform full sequential modeling of the system over time. Thus,

even when accounting for temperature-dependent generator availability, resource adequacy modeling

may miss important reliability risks. Future work will consider temperature-dependent generator

availability on operational timescales using a security-constrained unit commitment and economic

dispatch model. Such an approach can account for the risk of lost load from generator outages during

sustained extreme weather events, incorporate demand response resources, quantify operational

flexibility needs, and allow system operators to better understand the value of procuring operating

reserves, complementing this analysis.
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Chapter 4 Dynamic Operating Reserve
Procurement Improves Scarcity Pricing in PJM*

Abstract

Competitive electricity markets can procure reserve generation through a market in which the demand for

reserves is administratively established. A downward sloping or stepped administrative demand curve is

commonly termed an operating reserve demand curve (ORDC). We propose a dynamic formulation of an

ORDC with generator forced outage probabilities conditional on ambient temperature to implement scarcity

pricing in a wholesale electricity market. This formulation improves on common existing methods used by

wholesale market operators to articulate ORDCs by explicitly accounting for a large source of observed

variability in generator forced outages, whereby for a fixed load, more reserves are required during times of

extreme heat and cold to maintain a constant risk of reserve shortage. Such a dynamic ORDC increases

social welfare by $17.1 million compared to current practice in the PJM Interconnection during a high load

week in a welfare-maximizing electricity market with co-optimized procurement of energy and reserves. A

dynamic ORDC increases reserve prices under scarcity conditions, but has minimal effects on total market

payments. The results are directly relevant to the modeled two-settlement electricity market in PJM, which

is currently undergoing enhancements to its ORDC.

* This paper was published as L. Lavin, S. Murphy, B.Sergi, and J. Apt, “Dynamic operating reserve procurement
improves scarcity pricing in PJM,” Energy Policy, 2020. 147: 111857. doi:https://doi.org/10.1016/j.enpol.2020.111857
.
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Abbreviations and acronyms

BGE-PEP Baltimore Gas and Electric and Potomac Electric Power Company model zone
CC Combined cycle natural gas generator type
COPT Capacity outage probability table
CT Combustion turbine natural gas generator type
DA Day-ahead
DASR Day-ahead scheduling reserves
DOM Dominion model zone
DR Demand response
DS Diesel generator type
ERCOT Electricity Reliability Council of Texas
FERC Federal Energy Regulatory Commission
GADS Generating Availability Data System
GW Gigawatt
HD Hydroelectric and pumped storage generator type
HE Hour ending
LDA Load delivery area
LMP Locational marginal price
LOLP Loss of load probability, the probability net load exceeds available generation
MAD Mid-Atlantic Dominion reserve subzone
MW Megawatt
MWh Megawatt-hour
MRR Minimum reserve requirement
NERC North American Electric Reliability Corporation
NU Nuclear generator type
ORDC Operating reserve demand curve
PJM The PJM Interconnection, the largest system operator by load in North America
PPL-METED Pennsylvania Power and Light and Metropolitan Edison Company model zone
RT Real-time
ST Steam turbine generator type
UC/ED Unit commitment economic dispatch
VOLL Value of lost load, the valuation of a unit of unmet load

4.1 Introduction

Operating reserves are crucial for power system reliability. Traditionally, system operators use

heuristics for determining the quantity and types of operating reserves needed to maintain system

reliability. A common heuristic is to hold sufficient reserves to guard against the largest single

contingency (termed the N-1 contingency), generally a large generator or transmission line. Following

the expansion of competitive wholesale electricity markets after restructuring, increasing effort has
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been put on translating reserve heuristics into competitively procured services; for example, by

articulating a demand curve for a reserve product based on the marginal value it provides in increased

reliability. This paper quantifies how better accounting for the probability of generator contingencies

improves reserves procurement.

Competitive wholesale electricity markets commonly determine market clearing prices paid by

loads to generators as locational marginal prices (LMPs) using unit commitment and economic

dispatch (UC/ED) optimization models. These models minimize the as-bid cost of supplying

generation to serve load, subject to relevant commitment and security constraints; prices are

determined as the locational marginal cost of serving load and theoretically support efficient dispatch

[1]. Academic research on policies and trends affecting electricity loads, generator characteristics,

and generator costs therefore commonly employs similar mixed-integer linear programs to estimate

the policy or trend’s effect [2–4]. Due to both public data availability limitations and computational

limitations in solving large mixed-integer programs at increasing levels of geographic and temporal

granularity researchers necessarily make simplifications and approximations in these models; for

example, by limiting geography to a zonal representation of a market [5] and by employing a vertical

demand curve for operating reserves as a function of key sources of uncertainty to address reliability-

related security constraints [6]. Our research improves common simplifications in procurement of the

optimal quantity of operating reserves in both previous academic research and under current and

proposed practice in the PJM Interconnection LLC (PJM), whose data we use for our model cases

to increase the direct policy relevance of conclusions.

PJM operates the largest wholesale electricity market by load in North America, serving 65

million customers in 13 mid-Atlantic states. PJM administers a competitive two-settlement wholesale

electricity market, with settlements at day-ahead and real-time. PJM selects competitive generation

offers to meet expected load at least cost, subject to relevant physical constraints. To maintain

reliability under uncertainty in load and generation availability, PJM holds a minimum quantity of

primary operating reserves in real-time, historically 150% of its single largest contingency (usually

about 2.1 gigawatts (GW) of capacity, approximately equivalent to the output of two large nuclear

reactors), with synchronized primary reserves equivalent to the single largest contingency (usually
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about 1.4 GW) [7].

System operators like PJM have long understood that probabilistic methods can be used to

better quantify the optimal quantity and type of reserves to hold across different timeframes [8].

However, implementing these methods requires either extensive use of computationally intensive

stochastic optimization methods [9] or improved heuristics for deterministically representing demand

for reserves deriving from uncertainties that affect reliability. Pursuing the latter approach requires

both identification and quantification of uncertainties as well as a method for implementing desired

reserve procurement in competitive wholesale markets.

Traditionally, important uncertainties include large conventional generator failures and load

forecast error, with the more recent addition of uncertainty in the availability of variable generation

like wind power [10, 11]. Of these uncertainties the greatest risk to the operator’s ability to

reliably serve load on short time horizons is generally unscheduled conventional generator failures.

Consequently, research has focused on developing heuristics for integrating the probability of different

generator availability states into market clearing algorithms; for example, by enumerating the

probability of each possible single and double generation failure [12]. These failure probabilities

are traditionally calculated by assuming generators can be modeled as unconditionally independent

random variables based on historical data [13].

Given a heuristic for reserve requirements, wholesale market operators in North America commonly

integrate reserve procurement into competitive electricity markets via a demand curve. Reserve

procurement in many markets has historically been administrative (equivalently conceptualized as a

vertical demand curve), with a fixed quantity of reserves procured and a very high penalty pricing

mechanism triggered during shortfalls. A more sophisticated and increasingly popular method for

reserve procurement is a sloped or step-wise operating reserve demand curve (ORDC). An ORDC

approach recognizes the optimal quantity of reserves to hold depends on a probability distribution

of near real-time uncertainties, which may be represented in markets as demand curves reflecting

declining marginal value for reserves based on the probability they will be needed multiplied by the

cost of the reserve shortage action they avoid [14]. The cost of reserve shortage actions is sometimes

referred to as the value of lost load (VOLL), which may reflect either the cost of unserved energy (i.e.,
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shedding firm load) or other emergency operator actions taken under reserve shortage, and therefore

is often referred to by system operators as a penalty factor associated with those actions. This paper

uses the terms VOLL and penalty factor interchangeably, assuming both reflect emergency actions

taken by the system operator under reserve shortage conditions.

Recent research demonstrates that PJM’s conventional generators are much more likely to fail

during extreme temperature events [15,16]. In other words, generator failures are not well represented

by unconditionally independent random variables. Further, extreme temperatures are correlated with

high load hours. In a separate analysis, accounting for this temperature dependence was estimated

to increase PJM’s total capacity requirement for resource adequacy planning purposes by 6% in

order to cover peak summer and winter loads [17]. An increase in necessary capacity for planning

purposes suggests modifications to operating reserve demand curves may also be needed to ensure

this capacity is available during hours with high loss of load probability (LOLP). Previous research

has estimated the effect of using conditional distributions for wind forecast error on the dynamic

articulation of an ORDC to support improved scarcity pricing in a realistic wholesale electricity

market [11]; we extend this research by applying similar methods for conventional generator forced

outages.

Analysis using PJM’s Generating Availability Data System (GADS) database shows that gen-

eration losses greater than PJM’s primary synchronized reserve requirement have occurred in

approximately 1% of hours since 1995. While these large generation losses typically occur in only

a single hour per day, days with multiple such hours also occur. For example, during the Polar

Vortex of 2014, 15 hours experienced generation losses greater than the operating reserve target on

the most extreme day (January 7). A bar plot of these large-loss hours is presented against the

prevailing ambient temperature in Figure 4.1. Such large losses on operational timescales suggest

that holding constant levels of reserves or conditioning reserves only on historical (e.g. annual- or

seasonal-average) generator failure probabilities is not an optimal strategy for PJM; instead, the

optimal quantity of reserves is better modeled as conditional on ambient temperature.
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Figure 4.1: The proportion of hours at a given ambient temperature in which generator losses
greater than PJM’s primary synchronized minimum reserve requirement (set at 1.4 GW for figure)
occurred. Calculations use PJM’s Generating Availability Data System (GADS) database, processed
as described in [16]. Data period: 1995-2018Q1.

In a competitive wholesale market, operational challenges during extreme events should be

endogenously reflected in prices, providing incentives for additional reserves. However, historically

PJM has procured additional reserves through selective operator intervention. Recognizing that

operator actions taken in support of reliability can unduly mute energy and reserve market price

signals, PJM submitted a proposal for reserve pricing reform to the Federal Energy Regulatory

Commission (FERC) in March 2019 [18]. Among other enhancements, PJM proposes a stepped

demand curve for operating reserves, rather than the current vertical demand curve it employs.1

This ORDC would provide price incentives for the provision of operating reserves in excess of the

current fixed procurement target, reducing the need for operator intervention to maintain reliability.

We contribute to the goal of reducing the need for administrative interventions by demonstrating

the benefits that may be obtained by articulating ORDCs that account for day-ahead generator

failure probabilities conditioned on forecast ambient temperature. We accomplish this by drawing

on the temperature dependence of generator availability identified in [16] to set operating reserve

requirements in PJM’s day-ahead market. This differs from PJM’s current proposal before FERC,

1PJM added a shorter fixed second step and optional second step extension to its primary synchronized reserve
demand curve in 2017 and 2014, respectively, in response to a FERC order requiring implementation of transient
reserve shortage pricing [19]. We implement and display the fixed part of this second step in Figure 4.4.
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which develops 24 fixed ORDCs for six daily time blocks across four seasons based on empirical

distributions of historical uncertainties in load, wind, solar, forced outages, and net interchange over

applicable time intervals [18]. While calculating historical average generator forced outages by time

block will capture some temperature dependence, it may not demand sufficient reserves during truly

extreme conditions. We employ PJM as a test case due to its current policy relevance, but expect

the results to be broadly relevant to market operators with similar two-settlement market designs

and proportion of conventional generation resources.

4.2 Methods

We employ a zonal unit commitment and economic dispatch (UC/ED) optimization model to

simulate generation, reserves, and locational marginal prices (LMPs) in PJM. We employ a zonal

model due to lack of sufficient publicly available data for nodal representation of PJM’s high voltage

transmission system and our policy focus on zonally procured operating reserves. Zonal models

are common in academic literature but may underestimate the effect of transmission constraints

on prices, particularly under stressed system conditions. Temporal resolution is hourly, with prices

interpreted as the dual variable of the model’s load-balance constraint when relaxed to a linear

program for the pricing run.2

The main distinction between our approach and UC/ED models used by system operators in

the United States (including PJM) is our ability to dynamically estimate and implement an ORDC

based on forecast hourly ambient temperatures, described in more detail below. Because energy and

reserves are co-optimized in commitment and dispatch, our ORDC formulation affects the simulated

zonal energy market clearing prices, in addition to reserve prices. Our approach is similar to that

employed by Zhou and Botterud [11], but with a focus on generator forced outage rates instead of

wind power variability for parameterization of the ORDC.

2This approach to price formation is consistent with current practice in PJM, though PJM’s models have more detailed
representation of the transmission system for determining LMPs and constraints around the ability of generators to
set clearing price based on their type of bid submission and market power mitigation tests. Alternative approaches to
price formation within an optimization market clearing price framework are possible and have been recently discussed
by PJM [19].
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4.2.1 Articulation of a Dynamic ORDC

Operating reserves are a subset of ancillary services that reflect the ability of generators to help

maintain system stability and serve load given uncertainty in the future availability of generation and

load. Power system operators procure or maintain multiple types of operating reserves associated with

different uncertainties (e.g., over- and under-forecasting) and timescales. In competitive wholesale

markets, like PJM, some portion of these reserves may be procured and paid through bid-based

market mechanisms. Historically PJM’s ancillary services have included bid-based processes for

regulation (5 minute response time) and three operating reserve products: primary synchronized and

non-synchronized reserves (10 minute response time) in its real-time (RT) market and day-ahead

(DA) scheduling (secondary) reserves (DASR, 30 minute response time) in the day-ahead market

(Table 5.1). PJM has one additional set of sub-zonal primary reserve procurement constraints for

the Mid-Atlantic Dominion sub-zone, reflecting significant East-West transmission constraints across

the Appalachian mountain range. PJM’s proposal before FERC seeks to better align performance

and prices for primary and secondary reserves between the day-ahead and real-time markets [18].

Table 4.1: Current operating reserve products in PJM. “N-1” is the single largest contingency
(typically a generator or transmission line).

Minutes Market Minimum Reserve Requirement

1) Primary synchronized ≤ 10 Real-time ≥ N-1
1A) Sub-zonal primary synchronized ≤ 10 Real-time 1) in sub-zone + most limiting interface into sub-zone ≥ N-1
2) Primary non-synchronized ≤ 10 Real-time Together with (1) ≥ 1.5*(N-1)
2A) Sub-zonal primary non-synchronized ≤ 10 Real-time 2) in sub-zone + most limiting interface into sub-zone ≥ 1.5*(N-1)
3) Day-ahead scheduling ≤ 30 Day-ahead ≥ forecast error

As evidenced by current practice in the Electricity Reliability Council of Texas, Inc. (ERCOT) [20]

and proposals in PJM [18], ORDCs are an increasingly popular approach to reserve procurement

in a competitive market. This demand curve may take different shapes in different markets, but is

generally based on underlying probabilities of lost load for a quantity of held reserves. The probability

of lost load is converted to a price by multiplying by a penalty factor based on an assumed cost of

emergency reserve shortage actions. Given that an ORDC quantifies the marginal value of held

operating reserves, co-optimizing energy and reserves with an ORDC allows for trade-offs between

the utility of holding additional reserves with their cost.
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A key parameter for determining the shape of the ORDC is thus the LOLP, which is itself a

function of the uncertainty in the availability of generators and load at some time t in the future.

Current practice for system operators like ERCOT with LOLP-based ORDCs generally parameterizes

held reserve forecast error as a normal distribution within season-hour blocks, calculating a mean

and standard deviation for the distribution from historical data within the season-hour block [21].

Implicitly, this assumes that conventional generator failures are invariant to ambient conditions

within seasonal-hour block, and invariant to changes in fleet composition relative to historical data

within seasonal-hour blocks, implying a single capacity outage probability table (COPT) for the

conventional generator fleet. However, Murphy et al. [15] demonstrates that conventional generator

failures increase during extreme temperatures and depend on generator type. We therefore draw on

Murphy et al. [16] to compute temperature-dependent forced outage rates, which we use to create

more accurate conditional distributions of available capacity of conventional generators in each hour.

This allows us to more accurately forecast hourly generation margins and corresponding LOLP. We

model LOLP solely as a function of conventional generator forced outages, since they are the focus of

the paper and largest reason for unexpected inability of generation to serve load. Inclusion of load,

wind (the focus in [11]), solar, and net interchange forecast errors are also possible and is implicit in

LOLPs derived from historical reserve forecast errors like those used by ERCOT [21], but is not

addressed in this work. The expected generation margin for the upcoming day forms the basis of

our day-ahead ORDC. The generation margin is determined as follows:

1. Determine expected online generators based on forecast net load (i.e., gross load net of wind

and solar generation), scheduled conventional generator availability, and a merit-order of

conventional generator marginal costs (Figure 4.2).

2. Create a COPT for expected online generators in each modeled hour conditional on forecast

ambient temperature. Generator-level ambient temperatures are based on a geographic match

against the closest weather station for which we obtain data (see Table B-2 in Appendix B.3

for assignments).

3. Convert the COPT into a probability distribution of generation margins for the associated time
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period of reserve procurement using temperature data along with the temperature-dependent

generator availability determined in [16] (Figure 4.3).3

4. Translate the cumulative probability distribution of generation margins into a ten-segment

stepwise ORDC, where the probability of generation availability being less than the midpoint

of each segment determines the expected LOLP on the segment. Segment-wise LOLPs are

multiplied by a penalty factor applied to being unable to serve load to determine the utility

(i.e., price) of reserves on the segment. We assume each of the ten segments are equivalent in

length (in megawatts, MW) and the cutoff point for the final segment calculated as the point

where the LOLP is ≤ 0.00001 (i.e., less than 0.001% chance that this amount of expected

online generation capacity will be unavailable in the hour, see Figure 4.4).

Figure 4.2: Example of step 1 of determining the generation margin: expected online generators
based on marginal cost merit order. CC is combined cycle (natural gas-fired), CT is combustion
turbine (natural gas-fired), ST1 and ST2 are steam turbine (coal) of two different unit sizes (ST1 ≤
500MW), HD is hydroelectric, NU is nuclear, and DS is diesel.

3Figure 4.3 is based on hourly generator failure probabilities, timescale is adjusted to that of the relevant reserve
product in PJM in the presented model cases.
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Figure 4.3: Example of steps 2-3 of determining the generation margin: Panel A shows the hourly
available generation probability distribution in 1 MW increments for an example hour with 104.4
GW of net load; Panel B shows the cumulative probability that the generation margin is more than
the x-axis value below net load after one hour.

Figure 4.4: Example of step 4 of determining the generation margin: ten-segment hourly ORDCs
for January 4, 2014 with 6-hour look-ahead period to avoid end-effects in generator commitments.
Solid black line is current PJM practice. Description of DynamicORDC case is in Section 4.3.

The ORDC is parameterized in our electricity market model following these steps, and generation

is then committed and dispatched to co-optimize energy and reserves.
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4.2.2 Implementation differences from proposed PJM ORDCs

Section 4.2.1 describes our general approach to articulating a dynamic ORDC. Because of the

paper’s use of PJM data and PJM’s recent proposal to modify its ORDC, this section highlights

how our approach could be modified to work with PJM’s. PJM proposed 24 season-hour block

ORDCs, with each ORDC constructed from the empirical distribution of net load forecast errors in

the previous three years. Net load forecast error is defined as:

NLEt = (Lt −Wt − St −NSIt)− (Lt−x −Wt−x − St−x −NSIt−x) +

t∑
t−x

FORtmp +RRt (4.1)

Where t ∈ 0,1,...23, hours beginning, tmp ∈ timepoints, the temporal resolution at which PJM

records thermal forced outages, and x=offset, the temporal offset for recording forecast error (assumed

to be 1 hour in Figure 4.5). NLE is net load error, L is load, W is wind generation, S is solar

generation, NSI is net scheduled interchange, FOR are forced outages of thermal units, and RR is

the regulation requirement (equation modified from Tribulski et al., 2018 [18]).

Implementing our proposed dynamic ORDC modifies the
∑t

t−x FORtmp component of NLEt.

Instead of using the empirical average
∑t

t−x FORtmp in the relevant season-hour block for all hours

t in the block, the forced outage component could either be drawn from the dynamic conditional

distribution calculated specifically for hour t as described in Section 4.2.1, or the forced outage

conditional distribution for hour t could be separately convolved with the net load error distribution

excluding forced outages. An ORDC could then be articulated based on the new distribution of net

load errors for hour t.

The difference between our method and PJM’s for calculating the probability of generator forced

outages is highlighted by Figure 4.5 for the 2014 Polar Vortex week. We compare the empirical

probability distribution of hourly total unscheduled generation forced outages reported in PJM

GADS for Hours Beginning 7-10 (i.e., 7AM-11AM ET) during winter months (December, January,

and February) in the three preceding years (2011-2013) with the daily distributions for those same

hours produced using our dynamic ORDC method. We select these hours for the figure because

110



they are the most important for winter reliability and are defined by PJM to be the basis for the

“Winter Block 5” ORDC in their proposal to FERC. The figure shows that while more typical days

(like January 10, 2014) are a good match for the empirical distribution, the conditional probability

distribution of forced outages on very cold (and high load) days like January 7, 2014 is significantly

rightward shifted compared to the full historical empirical distribution in the season-hour block,

justifying articulation of a dynamic ORDC from the conditional distribution. As further confirmation

of this shift’s validity, observed hourly quantities of forced outages for 7-11AM ET during the Polar

Vortex week in PJM GADS are displayed as individual ticks along Figure 4.5’s horizontal axis,

showing the observed rightward skew of forced outages during the peak of the Polar Vortex.

Figure 4.5: Distribution of temperature-conditional forced outage probabilities for hours beginning
7-10 during each day of the 2014 Polar Vortex week compared to empirical distribution for the three
preceding winters. Ticks along bottom of the horizontal axis show the observed quantities of forced
outages in these hours.

4.2.3 Electricity market model

To quantify the effects of different ORDC parameterizations we formulate a reduced-form zonal

UC/ED model of PJM as a mixed-integer linear program in Pyomo, solved using IBM’s CPLEX
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version 12.9 solver through the Python application programming interface [22]. PJM is modeled as

five zones linked by six transmission lines, as used by Lueken and Apt (2014) (Figure 4.5). To account

for the effect of uncertainty in historical cases on dispatch and pricing the model is configured to

run in three stages, all at hourly resolution. In the first stage all generators are committed using

historical day-ahead forecast load. A second stage allows re-commitment of fast-starting generators

(assumed to be CT and DS units only) using the day-of load forecast. Finally, a dispatch-only run

against actual loads enables re-dispatch as a linear program after fixing commitment decisions for

determination of prices. The model co-optimizes energy and reserves simultaneously at all stages,

where the utility of reserves may be articulated as a stepwise dynamic ORDC as described in Section

2.1.

Three operating reserve products are included in the model: primary synchronized reserves,

primary non-synchronized reserves, and day-ahead scheduling reserves (DASR), mimicking the major

operating reserve products competitively procured in PJM’s markets (Table 5.1).4 We additionally

model the non-Western zones as a single reserve sub-zone, mimicking PJM’s Mid-Atlantic Dominion

sub-zone. Market clearing prices are reported as the dual variable of the zonal load-balance constraint.

Additional constraints on reserves and transmission flows yield dual variables interpretable as zonal

reserve and transmission congestion prices.

The objective of the UC/ED model is to minimize the negative utility of serving firm electricity

loads (i.e., maximize social welfare). The utility of held operating reserves is the penalty factor

multiplied by the probability of a lost load event the held operating reserves would mitigate, as

articulated by the ORDC. Production costs include starting and operating generators, equivalent

to the negative utility of served load assuming a constant value associated with unserved energy.

The penalty factor is assumed equal to the cost of unserved energy. The unit commitment objective

4PJM also has markets for regulation, which responds on shorter timescales. We do not include regulation procurement
in our model.
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function is:

MIN
∑

t,g,z,gs

[SDt,g,z,gs ∗GENMCg,gs] +
∑
t,g

[NLCg ∗ COMMITt,g]

+
∑
t,g

[SCg ∗ STARTt,g] +
∑
t,z

[UEt,z]

+
∑
t,g

[TXMWt,l ∗ TXHt,l]−
∑
t,s,p

[RSPt,s,p ∗ SRt,s,p]

(4.2)

where t ∈ T is the set of hourly timepoints, g ∈ G is the set of generators, z ∈ Z is the set of

zones used to represent the PJM balancing area, l ∈ L is the set of transmission lines, p ∈ P are the

types of operating reserves specified for PJM in Table 5.1, and gs ∈ GS are linearized segments of a

generator’s marginal heat rate curve. SD is the dispatch on each segment of the generator’s offer

curve, GENMC are generator marginal costs of burning fuel (in piecewise linear segments), NLC

are generator no-load costs (i.e., fuel burn associated with having the generator online regardless of

its power output), COMMIT is a binary variable indicating whether a generator is committed, SC

are additional generator start-up costs, START is a binary variable indicating a generator start,

and UE is the cost of unserved energy.5 TXH is the marginal cost associated with scheduling flows

TXMW between zones, and RSP is the utility of held operating reserves on each segment s ∈ S of

the ORDC, with SR indicating the reserves held on that segment. Data for the parameters of the

unit commitment objective is provided in Appendix B.

Constraints in the model enforce serving forecast or actual zonal loads at each respective stage,

subject to generator scheduled availability, thermal generator commitment parameters (minimum

up/down time, minimum online power output, ramp rate, etc.), generator ability to provide operating

reserves, and inter-zonal transmission flows (Appendix B.2). Wind and solar resources connected to

the bulk power system are modeled as zero marginal cost variable resources without commitment

parameters nor ability to provision reserves, though they can be curtailed. Additional constraints

govern total generation, minimum and maximum hourly generation, and ramping capability of

zonal hydro resources (Appendix B.3). The ability of generators to provide synchronized reserves is

5Equivalent to the price cap for model purposes: $2000/MWh in PJM. This is also modeled as the strike price for
emergency demand response resources.
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constrained based on the lesser of their ramping limit or maximum output within the timeframe

of the reserve quantity, while non-synchronized reserves are limited to generators with fast-start

capability (only CT and DS units are assumed to have this ability). Self-scheduled resources, modeled

to include most coal and all nuclear units, are assigned zero ramp rate and thus cannot provision

synchronized reserve nor set price (Appendix B.2). A full mathematical formulation of the UC/ED

model is provided in Appendix A.

In the final dispatch run commitment decisions are fixed, so the model is relaxed to a linear

program with no-load and startup costs excluded from the objective function. Zonal clearing prices

can be determined as the dual variables of the zonal load balance constraint. To reflect PJM practice,

the constraint on minimum generation level is relaxed for CTs [23], allowing these generators to set

the clearing price even if dispatched at their minimum online power output.

4.2.4 Data development

We draw on numerous public data sources to realistically parameterize a reduced-form zonal

representation of PJM’s footprint. Zones are the same as those used in Lueken and Apt [5] and shown

in Figure 4.6. Day-ahead, day-of, and actual loads are obtained from historical data and assigned to

our model zones based on PJM LDA aggregation. Thermal generator offers are cost-based, with

variation primarily resulting from matching gas-fired generators against the nearest gas price hub

for that delivery day in the historical data. Hydro generation faces additional constraints based on

historical maximum, minimum, and total generation on similar days. Nuclear and coal-fired units

are assumed to self-schedule to better match the quantity of economic offers observed in anonymized

PJM bid data; less flexible generation units commonly self-schedule in PJM [24]. Scheduled generator

outages for historical days are obtained via PJM GADS data. Further details on matching for

developing thermal generator offers, forced outage probabilities, renewable generation, loads, and

other data are in Appendix B.
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4.2.5 Validation

Selection of validation weeks

To validate the behavior of our model we run it with historical data for January 4-10, 2014

and October 19-25, 2017, as described below. We choose these timeframes to represent an extreme

and normal week, respectively. Additional validation uses the entire month of October 2017 and is

discussed in Appendix C.

The January 4-10, 2014 period included a polar vortex event that caused extreme stress on

PJM’s system due to increased generator outages and load.6 Accordingly, this period represents

a time of high importance for reserve procurement since these stresses may result in the operator

taking high-cost actions to preserve the ability to serve firm load under contingencies.

The October 19-25, 2017 period is chosen as a recent shoulder season week to help validate the

model’s ability to reproduce PJM prices and dispatch under more typical system conditions. An

extension of this validation week to the full month of October 2017 is included in Appendix C.

6During the January 2014 polar vortex event the fleetwide forced outage rate reached 22% compared to a winter
average forced outage rate of 7%. In addition, PJM experienced its second-highest winter peak load of approximately
143 GW, approximately 35% higher than typical in January [25].
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Figure 4.6: Model PJM zones, generator locations, and transmission links between zones. Generator
locations include all generators for which we have data reported to PJM GADS (1995-2018Q1).
Generators are assigned to the zone they are geographically located within or nearest. Transmission
flow limits based on PJM data [26].

Model performance validation: generation and LMPs

Figure 4.7 illustrates total generation by fuel type dispatched by the model in order to meet

electricity demand for the week of January 4-10, 2014 (A) and October 19-25, 2017 (B).
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Figure 4.7: Generation by zone and fuel type for Jan. 4-10, 2014 (A) and Oct. 19-25, 2017 (B).
Aggregate dispatch for the entire PJM system is given by ‘PJM’. Only wind and solar resources may
be curtailed, though no curtailment is observed in cases with reserves procurement. See Figure 4.2
for definitions of each fuel type.

During the high load January 2014 week the model fully dispatches nuclear and hydro resources

as well as available solar and wind. The model relies heavily on coal due to high spot prices for

natural gas during this week, making coal units inframarginal relative to gas. During the very highest

load hours on January 7 and 8 (the peak of the 2014 polar vortex), the model requires the higher

priced gas generation to serve load. In contrast, during the lower load and lower natural gas price

October week, more gas resources are inframarginal.

To validate model results we compare modeled zonal LMPs with the historical day-ahead LMPs

reported by PJM for these zones from PJM [27]. Modeled cases assume historical PJM practice

for reserve procurement and pricing. Figure 4.8 shows the zonal LMPs associated with the above

dispatch profile for January 4-10, 2014 (A) and October 19-25, 2017 (B). LMPs are the dual variables

of the zonal load-balance constraints, reflecting the cost of needing 1 MWh of additional generation
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to serve load in each zone. Modeled LMPs during the January week are lower than observed,

particularly in the West zone during the peak of the polar vortex. Reasons for these differences may

include differences in modeled vs. actual gas generator bids as well as the model’s reduced-form

representation of PJM’s transmission topology and interchange. The model’s match with reported

prices is closer during the lower load Oct. 2017 week, with little difference in average hourly PJM-wide

LMP ($26.3/MWh modeled vs. $27.6/MWh reported) and hourly root-mean square error under

11% (see PJMHistorical in Table 4.2). In both cases we consider the model well-validated enough to

serve our primary purpose, which is estimating the magnitude of reserve quantity and price changes

due to changes in formulation of ORDCs to reflect ambient conditions.

Figure 4.8: Hourly zonal LMPs for Jan. 4-10, 2014 (A) and Oct. 19-25, 2017 (B).

4.3 Results

4.3.1 Choice of model runs

To highlight the effect of a dynamic ORDC on energy and reserve procurement and pricing, we

run four sets of cases for the two weeks.

1. NoReserves: No requirement for operating reserves. While unrealistic, given uncertainty

in generation availability, this case sets a lower bound on cost for reserve procurement and
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associated increases in electricity market clearing prices due to lack of reserves when actual

loads deviate from forecast.

2. PJMHistorical : Mimics historical PJM practice prior to PJM’s current proposal before FERC.

This case sets the primary synchronized reserve minimum reserve requirement (MRR) to 1.4

GW and day ahead scheduling reserves (DASR, secondary reserves) MRR equivalent to 6%

of forecast hourly load. The penalty factor for being below the MRR for primary reserves is

$850/MWh; an additional 190 MW step beyond the MRR at $300/MWh penalty factor is

included for primary reserves. Secondary reserves (DASR) do not have a penalty factor under

current PJM practice and are cleared the highest offer price [28], in our model based on lost

opportunity costs.

3. SimpleORDC : This case is most like PJM’s proposed ORDC formulation before FERC, though

with notable differences. It implements a ten-segment ORDC based on an unconditional

fleet-average generator forced outage rate. The first segment of the ORDC for each reserve

product sets the MRR to the current PJM MRR (e.g., 1.4 GW synchronized primary reserves);

subsequent ORDC segments are based on look-ahead time period (10-30 minutes) generation

margins calculated as described in Section 2 assuming unconditional forced outage rates. The

maximum penalty factor for reserve shortage is assumed to be $2000/MWh. Notable differences

with actual PJM proposal are that this case only accounts for forced outages (PJM additionally

considers wind, solar, load, and net interchange forecast uncertainty) and is based on historical

unconditional forced outage rates without empirical distributions subset by the 24 proposed

hour-season blocks used by PJM.

4. DynamicORDC : Implements a dynamic ten-segment ORDC that considers changes in generator

failure probabilities driven by ambient conditions. The first segment of the ORDC for each

reserve product sets the MRR to the current PJM MRR (e.g., 1.4 GW synchronized primary

reserves); subsequent ORDC segments are based on look-ahead time period (10-30 minutes)

generation margins calculated as described in Section 2 assuming conditional forced outage

rates. The maximum penalty factor for reserve shortage is assumed to be $2000/MWh. The
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major difference between this case and SimpleORDC is in considering dynamic generator failure

probabilities, which differ most from invariant failure probabilities during extreme temperature

hours (see Figure 4.1).

Additionally, because procurement of operating reserves can increase prices, particularly during

conditions of significant system-wide shortage, we compare the modeled payments for operating

reserves to those for congestion, another payment that increases during shortage conditions as

transmission lines are heavily loaded. While we model only six transmission interfaces, these

interfaces drive a meaningful portion of PJM’s annual congestion costs, with the AEP-DOM,

5004/5005, Bedington-Black Oak, and AP South interfaces all ranking among the top 10 on PJM’s

transmission system during January-September 2018 and accounting for 18% of all congestion

costs [29].

4.3.2 Effects of using a dynamic ORDC

The hourly zonal prices for both modeled weeks for the four cases described above are shown in

Table 4.2. Cases differ only in their reserve procurement strategies, with changes in prices resulting

from both how reserve procurement affects ability to handle differences between forecast and actual

load as well as the cost of reserve procurement itself. The cost of additional reserve procurement,

when justified by higher ex-ante generator failure probabilities articulated via the reformulated

ORDC, has attendant benefits that are not revealed in dispatch prices because we do not model

observed unit-level failures between commitment and dispatch in historical data. To highlight the

expected value of these benefits, Figure 4.11 shows expected social welfare benefits associated with

changes to reserve procurement costs and loss-of-load probability between the cases with reserve

procurement.

Price differences resulting from actual loads exceeding the day-ahead and day-of load forecasts

used in commitment decisions are most pronounced in the January NoReserves case, where only

emergency demand response resources are available to balance load forecast errors that cannot be

served by online generators. When this occurs the market clears at the price cap of $2000/MWh,

demonstrating the importance of operating reserves as a hedge against uncertainty. A similar effect
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of lower magnitude occurs in the PJMHistorical case, where a reserve shortage condition rather

than emergency demand response sets price below the cap. The two ORDC cases that hold variable

quantities of operating reserves result in lower prices, as they are better able to cover deviations

between forecast and actual loads with additional reserves.

While the SimpleORDC and DynamicORDC cases produce similar average prices during both

modeled weeks, the DynamicORDC case holds additional quantities of reserves on high load, low

temperature days like January 7-8, 2014. Holding additional reserves results in higher prices that

reflect the need for higher marginal cost generators, both to serve load and to provision sufficient

reserves to mitigate the increased probabilities of generator forced outages associated with extreme

conditions (see also Figure 4.10). The expected benefits of this procurement are highlighted in

Figure 4.11, which shows the additional reserve procurement during the Polar Vortex reduces the

probability of generator forced outages resulting in a reserve shortage, more than offsetting the cost

of the additional reserve procurement.

Table 4.2: Pricing summary statistics for modeled cases. Root mean square errors are a measure
of how accurately each case reproduces day-ahead PJM prices.

Reported No Reserves PJMHistorical SimpleORDC DynamicORDC

January 4-10, 2014 LMP ($/MWh)
Mean 109.1 104 93.7 83.1 83.2
Standard Deviation 102.3 241 91.8 43.6 43.2
Median 61.5 69.9 71.7 72.1 72.8
Min 31.6 -1260 0.5 0.5 0.5
Max 694 2000 1030 194 193
January 4-10, 2014 Root Mean Square Error compared to Reported
Mean ($/MWh) 65.5 41.7 42.8 42.5
% of Reported Mean 60.0% 38.3% 39.2% 39.0%
October 19-25, 2017 LMP ($/MWh)
Mean 27.6 26.0 26.3 26.4 26.3
Standard Deviation 6.8 5.9 5.9 6.0 6.0
Median 28.3 27.0 28.2 28.3 28.0
Min 16 15.1 15.3 15.1 15.1
Max 48 35.3 34.6 34.6 35.2
October 19-25, 2017 Root Mean Square Error compared to Reported
Mean ($/MWh) 2.9 2.8 2.8 2.8
% of Reported Mean 10.5% 10.1% 10.1% 10.1%

To give context for the magnitude of the additional reserve payments associated with imple-

121



mentation of an ORDC, we compare the total weekly primary synchronized reserve payments due

to ORDC penalty factors in the four cases with zonal congestion. We show these results for the

high load, high cost January week in Figure 4.9 (for the October week, see Appendix C), reporting

only the primary synchronized reserve penalty factor costs, as primary synchronized reserves are

the most binding and highest priced reserve product procured in the model. During an extreme

week like January 4-10, 2014, the additional payments associated with primary synchronized reserve

penalty factors are considerably less than congestion costs (though congestion costs are also well

above average during an extreme week).

Figure 4.9: Total congestion payments, total energy payments, and ORDC-related primary
synchronized reserve payments for the modeled January 2014 week. NoReserves and PJMHistorical
cases do not have an ORDC and therefore have no ORDC-related reserve payments, though they
may still have non-zero reserve prices due to lost opportunity costs.

To give a sense of how the ORDC affects price formation, Figure 4.10 shows the hourly marginal

cost (penalty factor) on the ORDC of primary synchronized reserves, as well as the total quantity of

reserves procured, for the January 2014 week across the four cases. The NoReserves case has no

reserve requirements, and therefore procures no reserves with $0 penalty factor. In the PJMHistorical

case, the 1.4 GW MRR and 190 MW extended step for primary synchronized reserves are fully

procured during commitment runs. However, non-zero reserve penalty factors may occur in dispatch
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when actual load exceeding forecast requires re-dispatch of synchronized reserves to serve the

additional load resulting in a reserve shortage. This occurs with some frequency during the Polar

Vortex week. In the two cases with ORDCs, reserves have value to the system that depends on the

price of the ORDC segment, and procurement and the associated penalty factor can vary accordingly

to maximize social welfare. The extreme cold temperatures during January 4-10, 2014 highlight the

difference between a simple ORDC and the dynamic ORDC: in the dynamic case, increasing reserve

procurement is required during cold hours to achieve the same level of reliability due to increased

generator failure probabilities, while the simple ORDC reserve requirements change only with the

changing magnitude of forecast load. This process plays out during the highest load day of the polar

vortex (Jan. 7), when the DynamicORDC case holds higher levels of reserves. Alternatively, both

cases may accept lower levels of reliability when the cost of bringing additional generators online is

high, particularly if the peak load event necessitating committing additional generators and reserves

is of short duration. Again, this effect is exacerbated in the DynamicORDC case as more reserves are

required for equivalent reliability given cold temperatures, resulting in greater price spikes for shorter

duration peak loads on Jan. 8 than in the SimpleORDC case. The high reserve penalty factor in all

three reserve-procuring cases on Jan. 6 results from actual load exceeding day-of forecast.
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Figure 4.10: (A) Quantity of primary synchronized reserves procured by ORDC segment (shaded
vertical line segments; left axis, in MW) by hour for Jan. 4-10, 2014, along with ORDC penalty
factor for primary synchronized reserves (red line; right axis, in $/MW). (B) and (C) show the
distributions of reserve procurement and penalty factors for the week for the three reserve-procuring
cases.

To quantify the benefits of a dynamic ORDC, Figure 4.11 compares the hourly probability of

reserve shortage and relative social welfare of the three cases with reserve procurement. Compar-

isons in Figure 4.11 assume the DynamicORDC method perfectly parameterizes generator failure

probabilities and that its other assumptions (e.g., use of a MRR to define reserve shortage condition)
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are justified, though the DynamicORDC case itself is not perfect due to deviations in actual from

forecast load used in commitment decisions. An example of a large under-forecast of actual load

occurs on Jan. 6 as the polar vortex begins, resulting in high probabilities of reserve shortage in all

cases. We do not include the NoReserves case in this comparison as procuring no reserves results in

a reserve shortage every time a generator fails or load is under forecast, making it both unrealistic

and highly suboptimal.
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Figure 4.11: Hourly reserve shortage probability (A,C) and decrease in weekly social welfare of
different reserve procurement strategies compared to the DynamicORDC case (B,D) during January
4-10, 2014 and Oct 19-25, 2017 weeks, respectively. Note the different y-axis scales on weekly change
in social welfare plots (B,D).

Compared to assuming the DynamicORDC as best practice, the PJMHistorical and SimpleORDC

reserve procurement approaches are suboptimal by $17.1 million and $4.3 million, respectively, during

the January 2014 week (Figure 4.11B). The comparative suboptimality of these reserves procurement

strategies is primarily due to their not accounting for increased failure probabilities of PJM’s

conventional generator fleet under abnormally low temperatures, resulting in higher probability of a
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reserve shortage condition. As shown in Figure 4.11A, the risk of experiencing a reserve shortage

during the peak of the 2014 polar vortex on Jan. 7 using both PJMHistorical and SimpleORDC

reserve procurement exceeds that of the DynamicORDC approach by over 90%. In contrast, during

the October 2017 week, both PJMHistorical and SimpleORDC adequately procure reserves (Figure

4.11C) because generator failure probabilities are generally below that of the unconditional annual

average due to the mild ambient conditions; in fact, slight suboptimality (Figure 4.11D) results from

paying for over-procurement of reserves relative to quantities in the DynamicORDC case.

Recalling generators also benefit from the increased reserve prices shown in Figure 4.9, the

dynamic ORDC case shows benefits for both generators and consumers during a polar vortex week.

Both increases in generator payments and social welfare are on the order of millions to low tens

of millions of dollars, about 1% of cleared energy payments during the week. Realized benefits for

consumers may be even larger than estimated if the assumed $2000/MWh reserve shortage penalty

factor underestimates the cost of reserve shortage actions taken by the system operator or additional

sources of uncertainty beyond load forecast are incorporated.

4.4 Conclusions and Policy Implications

Building on recent research demonstrating that generator reliability depends on temperature, we

propose a dynamic formulation of an ORDC to implement scarcity pricing in a wholesale electricity

market. Our model co-optimizes the procurement of energy and reserves to meet electricity demand,

subject to uncertainty in the next day’s availability of dispatchable generation, variable renewables,

and realized load. We validate our model’s price formation during two historical weeks, comparing

its performance to three alternative approaches for procuring operating reserves, two of which mimic

historical and proposed PJM practice.

We find that a dynamic ORDC increases reserve procurement and prices during hours with

heightened risk of generator forced outages, reducing the probability of a reserve shortage during

the 2014 polar vortex. More accurate quantification of generator loss-of-load probabilities leads

to a more accurate operating reserve valuation, increasing social welfare by $17.1 million and $4.3

127



million compared to historical practice and an ORDC with unconditional generator force outages,

respectively, during a historical cold, high load week (Figure 4.11). Neither PJM’s historical practice

nor its current ORDC proposal before FERC capture hourly variation in failure probabilities of its

conventional generator fleet. Our approach offers a method for incorporating the effects of ambient

temperature on this relationship in PJM and could be applied in other wholesale electricity markets.

In the specific case of PJM, the dynamic ORDC approach could be straightforwardly incorporated

with proposed practice by convolving the conditional distribution of generator forced outages with

other sources of net load error underlying ORDC articulation at each timepoint.

A practical consideration in these proposals not included in our model’s objective is balancing

accuracy with complexity; partially for this reason PJM proposes 24 ORDCs as six four-hour

blocks across four seasons rather than articulating an ORDC from conditional distributions at each

timepoint. However, it is not always hot during midday summer hours nor cold on winter mornings;

it is the subset of extreme hours during those seasons that pose risk to the system and are associated

with higher generator forced outage rates (see Figure 4.1 and Figure 4.6). A dynamic ORDC is

well-approximated by the simpler approach under seasonal expected conditions when conditional and

unconditional generator forced outage rates are similar, as evidenced by results in Figure 4.11C-D.

However, a dynamic ORDC also captures demand for additional operating reserves under extreme

conditions like those of the January 2014 polar vortex without the need for discretionary operator

intervention, creating benefits for both consumers from reduced probability of reserve shortages and

generators through increased co-optimized reserve and energy payments. A dynamic ORDC may

therefore offer a market-based method for extending reserve procurement under extreme conditions,

enhancing the benefits an ORDC would bring to PJM.
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A Model Formulation Appendix

A.1 Sets

t ∈ T , timepoints (hourly in current model)

g ∈ G, conventional generators
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h ∈ H ⊆ G, subset of hydroelectric generators

gsz ∈ GSZ ⊆ G, subset of generators in constrained sub-zones

s ∈ S, segments of operating reserve demand curve (10 in current model)

z ∈ Z, zones in power system (5 zones used to represent PJM based on public data [26])

sz ∈ SZ ⊆ Z, sub-zones with additional reserve constraints in model (all non-West zones in PJM

based on PJM’s Mid-Atlantic Dominion sub-zone definition)

l ∈ L, transmission lines connecting zones in power system (6 lines interconnecting 5 zones in

current model)

gs ∈ GS, linearized segments of generator heat rate curves (4 segments for thermal generators

corresponding to 25% increments of power output in current model)

A.2 Parameters

LOADt,z, hourly zonal gross load; day-ahead forecast in first stage, day-of forecast in second stage,

and actual in final (dispatch) stage

WCAPz, installed capacity of utility-scale wind in zone

SCAPz, installed capacity of utility-scale solar in zone

WCFt,z, hourly maximum capacity factor of utility-scale wind in zone

SCFt,z, hourly maximum capacity factor of utility-scale solar in zone

MINHYDt,z, hourly minimum quantity of zonal hydroelectric generation

MAXHYDt,z, hourly maximum quantity of zonal hydroelectric generation

RHYDt,z, hourly ramping capability (up or down) of zonal hydroelectric generation

TOTHYDz, total zonal hydroelectric generation in modeled time period

PMINg, minimum power output of generator if online and providing power

SCg, startup cost of generator

CSPINg, boolean (0/1) of whether generator can provide synchronized reserves

CNSPINg, boolean (0/1) of whether generator can provide non-synchronized reserves (i.e., has

fast-start capability)

MINUPg, minimum online time of generator once started (integer)
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MINDOWNg, minimum offline time of generator if shut down (integer)

NLCg, no-load cost of online generator

SAt,g, fraction of generator scheduled to be available in hour to provide power (accounts for

previously scheduled generator outages)

CINITt=1,g, initialization of commitment boolean for generators

UPINITt=1,g, initialization of how long generator has been online (if committed)

DOWNINITt=1,g, initialization of how long generator has been offline (if not committed)

Cg,z, generator capacity, with assignment to its zone

Rg,z, hourly ramp rate of generator (assumed to be equal in up and down directions)

RSULg,z, maximum power output a generator can achieve in an hour where it starts up

RSDLg,z, minimum power output from which a generator can shut down in an hour

PSRSMWt,s, length (in MW) of operating reserve segment for primary synchronized reserves

PNSRSMWt,s, length (in MW) of operating reserve segment for primary non-synchronized reserves

SECRSMWt,s, length (in MW) of operating reserve segment for secondary reserves

RSPt,s, price of operating reserves on segment

PSCALAR, ratio of time horizon for holding primary reserves to model temporal resolution in

commitment and dispatch

SSCALAR, ratio of time horizon for holding secondary reserves to model temporal resolution in

commitment and dispatch

RSCALAR, ratio of time horizon between secondary and primary reserves

TXFROMt,l, zone from which transmission line originates

TXTOt,l, zone to which transmission line goes

TXTOCAPACITYt,l, hourly maximum capacity of transmission line flowing to zone

TXFROMCAPACITYt,l, hourly maximum capacity of transmission line flowing from zone

TXHt,l, incremental cost of scheduling flows on transmission line

GSLgs, fraction of generator capacity on marginal cost segment

GENMCg,gs, marginal cost of generation on each generator segment for each generator

UEt,z, cost of unserved energy

133



A.3 Decision Variables

wgent,z, hourly wind output used to serve zonal load

sgent,z, hourly solar output used to serve zonal load

curtailt,z, hourly curtailment of wind and solar in zone

dt,g,z, hourly generator dispatch with its assigned zone

sdt,g,z,gs, hourly generator dispatch on each segment of its marginal cost curve

psrt,g, hourly primary synchronized reserves provided by generator

pnsrt,g, hourly primary non-synchronized reserves provided by generator

secrt,g, hourly secondary reserves provided by generator

pssrt,s, hourly reserves provided on each segment of primary synchronized operating reserve demand

curve

pszsrt,s, hourly reserves provided on each segment of sub-zonal primary synchronized operating

reserve demand curve

pnssrt,s, hourly reserves provided on each segment of primary non-synchronized operating reserve

demand curve

secsrt,s, hourly reserves provided on each segment of secondary operating reserve demand curve

txmwt,l, hourly power flow on transmission line

A.4 Integer Decision Variables (commitment runs only)

committ,g, unit commitment of generator (binary)

startt,g, startup decision of generator (binary)

shutt,g, shutdown decision of generator (binary)

A.5 Constraints

WCAPz ∗WCFt,z ≥ wgent,z (A.1)

134



SCAPz ∗ SCFt,z ≥ sgent,z (A.2)

curtailt,z == SCAPz ∗ SCFt,z − sgent,z +WCAPz ∗WCFt,z − wgent,z (A.3)

H∑
h

T∑
t

dt,h,z +
H∑
h

T∑
t

psrt,h == TOTHYDz (A.4)

MAXHYDt,z ≥
H∑
h

dt,h,z (A.5)

H∑
h

dt,h,z ≥MINHYDt,z (A.6)

H∑
h

dt−1,h,z +RHYDt,z ≥
H∑
h

dt,h,z, ∀t ≥ 2 (A.7)

H∑
h

dt,h,z ≥
H∑
h

dt−1,h,z −RHYDt,z, ∀t ≥ 2 (A.8)

TXTOCAPACITYt,l ≥ txmwt,l (A.9)

TXFROMCAPACITYt,l ≤ txmwt,l (A.10)

Cg,z ∗ committ,g ∗ SAt,g ≥ dt,g,z (A.11)

dt,g,z ≥ Cg,z ∗ committ,g ∗ SAt,g ∗ PMINg (A.12)
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dt,g,z ≥ dt−1,g,z −Rg,z ∗ committ−1,g + shutt,g ∗RSDLg,z, ∀t ≥ 2 (A.13)

dt−1,g,z +Rg,z ∗ committ−1,g + startt,g ∗RSULg,z ≥ dt,g,z,∀t ≥ 2 (A.14)

committ,g − CINIT0,g == startt,g − shutt,g, t == 1 (A.15)

1− CINIT0,g ≥ startt,g, t == 1 (A.16)

1− committ−1,g ≥ startt,g,∀t ≥ 2 (A.17)

1− CINIT0,g ≥ shutt,g, t == 1 (A.18)

1− committ−1,g ≥ shutt,g, ∀t ≥ 2 (A.19)

committ,g − committ−1,g == startt,g − shutt,g∀t ≥ 2 (A.20)

SAt,g == committ,g,∀SAt,g == 0 (A.21)

committ,g ≥ CINITg

∀MINUPg ≥ t+ UPINIT0,g,∀MINUPg > t ≥ 1,∀SAt,g 6= 0

(A.22)
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committ,g ≥
t−1∑

t−MINDOWNg

startt,g

∀t ≥MINUPg

(A.23)

CINITg ≥ committ,g

∀MINDOWNg ≥ t+DOWNINIT0,g,∀MINDOWNg > t ≥ 1

(A.24)

1−
t−1∑

t−MINDOWNg

shutt,g ≥ committ,g,∀t ≥MINDOWNg (A.25)

GSLg,s ∗ Cg,z ∗ committ,g ∗ SAt,g ≥ sdt,z,g,gs (A.26)

dt,g,z ==
GS∑
gs

sdt,z,g,gs (A.27)

Z∑
z

[Cg,z ∗ committ,g ∗ SAt,g − dt,g,z] ∗ CSPINg ≥ psrt,g (A.28)

Rg,z ∗ PSCALAR ≥ psrt,g (A.29)

Z∑
z

[Cg,z ∗ PMINg ∗ (1− committ,g)] ∗ CNSPINg ≥ pnsrt,g (A.30)

RSCALAR ∗ [psrt,g + pnsrt,g] ≥ secrt,g (A.31)

Z∑
z

Cg,z − dt,g,z ≥ secrt,g (A.32)

G∑
g

psrt,g ≥
S∑
s

PSSRt,s (A.33)
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GSZ∑
gsz

psrt,gsz + [txmwt,l − TXTOCAPACITYt,l|TXTOt,l == sz]

+[TXFROMCAPACITYt,l − txmwt,l|TXFROMt,l == sz] ≥
S∑
s

PSZSRt,s

(A.34)

G∑
g

(pnsrt,g + psrt,g) ≥
S∑
s

PNSSRt,s (A.35)

G∑
g

secrt,g ≥
S∑
s

SECSRt,s (A.36)

PSRSMWt,s ≥ pssrt,s (A.37)

PSRSMWt,s ≥ pszsrt,s (A.38)

PNSRSMWt,s ≥ pnssrt,s (A.39)

SECRSMWt,s ≥ secsrt,s (A.40)

G∑
g

[dt,g,z] + wgent,z + sgent,z

+

L∑
l

[txmwt,l|TXTOt,l = z]−
L∑
l

[txmwt,l|TXFROMt,l = z] == LOADt,z

(A.41)
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A.6 Objectives

MIN

T,G,Z,GS∑
t,g,z,gs

[sdt,g,z,gs ∗GENMCg,gs] +

T,G∑
t,g

[SCg ∗ startt,g] +

T,G∑
t,g

[NLCg ∗ committ,g]

+

T,Z∑
t,z

UEt,z +

T,L∑
t,l

txmwt,l ∗ TXHt,l −
T,S∑
t,s

RSPt,s ∗ pssrt,s

−
T,S∑
t,s

RSPt,s ∗ pnssrt,s −
T,S∑
t,s

RSPt,s ∗ secsrt,s

(A.42)

MIN

T,G,Z,GS∑
t,g,z,gs

[sdt,g,z,gs ∗GENMCg,gs] +

T,Z∑
t,z

UEt,z +

T,L∑
t,l

txmwt,l ∗ TXHt,l

−
T,S∑
t,s

RSPt,s ∗ pssrt,s −
T,S∑
t,s

RSPt,s ∗ pnssrt,s −
T,S∑
t,s

RSPt,s ∗ secsrt,s

(A.43)

B Data Description Appendix

B.1 Assignment of PJM Load Delivery Areas (LDAs) to zones

PJM data are often defined at the level of a Load Delivery Area (LDA), generally corresponding

to historical electric distribution company service territories within PJM’s footprint. For purposes of

our study, we assign these LDAs to modeled transmission zones, and assign other parameters (e.g.,

installed wind and solar capacity, load, etc.) at the LDA level before aggregating up to the zonal

level. Generators located geographically outside the PJM footprint recorded in the PJM Generating

Availability Data System (GADS) database are assigned to the geographically closest PJM zone.

Our assignment of PJM LDAs to the zones used in this study is in Table B-1. The results of this

zonal assignment are shown in more detail in Figure B-1.
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Figure B-1: Model zone assignment of generators in PJM. Generators geographically outside the
PJM footprint but contracted to serve load and provide capacity in PJM are assigned to their closest
zone.
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Table B-1: Assignment of PJM LDAs to model zones.

PJM LDA Model Zone

Delmarva Power and Light (DPL) EAST
Atlantic City Electric (AE) EAST
Dominion Energy (DOM) DOM
Pennsylvania Power and Light (PPL) PPL-METED
Metropolitan Edison (METED) PPL-METED
Pennsylvania Electric Company (PENELEC) WEST
Allegheny Power (APS) WEST
Public Service Enterprise Group (PSEG) EAST
Baltimore Gas and Electric (BG&E) BGE-PEP
Jersey Central Power and Light (JCPL) EAST
American Electric Power (AEP) WEST
Eastern Kentucky Power Cooperative (EKPC) WEST
Potomac Electric Power Company (PEPCO) BGE-PEP
Rockland Electric (RE) EAST
Duke Energy Ohio and Kentucky (DEOK) WEST
Dayton Power and Light (DAY) WEST
American Transmission Service Inc. (ATSI) WEST
Duquesne Light Company (DLCO) WEST
Commonwealth Edison (COMED) WEST
Philadelphia Electric Company (PECO) EAST

B.2 PJM Conventional generation fleet

We use the PJM GADS database to define the conventional generator fleet serving PJM and to

develop operating histories of all generators contained therein.

PJM GADS provides generator geographic location information, installed capacity, generator

online and retirement (if applicable) dates, scheduled outages, and fuel/unit type. We obtain and

check additional generator information as follows. As a check on installed generator capacity, we

match GADS data against the Environmental Protection Agency’s (EPA) National Electricity Energy

Database System (NEEDS) at the plant level (i.e., by ORIS plant code) [30]. Where a match between

ORIS plant codes is obtained and installed capacity values differ, we use the NEEDS value. We take

ramp rates and preliminary minimum up/down time for hydro, gas-fired and diesel-fired generators

by unit type from Lueken and Apt [5]. As an additional check on minimum up and downtime we

calculate the minimum number of hours a generator was on or offline based on 2014 EPA Continuous
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Emissions Monitoring Systems (CEMS) data matched by ORIS plant code [31]. If the minimum

offline or online time in 2014 is less than our assumed value, the generator(s) associated with that

ORIS plant code are assigned the lesser offline or online time based on CEMS.

Market participants in PJM may self-schedule their generator [32], and commonly choose to do

so with less flexible units, affecting clearing prices [24]. To improve representation of this behavior

in the absence of revealed self-schedule data at the plant level we assume coal-fired generators are

self-scheduled daily at their most economic feasible set-point and nuclear generators are self-scheduled

at their maximum available capacity when economic; as a result, these resources are not capable of

providing primary reserves nor load-following. This assumption is not a technical limitation of these

resources in providing those services; rather, it is meant to approximate the quantity and type of

self-scheduled resources observed in PJM.

We derive thermal generator fully loaded heat rates by unit type based on EPA [30]. Given

fully loaded heat rates, we develop thermal generator heat rate curves based on Deaver and

Macdonald [33] as four-segment piecewise linear functions. We assume nuclear units have constant

heat rates. Hydroelectric units and demand response do not have heat rates.

B.3 Additional considerations for hydroelectric generators

Hydroelectric generators face additional constraints not applicable to thermal generators, e.g.,

seasonal operating constraints for environmental, recreational, agricultural, or other reasons related

to maintaining river flow exogenous to power generation. Additionally, total hydroelectric generation

may vary based on water inflows (e.g., precipitation). For these reasons, we implement four additional

constraints that bind zonal hourly hydroelectric ramp, minimum, and maximum generation, as well

as total generation for the time period of the model run. These parameters are based on four years

(2015-2018) of data on total hydroelectric dispatch in PJM available from PJM [27]. Each hour

is constrained to the highest max, highest min, and highest ramp observed in the four years of

historical data for that hour, and the total daily generation is equivalent to the four-year average

of total generation for the modeled day. This likely under-constrains hydroelectric dispatch; for

example, by not capturing annual variation in precipitation, but better represents the reality that
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hydro dispatches more during high-load than low-load hours in historical data than assuming a

fleet-average capacity factor.

We do not differentiate between different types of hydroelectric generators, i.e. pumped storage vs.

reservoir (the existence of considerable pumped storage generation as a fraction of total hydroelectric

generation in PJM is part of the reason more dispatch is observed during higher load hours).

Table B-2: Assignment of WBANs to PJM LDAs.

PJM LDA WBAN Code WBAN Name

Delmarva Power and Light (DPL) 93721 BALTIMORE-WASHINGTON INTL AIRPORT
Atlantic City Electric (AE) 13735 MILLVILLE MUNICIPAL AIRPORT
Dominion Energy (DOM) 13740 RICHMOND INTERNATIONAL AIRPORT
Pennsylvania Power and Light (PPL) 14778 WILLIAMSPORT REGIONAL AIRPORT
Metropolitan Edison (METED) 14737 LEHIGH VALLEY INTERNATIONAL AIRPORT
Pennsylvania Electric Company (PENELEC) 14736 ALTOONA-BLAIR COUNTY AIRPORT
Allegheny Power (APS) 13736 MGTN RGNL-WL B HART FD AIRPORT
Southern Electric Reliability Council (SERC) 13737 NORFOLK INTERNATIONAL AIRPORT
Public Service Enterprise Group (PSEG) 14734 NEWARK LIBERTY INTL AIRPORT
Baltimore Gas and Electric (BG&E) 93721 BALTIMORE-WASHINGTON INTL AIRPORT
Jersey Central Power and Light (JCPL) 14734 NEWARK LIBERTY INTL AIRPORT
American Electric Power (AEP) 3860 TRI-STATE/M.J.FERGUSON FIELD AIRPORT
Midwest Independent System Operator (MISO) 94846 CHICAGO O’HARE INTERNATIONAL AIRPORT
Eastern Kentucky Power Cooperative (EKPC) 93820 BLUE GRASS AIRPORT
Potomac Electric Power Company (PEPCO) 13734 RONALD REAGAN WASHINGTON NATL
Rockland Electric (RE) 14734 NEWARK LIBERTY INTL AIRPORT
Duke Energy Ohio and Kentucky (DEOK) 93814 CINCINNATI/NORTHERN KENTUCKY
Dayton Power and Light (DAY) 93815 J.M.COX DAYTON INTERNATIONAL AIRPORT
American Transmission Service Inc. (ATSI) 14820 CLEVELAND-HOPKINS INTL AIRPORT
Duquesne Light Company (DLCO) 94823 PITTSBURGH INTERNATIONAL AIRPORT
Commonwealth Edison (COMED) 94846 CHICAGO O’HARE INTERNATIONAL AIRPORT
Philadelphia Electric Company (PECO) 13739 PHILADELPHIA INTERNATIONAL AIRPORT
New York Independent System Operator (NYISO) 4725 GREATER BINGHAMTON/EA LINK FI

B.4 Assignment of ambient temperature to PJM generators for determining

outage probability

In our DynamicORDC case, forced outage rates of conventional generators are conditional on

temperature. We must therefore match a temperature to each generator. Matched temperatures done

at the LDA level, with generators within an LDA all being assigned the same ambient temperature

based on the matched Weather Bureau Army Navy (WBAN) station for their LDA. LDA-WBAN

matches used in the model are listed in Table B-2.
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B.5 Initialization of conventional generators

When initializing a model run we must determine whether a generator has a scheduled outage,

and separately whether it begins the model period on forced outage. In both cases, we use PJM

GADS to obtain this information at the unit level. Generators that do not report forced or scheduled

outages are assumed to be available, and have their probability of future forced outage modeled as

in Murphy et al. [16] in the DynamicORDC case and at the fleetwide average forced outage rate in

the SimpleORDC case.

B.6 PJM solar and wind generation

Wind and solar hourly generation shapes are developed as in Murphy et al. [17]. For years outside

2007-2012 for which Murphy et al. [17] models wind generation, the hourly average capacity factor

for the date in the 2007-2012 modeled years is applied. We use a single wind and solar generation

shape for all of PJM. We include only utility-scale wind and solar generation as behind-the-meter

generation is assumed to be endogenous to metered load.

Wind and solar zonal installed capacity by date is based on EIA-860 [34]. EIA identifies

installation at the state and county levels; we include all installed capacity in the states of Illinois,

Indiana, Ohio, and Kentucky in our WEST zone, Pennsylvania in the PPL-METED zone, Delaware

and New Jersey in the EAST zone, Maryland and Washington, D.C. in the BGE-PEPCO zone,

and Virginia in the DOM zone. Due to considerable levels of solar installation in North Carolina,

we additionally include installed solar capacity in the North Carolina counties of Anson, Sampson,

Lenoir, Wayne, Northampton, Pasquotank, Currituck, Martin, Washington, Hertford, Beaufort,

Bertie, Gates, Halifax, Pitt, Perquimans, Edgecombe, Greene, Alexander, Mecklenburg, Wake,

Moore, and Chatham as part of the DOM zone, overall approximately matching the level of installed

utility scale solar capacity reported by Dominion in 2018 [35].

B.7 Generator commitment and dispatch costs

Fuel costs for all nuclear generators are assumed to be $0.5/million British Thermal Units

(mmbtu), and for all diesel generators $13/mmbtu. Hydroelectric units do not have fuel costs.

144



Demand response is dispatched as an emergency resource prices reach the market cap (assumed

$2000/MWh in our cases for consistency with existing PJM price cap).

For coal-fired generators, we obtain monthly fuel costs for regulated utilities that report a fuel

cost from EIA-923 [36] at the plant level and assign them to matched generators on ORIS plant

code. For generators that do not report fuel costs or for which we do not obtain an ORIS code

match in states with other generators reporting fuel costs, we assign the state quantity-weighted

average fuel price to the generator. For states with fully deregulated generation sectors where no

generators report coal fuel prices (in PJM this includes MD, DC, PA, NJ, and DE), generators are

assigned the Virginia quantity-weighted average fuel price. Virginia is chosen to better maintain

consistency in the eastern vs. western parts of PJM.

For gas-fired units (CC and CT) we repeat the EIA-923 matching process for regulated generators

outlined above. However, for unregulated or unmatched gas generators we instead base the fuel cost

on matching against the daily spot price of the nearest hub, plus a delivery adder of $0.40/mmbtu to

convert to burnertip price. Additionally, we allow regulated generators for which we obtain EIA-923

contract data to increase their bid to the daily spot price of the nearest hub (plus delivery adder)

if it exceeds their reported monthly average fuel cost. Included gas price hubs for matching gas

commodity price are Chicago Citygates (commodity price for COMED generators), Dominion South

(PENELEC, APS), MichCon (DEOK, DAY, ATSI), TCO (AEP), TETCO M3 (PPL, METED,

PECO, DLCO), TGP 500L (EKPC), Transco Z6 (non-NY) (AE, BG&E, DPL, JCPL), Transco Z6

(NY) (RE, PSEG), and Transco Z5 (non-WGL) (DOM, PEPCO). We do not differentiate between

gas generators that hold different types of contracts for either commodity or delivery (i.e., firm vs.

interruptible contracts). We also do not model dual fuel capability; gas generators can only run on

natural gas at the applicable burnertip price.

We include variable operations and maintenance (V O&M) in generator bids by unit type based

on NREL [37]. We take start-up cost capacity multipliers for generators by unit type from Lueken

and Apt [5].
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B.8 Transmission topology

We assign PJM LDAs to five interconnected transmission zones as defined in Table B-1. Trans-

mission zones are interconnected by six transmission lines, with hourly maximum line flows defined

as per PJM interface limit data taken from PJM [26]. This transmission topology is used because of

the public availability of data on maximum and average interface limits at some of the most limiting

transmission interfaces in PJM and is the same topology used in Lueken and Apt [5]. Transfers

with external balancing areas (e.g., New York ISO, Duke Energy) are ignored. Transmission lines

between zones are assumed to have a hurdle rate of $0.25/MW, meant to be broadly consistent with

the incremental losses associated with flowing power over longer distances.

B.9 Loads

We obtain hourly historical metered (“actual”) load data used in dispatch and pricing runs for

PJM by LDA from 2006-2017 from PJM’s DataMiner2 [27]. We then aggregate LDA loads to zones

as per the LDA-zone assignment in Table B-1. If a LDA entered PJM after 2006 (EKPC entered

in 2013, DEOK in 2012, and ATSI in 2011) its load prior to entry is modeled and included as

equivalent in shape to the most similar fully observed zone at a magnitude equal to the ratio of loads

between the unobserved LDA and the matched LDA during the observed time period after entry.

For commitment runs we use PJM-wide day-ahead and day-of forecast loads, assigned pro-rata to

model zones with the actual load for the same hour obtained as described in the prior paragraph.

C Additional Model Validation Runs Appendix

As further validation of the model’s ability to reproduce PJM prices, we provide a figure and

summary statistics for a run of all days in October 2017.
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Figure C-1: Full October 2017 run.

Figure C-2: Total congestion payments, total energy payments, and ORDC-related primary
synchronized reserve payments for the modeled October 2017 week.
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Figure C-3: (A) Quantity of primary synchronized reserves procured by ORDC segment (shaded
vertical line segments; left axis, in MW) by hour for Oct. 19-25, 2017, along with ORDC penalty
factor for primary synchronized reserves (red line; right axis, in $/MW). (B) and (C) show the
distributions of reserve quantities and penalty factors.
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Table C-1: Pricing summary statistics October 2017.

Reported PJMHistorical

October 2017 LMP ($/MWh)
Mean 30.2 24.8
Standard Deviation 8.6 8.4
Median 29.6 25.2
Min 15.6 11.0
Max 59.6 49.5
October 2017 Root Mean Square Error compared to Reported
Mean ($/MWh) 6.1
% of Reported Mean 20.1%

Figure C-4: Deviations in model LMP vs. Day-Ahead (DA) reported. Negative deviations indicate
higher reported price, positive higher model price.
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Chapter 5 Market Power Challenges and
Solutions for Electric Power Storage Resources*

Abstract

Energy storage can enable low-carbon power and resilient power systems. However, market design is critical

if a transition to renewables and storage is to result in low costs for customers. Pivotal suppliers with energy

storage resources (ESRs) can achieve supernormal profits when allowed to fully participate and set clearing

prices in wholesale electricity markets. Additional strategic profit from offers inconsistent with marginal costs

can hurt competition and increase customer payments, hindering ongoing transitions to high shares of low

marginal cost renewable generation and ESRs in electricity markets. We classify three strategies identified by

our bi-level model for achieving additional strategic profits: (1) increased ESR discharge bids, (2) decreased

ESR charge bids, and (3) cross-product manipulation to benefit other resources owned by the pivotal ESR

supplier. We examine cases on a 25-bus test system with 67% average renewable energy generation where

the ESR is commonly pivotal due to congestion. We observe under some circumstances the ESR owner

can increase its energy market profits from $10-20/MWh discharged when competitive to $40-250/MWh

discharged when strategic. Most increased profit comes from cross-product manipulation aimed at increasing

prices to benefit a large co-located or hybridized zero marginal cost wind generator owned by the same

entity. Marginal cost-based offer caps commonly applied to other resources could be extended to include

ESRs’ intertemporal opportunity costs limit, but these caps do not fully mitigate manipulative cross-product

strategies. Relative inframarginal ESR offers over co-optimized time intervals with energy limits can be used

to manipulate clearing quantities and prices and should be closely monitored when ESRs are pivotal suppliers.

Requiring inframarginal offer uniformity over co-optimized time intervals shows promise as a policy remedy.

* This paper is available online as Carnegie Mellon Electricity Industry Center working paper 21-02.1 It is being
prepared for journal submission. It benefited from research assistance by Nik Zheng.

1https://www.cmu.edu/ceic/research-publications/ceic_21_02-esr-policy.pdf
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Abbreviations and acronyms

CAISO California Independent System Operator
CC Combined Cycle
CT Combustion Turbine
DA Day-ahead
DCOPF Direct Current Optimal Power Flow
EPEC Equilibrium Program with Equilibrium Constraints
ERCOT Electricity Reliability Council of Texas
ESR Energy Storage Resource
FERC Federal Energy Regulatory Commission
IMM Independent Market Monitor
KKT Karush-Kuhn-Tucker
MILP Mixed Integer Linear Program
MPEC Mathematical Program with Equilibrium Constraints
NREL National Renewable Energy Laboratory
NYISO New York Independent System Operator
RT Real-time
RTPV Rooftop Photovoltaic
RTS-GMLC Reliability Test System - Grid Modernization Lab Consortium
PHS Pumped Hydroelectric Storage
SPP Southwest Power Pool
VRE Variable Renewable Energy

5.1 Introduction

Mid-century decarbonization pathways commonly increase the quantity and share of final energy

demand supplied by electricity [1, 2]. A highly decarbonized and expanded electricity sector requires

rapid transition from current generation mixes, with most pathways relying heavily on declining

costs of variable renewable energy (VRE) technologies [3] and energy storage technologies [4] that

enable better instantaneous matching of supply and demand [5]. While standard electricity market

designs are theoretically consistent with this transition [6], a key question is what reforms to existing

electricity market designs are complementary with high penetrations of variable, low emission, and

low marginal cost resources [7–10].

Consistent with integrating higher quantities of variable renewables in the electricity sector,

standalone, stationary energy storage resources (ESRs) and ESRs sharing an interconnection with

another generator (“hybrids”) [11] make up an increasingly large portion of interconnection queues in

competitive North American wholesale electricity markets and are expected to increase in coming
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years [12]. ESRs and hybrids are energy-limited and shift load and generation in time rather than

generating electricity. These differences, combined with low variable operating costs for lithium-ion

technologies likely to dominate near-term ESR deployment [13], mean marginal cost based competitive

ESR and hybrid bids generally reflect the intertemporal opportunity costs of ESR usage [14]. Existing

North American competitive electricity markets have experience with a limited number of pumped

hydroelectric storage (PHS) units sharing these general operational characteristics [15]. However,

ESRs and hybrids are forecast to be more numerous, modular in sizing and deployment, and more

readily dispatchable than PHS in coming years, enabling different use cases than PHS [16] and

requiring modifications to existing rules to enable their full participation in competitive electricity

markets [17].

We contribute to this discussion by identifying profit-maximizing bidding strategies for ESR-

or hybrid-owning entities in a realistic multi-node, two-settlement electricity market with high

penetration of variable, renewable, low marginal cost resources. Methods for identifying bidding

strategies are essential to maintaining competitive electricity markets and delivering customers

low-cost, reliable electricity service with high shares of VRE and ESRs.

We develop a bi-level model with a profit-maximizing supplier in the upper level and the market

operator minimizing the as-bid cost of serving load in the lower level. A bi-level model allows full

participation of resources with the ability to endogenously set locational marginal prices (LMPs)

in nodal wholesale electricity markets [18], and is commonly referred to as a type of “price-maker”

model when applied to ESRs [19]. This approach is consistent with previous approaches to modeling

ESR market participation with ability to set clearing prices [20, 21]. The model can be used to

identify bidding strategies. The major contribution of our research is to extend the policy relevance

of previous research focused on solving stylized cases of ESRs exercising market power as a pivotal

supplier [20–22]. We do this by classifying three market manipulation strategies on a high VRE

nodal test system and suggesting directions for monitoring and mitigating these strategies.
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5.2 Methods

We develop a bi-level optimization model reformulated as a mixed-integer linear program (MILP).

This approach can be conceived as finding an equilibrium in a leader-follower Stackelberg game

applied to electricity markets. In the upper level the leading generation- and ESR-owning entity

submits bids to maximize the expected joint profits of its portfolio of resources. In the lower level the

follower market operator minimizes the as-bid cost of serving electricity loads, subject to physical

constraints on power flow and generator operational parameters. To focus on the properties of

resource offers in one market we exclude security constraints, markets for ancillary services, and

demand-side offers other than ESR charging loads (model formulation in Appendix A).

We increase the policy relevance of our cases compared to bi-level models on single-node test

systems by modeling a congested high VRE nodal network, allowing us to observe congestion-related

cross-product strategies of particular concern in electricity markets [23, 24]. We further extend

previous work using bi-level models in electricity markets [21,25,26] by allowing hybridization of

ESR and other generators located at the same bus as a single resource in bidding.

5.2.1 Multiple settlement functionality

North American wholesale markets commonly have two settlement intervals: a day-ahead (DA)

forward market co-optimized for the subsequent day at hourly resolution and a higher temporal

resolution (often five minutes) real-time (RT) market for settling deviations from the DA market

with more limited look ahead temporal co-optimization. Our cases are commonly run DA with

perfect foresight, but we include multiple settlement functionality in the model to allow sensitivity

analysis under uncertainty with DA bids cleared against RT actual load and generation with limited

bidding recourse (Appendix B).

5.2.2 Offer constraints and mitigation

In all cases unless otherwise noted generators are assumed to offer all available generation at

marginal cost (Appendix B). For variable renewable generators with zero fuel cost, we additionally
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assume zero variable O&M and no effect of subsidies (e.g., wind Production Tax Credit [27]) on

marginal cost, so these resources offer at $0/MWh. Because ESR offers are largely opportunity

cost-based, no constraints are placed on ESR offers in cases without ESR-specific offer mitigation

constraints.

To investigate the efficacy of ESR offer mitigation we develop two approaches. First, we mitigate

day-ahead offers based on an ex-ante price forecast, disallowing offers from exceeding the expected

competitive clearing price. We show this approach does little to mitigate the most profitable strategic

bidding by entities owning both ESRs and generation, which can use relative rather than absolute

price offers for energy-limited resources. Second, we propose a mitigation framework based on

uniform bidding for co-optimized temporal intervals. This framework is more effective in mitigating

cross-product manipulation but requires careful consideration to avoid over-mitigation and allow

ESRs to capture option value.

5.3 Data

To achieve germane results we implement our model on the National Renewable Energy Laboratory

(NREL)-modified version of the IEEE RTS-96 test system: the Reliability Test System Grid

Modernization Lab Consortium (RTS-GMLC) [28]. The RTS-GMLC test system updates an older

IEEE test system primarily by modernizing the generation fleet to include more gas-fired and

renewable resources. Renewable and load profiles are based on three zonal locations in the United

States southwest, though we retain only a single 25-bus zone for model cases in this paper (Figure

5.1)
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Figure 5.1: Modified NREL RTS-GMLC case nodes, transmission lines, generation capacity, and
peak loads. The three RTS-GMLC zones use geographic data based on Arizona Public Service
Company (AZPS), Nevada Energy, and the Los Angeles Department of Water and Power (LADWP),
though they are not intended to represent existing infrastructure. We retain only the displayed 25
buses in LADWP for cases to decrease runtime and because LADWP has the highest average (67%)
and instantaneous renewables penetrations and the most congestion in the model year. RTPV is
rooftop photovoltaic, CT combustion turbine, CC combined cycle.

We modify the RTS-GMLC source data to exclude native ESR and add ESRs with user-specified
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capacity, duration, and round-trip efficiency (assumed 85%) at select buses. These ESRs may also

be hybridized with generators owned by the same entity at the same node. Day-ahead data are

hourly resolution. Real-time data are 5-minute resolution, but are reformatted to equivalent hourly

average load and renewable generation for the two-settlement model. The model is run as a sequence

of co-optimized 24-hour resolution days to reduce solution time compared to co-optimization of a

longer timeframe, and because this mimics DA markets. Constraints enforce a single daily cycle

for ESR dispatch as a heuristic for degradation in the absence of more sophisticated degradation

incorporation [14]. Initial and final ESR SOC are constrained to be zero to enforce continuity

between days in sequential runs.

5.3.1 Summary of 25-bus data

Figure 5.2 shows January DA hourly average load, net load, and generation by resource for the

reduced 25-bus version of the RTS-GMLC data without ESRs. A comparison to RT data used for

multiple settlement functionality is included in Appendix B. The test system has high renewable

generation compared to current United States averages [29], but these renewable penetrations are

commonly met or exceeded in forward looking decarbonization pathways [2].
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Figure 5.2: Hourly day-ahead average load, net load, and generation by type for RTS-GMLC data
without energy storage in Zone 3 for the modeled month, January. RTPV is rooftop photovoltaic,
CT is combustion turbine, CC is combined cycle. Oil-fired generators are also included but not
dispatched during the modeled month.

The combination of high quantities of available zero marginal cost renewable generation concen-

trated at a few buses with large wind generators and higher load hours often results in transmission

congestion. The 175MW line connecting buses 03 and 09 is most often congested when large

quantities of wind generation are available from the 847MW of installed wind capacity at bus 03.

Bus 03 is the lowest LMP bus when there is congestion on the line connecting buses 03 and 09

(Figure 5.3).
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Figure 5.3: Hourly LMPs without ESRs at the two buses in the test system linked by an often-
congested line for the entire modeled month. LMPs for all buses are included in Appendix B.

5.4 Results

Three ESR bidding strategies increase the profit of a portfolio of resources owned by a strategic

entity.

1. Increase discharge offers when pivotal to increase LMP at ESR bus when discharging;

2. Decrease charge offers when pivotal to decrease LMP at ESR bus when charging;

3. Increase ESR charge or discharge offers to increase LMP at buses where the strategic entity

owns other generation.

Of these strategies the third, a cross-product strategy, is the most profitable when strategic ESRs

are co-located or hybridized with a large renewable generator at a commonly congested bus. It is

also the most difficult to mitigate against (Section 5.4.4).

To assess the additional profit associated with strategic ESR bids in a portfolio of resources we

use two metrics: additional total portfolio profit ∆πp over an applicable time interval and ESR

incremental per-MWh discharged portfolio profit ∆πp

MWh . These metrics are defined:

∆πp = πSS − πNSS (5.1)
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∆πp

MWh
=
πSS − πG∑

sdS
(5.2)

Where πSS is the profit of the strategic entity’s portfolio p of generators with ability to bid its

ESRs strategically (strategic storage is SS), πNSS is the strategic entity’s portfolio profit when it

does not bid ESRs strategically (non-strategic storage is NSS), and πG is the non-ESR generator

profit in the non-strategic case. sd is total discharge over the applicable time interval of the ESR, S.

Assumptions include generators being mitigated to offer at marginal cost, but no offer mitigation

applied to opportunity costs for ESRs, and the strategic entity has perfect foresight of load, renewable

generation, and offers by other suppliers. Results in Section 5.4.1-5.4.2 using these assumptions set

an upper bound on strategic profit of ESR bidding decisions for an assumed system and strategic

ownership parameterization. Section 5.4.3 investigates relaxing some perfect foresight assumptions.

Section 5.4.4 explores monitoring and mitigation frameworks for the most profitable perfect foresight

strategies.

5.4.1 Demonstrating the three strategies

We parameterize two cases to demonstrate the applicability of the three strategies assuming

perfect foresight of the market clearing problem (Table 5.1).

Table 5.1: Demonstration case parameterization. Differences between cases are in bold.

Case Label Generators
and Loads Storage Sizing Storage

Location Other Owned Generators Time Period
and Resolution

Case A: "ESR Only" All NREL-
RTS LADWP 300MW/900MWh Bus 03 None Hourly Day-ahead,

January 2020

Case B: "ESR+Wind" All NREL-
RTS LADWP 300MW/900MWh Bus 03 Wind (847MW), bus 03 Hourly Day-ahead,

January 2020

In both cases the model is configured and run in two ways: “competitive” and “strategic.”

Competitive is equivalent to a cost-minimizing linear program under the assumption all resources

offer at marginal cost. Competitive ESRs are dispatched to minimize production costs. Strategic

assumes ESRs and other generators owned by the strategic entity2 submit offers to maximize the

2As applicable in the case per Table 5.1, though recall generators are constrained to offer at marginal cost.

159



strategic generation-owning entity’s profit knowing the market operator will minimize as-bid costs of

serving load. Strategic uses the full functionality of our model to find a profit-maximizing solution

to within a pre-set MILP optimality gap (1% in these cases).

Differences between the strategic and competitive solution in the profits accrued by the strategic

entity are quantified as ∆πp. Figures show LMPs only at the bus where the ESR is installed unless

otherwise noted.

Figure 5.4: Comparison of strategic and competitive LMPs at the bus (03) with ESR for an
illustrative subset of modeled January days. In case A the ESR is able to set price and increase
profits when pivotal through two strategies: increasing its discharge bid and decreasing its charge bid.
In case B the strategic entity also owns a 847MW wind generator. Bus 03 is congested in many hours
due to the wind generation and transmission limits, so prices are often below the system lambda
(blue). Strategies used in case A still appear (though decreasing price for charging only makes sense
when little wind is available), but the most profitable strategy is a cross-product strategy to alleviate
congestion that results in the greatest increases in clearing price.

The total profits accrued in case A and B for the full month by the ESR and wind generator are

compared in Figure 5.5.
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Figure 5.5: Comparison of case profits for month of January when dispatched competitively vs.
strategically. In case A the strategic entity only owns the ESR; in case B it also owns the wind
generator and maximizes the joint profits by modifying ESR bids to increase revenues received by
the wind generator. Uncertainty bars show the aggregate upper bound optimality gap for strategic
MILP. Competitive cases are cost-minimizing LPs and have no optimality gap.

5.4.2 Sensitivity to ESR parameterization and hybridization

This section adds sensitivity analysis on how ESR sizing and hybridization affects strategic

profits. In these sensitivity cases we maintain the perfect foresight assumption, so results set an

upper bound on portfolio profit from ESR bidding.

Figure 5.6 shows ESR capacity and duration sensitivity analysis. The only changes to the

case B parameterization are ESR capacity and duration. Because the cross-product strategy is

profitable only when wind generation exceeds storage charging load, sensitivities consider ESR

capacity installations up to 500 MW.3 Per-MWh profits associated with storage ownership πNSS∑
sdS

are

$10-20/MWh ESR discharge in all competitive cases, while strategic incremental profits ∆πp

MWh are

$40-250/MWh ESR discharge. Increased profits largely result from cross-product manipulation that

decreases ESR revenues, but increases clearing price and thus wind revenues by more.
3the wind generator’s capacity factor is 53% in the month; 448 MW average wind generation.
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Figure 5.6: Profit sensitivities show in all cases strategic bidding increases joint profits compared
to the competitive outcome where the ESR is dispatched to minimize production costs. Increasing
ESR capacity and duration generally exhibit decreasing marginal value (lower $/MWh profits) under
the perfect foresight assumption.

Motivated by increasing prominence of wind-ESR and solar-ESR hybrid generators in North

American interconnection queues [12], Figure 5.7 compares case B with a hybrid made up of the same

wind and ESR. The hybrid differs from co-located in two ways: (1) it makes a single, unconstrained

offer, and (2) the hybrid cannot dispatch more than the rated capacity (847MW) of its wind generator

as an assumed interconnection limit, whereas the co-located resources can both dispatch at their full

rated capacity.
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Figure 5.7: Comparison of co-located and hybrid strategic profits with the competitive solution.
Co-located case is the same as Case B in Section 5.4.1.

The hybrid achieves more profit than the co-location because of the removal of offer constraints

on the wind generator, previously offered at its marginal cost of $0/MWh even when owned by

the strategic entity. The new, larger hybrid generator can exercise additional ability to alleviate

congestion affecting the LMP at bus 03 and set a higher price. The results illustrate how hybridization

could be used to enable additional bidding latitude not afforded to a generator or ESR if hybridization

allows the resource a new classification with fewer bidding restrictions.

5.4.3 Incorporating uncertainty

Previous cases were day-ahead, hourly resolution under the assumption the strategic entity has

perfect foresight of bus-level system loads, price-quantity bids by other generators, and knowledge

how the market operator will minimize production costs and set prices. This section considers

whether the strategic entity could achieve some of the perfect information profit when uncertainties

in available generation and loads are incorporated. When fixing its profitable pivotal supply bid

quantities in DA prior to realization of actual load and generation in RT, the strategic entity can
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maintain some profit (Figure 5.8, Appendix B for detail on strategy under uncertainty).

Figure 5.8: Strategic profits are reduced under uncertainty. Implemented bidding strategy under
uncertainty is explained in Appendix B.

Figure 5.8 is only an existence proof for potential market manipulation, and real traders have in

markets have developed profitable strategies under uncertainty. Market monitoring can still benefit

from considering the profit maximizing strategy assuming perfect foresight, since tools for mitigating

the three strategies identified in Section 5.4.1 will still be applicable under uncertainty.

5.4.4 Analytical consideration for ESR market monitoring and offer mitigation

In this section we extend results to a discussion of detection and mitigation of ESR offers intended

to manipulate market prices.

A common tool for mitigating offers in existing wholesale electricity markets are offer caps. North

American electricity markets generally have both a market-wide offer cap and resource level offer

mitigation using estimation and verification of marginal costs. Extending offer mitigation to ESRs

and hybrids often proceeds from this framework, assuming adding intertemporal opportunity costs4

4Clearing prices endogenously account for lost opportunity costs (LOC) for co-optimized products in wholesale
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to the marginal cost framework will account for the energy-limits of ESRs. Results in this section

suggest an absolute offer cap for ESRs, even assuming an agreeable framework for estimation of

ex-ante opportunity costs, misses important aspects of the ability of ESRs to exercise market power

when energy-limit constraints are binding.

Over co-optimized temporal intervals with market operator incorporation of ESR energy limit

constraints time-varying relative ESR offers can be used to manipulate market clearing prices

and quantities, even with a stringent absolute offer cap. The mathematical insight is the effect

of energy-limited ESR offers on clearing prices in all co-optimized time periods depends on the

difference between inframarginal ESR offers and the generation production costs the ESR displaces,

meaning the relative ESR offers across time periods are what matters in this setting. When pivotal

the ESR can make use of this fact to change its dispatch, and thus pricing, based on its relative

offers, even when its absolute offers are constrained to be inframarginal in all time periods. Appendix

C provides a proof and example in a co-optimized, two-time period setting where a fully charged

ESR’s energy-limit constraint is binding (i.e., it can only dispatch in one of the two time periods, but

not both), showing that when the energy-limit constraint binds the difference between inframarginal

ESR offers and the generation production costs the ESR displaces will determine when the limited

energy in the ESR is dispatched, and thus how it will affect clearing prices.

To demonstrate the lack of efficacy of an absolute offer cap with binding ESR energy-limits, the

case B parameterization is run for a single day (1 January) with DA data. The ESR is constrained

to a single cycle of charge and discharge during the day, so the energy-limit binds. An ex-ante bus

03 LMP-based offer cap is developed as the market clearing price from the fully competitive solution.

The model is then re-run with an additional set of constraints requiring ESR discharge offers to be

less than or equal to the ex-ante LMP offer cap. This approach is similar to marginal cost-based

mitigation for generator offers, and more stringent than mitigation using a uniform estimate of

daily opportunity costs equivalent to the Nth (N=ESR duration) highest price hour, as would be

electricity markets. Without co-optimization LOCs would have to be reflected in offers. As an example of the effect of
product co-optimization, a generator required to provide upward reserves for security reasons cannot simultaneously
clear that capacity in an energy market and, if it would be more profitable to provide energy, incurs a LOC, which will
then be reflected in the reserve clearing price. This makes the generator at minimum indifferent between providing
upward reserve and energy. This is distinct from intertemporal opportunity costs considered for energy-limited
resources like ESRs.
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suggested by optimal price-taker dispatch of a single daily ESR cycle. Perfect information profits

remain above the competitive solution (Figure 5.9).

Figure 5.9: ESR and wind owning strategic entity offers for a single day (1 January) at hourly
resolution (a). In the “offer cap LMP” case offers are constrained to be no greater than the ex-ante
competitive LMP, but are allowed to be negative. Reduced ability of the ESR to set price does not
eliminate strategic profit (b).

The ESR’s ability to maintain strategic profits in cases like the one displayed in Figure 5.9 with

inframarginal offers is different than for an inframarginal generator offer. Energy-limited resources

face an additional energy-limit constraint in temporally co-optimized dispatch that generators do

166



not. Energy-limited ESRs can make use of this constraint when binding to affect clearing prices and

quantities based on relative, inframarginal offers because, unlike generators, the energy-limit means

they cannot be dispatched in all time periods.

That ESRs’ ability to manipulate dispatch and pricing depends on relative offers over temporally

co-optimized intervals suggests a direction for monitoring and mitigation: focus on relative offers. A

simple, restrictive mitigation technique could involve requiring a temporally fixed, or "uniform" ESR

offer for all co-optimized time periods. Running an additional case where the ESR is constrained

to a single offer for charge and discharge over co-optimized intervals on the same example day as

Figure 5.9 produces Figure 5.10.
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Figure 5.10: ESR and wind owning strategic entity offers for a single day (1 January) at hourly
resolution (a). In the “uniform offer” case offers are constrained to a single value for charge and
discharge, respectively. The uniform offer LMP is the same as the competitive LMP and is overplotted.
The uniform offer reduces strategic profits to be equivalent to the competitive solution for this day
(b).

In 5.10, the uniform offer requirement reproduces the competitive solution because the same two

conditions as in Appendix C are met: the offer is inframarginal in all time periods and the energy

limits on ESR dispatch are binding. Mathematically, the ESR offer SOt must be lower than the

generation costs Gt it displaces in all time periods, SOt < Gt, ∀t, and the ESR dispatch
∑
sdt must
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be limited;
∑
sdt < sdmaxt ∗ T , where T is the number of time periods. Under these two conditions

the uniform offer disallows the ESR modifying the perceived social welfare gain of its energy-limited

dispatch with different bids in different hours. With a uniform offer, the perceived social welfare

gain is the difference between the offer and the production costs it replaces, resulting in discharge

replacing generation the highest production cost time periods and charge increasing generation the

lowest production cost time periods, as in the competitive case.

Requiring a uniform offer has potential drawbacks of over-mitigation, particularly if the offer is

also required to be inframarginal, which the above cases and Appendix C require. A pivotal ESR not

required to offer inframarginally can offer SOt ≥ Gt for at least one t and set price in a time interval

or intervals with a uniform bid above marginal cost. Offering SOt > Gt,∀t will withhold capacity.

A bid above marginal generation costs in all time periods could be justified by opportunity costs

realized beyond the co-optimized time horizon. However, limiting the ability of ESRs to update a

uniform DA offer in shorter time horizon balancing or RT markets risks over mitigation by reducing

ESR option value if prices are higher (or lower) than expected. Even with these concerns, that

inframarginal uniform offers mitigate the modeled optimal strategy of a profit-maximizing strategic

entity with perfect foresight and binding ESR energy-limits to increase its portfolio’s profits suggests

a direction for ESR market monitoring and design considerations.

5.5 Discussion

Energy storage resources can facilitate integration of high levels of variable renewable energy, and

market design must recognize their unique characteristics to prevent storage from manipulating high

VRE, low marginal cost markets. This work highlights how price-making ESRs’ ability to increase

load and state of charge limitations enables additional latitude in bidding to manipulate dispatch

and pricing and suggests ways that market monitors can avoid manipulation.

Modeling on a high VRE test system under perfect foresight suggests the most profitable strategy

involves cross-product manipulation by bidding an ESR to raise prices and thus revenues received

by other generators in the strategic entity’s portfolio. ESRs can more commonly be pivotal at or
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near buses with high VRE generation and congestion than system-wide – exactly where ESRs would

be installed to reduce transmission related renewable energy curtailments [30] – suggesting those

generation pockets deserve additional attention. While we model only energy markets, identified

strategies could be extended to ancillary service markets providing nearer term profit opportunities

for ESR participation [16, 31, 32]. Hybridization of ESRs with generators otherwise constrained

to offer at low or zero marginal cost is another potential avenue for manipulating prices upward

if bidding rules allow. Hybrid bidding rules are highly policy relevant given large quantities of

renewable-ESR hybrid generators entering North American interconnection queues [12].

Strategic profits are limited with a deterministic bidding strategy under uncertainty about

future loads and generation, but may be increased with more targeted or sophisticated strategies.

Incorporating methods for predicting future market prices under uncertainty [33] and stochastic

optimization [34] with a bi-level or other price-making model for ESRs suggest directions for future

research. We assume fixed capacity and perfect information about the market operator’s algorithm;

both assumptions could be relaxed or extended to incorporate aspects of investment decision-

making [35,36] and algorithmic differences between forward and real-time markets, such as treatment

of nonconvexities [37] and effects of financial products [24,38].

We show ESRs can use their intertemporal energy limit constraint to change pricing and dispatch

even with exclusively inframarginal offers. If the market operator respects ESRs’ energy limits in

optimizing its schedule and setting prices over multiple time intervals monitoring should look closely at

relative inframarginal offers when ESRs are pivotal suppliers. We suggest uniform offer requirements

as one approach. However, the assumption that market operators will respect energy limits through

a SOC parameter or penalty is itself not a policy guarantee. The Electric Power Research Institute

(EPRI) outlines four approaches for ESR participation in US wholesale markets under Federal Energy

Regulatory Commission Order 841, including a self-SOC management option where the market

operator considers only whether ESR offers are part of least-cost security constrained economic

dispatch and ESRs are expected to self-update offers to maintain sufficient SOC to meet their

schedules [39]. EPRI’s modeling shows self-SOC management can have severe reliability implications

if ESRs cannot meet their dispatch schedule due to SOC infeasibility in real-time [40].
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Weighing reliability and market participation objectives highlights the broader point: market

design reforms to accommodate the technical characteristics of ESRs must carefully consider objectives

including competition, reliability, and rapid decarbonization. If updated monitoring and mitigation

for ESRs and hybrids is not included alongside these objectives, ossified market design can undermine

the benefits of competition and hinder rapid decarbonization using high shares of low marginal cost

VRE and ESRs.
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A Model Explanation and Formulation Appendix

A.1 Additional model explanation

The full formulation of the model includes ramping and an implementation of linearized unit

commitment but excludes security constraints. Generally additional security constraints and markets

make pivotal supplier conditions more common and increase opportunities for strategic bidding,

while demand side offers reduce supply side market power. Minimizing as-bid cost of serving load

ignoring ancillary service utility is equivalent to maximizing social welfare assuming a uniform value

of marginal electricity demand at or above the market clearing price cap. By anticipating the market

operator’s decisions, the strategic leading entity can submit bids to increase profits from its portfolio

of assets.

Configurable options in running cases allow implementation of offer mitigation constraints based

on ex-ante price forecasts, similar to an approach proposed by Southwest Power Pool’s (SPP) Market

Monitoring Unit [41]. Other configurable options allow changes to temporal indexing of ESR offers

in the upper level and running the model as a single level linear program with fixed cost-based bids

to compare results to the fully competitive solution for a given parameterized case.

Configurable options in the model explored in the paper include:

1. Reformulation as a single level linear program for market clearing assuming fixed bids. Produces

competitive solution when all resources are assumed to offer at marginal cost. (all results

sections)

2. Hybridization of co-located ESR and generation resources owned by strategic bidder. (Section

5.4.2)
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3. Multiple market settlements with reduced bidding and dispatch recourse in real-time. (Section

5.4.3)

4. Offer mitigation constraints including requiring ESR discharge offers not exceed an offer cap

based on ex-ante expected market clearing prices, or requiring a single, uniform discharge or

charge ESR offer over co-optimized temporal intervals. (Section 5.4.4)

A full formulation of the model follows.

A.2 Notation

The following model notation is also used for equations in Ch. 6.

Sets

g ∈ G, generators, indexed by g

gc ∈ GC ⊂ G, subset of generators owned by strategic entity, indexed by gc

gnc ∈ GNC ⊂ G, subset of generators not owned by strategic entity, indexed by gnc

gs ∈ GS, linearized segments of generator heat rate curves, indexed by gs

guc ∈ GUC ⊂ G, subset of unit commitment generators, indexed by guc

gnuc ∈ GNUC ⊂ G, subset of non-unit commitment generators, indexed by gnuc

l ∈ L, transmission lines connecting nodes in power system, indexed by l

s ∈ S energy storage resources, indexed by s

ss ∈ SS ⊂ S, subset of storage owned by strategic entity, indexed by ss

nss ∈ NSS ⊂ S, subset of storage not owned by strategic entity, indexed by nss

t ∈ T , timepoints, indexed by t

z ∈ Z, buses in power system, indexed by z

Parameters

CAPt,g, generator capacity, [MW]

CAPARTt,g , Real-time available generation capacity of strategic entity [MW]
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CEs, energy storage charge efficiency, unitless

CMAXs, maximum charge rate of energy storage resource [MW]

CMAXOt,s, Maximum energy storage resource charge offer with offer mitigation [$/MWh]

CDAt,s, Day-ahead energy storage resource charge for use in real-time [$/MWh]

DEs, energy storage resource discharge efficiency, unitless

DMAXs, maximum discharge rate of energy storage resource [MW]

DMAXOt,s, Maximum energy storage resource discharge offer with offer mitigation [$/MWh]

DDAt,s, Day-ahead energy storage resource discharge for use in real-time [$/MWh]

GMCg,gs, marginal cost of generation on segment [$/MWh]

GSLg,gs, fraction of generator capacity on marginal segment

∆λDAt,z==SZLs
, Observed change in ESR bus clearing price in DA case when strategic vs. competitive

(used only in RT cases)

Lt,z, gross load at bus [MWh]

NLCg, No-load costs of committed generator ($/timepoint)

PMINg, Minimum online generation of committed unit commitment generator

RBUSt, label of reference bus

RRg, Generator ramp rate (MW/timepoint)

Sl, susceptance of transmission line [Siemens]

SAt,g, fraction of generator capacity scheduled to be available

SCg, Generator start-up costs [$/start]

SMAXs, maximum state of charge of energy storage resource [MWh]

TXFLl, zone or node from which transmission line originates

TXTLl, zone or node to which transmission line goes

TFCAPl, capacity of transmission line from zone or bus [MW]

TTCAPl, capacity of transmission line to zone or bus [MW]

UE, Cost of unserved energy or offer cap [$/MWh]

VMAXz, maximum voltage angle of bus (positive)

VMINz, minimum voltage angle of bus (negative)
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ZLg, Generator zone or bus label (assignment)

ZLSg Energy storage resource zone or us label (assignment)

Decision Variables

gdt,g, generator dispatch [MWh]

gdnt,g, shutdown status of generator with unit commitment [0,1]

gsdt,g,gs, dispatch on generator segment [MWh]

gsot,guc,gs, offer on generator segment for generators with unit commitment [$/MWh]

got,gnuc, offer for generators without unit commitment [$/MWh]

gopstatt,g, Online operating status of generator with unit commitment [0,1]

gupt,g, Startup status of generator with unit commitment [0,1]

nucgdt,g, non unit commitment generator dispatch [MWh]

sct,s, charging of energy storage resource [MWh]

sdt,s, discharging of energy storage resource [MWh]

soct,s, state-of charge (SOC) of energy storage resource [MWh]. SOC is by definition determined by

discharge and charge, so SOC-related terms are written as a summation of charge and discharge in

subsequent equations.

sofct,s, Energy storage resource charge offer [$/MWh]

sofdt,s, Energy storage resource discharge offer [$/MWh]

txmwht,l, real power flow on transmission line, [MWh]

vat,z, bus voltage angle

αt,s, Energy storage resource charge lower bound dual variable

βt,s, Energy storage resource discharge lower bound dual variable

γt,s, Tight energy storage resource operation constraint dual variable

νmaxt,s /νmint,s , State of Charge (SOC) constraint dual variable

χs, Final SOC dual variable

ξs, energy storage resource cycle constraint dual variable

µmaxt,l /µmint,l , transmission flow dual variables
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ψmaxt,z /ψmint,z , voltage angle dual variables

λt,z, power balance equation dual variable; interpreted as locational marginal price (LMP)

ηt,s, SOC balance equation dual variable

φmaxt,g, /φmint,g , generator dispatch dual variables

ϕmaxt,g,gs/ϕmint,g,gs, generator segment dispatch dual variables

σupt,g/σdownt,g , generator ramp up/down dual variables

πt,g, unit commitment generator operating status change dual variable

ωmaxt,g /ωmint,g , non-unit commitment generator dispatch dual variables

A.3 Model formulation

Upper-level objective function

The upper-level objective function maximizes the profit of a single entity’s competitively owned

generators and ESRs.

MAX λt,z ∗ (

T,G∑
t,g∈GC∩GUC,z==ZLg

gdt,g

+

T,G∑
t,g∈GC∩GNUC,z==ZLg

nucgdt,g +

T,SS∑
t,s∈SS,z==ZLSs

sdt,s)

−
T,G,GS∑

t,g∈GC∩GUC,gs
GMCg,gs ∗ gsdt,g,gs

−
T,S∑

t,s∈SS,z==ZLSs

λt,z ∗ sct,s

(A.1A)

The upper-level objective function can optionally be configured to include no-load and startup
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costs when the model is configured to include tight relaxed unit commitment (TRUC) [42].

MAX λt,z ∗ (

T,G∑
t,g∈GC∩GUC,z==ZLg

gdt,g

+

T,G∑
t,g∈GC∩GNUC,z==ZLg

nucgdt,g +

T,SS∑
t,s∈SS,z==ZLSs

sdt,s)

−
T,G,GS∑

t,g∈GC∩GUC,gs
GMCg,gs ∗ gsdt,g,gs

−
T,G∑

t,g∈GC∩GUC
NLCg ∗ gopstatt,g

−
T,G∑

t,g∈GC∩GUC
SCg ∗ gupt,g

−
T,S∑

t,s∈SS,z==ZLSs

λt,z ∗ sct,s

(A.1B)

Upper-level offer constraints

Generator offer constraints are either optional constraints implemented to reduce solution time or

based on common market rules in North American wholesale electricity markets. Implemented offer

constraints also prevent physical withholding of unit commitment generators, a common market rule.

Equation Notes Eq. No.

2 ∗GMCg,gs ≥ gsot,g,gs ≥ GMCg,gs,
∀g ∈ GC ∩GUC

Generators may offer only up to two times their
marginal cost and must offer at least their
marginal costs. Helps reduce solution time.

(A.2)

gsot,g,gs ≥ gsot,g,gs−1,
∀g ∈ GC ∩GUC

Each generator segment must offer at
least the offer on the previous segment.

Common wholesale market rule.
(A.3)

UE ≥ gsot,g,gs,
∀g ∈ GC ∩GUC

Generators may offer only up to the
market cap, assumed $2000/MWh in paper cases.

Common wholesale market rule.
(A.4)

0 == got,g,
∀g ∈ GC ∩GNUC

Variable renewable generators are assumed to have
zero marginal cost and offer. Helps reduce

solution time and reflects low marginal cost of VRE.
(A.5)
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Lower-level objective function

The lower-level objective function minimizes the as-bid cost of serving firm load

∀λ ∈ arg[MIN

T,GUC,GS∑
t,g,gs

gsot,g,gs ∗ gsdt,g,gs

+

T,GNUC∑
t,g

got,g ∗ nucgdt,g +

T,SS∑
t,s

(sofdt,s ∗ sdt,s − sofct,s ∗ sct,s)]

(A.6A)

As with the upper level objective, the lower level objective may be optionally configured to

include TRUC terms.

∀λ ∈ arg[MIN

T,GUC,GS∑
t,g,gs

gsot,g,gs ∗ gsdt,g,gs

+

T,GNUC∑
t,g

got,g ∗ nucgdt,g +

T,SS∑
t,s

sofdt,s ∗ sdt,s − sofct,s ∗ sct,s]

+

T,GC∑
t,g∈GUC

SCg ∗ gupt,g +

T,GC∑
t,g∈GUC

NLCg ∗ gopstatt,g

(A.6B)
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Lower-level constraints

Equation Notes Eq. No.

Lt,z ==
∑T,GUC,GS

t,g,gs,z==ZLg
gsdt,g,gs

+
∑T,GNUC

t,g,z==ZLg
nucgdt,g +

∑T,S
t,s,z==ZLSs

sdt,s − sct,s+∑T,L
t,l (txmwt,l,TXTLl==z − txmwt,l,TXFLl==z) : λt,z

Load-balance
constraint (A.7)

vat,z==RBUSt = 0
Voltage angle at
reference bus (A.8)

DMAXs ∗ CMAXs ≥ DMAXs ∗ sct,s
+CMAXs ∗ sdt,s : γt,s

Tight storage
dispatch (A.9)

sct,s ≥ 0 : αt,s, sdt,s ≥ 0 : βt,s
Non-negative storage
charge and discharge (A.10)

SMAXs ≥
∑1,...,t

t (CEs ∗ sct,s −DEs ∗ sdt,s)
≥ 0 : νmaxt,s , νmint,s

Sum of storage charge
and discharge in previous

timepoints stays below max SOC
(A.11)

SMAXs ≥
∑T

t sdt,s ≥ 0 : ξs
Limits storage discharge

during a day to a single cycle (A.12)∑T
t (CEs ∗ sct,s −DEs ∗ sdt,s) == 0 : χs

Final storage
SOC balance (A.13)

CAPt,g ∗ SAt,g ∗ gopstatt,g ≥ gdt,g
≥ gmint,g : φmaxt,g , φmint,g , ∀g ∈ GUC

Generator dispatch limited
by max available capacity (A.14)

CAPt,g ∗ SAt,g ∗GSLg,gs ≥ gsdt,g,gs
≥ 0 : ϕmaxt,g,gs, ϕ

min
t,g,gs, ∀g ∈ GUC

Generator piecewise segment dispatch
limited by max available capacity (A.15)

gdt,g ==
∑GS

gs gsdt,g,gs∀g ∈ GUC
Sum of generator segment dispatch

equivalent to total generator dispatch (A.16)

CAPt,g ∗ SAt,g ≥ nucgdt,g ≥ 0
: ωmaxt,g , ωmint,g , ∀g ∈ GNUC

Generator dispatch limited
by max available capacity (A.17)

TTCAPl ≥ txmwht,l ≥ TFCAPl
: µmaxt,l , µmint,l

Transmission flows bounded by
positive and negative maxima (A.18)

VMAXz ≥ vat,z ≥ VMINz : ψmaxt,z , ψmint,z Voltage angle limits (A.19)
txmwht,l == Sl ∗ (vat,z==TXTLz − vat,z==TXFLz) DCOPF constraints (A.20)

A set of additional optional constraints implement TRUC, associated minimum generation levels

for online generators, and ramping limits.

Equation Notes Eq. No.

gmint,g == PMINg ∗ SAt,g ∗ CAPt,g ∗ gopstatt,g,
∀g ∈ GUC

Minimum generation scales
with online capacity in TRUC (A.21)

gopstatt,g − gopstatt−1,g == gupt,g − gdnt,g
: πt,g, ∀g ∈ GUC

Unit commitment status changes
only with startups and shutdowns (A.22)

gdt−1,g − gmint−1,g +RRg ∗ gopstatt,g
≥ gdt,g − gmint,g : σupt,g,∀g ∈ GUC

In TRUC upward operating status
changes are bound by ramp rate (A.23)

gdt,g − gmint,g +RRg ∗ gopstatt,g
≥ gdt−1,g − gmint−1,g : σdownt,g ,∀g ∈ GUC

In TRUC downward operating status
changes are bound by ramp rate (A.24)
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Optional constraints for implementing offer mitigation and binding day-ahead offers

The model may be configured to optionally include additional constraints for two settlement

functionality or offer mitigation, and may also be configured to run as a cost-minimizing linear

program.

Our approach to implementing offer mitigation requires developing an ex-ante price forecast

to parameterize and mitigate against maximum offers, similar to an approach suggested by SPP’s

market monitor [41]. To achieve this we run a preliminary cost-minimizing dispatch of all resources

as a linear program and extract the resulting bus LMPs. Offers are then mitigated against this price

stream in each timepoint.

As one way of investigating the effect of uncertainty in loads and other offers when submitting

strategic offers, we also allow the model to be configured to first optimize a DA run, then run a RT

case where storage offers or quantities can be fixed to some of their DA values.

Equation Notes Eq. No.

DMAXOt,s ≥ sofdt,s
Storage discharge offer mitigated to ex-ante max

(set equal to LMP in Section 5.4.4) (A.25)

CMAXOt,s ≥ sofct,s Storage charge offer mitigated to ex-ante max (A.26)

sdt,s == DDAt,s(∀t|DDAt,s > 0,
CAPARTt,g ≥ CMAXs,∆λ

DA
t,z==SZLs

> 0)

Real-time storage discharge is equal to DA
discharge in time periods with pivotal DA

dispatch and sufficient RT strategic wind generation
(A.27)

sct,s == CDAt,s(∀t|CDAt,s > 0,
CAPARTt,g ≥ DMAXs,∆λ

DA
t,z==SZLs

> 0)

Real-time storage charge is equal to DA
charge in time periods with pivotal DA

dispatch and sufficient RT strategic wind generation
(A.28)

Derivation of KKT conditions and MPEC reformulation

Since the lower level problem is a linear program, it can be reformulated using its Karush-Kuhn-

Tucker (KKT) conditions as an equivalent Mathematical Program with Equilibrium Constraints

(MPEC). The four KKT conditions are stationarity, complementary slackness, primal feasibility,

and dual feasibility. The lower-level LP is primal and dual feasible, so the two tasks for MPEC

reformulation are to write and the stationarity and complementary conditions of the lower-level

problem and add them as constraints. Pyomo allows for representation of complementarity constraints

in the formulation of optimization problems. The lower level objective and pre-existing constraints
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are unchanged.

Stationarity conditions

Stationarity conditions are derived by taking partial derivatives of the problem’s Lagrangian

function with respect to the decision variables, then constraining the resulting equations to be zero

to ensure stationarity. These equations are written below.

gsot,g,gs − λt,z==ZLg + φmaxt,g − φmint,g + ϕmaxt,g,gs − ϕmint,g,gs == 0,∀g ∈ GUC (A.29)

SCg − πt,g == 0, ∀g ∈ GUC (A.30)

NLCg − SAt,g ∗ CAPt,g ∗ φmaxt,g + PMINg ∗ SAt,g ∗ CAPt,g ∗ φmint,g + πt,g == 05 (A.31)

sofdt,s + CMAXs ∗ γt,s − βt,s −DEs ∗ ηt,s + ξs − λt,z==SZLs == 0, ∀s ∈ SS (A.32)

−sofct,s +DMAXs ∗ γt,s − αt,s + CEs ∗ ηt,s + λt,z==SZLs == 0, ∀s ∈ SS (A.33)

CMAXs ∗ γt,s − βt,s +DEs ∗ (χs −
t,...NT∑
t

νmaxt,s − νmint,s ) + ξs − λt,z==SZLs == 0, ∀s ∈ NSS (A.34)

5Eq. A.31 is extended to include ramp rate-related terms when TRUC is implemented
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DMAXs ∗ γt,s − αt,s − CEs ∗ (χs −
t,...NT∑
t

νmaxt,s − νmint,s ) + λt,z==SZLs == 0,∀s ∈ NSS (A.35)

ηt,s − ηt+1,s + νmaxt,s − νmint,s ,∀t ≤ Nt (A.36)

ηNt,s + νmaxNt,s − ν
min
Nt,s == 0 (A.37)

µmaxt,l − µmint,l + ψmaxt,z − ψmint,z == 0 (A.38)

−λt,z==ZLg + ωmaxt,g − ωmint,g == 0 (A.39)

Complementarity constraints

Complementary slackness conditions take the form ui ∗ hi(x) = 0, ∀i. Such an equation is

nonlinear as both terms contain decision variables. However, it may be rewritten as a complementarity

constraint 0 ≤ ui ⊥ hi(x) ≥ 0, which says either ui = 0, or hi(x) = 0, or both. These coupled

constraints are then each themselves linear. The complementarity constraints used in the model are

shown below.

0 ≤ γt,s ⊥ DMAXs ∗ CMAXs −DMAXs ∗ sct,z − CMAXs ∗ sdt,z ≥ 0 (A.40)

0 ≤ αt,s ⊥ sct,z ≥ 0 (A.41)

0 ≤ βt,s ⊥ sdt,z ≥ 0 (A.42)
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0 ≤ νmaxt,s ⊥ SMAXs −
1,...,t∑
t

(CEs ∗ sct,s −DEs ∗ sdt,s) ≥ 0 (A.43)

0 ≤ νmint,s ⊥
1,...,t∑
t

(CEs ∗ sct,s −DEs ∗ sdt,s) ≥ 0 (A.44)

0 ≤ ξs ⊥ SMAXs −
T∑
t

sdt,s ≥ 0 (A.45)

0 ≤ µmaxt,l ⊥ TTCAPl − txmwt,l ≥ 0 (A.46)

0 ≤ µmint,l ⊥ txmwt,l − TFCAPl ≥ 0 (A.47)

0 ≤ ψmaxt,z ⊥ VMAXz − vat,z ≥ 0 (A.48)

0 ≤ ψmint,z ⊥ vat,z − VMINz ≥ 0 (A.49)

0 ≤ φmaxt,g ⊥ SAt,g ∗ CAPt,g ∗ gopstatt,g − gdt,g ≥ 0 (A.50)

0 ≤ φmint,g ⊥ gdt,g − gmint,g ≥ 0 (A.51)

0 ≤ ϕmaxt,g,gs ⊥ SAt,g ∗ CAPt,g ∗GSLt,g,gs − gsdt,g,gs ≥ 0 (A.52)

0 ≤ ϕmint,g,gs ⊥ gsdt,g,gs ≥ 0 (A.53)
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0 ≤ σupt,g ⊥ gdt−1,g − gmint−1,g +RRg ∗ gopstatt,g − (gdt,g − gmint,g) ≥ 0 (A.54)

0 ≤ σdownt,g ⊥ gdt,g − gmint,g +RRg ∗ gopstatt,g − (gdt−1,g − gmint−1,g) ≥ 0 (A.55)

0 ≤ ωmaxt,g ⊥ SAt,g ∗ CAPt,g − nucgdt,g ≥ 0 (A.56)

0 ≤ ωmint,g ⊥ nucgdt,g ≥ 0 (A.57)

MILP reformulation using Big-M and strong duality

The objective function of the MPEC is still (A.1B) and remains non-linear because terms such as

λt,z ∗ gdt,g contain multiple decision variables (in the example, the LMP and generator dispatch are

both decision variables). The following steps linearize the objective with an equivalent formulation

by making use of the lower-level objective and complementarity conditions.

First, strong duality theory holds the objective of the primal problem is equivalent to the objective

of the corresponding dual problem. The equivalence between the primal and dual objectives for the
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lower level problem (recall the primal objective is eq. (A.6B)) at the optimum is

T,GUC,GS∑
t,g,gs

gsot,g,gs ∗ gsdt,g,gs +

T,GNUC∑
t,g

got,g ∗ nucgdt,g

T,S∑
t,s

(sofdt,s ∗ sdt,s − sofct,s ∗ sct,s) +

T,GC∑
t,g∈GUC

SCg ∗ gupt,g +

T,GC∑
t,g∈GUC

NLCg ∗ gopstatt,g

=

T,S∑
t,s

DMAXs ∗ CMAXs ∗ (−γt,s) +

T,S∑
t,s

SMAXs ∗ (−νmaxt,s ) +
S∑
s

SMAXs ∗ (−ξs)

+

T,L∑
t,l

TTCAPt,l ∗ (−µmaxt,z ) +

T,L∑
t,l

TFCAPt,l ∗ (µmint,z )

+

T,Z∑
t,z

VMAXz ∗ (−ψmaxt,z ) +

T,Z∑
t,z

VMINz ∗ (ψmint,z )

+

T,Z∑
t,z

Lt,z ∗ λt,z +

T,G,GS∑
t,g,gs

CAPt,g ∗ SAt,g ∗GSLg,gs ∗ (−ϕmaxt,g,gs)

+

T,G∑
t,g

CAPt,g ∗ SAt,g ∗ (−ωmaxt,g )

(A.58)

Using eq. (A.29), (A.32), and (A.33) to substitute for generator and storage offer-related

decision variables and reformulate the primal objective in (A.58), as well as (A.5) to set got,g = 0,
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∀g ∈ GC ∩GNUC, the dual and primal objectives are equivalent to

T,GUC,GS∑
t,g,gs

(λt,z==ZLg − φmaxt,g + φmint,g − ϕmaxt,g,gs + ϕmint,g,gs − σ
up
t,g + σdownt,g ) ∗ gsdt,g,gs

+

T,GNUC∑
t,g

(λt,z==ZLg − ωmaxt,g + ωmint,g ) ∗ nucgdt,g

+

T,GC∑
t,g∈GUC

SCg, gupt,g +

T,GC∑
t,g∈GUC

NLCg ∗ gopstatt,g

+

T,S∑
t,s∈SS

(λt,z==SZLs − CMAXs ∗ γt,s + βt,s −DEs ∗ (χs −
t,...NT∑
t

νmaxt,s − νmint,s )− ξs) ∗ sdt,s

+

T,S∑
t,s∈SS

(−λt,z==SZLs −DMAXs ∗ γt,s + αt,s + CEs ∗ (χs −
t,...NT∑
t

νmaxt,s − νmint,s )) ∗ sct,s

(A.59)

This allows us to set the dual objective from (A.58) equal to (A.59). Then, rearrange by moving
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all linear terms to the left hand (dual objective) side of the equation.

T,S∑
t,s

DMAXs ∗ CMAXs ∗ (−γt,s) +

T,S∑
t,s

SMAXs ∗ (−νt,s) +

S∑
s

SMAXs ∗ (−ξt,s)

+

T,L∑
t,l

TTCAPt,l ∗ (−µmaxt,l ) +

T,L∑
t,l

TFCAPt,l ∗ (µmint,l ) +

T,Z∑
t,z

VMAXz ∗ (−ψmaxt,z )

+

T,Z∑
t,z

VMINz ∗ (ψmint,z ) +

T,Z∑
t,z

Lt,z ∗ λt,z +

T,G,GS∑
t,g,gs

CAPt,g ∗ SAt,g ∗GSLg,gs ∗ (−ϕmaxt,g,gs)

+

T,G∑
t,g

CAPt,g ∗ SAt,g ∗ (−ωmaxt,g,gs)−
T,GC∑

t,g∈GUC
SCg ∗ gupt,g −

T,GC∑
t,g∈GUC

NLCg ∗ gopstatt,g

=

T,GUC,GS∑
t,g,gs

(λt,z==ZLg − φmaxt,g + φmint,g − ϕmaxt,g,gs + ϕmint,g,gs − σ
up
t,g + σdownt,g ) ∗ gsdt,g,gs

+

T,GNUC∑
t,g

(λt,z==ZLg − ωmaxt,g + ωmint,g ) ∗ nucgdt,g

+

T,S∑
t,s∈SS

(λt,z==SZLs − CMAXs ∗ γt,s + βt,s −DEs ∗ (χs −
t,...NT∑
t

νmaxt,s − νmint,s )− ξs) ∗ sdt,s

+

T,S∑
t,s∈SS

(−λt,z==SZLs −DMAXs ∗ γt,s + αt,s + CEs ∗ (χs −
t,...NT∑
t

νmaxt,s − νmint,s )) ∗ sct,s

(A.60)

The relationship between the right hand side of (A.60) and the upper level objective (A.1B) can

then be more straightforwardly seen after grouping the right hand side LMP-related terms, though

showing this step is omitted. The remaining task is to substitute for the nonlinear, non-LMP related

terms on the right hand side (e.g., φmint,g ∗gsdt,g,gs using complementarity relationships for the decision

variables in (A.40)-(A.57), removing terms equal to zero, and cancelling resulting non-zero terms

with left hand side terms where equivalent. The indexing of the right hand side across only strategic

generators means, generally, strategic terms cancel and non-strategic generator and storage terms

remain in the resulting objective. Finally, the generator marginal cost-related term is subtracted
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from both sides of the equation so the right hand side reproduces eq. (A.1B).

T,Z∑
t,z

Lt,z ∗ λt,z −
T,GNC,GS∑
t,g∈GUC,gs

CAPt,g ∗ SAt,g ∗GSLg,gs ∗ ϕmaxt,g,gs

−
T,GNC∑
t,g∈GUC

CAPt,g ∗ SAt,g ∗ φmaxt,g −
T,GNC∑

t,g∈GNUC
CAPt,g ∗ SAt,g ∗ ωmaxt,g

−
T,G,GS∑

t,g∈GUC,gs
GMCg,gs ∗ gsdt,g,gs −

T,G∑
t,g∈GUC

SCg ∗ gupt,g −
T,G∑

t,g∈GUC
NLCg ∗ gopstatt,g

+

T,S∑
t,s∈NSS

(−γt,s ∗DMAXs ∗ CMAXs − νmaxt,s ∗ SMAXs)−
S∑

s∈NSS
(ξt ∗ SMAXs)

= [

T,GC∑
t,g∈guc,z==ZLg

gdt,g +

T,GC∑
t,g∈GNC,z==ZLg

nucgdt,g +

T,SS,Z∑
t,s,z==ZLSs

(sdt,s − sct,s)] ∗ λt,z

−
T,GC,GS∑
t,g∈GUC,gs

GMCg,gs ∗ gsdt,g,gs −
T,GC∑

t,g∈GUC
SCg ∗ gupt,g −

T,GC∑
t,g∈GUC

NLCg ∗ gopstatt,g

(A.61)

The result is a linear left hand side of the equation equivalent to the original nonlinear objective.

The left hand side of eq. (A.61) may now be used as a linear objective for solving the MILP.

Last, the complementarity constraints must be linearized. This can be done using the so-called

“Big-M“ method first described by Fortuny-Amat and McCarl [43]. This approach rewrites a

complementarity constraint of the form 0 ≤ ui ⊥ hi(x) ≥ 0 as a set of two constraints, 0 ≤ ui ≤

M(1− νi) and 0 ≤ hi(x) ≤M ∗ νi, where M is a large enough constant to balance not limiting the

feasible space of the problem6 and νi is an auxiliary binary variable. Note the use of the binary

variable linking the constraints means at least one of the two constraints must be equivalent to zero,

thus satisfying the original complementary slackness condition. The rewritten transformations of each

complementarity constraint are not included but can be provided on request. These transformations

are automatically undertaken in the model code by use of the big-M implementation in Pyomo’s

generalized disjunctive programming library.

6If M is too large this can unnecessarily extend the feasible space and increase solution time, so choosing a value for
M is something of an art; most values are 5000 in our implementation, reflecting upward limits on generator offers
well in excess of the assumed $2000/MWh bid cap.
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The creation of a set of auxiliary binary variables for each constraint reformulation, along with

the linearization of the objective, means the problem is now a MILP and can be readily solved by

commercial solvers like CPLEX.

B Additional Data Description Appendix

B.1 Two-settlement functionality

We simplify two common aspects of two-settlement markets due to computational and data

limitations and to better compare DA and RT results in cases incorporating uncertainty. First, DA

and RT dispatch are commonly optimized using different algorithms; in particular, DA includes

binary variables for unit commitment while RT is a linear program with fixed unit commitment. In

the bi-level model the market operator’s problem must be convex, so both settlements are cleared with

the same lower level problem formulation and exclude or linearize (Appendix A) unit commitment.

Second, we maintain the same temporal co-optimization across the entire day in both DA and RT,

while market operators more commonly limit co-optimized look ahead to a single five-minute RT

interval. Maintaining the same temporal co-optimization allows us to better compare the optimality

of fixed DA ESR dispatch quantities when settled without recourse against RT deviations in load

and generation. Because of the additional computational burden of co-optimizing 288 five-minute

intervals instead of 24 hourly ones we reformat five-minute RT VRE generation and load data to

hourly average equivalents and clear the RT market at hourly resolution. The primary purpose

of these simplifications is to make DA and RT settlements more comparable for incorporating

uncertainty in load, wind, and solar generation in sensitivity analysis.
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B.2 RTS-GMLC generator offer data

Table B-1: Generator location, capacity, and offer data used in all cases.

BusID Group Capacity (MW) Type Units Bid Segments Bid Capacities (MW) Marginal Cost ($/MWh)

301 U20 20 Oil CT 2 4 8,4,4,4 $87.26, $87.26, $99.7, $105.37
301 U55 55 Gas CT 2 4 21,11,11,11 $28.47, $28.47, $29.29, $43.74
302 U20 20 Oil CT 2 4 8,4,4,4 $87.26, $87.26, $99.7, $105.37
302 U55 55 Gas CT 2 4 21,11,11,11 $33.79, $33.79, $38.38, $38.64
307 U55 55 Gas CT 2 4 21,11,11,11 $27.89, $27.89, $29.22, $35.47
313 U355 355 Gas CC 1 4 170,61.67,61.67,61.67 $15.73, $15.73, $26.76, $33.75
315 U12 12 Oil ST 5 4 5,2.33,2.33,2.33 $75.44, $75.44, $100.4, $124.1
315 U55 55 Gas CT 3 4 21,11,11,11 $26.4, $26.4, $26.9, $31.86
316 U155 155 Coal 1 4 62,31,31,31 $21.12, $21.12, $21.29, $27.27
318 U355 355 Gas CC 1 4 170,61.67,61.67,61.67 $26.85, $26.85, $27.28, $31.53
321 U355 355 Gas CC 1 4 170,61.67,61.67,61.67 $22.73, $22.73, $25.91, $33.95
322 U55 55 Gas CT 2 4 21,11,11,11 $23.33, $23.33, $26.5, $27.89
323 U355 355 Gas CC 2 4 170,61.67,61.67,61.67 $26.43, $26.43, $30.28, $31.73
303 WIND 847 Wind 1 1 As available $0
308 RTPV 100.9 Solar RTPV 1 1 As available $0
309 WIND 148.3 Wind 1 1 As available $0
310 PV 103.3 Solar PV 1 1 As available $0
312 PV 189.2 Solar PV 1 1 As available $0
313 PV 93.3 Solar PV 1 1 As available $0
313 RTPV 806 Solar RTPV 1 1 As available $0
314 PV 144.3 Solar PV 1 1 As available $0
317 WIND 799.1 Wind 1 1 As available $0
319 PV 188.2 Solar PV 1 1 As available $0
320 PV 51.6 Solar PV 1 1 As available $0
322 U50 50 Hydro 1 1 As available $0
324 PV 152.3 Solar PV 1 1 As available $0

While the supply curve will change based on generation availability even when all generators

offer at marginal cost, and congestion may result in different online generators and marginal cost

than suggested by intersecting a single supply and demand curve, Figure B-1 constructs an average

supply curve for the modeled month and compares to average and peak demand.

193



Figure B-1: January supply curve. Variable renewable energy resources displayed at average hourly
generation for the month. Supply curve ignores congestion and curtailment.

B.3 LMPs for all 25 buses in cases without ESRs

Figure B-2: LMP at all 25 buses.

B.4 Loads and renewable generation day-ahead forecast error distributions

The model uses DA RTS-GMLC data to settle the forward market and RT RTS-GMLC data to

settle the operational balancing market. Changes in dispatch and pricing result from deviations in
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RT data from DA expectations, termed forecast error, for load, solar PV, solar rooftop PV (RTPV),

and wind resources. As a result, load net of PV and wind, defined as net load, shows the summed

deviation of all forecast errors and is also included in the empirical distribution of forecast errors for

the modeled month shown in Figure B-3.

Figure B-3: Distribution of differences between hourly DA forecast and RT actuals of renewable
generation by type (solar PV, solar rooftop PV, Wind) and load in MW for the Zone 3 RTS-GMLC
test system. Net load is load net of VRE (i.e., wind and solar PV, including rooftop PV).

B.5 Additional information on Results Section 5.4.1 Demonstrating the Three

Strategies

In case A (ESR only, Figure 5.5) the strategic entity owns only the 300MW/900MWh ESR. It

implements two strategies to increase its profit: increasing the applicable LMP at its bus when

discharging, and decreasing the LMP at its bus when charging. Full results are shown in Table B-2

to break out additional profits earned by the strategic entity and its effect on payments for serving

firm load compared to the competitive case.
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Table B-2: Case A (ESR Only) results for month of January. Changes are shown in red to indicate
increased costs to consumers and in green to indicate increased profit for the strategic entity.

A: Category B: Competitive C: Strategic D: Change

1: Load Paymentsa($M) $5.223 $5.259 +0.7%
2: Storage Charging Cost ($M) -$.048 -$0.39 -18.8%
3: Storage Discharging Revenue ($M) $.355 $0.399 +12.4%
4: Storage Profit ($M) πp,NSS = $.306 πp,SS = $.360 ∆πp = $.056, +17.6%
5: Storage Profit ($/MWh discharged) πp,NSS∑

sdS
= $9.9 πp,SS∑

sdS
= $11.6 ∆πp

MWh = $1.7, + 17.6%

a Load payments are calculated as the inner product of bus clearing price and bus load

The strategies employed in case A (ESR Only) achieve additional profit when the ESR is pivotal:

the inclusion of its charging load or discharging generation changes which generator(s) is/are7

marginal and set price at bus 03. By adjusting its ESR bid the strategic entity can increase or

decrease the cost of marginal supply at the cleared quantity of generation.

Case B extends case A by including the large (847 MW) wind generator at bus 03 in the strategic

entity’s portfolio (“ESR+Wind”). The strategic objective is to maximize the joint profits of the

wind and ESR by modifying ESR bids; wind is constrained to offer at no more than its $0/MWh

marginal cost. There is often congestion on a transmission line interconnecting bus 03 to the rest

of the system (Figure 5.3) due to the large amount of zero marginal cost wind generation in many

hours relative to available transmission capacity. Because of the prevalent congestion, the ESR

can be used by a strategic entity when pivotal to alleviate congestion and increase price at bus

03. When wind generation exceeds additional ESR charging load the ability to increase price is a

profitable cross-product strategy. Notably, since co-locating of ESRs with VRE is often suggested as

a welfare-improving strategy due to reduction in curtailment and increased deliverability of low-cost

and low-emission VRE [30,44,45] or to take advantage of incentives for ESR charging from VRE

like the Investment Tax Credit [12], Table B-3 shows that at least some of this welfare for a given

co-located ESR installation8 could be absorbed by strategic bidding.

7When the system is congested there may be more than one marginal generator; equivalently, how clearing prices
change depends on where load is added to the system.

8The installation of the ESR may still be welfare improving compared to a no-ESR system even with strategic bidding,
but we do not investigate investment decision-making.
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Table B-3: Case B (ESR+Wind) profits for month of January.

A: Category B: Competitive C: Strategic D: Change

1: Load Paymentsa($M) $5.223 $5.369 +2.8%
2: Storage Profit ($M) $.306 $0.040 -86.9%
3: Storage Profit ($/MWh discharged) $9.9 $1.4 -86.9%
4: Wind Profit ($M) $0.751 $2.002 +166.6%
5: Incremental Profit Associated
with Storage Ownership ($M) πp,NSS = $.306 ∆πp = $1.292 +368.7%

6: Incremental Profit Associated with
Storage Ownership ($/MWh discharged)

πp,NSS∑
sdS

= $9.9 πp,SS∑
sdS

= $46.3 +368.7%

a Load payments are calculated as the inner product of bus clearing price and bus load

B.6 Additional information on Results Section 5.4.2

The sensitivity analysis in Figure 5.6 shows that under the perfect foresight assumption additional

ESR capacity and duration have declining marginal value, as seen in the decreasing monthly

incremental profit. Increased capacity has more effect than increased duration on total profits,

suggesting the ability to offer more capacity in a single time period is a larger contributor to perfect

foresight ESR profits than how often an offered quantity can be accepted and dispatched. Profits do

not scale linearly with capacity as the quantity offer need to be pivotal and change clearing price in

a given time period will be system dependent, particularly in the presence of congestion.

Figure 5.7 compares hybrid and co-located profits. Hybrid profits are higher because of additional

assumed ability to submit a higher bid incorporating the wind with the ESR offer as a hybrid.

Importantly, in practice different bidding rules can be applied to different types of resources. For

example, section 4.4.9.3 of the Electricity Reliability Council of Texas’ (ERCOT) December 2020

nodal protocols [46] only allows generators to update energy offer curves prior to an operating hour,

but specifically provides a carve out for ESRs to update offers until any time prior to intra-hourly

RT Security Constrained Economic Dispatch (SCED), giving ESRs additional offering latitude.9

Market operators and monitors should think carefully about whether hybridization allows additional

bidding latitude not usually afforded to one of the hybridized resources individually.

9Nodal Protocol Revision Request 1058 would update language to allow all generators to update energy offer curves at
any time prior to RT SCED, and is available online at http://www.ercot.com/mktrules/issues/NPRR1058#keydocs
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B.7 Additional information on Results Section 5.4.3

To investigate incorporation of uncertainty the model is configured to run as two temporally

sequential settlements. The settlements can be conceived as a financial forward market where entities

submit bids, and real-time operational market where bids are fixed and any deviations from the

forward market are settled. The setup is similar to two-settlement day-ahead and real-time wholesale

market settlement periods in North American markets, with the additional assumptions that the

market operator clears the market using the same algorithm for the same temporal resolution at

each settlement interval10 and ignoring financial products (e.g., virtual bidding).

Maintaining strategic profits under uncertainty is a delicate balance. If an offer expected to

change the clearing price does not, the strategic entity makes no additional profit and may lose

profit compared to market operator dispatch if the ESR is charged or discharged with non-zero

opportunity cost compared to dispatch in alternative time periods. Because of this reality and fact

that the congestion alleviation strategy depends on supplying an appropriate quantity of ESR charge

or discharge to the market to change clearing price and increase wind revenue, we implement the

following assumptions and strategy:

1. The strategic entity is assumed to have perfect foresight of the forward DA market (equivalently,

it could update its forward offers prior to real-time based on full knowledge of how changing

offers would change the forward market clearing).

2. The strategic entity has perfect foresight of its own wind generation in RT, but otherwise does

not update its DA expectation of other loads and generation.

3. The strategic entity knows which of its DA offers changed prices. It self-dispatches exactly

that DA optimal quantity in the RT market if it has sufficient wind generation (>300 MW

ESR installed capacity in modeled case case) to ensure a price-setting offer will still increase

joint profits.

10Day-ahead markets are commonly cleared for the full day at hourly resolution and incorporate unit commitment,
while real-time markets are cleared at 5-minute resolution with more limited forward temporal co-optimization and
assume fixed unit commitment, eliminating binary decision variables.
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4. The market operator dispatches any ESR capacity not self-dispatched to minimize production

costs, subject to cycling constraints.

Taken together, this heuristic enables increased focus on pivotal hours under uncertainty, but is

not an upper bound on strategic profits under uncertainty. A strategic entity with a more accurate

updated forecast for load and generation in RT than simply maintaining its DA forecast would do

better in our model. This strategy is reflected mathematically in the implemented constraints in

Appendix A reproduced below.

sdt,s == DDAt,s(∀t|DDAt,s > 0, CAPARTt,g ≥ CMAXs,∆λ
DA
t,z==SZLs

> 0) (B.1)

sct,s == CDAt,s(∀t|CDAt,s > 0, CAPARTt,g ≥ DMAXs,∆λ
DA
t,z==SZLs

> 0) (B.2)

Results compare the profit earned by the DA optimized bids fixed in the real-time balancing

market to the perfect information real-time strategy as well as a fully competitive approach where

the strategic entity offers at marginal cost. Results comparing these three strategies for Section

5.4.1’s Case B parameterization for the same month of data are shown in Figure 5.8.

C Mathematical Exposition on ESR Offers Appendix

C.1 Example derivation

To show ESRs face different constraints relevant to offer mitigation, consider the two time period

(indexed by t ∈ 1,2) dispatch cost minimization problem in eq. (C.1-C.8). The market operator’s

objective in this problem is to minimize the costs of serving residual demands Dt using a generator

G and an ESR S. For simplicity assume the ESR enters the two time periods fully charged at state of

charge SOC and has sufficient capacity to fully discharge in either time period. To reduce constraints

in the problem assume non-negative output from G is unbounded but comes at constant costs C1

and C2 per unit of output in each of the two time periods. Generation from G is denoted gt, from S

by sdt, offers from S are denoted sdt, and applicable dual variables for each constraint follow the
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colon in eq. (C.3-C.8). The two time period problem is formulated:

ming1,g2,sd1,sd2C1g1 + C2g2 + SO1sd1 + SO2sd2 (C.1)

S.T. D1 = g1 + sd1 : λ1 (C.2)

D2 = g2 + sd2 : λ2 (C.3)

g1 ≥ 0 : φ1 (C.4)

g2 ≥ 0 : φ2 (C.5)

sd1 ≥ 0 : α1 (C.6)

sd2 ≥ 0 : α2 (C.7)

SOC ≥ sd1 + sd2 : η (C.8)

Note that eq. (C.8) assumes the market operator will monitor SOC in formulating its problem.

The monitored SOC assumption may not hold in frameworks allowing self-monitoring SOC for ESR

and hybrid market participation [12]. The Lagrangian for the two time period problem is:

L(g, sd, λ, α, φ, η) = C1g1 + C2g2 + SO1sd1 + SO2sd2 − λ1(g1 + sd1 −D1)

−λ2(g2 + sd2 −D2)− φ1g1 − φ2g2 − α1sd1 − α2sd2 − η(SOC − sd1 − sd2)

(C.9)

At the optimum the Karush-Kuhn-Tucker (KKT) conditions will hold. The KKT conditions

include stationarity for primal variables in the objective, which are the generator (gt) and storage

dispatch (sdt) in each time period. These stationarity conditions are written

∆L(−→g ,
−→
sd,
−→
λ ,−→α ,

−→
φ , η)

∆g1
= C1 − λ1 − φ1 = 0 (C.10)

∆L(−→g ,
−→
sd,
−→
λ ,−→α ,

−→
φ , η)

∆g2
= C2 − λ2 − φ2 = 0 (C.11)
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∆L(−→g ,
−→
sd,
−→
λ ,−→α ,

−→
φ , η)

∆sd1
= SO1 − λ1 − α1 + η = 0 (C.12)

∆L(−→g ,
−→
sd,
−→
λ ,−→α ,

−→
φ , η)

∆sd2
= SO2 − λ2 − α2 + η = 0 (C.13)

The two generator-related stationarity conditions have no shared decision variables, and, when

combined with the complementary slackness conditions for the inequalities (C.4) and (C.5), can be

used to show G will set a non-zero price Ct = λt in either time period if dispatched. However, the

same does not hold for the ESR stationarity conditions, which both contain the SOC dual variable η

and can be substituted and rewritten

SO2 − SO1 − λ1 − α2 + α1 = 0 (C.14)

Eq. (C.14) itself provides the critical insight: the effect of ESR offers on clearing prices λt in all

time periods is a function of the relative storage offers SOt in each time period. When pivotal the

ESR can make use of this fact to change its dispatch, and thus pricing, based on its relative offers,

even when its absolute offers are constrained to be inframarginal Ct > SOt in all time periods.

Under the additional assumptions the ESR is a pivotal supplier in each hour individually

(Dt < SOC) but not both hours jointly (
∑
Dt > SOC), we can show the minimum revenues πESR

accrued assuming an inframarginal non-negative ESR offer (Ct > SOt ≥ 0) in both hours are:

min πESR =


(SOC −D1)C2, SO2 − SO1 > C2 − C1

(SOC −D2)C1, SO2 − SO1 < C2 − C1

(C.15)

The proof of this result using the above assumptions and problem defined in Eq. (C.1)-(C.8)

as well as an explanation of the solution(s) when SO2 − SO1 = C2 − C1 is in Appendix C.2. An

example suffices to show there exists practical relevance. Assume SOC = 50, D1 = 10, D2 = 45,

C1 = 20, C2 = 25. Under these conditions if the ESR offers its full quantity SOC = 50 to the

market without a price offer (equivalently, SO2 = SO1 = 0), the market operator will minimize
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dispatch costs by using as much of the ESR as feasible in the higher cost time period 2, and use

the remainder in time period 1, so sd∗1, sd∗2, g∗1, g∗2=5,45,5,0 and the objective value using Eq. (3) is

100. Price is set by G at 20 in time period 1, so ESR revenues are at least λ∗1sd∗1 = 20 ∗ 5 = 100.

However, by filling in eq. (C.15) for the assumed parameterization:

min πESR =


1000, SO2 − SO1 > 5

100, SO2 − SO1 < 5

(C.16)

1000 is greater than 100, so the ESR can guarantee a greater minimum profit by offering

SO2 − SO1 > 5. Because achieving this profit depends on the relative ESR offers, whether ESR

offers are capped based on an ex-ante maximum is irrelevant to the profits in eq. (C.16): so long

as the range of allowable offers exceeds 5 the ESR can guarantee the higher minimum revenue by

offering SO2 − SO1 > 5. The dispatch assuming this offer is sd∗1, sd∗2, g∗1, g∗2=10,40,0,5, with the

minimum payments for dispatching G now being 5*25=125, greater than the optimal value of 100

when the ESR did not make a price offer.11 The difference SO2 − SO1 > 5 in the offers makes

the market operator perceive ESR dispatch is more valuable in time period 1 than time period 2,

so using as much ESR as feasible under SOC and demand constraints in time period 1 minimizes

the perceived total dispatch cost objective. Assuming perfect information a pivotal ESR supplier

can exploit this fact by submitting appropriate temporally differentiated offers to change optimal

dispatch and pricing.

C.2 Derivation with additional assumptions

Assume as in Appendix B that a ESR enters a two time period model with full state of charge

SOC and can be discharge fully in either time period. Assume this state of charge SOC is sufficient to

serve residual demand Dt in either time period individually, but not both; SOC > Dt, SOC <
∑
Dt.

Additionally, assume the ESR must offer its available discharge capability into the market at a

price less than the offer of the generator G in either time period; SOt < Ct. This last assumption

11The value of the objective when SO2−SO1 > 5 will also change based on the change in perceived costs of discharging
the ESR, but for simplicity assume the actual costs of the ESR do not change, just the offer. Then the only change
in actual production costs comes from the changing dispatch of the generator.
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guarantees the market operator will discharge the ESR within the two time period window, so Eq.

(C.8) can be rewritten as the equality Eq. (C.1.9) and we have the below modifications of the model

presented in Section 5.4.4:

Assume SOt < Ct, SOC > Dt, SOC <
∑

Dt (C.1.1)

min C1g1 + C2g2 + SO1sd1 + SO2sd2 (C.1.2)

S.T. D1 = g1 + sd1 : λ1 (C.1.3)

D2 = g2 + sd2 : λ2 (C.1.4)

g1 ≥ 0 : φ1 (C.1.5)

g2 ≥ 0 : φ2 (C.1.6)

sd1 ≥ 0 : α1 (C.1.7)

sd2 ≥ 0 : α2 (C.1.8)

SOC = sd1 + sd2 : η (C.1.9)

Deriving the KKT conditions for this problem and substituting yields

C1 − λ1 − φ1 = 0 (C.1.10)
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C2 − λ2 − φ2 = 0 (C.1.11)

SO2 − SO1 − λ2 + λ1 − α2 + α1 = 0 (C.1.12)

g1φ1 = 0 (C.1.13)

g2φ2 = 0 (C.1.14)

sd1α1 = 0 (C.1.15)

sd2α2 = 0 (C.1.16)

gt, sdt, φt, αt ≥ 0 (C.1.17)

Using the assumptions and Eq. (C.1.3-C.1.4) offers only three feasible solutions: either sd1 = D1,

sd2 = D2, or sdt < Dt. The ESR cannot fully serve residual demand in both time periods because

SOC <
∑
Dt and must fully discharge per eq. (C.1.9), so no other option remains. We can then

proceed to solve these three cases (1)-(3) in parallel, below:

(1) sd1 = D1 (2) sd2 = D2 (3) sdt < Dt

g1 = 0; g2 = SOC −D1 > 0 g1 = SOC −D2 > 0; g2 = 0 g1 = SOC −D2 > 0; g2 = SOC −D1 > 0 (C.1.18)
φ2 = 0;λ2 = C2 φ1 = 0;λ1 = C1 φ1 = 0;λ1 = 0;φ2 = C1;λ2 = C2 (C.1.19)
sdt > 0;αt = 0 sdt > 0;αt = 0 sdt > 0;αt = 0 (C.1.20)

SO2 − SO1 + λ1 = C2 SO2 − SO1 − λ2 = −C1 SO2 − SO1 = C2 − C1 (C.1.21)
SO2 − SO1 = C2 − C1 + φ1 ≥ C2 − C1 SO2 − SO1 = C2 − C1 − φ2 ≤ C2 − C1 (C.1.22)

SO2 − SO1 = C2 − C1 + φ1 SO2 − SO1 = C2 − C1 − φ2 (C.1.23)
(1) SO2 − SO1 ≥ C2 − C1 (2) SO2 − SO1 ≤ C2 − C1 (3) SO2 − SO1 = C2 − C1 (C.1.24)

As suggested by case (3) (sdt < Dt), the cost-minimizing system operator will be indifferent

between the dispatch solutions when SO2 − SO1 = C2 − C1, as they will produce equivalent as-bid
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total costs. We are thus left with optimal solutions for {sd∗1, sd∗2, g∗1, g∗2, λ∗1, λ∗2} of:

(1) SO2 − SO1 > C2 − C1 (2) SO2 − SO1 < C2 − C1 (3) SO2 − SO1 = C2 − C1

{sd∗1, sd∗2, g∗1, g∗2, λ∗1, λ∗2} =
{D1, SOC −D1, 0, D2 − SOC +D1, SO1, C2}

{sd∗1, sd∗2, g∗1, g∗2, λ∗1, λ∗2} =
{SOC −D2, D2, D1 − SOC +D2, 0, C1, SO2}

{sd∗1, sd∗2, g∗1, g∗2, λ∗1, λ∗2} =
{D1 − g∗1, D2 − g∗2, D1 − sd∗1, D2 − sd∗2, C1, C2}

(C.1.25)

The profits accrued by the ESR are the dot product of the clearing price and ESR discharge in

each time period; πESR =
∑
λtsdt. Substituting values for each of the optimal solutions from eq.

(C.1.25) we have

(1) SO2 − SO1 > C2 − C1 (2) SO2 − SO1 < C2 − C1 (3) SO2 − SO1 = C2 − C1

πESR = λ∗1sd
∗
1 + λ∗2sd

∗
2 πESR = λ∗1sd

∗
1 + λ∗2sd

∗
2 πESR = λ∗1sd

∗
1 + λ∗2sd

∗
2 (C.1.26)

πESR = SO1D1 + (SOC −D1)C2 πESR = (SOC −D2)C1 + SO2D2 πESR = C1sd
∗
1 + C2sd

∗
2 (C.1.27)

If we further assume for simplicity the ESR offers SOt will not be lower than 0 and exclude the

third case, we get Eq. (C.17):

min πESR =


(SOC −D1)C2, SO2 − SO1 > C2 − C1

(SOC −D2)C1, SO2 − SO1 < C2 − C1

(C.1.28)
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Chapter 6 Hybridizing Resources to Profitable
Decongest Generation Pockets*

Abstract

We investigate strategic energy storage resource (ESR) and hybrid resource offering in a competitive market

formulated as a bi-level optimization model. We incorporate novel parameterization of hybrid wind-ESR

resources making a single offer to the market. The bi-level formulation is converted to a mathematical

program with equilibrium constraints (MPEC) using its Karush–Kuhn–Tucker optimality conditions, then

converted to a mixed-integer linear programming model using strong duality theory and the Big-M method.

We find that hybrid offer strategies increase strategic generation company profits and system costs primarily

by decongesting the system to increase the clearing price at the hybrid resource’s bus. Hybridization helps the

strategic company avoid existing marginal cost-based offer mitigation, yielding supernormal profits that can

be maintained under uncertainty. Results are obtained on a numerical example based on the IEEE NREL-RTS

modified test system with 25-bus network and high renewable penetration, demonstrating relevance on a

realistic test system.

* This paper, written with research assistance from Nik Zheng, is in preparation for journal submission.
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6.1 Introduction

6.1.1 Background

The participation of energy storage resources (ESRs) and hybrid resources (pairing renewable or

conventional power plants with ESRs) in North American wholesale electricity markets are expected

to increase significantly in coming years. According to a U.S. Energy Information Administration’s

(EIA) report, more than 1000 Megawatts (MW) of large-scale battery storage was operational in

United States before 2020, with another 3616 MW planned by project developers for beginning

operation between 2020 to 2023 [1]. Independent System Operator (ISO) and Regional Transmission

Organization (RTO) wholesale market interconnection queues have tens of GW of additional ESRs,

with as much as 50% of wind and solar capacity entering the queue hybridized with ESRs in some

markets [2]. While existing North American competitive electricity markets have experience with

larger capacities of pumped storage hydroelectric (PHS) units sharing these general operational

characteristics [3], Federal Energy Regulatory Commission (FERC) Order 841 finds updates are

needed for full ESR participation. Order 841 requires FERC-jurisdictional ISOs and RTOs to develop

and file compliance plans allowing full participation of ESRs in providing wholesale market products

of which they are technically capable, including the ability to submit competitive offers and set

clearing price in these markets [4]. The combination of rising ESR and hybrid penetration with

evolving models for participation in markets make it essential to investigate how these resources

may behave in competitive markets to maximize their individual or a resource portfolio’s profits.

Identification of strategies deleterious to social welfare can then inform ongoing policy discussions at

market operators and independent market monitors regarding market rules for ESRs and hybrids.

We highlight a particular strategy, which we term ε-decongestion, that can be used by hybridized

resources to mask their marginal costs and manipulate congested bus prices upward.

6.1.2 Approach

This paper proposes a bi-level optimization formulation for maximizing the profit of a strategic

generation company’s (genco) portfolio of resources with inclusions of ESRs hybridized with generation
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resources. In the lower level the ISO, acting as the market operator, minimizes the as-bid cost of

serving firm load. This leader-follower setup is generally termed Stackelberg competition. ESRs not

in the strategic genco’s portfolio do not submit offers and are dispatched by the market operator

subject to applicable operational constraints to minimize production costs. Additional offer rules

applied to the genco’s resources in the upper level reflect typical market rules, including monotonic

increasing offer curves and cost-based offer mitigation for thermal and variable generators. ESR

cycling is limited to one daily cycle to reflect common operational practice for reducing degradation

and to allow cases to be structured as a series of co-optimized hourly resolution sequential days,

similar to day-ahead (DA) markets.

The bi-level problem is reformulated as a mathematical program with equilibrium constraints

(MPEC) by use of the Karush-Kuhn-Tucker (KKT) conditions of the lower level problem. Resulting

stationarity and complementary slackness conditions may be included with the original problem

formulation to obtain a nonlinear, nonconvex MPEC. The MPEC is reformulated as a MILP by use

of strong duality to linearize the objective function and the Fortuny-Amat and McCarl [5] (“Big-M”)

approach to recasting complementarity constraints with the addition of scalars and auxiliary binary

variables. This approach is common for similar problems in the existing literature [6, 7] and admits

globally optimal solutions with use of existing commercial solvers under careful domain-relevant

selection of Big-M bounds and computational limitations on the number of auxiliary binary variables

included.

6.1.3 Literature review

Numerous studies investigate the ability of conventional generation [8], variable generation [6, 9],

aggregators [10], prosumers [11, 12], and other arrangements of resources and loads to profitably

manipulate prices as strategic players. To formulate and solve strategic games, rules are needed for

the strategic player’s ability to make valid quantity, price, or price-quantity offers and beliefs about

how other participants in the electricity market will bid and operate [13]. Incorporating physical

laws governing power flows in nodal electricity market clearing with congested transmission lines

adds known additional opportunities for profitable strategies [14].
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Energy limited resources like ESRs require additional intertemporal constraints to properly

model and have made ESRs a common focus of optimization methods in recent years. Many studies

develop methods for a single, social welfare maximizing entity to optimally build and dispatch

ESRs at the bulk system and distribution level [15–17]. Optimal ESR capacity expansion and

dispatch may account for existing policy [18], ancillary services necessary for grid stability [19],

and incorporate uncertainty in load and variable generation forecasts through techniques including

stochastic optimization [20, 21]. However, maximizing social welfare may not maximize profit for an

ESR-operating entity in a competitive market where it can bid and set market clearing prices. ESRs’

value as a hedge against uncertainty with increasing variable renewable penetration [22] means, by

the same logic, ESRs may have substantial latitude in setting price as a pivotal supplier. Using

ESRs to maximize social welfare allows modeling ESRs as price-takers, ignoring the ability of a

single ESR or portfolio of resources with ESRs to coordinate offers to maximize profit in a market

context. Our approach extends literature considering ESRs as a price-maker [23], particularly within

a strategically coordinated portfolio [24].

Multiple empirical approaches exist for investigating Stackelberg competition between a leading

ESR-owning genco and following market operator in both investment and operational decision-

making [23, 25, 26]. Resulting bilevel problems are often reformulated as mathematical programs

with equilibrium constraints (MPEC) [27]. The MPEC remains nonconvex but may conditionally

admit analytical solutions through iteration of the strategic player’s optimal strategy [8]. To

investigate ESR operations in imperfectly competitive markets many use some version of this

approach, often with additional reformulation of the MPEC as a MILP using strong duality and

Big-M [15,24,26,28–31]. Alternatives to the common Big-M reformulation applied to investigating

strategic ESR behavior have recently been developed to improve commitment-related simplifications

associated with requiring convexity in the lower-level problem [31] and reduce solution time [32]. But

these methods require reformulations generally less easily solved with the heuristics implemented in

existing commercial solvers, and in [32] constrain offer price-quantity pairs to pre-set discretized

values to enable reformulation with disjunctions.

Among existing similar literature employing similar MILP reformulations for bi-level problems
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with ESRs, [30] shows ESRs can increase their profit in an imperfectly competitive market, but does

not consider ownership of a portfolio of resources. [28] and [31] look more closely at the effects of

congestion on strategic ESR profitability in a multi-node system with often-binding transmission

constraints, demonstrating the importance of congestion to electricity market competition [14] in

the context of ESR strategic profitability. [29] develops optimal bids for a single hybrid resource

made up of pumped hydro storage and wind generation, but does not extend its case to a multi-

bus system with inclusion of battery ESRs. [24] is among recent research to extend the MPEC

approach as an Equilibrium Program with Equilibrium Constraints (EPEC), allowing solving for

multiple profit-maximizing ESR owners and demonstrating the importance of their collaboration in

maximizing joint profits. However, solving EPECs at hourly resolution for a full day with multiple

players and many buses is computationally intensive, requiring alternative methods to the Big-M

approach to admit an analytically tractable reformulation as a sequence of iterated MPECs until a

Nash Equilibrium is found.

We follow the above research by implementing a MPEC approach to investigate ESRs in

imperfectly competitive markets. However, we hybridize ESRs with generators relevant to common

configurations entering wholesale market interconnection queues. In conjunction with offer constraints

and a realistic high renewable penetration congested nodal test system, this extension enables the

MPEC approach to have additional relevance in ongoing discussions on hybrid participation in

electricity markets.

6.1.4 Contributions

The main contributions of this paper are:

1. ESRs may be configured as hybrid assets with other generators at the same bus. Hybrids

submit a single offer and, like ESRs but unlike generators, are assumed not subject to

marginal cost-based offer mitigation. By default hybrid generators are constrained to have

only sufficient interconnection capacity to dispatch to the maximum nameplate output of the

hybridized generator, excluding ESR capacity. We show optimal hybrid offers are different

under these assumptions than co-located generators with separate offers, differ when congestion
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in incorporated, and can be maintained with a simple deterministic offering strategy under

uncertainty.

2. Wholesale electricity markets currently place restrictions on competitive offers, often including

disallowing physical withholding of available capacity. We extend previous research showing

the potential for market manipulation by physically withholding low marginal cost generation

in [10] by disallowing physical withholding.

3. Inclusion of a daily cycling constraint offers an alternative to inclusion of more detailed

degradation functions for marginal ESR discharge [33, 34] and reflects a common heuristic

recommended by original equipment manufacturers and in use by ESR owners in today’s

markets.

4. Use of a 25-bus zone from NREL-RTS test system data enables realistic parameterization of

the model on a nodal test system with high renewable penetration and congestion, better

reflecting conditions under which high levels of ESR and hybrid deployment are expected in

the coming decade. Incorporation of congestion extends the practical relevance of theory on

market manipulation to profitably decongest a nodal electricity market in [14,35,36].

Together these cases and contributions highlight a profitable strategy for hybridization in

generation pockets: ε-decongestion. ε-decongestion involves hybridizing a resource to mask variable

generation marginal costs in a generation pocket, then bidding consistent with the expected system

lambda to incrementally (“ε”) decongest the line and set the LMP at the hybrid’s bus equivalent to

the system lambda.

6.2 Model formulation and assumptions

Sets, parameters, and decision variables in this model are a subset of those described in Chapter

5, Appendix A. This section includes only the mathematical formulation of the constraints and

model reformulation used in this paper.
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6.2.1 Assumptions

The main assumptions of our model are:

1. Thermal and renewable generator offers are mitigated to marginal cost, including when owned

by the strategic genco. For simplicity renewable generator marginal costs are assumed to be

zero. ESR and hybrid offers are not mitigated to marginal cost due to the lack of existing

opportunity cost-based offer mitigation for the intertemporal opportunity costs that comprise

most of these resources’ optimal offers in arbitrage applications in current markets [37].

2. The genco has perfect foresight of loads and offers of other generators in the day-ahead (DA)

market. In sensitivity analysis we clear optimal DA bids against real-time (RT) actual load

and variable generation data without recourse to show even deterministic hybrid offering

strategies remain profitable under uncertainty. Deterministic offering assumptions are relaxed

in related literature through use of stochastic optimization techniques [26,38]; incorporating

these approaches could further increase hybrid profits toward the theoretical maximum.

3. Generators submit monotonically increasing stepwise offers, consistent with current market

practice.

4. Generators and ESRs must submit an offer for available generation, consistent with must-offer

obligation rules generally applied to resources receiving resource adequacy payments in markets.

This assumption limits the ability of low marginal cost resources (including ESRs) to engage

in strategic physical withholding highlighted in previous research [10]; economic withholding

strategies are still allowable within bid constraints.

5. The transmission network incorporates direct current optimal power flow (DCOPF) on trans-

mission links between buses. Optimal clearing prices are determined at each node as locational

marginal prices (LMPs) for this configuration and may include congestion, but not losses.

DCOPF is commonly used as it allows a linear (and thus, convex) representation of transmission

constraints in the lower-level problem. Congestion is demonstrated in other studies [26] and

our work to be important to strategic ESR value.
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6.2.2 Upper-level formulation

Objective Function

MAX λt,z ∗ (

T,G∑
t,g∈GC∩GUC,z==ZLg

gdt,g +

T,G∑
t,g∈GC∩GNUC,z==ZLg

nucgdt,g +

T,S∑
t,s∈SS,z==ZLSs

sdt,s)

−
T,G,GS∑

t,g∈GC∩GUC,gs
GMCg,gs ∗ gsdt,g,gs −

T,S∑
t,s∈SS,z==ZLSs

λt,z ∗ sct,s

(6.1)

Generator Offer Constraints

2 ∗GMCg,gs ≥ gsot,g,gs ≥ GMCg,gs,∀g ∈ GC ∩GUC (6.2)

gsot,g,gs ≥ gsot,g,gs−1, ∀g ∈ GC ∩GUC (6.3)

UE ≥ gsot,g,gs, ∀g ∈ GC ∩GUC (6.4)

0 == got,g, ∀g ∈ GC ∩GNUC (6.5)

The upper-level objective maximizes the total profit of a single genco’s assets. Offer constraint

equation 6.2 helps reduce solution time by limiting feasible generator offers. Offer constraints

equations 6.3-6.5 require increasing offers for generators submitting multiple price-quantity pairs for

different segments of the generator equation 6.3, cap offers to a pre-determined market maximum

equation 6.4, and enforce renewable generators are assumed to have $0/MWh marginal cost equation

6.5. These constraints reflect commonly implemented market rules in current wholesale electricity

markets.
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Hybridization

Offers for the variable generation component of a hybridized resource have their offer mitigation

constraint in equation 6.5 removed, and the generation offer is set equal to the storage discharge

offer:

sofdt,s == got,g,∀g, s ∈ G,S ∩H (6.6)

6.2.3 Lower-level formulation

Objective Function

∀λ ∈ arg[MIN

T,GUC,GS∑
t,g,gs

gsot,g,gs ∗ gsdt,g,gs

+

T,GNUC∑
t,g

got,g ∗ nucgdt,g +

T,SS∑
t,s

(sofdt,s ∗ sdt,s − sofct,s ∗ sct,s)]

(6.7)

System Level Constraints

Lt,z ==

T,GUC,GS∑
t,g,gs,z==ZLg

gsdt,g,gs +

T,GNUC∑
t,g,z==ZLg

nucgdt,g

+

T,S∑
t,s,z==ZLSs

(sdt,s − sct,s) +

T,L∑
t,l

(txmwt,l,TXTLl==z − txmwt,l,TXFLl==z)

(6.8)

vat,z==RBUSt = 0 (6.9)

Storage Constraints

DMAXs ∗ CMAXs ≥ DMAXs ∗ sct,s + CMAXs ∗ sdt,s (6.10)

sct,s ≥ 0; sdt,s ≥ 0 (6.11)
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SMAXs ≥
1,...,t∑
t

(CEs ∗ sct,s −DEs ∗ sdt,s) ≥ 0 (6.12)

SMAXs ≥
T∑
t

sdt,s ≥ 0 (6.13)

T∑
t

(CEs ∗ sct,s −DEs ∗ sdt,s) == 0 (6.14)

soc1,s − (CEs ∗ sc1,s −DEs ∗ sd1,s) == 0 (6.15)

Generator Constraints

CAPt,g ∗ SAt,g ∗ gopstatt,g ≥ gdt,g ≥ gmint,g,∀g ∈ GUC (6.16)

CAPt,g ∗ SAt,g ∗GSLg,gs ≥ gsdt,g,gs ≥ 0,∀g ∈ GUC (6.17)

gdt,g ==

GS∑
gs

gsdt,g,gs, ∀g ∈ GUC (6.18)

CAPt,g ∗ SAt,g ≥ nucgdt,g ≥ 0,∀g ∈ GNUC (6.19)

Hybrid Constraints

CAPt,g ≥ sdt,s + gdt,g, ∀g, s ∈ G,S ∩H (6.20)

ZLg == ZLSs, ∀g, s ∈ G,S ∩H (6.21)
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Transmission Constraints

TTCAPl ≥ txmwht,l ≥ TFCAPl (6.22)

VMAXz ≥ vat,z ≥ VMINz (6.23)

txmwht,l == Sl ∗ (vat,z==TXTLz − vat,z==TXFLz) (6.24)

The lower level objective minimizes the as-bid cost of serving load, the market operator’s problem.

In addition to load-balance, transmission, generator, and ESR constraints, equation 6.10 links

storage charge and discharge to disallow simultaneous charge and discharge without use of a binary

variable. This allows continuous operation of storage across its entire dispatch range but avoids

integer commitment decisions. Equations 6.12-6.15 constrain ESR SOC, cycling, and set end and

beginning period SOC to 0, respectively. Equation 6.20 limits dispatch of a hybrid resource to the

nameplate capacity of the generation resource; equation 6.21 enforces that only resources located

at the same bus may be hybridized. DCOPF constraints linearize power flow while respecting

Kirchhoff’s first and second laws.

6.2.4 Derivation of stationarity conditions

gsot,g,gs − λt,z==ZLg + φmaxt,g − φmint,g + ϕmaxt,g,gs − ϕmint,g,gs == 0,∀g ∈ GUC (6.25)

got,g − λt,z==ZLg + ωmaxt,g − ωmint,g == 0,∀g ∈ GNUC (6.26)

sofdt,s + CMAXs ∗ γt,s − βt,s −DEs ∗ (

t,...NT∑
t

νmaxt,s − νmint,s )

+ξs +DEs ∗ χs − λt,z==SZLs == 0,∀s ∈ SS

(6.27)
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−sofct,s +DMAXs ∗ γt,s − αt,s + CEs ∗ (

t,...NT∑
t

νmaxt,s − νmint,s )

−CEs ∗ χs + λt,z==SZLs == 0, ∀s ∈ SS

(6.28)

µmaxt,l − µmint,l + ψmaxt,z − ψmint,z == 0 (6.29)

−λt,z==ZLg + ωmaxt,g − ωmint,g == 0 (6.30)

Stationarity is one of the KKT conditions for MPEC reformulation, and proceeds by taking

partial derivatives of the problem’s Lagrangian with respect to all decision variables and setting

them to zero. The state-of-charge decision variable is a function of the charge and discharge decision

variables in prior times as written in equation 6.12, and is removed and rewritten in terms of those

primal variables and their associated dual variables in equations 6.27 and 6.28.

6.2.5 Complementary constraints

0 ≤ γt,s ⊥ DMAXs ∗ CMAXs −DMAXs ∗ sct,z − CMAXs ∗ sdt,z ≥ 0 (6.31)

0 ≤ αt,s ⊥ sct,z ≥ 0 (6.32)

0 ≤ βt,s ⊥ sdt,z ≥ 0 (6.33)

0 ≤ νmaxt,s ⊥ SMAXs −
1,...,t∑
t

(CEs ∗ sct,s −DEs ∗ sdt,s) ≥ 0 (6.34)

0 ≤ νmint,s ⊥
1,...,t∑
t

(CEs ∗ sct,s −DEs ∗ sdt,s) ≥ 0 (6.35)
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0 ≤ ξs ⊥ SMAXs −
T∑
t

sdt,s ≥ 0 (6.36)

0 ≤ φmaxt,g ⊥ SAt,g ∗ CAPt,g − gdt,g ≥ 0 (6.37)

0 ≤ φmint,g ⊥ gdt,g ≥ 0 (6.38)

0 ≤ ϕmaxt,g,gs ⊥ SAt,g ∗ CAPt,g ∗GSLt,g,gs − gsdt,g,gs ≥ 0 (6.39)

0 ≤ ϕmint,g,gs ⊥ gsdt,g,gs ≥ 0 (6.40)

0 ≤ ωmaxt,g ⊥ SAt,g ∗ CAPt,g − nucgdt,g ≥ 0 (6.41)

0 ≤ ωmint,g ⊥ nucgdt,g ≥ 0 (6.42)

0 ≤ µmaxt,l ⊥ TTCAPl − txmwht,l ≥ 0 (6.43)

0 ≤ µmint,l ⊥ txmwht,l − TFCAPl ≥ 0 (6.44)

0 ≤ ψmaxt,z ⊥ VMAXz − vat,z ≥ 0 (6.45)

0 ≤ ψmint,z ⊥ vat,z − VMINz ≥ 0 (6.46)

The complementary slackness conditions are the other KKT conditions we must derive and add
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to the reformulation of the lower-level problem as a MPEC.

6.2.6 Linearized lower-level objective function

Using strong duality theory, the objective function of primal problem is equal to the objective

function of the corresponding dual problem at the optimum. For the lower level objective function,

the dual problem objective function can thus be rewritten:

MIN

T,GUC,GS∑
t,g,gs

gsot,g,gs ∗ gsdt,g,gs +

T,GNUC∑
t,g

got,g ∗ nucgdt,g

T,S∑
t,s

(sofdt,s ∗ sdt,s − sofct,s ∗ sct,s)

=

T,S∑
t,s

DMAXs ∗ CMAXs ∗ (−γt,s) +

T,S∑
t,s

SMAXs ∗ (−νmaxt,s ) +
S∑
s

SMAXs ∗ (−ξs)

+

T,L∑
t,l

TTCAPt,l ∗ (−µmaxt,z ) +

T,L∑
t,l

TFCAPt,l ∗ (µmint,z )

+

T,Z∑
t,z

VMAXz ∗ (−ψmaxt,z ) +

T,Z∑
t,z

VMINz ∗ (ψmint,z )

+

T,Z∑
t,z

Lt,z ∗ λt,z +

T,G,GS∑
t,g,gs

CAPt,g ∗ SAt,g ∗GSLg,gs ∗ (−ϕmaxt,g,gs)

+

T,G∑
t,g

CAPt,g ∗ SAt,g ∗ (−ωmaxt,g ) = B

(6.47)

where we define the now linearized right hand side to be the linear polynomial B. Using the
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complementary constraints equations 6.31-6.46 to rewrite:

T,GUC,GS∑
t,g,gs

gsot,g,gs ∗ gsdt,g,gs +

T,GNUC∑
t,g

got,g ∗ nucgdt,g

+

T,SS∑
t,s

(sofdt,s ∗ sdt,s − sofct,s ∗ sct,s)

=

T,GUC,GS∑
t,g,gs

(λt,z==ZLg − φmaxt,g + φmint,g − ϕmaxt,g,gs + ϕmint,g,gs) ∗ gsdt,g,gs

+

T,GNUC∑
t,g

(λt,z==ZLg − ωmaxt,g + ωmint,g ) ∗ nucgdt,g

+

T,S∑
t,s∈SS

[λt,z==SZLs − CMAXs ∗ γt,s

+βt,s +DEs ∗ (χs − (

t,...NT∑
t

νmaxt,s − νmint,s )− ξs))] ∗ sdt,s

+

T,S∑
t,s∈SS

[−λt,z==SZLs −DMAXs ∗ γt,s

+αt,s − CEs ∗ (χs − (

t,...NT∑
t

νmaxt,s − νmint,s ))] ∗ sct,s

=

T,GUC,GS∑
t,g,gs

(λt,z==ZLg ∗ gsdt,g,gs − CAPt,g ∗ SAt,g ∗GSLg,gs ∗ φmaxt,g )

+

T,GNUC∑
t,g

(λt,z==ZLg ∗ nucgdt,g − CAPt,g ∗ SAt,g ∗ ωmaxt,g )

+

T,SS∑
t,ss

(λt,z==SZLs ∗ (sdt,s − sct,s)−DMAXs ∗ CMAXs ∗ γt,s − SMAXs ∗ νmaxt,s )

(6.48)

We can linearize upper level objective function using linear polynomial B defined in equations
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6.47 and 6.48:

T,GC∑
t,g∈GUC,z==ZLg

[gdt,g +

T,GC∑
t,g∈GNC,z==ZLg

nucgdt,g

+

T,SS,Z∑
t,s,z==ZLSs

(sdt,s − sct,s)] ∗ λt,z −
T,G,GS∑

t,g∈GUC,gs
GMCg,gs ∗ gsdt,g,gs = B

+

T,GUC,GS∑
t,g,gs

CAPt,g ∗ SAt,g ∗GSLg,gs ∗ φmaxt,g +

T,GNUC∑
t,g

CAPt,g ∗ SAt,g ∗ ωmaxt,g

+

T,SS∑
t,s

(DMAXs ∗ CMAXs ∗ γt,s + SMAXs ∗ νmaxt,s )−
T,GC,GS∑
t,g∈GUC,gs

GMCg,gs ∗ gsdt,g,gs

(6.49)

The objective on the right-hand side of 6.49 is now linearized.

6.3 Experiment design

All cases are implemented on the Reliability Test System Grid Modernization Lab Consortium

(RTS-GMLC) [39], an updated version of the RTS-96 73-bus test system [40] developed by the

National Renewable Energy Laboratory and released publicly on Github. Updates to the RTS-96

system include increasing the proportion of gas-fired and renewable generation, reducing transmission

capacities to have more congestion, developing heat rate curves for modern gas-fired generation,

developing renewable profiles for wind and solar generators based off Southwestern USA temporally

coincident profiles, and modifying loads to reflect a temporally coincident profile for the same

geography. A diagram of buses, loads, and generation from the test system used in our cases is

included below.
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Figure 6.1: RTS-GMLC generator capacity and load node diagram. Three areas draw on data
from Arizona Public Service (Zone 1), Nevada Power (Zone 2), and Los Angeles Department of
Water and Power (Zone 3), though they do not represent existing infrastructure. We retain only the
displayed Zone 3 in cases. Buses 301, 303, and 309 are indicated because they are discussed in more
detail in cases.

In our cases we remove the RTS-GMLC ESR at bus 313 and add case-specific ESR and hybrid

resources. To decrease solution time without loss of generality we reduce the RTS-GMLC test system
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to one of its three areas, choosing to focus on the highest renewable penetration and congestion area,

Zone 3. This zone, loosely based on the Los Angeles Department of Water and Power (LADWP)

geography, has 25 buses and includes a large wind generator (847 MW) at the often-congested bus

303. We typically choose to co-locate and hybridize an ESR installation with the bus 303 wind

generator to investigate congestion effects, further enumerated in Table 7.2. Parameters for other

generators and loads shared across all cases are included in Table 7.1 and Figure 6.2.

Table 6.1: Zone 3 RTS-GMLC Generating Unit Data.

BusID Group Capacity (MW) Type Units Bid Segments Bid Capacities (MW) Marginal Cost ($/MWh)

301 U20 20 Oil CT 2 4 8,4,4,4 $87.26, $87.26, $99.7, $105.37
301 U55 55 Gas CT 2 4 21,11,11,11 $28.47, $28.47, $29.29, $43.74
302 U20 20 Oil CT 2 4 8,4,4,4 $87.26, $87.26, $99.7, $105.37
302 U55 55 Gas CT 2 4 21,11,11,11 $33.79, $33.79, $38.38, $38.64
307 U55 55 Gas CT 2 4 21,11,11,11 $27.89, $27.89, $29.22, $35.47
313 U355 355 Gas CC 1 4 170,61.67,61.67,61.67 $15.73, $15.73, $26.76, $33.75
315 U12 12 Oil ST 5 4 5,2.33,2.33,2.33 $75.44, $75.44, $100.4, $124.1
315 U55 55 Gas CT 3 4 21,11,11,11 $26.4, $26.4, $26.9, $31.86
316 U155 155 Coal 1 4 62,31,31,31 $21.12, $21.12, $21.29, $27.27
318 U355 355 Gas CC 1 4 170,61.67,61.67,61.67 $26.85, $26.85, $27.28, $31.53
321 U355 355 Gas CC 1 4 170,61.67,61.67,61.67 $22.73, $22.73, $25.91, $33.95
322 U55 55 Gas CT 2 4 21,11,11,11 $23.33, $23.33, $26.5, $27.89
323 U355 355 Gas CC 2 4 170,61.67,61.67,61.67 $26.43, $26.43, $30.28, $31.73
303 WIND 847 Wind 1 1 As available $0
308 RTPV 100.9 Solar RTPV 1 1 As available $0
309 WIND 148.3 Wind 1 1 As available $0
310 PV 103.3 Solar PV 1 1 As available $0
312 PV 189.2 Solar PV 1 1 As available $0
313 PV 93.3 Solar PV 1 1 As available $0
313 RTPV 806 Solar RTPV 1 1 As available $0
314 PV 144.3 Solar PV 1 1 As available $0
317 WIND 799.1 Wind 1 1 As available $0
319 PV 188.2 Solar PV 1 1 As available $0
320 PV 51.6 Solar PV 1 1 As available $0
322 U50 50 Hydro 1 1 As available $0
324 PV 152.3 Solar PV 1 1 As available $0
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Figure 6.2: One month of hourly DA load and net load for zone 3. DA data is used exclusively in
all cases other than those additionally clearing DA bids without recourse using RT data. Net load
excludes non-curtailed generation from wind, solar PV, and solar rooftop PV (RTPV) resources.

As seen in Figure 6.2, net load is commonly zero or near-zero for many consecutive hours. As a

result clearing prices are commonly $0/MWh (ESR and hydro resources are not excluded from net

load, but are assumed $0/MWh marginal cost).

6.4 Case study results

We consider eight cases; four competitive, four strategic. The competitive cases are co-located

(COL-) and hybrid (H-) reference (-REF) cases assuming all offers at marginal cost. Strategic

cases demonstrate the effects of including (1) resource co-location (COL-PF) vs. hybridization with

perfect foresight (H-PF), (2) increased (10x) transmission capacity so the system is uncongested

with perfect foresight (H-UNC-PF), and (3) fixed bids from deterministic DA expectations cleared

without recourse against RT actual load and renewable generation (H-UN-PF). Strategic cases are

typically compared to their corresponding competitive reference case unless otherwise noted. In all

cases the strategic genco owns the 847MW wind generator at bus 303; in hybrid cases the wind

generator is hybridized with the ESR.
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Table 6.2: Cases in main text. PF is Perfect Foresight.

CASE ESR BUS CMAX SMAX STRATEGIC? HYBRID? PF? TRANSMISSION?

COL-REF 303 300 900 F F T 1x
H-REF 303 300 900 F T T 1x
H-UNC-REF 303 300 900 F T T 10x
H-UN-REF 303 300 900 F T F 1x
COL-PF 303 300 900 T F T 1x
H-PF 303 300 900 T T T 1x
H-UNC-PF 303 300 900 T T T 10x
H-UN-PF 303 300 900 T T F 1x

All simulations are performed in Pyomo 5.6.9 and CPLEX 12.9.0.0 on an Intel Xeon CPU E5-2680

v3 2.50GHz desktop with 12 cores and 64 GB memory. The MILP gap for strategic cases is set at

1.00% for solving each daily case for the modeled month. The cumulative monthly optimality gap in

strategic cases is shown as an uncertainty between the optimal value and the upper bound in Figure

6.3, 6.5, and 6.7. Competitive cases are run as LPs and do not have an optimality gap.

Where applicable, total monthly profits for the genco are reported as πSS for cases where ESRs

are bid strategically and πNSS for the compared competitive reference case where they are not, so

∆πp = πSS − πNSS (6.50)

Is then the incremental portfolio profit associated with strategic bidding compared to a reference

competitive case.

Figure 6.3 compares co-located and hybrid profits when bid strategically to their corresponding

reference cases. Because the resource capacities and availability are identical, the competitive

reference cases result in the same solution and profit. What changes is how the resources are offered

when strategic.
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Figure 6.3: Comparison of monthly profits for co-located and hybrid cases. Additionally bidding
latitude to offer wind generation above marginal cost when hybridized increases portfolio profits.
Uncertainty bars show cumulative optimality gap for cases run as MILPs.

Figure 6.4 highlights why additional supernormal profits are available to hybrids compared to

co-location (Figure 6.3). When co-located the wind resource is bid separately and constrained to

offer at marginal cost. When hybridized the hybrid resource makes a single, unconstrained offer.

The strategic hybrid-owning genco uses this bidding latitude to raise the clearing price at bus 303,

where the hybrid is located.
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Figure 6.4: One month of ESR discharge and wind dispatch offers in co-located and hybrid perfect
foresight cases. ESR charge offers are not shown.

An important part of the parameterization of the previous cases is that the transmission line

between bus 303 and 309 is often constrained, resulting in a bus 303 LMP lower than the system

lambda. As suggested in [35], this creates a situation where a strategic genco in congested generation

pocket can bid up to the system lambda and increase clearing price at its bus; a strategy we refer to in

this case as “ε-decongestion.” Figure 6.5 demonstrates the importance of this strategy by comparing

monthly profit results for the base H-PF case with those of the H-UNC-PF case, which has 10x the

transmission capacity and therefore no congestion. In the uncongested case the competitive profits

πNSS are greater, since bus 303’s competitive clearing price is higher without congestion. However,

in the congested case the additional profit from strategic bidding ∆πp increases.
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Figure 6.5: Additional profits are higher for a congested than uncongested case, demonstrating the
relevance of ε-decongestion in strategic hybrid bidding.

Figure 6.6 compares the bus 301 and 303 clearing price distributions for the reference and

strategic perfect foresight congested and uncongested cases to provide additional insight on results

reported in Figure 6.5. In all cases prices are commonly $0/MWh, but average prices at bus 303 are

considerably higher in strategic (-PF) cases than reference (-REF) cases. Uncongested prices are

higher than congested. In H-REF the bus 301 clearing prices are higher than the bus 303 clearing

prices due to congestion; in H-UNC-REF without congestion they are the same. In H-PF the prices

at bus 301 and 303 are again equal, but this time due to ε-decongestion from strategic bidding.
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Figure 6.6: Bus 303 clearing price comparison. H-REF prices are lower at bus 303 than 301, but
with strategic bidding in the H-PF case ε-decongestion produces the same, higher clearing prices at
both buses.

In the final cases we investigate the ability to maintain strategic profits under uncertainty by

fixing DA hybrid bids without recourse when actual load and variable generation availability are

realized in RT. That is, we fix DA offers without recourse by setting

sodft,s == DADOt,s (6.51)
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sodct,s == DACOt,s (6.52)

Where DADOt,s is the optimal DA discharge offer, DACOt,s is the optimal DA charge offer, and

sofdt,s and sofct,s are the DA discharge and charge offer decision variables, as previously defined.

While a sophisticated genco could undoubtedly do better in forecasting when its optimal offer than

using a single deterministic DA forecast, even this strategy maintains profits for the hybrid-owning

genco under uncertainty. The results demonstrate the potential importance of hybridization as

profitable way to decongest generation pockets and raise clearing prices, for example, by incrementally

decongesting the pocket with an appropriate bid, termed ε-decongestion.

Figure 6.7: Deterministic hybrid bids reduce profit compared to perfect foresight but retain
considerable positive profits under uncertainty in load and variable generation availability.

6.5 Conclusion

A bi-level optimization with reformulation to a MPEC and MILP for analytical tractability

is commonly used to investigate potential strategic behavior in competitive wholesale electricity
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markets, but has not previously been used to consider important aspects of ESR and hybrid resource

bidding in a realistic congested test system with high renewable penetration. We demonstrate

the importance of considering hybridization with ESRs to manipulate prices with strategic bids,

particularly by ε-decongestion. Analytical results are computationally tractable for a 25-bus test

system with high renewables penetration, showing that ESRs located at a congested node with wind

generation may be considerably more profitable for the strategic player if hybridized to allow offering

a single bid, averting marginal cost-based offer mitigation.

Future work will focus on extensions allowing implementation of offer mitigation to inform current

policy processes. Other extensions may include more sophisticated incorporation of uncertainty

using stochastic programming methods. The MPEC formulation may be extended to an EPEC with

multiple strategic players or conjectural variation alternatives to the assumption all other players

bid at known marginal costs. A final direction of research may incorporate optimal siting of ESRs

and hybrids in the test system to maximize strategic player profits, potentially with options for the

strategic player to own additional existing assets in the system as part of its portfolio, rather than

pre-assigning the asset ownership structure.
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Chapter 7 Quantifying the Complementarity
Benefit of Transmission and Electricity Storage
for Incorporation in Resource Adequacy*

Abstract

Resource contributions to power systems reliability at the margin depend on the other resources already on

the system. Commonly-used Effective Load Carrying Capability (ELCC) calculations in resource adequacy

modeling account for this dependency, but rarely include transmission interfaces. We show the simplification

of excluding transmission interfaces when computing energy storage resource ELCCs is often not appropriate.

Sequential Monte Carlo analysis of ELCCs shows energy storage interacts with transmission in a way

generators do not because energy storage can use transmission capacity to charge from external generation

for later discharge. We develop a two-part screening criteria to identify when storage charging from external

generation using transmission interfaces will affect its contribution to resource adequacy. The relevance of

these criteria is first demonstrated on a simple test system, and then for a realistic parameterization of a

20-zone representation of the Midcontinent System Operator’s (MISO) control area. ELCCs for one- to

six-hour duration energy storage resources are decreased 25%-71% by halving available transmission capacity

in the MISO test system and increased 0-17% by doubling available transmission capacity, while generator

ELCCs are unaffected. Results are directly policy relevant to centralized capacity markets with zonal clearing

prices attributing quantity contributions to generation and storage resources using ELCC methods.

* This paper, written with research assistance from Nik Zheng, is in preparation for journal submission.
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7.1 Introduction

Power systems must provide sufficient generation supply on a forward basis to reliably serve load;

this is generally termed resource adequacy (RA). Given new generation resources cannot be added

instantaneously and uncertainty about future load forecasts and generator availability, probabilistic

methods are used to quantify whether a power system achieves a desired level of RA. A common

RA target for North American system operators is “one-day-in-ten-years” [1]. This target assumes

available generation resources insufficient to serve load in expectation one day every ten years is

the optimal trade-off between additional generator cost and value. With additional assumptions

RA target metrics can be converted to an equivalent planning reserve margin (PRM) quantifying

the percent excess of generation capacity above expected annual system peak load. The historically

common equivalent PRM heuristic is still used today in the North American Electric Reliability

Corporation (NERC) target and assessed reserve margins for its constituent areas [2].

Planners must choose among resource options for incremental additions even though resource

adequacy is a system property. Quantifying resource-level contributions is also financially important

because competitive capacity remuneration mechanisms often compensate individual resources. To

better compare resource contributions Garver introduced effective load carrying capability (ELCC)

in 1966 [3]. ELCC quantifies the additional firm load an added resource can serve while maintaining

the same level of reliability as before the resource and load were added. For conventional generators

with failures assumed time invariant and uncorrelated, the ELCC can be calculated by knowing the

Equivalent Forced Outage Rate Demand (EFORd) of the generator; i.e., how often in expectation

the generator’s rated capacity is unavailable when needed to serve load. This heuristic avoids

computationally intensive resource level ELCC calculations incorporating time-dependent failures

and operating constraints.

In recent years the rising penetration of variable renewable energy (VRE) with output correlated

with both other VRE and load has renewed interest in using ELCC-based methods to properly credit

VREs in RA. For example, the Midcontinent Independent System Operator (MISO) calculates a

resource class-average ELCC for its wind and solar capacity [4], and the PJM Interconnection (PJM)
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recently filed for Federal Energy Regulatory Commission (FERC) approval to use ELCC methods to

quantify VRE and energy storage resource (ESR) contributions in its capacity market [5].

The ELCC of an additional variable or energy-limited resources depends on the correlation of its

availability with load and the existing resource portfolio [6]. The existing resource portfolio effect

on ELCC is seen in literature quantifying the declining marginal capacity value of solar PV [7],

wind [8], and energy storage resources (ESRs) [9] as a function of increasing capacity of the same

resource across multiple system configurations [10]. ESRs can partially counteract declining VRE

capacity credit [11], particularly in solar PV-heavy systems given solar PV’s diurnal generation

profile [12, 13]. Another solution for integrating VRE is transmission capacity expansion to increase

VRE deliverability [14,16]. If ESRs increase VRE capacity credit and vice-versa there is a quantifiable

portfolio complementarity benefit between VRE and ESRs [17].

The motivating logic behind this research is that RA complementarity applies to transmission

capacity in addition to different types of generators and energy storage resources. We show

transmission capacity and ESRs have a unique complementarity in multi-zone resource adequacy

when the transmission capacity can be used to charge ESRs at an earlier time to increase reliability at

a later time, increasing overall use of the transmission capacity. Generators, which do not charge and

discharge, are not complemented by transmission capacity in this way. Multi-area RA assessments

incorporating limiting transmission interfaces show reliability benefits of transmission [18,19], but are

uncommon in existing planning processes in large, multi-area power systems due to computational

intensity. We therefore propose new heuristics power system planners can use to identify when

ESRs will charge from generators in an external zone using available transmission capacity for later

discharge to increase reliability at a time when interzonal transmission capacity is constrained. In this

scenario, if transmission capacity is reduced and the ESR could not charge from external generation,

its resource adequacy contribution is reduced. This fact should be reflected in the ESR’s capacity

credit or ELCC by incorporating a limiting transmission interface when it affects ESR charge and

discharge. Because ELCC methods are increasingly commonly used to credit resource-level capacity

contributions in competitive markets, our results showing material effects of transmission capacity

when it constrains charge for later reliability-relevant discharge of ESRs on their ELCCs are directly
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policy relevant to considering increasing penetrations of ESRs in multi-area reliability planning.

The simplest criteria for identifying when transmission capacity should be incorporated in a RA

assessment of ESRs is to know the ESRs are charged by generation resources outside the zone where

the ESR is located for reliability purposes. However, because power flows according to physical

laws and future resource availability and loads are uncertain, it is difficult to identify ex-ante which

generation resources will charge ESRs. We therefore propose two quantifiable metrics for determining

whether increased use of a transmission interface will change ESR capacity credit enough to include

in a RA assessment. We call these the “spatial” and “temporal” criteria: there must be reliability

value (e.g., decreased loss-of-load-probability) in moving energy in both space (i.e., across available

existing transmission capacity) and time (i.e., from a time when transmission capacity is constrained

to a time when it is not) for transmission capacity to complement ESRs.

1. Zones connected by a transmission interface have sufficiently different loss-of-load-probability

(LOLP) or other target RA metric time series (“spatial” criterion); and

2. The transmission interface is constrained during the hours with different zonal LOLP, but not

constrained during hours in the preceding storage duration window, allowing ESR charge in

the earlier hour for discharge in the later hour (“temporal” criterion). This criterion can be

quantitatively screened by comparing loss-of-load event durations to ESR discharge duration

at maximum rated capacity.

Subsequent sections refer to these two criteria as the (1) spatial and (2) temporal criterion or

criteria.

We use a state-of-the-art RA model to run sequential Monte Carlo simulations parameterizing

uncertainty in time-sequential resource failure and recovery probabilities on a two-zone, two-hour test

system to demonstrate the relevance of these criteria. We then run simulations on an annual 20-zone

representation of MISO’s footprint also used in the National Renewable Energy Laboratory’s (NREL)

Seams study [14] to demonstrate practical and policy relevance on a realistic coordinated power

system with intra-balancing authority transmission interfaces. Results are quantified by changing

ESR ELCCs at several quantities of transmission capacity. Increasing ESR ELCCs with added
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transmission capacity show when ESRs can better use incremental transmission capacity to charge

for later discharge, thereby avoiding the need for either more generation capacity or peak-period

transmission capacity connecting to a zone with reliability concerns.

The 20-zone MISO numerical simulations show 17 of 51 (33%) of inter-zonal transmission interfaces

considered link zones with sufficiently different Expected Unserved Energy (EUE). Different zonal

EUEs indicate transmission constraints, because otherwise the higher reliability (lower EUE) zone

would export to the lower reliability (higher EUE) zone to improve system reliability. Sufficiently

different is defined to be 5% of the highest zonal EUE. This suggests these 17 lines are most relevant

to include in RA studies if computationally feasible, while other transmission interfaces could be

excluded.

In base case MISO simulations using data developed for the National Renewable Energy Lab-

oratory’s Seams study [14] one- and four-hour duration ESRs in transmission-constrained zones

pass the temporal criteria. Base case one-hour ESR average ELCCs are 17% lower than those in

a transmission capacity-doubling case, four-hour ESR average ELCCs are 3% lower. ESRs of 6+

hour duration can serve all loss-of-load events from full state-of-charge, so the temporal criterion

does not apply and 6+ hour duration ESR ELCC does not increase with additional transmission

capacity above base case ratings. However, sensitivity analysis shows longer duration ESR ELCCs

are much lower with reduced transmission capacity ratings compared to the base case between zones:

4-hour and 6-hour ESR average ELCCs are 19% and 21% when available transmission capacity is

halved, compared to 86% and 92% base case values. For 1-hour ESRs average ELCC is 9% when

transmission capacity is halved compared to a 34% base case value. Overall, this means halving

transmission capacity reduces one- to six-hour duration ESR ELCCs by 25-71%, highlighting the

complementarity benefit of increased transmission capacity with ESR capacity credit. A similar

complementarity is not realized for the solar PV resource used as a generation comparison. Because

ESRs shift generation in time to better match supply and demand they can have a complementarity

with existing transmission capacity through higher usage not realized by generators.

Results demonstrate the increasing importance of considering limiting transmission interfaces in

resource adequacy with ESRs. ESRs using transmission capacity to charge from external generation
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for later reliability-relevant discharge require moving energy in space and time to maximize their

resource adequacy contribution, as measured by ELCC. Our proposed spatial and temporal criteria

help system planners screen when charging ESRs across a major, reliability-limiting transmission

interface is likely to occur and therefore should be incorporated in ESR ELCC calculations.

7.2 Methods

Power systems models make trade-offs in granularly representing temporal horizon, network

topology, and generator operations. Planners, operators, and researchers therefore commonly

link models to iteratively evaluate power systems at multiple resolutions [14]. This research uses

the National Renewable Energy Laboratory’s Probabilistic Resource Adequacy Suite (PRAS). A

high-level depiction of model resolutions contextualizing PRAS is shown in Figure 7.1.
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Figure 7.1: Typical ranges of geographic and temporal operational resolution of bulk power systems
models. Operational detail of resources is also important and not depicted. Temporal resolution is
commonly non-chronological in resource adequacy models. Capacity expansion models also include
resource investment and retirement decisions at coarser resolution, the figure refers only to their
endogenous operational resolution. BA is Balancing Authority.

In a typical model taxonomy RAMs serve as a link between more temporally granular production

cost models (PCMs) and less granular Capacity Expansion Models (CEMs). PCMs are primarily

concerned with dispatching a fixed resource portfolio to maximize social welfare. CEMs select an

optimal future portfolio of resources to maximize social welfare, but generally with less geographic,

resource, and temporal detail for evaluating resource investment and retirement decisions than

included in PCMs. RAMs typically take portfolios from a CEM and screen them with additional

detail in high (net) load time periods to ensure they meet target resource adequacy metrics before
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the portfolio’s operation is modeled in more detail in a PCM. If a portfolio is deficient in a target RA

metric, the CEM solution can be iterated or further constrained to produce an appropriate portfolio.

Likewise, a portfolio deemed sufficient by the RAM can be modeled in more detail by the PCM,

and iterated if additional PCM detail reveals deficiencies in operations (e.g., insufficient generator

ramping capabilities).

RAMs use probabilistic methods to increase sampling of the most reliability-relevant tail events

while reducing computational burdens compared to PCMs. Common simplifying assumptions in

RAMs include time-invariant generation failure and recovery probabilities, enabling homogeneous

Markov models [20], and ignoring chronologically linked generator operational constraints like unit

commitment and ramp rates. RAMs often model resource availability and load non-chronologically

to better focus on a larger sample of high loss-of-load-probability events most relevant to evaluating a

resource portfolio’s long-run sufficiency. For example, the PJM Interconnection’s approach fits weekly

distributions of loads based on historical data normalized to future peak load forecasts, then evaluates

the sufficiency of a resource availability probability distribution for serving load [21]. Net load duration

curve [22] and convolutional methods [21] can enforce additional correlation between different types

of resource availability and load, improving ability to model variable generation contributions [23]

and correlated generator failures without the chronological computational burden of a PCM. An

assumption that makes these non-chronological abstractions more accurate is that intertemporal

constraints on resource availability rarely bind. This assumption can be inaccurate for energy-limited

resources, whose availability to dispatch is a function of how the resource has dispatched in preceding

hours (e.g., storage or demand response with limited duration). If duration and charge/discharge

behavior are expected to limit resource adequacy contributions, more computationally intensive

sequential Monte Carlo methods may be warranted.

Because of our focus on ESRs, we perform sequential Monte Carlo evaluation by running all cases

using the National Renewable Energy Laboratory’s Probabilistic Resource Adequacy Suite (PRAS).1

PRAS extends traditional single zone RA tools by allowing limited representation of a transmission

system and replaces convolution methods with sequential Monte Carlo draws for calculating the

1https://nrel.github.io/PRAS/
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contribution of resources with temporally linked availability like energy storage. Each Monte Carlo

draw parameterizes a time series of generator, storage, and transmission availability based on failure

and recovery probabilities. Resulting resource adequacy is then evaluated using all Monte Carlo

draws.

PRAS dispatches available ESRs based on a greedy algorithm demonstrated in Evans et al. [24]

to be Expected Unserved Energy (EUE)-minimizing. ESRs are charged when generation is available

and immediately begin discharging at their fully rated capacity when there is a loss of load event

until either their state of charge (SOC) is 0 or the event ends. This does not minimize Loss of Load

Expectation (LOLE), Loss of Load Hours (LOLH), or Loss of Load Probability (LOLP)-based metrics

(see Table 7.1 for definitions), all commonly used as target RA metrics for interpreting the “one-day-

in-ten-years” heuristic [25,26]. EUE considers the magnitude of unserved energy events and treats

MWh of shortfall equally, so it differs as an minimization objective from strictly event-based metrics.

EUE is generally more computationally intensive because it requires calculating the probability of

different magnitudes of shortfall, not just the probability a shortfall event occurs. A greedy algorithm

that minimizes EUE by discharging ESRs as soon as shortfall occurs will increasingly diverge from

LOLE, LOLH, or LOLP-based metrics as ESR capacity increases.

Table 7.1: Definition of Common RA Target Metrics.

Metric Acronym Equationa

Expected Unserved Energy or Expected Energy Not Served EUE or EENS
∑H

h=1

∑S
s P (s)

Loss of Load Expectation LOLE
∑D

d=1 P (Gd < Ld)

Loss of Load Hours LOLH
∑H

h P (Gh < Lh)
Loss of Load Probability LOLP P (Gt < Lt)

a L is Load, G is available generation capacity. h indexes hours, s indexes generator availability states, d
indexes days, t is a discrete time interval. P is probability.

Alternative objectives for optimizing ESR dispatch, such as profit maximization in applicable

wholesale energy and ancillary service markets [27] or retail tariffs [28], integrating and maximizing

charging from variable or low-carbon resources [29–31], and minimizing ESR degradation or opera-

tional costs [32] are also not considered in ESR dispatch decisions. While outside our scope, this

research highlights the potential importance of multiple objectives in optimizing ESR dispatch to
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assessing ESRs’ capacity contribution.

PRAS is first configured in each case to run a network-wide resource adequacy assessment and

record results. PRAS is then configured to calculate effective load carrying capability (ELCC) for an

additional resource.2 To calculate resource ELCC we add either a 100MW or 500MW nameplate

capacity resource in each case, in each zone with a seeded number of sequential Monte Carlo

draws. The additional resource capacity is chosen to be small enough (<1% of installed capacity)

to approximate a marginal addition to the system, but large enough for PRAS evaluation at 1MW

ELCC precision. Results should be interpreted as an average ELCC for a small, added resource of a

specific type and location at a maximum precision of 1MW. ELCCs are reported as a percent of

the added nameplate capacity to better compare across resource additions and cases. The number

of Monte Carlo draws is chosen to balance runtime against precision. PRAS employs a bisection

method for calculating resource ELCC. The bisection method sequentially tightens upper and lower

bounds on additional load that can be served by the evaluated resource until the lower and upper

bounds of the target RA metric (e.g., EUE) are no longer statistically significantly different under

a hypothesis test at a user-input p-value (default, 0.05). PRAS returns the ELCC bounds for the

added resource at the hypothesis test’s significance level for the seeded Monte Carlo draws.

A more detailed explanation of how PRAS incorporates energy-limited resources and calculates

ELCC is available with its online documentation.3

7.3 Data

We examine two cases: (1) a two-zone, two-time period model to demonstrate the model, and (2)

a 20-zone MISO model to test results on a realistic power system.

The two-zone model has one zone with a much higher reserve margin than the other. The two

zones are linked by case-varying transmission capacity. The second time period is higher load than

the first, with the ratio adjusted in cases. The purpose of the two-zone model is to demonstrate the

relevance of the spatial and temporal criteria.
2The type of added resource, e.g. 1-hour or 6-hour ESR, or solar PV, depends on the case. The rest of this paragraph
refers to a "resource" as a term to encompass ESRs of varying duration and different types of generation resources.

3https://github.com/NREL/PRAS/blob/master/docs/getting-started.md
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The 20-zone MISO model uses information on zonal balancing authorities assigned to MISO’s

footprint in NREL’s Seams Study data [14]. Gross zonal hourly loads are available for a weather-

normalized 20124 delivery year; the hourly averages by month are shown in Figure 7.2.

Figure 7.2: Gross hourly average loads for 2012 weather-normalized delivery year and included
MISO zones. Names for zonal abbreviations are in Appendix A. Geographic locations of zones are in
Figure 7.3.

Zonal shapefiles are not publicly available, so boundaries of MISO zones are mapped to a public

shapefile of the entire MISO footprint5 based on coordinates of renewable energy profiles assigned to

the zones in Seams data provided by contacts at MISO.6 Zones without either a MISO load profile

or renewable energy profiles are excluded in results. The resulting zonal geography is Figure 7.3.

42012 was a leap year with 8784 hours. We exclude February 29, 2012 data and evaluate all annual cases for 8760
hours in 2012.

5https://hifld-geoplatform.opendata.arcgis.com/datasets/9d1099b016e5482c900d657f06f3ac80_0
6Figueroa-Acevedo et al. [15] discusses data development for the Seams study, including renewable profiles and
transmission representation of the Eastern Interconnect. Online documentation is available at https://www.nrel.gov/
analysis/seams.html. However, at the time of writing the final Seams study and associated data are not yet fully
publicly available.

245

https://hifld-geoplatform.opendata.arcgis.com/datasets/9d1099b016e5482c900d657f06f3ac80_0
https://www.nrel.gov/analysis/seams.html
https://www.nrel.gov/analysis/seams.html


Figure 7.3: Zonal polygons and inter-zonal transmission capacity in retained 20-zone MISO model.

We also received Seams study data for the MISO footprint on interzonal transmission capacities,

the individual generation resources assigned to each zone, as well as regional assignment of installed

renewable energy capacity. Only resources assigned in Seams data to the 20 zones in Figure 7.3

are included in model results. Two external zones (AECIZ and CBPC-NIPCO) have transmission,

generation, and load Seams data and are included in resource adequacy calculations, but they are

not assigned renewable capacity and their RA results are not reported. Conventional generator

parameters for MISO cases are shown in Table 7.2. Assigned equivalent forced outage rates (eFOR)
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incorporate both planned and unplanned outages, and for simplicity assume planned outages are

random. The same generator eFORs are used in the two-zone model, but total installed capacities

differ.

Table 7.2: Conventional Generator Capacity and Failure Parameters.

Generator Type Total Capacity (MW) eFOR (%)

CC 23,140 10.88
Coal_ST 61,282 12.16
Gas_GT 24,260 6.37
Hydro 2,612 2.40
Nuclear 13,288 10.80
Biomass 615 13.97
Gas_IC 16 4.58
Gas_ST 4,323 15.00
Oil_ST 671 12.93
Oil_IC 41 4.58
PS 2,000 13.05
Waste HT_ST 18 2.40
Oil_GT 78 7.58

Zonal renewable penetration uses the wind-heavy, 40% renewable penetration by energy case

developed in MISO’s Renewable Integration Impact Assessment (RIIA) [33]. Additional information

on RIIA scenarios is in Appendix A. Zonal installations of each renewable resource type are shown

in Table 7.2. Renewable capacity is allocated from the MISO Local Resource Zone at which it is

defined in RIIA scenarios to Seams zones pro rata with the Seams zone’s fraction of LRZ load.

Translating between the 20 retained Seams zones and 10 MISO LRZs is required because MISO

data and scenarios for planning are for MISO-defined LRZs, while Seams uses a different definition

of zones constituting the MISO footprint. Zonal renewable profiles use the highest capacity factor

site. The far-right column in Table 7.3 also reports the top-100 gross load hour capacity factor as

indicative of the resource’s ELCC on a system where gross and net peak load hours are similar.

Zonal variable generation capacity factors differ due to differences in resource quality; in particular,

Seams zones in the southern portion of MISO’s footprint typically have lower wind resource quality

than zones in central and northern MISO. Differences in resource quality are generally reflected in

both existing installed capacity and the RIIA wind-heavy, 40% renewable penetration scenario for
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which installed capacities by LRZ are shown in Table 7.3.
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Table 7.3: Renewable Generation Installation in MISO Base Case.

Renewable
Generator Type

MISO
LRZ

Constituent
Seams Zones

Renewable
Installed

Capacity (MW)

Annual Capacity
Factor (best site, same order as
Constituent Seams Zones, %)

Top-100 gross load hours
Capacity Factor (same order as
Constituent Seams Zones, %)

Utility Wind 1
MN-C,
MN-NE,
MN-SE

20,100 49%, 50%, 49% 22%, 25%, 29%

Utility Solar 1
MN-C,
MN-NE,
MN-SE

2,700 17%, 17%, 16% 54%, 51%, 47%

Distributed Solar 1
MN-C,
MN-NE,
MN-SE

1,700 17%, 16%, 15% 55%, 53%, 52%

Utility Wind 2 ATC,
UPPC 3,400 50%, 55% 26%, 47%

Utility Solar 2 ATC,
UPPC 600 16%, 15% 46%, 42%

Distributed Solar 2 ATC,
UPPC 1,200 16%, 15% 48%, 44%

Utility Wind 3 MEC,
IA-E 21,900 47%, 51% 22%, 26%

Utility Solar 3 MEC,
IA-E 1,400 18%, 17% 52%, 50%

Distributed Solar 3 MEC,
IA-E 900 17%, 16% 54%, 52%

Utility Wind 4 IL-C,
SIPC 4,800 47%, 47% 23%, 23%

Utility Solar 4 IL-C,
SIPC 1,400 17%, 17% 49%, 46%

Distributed Solar 4 IL-C,
SIPC 800 17%, 16% 50%, 48%

Utility Wind 5 MISO-MO 1,000 45% 10%
Utility Solar 5 MISO-MO 800 17% 49%
Distributed Solar 5 MISO-MO 700 17% 49%

Utility Wind 6
IN-S,
IN-C,
NIPS

3,100 45%, 43%, 46% 18%, 20%, 24%

Utility Solar 6
IN-S,
IN-C,
NIPS

5,000 17%, 16%, 16% 46%, 43%, 45%

Distributed Solar 6
IN-S,
IN-C,
NIPS

1,400 16%, 16%, 16% 48%, 44%, 46%

Utility Wind 7 CONS,
DECO 6,200 51%, 44% 36%, 27%

Utility Solar 7 CONS,
DECO 800 16%, 16% 42%, 43%

Distributed Solar 7 CONS,
DECO 1,700 16%, 15% 44%, 46%

Utility Wind 8 EES-ARK 100 47% 23%
Utility Solar 8 EES-ARK 4,000 17% 46%
Distributed Solar 8 EES-ARK 700 16% 48%

Utility Wind 9
LA-GULF,

LA-N,
EES-TX

0 42%, 46%, 40% 13%, 14%, 14%

Utility Solar 9
LA-GULF,

LA-N,
EES-TX

4,800 17%, 17%, 17% 44%, 47%, 51%

Distributed Solar 9
LA-GULF,

LA-N,
EES-TX

2,100 17%, 16%, 17% 44%, 48%, 52%

Utility Wind 10 MISO-MS 100 35% 8%
Utility Solar 10 MISO-MS 1,800 17% 43%
Distributed Solar 10 MISO-MS 500 16% 43%
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The additional renewable capacity creates capacity excess compared to the assumed 2012 load

profiles. We therefore adjust load profiles to a MISO-wide planning reserve margin (PRM) of 18% for

general consistency with MISO’s current capacity-based planning reserve margin [34]. Renewables

are counted toward PRM at their capacity factor in the top-100 gross load hours as a computationally

fast approximation of their ELCC, conventional generators are counted at their nameplate capacity.

We do not assume any installed ESR capacity in the base case; ESR capacity is added and its ELCC

evaluated as specified in cases. We include a set of sensitivity cases with 30 GW of installed 6-hour

duration ESR capacity in the main results. In these cases and other sensitivities with ESRs the ESR

capacity is assigned to zones pro-rata with zonal renewable capacity and the MISO-wide PRM is

re-adjusted, for simplicity to ignore resource type-specific retirement decisions, to 18% by adding

load. Monte Carlo draws simulate 1,000 runs of all 8760 annual hours in MISO cases.

7.4 Results

Results are first presented for a two-zone test system for two hours to show the importance of the

temporal and spatial criteria to an ESR-transmission complementarity benefit in resource adequacy.

The complementarity benefit is quantified as a higher ELCC for ESRs when transmission capacity is

increased, showing the ESRs can use the additional transmission capacity to access generation in

another zone and charge for later discharge. Comparing with a generator demonstrates when the

complementarity is unique to the charging and discharging behavior of ESRs. A subsequent resource

adequacy assessment of the annual (8760) 20-zone MISO representation demonstrates the practical

relevance of results.

7.4.1 Two-zone model

The two-zone, two-hour model has one zone (“Zone 1”) with a lower reserve margin than the other

(“Zone 2”). Load is higher in hour 2 than hour 1 so a 1-hour duration ESR can charge in the earlier

hour and discharge in the next hour. The two zonal reserve margins are adjusted across the three

sets of cases shown in Figures 7.4-7.6 to change relative zonal LOLP and demonstrate the spatial
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criterion. The two zones are connected by a transmission line. The capacity of the transmission line

is changed in runs within each set of cases to allow excess transmission capacity in neither hour,

only hour 1, or both hours, demonstrating the relevance of the temporal criterion.

All two-zone, two-hour model runs use 1,000,000 Monte Carlo draws of generator, storage, and

transmission availability in the two zones. Generation resources fail and recover randomly with the

eFORs defined in Table 7.2. For simplicity ESRs and transmission are assumed perfectly available,

so Monte Carlo draws only reflect different time series of generator availability. ELCCs are calculated

using the same 1,000,000 draws for a 100MW addition of an evaluated resource (e.g., 1-hour duration

ESR) in each of the two zones and reported as a percent ELCC of the resource’s max ELCC of

100MW:

%ELCC =
ELCC(MW )

MaxELCC(MW )
(7.1)

7.4.2 Demonstrating conditions with two-zone model

Three sets of cases demonstrate the spatial criterion in Figure 7.4-Figure 7.6 by adjusting zonal

reserve margin and hourly load to show how differences in zonal reliability metrics interact with

interzonal transmission capacity to affect resource ELCC. Transmission capacity connecting the

two zones is then varied within each set of cases (see panel B of Figure 7.4-Figure 7.6) to test

the applicability of the temporal criteria. The cases in Figure 7.4-Figure 7.6 have homogeneous,

temporally heterogeneous, and temporally and zonally heterogeneous reserve margins, respectively.

In the Figure 7.4 case both zones have a lot of internal excess generation capacity in both hours

(homogenous zonal reserve margins). Resulting LOLP in both zones is 0% irrespective of interzonal

transmission capacity. The spatial criterion does not apply because zonal LOLPs are equal.
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Figure 7.4: Both zones have large quantities of excess internal generation capacity compared to
load (A). This results in 0.00% LOLP in both modeled hours (B), even without a transmission link
between zones (red line in (B) and (D)). Both 1-hour duration storage and a perfectly available
generation resource have 0% ELCC (C) because the system is already perfectly reliable within
rounding error precision.

In the Figure 7.5 case both zones have a lot of excess internal generation capacity in hour 1,

but insufficient internal generation capacity in the very high load hour 2 (temporally heterogeneous

zonal reserve margins). The spatial criterion does not apply because LOLP is different across time

(100% hour 2, 0% hour 1) but not space (same in both zones for the same hour).
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Figure 7.5: Both zones are deficient in installed generation capacity compared to peak load (A) in
hour 2, but not hour 1 (B). This results in 0.00% LOLP in hour 1 but 100% LOLP in hour 2 in
both zones (B). Transmission does not constrain generators’ ability to serve load (D). Both 1-hour
storage and a perfectly available generation resource have 99%±1% ELCC irrespective of which zone
they are in (C) because they have the same ability to serve load in hour 2.

In the set of cases in Figure 7.6 zone 2 has excess internal generation capacity in both hours, but

zone 1 is deficient in internal generation capacity in both hours. Without a transmission link the

LOLP in zone 1 is non-zero in hour 1 and 100% in the higher load hour 2. LOLP is 0% in both

hours in zone 2. That LOLP is non-zero for only a single zone in a single hour means LOLP is both

zonally and temporally heterogeneous. More transmission capacity allows the zone 2 generation

capacity to serve load in zone 1 and affects resources’ ELCCs.
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Figure 7.6: Zone 2 has significant excess internal generation capacity in both hours, while Zone 1 is
deficient in internal generation capacity both compared to peak load (A) in hour 2 and, depending on
generator failures and transmission availability, hour 1 load as well (B). A complementarity benefit
is realized between storage and transmission that is not true of generators (C), see Figure 7.7 for
additional detail.

The key insight in Figure 7.6 is how transmission capacity affects resource ELCC can be different

for ESRs and generators (panel C). Unlike generators, ESRs must first charge to later discharge.

The ESR ELCC depends on its ability to use available transmission to charge in an earlier hour

without unserved energy7 so it is available to later reduce unserved energy. Generators are not

intertemporally constrained in RA models.8 The intertemporal linking of ESR availability can result

in an increasing ELCC “complementarity benefit” for ESRs with transmission availability for ESR

charging that does not exist for generators, which do not need to charge.

The complementarity benefit is realized only under circumstances where shifting energy in both

7If the earlier hour has unserved energy, charging the ESR will increase total unserved energy assuming <100%
roundtrip efficiency

8In operational models conventional generators are often modelled with commitment decisions reflecting minimum
online, offline, and startup/shutdown constraints, which make their availability temporally linked. This detail is not
included in RA models.
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space (i.e., across zones to charge ESRs) and time (i.e., from an earlier to a later hour) is important.

These are the circumstances where the two criteria apply. Figure 7.7 provides additional detail on

when and why this occurs in the same two-zone, two-time period case introduced in Figure 7.6.

Figure 7.7: Increasing transmission capacity in region A increases ESR ELCC in the higher LOLP
zone 1 because ESRs can increasingly be charged in hour 1 by generators in zone 2 for discharge in
hour 2 in zone 1. In region B transmission capacity is always sufficient to charge zone 1 ESRs in
hour 1 for discharge in hour 2 but always insufficient to reduce LOLP in hour 2 to 0%. Both criteria
apply and the complementarity benefit is maximized. In region C transmission capacity is sufficient
to use resources in Zone 2 to serve all load in Zone 1 in hour 2 directly without needing to shift
energy from hour 1.

Figure 7.7 is proof of concept for the two criteria. First, unequal zonal LOLPs, the spatial

criterion, are necessary for valuing shifting energy in space to the higher LOLP zone with transmission

(region B vs. region C). Alone, additional ability to shift energy in space increases both generator and

ESR ELCC. For there to be a unique benefit for ESRs, transmission availability must be different in

the earlier and later hour. This temporal criterion means ESRs complement available transmission

capacity by using available transmission capacity to shift energy in time (region A vs. region B),

increasing overall use of the transmission capacity. Generators do not shift energy in time; therefore,

they cannot increase overall use of transmission capacity by charging in an earlier time period for

discharge in a later time period, and do not realize the same complementarity with transmission

capacity.
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Extending the spatial criterion to more than two zones is straightforward: identify zones with

different reliability metrics, indicating a binding transmission constraint. Extending the temporal

criterion to more than two timepoints is less straightforward because event lengths are heterogeneous

and ESRs can have different durations. Figure 7.8 demonstrates a method for generalizing the

temporal criteria by comparing the probability of different duration loss-of-load events to the duration

of the ESR at different levels of installed transmission capacity. ESR ELCC is approximated by the

percent of event durations shorter in time than the ESR duration. In the case of a 1-hour ESR, it

can serve only 1-hour events (note 0-hour “events” mean no loss of load).
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Figure 7.8: Probability of loss-of-load events of each hour duration in each zone for different quan-
tities of transmission capacity between zones. Event durations with 0% probability are white/blank,
all non-zero probabilities are shaded yellow, orange, or red as per the legend. 0-hour duration means
no loss of load in that zone in the case. ESRs can serve 1-hour events (all of which occur in hour 2)
by charging in hour 1, but not 2-hour events. Going from 0 to 2750 MW of transmission capacity
eliminates 2-hour events, increasing ESR ELCC.
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For the two-hour, two zone case Figure 7.8 exhaustively enumerates all possible LOLP outcomes,

and no quantification of ESRs’ ability to charge between loss-of-load events is needed. Because LOLP

is always higher in hour 2 than hour 1 in the Figure 7.8 case, separating 1-hour events occurring in

hour 2 vs. hour 1 is unnecessary. However, note ESRs could not serve hour 1 events if they began

with zero state of charge. The starting time period state of charge assumption affects a smaller

fraction of hours when evaluating realistic test systems and is ignored for simplicity when extending

the event duration screen to 8760 time periods in the next section.

7.4.3 Extension to more zones and time periods with MISO test case

The previous examples considered only two zones with two time periods to demonstrate spatial

and temporal criteria relevance. RA assessments of realistic power systems require extension to more

zones and time periods. This section quantifies zonal resource ELCCs in a realistic power system

using data for a 20-zone representation of MISO. Base case (40% VRE, 18% PRM) EUE is 30 GWh

(0.005% of annual load), or 0.4 hours of average hourly load of 78 GWh.

The spatial criterion requires a target RA metric differ across zones. Differences in EUE or

another RA metric indicate constrained transmission because excess transmission capacity would

be used to equilibrate zonal RA and increase system reliability. This criterion is screened by

calculating zonal RA metrics using available data on transmission interfaces and generator locations.

Misalignment of zonal loss-of-load events indicates a transmission interface is constrained and should

be included. Figure 7.9 shows an example of this approach for the MISO test case using EUE as the

target RA metric. Assuming zones with >5% of the maximum zonal EUE ( 16,000 MWh) cannot be

aggregated results in 17 of the 51 lines remaining in the second panel of the figure.
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Figure 7.9: Example of spatial criterion evaluation using MISO base case data (40% VRE target).
Transmission interfaces between zones without sufficient EUE-based differentiation (EUE<800MWh)
are dropped in the right panel. Zones could then be combined into a larger single zone. Using fewer
zones decreases computational burden. Average flow is a simple average of all 8760 hours and 1000
Monte Carlo draws.

The temporal criterion depends on the ability of ESRs in a zone with non-zero LOLP to serve

loss-of-load events of multiple time durations. An extension of the proposed screen from Figure

7.8 to more than two time periods considers the probability of each duration of expected zonal

loss-of-load events on the test system at hourly resolution. The temporal criterion applies when

some loss-of-load events exceed the duration of ESR discharge from maximum state of charge. Event

duration probabilities are shown for the MISO test system zones below for two cases: base case
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transmission and 25% of base case transmission capacity. In the latter case all line capacities are

reduced 75%. Ceteris paribus reduced transmission capacity increases LOLH (and EUE) because

RA depends more on sufficiency of intrazonal resources.

Figure 7.10: Zonal loss-of-load event duration probabilities (red, rectangles) and annual LOLH
(green, circles at far right) for base and 25% transmission capacity cases. Probabilities are the
percent chance of an event of the labeled duration out of all hourly resolution zonal events. The
far right column shows the total zonal LOLH in event hours per year. With increased transmission
capacity overall LOLH is lower and shorter duration events are more common; 6-8 hour duration
ESRs can serve most events. As transmission capacity is reduced events lengthen and a 6-8 hour
duration ESR can no longer fully serve longer-duration events.

Whether the zones meet the temporal criterion then depends on the duration of the ESR

considered, shown in more detail in the next section. There are simplifications made in a discrete

event-based temporal criterion screen (Figure 7.10): for example, it does not consider the number

of hours between consecutive events during which ESRs can recharge to enable serving the next

event with sufficient state of charge. Additionally, PRAS dispatches ESRs to minimize unserved
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energy; consideration of other objectives in ESRs’ dispatch heuristic and uncertainties in dispatch

to (co-)optimize other objectives may reduce RA credit. These considerations mean ESRs may not

be able to serve shorter duration events than its fully rated capability, so the zonal event duration

screen for the temporal criterion is a minimal screen for inclusion.

7.4.4 MISO zonal results

The previous section applies the temporal and spatial criteria to the MISO zonal test system.

Screens show as few as 17 of the 51 transmission interfaces can be included and that the temporal

criterion does not apply for 6-8 hour duration ESRs with base case transmission capacity, but will

apply for shorter duration ESRs or for longer duration ESRs with reduced transmission capacities.

To demonstrate these screens are appropriate in results, ELCCs are calculated for 500MW

additions to the MISO test system of four types of resources: a 1-hour ESR, 4-hour ESR, 6-hour

ESR, and solar PV. ELCCs are reported as %ELCC (Eq. 7.1). ESR ELCCs decline with decreased

transmission capacity, indicating a complementarity benefit between ESRs and transmission. The

range of simple average ELCC reductions in the five highest LOLH zones with halved transmission

for 1-6 hour ESRs is 25%-71% (Figure 7.11). Solar PV does not show similar ELCC declines with

reduced transmission capacity.

Although the spatial criterion suggests some adjacent zones with zero LOLH could be aggregated

in the base case, we evaluate resource ELCC for all 20 zones to fully demonstrate results. Each

ELCC evaluation uses 1000 Monte Carlo samples of the 8760 hours. ELCCs are reported for a 0.05

p-value evaluating the hypothesis test that the upper bound on ELCC is statistically significantly

different than the lower bound after each bisection. Load for ELCC evaluation is added in the

same zone as the additional resource. Resource zonal ELCC evaluations for the 1000 Monte Carlo

draws take 2-12 minutes of clock time on an Intel Xeon CPU E5-2680 v3 2.50GHz desktop with 12

cores and 64.0 GB memory depending on how many bisections are needed before the upper and

lower bound RA metric are no longer statistically significantly different. That each zonal resource

evaluation takes this much time for 1000 Monte Carlo draws highlights the importance of applying

the criteria screens before including multiple zones in RA.
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Figure 7.11 results are for the base case with 0 GW of ESR installed capacity (ICAP) before

addition of the 500MW resource for ELCC evaluation. Figure 7.12 also shows the ELCCs of the

same resources at 30 GW of 6-hour ESR ICAP; 30 GW is approximately 25% of recent MISO peak

load (see Figure 7.2). On the x-axis the transmission capacity between zones is varied by multiplying

the base case transmission capacities by a percent scalar; 100% means the base case capacity, 25%

would be a 75% reduction in each line’s base case capacity, 200% a 100% increase, etc. As suggested

by comparing zonal LOLHs for the top and bottom panels in Figure 7.10, changing transmission

capacity assuming the same resource portfolio affects overall LOLH: more (less) transmission capacity

makes total LOLH increase (decrease) due to increased (decreased) ability of transmission to deliver

generation to lower reliability zones. Also as suggested by Figure 7.10, increasing LOLH with

decreasing transmission capacity tends to make events longer, which reduces ELCCs of increasingly

longer-duration ESR additions. Finally, Figure 7.10 shows five zones with >1.0 LOLH in the base

case (100% Transmission Capacity): LA-GULF, MEC, EES-TX, MN-SE, and MISO-MS. While

Figure 7.11 and Figure 7.12 include ELCC results for all zones, they highlight the five highest LOLH

zones because they are most relevant for increasing RA, similar to how Zone 1 was more relevant

than Zone 2 in the example cases in Section 7.4.1-7.4.2.
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Figure 7.11: Zonal ELCCs as a function of increasing transmission capacity with 0GW of installed
ESR capacity. The five zones with highest LOLH are highlighted and labeled.

The ESR complementarity benefit is most prominently displayed in Figure 7.11 for 4-hour and

6-hour duration ESRs as transmission capacity increases from 50% of base case to base case (100%)

capacity: 4-hour ESR ELCCs increase from a simple average of 19% to 86% in the five highlighted

zones, and 6-hour ESR ELCCs from 21% to 92%. Increased transmission capacity reduces the

expected duration of loss-of-load events in the five zones, meaning the temporal criterion applies and

ESRs are able to serve an higher percent of loss-of-load events. 1-hour ESRs also see an increase in

ELCC from 9% to 34%; the effect is smaller because most loss-of-load events are longer than one

hour. Reducing transmission capacity by half thus reduces ELCCs of 1-6 hours ESRs by 25-71%.

This effect does not apply for the generator: simple average solar PV ELCCs in the five zones
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increase from 26% in the base case to 27% for the same halved transmission capacity.

Increasing transmission capacity above base case values shortens average event duration, but

6-hour duration ESRs ELCCs are already saturated because events are rarely longer than 6 hours

with base case transmission capacity. Shorter average event duration due to increased transmission

capacity increases 1-hour ESR average ELCCs from 34% to 51% (+17%) and 4-hour ESRs from

86 to 89% (+3%) in the five highlighted zones with 50% more transmission capacity than the base

case. However, doubling of transmission capacity (+100%) does not increase average 1-hour ESR

ELCC more than a 50% increase because with high levels of transmission capacity deliverability no

longer constrains resources in one zone from reducing EUE in another. Average solar PV ELCCs

are unaffected by increasing transmission capacity. Increasing transmission capacity increases the

ELCCs of ESRs when it reduces length of loss-of-load events to shorter than the ESRs’ duration.

This complementarity benefit does not apply if event length or ESR duration are too short, and does

not apply to generation since generators cannot temporally shift load to increase use of available

transmission capacity at earlier times.

Figure 7.12 shows the same 500MW addition resource ELCCs for a “high existing ESR” case

with 30 GW of existing 6h ESR ICAP (MISO-wide PRM is adjusted to remain 18%). A comparison

of resource ELCCs with increased ESR ICAP shows solar PV is complemented by ESR installation

(higher solar PV ELCC at higher ESR penetration), but ESRs exhibit declining marginal capacity

credit (lower ESR ELCC at higher ESR penetration).
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Figure 7.12: Zonal ELCCs as a function of increasing transmission capacity with 30GW of installed
6h ESR capacity. The five zones with highest LOLH are highlighted and labeled.

Average transmission base case ELCCs in the five highest LOLH zones are 9%, 16%, and 29% for

1-,4-,and 6-hour ESRs, respectively, compared to 34%, 86%, and 92% in the no existing ESR base

case (Figure 7.11). Reduced transmission base case ELCCs quantify declining marginal capacity

credit of ESRs with ESR penetration. Average solar PV ELCC is 29%, higher than the 26%

in the no existing ESR base case. Higher ELCC means solar PV is complementary with ESRs,

supporting previous research conclusions [12, 35]. Increased ESR ICAP shifts complementarity with

transmission to higher installation capacity: in the 30GW ESR ICAP case, doubling the base case

transmission capacity increases average 1-,4-, and 6-hour ESR ELCCs from 9%, 16%, and 29% to

16% (+7%), 36% (+20%), and 49% (+20%), respectively. More transmission capacity is needed
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to realize complementarity benefits than in the no existing ESR case because a system with high

more ESR contribution to an equal RA target has relatively less generation. This makes the system

more dependent on its transmission to charge ESRs from available, potentially variable generation

in different zones. Transmission constraints bind more often, increasing EUE, until higher quantities

of transmission capacity than in the no existing ESR case, so more transmission capacity is needed

to maximize complementarity benefit with ESRs.

Case results show that while zonal resource ELCC is system-dependent, the spatial and temporal

criteria apply for ESRs of sub-6 hour duration on a realistic test system. Reducing transmission

capacity reduces the ELCC of increasingly long (6+ hour) duration ESRs. As increased transmission

capacity reduces some loss-of-load event durations below an ESR’s duration its ELCC increases.

This indicates an ESR-transmission complementarity benefit in zonal RA.

7.5 Conclusion and Policy Implications

We develop a two-part screening criteria for including transmission interfaces in RA models with

ESRs. The two criteria are different levels of zonal reliability, indicating a constrained transmission

interface in reliability-relevant hours, and ESR discharge durations shorter than some loss-of-load

event durations, indicating the ESR’s need to shift as much energy in time as possible to maximize

its reliability contribution (ELCC). Together these "spatial" and "temporal" conditions indicate

transmission constrains an ESR’s ability to charge to serve reliability events by discharging for its

full duration at full rated capacity. This indicates more transmission capacity will complement the

ESR, increasing its ability to charge for later reliability-relevant discharge and thus increase its

ELCC. The resulting complementarity benefit is demonstrated in model cases by increased ESR

ELCC with increased transmission capacity when moving more energy in space and time increases

reliability. The same complementarity benefit does not apply for generators because they do not

increase use of additional transmission capacity by charging for later discharge.

Results emphasize the importance of considering transmission interfaces in resource adequacy

with ESRs when ESRs will charge from resources external to the ESR’s zone for later discharge
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when transmission capacity is constrained. Under these conditions ESRs increase use of incremental

transmission capacity for reliability. This means incorporation of transmission capacity in RA

endogenizes a benefit traditionally considered in transmission planning or proposed approaches for

ESRs substituting for transmission [36].

Results are policy relevant to planning areas with zonal transmission constraints currently using

or considering ELCC-based methods for assigning ESR capacity credit. This minimally includes

all planning areas with centralized capacity markets, resource-level capacity credits, and zonal

clearing prices. While RA models will not include the topological detail in nodal production cost

models, in practice representing even one major limiting transmission interface can be important.

For example, Mills et al. split PJM into Western and Eastern zones to better reproduce historical

prices [37], and California Independent System Operator (CAISO) wholesale prices are commonly

geographically differentiated into northern and southern areas (denoted NP15 and SP15, respectively)

in analyses [38]. To underscore the importance of including a major limiting interface two zonal

capacity-weighted clearing prices for each of the three centralized United States capacity markets

(PJM, ISO-NE, NYISO) since their inception are shown in Figure 7.13.
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Figure 7.13: Annual capacity clearing prices for a more and less expensive zone in each of the
three major United States ISOs with centralized capacity auctions. NYISO runs 6-month winter and
summer auctions; values shown are summer clearing prices. ISO-NE only reports zonal prices when
different from the “Rest of Pool” clearing price. The NYISO Rest of State (“ROS”) line is renamed the
New York Control Area (NYCA) clearing price from 2016-present. PSEG is Public Service Electric
and Gas (NJ), AEP is American Electric Power (OH), NEMA is Northeastern Massachusetts, NYC
is New York City. All three markets have more than two different zonal clearing prices in some
auctions.

Different zonal clearing prices in today’s markets suggests limits on inter-zone deliverability, so

the spatial criterion applies. If ESR capacity additions are shorter duration than some loss-of-load

events, the temporal criterion applies and considering ESR-transmission complementarity in zonal

RA may materially affect ELCC. For example, if loss-of-load events are more likely in NYISO’s New

York City (NYC) zone9 than upstate but are short enough to be served by an ESR, this could be

identified as a lower cost alternative to additional, rarely used transmission capacity or a conventional

generator in the resource adequacy process without requiring a separate transmission or non-wires

alternative study process. Using the two criteria will directly compare the ELCC contribution of a

ESR in NYC to an ESR in other zones, a generator in NYC, or additional transmission deliverability.

The NYC ESR may be preferable when it can use available existing transmission capacity in earlier

hours to charge for discharge in later hours with non-zero LOLP when transmission constrains

deliverability.

Results also underscore the general importance of considering transmission investment alongside

9New York City is NYISO Zone J, but we refer to it here as NYC.
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generation and ESRs in planning. Research identifies considerable benefits in better coordinating

transmission investment decisions with other resources using probability-weighted scenarios for future

loads and generation resources [39, 40]. The importance of co-optimizing transmission planning

increases with forecast future increases in variable and energy-limited resource penetration [14].

However, transmission and generation planning are commonly done in parallel, even for the high-

voltage bulk system. Separate tracks for ESRs to be valued in transmission (“storage as a transmission

asset”, SATA) and generation planning creates potential for under- or double-counting ESRs’ value.

SATA assumes ESRs substitute for additional transmission under some circumstances; we show ESRs

are more accurately thought of as complementing transmission by shifting load to increase use of

existing transmission capacity. The broader point is ESRs are neither transmission nor a generator, so

trying to fit them into old constructs developed for those resources instead of better valuing services

like resource adequacy can be quixotic. Compensating ESRs through rate-of-return constructs

historically applied to transmission may have benefits in increasing projects’ revenue certainty, but

misses an opportunity to take a step toward more holistically evaluating resource contributions

in providing services. This general point also applies to hybrid resources made up of ESRs and

generators, demand-side flexibility, and other resources that may not look like transmission, variable,

nor conventional generation for resource adequacy purposes in coming years. Hybrid resources,

which may be configured with an interconnection limit that optimizes use of existing transmission

capacity with ESR charging from otherwise curtailed variable generation [29], particularly underscore

the point that market participants with financial incentive will consider complementarity between

transmission, ESRs, and generation in planning.

Future research can consider additional dispatch heuristics for ESRs, better incorporating

uncertainty in ESR dispatch decisions and objectives other than capacity value maximization with

an EUE-based target metric.
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A MISO and RIIA Data Appendix

Zones in strikethrough in Table A-1 are excluded in results because we have load but not

renewable profile data for these zones. Their generation resources and transmission capacity are

modeled for RA metric calculations.
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Table A-1: Zonal load data. Zones in strikethrough are excluded in the 20-zone MISO representation
used in cases in the main text results.

Full Zone Name Abbreviation Average Hourly Load (MW)

Associated Electric Cooperative, Inc. AECIZ 3,328
American Transmission Company ATC 7,437
Corn Belt Power Cooperative CBPC-NIPCO 521
Consumers Energy CONS 5,412
DTE Energy (Detroit Edison Company) DECO 6,085
Entergy Arkansas EES-ARK 4,043
Entergy Texas EES-TX 2,520
Iowa East IA-E 3,150
Illinois Central IL-C 5,368
Indiana Central IN-C 4,307
Indiana South IN-S 730
Louisiana Gulf LA-GULF 3,897
Louisiana North LA-N 5,530
MidAmerican Energy Company MEC 4,768
MISO Missouri MISO-MO 6,342
MISO Mississippi MISO-MS 2,511
Minnesota Central MN-C 1,691
Minnesota Northeast MN-NE 965
Minnesota Southeast MN-SE 7,206
Northern Indiana Power Service NIPS 1,485
Southern Illinois Power Company SIPC 54
Upper Peninsula Power Company UPPC 121
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