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Abstract 
 
This thesis provides an initial understanding of the potentially fundamental changes to the way 
passenger vehicle transportation in the United States (U.S.) is changing given the introduction of 
ridesourcing via transportation network companies (TNCs), like Uber and Lyft, and the effects 
those changes have on energy and environmental outcomes. First, in a set of two complementary 
studies, I employ real-world data and econometric modeling to assess the impacts that TNCs 
have already had on U.S. states and urban areas. In the first study (Chapter 2), I focus on the 
state level, where relevant data are publicly available to estimate TNC market entry effects on 
vehicle registrations, gasoline use, vehicle miles traveled, and air pollutant emissions. I find an 
average decrease in vehicle registrations and no significant effect on other outcomes. In the 
second study (Chapter 3), I assess TNC effects on vehicle fleet composition (total registrations 
and fuel economy) and transit ridership at the urban area level and find evidence that TNC entry 
causes an average 0.7% increase in vehicle registrations and no average effect on overall fleet 
efficiency or transit ridership. The difference in state- and urban area-level effects on vehicle 
registrations is due, in part, to heterogeneity in the effects of TNC entry on different cities: I 
employ heterogeneous treatment effect, clustering, and regression interaction analysis and find 
significant heterogeneity across urban areas. TNC entry tends to increase vehicle ownership in 
urban areas with higher initial vehicle ownership and lower population growth rates, TNC entry 
tends to increase vehicle ownership, increase overall fleet efficiency more in urban areas with 
lower childless household rates, and increase transit ridership more in urban areas with lower 
average incomes and childless household rates. Where the first two studies look at aggregate past 
changes to the transportation system attributable to TNCs from the top down using observable 
indicators at the aggregate state and urban area levels, a third study in Chapter 4 considers a 
similar set of outcomes but focused at the vehicle level. I propose and apply a framework to 
quantify the external costs and benefits of TNC disruption to the transportation energy system by 
systematically characterizing the avoided cold start emissions and additional non-revenue miles 
and associated emissions and quantifying the relative size of external benefits and costs from 
TNC vehicles for several of the largest TNC markets in the U.S. and find that shifting travel 
from private vehicles to TNCs offers net external air pollutant benefits in some areas while 
incurring a net external cost in others; however, including externalities associated with additional 
vehicular travel yields net external costs everywhere. Taken together, these three studies confirm 
that TNCs have already affected the number and efficiency of vehicles owned and transit 
ridership rates in the U.S. and that they have done so heterogeneously as a function of pre-
existing socioeconomic and passenger travel characteristics. And, at the individual TNC trip 
level, targeted sensitivity and policy analyses to illustrate how transportation and urban planning 
decisions can increase net external benefits and/or reduce negative external costs. 
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Chapter 1. Introduction 
 
 In 2010, San Francisco-based start-up Uber launched a mobile device-based app that 
connected would-be passengers in need of a ride with would-be drivers and their respective 
vehicles, thereby introducing a new passenger transportation mode that enabled travelers to 
choose to source a ride in a private driver’s vehicle real-time (i.e., on-demand ridesourcing). 
Uber was hailed as disruptive and introduced new flexibility and new uncertainty into a 
transportation sector previously marked by relatively consistent trends: the United States had 230 
million light vehicles on the road (adding 2% more annually, on average, since 1970) that 
traveled 2.6 trillion miles (also increasing at 2% annually), consumed 125 billion gallons of 
gasoline (and increasing only 1% annually, with declines in growth rates over time attributable to 
national fuel economy standards), and emitted over 1 billion metric tons of carbon dioxide-
equivalent (increasing at 0.5% annually since 1990 and also with declines in growth rates over 
time attributable to national fuel economy standards)1. Beyond Uber and other similar so-called 
transportation network companies (TNCs) disrupting the transportation market, these TNCs 
could fundamentally disrupt the relationship between personal travel and vehicle ownership, 
energy use, and emissions.  
 From 2009 to 2017, the number of passengers traveling in for-hire vehicles in the United 
States (U.S.) on any given day more than doubled2. Such growth is attributable not to a usage 
increase in conventional for-hire travel modes like taxis, but rather the advent and growth of new 
for-hire ridesourcing services like TNCs, of which the largest two examples in the U.S. are Uber 
and Lyft. Both are online platforms that use mobile-device applications to pair a passenger 
demanding a ride with a nearby driver to provide that ride at a transaction price determined in 
real time by the TNC. In absolute terms, the 0.5% of trips traveled via these travel modes is still 
relatively small, but the 10% of Americans—and as many as 30% in a survey of seven major 
metropolitan areas3—who now report having used a ridesourcing service (a new question in U.S. 
DOT’s 2017 National Household Travel Survey) is notable for a travel mode that did not exist 
when the previous survey was issued in 2009. 
 Whether and how the emergence of ridesourcing services affects energy consumption and 
the environment is unclear a priori. Personal mobility is a complex system, with hundreds of 
millions of decision-makers in the United States alone, each assessing their own mobility needs 
and selecting how to travel (or not) as a function of various underlying factors, as Figure 1 
depicts. Where an individual lives and works and the travel modes available to them are all 
observable considerations, but this system also includes difficult-to-measure subjective 
valuations, such as the value of travel time, an affinity or aversion to public transit, and/or a 
degree of dislike for traffic congestion. The introduction of ridesharing presents a novel 
opportunity to explore whether this new travel mode means those invisible travel preferences 
play out differently than in a world before Uber and Lyft in terms of outcomes that matter for 
energy and the environment, such as gasoline use, greenhouse gases (GHGs), and air pollutants.  

Comparisons across component pieces of the personal transportation system offer clues 
as to why the introduction of ridesourcing could affect energy and environmental outcomes. For 
example, the energy use per passenger-mile of taxis (used here as a proxy for TNC vehicles, for 
which specific energy intensities have not been published) is estimated to be 40% higher than 
that of a traveler’s own personal vehicle and 70% and 200% higher than transit rail or bus, 
respectively4. Accordingly, the novel opportunity to travel via TNC passenger vehicle that 
ridesourcing affords, then, could affect transportation energy use. This per-vehicle difference 
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also plays out on a metropolitan scale: in New York, household vehicle ownership is 67% lower 
than in Los Angeles, and transportation energy consumption per capita is 25% lower, as Figure 2 
shows. 
 

 
Figure 1  Notional schematic of the underlying mechanics and observable indicators of the 
personal mobility system. 

 

  
Figure 2  Transportation energy consumption as a function of vehicle per household for 10 
major U.S. cities (left); data from U.S. Census and Newman and Kenworthy (2006)5. And a 
comparison of commuter transportation mode and energy share of those commuter transportation 
modes for New York and Los Angeles (right); data from U.S. Census and Banister (2009). 

 
TNC effects on the underlying mechanics of the personal mobility system do not translate 

cleanly to observable indicators (as is depicted in Figure 1). What is known is that transportation 
is in transition: by 2017, 10% of Americans had used a travel mode that did not exist only years 
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earlier. But, the impacts of ridesourcing are still unknown. Potential effects on petroleum 
consumption and GHG emissions are particularly important to understand, as transportation now 
contributes more to both than any other sector in the U.S.1 
 This thesis helps understand the potentially fundamental changes to the way Americans 
travel and the effects those changes have on energy and environmental outcomes. First, a set of 
two complementary studies employ real-world data and econometric modeling to study the 
impacts that Uber has already had on U.S. states and urban areas. In a first study, I focus on the 
state level, where relevant data are publicly available to estimate TNC market entry effects on 
vehicle registrations, gasoline use, vehicle miles traveled, and air pollutant emissions. The 
research questions addressed in Chapter 2 include: 

• Does TNC entry increase or decrease vehicle ownership, personal travel, energy use, and 
emissions outcomes at the state level? 

• Given that TNC use is primarily an urban phenomenon, does TNC entry have larger 
effects in more urbanized states? 
In a second study, I aggregate ZIP code data to the urban area level to study TNC effects 

on vehicle fleet composition (vehicle registrations and average fuel economy) and transit 
ridership and heterogeneity in those effects across urban areas. The research questions addressed 
in Chapter 3 include: 

• Does TNC entry increase or decrease vehicle ownership, fuel economy, and transit 
ridership outcomes at the urban area level? 

• In what kinds of cities does Uber cause vehicle ownership and efficiency and transit 
ridership outcomes to increase vs. decrease?  
Through these first two studies, I provide specific answers that address the current 

knowledge gap about TNC impacts as well as more general discussion of potential heterogeneity 
of those impacts across the U.S. 

Where studies 1 and 2 looked at potential changes to the transportation system 
attributable to TNCs from the top down using observable indicators at the aggregate state and 
urban area levels that I can identify econometrically, a third study (Chapter 4) focuses at the 
vehicle level to consider a similar set of outcomes and the associated external costs of shifting 
passenger travel from a private to a TNC vehicle. While the relative strength of the first two 
studies was the ability to leverage real-world data, both in terms of dependent variables and 
model covariates, those studies could not look beyond net effects into the nuance of how TNC 
travel patterns potentially disrupt outcomes of interest. Cognizant of the potential external costs 
and benefits associated with TNC travel, this study assesses the tradeoffs between the monetized 
damages of additional deadhead miles (and associated gasoline usage and GHG emissions) and 
the monetized benefits of avoided damages that would otherwise result from passengers’ vehicle 
cold starts. The research questions addressed in Chapter 4 include: 

• How does shifting personal travel from private to TNC vehicles affect external costs (i.e., 
is there a net benefit or cost)?  

o Do the external benefits of avoided cold-start emissions from private vehicles 
outweigh the additional external costs of nonrevenue TNC vehicle miles between 
trips? 

o How does the additional consideration of travel externalities (i.e., congestion, 
crashes, and noise) affect net external costs? 
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• How can public policies (e.g. electric vehicle mandates) be most effective in minimizing 
external costs and/or maximizing external benefits? 

Chapter 5 concludes with a summary of findings and overarching discussion across the 
three studies presented in the preceding chapters. 
 
1.1. References 

1. Davis, S. C., Williams, S. E., and Boundy, R. G. (2019). Transportation Energy Data Book.  
Oak Ridge National Laboratory Report ORNL-6992. http://cta.ornl.gov/data/index.shtml.  

2. Conway, M.W. (2018). Trends in Taxi Usage and the Advent of Ridesharing, 1995-2017. 
Transportation Research Circular E-C238. The Transportation Research Board of the 
National Academies of Science, Engineering, and Math. 

3. Clewlow, R., and Mishra, G. S. (2017). Disruptive Transportation: The Adoption, Utilization, 
and Impacts of Ride-Hailing in the United States. University of California–Davis Research 
Report – UCD-ITS-RR-17-07. 

4. Banister., D. (2011). Cities, mobility and climate change. Journal of Transport Geography 19 
(6): 1538-1546. 

5. Newman, P., and Kenworthy, J. (2006). Urban Design to Reduce Automobile Dependence. 
Opolis 2 (1): 35–52. 
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Chapter 2. Effects of On-Demand Ridesourcing on Vehicle Ownership, Fuel Consumption, 
Vehicle Miles Traveled, and Emissions Per Capita in U.S. States 
 
This study was co-authored with Jeremy Michalek, Inês Azevedo, Constantine Samaras, and 
Pedro Ferreira and published in Transportation Research Part C1. 
 

This chapter presents a first analysis of whether on-demand ridesourcing via TNCs 
increases or decreases vehicle ownership, personal travel, energy use, and emissions outcomes at 
the state level, as well as a consideration of whether those effects vary as a function of state 
urbanization. I estimate the effect of TNC market entry on per-capita vehicle ownership, energy 
use, travel distances, and emissions in U.S. states from 2005 to 2015 using a difference-in-
difference propensity score-weighted regression model. I find evidence that TNC entry appears 
to cause a decline in state per-capita vehicle registrations by 3%, on average (95% confidence 
interval: 0.7% to 5.5%). My results regarding travel distances, gasoline consumption, and several 
air pollutants are not conclusive, but I find evidence of a relationship with some EPA-estimated 
vehicle air emissions. Such a change in air emissions would represent $300 million to $900 
million in externalities during the analysis period; however, these air emissions are modeled, 
rather than measured, and uncertainty in the effects of TNC entry on travel distances and 
gasoline consumption could potentially swamp the air emissions effect.  
 
2.1. Introduction  
 Transportation now contributes more carbon dioxide emissions than any other United 
States (U.S.) economic sector2, and new personal transportation options are rapidly changing 
transportation. On-demand ridesourcing companies like Uber and Lyft, referred to as 
Transportation Network Companies (TNCs)1, now provide on-demand mobility services that 
complement and compete with personal vehicle ownership and transit use, changing urban travel 
patterns and affecting energy and environmental implications of transportation. By 2015, Uber 
had entered 50% of U.S. combined statistical areas (CSAs, as shown in Figure 1). On an average 
weekday in late 2016, TNCs made more than 170,000 vehicle trips in San Francisco (15% of all 
intra-San Francisco vehicle trips)3. While prior literature has examined outcomes such as transit 
ridership, congestion, drunk driving, and local entrepreneurship (summarized in this chapter’s 
Supplemental Information Section 1), the net impact of these services on vehicle ownership, 
energy consumption, travel distances, and emissions is either unexplored or still debated in the 
literature. Using scenario analysis, the U.S. Department of Energy’s (DOE) national laboratories 
have suggested that energy use and emissions in a future combining shared mobility with 
connectivity and automation could be as much as 60% lower or 200% higher than a conventional 
mobility case4. In this wide range of possible future outcomes, a “lower-bound” scenario 
involves energy and emissions savings made possible by ridesharing, vehicle resizing and 
drivecycle smoothing; whereas, an “upper-bound” scenario involves higher energy consumption 
and emissions resulting from increased travel. 

On-demand mobility is part of a larger ongoing transformation of shared mobility—a 
broader term used to describe a set of transportation modes where passengers travel using 
vehicles owned by another party on an as-needed basis. Transportation modes such as 
 
1 SAE J3163 defines ridesourcing as “prearranged and on-demand [are not allowed to street hail] transportation 
services for compensation in which drivers and passengers connect via digital applications”. This category 
includes TNCs as well as some traditional services (e.g.: shuttle services). 
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carpooling, bike-sharing, and shuttle services have long fit into this category. Historically, 
vehicle travel and associated energy consumption have been relatively predictable: for example, 
since 2005, vehicle registrations and vehicle miles traveled (VMT) have increased by 
approximately 1% annually (except for declines during the recession from 2008–2011), non-
public gasoline consumption has remained generally constant, and emissions of volatile organic 
compounds have declined 5% annually (EPA’s Tier 2 emissions standards were phased-in from 
2004–2009). More recently, car-sharing services have expanded customers’ mobility options, 
introducing such options as renting a fleet-owned vehicle that is regularly available to other 
customers for either round-trip (e.g., Zipcar) or point-to-point (e.g., car2go) journeys. 
Furthermore, the growth and capabilities of smartphones enabled ridesourcing companies like 
Uber and Lyft to introduce on-demand mobility. Uber and Lyft launched in March 2010 and 
June 2012, respectively, in their first market: San Francisco, California. In 2017, Uber 
announced the completion of 10 billion total trips5 and Lyft announced a billion total trips6. 
Finally, these services opened the door for dynamic ridesharing, where algorithms efficiently 
route on-demand mobility services to serve several customers with different destinations in the 
same physical vehicle.  
 

 
Figure 3. Comparison of Uber and Lyft market launch dates by combined statistical area (CSA). 
Some CSA labels are omitted for readability; data points include San Francisco, New York City, 
Seattle, Chicago, Washington (DC), Los Angeles, Philadelphia, San Diego, Atlanta, Boston, 
Dallas-Fort Worth, Denver, Minneapolis-St. Paul, Phoenix, Baltimore, Sacramento, Rhode 
Island (where Uber entered the entire state at once), Charlotte, Houston, Pittsburgh, Louisville, 
Cleveland, Tampa Bay, Miami, Orlando, St. Louis, and Portland (OR).  

 
Despite rapid TNC growth in recent years, there is limited knowledge about on how they 

influence vehicle adoption, energy consumption, travel distances, and environmental outcomes. 
TNCs may reduce an individual’s reliance on a personal vehicle, ultimately resulting in fewer 
vehicle registrations, or stimulate new vehicle purchases by TNC drivers, increasing 
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registrations. TNCs may increase VMT by requiring vehicles to travel between passenger trips 
(“deadheading”) and by increasing travel demand or shifting demand from mass transit to light-
duty vehicles. But they may also reduce vehicle miles traveled (VMT) through ride pooling, by 
providing a “first/last-mile” solution that encourages partial use of public transportation, or by 
providing travelers with the option to pay per trip as an alternative to making a “lumpy” 
investment in a personal vehicle and observing lower marginal costs of travel. TNCs might 
increase or decrease energy consumption and emissions by changing VMT, by shifting VMT to 
vehicles with different efficiency and emissions rates, and by changing the portion of VMT 
traveled at hot operating temperature, when vehicles are more efficient and have lower emission 
rates. 

 
2.2. Prior Literature 

Peer-reviewed studies of the effects of TNCs on vehicle ownership, travel, energy, and 
environmental outcomes are limited: Rayle et al. (2016) found that while 33% of surveyed TNC 
users in San Francisco would have traveled via bus or rail if the TNC service were not available, 
“ridesourcing probably did not influence car ownership behavior”7. Hall et al. (2018) use a 
difference-in-difference econometric model in 147 U.S. metropolitan areas and conclude that, 
while transit ridership does not change immediately after Uber entry, transit ridership increases 
by five percent two years after Uber entry, on average, and that this heterogeneous effect is 
larger in big cities with small transit agencies8. They also find that Uber entry decreases 
commute times for transit users while increasing vehicular congestion. There are no peer-
reviewed journal publications of TNC effects on energy or emissions, to my knowledge.  

In the grey literature, some working studies and internal reports have suggested that 
TNCs have affected vehicle ownership, use, and emissions, but the estimated effects vary. Both 
Hampshire et al. (2017)9 and Clewlow and Mishra (2018)10 use survey methods to infer a 
reduction in overall vehicle ownership attributable to Uber and Lyft: Hampshire et al. surveyed 
former users of Uber after Uber left Austin, TX in 2016 and found a 9% increase in reported 
vehicle ownership among those former Uber users, and Clewlow and Mishra report that 9% of 
survey respondents who use ride-hailing across a group of 7 U.S. metropolitan areas disposed of 
one or more household vehicles. In contrast, Schaller (2018)11 and Gong et al. (2017)12 find that 
Uber is associated with an increase in vehicle ownership: Schaller observes that while TNCs 
were operating in the nine largest U.S. metropolitan areas from 2012–2016, growth in vehicle 
ownership outpaced that of population, and Gong et al. apply a difference-in-difference 
regression model in China and estimate an 8% increase in new vehicle registrations associated 
with Uber entry.  

Vehicular travel effect estimates from working studies and internal reports have also 
varied (the two peer-reviewed studies mentioned earlier found different and even heterogeneous 
effects). Li et al. (2016)13 find that TNCs are associated with reductions in some travel metrics: 
they use a difference-in-difference regression to estimate a 1.2% decline in overall congestion 
and associated travel times and fuel consumption. But other studies suggest an increase: 
Clewlow and Mishra (2018) suggest, based on survey responses from ride-hailing users across a 
group of 7 U.S. metropolitan areas, that 49% to 61% of ride-hailing trips are associated with an 
increase in VMT; Hampshire et al. (2017) find a 23% reduction in the likelihood to take a trip 
among former Uber users surveyed in Austin, TX that transitioned to a personal vehicle after 
Uber and Lyft left; and Schaller (2018) finds, based on a comparison of eight surveys from other 
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working studies, that 60% of ride-hailing trips would have otherwise happened via transit, 
walking, or biking (or not have happened at all) in a group of nine U.S. metropolitan areas. 
 TNC services can have effects not only on the number of vehicles registered, but also on 
how those vehicles are used. Recent analysis suggests that less than 60% of miles traveled by a 
TNC vehicle are productive miles spent moving a passenger from an origin to a destination—the 
remaining 40% of TNC vehicle empty-mile travel is spent cruising in search of the next fare, 
driving to passenger pick-up, or driving after passenger drop-off14. Additionally, the travel 
demand that is shifted to vehicles from other modes (i.e., from walking, biking, and transit) due 
to the convenience of on-demand ridesharing services was estimated to be as high as 85% in 
Denver, CO14, though Hall (2018) concludes that Uber is more of a complement to transit. 
Despite potential increases in the number of trips and the total number of miles travelled to 
complete each trip, evidence also suggests that chaining trips in the same set of vehicles can 
reduce criteria air pollutant emissions15. 

In summary, literature of the effects of TNCs on vehicle ownership, travel, energy, and 
environmental outcomes is inconclusive, and there are few peer-reviewed studies. I contribute to 
this literature by exploiting the staggered entry timing of Uber and Lyft across U.S. cities in 
seeking to identify causal relationships between TNC entry and my outcomes of interest.  

  
2.3. Methods  

I use difference-in-difference (DiD) models to estimate effects of the intervention (i.e. 
TNC entry) by comparing the trends of treated and untreated groups before and after the 
intervention occurs. DiD methods have been used previously to evaluate the effect of TNCs on 
other outcomes, including traffic congestion13, vehicle-related homicides16, entrepreneurial 
activity17, and new vehicle ownership in China12. 
 
2.3.1. Difference-in-Difference Model 

Our regression model is informed by models used in prior literature for my outcomes of 
interest. Regression analysis is conducted using inverse probability of treatment weighting 
(described below) and the following baseline specification: 
 
 𝑦𝒔𝒕 = 𝛃&𝐱() + 𝛂&𝐳() + 𝛾( + 𝛿) + 𝜀() (1) 
 
where 𝑦() is one of the four dependent variables of interest for state 𝑠 and year 𝑡: 1) vehicle 
registrations per capita; 2) VMT per capita; 3) gasoline use per capita, or 4) one of the per capita 
passenger vehicle emissions estimates (CO, NH3, NOx, PM10, PM2.5, SO2, and VOCs); 𝐱() is the 
vector of treatment effects (i.e., an Uber indicator)2 for state 𝑠 and year 𝑡 with coefficients 𝛃; 𝐳() 
is a vector of controls for state 𝑠 and year 𝑡, including population, urban population percentage, 
gas price, real personal income, unemployment, Section 177 status, and largest city population, 
density, and GDP, with corresponding coefficients 𝛂; 𝛾( is the dummy for state 𝑠; 𝛿) is the 
dummy for year 𝑡; and 𝜀() is unobserved error. Several additional statistical and diagnostic tests 
support the use of this linear model in my case (summarized in SI Section 4). The precision of 
my estimates is calculated using bootstrapped standard errors. 
 Two variations on this baseline incorporate different measures of shared mobility—(1) an 
average effect estimated using a dummy variable that indicates whether Uber has launched in a 

 
2 In my base model, this vector is of length one, but my model with interactions includes multiple terms.	
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state in a given year; and (2) an interaction model that estimates TNC entry effect for urban, 
middle, and rural states using an interaction between TNC treatment and a categorical variable 
indicating whether a state is urban (used as the baseline), middle, or rural.  

The estimates of a difference-in-difference model are unbiased if the behavior of the 
untreated after the intervention mimics that of the treated had they not been treated. A common 
way to build confidence about this assumption is to check that, on average, trends over time were 
identical before the intervention took place (the "parallel trends" assumption), between the 
treated and the control groups. A potential concern regarding bias arises if the treated and non-
treated groups (e.g. states) are systematically different in other ways that might explain 
differences in trends among those groups. This is the case here, where, by the end of the analysis 
period, TNCs have entered all but five states (Alaska, Montana, South Dakota, West Virginia, 
Wyoming), and these five states are not comparable to the other 45 where they did enter. To 
control for this potential bias, I apply inverse probability of treatment weights in a weighted 
least-squares model. This model compares post-treatment trends in treated states with weighted 
trends in non-treated states, probabilistically weighted to resemble the treated states along 
attribute dimensions that are correlated with treatment (state population, income, gasoline price, 
emissions standards, and largest city population, density, and GDP). I confirm that weighting 
yields control and treatment groups that are statistically comparable (i.e., no significant 
differences in covariates between groups, as shown in Figure 2), and I use an event study to 
confirm that the resulting weighted model does not violate the parallel trends assumption (see SI 
Section 4). 
 
2.3.2. Propensity Score 
 I estimate propensity scores using gradient boosting18, which combines machine learning, 
wherein the algorithm iterates over a series of decision trees, and optimization— where, via 
gradient descent, each subsequent decision tree is fitted to the residuals from the previously fitted 
tree—to estimate the probability of treatment for each observation.  Previous studies have shown 
gradient boosting is superior to simple logistic regression models for propensity score 
estimation19. Here, I employ gradient boosting to approximate the logistic model: 
 
 log 567(𝐳67)

:;567(𝐳67)
= 𝑓=(𝐳())= + 𝜖() (2) 

 
where 𝑝() is the probability of treatment for state 𝑠 and year 𝑡; 𝐳() is a vector of covariates for 
state 𝑠 and year 𝑡, including population, urban population percentage, gas price, real personal 
income, unemployment, Section 177 status, and largest city population, density, and GDP; and 
𝜖() is unobserved error. I estimate the additive function 𝑓= using gradient boosting, given the 
treatment and covariate data, and compute estimated probability of treatment 𝑝() for each state 
and year. The gradient boosting model predicts that a given state is more likely treated than not 
in a given year when a state is actually treated in that year with 92% accuracy (i.e., the model 
estimates a state is either less than 50% likely to be treated in years prior to Uber entry or greater 
than 50% likely after). The resulting estimates for probability of treatment are then used in a 
weighted regression for equation (1). 
 
2.3.3. Robustness 

I apply a battery of statistical tests to check model assumptions and test for robustness 
that are shown in the supplementary information (Sections 4 and 5). Model assumptions are 
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informed by generalized additive models (GAMs) for dependent variable function form (SI 
Section 2), and final model fit is checked using visual inspection of residual errors (SI Section 4) 
to confirm no structural error.  Additionally, for each model, I subject my results to three 
robustness checks: 

(1) I conduct randomized treatment tests to ensure that the effects I estimate are unique to the 
particular observed pattern of treatments, rather than a result of the structure of the 
model. Model-estimated effects which fall in the tails (>95%) of the distribution of 
randomized treatment-estimated effects are considered robust;  

(2) I conduct leave-one-out tests to ensure that my estimates do not hinge on the data of any 
one state. Model-estimated effects that are still estimated as significant when 
systematically leaving each state out are considered robust; and 

(3) I conduct leave-multiple-out tests to ensure that my estimates do not hinge on outliers. I 
consider robust estimated effects that do not change in magnitude (i.e., 95% confidence 
intervals still overlap) or significance level. 

I also test sensitivity of my model findings to a variety of sensitivity cases including alternative 
model specifications, alternative encoding, and unweighted models. I discuss these further in the 
Results section. 
 
2.4. Data 
 I describe and identify data sources for dependent variables, treatment, and control 
variables in turn:  
 
2.4.1. Dependent Variables 

• Vehicle registrations (measured): I use vehicle registration data for each state and for 
each year for light-duty passenger vehicles from Ward’s Automotive20. Ward’s data are 
based on data published in U.S. DOT’s State Statistical Abstracts and Highway Statistics 
Series21,22, which is the set of official vehicle registration data published by state DOTs.  

• Gasoline consumption (measured): DOT’s State Statistical Abstracts and Highway 
Statistics Series also report Federal Highway Administration estimates of annual private 
and commercial vehicle state level on-highway motor fuel based on reports of aggregate 
motor fuel sales from state motor fuel tax agencies. 

• VMT (estimated): VMT data comes from DOT’s State Statistical Abstracts, which are 
tracked and reported annually as a function of figures reported by state agencies. State 
agencies estimate aggregate VMT based on vehicle count data measured on 
representative roadways and distributions of roadway type within the state (while DOT 
issues a Traffic Monitoring Guide, individual state methods may differ). VMT (table 
VM-2) has been published in DOT’s State Statistical Abstract series since 2008; earlier 
data are available in DOT’s Highway Statistics Series. Interpretation of statistical 
inference based on these VMT data is constrained by the representativeness of the 
underlying VMT estimation (rather than direct measurement) methods. Potential 
systematic differences in estimation methods by state or in differences in Uber and Lyft 
driving patterns compared to where states measure (i.e., primarily on the highway) could 
affect the signal in these data and, in turn, my model and results. 

• Emissions (estimated): State-level emissions data are published annually in the EPA’s 
State Average Emissions Trend report, which is informed by EPA’s National Emission 
Inventory, which, in turn, relies on EPA's Motor Vehicle Emission Simulator (MOVES) 
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model. The MOVES model estimates vehicular emissions based on vehicle population 
and fleet characteristics, vehicle speed distributions, and relative hour- and day-type 
VMT distributions at the county level and aggregated. Emissions attributable to highway 
vehicles are estimated by the EPA annually23: 2008, 2011, and 2014 estimates were 
developed in conjunction with the National Emissions Inventory for those years; 2005, 
2007, 2009 and 2010 estimates were updated using additional MOVES modeling; and 
2006, 2012, and 2013 were interpolated. EIA estimates an annual series of State Carbon 
Dioxide Emissions based on energy consumption data contained in the State Energy Data 
System (SEDS). Transportation sector estimates are published without highway or light-
duty vehicle detail after an approximately 2-year lag24. Interpretation of statistical 
inference based on these emissions data is limited to factors considered as part of 
emissions estimation modeling (rather than direct measurement). Potential changes to 
EPA models used could affect the emissions estimated just as changes to input 
assumptions to those models (such as vehicle registrations) could propagate through to 
model output. And, the three interpolated values could impose a linear structure 
unrepresentative of the actual data in those years. 

 
I divide each of the four quantities above by state population each year to compute per-capita 
values. Annual state-level population estimates are from DOT’s State Statistical Abstract and 
Highway Statistics series and, as such, they align with VMT data and are related to Ward’s 
Automotive vehicle registration data (the ultimate source for which is also these DOT 
publications). DOT population reports match U.S. Census statistics in census years and are no 
more than 0.6% different than Census Bureau’s annual estimates of the resident population in 
intercensal years25, which the Census calculates assuming geometric interpolation with some 
exceptions26. 
 
2.4.2. Treatment Variables 

• Uber and Lyft entry dates: I adopt data from previous sources that aggregated and 
published a time-series of Uber market entry dates. A 2014 Forbes article first aggregated 
Uber launch dates from 2010–201427 by service area, as originally announced on Uber’s 
official blog (on a post no longer available) and/or in local media from each new service 
area. Forbes continued to update that dataset to reflect additional Uber markets launched 
through December 2015. Those dates are cross-referenced against Uber market launch 
date data that were independently gathered and published in two later studies13,27,28. 
Burtch et al. include a table of market launch dates for UberX—Uber’s lower-cost, on-
demand service provided in the driver’s personal vehicle, which the authors compiled 
directly from the Uber Blog17. Lyft market launch dates were requested from and 
provided by Lyft29. A comparison of Uber and Lyft market launch date time-series is 
depicted by combined statistical area in Figure 1. Because Lyft market entry years are the 
same or later than Uber market entry years in all cases, I use Uber entry dates in my 
analysis to represent on-demand mobility availability in the state. 

 
2.4.3. Control Variables 

• Population served by Uber in each state: TNCs are introduced in specific areas or cities 
within a state, and the portion of a state’s population with access can change over time as 
TNCs enter new cities. These time-series are derived for this analysis by summing within 
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each state the population of each city where Uber is present (estimates of which are 
reported annually by the U.S. Census American Fact Finder) and dividing by the total 
state population, as published by the U.S. Department of Transportation’s (DOT) annual 
State Statistical Abstracts21,22. Annual (intercensal) estimates for city populations are 
published in the U.S. Census’ American FactFinder25.  

• Control variables: Our control variables include: (i) population, reported annually in 
DOT’s State Statistical Abstract and Highway Statistics series, (ii) percentage of a state’s 
population that is urbanized30, (iii) state average real personal income, reported annually 
by the Bureau of Economic Analysis31; (iv) state unemployment, report by the Bureau of 
Labor Statistics32; (v) state average gasoline price data, reported annually by the U.S. 
Energy Information Administration24, and (vi) an indicator for whether each state has 
adopted California’s more stringent vehicle emissions control requirements, pursuant to 
Section 177 of the Clean Air Act33. Additionally, recognizing that TNC market entry and 
use is primarily a city phenomenon, additional control variables are included for the 
largest city within each state, including: (vii) population34, (viii) population density, and 
(ix) GDP35. While these control variables are meant to yield unbiased estimates of Uber’s 
effect on dependent variables of interest, the possibility of omitted variable bias cannot be 
overlooked. Sensitivities were conducted using several additional potentially relevant 
independent variables (number of licensed drivers, Lyft market entry, transit ridership, 
and Uber/Lyft leasing incentive programs), none of which greatly affected the magnitude 
or the significance of effects reported as significant and robust (see SI Section 3 for 
details). 

 
While these control variables are intended to help reduce bias, the possibility of omitted variable 
bias cannot be overlooked. Sensitivity analyses were conducted using several additional 
potentially relevant independent variables (number of licensed drivers, Lyft market entry, transit 
ridership, and Uber/Lyft leasing incentive programs), as well as two variations on Uber treatment 
encoding; none greatly affected the magnitude or the significance of effects reported as 
significant and robust. 

Variable encoding and summary statistics for each data source above are shown in Table 
1. On average, population steadily increases, criteria pollutant emissions steadily decrease, and 
vehicle registrations and income generally increase, except for a dip in 2009–2010 corresponding 
to the Great Recession. Gasoline price is volatile and non-monotonic.  
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Table 1. Variable encoding descriptions and associated summary statistics (U.S. totals, except 
where averages are shown, as noted) for 2005, 2010, and 2015. Monetary values are reported in 
current dollars (as indicated). 

 
 
2.5. Results 
 Table 2 summarizes results for the effect of TNC entry on state per capita vehicle 
registrations, gasoline consumption, and vehicle miles traveled. In all cases assessed, I show 
results for two different models with different representations of TNC service availability in a 
state: (1) an average effect based on whether Uber is present in a state in a given year; and (2) an 
interaction effect between Uber presence and state urbanization level (urban, middle, or rural). 
For each estimate reported, I provide the 95% confidence interval (using bootstrapped standard 

Variable Unit Description 2005 2010 2015

Population million persons Population 296 309 321
Light-Duty 
Vehicles

million vehicles Light duty vehicles 234 232 241

Gasoline 
Use

billion gallons
Gasoline taxed by states as used by non-public, non-
exempt vehicles

133 131 130

VMT trillion miles Vehicle miles traveled 2.99 2.97 3.10
CO million tons Highway carbon monoxide emissions 42.4 28.3 19.7
NH3 million tons Highway ammonia emissions 0.14 0.12 0.10
NOx million tons Highway nitrous oxides emissions 8.30 5.70 4.12
PM10 million tons Highway particulate matter emissions 0.38 0.28 0.30
PM2.5 million tons Highway particulate matter emissions 0.31 0.20 0.15
SO2 million tons Highway sulfur dioxide emissions 0.17 0.04 0.02
VOC million tons Highway carbon monoxide emissions 3.41 2.77 1.97
Income trillion $ (current $) Real personal income 10.6 12.5 15.5

s177 binary
A state's Section 177 status (whether it has adopted 
California's more stringer mobile-source emissions 
regulations)

5 11 13

Katrina binary
Indicator for potential vehicle hurricane damage (2005 
only)

1 0 0

Sandy binary
Indicator for potential vehicle storm damage (2012 
only)

0 0 0

Clunkers
Number of vehicles 
scrapped

Number of participants in "Cash for Clunkers" vehicle 
scrappage program (2009 only)

0 0 0

Treat % states Uber indicator, binary 0% 2% 90%

Gas Price $/gal (current $) Average gasoline price 2.08 2.63 2.34

Pop_u % pop, state avg.
% of state population that is considered Ubran by the 
Census (coded relativel to the average % urbanization 
for 2005-2015, which is 74%)

73% 74% 75%

Citypop thousand persons
Population of center city in a state's largest 
metropolitan statistical area

652 703 714

Citydensity
persons per square 
mile

Population density of center city in a state's largest 
metropolitan statistical area

4120 4483 4539

CityGDP billion $ (current $) GDP of state's largest metropolitan statistical area 127 140 177

Treatpop % pop, state avg.
Uber indicator, weighed by % of state population with 
Uber access

0% 0% 21%

(For variables below, values shown are averages across states)

(For variables below, values shown are U.S. totals)
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errors) in parentheses3,36,37. The model suggests that, on average, introducing shared mobility (in 
any portion of a state) decreases per-capita vehicle registrations by 3.1% (95% confidence 
interval: 0.7% to 5.5%) over the period examined (relative to per-capita registration had the TNC 
not been introduced). These findings pass my robustness checks (Table 4). The interaction model 
finds effects in urban, middle and rural states that span the -3.1% effect found in the base model, 
but differences across urban, medium, and rural states are not statistically significant. These 
findings are robust when subjected to my robustness tests, summarized in Table 4 (details 
reported in SI Sections 4 and 5). Estimated effects for gasoline consumption and VMT are not 
statistically significant (except the effect on VMT is estimated to be more negative in rural states 
than in urban states at the p=0.01 level that does not pass my robustness checks). 
 
Table 2. Regression models for per-capita vehicle registrations, per-capita gasoline use, and per-
capita VMT using three measures of shared mobility: (1) binary (“Average Effect”) and (2) 
interaction (“Urban”, “Middle”, and “Rural”) effects. “Middle Effect” and “Rural Effect” are 
computed post-hoc as the sum of the “Urban Effect” and either the “Middle-vs.-Urban” or the 
“Rural-vs.-Urban Effect”, respectively, taking care to calculate standard errors with respect to 
appropriate model-estimated variances and covariances. Coefficients estimated for control 
variables are excluded from the table for brevity. See SI Section 3 for complete results. 

 
 
Table 3 summarizes my findings for the effect of TNC entry on estimated per-capita 

emissions of greenhouse gas emissions (GHGs), as reported by the Energy Information 
 
3 While cluster-robust standard errors are commonly employed (per Cameron and Miller, 2015), when the 
number of clusters is small (i.e., I only have 50 states here), bootstrapping can be preferred (per Camron et al., 
2007). 
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Administration (EIA)24, and of the seven air pollutants (CO, NH3, NOx, PM10, PM2.5, SO2, and 
VOCs) reported in the U.S. Environmental Protection Agency’s (EPA) State Emissions 
Inventory (EPA, 2016). I find that TNC entry is associated with an estimated decline of volatile 
organic compounds of 4.8% (1.5% to 8.2%), with a larger effect in rural states: 8.2% (4.0% to 
12.3%). These effects pass my robustness checks. Some regression models yield significant 
results for CO, NH3, PM10, PM2.5, and SO2 emissions; however, these results fail my robustness 
checks (Table 4, see SI Sections 4 and 5 for details). Results for other emissions are not 
statistically significant. I view these estimated effects as exploratory, since these emissions are 
estimated using models, rather than measured, and there are several years where emissions 
estimates are interpolated. Additionally, one of the inputs used by the EPA to model estimated 
highway vehicle emissions is vehicle registrations, so it is possible that changes in vehicle 
registrations propagate through EPA’s moves model and show up here for VOCs as an echo. 
Nevertheless, identification of a potential relationship with VOCs suggests value in further study 
of TNC implications for emissions and air quality, potentially by examining effects of pollutant 
concentrations at air quality monitor sites using higher resolution data. 

Because I test for significance across multiple dependent variables, I employ a 
Benjamini-Hochberg correction for testing multiple hypotheses and find my per-capita vehicle 
registration and VOC emissions results are robust to false detection rates as low as 4.6% (see SI 
Section 3 for the detailed analysis). Considering only my primary dependent variables (vehicle 
registrations, gasoline consumption, and VMT average effects) and excluding my exploratory 
analyses of air emissions, my vehicle registration results are robust to false detection rates as low 
as 2.6%.  
 
2.5.1. Robustness 

I subject my results to a variety of checks including a set of robustness checks, sensitivity 
analysis, unweighted and alternatively weighted regressions, and an event study. I discuss each 
in turn. 

The battery of robustness checks and sensitivity analyses that I apply support my 
findings. Both the estimated vehicle registration and VOC emission effects at the state level are 
robust (or “near-robust”, as slightly crossing the threshold for the level of significance of the 
vehicle registration or VOC emissions effect estimates is sensitive to whether Ohio or Indiana, 
respectively, are included in the sample) to randomized treatment, leave-one-out, and leave-
multiple-out checks (all described previously in the Methods section), as is summarized in the SI.  

In addition to my primary robustness checks, summarized in Table 4, I also test several 
variations of my model, including (a) normalizing my dependent variable per licensed driver, (b) 
normalizing my dependent variable per urban population, (c) excluding entry data during the 
Great Recession of 2007-2010, (d) shortening the time frame of analysis to 2009-2015, (e) 
including control variable indicators for the presence of Uber leasing programs, (f) including 
Lyft entry years (which match or lag behind Uber entry years) as additional treatment variables, 
(g) including additional controls for transit ridership, (h) coding Uber treatment using lagged 
variables, (i) coding Uber entry using a June-July cutoff between years, rather than the default 
December-January cutoff, and (j) introducing linear time trends for each state. All of these model 
variations produce results consistent with my base model: statistically significant effects of 
comparable sign and magnitude with the exception of the linear time trends model, which 
produces similar point estimates at lower statistical significance. 
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Table 3. Summary of TNC indicator coefficients from the results of the set of regression model 
specifications discussed—(1) binary and (2) interaction—using the logarithm of per-capita 
emissions of each of seven criteria pollutants (CO, NH3, NOx, PM10, PM2.5, SO2, and VOCs) as 
the dependent variable. “Middle Effect” and “Rural Effect” are the sum of the “Urban Effect” 
and either the “Middle-vs.-Urban” or the “Rural-vs.-Urban Effect”, respectively, taking care to 
calculate standard errors with respect to appropriate model-estimated variances and covariances. 
Coefficients estimated for control variables (state population, urban population percentage, 
income, unemployment, gasoline price, emissions standards, and largest city population, density, 
and GDP, as well as indicators for Hurricane Katrina, Cash for Clunkers, and Superstorm Sandy 
and fixed effects for state and time) are excluded from the table for brevity. See SI Section 3 for 
complete results. 

 
 

In addition, I ran a standard OLS regression without weights. This regression resulted in a 
similar coefficient for registrations and VOCs as the base model with statistical significance 
reduced to p=0.08 (see SI Table S6 and S7). This result suggests that the effects I estimate are 
not artifacts of IPTW weighting, thought the level of significance is higher with the weighted 
OLS. Because OLS conflates treatment with other state attributes that may influence my 
dependent variables, I view the IPTW results as more trustworthy. Weighting is intended to 
avoid potential bias in a causal treatment effect estimate that could stem from systematic 
differences between the treated and non-treated states. E.g. by the end of the analysis period, 
TNCs have entered all but five states (Alaska, Montana, South Dakota, West Virginia, 
Wyoming), and these five states are not comparable to the other 45 where they did enter. 
 
Table 4. Summary of subjecting treatment effect estimation to three robustness checks and ten 
sensitivities, as described in the table notes below. A half-filled circle denotes “near-robust” 
estimates, such as those for which the estimate is greater in magnitude than 90–95% of 
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randomized treatment estimates and/or where leave-one-out robustness hinges on the inclusion 
of just one particular state in the data set. An empty circle denotes estimates that are not robust. 
Estimates that are reported as statistically significant and robust are highlighted (the “Lag” 
model reduces the number of observations and thus statistical significance, so I do not consider a 
lack of statistically significant results in that model variant as a problematic robustness outcome). 

 
 
Figure 4 compares the treatment and control states before and after weighting along a set 

of parameters used to calculate propensity scores. For variables other than unemployment, which 
is already not significantly different between the treatment and even the unweighted control 
group, weighting is shown to reduce mean differences between the treatment and unweighted 
control group parameters by 70% to 100%. The differences between treated and untreated states 
are statistically significant when unweighted, but, as desired, become not statistically significant 
in the weighted sample (even at the p=0.10 level). 

I also posed a model using alternative IPTW weights that include an indicator for whether 
Uber had entered the state in a prior year. Results for this specification suggest that treatment is 
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not significant for registrations in the base model but is significant in the model with interactions 
(see Table S10). Because this alternative weighting scheme did not generate balance satisfying 
my target threshold (i.e., statistically significant differences remain between covariate means of 
the treatment and weighted control groups; see Figure S11), I consider my base case results to be 
more trustworthy.  

I also ran an alternative model specification where the treatment variable was specified as 
my estimate of the portion of the state’s population with access to TNC services each year, rather 
than a binary variable (see SI Table S4 and S5). I do not find any statistically significant effects 
with the population-weighted model that passed my robustness checks (though, I note that lack 
of a statistically significant effect is not conclusive evidence that no effect exists). I use the 
binary treatment model as my base model because I are concerned that my inability to identify 
TNC service areas over time as they grow in each urban center and my need to approximate 
those service areas in the population-weighted model could lead to systematic biases across time 
and location that could influence results artificially as well as random errors that reduce 
statistical significance. Because of this potential issue, I do not use the population-weighted 
model as a hard robustness check but, rather, as an additional piece of information that suggests a 
need for more data and more research accounting for service areas. 
 

 
Figure 4. Effect size plot comparing the treatment states and control states before and after 
weighting. Closed red circles indicate a statistically significant difference before weighting; open 
circles reflect no significant difference after weighting. 
 

Finally, I conducted an event study, summarized in Figure 5, and find no statistically 
significant prior to TNC entry and a statistically significant negative effect following TNC entry, 
consistent with my difference-in-difference results. These findings provide support for a causal 
interpretation of my difference-in-difference results and suggests that the effects I identify can 
also be observed without assuming parallel trends. 

 

income
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city GDP
§177 statusgas price
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Figure 5. Event study showing the estimated change in vehicle registrations per capita from five 
years prior to Uber entry to five years after Uber entry. These estimates are generated using the 
same IPTW model as is described in the main text with the addition of a suite of indicator 
variables to capture the number of years before/after Uber market entry for each observation. 
The trend above suggests that no significant decline in per-capita vehicle registrations occurs 
until the year of Uber entry and is significantly lower (compared to the period more than five 
years prior to Uber entry) after entry. 

 
In summary, I view my base case results as the most trustworthy, and their findings 

satisfy many robustness checks and alternative model specifications. Several model variations 
that did not produce comparable and statistically significant results have features that make them 
inferior to my base model. Nevertheless, they point to a need for additional research, potentially 
using higher-resolution data. Our event study results provide support for a causal interpretation, 
and suggest robustness to relaxing the parallel trends assumption. 
 
2.6. Discussion 
 Our results, summarized in Figure 6, suggest that access to TNC services appears to 
cause a reduction in per-capita vehicle registrations in U.S. states. Interpreting this effect as 
causal relies on two key assumptions: 1) trends in outcomes of interest would have been parallel 
across treatment and control states in the absence of Uber entry, and 2) treatment (Uber entry) 
was exogeneous. For parallel trends, the patterns of vehicle registrations across states are noisy 
(SI Section 2), though trends appear somewhat more parallel when aggregated by treatment 
cohort, and event study results provide additional support without assuming parallel trends. For 
treatment exogeneity, Uber and Lyft described entry decisions as more opportunistic than 
strategic, in that decisions to enter were not made in anticipation of changes in vehicle 
registrations or other outcomes. Rather, entry decisions were informed by information such as 
Google searches for “Uber” and “Lyft” in cities that did not yet have TNCs. Further, my event 
study finds no statistically significant effects until after TNC entry, suggesting that changes in 
vehicle registrations did not precede entry. The balance in observed state attributes after applying 
IPTW suggests successful de-conflation of treatment with attributes of treated and untreated 
states, and the application of several diagnostic methods—visual inspection of regression 
residual errors as well as randomized treatment, leave-one-out, TNC market launch encoding, or 
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excluding-outlier robustness checks—yields no evidence of systematic error or potential 
misspecifications (SI Section 4).  
 

 
Figure 6. Summary depiction of the effect of TNC entry effects associated with vehicle 
registration, gasoline use, VMT, and emissions (NOx and VOCs shown) estimated using a binary 
(average effect) and a TNC entry-state urbanization interaction regression model. The combined 
effects for urban, middle, and rural states are shown for effect estimated using the interaction 
model; all estimated effects, including interaction term details, are reported numerically in 
Tables 1 and 2. 
 

Our results also suggest a relationship between TNC entry and VOC emissions of 
highway vehicles as estimated by the EPA, and these results pass my robustness checks, but I are 
cautious about interpretation because the dependent variable is modeled rather than measured 
and has several years of interpolated values. I view this finding as exploratory, indicating 
potential value in further study of TNC implications for emissions. I do not identify robust, 
statistically significant effects of TNC entry on gasoline consumption, vehicle miles traveled, or 
emissions other than VOCs, but this does not imply that TNCs have no effect on these outcomes. 
It is possible, for example, that TNCs have had substantial impact on these outcomes in 
particular U.S. cities without producing robust, statistically significant patterns across U.S. states 
that can be identified with my analysis.  
 Our analysis focuses on net effects to overall state-level outcomes after TNCs enter cities 
within those states. I cannot identify changes to vehicle fleet mix with the available data, and 
there are potentially multiple alternative—and sometimes competing—narratives that might 
explain these trends. For example, it is possible that TNCs reduce VOC emissions primarily by 
shifting VMT away from older, less efficient personal vehicles toward newer, more efficient 
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TNC vehicles that operate under hot steady-state conditions for a large portion of VMT, but it is 
also possible that the VOC emissions decline detected here results from the fewer vehicles (also 
detected here) used as an input to the models that EPA uses to produce published highway 
emissions data. Newer vehicles are associated with lower pollutant emissions: CO, NOx, VOC, 
and PM emissions in light-duty transportation have declined 30-50% over the past ten years38. 
The EPA emissions estimates I use do not account for potential changes in cold start vs. hot 
operation ratios induced by TNCs, so any signal captured by my linear models and data is 
potentially attributable to a vehicle fleet transition but not likely to drive-cycle changes. As 
another example, it is possible that TNCs increase VMT on a per-trip basis due to “deadheading” 
(empty miles traveled between passenger trips) and trips induced from other travel modes and 
that TNCs simultaneously decrease the total number of trips traveled, since the marginal cost per 
trip is higher in a TNC than in a personal vehicle (where vehicle capital costs are “sunk”). 
Depending on their relative magnitudes, these dynamics could yield a near-zero net effect. 
Additional study on the effect of TNC market entry on vehicle fleet composition and distribution 
of VMT across the fleet is needed for deeper insight about the mechanisms that produce these 
outcomes. 
 
2.7. Conclusion 
 I estimate that TNC service availability in U.S. cities has reduced state per-capita vehicle 
ownership by 3.1% on average during the period 2005 to 2015 (relative to expected trends if the 
TNCs had not entered). This effect is estimated at the state level, though TNC market entry and 
ridership is generally an urban phenomenon. An effect of this magnitude would correspond to a 
reduction in vehicle ownership of 4.1%, on average, across all urban areas (assuming no effect in 
rural areas). This reduction in vehicles is directionally consistent with the 9% increase in 
reported ownership found by Hampshire et al. (2017) among former Uber users after Uber left 
Austin, TX and with the 9% reduction in reported ownership found among users of ridesourcing 
in seven U.S. cities by Clewlow and Mishra (2018) but is opposite in direction to the effect that 
Gong et al. (2017) estimates in China. In total, I estimate that in a counterfactual scenario where 
TNC services had not been available over the analysis period (and all other variables are held 
constant), the U.S. vehicle fleet would have been larger by 8 million vehicles in 2015. Note that 
this does not necessarily imply a change in new vehicle sales. 
 Further, using EPA estimates of passenger transportation emissions, I estimate that TNC 
service availability is associated with a reduction in state per-capita VOC emissions by 4.8%. 
Using DOT’s average per-mile estimates of the externality costs air pollutant emissions 
(NHTSA, 2012), I estimate that these emissions reductions represent external cost savings of 
$500 million ($20 million to $800 million) over the analysis period (see SI for details). But I 
emphasize caution interpreting emissions results as causal and instead view them as exploratory. 

While I do not identify a robust, statistically significant effect of TNC service availability 
on gasoline use or VMT, it is worth noting that the external costs associated with the range of the 
such outcomes estimated here could increase or more than counterbalance the external cost 
benefits from estimated VOC emissions reductions. Using DOT’s estimates of the externality 
costs of driving from congestion, crashes, and noise travel distance effects, I calculate that the 
95% confidence interval of potential effects of TNC entry on VMT corresponds to possible 
external benefits ranging from –$1 billion to $6 billion. Other factors, such as differences in the 
likelihood of TNC drivers to be involved in accidents or to drive at times and in locations with 
congestion, could further alter these estimates. Similarly, using estimates for the benefits of 
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reducing price-shock risk to the U.S. economy associated with reducing gasoline imports, I 
estimate that potential external benefits of TNC-induced gasoline consumption reduction could 
range from –$600 million to $500 million. 
 These findings should be interpreted in context: my analysis does not identify the mix of 
trends that may lead to these net results, such as competing factors that act both to increase and 
to decrease VMT or changes in the fleet mix that result in fewer vehicle registrations overall but 
not necessarily fewer new vehicle purchases. Our effects are all estimated at the state level, and I 
lack the data to identify smaller-scale nuance at the city and regional levels. Future work using 
higher-resolution data at the zip code or urban area level may be able to further illuminate effects 
of TNC entry on U.S. cities and identify potentially heterogeneous effects.  
 
2.8. Supplemental Information 
 

The following text and figures offer additional detail in support of the main text, 
methods, and results reported in “Effects of on-demand ridesourcing on vehicle ownership, fuel 
consumption, vehicle miles traveled, and emissions per capital in U.S. states.” It is organized as 
follows: 

• Section 1. Prior Literature: this section summarizes in tabular form prior literature 
focusing on TNC outcomes and the set of previously published regression models used to 
study one of the dependent variables of interest considered here (per-capita vehicle 
registrations, gasoline use, VMT, and/or emissions); 

• Section 2. Data and Methods: this section provides a series of plots of regression model 
dependent variables by state and time and by Uber entry cohort and time, a description of 
controls added and associated improvement of fit (quantified using cross-validation 
methods), a set of plots showing generalized additive model (GAM) fits for identifying 
regressor fit, multicollinearity plots for regression variables, a depiction of Uber market 
entry order as a function of urban area population, and two plots showing the 
categorization of states into “rural”, “average”, and “urban” and the characteristics 
(population, density, and GDP) of largest cities within each type of state; 

• Section 3. Results: this section includes a table showing detailed results of regression 
models for all dependent variables of interest (which were only summarized in terms of 
treatment effect the main text) as well as analogous results using an ordinary least squares 
difference-in-difference model (i.e., without propensity score weighting); a set of 
regression results using an alternative approach to determining IPTW weights (along with 
a comparison of weights and balance across treatment and control groups); a set of 
regression results showing potential sensitivity to the alternative normalization (i.e., 
dependent variable per licensed driver or per urban population), timeframe (2009–2015) 
and additional control variables (indicators for Uber leasing/incentive programs, Lyft 
market entry, and transit); a set of results examining the effect of lagged treatment (by 
one and two years); and, finally, a discussion of Benjamini-Hochberg corrections for 
testing multiple hypotheses; 

• Section 4. Mechanical Robustness Checks: this section tests for regression model 
robustness using visual inspection of regression model residual errors, event study results 
and a synthetic check of the parallel trends assumption, randomized treatment analysis, 
leave-one-out analysis, sensitivity to excluding discontinuities, and the addition of linear 
time trends;  
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• Section 5. Encoding Robustness Checks: this section tests for robustness against 
parameter encoding by comparing two DOT estimates of gasoline use, changing the 
annual assignment method of Uber entry dates, and using UberX instead of Uber entry 
dates; and 

• Section 6. Social Costs: this last section offers details on the estimation method and 
calculation of the external costs avoided estimates reported in the main text. 

 
2.8.1. Prior Literature 
 
Summary of prior literature focusing on TNC outcomes: this table offers summary descriptions 
of the key findings on effects of interest, data, and methods for peer-reviewed studies, internal 
reports, or working papers that either 1) use a difference-in-difference model to identify a TNC 
market entry effects, or 2) use other methods to study TNC market entry effects on vehicle 
registrations, gasoline use, VMT, or air pollutant emissions. 
 

Table 5. Prior literature focusing on TNC outcomes. 

Study Effect of 
interest 

Data Method Key Findings 

Greenwood 
(2015), 
journal 
article 

Alcohol-
related motor 
vehicle 
homicides in 
California 

Webscraper tool for Uber 
initial service dates and 
California Highway 
Patrol’s Statewide 
Integrated 
Traffic Report System 

Difference-in-
difference 
regression 
model 

UberX entry 
causes fewer 
road fatalities 

Li (2016), 
working 
paper 

Traffic 
congestion in 
the U.S. 

Individually collected 
Uber entry dates and the 
Urban Mobility Report 

Difference-in-
difference 
regression 
model 

Uber causes 
lower traffic 
congestion time 
and fuel costs 

Burtch et 
al. (2016), 
journal 
article 

Local 
entrepreneurial 
activity in 
U.S. urban 
areas with  

Kickstarter API, Uber 
Blog, Postmates website, 
and Area Health 
Resource Files 

Difference-in-
difference 
regression 
model 

Fewer 
crowdfunding 
launches  

Gong et al. 
(2017), 
working 
paper 

New vehicle 
registrations in 
China 

Manual aggregation of 
Uber launch data from 
Uber electronic sources, 
new domestic passenger 
vehicle data from China’s 
National Bureau of 
Statistics, and 
demographic data from 
the China City Statistical 
Yearbook 

Difference-in-
difference 
regression 
model 

8% increase in 
new vehicle 
ownership 
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Henao 
(2017), 
dissertation  

Uber and Lyft 
vehicle travel 
patterns and 
driver earnings 
in Denver, CO 

Self-collected Descriptive 
statistical 
analysis 

40% of TNC 
miles traveled 
without a 
passenger 

Henao 
(2017), 
dissertation 

Passenger 
travel behavior 
changes in 
Denver, CO 

Self-collected Survey and 
statistical 
analysis 

Possible >80% 
increase in 
vehicle miles 
traveled 

Hampshire 
et al 
(2017), 
working 
paper 

Effect of 
Uber/Lyft 
suspension on 
travel behavior 
in Austin, TX 

Texas A&M 
Transportation Institute 
(TTI) cross-sectional data 
set from 10-minute online 
questionnaire  

Survey 
combined with 
regression 

Uber exit 
associated with 
9% increase in 
vehicle 
ownership and 
23% increase in 
vehicle trips 

Clewlow 
and Mishra 
(2017) 

Collect data on 
TNC service 
adoption and 
impacts on 
travel choices 

Comprehensive travel 
and residential survey 
deployed in seven major 
U.S. cities, in two phases 
from 2014 to 2016, 

Survey 9% fewer 
vehicles and 
49%-61% more 
vehicle trips 

Hall et al. 
(2018) 

Public transit 
ridership in 
U.S. 
metropolitan 
areas 

National Transit 
Database, Google Trends 

Difference-in-
difference 
regression 
model 

1.4% increase in 
transit ridership 
per standard 
deviation in 
Google searches 
for “Uber” 

This study Vehicle 
registrations, 
VMT, and 
emissions 

DOT’s State Statistical 
Abstract and Highway 
Statistics series 
(registrations, VMT, and 
population) and EPA’s 
National Emissions 
Inventory (emissions) 

Difference-in-
difference 
regression 
model 

Reductions in 
per-capita 
vehicle 
registrations and 
VOC emissions 

 
Comparison of regression model structures in previous literature: In Table S2, I compare the use 
and form of dependent and independent variables as well as sample size and sample geographic 
location in other models estimating vehicle ownership, vehicle stock, or VMT. This comparison 
informed the inclusion of population, income, and gas price as dependent variables in my model. 
 
Table 6. A comparison of the regression model posed in this analysis with models used in prior 
literature modeling one of the dependent variables of interest considered here (per-capita vehicle 
registrations, gasoline use, VMT, and/or emissions). Independent variables in each model are 
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denoted by an ‘X’ when included untransformed and by ‘log’ or ‘index’ when represented using 
those forms, respectively. 

 
 
2.8.2. Data and Methods 

This section provides a plot of regression model dependent variables by state and time, a 
comparison of regression models used in the previous literature, a set of plots showing 
generalized additive model (GAM) fits for identifying regressor fit, and multicollinearity plots 
for regression variables. 

Figure S1 and S2 depict four dependent variables (per-capita vehicle registrations, 
gasoline use, VMT, and air pollutant emissions—NOx is shown here) by state and time. I note 
that individual states do not follow clean parallel trends, and noise in parallel trends has potential 
to bias my estimates. Figure S3 shows per-capita vehicle registration by annualized Uber entry 
cohort. Table S3 reports the results of five-fold cross validation root mean square error (rMSE) 
as a function of the stepwise introduction of covariates. Figure S4 illustrates partial residual 
errors from generalized additive model (GAM) fits showing the relationship between control 
variables and associated partial residuals. Figure S5 presents a scatterplot matrix showing 
correlations between treatment and control variables. And, Figure S6 plots Uber market 
population (measured for relevant combined statistical area, or CSA) as a function of Uber 
market launch date, showing that Uber generally entered larger cities (by population) first. 
 
Plot of regression model dependent variable by state and time 
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Figure 7. Dependent variables (per-capita vehicle registrations, per-capita gasoline use, per-
capita vehicle miles traveled, and per-capita NOX emissions, which is shown as one indicator of 
the full suite of emissions data used) shown by state over time.  Variables are indexed by their 
2005 value (2005 = 1.0) to show this set of four heterogeneous measures on the same axes.    

per-capita	vehicle	registrations per-capita	gasoline	use
per-capita	vehicle	miles	traveled	(VMT) per-capita	emissions	of	nitrogen	oxides	(NOx)

Legend:	regression	model	dependent	variables	plotted	by	state	and	year:
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Figure 8. Dependent variables (per-capita vehicle registrations, per-capita gasoline use, per-
capita vehicle miles traveled, and per-capita VOC emissions, which is shown as one indicator of 
the full suite of emissions data used) shown by state over time.  Variables are shifted by 
subtracting the 2005 value from all years, and per-capita VMT and VOC emissions are scaled 
(by 100 and 10,000, respectively) to show this set of four heterogeneous measures on the same 
axes. The dotted line shows the year of Uber entry. 
 

 
Figure 9. Comparison of per-capita vehicle registration data by Uber annual treatment cohort 
(i.e., the mean of states treated in 2012 compared to those treated in 2013 and 2014). 
Regression model form 

per-capita	vehicle	registrations per-capita	gasoline	use
per-capita	vehicle	miles	traveled	(VMT) per-capita	emissions	of	nitrogen	oxides	(NOx)

Legend:	regression	model	dependent	variables	plotted	by	state	and	year:
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Figure 10. Improvement in model fit, as measured by reductions in five-fold cross validation 
root mean square error (rMSE), as a function of the stepwise introduction of covariates. 
Variables common to models in previous relevant literature (as shown in Table S2) motivate the 
set of covariates considered here. The GDP of a state’s largest city (citygdp), the percentage of a 
state’s population that is urban (pop_u2), real per-capita income (inc), gas price (gas), and the 
logarithm of a state’s population (lpop) are all shown to reduce root mean square error, as 
calculated using 5-fold cross-validation on a model with and without each of those covariates (as 
is highlighted in the table below). While the population of a state’s largest city (citypop), the 
density of that city (citydensity), and whether a state has adopted California’s more stringent air 
pollutant standards (s177) are not shown to improve five-fold cross validation rMSE, all are 
included in this study’s regression model to ensure that potential correlations between these 
variables and the dependent variables of interest are not misattributed to Uber entry. 

 
 

citygdp pop_u2 inc gas lpop citypop citydensity s177
fixed	effects	only -2.19% -1.47% -1.75% 0.33% 0.09% -0.21% -0.10% 0.22%
fixed	effects	+	citygdp -0.96% -0.92% 0.20% 0.09% 0.10% 0.07% 0.25%
fixed	effects	+	citygdp	+	pop_u2 -0.73% 0.06% -0.02% 0.10% 0.03% 0.26%
fixed	effects	+	citygdp	+	pop_u2	+	inc -0.17% -0.02% 0.08% 0.05% 0.27%
fixed	effects	+	citygdp	+	pop_u2	+	inc	+	gas -0.09% 0.05% 0.04% 0.26%
fixed	effects	+	citygdp	+	pop_u2	+	inc	+	gas	+	lpop 0.07% 0.03% 0.26%

covariate	to	add:
comparison	model
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Figure 11. Partial residual plots with generalized additive model (GAM)39 fits showing the 
relationship between control variables (x-axes) and associated partial residuals (actual minus 
fitted per-capita vehicle registrations; y-axes). Shaded areas show 95% confidence bands around 
the conditional mean. Fixed effects and indicators (Katrina, Harvey, and Cash for Clunkers) are 
included in the GAM but not examined for structure here because they are simple binary 
indicators. Gasoline price (gas), the population density of the largest city in a state (citydensity), 
and the percentage of a state’s population that is urban (pop_u2) are estimated to have 
sufficiently linear relationships with partial residuals (i.e., a straight line could be fitted within 
the GAM’s shaded confidence intervals) to be included without transformation. Structure in the 
residuals for the logarithm of state population (lpop), real personal income (inc), the logarithm of 
a state’s largest city’s population (lcitypop) and its GDP (lcitygdp) suggest including higher-
order powers. The addition of a second-order term for each of these yields new GAM-estimated 
linear relationships. Independent variables are transformed until all GAM estimates are linear, 
such that the final model used is population (log, quadratic), urban population percentage (level), 
gas price (level), real personal income (quadratic), Section 177 status (level), and largest city 
population (log, quadratic), density (level), and GDP (log, quadratic). 
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Correlation plots 
 

 
Figure 12. A scatterplot matrix of the dependent variable per-capita vehicle registrations, Uber 
treatment, and covariates (state population [lpop], gas price [gas], real per capita income [inc], 
Section 177 status [s177], and urban population percentage [pop_u2], as well as largest city 
population [lcitypop], density [lcitydensity], and GDP [lcityGDP]), showing evidence of 
correlation between Uber treatment and each of the other regressors as well as among some other 
regressors. Not shown is an alternative correlation matrix showing near-perfect correlation 
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between population and income but no such correlation between population and income per 
capita. Accordingly, to avoid multicollinearity, I express income in per capita terms (shown 
here), which also has the benefit of more direct interpretation compared to the dependent 
variable (which is also expressed per capita). 

 

 
Figure 13. Uber market population (measured for relevant combined statistical area, or CSA) as 
a function of Uber market launch date, showing that Uber generally entered larger cities (by 
population) first, which tells us that including a measure of these city’s population, which I do 
with each state’s largest city’s population, as a control variable and as a variable in the IPTW is 
likely important. Data points, from left to right, include San Francisco, New York City, Seattle, 
Chicago, Washington (DC), Los Angeles, Philadelphia, San Diego, Atlanta, Boston, Dallas-Fort 
Worth, Denver, Minneapolis-St. Paul, Phoenix, Baltimore, Sacramento, Rhode Island, Charlotte, 
Detroit, Houston, Pittsburgh, Louisville, Cleveland, Tampa Bay, Miami, Orlando, St Louis, and 
Portland (OR). 

 

0

5

10

15

20

25

2010 2011 2012 2012 2013 2014

Co
m
bi
ne
d	
St
at
ist
ic
al
	A
re
a	

Po
pu
la
tio

n	
(in

	M
ill
io
ns
)

Uber	Market	Launch	Date



 

 36 

 
Figure 14. States indicated by their abbreviation ordered by percentage of population that is 
urban (y-axis). For the purposes of this analysis, states are classified as either “rural”, “average”, 
or “urban” as a function of their urban population percentage; groups are separated at 
discontinuities near indices 16 and 33 (i.e., roughly three equal groups without separating states 
that have similar urban population percentages). Rural states are Maine, Vermont, West Virginia, 
Mississippi, Montana, Arkansas, South Dakota, Kentucky, Alabama, North Dakota, New 
Hampshire, Iowa, Wyoming, Alaska, North Carolina, Oklahoma, South Caroline, Tennessee. 
Average states are Wisconsin, Missouri, Idaho, Indiana, Nebraska, Louisiana, Minnesota, 
Kansas, Mississippi, Georgia, Virginia, New Mexico, Ohio, Pennsylvania, Oregon. Urban states 
are Delaware, Washington, Texas, Colorado, Maryland, New York, Connecticut, Illinois, 
Arizona, Utah, Rhode Island, Florida, Hawaii, Massachusetts, Nevada, New Jersey, and 
California. 
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Figure 15. Characterization of the biggest city within a state in terms of its population (y-axis at 
left), density (y-axis in center), and GDP (y-axis at right) as a function of the percentage of a 
state’s population that is urban (x-axis). The largest cities in states classified as rural in Figure S5 
have low populations, densities, and GDPs; the largest cities in average states have similar or 
higher populations, densities, and GDPs; and the largest cities in urban states are the most 
heterogeneous. Because these city-level characteristics could influence Uber market entry and 
affect my outcomes of interest, I include these variables both as predictors in my probability of 
Uber treatment model and as controls in my regression model. 
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Figure 16. The population share of states with Uber access for five illustrative states from 2009–
2015. Uber enters California (CA) first in 2010 and launches in other cities in the state over time. 
This “gradual expansion” trend is as is also shown by Pennsylvania (PA) and for most other 
states not shown (FL, IA, ID, IN, KS, LA, MA, MI, NC, NM, NV, OH, OK, OR, TX, WA, and 
WI). In New York (NY), Uber’s entry into a single city (New York City) accounts for most of 
the state population share with Uber access, which is also the case for some other states where 
populations with Uber access are either entirely or mostly concentrated in a single metropolitan 
area (AZ, CO, HI, IL, KY, MO, ND, NE, OR, TN, and WI). In Rhode Island (RI), Uber declares 
entry for the whole state at once, which also occurs in CT and NJ. Virginia (VA) is shown to 
underscore that in some states Uber was available to a small part of the population (<10%) by the 
end of 2015 (AL, AR, GA, MD, ME, MN, SC, UT, VA, and VT). And, not shown are the five 
states Uber still had not entered by the end of this analysis period: AK, MT, SD, WV, and WY. 

 
2.8.3. Results  

This section includes a table showing detailed IPTW results for all regression models 
(which were only summarized in the main text) and regression results using an ordinary least 
squares difference-in-difference model (i.e., without propensity score weighting). 

The results presented in this section also include effects calculated using the population-
share model mentioned in the robustness discussion that concludes the Results section of the 
main text.  In this model, I weight a binary Uber indicator with the percentage of a state’s 
population that I estimate, using U.S. Census data for cities and states, has access to shared 
mobility at a given time.  

 
Full regression model results 
 
Table 7. Detailed regression model results using per-capita vehicle, gasoline use, and VMT as 
dependent variables and which were only summarized in the main text; fixed effects coefficients 
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for state and time are not shown.  The estimated coefficients for the binary, population-weighted, 
and interaction models (numbered 1, 2, and 3, respectively) are shown. I emphasize caution 
when interpreting coefficients for control variables that also appear in the IPTW regression to 
determine probability of treatment weights. Note that the statistically significant results in my 
population-weighted model (treatpop) did not pass my robustness checks. 
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Table 8. Detailed results for the per-capita emissions regression models, which were only 
summarized in the main text.  The estimated coefficients for the binary, dynamic, and 
population-weighted models (numbered 1, 2, and 3, respectively, to match those shown in the 
main text) are shown for the emissions of volatile organic compounds (VOCs), nitrogen oxides 
(NOx), carbon monoxide (CO), ammonia (NH3), particulates (PM10 and, separately, PM2.5), 
sulfur dioxide (SO2), and greenhouse gases (GHG). Note that the statistically significant results 
do not pass my robustness checks with the exception of the VOC results, where are reported in 
the main text. 
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Ordinary least squares (OLS) regression models: I provide OLS results here for reference and 
comparison with the IPTW results in Table S5. The OLS results produce similar estimates, 
though at a reduced level of statistical significance for vehicle registrations. For reasons 
explained in the main text, OLS without IPTW has the potential to misattribute effects, so I trust 
the IPTW results more. 
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Table 9. The regression results for the OLS counterparts to the IPTW regression results 
presented in Table S4. OLS coefficients are slightly smaller in magnitude than those in the IPTW 
case. In all cases, the OLS and IPTW estimates for 95% confidence intervals for Uber entry 
treatment coefficients overlap. 
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Table 10. OLS regression results for per-capita emissions of volatile organic compounds 
(VOCs), nitrogen oxides (NOx), carbon monoxide (CO), ammonia (NH3), particulates (PM10 
and, separately, PM2.5), sulfur dioxide (SO2), and greenhouse gases (GHG).  OLS coefficients 
are generally larger in magnitude than those in the IPTW case (Table S5) and are the binary and 
dynamic effects are significant where IPTW effects were not. Still, in all cases, the OLS and 
IPTW estimates for 95% confidence intervals (at the p=0.05 level) for Uber entry treatment 
coefficients overlap. 
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IPTW Weighting: Inverse probability of treatment weights (IPTW) is a statistical method to 
compare post-treatment trends in treated and non-treated states controlling for potential bias that 
might otherwise be introduced by systematic differences between treated and non-treated groups. 
Non-treated states are probabilistically weighted to resemble the treated states along attribute 
dimensions that are correlated with treatment (state population, income, gasoline price, emissions 
standards, and largest city population, density, and GDP). Weights are estimated as described in 
Eq(2) in the main text. 
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Figure 17. Relative influence diagram showing the respective influence of the selected control 
variables on determining probability of treatment. The relatively large influence shown for 
income at the top of the chart indicates that variable is most frequently used as the first branching 
variable in decision trees produced during gradient boosting; whereas, the relatively small 
influence shown for Section 177 status at the bottom of the chart indicates that variable is 
infrequently used as the first branching variable. 

 
Alternative IPTW weights: Alternative weights for use in IPTW regression, calculated using an 
additional control in the probability of treatment regression that indicates whether Uber had 
already entered a state in the prior year, motivated by the observation that once Uber enters a 
state, it stays. This variation on Eq(2) from the main text is as follows: 
 

log
𝑝()(𝛇())

1 − 𝑝()(𝛇())
= 𝑔=(𝛇())

=

+ 𝜖() 

 
In this model, 𝑝() is still the probability of treatment for state 𝑠 and year 𝑡; 𝛇() is a vector of 
covariates matching 𝐳() in Eq(2) in the main text plus an indicator for whether Uber was 
operating in a prior year for state 𝑠 and year 𝑡. As in Eq(2), I estimate the additive function 𝑔= 
using gradient boosting, given the treatment and covariate data, and compute estimated 
probability of treatment 𝑝() for each state and year. The addition of the Uber in prior year 
indicator improved the fit of the model predicting treatment, resulting in more extreme weights 
(i.e., closer to zero) for control group observations. 

Income
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City	density
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Table 11. Alternative weights for use in IPTW regression, calculated using an additional control 
in the probability of treatment regression that indicates whether Uber had already entered a state 
in the prior year, motivated by the observation that once Uber enters a state, it stays. 

 

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
AK 0.01 0.01 0.02 0.11 0.02 0.03 0.04 0.04 0.04 0.04 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.25 0.08
AL 0.07 0.07 0.06 0.09 0.03 0.03 0.06 0.06 0.07 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 1.00 1.00
AR 0.03 0.10 0.08 0.08 0.05 0.04 0.06 0.10 0.07 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 1.00 1.00
AZ 0.04 0.04 0.05 0.08 0.04 0.02 0.05 1.00 1.00 1.00 1.00 0.01 0.01 0.01 0.01 0.01 0.01 0.03 1.00 1.00 1.00 1.00
CA 0.13 0.10 0.16 0.56 0.38 1.00 1.00 1.00 1.00 1.00 1.00 0.02 0.02 0.06 0.27 0.05 1.00 1.00 1.00 1.00 1.00 1.00
CO 0.26 0.26 0.19 0.31 0.15 0.09 0.35 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 1.00 1.00 1.00
CT 0.44 0.23 0.23 0.32 0.20 0.10 0.23 0.24 0.28 1.00 1.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.31 1.00 1.00
DE 0.05 0.05 0.03 0.04 0.03 0.02 0.04 0.04 0.07 0.12 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.34 1.00
FL 0.02 0.09 0.05 0.07 0.05 0.03 0.13 0.15 0.17 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.08 0.50 1.00 1.00
GA 0.04 0.04 0.06 0.06 0.01 0.02 0.22 1.00 1.00 1.00 1.00 0.01 0.01 0.01 0.00 0.00 0.01 0.02 1.00 1.00 1.00 1.00
HI 0.07 0.04 0.04 0.20 0.03 0.10 0.25 0.32 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.09 1.00 1.00 1.00
IA 0.03 0.06 0.20 0.21 0.36 0.25 0.25 0.30 0.33 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.15 1.00 1.00
ID 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 1.00 1.00
IL 0.23 0.11 0.08 0.25 0.05 0.07 1.00 1.00 1.00 1.00 1.00 0.01 0.01 0.01 0.03 0.01 0.01 1.00 1.00 1.00 1.00 1.00
IN 0.04 0.04 0.03 0.06 0.03 0.02 0.22 0.23 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 1.00 1.00 1.00
KS 0.01 0.02 0.16 0.16 0.07 0.08 0.34 0.42 0.33 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 1.00 1.00
KY 0.08 0.08 0.05 0.08 0.03 0.03 0.05 0.06 0.06 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 1.00 1.00
LA 0.02 0.01 0.01 0.05 0.15 0.14 0.19 0.21 0.38 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.16 1.00 1.00
MA 0.21 0.46 0.30 0.38 0.51 0.13 0.78 1.00 1.00 1.00 1.00 0.01 0.02 0.01 0.01 0.02 0.01 0.51 1.00 1.00 1.00 1.00
MD 0.16 0.29 0.29 0.34 0.27 0.12 0.36 0.37 1.00 1.00 1.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.27 1.00 1.00 1.00
ME 0.01 0.02 0.01 0.10 0.07 0.06 0.07 0.08 0.16 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.09 1.00 1.00
MI 0.02 0.01 0.01 0.01 0.01 0.02 0.28 0.28 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.44 1.00 1.00 1.00
MN 0.09 0.08 0.06 0.09 0.03 0.04 0.34 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.01 0.00 0.00 0.07 1.00 1.00 1.00 1.00
MO 0.02 0.02 0.01 0.07 0.01 0.05 0.08 0.09 0.28 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.17 1.00 1.00
MS 0.01 0.02 0.02 0.04 0.01 0.02 0.02 0.02 0.02 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 1.00 1.00
MT 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 0.24
NC 0.03 0.07 0.08 0.53 0.06 0.03 0.11 0.37 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.13 1.00 1.00 1.00
ND 0.01 0.01 0.04 0.04 0.06 0.05 0.13 0.13 0.13 0.17 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.06 1.00
NE 0.05 0.05 0.19 0.19 0.26 0.19 0.38 0.44 0.47 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.21 1.00 1.00
NH 0.05 0.10 0.05 0.08 0.18 0.25 0.17 0.16 0.16 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.05 1.00 1.00
NJ 0.06 0.13 0.06 0.10 0.07 0.04 0.15 0.37 1.00 1.00 1.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.05 1.00 1.00 1.00
NM 0.03 0.03 0.02 0.03 0.02 0.01 0.03 0.03 0.03 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 1.00 1.00
NV 0.22 0.14 0.14 0.22 0.11 0.08 0.10 0.09 0.13 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.19 1.00 1.00
NY 0.14 0.26 0.50 0.61 0.32 0.26 1.00 1.00 1.00 1.00 1.00 0.00 0.01 0.02 0.05 0.01 0.04 1.00 1.00 1.00 1.00 1.00
OH 0.04 0.05 0.05 0.29 0.02 0.03 0.18 0.19 0.20 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 1.00 1.00
OK 0.01 0.01 0.01 0.04 0.03 0.05 0.31 0.33 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 1.00 1.00 1.00
OR 0.03 0.03 0.03 0.28 0.02 0.02 0.11 0.10 0.11 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.09 1.00 1.00
PA 0.03 0.13 0.10 0.29 0.07 0.08 0.54 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.45 1.00 1.00 1.00 1.00
RI 0.07 0.05 0.05 0.05 0.03 0.04 0.13 0.18 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.11 1.00 1.00 1.00
SC 0.02 0.02 0.06 0.06 0.02 0.02 0.03 0.04 0.05 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.10 1.00 1.00
SD 0.01 0.01 0.03 0.04 0.05 0.03 0.05 0.05 0.05 0.07 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.12 0.47
TN 0.06 0.05 0.05 0.09 0.04 0.03 0.16 0.32 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.00 1.00 1.00
TX 0.05 0.08 0.09 0.34 0.25 0.18 0.44 1.00 1.00 1.00 1.00 0.01 0.01 0.01 0.01 0.01 0.01 0.06 1.00 1.00 1.00 1.00
UT 0.05 0.05 0.04 0.05 0.03 0.02 0.07 0.07 0.12 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.06 1.00 1.00
VA 0.07 0.13 0.06 0.07 0.16 0.04 0.18 0.18 0.18 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.14 1.00 1.00
VT 0.01 0.05 0.03 0.04 0.07 0.04 0.07 0.05 0.09 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.12 0.02 1.00 1.00
WA 0.10 0.05 0.07 0.26 0.08 0.08 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.01 0.01 0.00 0.00 1.00 1.00 1.00 1.00 1.00
WI 0.02 0.01 0.06 0.07 0.03 0.02 0.07 0.10 0.24 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26 1.00 1.00
WV 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.12 0.29
WY 0.04 0.07 0.04 0.10 0.09 0.06 0.13 0.10 0.10 0.10 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.07

BASE	WEIGHTS ALTERNATIVE	WEIGHTS
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Figure 18. Balance for alternative weights calculated using an additional control in the 
probability of treatment regression for whether Uber had already entered a state in the prior year 
(UberPY). While the alternative-weight specification provides a better fit for estimating 
probability of treatment, the resulting weights do not yield acceptable balance between the 
treatment and control groups: significant differences remain between treatment and control 
biggest city GDP, state gasoline price, and state population, even after applying alternative 
weights. Note that this figure is directly comparable with Figure 2 (balance for base weights) in 
the main text. 

 
Table 12. A comparison of IPTW regression results using base weights (i.e., those presented and 
discussed in the main text, left) and the alternative weights (right) calculated using an additional 
control in the probability of treatment regression for whether Uber had already entered a state in 
the prior year (UberPY, which is used to determine probability of treatment in Eq(2) of the main 
text but is not included in the main regression of Eq(1) itself). The change in weights yields 
differences in direction, magnitude, and significance for some treatment and control variable 
coefficients. Differences are the result of different weights (see Table S8), and base-weight 
results (between balanced control and treatment groups, per Figure S11) are preferred to those 
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using alternative weights (where improper balance suggests bias may be an issue, again per 
Figure S11). 

 
 

Table 13. Sensitivities of IPTW regression results using the logarithm of per-capita vehicle 
registrations as the dependent variable to a sequence of potentially relevant alternative 
normalizations or additional control variables, as follows: vehicle registrations are normalized 
per licensed driver instead of per capita (“Per license”); vehicle registrations are normalized per 
urban population instead of per capita (“Per urban pop.”); states are dropped if Uber entered 
during the Great Recession (i.e., California, “Recession entry”); the regression is repeated with a 
shortened time frame (2009–2015) that more closely matches only years of Uber entry ( “Time 
frame”); an indicator is added for states and years where and when Uber offered leasing 
incentives during the analysis period (Uber’s Vehicle Solutions program in CA, GA, and MD in 
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2014 and 2015; the program was later expanded and became Xchange Leasing, “Uber leasing”); 
an indicator is added for Lyft market entry (“Lyft”), and a covariate is added for per-capita 
transit ridership (“Transit”). In all cases, vehicle registrations are consistently estimated to 
decline. 

 
 
Table 14. Comparison of main text model with a variant that does not normalize the dependent 
variables by population (i.e., the dependent variable is the logarithm of vehicles instead of the 
logarithm of vehicles per capita). I find the only change is a one-unit increase in the estimated 
coefficient on the population control variable; no other estimates are affected.  Coefficients for 
treatment and population are shown; other estimates (covariates and fixed effects) are excluded. 

 
 
Table 15. Regression results using a one- and two-year lagged indicator for Uber treatment to 
examine potential delayed-onset treatment effects. Per-capita vehicle registration and VOC 
emission effects described as significant in the main text are comparable in magnitude 
(confidence intervals overlap); though, level of significance generally declines, which can be 
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expected as the number of treated observations falls by ~40% and 70% (from n=124 to 79 and 
36) when treatment is lagged by one and two years, respectively. 

 
 
Benjamini-Hochberg Correction: Because I test five types of dependent variables (vehicle 
registrations, gasoline use, VMT, EPA-estimated emissions, and EIA-estimated emissions), I 
employ a Benjamini-Hochberg correction for testing multiple hypotheses. When correcting for 
the 5 families of dependent variables, I find my per-capita vehicle registration and VOC 
emissions results are robust to false detection rates as low as 2.6%. When correction for all 44 
potential dependent variables (given the 7 types of EPA-estimated emissions series as well as 
interactions tested), I find my results are robust to false detection rates as low as 4.6%. 
 

Table 16. Benjamini-Hochberg correction for testing multiple hypotheses showing the estimated 
effect of TNC entry on per-capita VOCs and Vehicle Registrations is robust to a false discovery 
rate as low as 2.6% for 5 unique types dependent variables (i.e., 5 average effects from unique 
sources), 3.8% for 11 unique dependent variables (i.e., 11 total average effects estimated), and 
4.6% for consider the full set of 44 effects estimated (interactions included). 

 
 

1% 2% 5% 10%
5 VOC - average -4.8% 1.7% -2.83 0.005 Y 1 0.002 0.004 0.010 0.020 2.4%

Registrations - average -3.1% 1.2% -2.57 0.010 Y 2 0.004 0.008 0.020 0.040 2.6%
VMT - average -0.3% 0.3% -1.00 0.316 N 3 0.006 0.012 0.030 0.060 52.7%
GHG - average 0.7% 0.8% 0.89 0.375 N 4 0.008 0.016 0.040 0.080 46.9%
Gasoline Use - average 0.3% 0.4% 0.79 0.428 N 5 0.010 0.020 0.050 0.100 42.8%

11 NH3 - average -2.7% 1.0% -2.86 0.004 N 1 0.001 0.002 0.005 0.009 4.8%
VOC - average -4.8% 1.7% -2.83 0.005 Y 2 0.002 0.004 0.009 0.018 2.7%
Registrations - average -3.1% 1.2% -2.57 0.010 Y 3 0.003 0.005 0.014 0.027 3.8%
SO2 - average 3.1% 1.8% 1.74 0.082 N 4 0.004 0.007 0.018 0.036 22.7%
CO - average -3.2% 1.8% -1.74 0.083 N 5 0.005 0.009 0.023 0.045 18.3%
NOx - average -1.8% 1.3% -1.44 0.152 N 6 0.005 0.011 0.027 0.055 27.8%
PM10 - average 2.9% 2.0% 1.42 0.156 N 7 0.006 0.013 0.032 0.064 24.5%
VMT - average -0.3% 0.3% -1.00 0.316 N 8 0.007 0.015 0.036 0.073 43.5%
GHG - average 0.7% 0.8% 0.89 0.375 N 9 0.008 0.016 0.041 0.082 45.9%
Gasoline Use - average 0.3% 0.4% 0.79 0.428 N 10 0.009 0.018 0.045 0.091 47.0%
PM25 - average -0.2% 1.6% -0.13 0.898 N 11 0.010 0.020 0.050 0.100 89.8%

44 PM10 - treat:mid -13.6% 3.9% -3.490 0.001 N 1 0.000 0.000 0.001 0.002 2.3%
VMT - treat:rural -1.9% 0.6% -3.300 0.001 N 2 0.000 0.001 0.002 0.005 2.3%
NOx - treat:rural -7.9% 2.5% -3.217 0.001 N 3 0.001 0.001 0.003 0.007 2.0%
PM25 - treat:mid -9.9% 3.1% -3.216 0.001 N 4 0.001 0.002 0.005 0.009 1.5%
CO - treat:rural -7.0% 2.3% -3.067 0.002 N 5 0.001 0.002 0.006 0.011 2.0%
NH3 - average -2.7% 1.0% -2.863 0.004 N 6 0.001 0.003 0.007 0.014 3.2%
VOC - average -4.8% 1.7% -2.828 0.005 Y 7 0.002 0.003 0.008 0.016 3.1%
PM10 - urban 9.1% 3.4% 2.703 0.007 N 8 0.002 0.004 0.009 0.018 3.9%
PM10 - treat:rural -10.6% 4.0% -2.630 0.009 N 9 0.002 0.004 0.010 0.020 4.3%
Registrations - average -3.1% 1.2% -2.569 0.010 Y 10 0.002 0.005 0.011 0.023 4.6%
PM25 - treat:rural -7.5% 3.1% -2.392 0.017 N 11 0.003 0.005 0.013 0.025 6.9%
NH3 - urban -2.7% 1.2% -2.258 0.024 N 12 0.003 0.005 0.014 0.027 8.9%
VOC - treat:rural -4.4% 2.3% -1.921 0.055 N 13 0.003 0.006 0.015 0.030 18.7%
PM25 - urban 4.3% 2.3% 1.866 0.063 N 14 0.003 0.006 0.016 0.032 19.7%
VMT - treat:mid -0.9% 0.5% -1.854 0.064 N 15 0.003 0.007 0.017 0.034 18.9%
VOC - urban -3.7% 2.1% -1.806 0.072 N 16 0.004 0.007 0.018 0.036 19.7%
SO2 - average 3.1% 1.8% 1.740 0.082 N 17 0.004 0.008 0.019 0.039 21.3%
CO - average -3.2% 1.8% -1.736 0.083 N 18 0.004 0.008 0.020 0.041 20.4%
Gasoline Use - treat:mid 0.9% 0.6% 1.569 0.117 N 19 0.004 0.009 0.022 0.043 27.2%
Registrations - urban -2.8% 1.8% -1.563 0.119 N 20 0.005 0.009 0.023 0.045 26.1%
NOx - treat:mid -3.6% 2.4% -1.492 0.136 N 21 0.005 0.010 0.024 0.048 28.6%
NOx - average -1.8% 1.3% -1.437 0.152 N 22 0.005 0.010 0.025 0.050 30.3%
PM10 - average 2.9% 2.0% 1.422 0.156 N 23 0.005 0.010 0.026 0.052 29.8%
NH3 - treat:rural -1.8% 1.4% -1.279 0.202 N 24 0.005 0.011 0.027 0.055 37.0%
Gasoline Use - treat:rural 0.9% 0.7% 1.216 0.224 N 25 0.006 0.011 0.028 0.057 39.5%
CO - treat:mid -2.5% 2.1% -1.178 0.239 N 26 0.006 0.012 0.030 0.059 40.5%
VMT - average -0.3% 0.3% -1.003 0.316 N 27 0.006 0.012 0.031 0.061 51.5%
SO2 - treat:rural 3.4% 3.5% 0.966 0.335 N 28 0.006 0.013 0.032 0.064 52.6%
GHG - average 0.7% 0.8% 0.887 0.375 N 29 0.007 0.013 0.033 0.066 57.0%
VMT - urban 0.3% 0.4% 0.866 0.387 N 30 0.007 0.014 0.034 0.068 56.7%
SO2 - urban 2.2% 2.6% 0.862 0.389 N 31 0.007 0.014 0.035 0.070 55.3%
Gasoline Use - average 0.3% 0.4% 0.794 0.428 N 32 0.007 0.015 0.036 0.073 58.8%
NH3 - treat:mid 0.8% 1.1% 0.760 0.447 N 33 0.008 0.015 0.038 0.075 59.7%
GHG - urban 0.5% 0.9% 0.625 0.533 N 34 0.008 0.015 0.039 0.077 68.9%
CO - urban -1.2% 2.2% -0.544 0.587 N 35 0.008 0.016 0.040 0.080 73.8%
Registrations - treat:mid -1.0% 1.9% -0.525 0.600 N 36 0.008 0.016 0.041 0.082 73.3%
VOC - treat:mid -1.1% 2.1% -0.525 0.600 N 37 0.008 0.017 0.042 0.084 71.3%
GHG - treat:rural 0.5% 1.2% 0.432 0.666 N 38 0.009 0.017 0.043 0.086 77.1%
NOx - urban 0.7% 1.8% 0.358 0.720 N 39 0.009 0.018 0.044 0.089 81.3%
SO2 - treat:mid 1.0% 2.8% 0.358 0.721 N 40 0.009 0.018 0.045 0.091 79.3%
Gasoline Use - urban -0.1% 0.4% -0.283 0.777 N 41 0.009 0.019 0.047 0.093 83.4%
Registrations - treat:rural 0.5% 2.1% 0.249 0.803 N 42 0.010 0.019 0.048 0.095 84.1%
GHG - treat:mid 0.2% 1.0% 0.166 0.868 N 43 0.010 0.020 0.049 0.098 88.9%
PM25 - average -0.2% 1.6% -0.128 0.898 N 44 0.010 0.020 0.050 0.100 89.8%

Critical values as f(FDR*) min. 
FDR*Estimate Std. Error t value Pr(>|t|) p-value 

rank
robust. 
checks?
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1% 2% 5% 10%
5 VOC - average -4.8% 1.7% -2.83 0.005 Y 1 0.002 0.004 0.010 0.020 2.4%

Registrations - average -3.1% 1.2% -2.57 0.010 Y 2 0.004 0.008 0.020 0.040 2.6%
VMT - average -0.3% 0.3% -1.00 0.316 N 3 0.006 0.012 0.030 0.060 52.7%
GHG - average 0.7% 0.8% 0.89 0.375 N 4 0.008 0.016 0.040 0.080 46.9%
Gasoline Use - average 0.3% 0.4% 0.79 0.428 N 5 0.010 0.020 0.050 0.100 42.8%

11 NH3 - average -2.7% 1.0% -2.86 0.004 N 1 0.001 0.002 0.005 0.009 4.8%
VOC - average -4.8% 1.7% -2.83 0.005 Y 2 0.002 0.004 0.009 0.018 2.7%
Registrations - average -3.1% 1.2% -2.57 0.010 Y 3 0.003 0.005 0.014 0.027 3.8%
SO2 - average 3.1% 1.8% 1.74 0.082 N 4 0.004 0.007 0.018 0.036 22.7%
CO - average -3.2% 1.8% -1.74 0.083 N 5 0.005 0.009 0.023 0.045 18.3%
NOx - average -1.8% 1.3% -1.44 0.152 N 6 0.005 0.011 0.027 0.055 27.8%
PM10 - average 2.9% 2.0% 1.42 0.156 N 7 0.006 0.013 0.032 0.064 24.5%
VMT - average -0.3% 0.3% -1.00 0.316 N 8 0.007 0.015 0.036 0.073 43.5%
GHG - average 0.7% 0.8% 0.89 0.375 N 9 0.008 0.016 0.041 0.082 45.9%
Gasoline Use - average 0.3% 0.4% 0.79 0.428 N 10 0.009 0.018 0.045 0.091 47.0%
PM25 - average -0.2% 1.6% -0.13 0.898 N 11 0.010 0.020 0.050 0.100 89.8%

44 PM10 - treat:mid -13.6% 3.9% -3.490 0.001 N 1 0.000 0.000 0.001 0.002 2.3%
VMT - treat:rural -1.9% 0.6% -3.300 0.001 N 2 0.000 0.001 0.002 0.005 2.3%
NOx - treat:rural -7.9% 2.5% -3.217 0.001 N 3 0.001 0.001 0.003 0.007 2.0%
PM25 - treat:mid -9.9% 3.1% -3.216 0.001 N 4 0.001 0.002 0.005 0.009 1.5%
CO - treat:rural -7.0% 2.3% -3.067 0.002 N 5 0.001 0.002 0.006 0.011 2.0%
NH3 - average -2.7% 1.0% -2.863 0.004 N 6 0.001 0.003 0.007 0.014 3.2%
VOC - average -4.8% 1.7% -2.828 0.005 Y 7 0.002 0.003 0.008 0.016 3.1%
PM10 - urban 9.1% 3.4% 2.703 0.007 N 8 0.002 0.004 0.009 0.018 3.9%
PM10 - treat:rural -10.6% 4.0% -2.630 0.009 N 9 0.002 0.004 0.010 0.020 4.3%
Registrations - average -3.1% 1.2% -2.569 0.010 Y 10 0.002 0.005 0.011 0.023 4.6%
PM25 - treat:rural -7.5% 3.1% -2.392 0.017 N 11 0.003 0.005 0.013 0.025 6.9%
NH3 - urban -2.7% 1.2% -2.258 0.024 N 12 0.003 0.005 0.014 0.027 8.9%
VOC - treat:rural -4.4% 2.3% -1.921 0.055 N 13 0.003 0.006 0.015 0.030 18.7%
PM25 - urban 4.3% 2.3% 1.866 0.063 N 14 0.003 0.006 0.016 0.032 19.7%
VMT - treat:mid -0.9% 0.5% -1.854 0.064 N 15 0.003 0.007 0.017 0.034 18.9%
VOC - urban -3.7% 2.1% -1.806 0.072 N 16 0.004 0.007 0.018 0.036 19.7%
SO2 - average 3.1% 1.8% 1.740 0.082 N 17 0.004 0.008 0.019 0.039 21.3%
CO - average -3.2% 1.8% -1.736 0.083 N 18 0.004 0.008 0.020 0.041 20.4%
Gasoline Use - treat:mid 0.9% 0.6% 1.569 0.117 N 19 0.004 0.009 0.022 0.043 27.2%
Registrations - urban -2.8% 1.8% -1.563 0.119 N 20 0.005 0.009 0.023 0.045 26.1%
NOx - treat:mid -3.6% 2.4% -1.492 0.136 N 21 0.005 0.010 0.024 0.048 28.6%
NOx - average -1.8% 1.3% -1.437 0.152 N 22 0.005 0.010 0.025 0.050 30.3%
PM10 - average 2.9% 2.0% 1.422 0.156 N 23 0.005 0.010 0.026 0.052 29.8%
NH3 - treat:rural -1.8% 1.4% -1.279 0.202 N 24 0.005 0.011 0.027 0.055 37.0%
Gasoline Use - treat:rural 0.9% 0.7% 1.216 0.224 N 25 0.006 0.011 0.028 0.057 39.5%
CO - treat:mid -2.5% 2.1% -1.178 0.239 N 26 0.006 0.012 0.030 0.059 40.5%
VMT - average -0.3% 0.3% -1.003 0.316 N 27 0.006 0.012 0.031 0.061 51.5%
SO2 - treat:rural 3.4% 3.5% 0.966 0.335 N 28 0.006 0.013 0.032 0.064 52.6%
GHG - average 0.7% 0.8% 0.887 0.375 N 29 0.007 0.013 0.033 0.066 57.0%
VMT - urban 0.3% 0.4% 0.866 0.387 N 30 0.007 0.014 0.034 0.068 56.7%
SO2 - urban 2.2% 2.6% 0.862 0.389 N 31 0.007 0.014 0.035 0.070 55.3%
Gasoline Use - average 0.3% 0.4% 0.794 0.428 N 32 0.007 0.015 0.036 0.073 58.8%
NH3 - treat:mid 0.8% 1.1% 0.760 0.447 N 33 0.008 0.015 0.038 0.075 59.7%
GHG - urban 0.5% 0.9% 0.625 0.533 N 34 0.008 0.015 0.039 0.077 68.9%
CO - urban -1.2% 2.2% -0.544 0.587 N 35 0.008 0.016 0.040 0.080 73.8%
Registrations - treat:mid -1.0% 1.9% -0.525 0.600 N 36 0.008 0.016 0.041 0.082 73.3%
VOC - treat:mid -1.1% 2.1% -0.525 0.600 N 37 0.008 0.017 0.042 0.084 71.3%
GHG - treat:rural 0.5% 1.2% 0.432 0.666 N 38 0.009 0.017 0.043 0.086 77.1%
NOx - urban 0.7% 1.8% 0.358 0.720 N 39 0.009 0.018 0.044 0.089 81.3%
SO2 - treat:mid 1.0% 2.8% 0.358 0.721 N 40 0.009 0.018 0.045 0.091 79.3%
Gasoline Use - urban -0.1% 0.4% -0.283 0.777 N 41 0.009 0.019 0.047 0.093 83.4%
Registrations - treat:rural 0.5% 2.1% 0.249 0.803 N 42 0.010 0.019 0.048 0.095 84.1%
GHG - treat:mid 0.2% 1.0% 0.166 0.868 N 43 0.010 0.020 0.049 0.098 88.9%
PM25 - average -0.2% 1.6% -0.128 0.898 N 44 0.010 0.020 0.050 0.100 89.8%

Critical values as f(FDR*) min. 
FDR*Estimate Std. Error t value Pr(>|t|) p-value 

rank
robust. 
checks?
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2.8.4. Mechanical Robustness Checks 
This section tests for regression model robustness using visual inspection of regression 

model residual errors, permutation test using iterative resampling, leave-one-out analysis, and 
comparative cross-validation. 

 
Regression residual errors 
 

 
Figure 19. Plots showing residual errors versus fitted values for the binary specification of the 
IPTW regression model, using as the dependent variable per-capita vehicle registrations (upper-
left), gasoline use (upper-right), VMT (lower-left), and VOC emissions (lower-right), 
respectively. Results show that there is no obvious structure to the distribution of residual errors, 
suggesting that there is not evidence here that the model is mis-specified. 
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Event Study: An Event Study is a statistical method for estimated the effect of a treatment (e.g., 
Uber market entry) in the context of related effects both before and after treatment occurs. By 
explicitly quantifying effects both before and after treatment, these studies are useful to ensure 
that any effect attributed to treatment does not precede the treatment, such that a pre-treatment 
effect could be misattributed to the treatment in a model without explicit before-and-after 
context. I find no evidence of an effect on vehicle registrations or VOC emissions in the years 
leading to Uber market entry, and I find a statistically significant effect for each at a point after 
Uber entry with the same sign as the effect identified in the difference-in-difference model. 

 

 

 
Figure 20. Event study showing the estimated change in vehicle registrations per capita (top) 
and the estimated change in VOC emissions per capita (bottom) from five years prior to Uber 
entry to five years after Uber entry. These estimates are generated using the same IPTW model 
as is described in the main text with the addition of a suite of indicator variables to capture the 
number of years before/after Uber market entry for each observation. The trend above suggests 
that no significant decline in per-capita vehicle registrations occurs until the year of Uber entry 
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and is significantly lower (compared to the period more than five years prior to Uber entry) after 
that. 

 
Table 17. Annual pre- and post-treatment effect estimates for the event study, corresponding to 
the depiction in Figure S13 above. 
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Figure 21. Plot over time of per-capita vehicle registration data with IPTW regression-estimated 
group and time fixed effects removed. A comparison of data from before Uber entry (in gray) 
with data after Uber entry (in blue) shows no clear evidence of a violation of the difference-in-
difference model’s parallel trends assumption. 

 
Linear Time Trends 
 
Table 18. I estimate an additional model that includes linear time trends for each state in order to 
control for distinct trends in each state, and I find that my estimated effect of TNC entry on 
vehicle registrations are relatively robust to this specification change: the magnitude of the 
vehicle registration effect declines slightly to -2.1%, and the p-value increases to 0.08. The VOC 
effect also declines slight to 4.3% but maintains significance. Coefficient estimates for treatment 
are shown; other estimates (i.e., covariates and fixed effects) are excluded. 
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Permutation test using iterative resampling 
 

 
Figure 22. A set of histograms showing the results of the randomized treatment robustness check 
for the estimated effect (“beta”) of treatment on the dependent variable (“DV”) per-capita 
vehicle registrations (upper-left), where the true IPTW estimate, reflected by the vertical dotted 
line, is unlikely to have been generated by chance and the estimated effect of treatment on per-
capita VOC emissions (upper-right), where the true IPTW estimate is again unlikely to have 
been generated by chance. In addition, two effects that do not pass this robustness check are 
included in contrast with those that do for illustrative purposes: the estimated effect of 
population-weighted treatment on per-capita VMT (lower-left), where the true IPTW estimate is 
not clearly significantly different from a randomly estimated effect, and the estimated combined 
effect of treatment in a rural area on per-capita VMT (lower-right), where the true IPTW 
estimate aligns with other estimates generated by chance. More specifically in the case of the 
estimated effect of treatment on per-capita vehicle registrations, 100 samples with randomized 
treatments subjected to the IPTW regression model yields the distribution shown, where the 
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mean estimated effect is zero, and only four estimates resulting from randomized treatment are 
beyond the effect estimated using actual treatment. 

 
Leave-one-out analysis 
 

 
Figure 23. A set of histograms showing the results of the leave-one-out robustness check for the 
estimated effect (“beta”) of treatment on the dependent variable (“DV”) when the regression is 
performed separately without each state (results in order of the size of the estimated effect); the 
estimated effect of treatment on per-capita vehicle registrations (upper-left), where the true 
IPTW estimate, reflected by the horizontal dotted line near the median of the distribution is 
statistically significant when any one state is removed except Ohio, which produces estimates 
very close to the significance threshold and the estimated effect of treatment on per-capita VOC 
emissions (upper-right), where the true IPTW estimate is affected when Indiana is left out. In 
addition, two effects that do not pass this robustness check are included in contrast with those 
that do for illustrative purposes: the estimated effect of population-weighted treatment on per-

OH
IN
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capita VMT (lower-left), where the true IPTW estimate is affected by a few states, and the 
estimated combined effect of treatment in a rural area on per-capita VMT (lower-right), where 
the true IPTW estimate is affected by several states. More specifically in the case of the 
estimated effect of treatment on per-capita vehicle registrations, 50 samples leaving one state out 
each is subjected to the IPTW regression model and yields the distribution shown, where the 
mean estimated effect is the median of the distribution, and only Ohio causes a sufficient shift to 
significantly affect the estimated effect. 
 
Leave-multiple-out (discontinuity) analysis: For my four outcomes of interest (per-capita vehicle 
registrations, gasoline use, VMT, and VOC emissions), the dataset contains instances of 
unexpectedly large year-to-year changes (for example, Colorado’s vehicle registrations jump 
from 1.6 million in 2010 to 4.2 million in 2011, reflecting a change in that state’s reporting, of 
which U.S. DOT is aware), which I define an increase or decreases of more than 15% from one 
year to the next. In this section, I identify these discontinuities and repeat regression analysis 
without states exhibiting them to ensure they are not unduly influencing the result. 
  

 
Figure 24. Sorted distribution plots comparing year-to-year changes in each of the dependent 
variables of interest (clockwise, from upper-left), vehicle registrations, gasoline use, VOC 
emissions, and VMT, all on a per-capita basis. Observations in the tails suggest relatively large 
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single-year changes (i.e., increase or decreases in per capita vehicle registrations more than 15% 
from one year to the next), indicating the presence of time-series discontinuities of potential 
concern. Regression analysis is repeated without states exhibiting these discontinuities to ensure 
they are not unduly influencing the result, and, as Table S16 below shows, per-capita vehicle 
registration and VOC emissions effects are robust to their exclusion. 
 

Table 19. Repeating the regression leaving out all states that contain discontinuities in dependent 
variables of interest based on visual inspection of the distributions in Figure S13 above. For the 
specific case of per-capita vehicle registrations, this is defined as any single year-on-year change 
in absolute value greater than 0.15, which is the case for CO, DE, MT, NV, UT, and WY. For 
gasoline use, AK, HI, LA, and ME are excluded; for VMT, AL and NV are excluded, and for 
VOC emissions, California, Hawaii, Massachusetts, and New Jersey are excluded. Regression 
results excluding those results in the remaining states continue to yield statistically significant 
results (where results were previously significant and robust) with changes of no more than 10% 
in the magnitude of estimated TNC effects. 
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2.8.5. Encoding Robustness Checks  
This section tests for robustness against parameter encoding by replicating regression 

results after changing the method for assigning annual indicators representing Uber entry date 
and using UberX entry dates instead of Uber entry dates. 

 
Changing Uber entry date 
 
Table 20. Regression model coefficients using an adjusted measure of annual Uber treatment.  In 
the main text, Uber market entry dates are binned directly into the year in which Uber enters 
(i.e., Uber entry in 2015 is categorized as a 2015 entry regardless of entry month); whereas, in 
this table, Uber entry is categorized using a break between June and July (e.g., a January 2014 
Uber entry would be categorized as 2014, but a December 2014 entry would fall into 2015). 

 
 
2.8.6. Social Costs 

External costs are calculated based on “Economic Values Used for Benefits 
Computations” estimates published in the Final Regulatory Impact Analysis for Corporate 
Average Fuel Economy for MY2017–MY2025 Passenger Cars and Light Truck by the National 
Highway Traffic and Safety Administration (NHTSA)40. That analysis estimates that 1) the 
emission damage costs of VOCs are $1,700/ton, 2) the economic benefit of avoiding price 
shocks by reducing oil imports is an additional $0.197 per gallon, and 3) the external costs from 
additional automobile and light truck use—including congestion, accidents, and noise—are 
$0.081 and $0.078 per vehicle-mile, respectively (an average of $0.080 is used here). 
 The 4.8% reduction in per-capita VOC emissions reported in the main text (95% 
confidence interval: 1.5% to 8.2%) is converted to total VOC emissions avoided by multiplying 
by state populations and state emissions, both as reported in DOT’s State Statistical Abstracts41, 
in all states and times after Uber market entry. Similarly, the [not significant] 0.3% (–0.5% to 
1.1%) and –0.3% (–0.9% to 0.3%) estimated effects on per-capita gasoline use and VMT are 
converted to total gasoline not consumed and VMT not traveled by multiplying each effect by 
state populations and state gasoline consumption or VMT, respectively, in states and times after 
Uber market entry. 

Using DOT’s per-mile estimates of the externality costs of air pollutant emissions, I 
estimate that VOC emissions avoided represent external cost savings of $600 million ($300 



 

 63 

million to $900 million) over the analysis period. Additionally, even though I do not find that 
TNC service availability causes a significant effect on either gasoline use or VMT, associated 
external costs could increase or more than counterbalance the external benefits from VOC 
emissions reductions. Again, using DOT’s estimates of the externality costs of driving from 
congestion, accidents, and noise travel distance effects, I calculate that possible external benefits 
of TNC-induced changes to VMT could range from -$1 billion to +$7 billion. And, using 
estimates for the price shock benefits of reducing gasoline imports, I calculate that potential 
external benefits of TNC-induced gasoline consumption reduction could range from $800 
million in costs to $400 million in benefits. 
 

  
Figure 25. External costs calculated using DOT per-short ton (0.907 metric tons), per-gallon, 
and per-mile benefits for estimated TNC-induced effects to VOC emissions, gasoline use, and 
VMT in all states and years after Uber market entry. Points represent median estimates, shaded 
bars represent the inner-quartile range, and error bars represent the 95% confidence interval. 
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Chapter 3. Ridesourcing Affects Different Cities Differently: Heterogeneity in Impacts on 
Vehicle Ownership, Fuel Economy, and Transit Ridership in Urban Areas in the United 
States 
 
This study is based on a working paper co-authored with Jeremy Michalek, Constantine 
Samaras, Inês Azevedo, Alejandro Henao, Clement Rames, Tom Wenzel, and Ken Gillingham.  
 

In this chapter, I complement the state-level analysis in the previous chapter with 
econometric modeling focused on urban areas as the observational unit to estimate whether and 
in what kinds of cities TNC entry increases or decreases vehicle ownership, fuel economy, and 
transit ridership outcomes. I estimate effects of on-demand ridesourcing services from 
transportation network companies (TNCs) Uber and Lyft on vehicle ownership, fleet average 
fuel economy, and transit use in U.S. urban areas using a set of difference-in-difference 
propensity score-weighted regression models that exploit staggered market entry across the U.S. 
from 2011 to 2017. I find evidence that TNC entry into urban areas causes an average 0.7% 
increase in vehicle registrations and no average effect on overall fleet efficiency; though, I also 
find significant heterogeneity in both effects. TNC entry tends to increase vehicle ownership 
more in urban areas with higher initial vehicle ownership and lower population growth rates, 
increase overall fleet efficiency more in urban areas with fewer childless households, and 
decrease transit ridership more in urban areas with higher median incomes and more childless 
households. These findings are robust to a range of robustness checks. 

 
3.1. Introduction 

The past decade saw the advent and growth of ridesourcing, a travel mode in which a 
passenger uses a mobile device to request a ride with a nearby driver at a transaction price 
determined in real time by a Transportation Network Company (TNC), such as Uber or Lyft. 
During this period, the number of Americans traveling in for-hire vehicles on any given day 
more than doubled1,2. Uber, which launched UberX, its basic level of service, in 2012, had 
entered 224 U.S. urban areas (approximately half of those identified by the U.S. Census) by the 
end of 2017. In absolute terms, the 0.5% of total passenger trips now served by TNCs is still 
relatively small, but in urban areas the effects can be substantial– by 2016 TNCs accounted for 
15% of all intra-San Francisco vehicle trips on an average weekday3. 

While a growing body of research finds that TNCs lead to significant changes in 
transportation-related outcomes such as new vehicle purchases in China4, traffic congestion5, 
motor vehicle homicide6,7,8, and passenger safety9 as well as other outcomes as varied as AirBnB 
demand10, entrepreneurial activity11, and urban crime12, few studies have yet reached conclusions 
about effects of TNCs on energy and climate change-relevant outcomes like petroleum 
consumption and greenhouse gas (GHG) emissions. Both metrics are particularly and 
increasingly important for the transportation sector, which has long consumed the bulk of 
petroleum products produced and recently became a greater GHG emitter than any other sector 
in the U.S.13 These outcomes are a function of total vehicle travel and efficiency and are related 
to the size of the vehicle fleet and availability of transportation alternatives. Higher vehicle 
ownership rates are associated with both higher transportation energy consumption per capita14, 
as Figure 26 shows, and greater emissions from vehicle production: there were nearly 17 million 
new vehicles sold in the U.S. in 2018, each generating nearly 8 metric tons of GHGs from the 
manufacturing process13. The introduction of TNC services could disrupt the relationship 
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between vehicle ownership and transportation energy consumption and emissions not only in the 
U.S. but also globally, including in countries like China and India, where vehicle registration 
numbers are climbing more than 10% each year13. 
 

  
Figure 26. Transportation energy consumption is positively correlated with vehicle ownership, 
as is shown for 10 major U.S. cities (left; data from U.S. Census and Newman and Kenworthy14), 
and private vehicle travel consumes proportionally greater energy, as a comparison of commuter 
transportation modes and energy shares of those commuter transportation modes for New York 
and Los Angeles shows (right; data from U.S. Census and Banister15). 

 
The few published articles that do examine TNC impacts on energy and the environment 

are constrained to survey methods or limited geographies, and, when taken together, reach 
apparently inconsistent inferences and conclusions. Previous analyses of TNC effects on vehicle 
ownership, for example, have found either a decrease in vehicle ownership16 or that 
“ridesourcing probably did not influence car ownership behavior”17. Considered with appropriate 
context and constraints, these findings are not necessarily inconsistent (the decline in vehicle 
ownership was modeled at the U.S. state level, while the no-effect finding was based on a survey 
specific to San Francisco, CA), but their differences point to the need for a coherent framework 
within which to interpret such findings and their associated implications.  

Plausible underlying narratives can explain either an increase or a decrease in vehicle 
ownership after TNC market entry (or a net-zero effect, as a result of the simultaneous presence 
of pressures in both directions): new economic opportunity afforded by TNC entry could 
motivate would-be TNC vehicle drivers to increase vehicle registrations; whereas, private 
vehicle-free mobility newly afforded to would-be passengers could prompt vehicle shedding 
and/or new vehicle purchase delays. Several working papers use surveys to bear out these 
vehicle ownership relationships: a positive correlation for TNC drivers18 and a negative 
correlation for TNC passengers19,20,21,22. Other working papers use empirical panel data to 
observe or model a net effect, finding both increases4,23 or decreases24 in vehicle ownership.  

Effects of TNCs on fleet fuel economy are also ambiguous a priori, as drivers motivated 
by lower operating costs could plausibly migrate to newer, more efficient vehicles (Uber and 
Lyft require newer vehicles in some cities25), just as drivers motivated by the potential for large-
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party-trip price premiums may shift to larger, less efficient vehicles. Only one peer-reviewed 
article to date reports a TNC-fuel economy relationship, finding that ridesourcing vehicles are 
more efficient compared to non-ridesourcing vehicles26. Two working papers agree4,27; while, 
another suggests that TNC vehicle fuel economies are lower than those of taxis28.  

The effects on TNCs on public transit ridership are similarly equivocal, with several 
survey-based studies finding ridesourcing can either replace transit17 or complement it29,30,31 as 
an effective extension of an otherwise fixed network (several working papers also suggest 
replacement22,32,33 or complementarity34,35). Importantly, two of these previous studies report 
heterogeneous effects—a more positive transit correlation is found either in bigger cities as well 
as cities with smaller transit agencies31 or as a function of high population density and 
households with fewer vehicles30—and a working paper finds rail usage increases while bus 
usage declines, on average, with variation in effects across cities36. 

I propose that heterogeneity in the effects of TNC entry in different types of cities may be 
responsible for some of the apparent discrepancies in reported effects, since average effects can 
look different depending on what subset of locations are included in the study scope and how 
they are aggregated. To quantify and systematically organize the potentially fundamental 
changes to personal travel across U.S. urban areas and associated energy and environmental 
outcomes, I estimate effects of Uber and Lyft entry on vehicle ownership, fleet average fuel 
economy, and transit ridership outcomes using a set of difference-in-difference propensity score-
weighted regression models that exploit staggered TNC market entry into urban areas across the 
U.S. from 2010 to 2017. I combine annual individual vehicle registration data from Polk/IHS 
Markit with annual ZIP code-level sociodemographic data from the U.S. Census Bureau and 
aggregate to the urban area to estimate effects. I find that estimated vehicle ownership and fuel 
economy effects of TNC entry vary across urban areas. Accordingly, I characterize this 
heterogeneity across urban areas and determine that vehicle ownership levels and population 
growth rates are among the primary determinants of differences in TNC entry effects on vehicle 
ownership and efficiency. These results offer a systematic framework for informing future 
energy, transportation, and urban planning decision-making. 
 
3.2. Results 

Analyses are conducted using a series of difference-in-difference models with inverse 
probability of treatment weighting (IPTW). The difference-in-difference method is a quasi-
experimental technique that compares trends before and after a treatment—i.e., TNC market 
entry in this study—against counterfactual trends in an untreated control group, and IPTW 
weights help ensure the control group is appropriately comparable to the treatment group. I 
specify an econometric model to estimate average TNC entry effects on vehicle ownership, fuel 
economy, and transit ridership and then use several variations on that primary specification to 
estimate heterogeneous effects across urban areas. I employ three complementary approaches to 
examining heterogeneity: 1) I conduct heterogeneous treatment effect (HTE) analysis to estimate 
urban area-specific TNC effects and then identify factors that differ between urban areas with 
positive versus negative estimated effects; 2) I cluster similar urban areas and calculate cluster-
specific TNC effects; and, finally, 3) I add targeted treatment interaction terms identified by the 
HTE and cluster analysis to my regression model to confirm whether these the urban area 
characteristics explain the heterogeneity in TNC entry effects across urban areas. I present 
average effect results first (Table 21), followed by HTE (Figure 27, Table 22), cluster analysis 
(Figure 28, Table 23), and interaction regression results (Table 24). 
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3.2.1. Average Effect  

In Table 21 I summarize results for the regressions specified in equation (1) (Section 4) 
for the effect of TNC entry vehicle registrations per capita, fleet average fuel economy, and 
transit trips per capita at the urban area level. On average, TNC entry in an urban area increases 
per-capita vehicle registrations by 0.7% (95% confidence interval: 0.1–1.3%) and has no 
significant average effect on fleet average fuel economy or per-capita transit trips. The estimated 
effect on registrations is also robust to a battery of robustness checks and sensitivity analyses 
(randomized treatment, leave-one-out analysis, and an event study, all of which are described in 
detail the Methods section and SI.) 

 
Table 21. Treatment effects of TNC entry on urban areas in the U.S. from three regression 
models estimating vehicle registrations per capita, average fuel economy, and transit ridership 
(coefficients for control variables, fixed effects, and linear time trends are included in the SI).  

 
 
3.2.2. Heterogeneous Treatment Effects  

The heterogeneous treatment effects regression specification is a variation on the primary 
regression that estimates urban area-specific TNC entry effects on vehicle ownership and fuel 
economy (transit ridership data are unavailable for nearly half of urban areas and so are not 
reported in this approach). Individual urban area effects are estimated to range from an 11.0% 
decrease in per-capita vehicle registrations in Redding, CA to a 15.7% increase in Gainesville, 
FL, and from a 1.9% decrease in fleet average fuel economy in Greely, CO to a 2.6% increase in 
Thousand Oaks, CA. Figure 27 shows the distribution of those estimated effects in urban areas 
that are statistically significant. TNC entry is associated with a significant decline in vehicle 
registrations per capita in 38 urban areas (17% of 224 treated urban areas) and an increase in 58 
(26%) urban areas, as well as a significant decline in fleet average fuel economy in 30 (13%) 
urban areas and increase in 38 (17%) urban areas. Estimated effects on per-capita vehicle 
registrations and average fuel economy are not significant in 57% and 70% of urban areas, 
respectively (not shown).  

The heterogeneity across cities raises the question of whether there are characteristics of 
cities that determine the sign of the effect. Table 22 presents the results of fitting a predictive 
linear model to whether an urban area will have a positive or negative TNC effect on vehicle 
registrations or fuel economy as a function of other covariates used in the primary regression. 
Urban areas with positive effects on vehicle registrations tend to be smaller, lower-income, and 
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have more vehicle registrations per capita, transit commuters, and households without children 
than urban areas with negative effects. Urban areas with positive effects on fleet average fuel 
economy also tend to be smaller, lower-income (at the 90% confidence level), and have more 
vehicle registrations per capita and transit commuters but fewer households without children than 
urban areas with negative effects. 

 

 
Figure 27. Heterogeneous treatment effect of TNC entry on per-capita vehicle registrations (left) 
and fleet average fuel economy (right), ranked by urban area from lowest to highest; only 
statistically significant effects are shown. The center blue line illustrates treatment effects, and 
the grey bands indicate 95% confidence intervals. 

 
Table 22. Coefficients of a linear model estimating whether an urban area will have a positive 
(dependent variable indicator = 1) versus negative (dependent variable indicator = 0) estimated 
TNC effect on vehicle registrations or fuel economy, respectively, based on HTE-estimated 
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effects for each respective outcome as a function of other covariates used in the primary 
regression. 

 
 
3.2.3. Cluster Effects  

As an alternative approach to characterizing heterogeneity, I use hierarchical clustering to 
identify and group similar urban areas as a function of their observable features and then 
estimate TNC entry effects. In Figure 28 I show the estimated effect of TNC entry on per capita 
vehicle registrations (above) and average fuel economy (below) for each cluster, given an 
exogenously specified number of urban area clusters ranging from 2 to 10. Significant effects are 
highlighted for some clusters (New York City appears as a “cluster” of just one urban area in 
each figure and is not explicitly explored further in this analysis because the intent is to identify 
trends across cities). For the effect of TNC entry on transit ridership, none of my clusters had 
significant effects (see SI). As I show in Figure 28, estimated TNC effects vary by urban area 
clusters (regardless of how many clusters are specified). Across all urban area subsets shown, 
cluster-estimated effects range from a 1.8% decrease to a 3.0% increase in vehicle registrations 
per capita and from a 0.07% decrease to a 0.4% increase in average fuel economy; though, other 
than New York, only clusters with positive effects that are relatively large in magnitude are 
statistically significant, spanning a 2% to 3% increase in vehicle ownership and a 0.4% to 0.5% 
increase in fuel economy. These estimates are also robust to the battery of robustness checks 
already described (as described in detail the Methods section and SI.) 
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Figure 28. TNC treatment effect on the change in per-capita vehicle registrations (top) and 
average fuel economy (bottom) varies by urban area typology and is consistently significant and 
positive (indicated in blue) for one-to-two clusters of urban areas across a sweep of cluster 
numbers. Statistically significant effects are highlighted in blue, and estimates that are not 
significant are grey. The size of each circle reflects the number of urban areas in each cluster; 
note that the weighted average (by number of urban areas per cluster) of cluster effects is 
consistent across the number of clusters and with the average estimates in Table 21. 
 

In Table 23 I fit a linear model to estimate differences in the characteristics of urban areas 
in clusters with and without significant estimated effects (shown in blue and shown in grey, 
respectively, at the p<0.05 level in Figure 28). Given the relatively steady pattern that emerges in 
estimated effects across number of clusters, I focus on the 3-cluster case: again, excluding the 
New York City “cluster” of just one urban area, I contrast one cluster with an estimated 2% 
increase in vehicle ownership and 0.5% increase in fuel economy after TNC entry with another 
cluster with no significant estimated effects. Compared to the insignificant-effects cluster, the 
significant-and-positive-effects cluster includes urban areas that are, on average, smaller with 
lower incomes and population growth rates and higher vehicle ownership rates and more 
households without children.  
 
Table 23. Coefficients of a linear model estimating whether the cluster of urban areas will have a 
significant positive estimated TNC effect on vehicle registrations or fuel economy (dependent 
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variable indicator = 1) versus the cluster of other urban areas with no significant estimated effect 
(dependent variable indicator = 0) as a function of other covariates used in the primary 
regression. Note that because the cluster analysis groups similar (or identical) urban areas into 
the cluster for which significant effects are estimated for both vehicle ownership and fuel 
economy outcomes, the same predictive model relating outcomes to urban area characteristics is 
fit for TNC effects on both vehicle registrations and fuel economy.  

 
 
In addition to the robustness checks already mentioned, I tested a variety of alternative clustering 
methods (as described in the Methods section with full detail in the SI), and, overall, the results 
were robust (i.e., no different sets of urban area characteristics were estimated as significantly 
different between clusters with significant TNC entry effects and other urban areas).  
 
3.2.4. Interaction Regression and Heterogeneous Effects 

The urban area characteristics identified as distinguishing urban areas with distinct 
responses to TNC entry in the cluster and HTE analysis have substantial overlap. Table 24 
summarizes regression results that include treatment interactions with categorical measures 
(below or above the median; sensitivity to other quantiles is presented in the SI) of the six 
dimensions of heterogeneity suggested in common by the heterogeneous treatment effect (HTE) 
and clustering analyses: vehicle registrations per capita (in a pre-treatment reference year, 2010, 
to avoid endogeneity in modeling vehicle registrations in 2011–2017) and population, population 
growth, income, the percentage of commuters who travel by transit, and the percentage of 
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households without children (all also measured in a pre-treatment reference year, 2011). I find 
that, on average, urban areas with higher-than-median initial vehicle ownership see a 0.9% (95% 
confidence interval: 0.1% to 1.5%) higher effect of TNC entry on ownership than urban areas 
with lower-than-median initial ownership, and, urban areas with lower-than-median growth rates 
also see a 0.9% (95% confidence interval: 0.1% to 1.5%) higher effect of TNC entry on 
ownership than urban areas with higher-than-median growth. These estimates are also robust to a 
battery of robustness checks, as well as alternative quantile approaches and continuous measures 
for estimating the interaction (as described in detail the Methods section and SI). Estimates of 
interactions with other variables are not statistically significant. 

Additionally, I also find that urban areas with lower-than-median childless household 
rates see a 0.2% (0% to 0.4%) higher TNC effect on fuel economy than urban areas with higher-
than- median childless household rates, an estimate which is also robust to a battery of 
robustness checks (again including alternative quantile and continuous approaches, as described 
in detail the Methods section and SI). The effect of TNC entry on average fuel economy is not 
found to vary as a function of other variables. Finally, I estimate that, on average, urban areas 
with higher-than-median incomes see a 5.1% (1.7% to 8.5%) lower effect of TNC entry on 
transit ridership than urban areas with lower-than-median incomes, and urban areas with higher-
than-median childless household rates see a 2.6% (0% to 5.2%) lower effect of TNC entry on 
transit ridership than urban areas with lower-than-median childless household rates. 

 
3.3. Discussion 

Our results suggest that access to TNC services has significant and heterogeneous effects 
on vehicle ownership (per-capita vehicle registrations) and average fuel economy. I apply 
heterogeneous treatment effect analysis, cluster analysis, and a regression analysis with 
interaction effects as three different ways to characterize the heterogeneity of TNC entry effects 
across urban areas. All three methods agree that TNC entry tends to produce larger increases in 
vehicle ownership for urban areas with higher initial vehicle ownership and lower population 
growth rates compared to urban areas with lower initial vehicle ownership and higher growth 
rates, respectively, larger increases in average fuel economy for urban areas with fewer childless 
households incomes compared to urban areas with more childless households, and larger 
decreases in transit ridership for urban areas with higher incomes and more childless households 
than urban areas with lower incomes and fewer childless households, respectively.  

Regarding TNC entry effects on fleet fuel efficiency, there is evidence that TNC entry 
increases fleet efficiency more in urban areas with fewer childless households less in urban areas 
with more childless households. An increase in fuel economy effect aligns with Wenzel et al.’s 
findings that the TNC fleet is more efficient (compared to the overall private vehicle fleet)26, so 
it is plausible to consider TNC entry would have such an effect everywhere absent other 
dynamics. While TNC drivers may indeed buy the same efficient vehicles with larger and more 
comfortable backseats and four doors, regardless of urban area, in urban areas with more 
childless households, the pre-existing vehicle stock may have been smaller-sized and already 
disproportionately efficient, such that TNC entry in such areas results in a smaller increase in 
vehicle efficiency than in urban areas with fewer childless households and presumably a pre-
existing stock of larger and less efficient vehicles. 

 

Table 24. Treatment effects of TNC entry in the U.S. from a series of regression models 
separately estimating treatment interactions with categorical measures of vehicle ownership, 
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population, population growth, income, and transit commuters on vehicle registrations per capita, 
average fuel economy, and transit ridership per capita outcomes (coefficients for control 
variables, fixed effects, and linear time trends are included in the SI).  

 
 

Assuming continued TNC market growth and an extension of the effects I estimate here 
(which may, in fact, change over time), the 0.2% increase in average fuel economy estimated 
here would translate to 400 million fewer gallons of gasoline consumed each year when applied 
to roughly half of all passenger trips (based on 2018 consumption and assuming changes only in 
areas with lower-than-median childless-household rates37) and a shift in regional petroleum 
consumption away from urban areas with fewer childless households. Again, the net effect on 
total fleet energy consumption also depends on the distribution of vehicle miles traveled, which I 
do not observe and which may shift away from personal vehicles toward TNC vehicles. 
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Finally, regarding the larger declines in transit ridership associated with TNC entry in 
higher-income urban areas and those with more childless households, it is plausible first to 
consider that TNC entry appeals more as substitute to transit to potential passengers with a 
greater ability to pay for a relatively higher TNC fare in higher-income areas. And, in higher 
childless-household urban areas, travelers without families may have more flexibility across 
modal choices than travelers with families, as previous literature has suggested38. TNC entry, 
then, could divert a greater portion of transit trips for more flexible travelers; whereas, less 
flexible travelers’ transit use unchanged (i.e., commuting via transit could continue while errands 
and other casual trips with family were already not happening via transit). Transit energy 
intensity is lower than that of personal vehicle travel, as Figure 26 showed, such that shifting 
trips from transit to TNC vehicles likely increases energy consumption. 

The increases in per-capita vehicle registrations and average fuel economy estimated here 
are consistent with Gong et al.’s finding that Uber entry leads to an increase in new vehicle 
registrations4 and Wenzel et al.’s conclusion that ridesourcing vehicles are more efficient28 but 
seemingly contrary to Ward et al.’s results suggesting a decrease in post-TNC entry per-capita 
vehicle registrations at the state level (using total light-duty vehicle registrations from Ward’s 
Automotive)16. It is not necessarily inconsistent that our results find a positive effect at the 
urban-area level when previous results found a negative TNC market entry effect on vehicle 
registrations at the state level, especially given the heterogeneity in urban area effects found in 
this analysis. We replicate the state level analysis by aggregating urban area vehicle registrations 
(and population-weighting average other explanatory variables) up to the state level and re-
specifying the state-level regression model. Table 25 compares the average effect estimates from 
the earlier state-level analysis, the current urban area-level analyses, and a state-level analysis 
using urban area data aggregated to the state level. We find that the urban area data produces a 
significant negative estimate when aggregated to the state level, consistent with the state-level 
analysis. This suggests that, if TNC entry has different effects in different cities, averaging 
effects across urban areas within the same state can yield different results than analyzing effects 
across individual urban areas. 
 
Table 25. Two sets of regression results exploring heterogeneity across urban areas (UAs): an 
Average-Effect Model that compares state-level analysis results, urban area-level analysis 
results, and a reproduction of state-level results using urban area data aggregated to the state 
level (i.e., arithmetic or population-weighted means?). 
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While these mechanisms are plausible pathways by which the estimated effects manifest, 

I acknowledge my analysis is constrained to net overall outcomes after TNCs enter urban areas. I 
cannot identify more detailed changes to vehicle fleet mix with the available data, and there are 
potentially multiple alternative—and sometimes competing—narratives that might explain these 
trends. Depending on their relative magnitudes, these dynamics can yield a near-zero net effect 
(potentially the case for average fuel economy and transit ridership effects estimated here), even 
within analyses that explicitly targets heterogeneity. Additional study of the effect of TNC 
market entry on vehicle fleet composition and travel behavior across the fleet is needed for 
deeper insight about the mechanisms that produce these outcomes. 
 
3.4. Methods  

I use difference-in-difference (DID) models to estimate effects of the intervention (TNC 
entry into U.S. urban areas) by comparing the trends of treated and untreated groups before and 
after the treatment occurs. The DID technique is a quasi-experimental method that enables my 
models to isolate and estimate a TNC entry effect, even without a randomized controlled 
experiment. These specifications can control explicitly for relevant covariates as well as 
implicitly for potentially unobserved (or otherwise omitted) covariates that could otherwise bias 
my estimates by differencing away similarities between treated and untreated groups (both of 
which are ostensibly similarly affected by any potentially omitted covariates). DID methods have 
been used previously to evaluate the effect of TNCs on transportation and several other 
outcomes4–12. I employ inverse probability of treatment weighting (IPTW) to ensure that my 
control and treated groups are comparable, thereby avoiding potential selection bias (i.e., 
potential bias in my estimates actually attributable to TNCs systematically entering certain kinds 
of urban areas first). The details of my DID and IPTW implementations are described below. 
 
3.4.1. Difference-in-Difference Model 

Our regression model is informed by models used in prior literature for my outcomes of 
interest. Regression analysis is conducted using inverse probability of treatment weighting 
(described below) and the following baseline specification: 
 
 𝑦D) = 𝛽𝑥D) + 𝛂&𝐳D) + 𝛾D + 𝛿) + 𝛾D𝑡 + 𝜀D) (1) 
 
where 𝑦D) is the dependent variable of interest for urban area 𝑢 and year 𝑡 and represents either 
1) vehicle registrations per capita, 2) average fuel economy, or 3) transit ridership. 𝑥D) is the 
treatment (TNC indicator) with coefficient 𝛽. 𝐳D) is a vector of controls (population, 
unemployment rate, income, portion of households with no children, percent of population 
commuting by transit, and state average gas price), with corresponding coefficients 𝛂. 𝛾D and 𝛿H 
are fixed-effects dummies for urban area 𝑢 and year 𝑡, respectively; 𝛾D𝑡 allows for linear time 
trends by urban area; and 𝜀D) is unobserved error.  
 
3.4.2. Propensity Score 
 I estimate propensity scores using gradient boosting39, which previous studies have 
shown as superior to simple logistic regression models for propensity score estimation40, to 
approximate the logistic model: 
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 log 5I7(𝐳J7)
:;5J7(𝐳J7)

= 𝑓=(𝐳D))= + 𝜖D), (2) 
 
where 𝑝D) is the probability of treatment for urban area 𝑢 and year 𝑡; 𝐳D) is the same vector of 
covariates for urban area 𝑢 and year 𝑡 as in equation (1), and 𝜖D) is unobserved error. I estimate 
the additive function 𝑓= using gradient boosting, given the treatment and covariate data, and 
compute estimated probability of treatment 𝑝D) for each urban area and year. The resulting 
estimates for probability of treatment are then used in a weighted regression for equation (1)41. 
 
3.4.3. Heterogeneous Treatment Effects Analysis 

I estimate heterogeneous treatment effects by individual urban area in the following 
variation of my baseline specification: 
 
 𝑦D) = 𝛽D𝑥D) + 𝛂&𝐳D) + 𝛾D + 𝛿) + 𝛾D𝑡 + 𝜀D), (3) 
 
such that the coefficient 𝛽D now takes on unique values for each urban area 𝑢.  I subsequently fit 
an additional linear model to identify significant differences between urban areas where 
treatment effects are positive versus negative using the following specification: 
 
 𝜏D = 𝛂&𝐳D) + 𝜀D), (4) 
 
where 𝜏D is a binary indicator for whether the treatment effect is significant and positive or 
significant and negative (urban areas without significant estimated effects are excluded). 
 
3.4.4. Cluster Analysis 

I use hierarchical clustering to identify groups of urban areas that are similar in terms of 
their observable features, employing an agglomerative (rather than divisive) algorithm, in hopes 
of finding larger groups of similar urban areas, and computing [dis]similarity across urban areas 
using Euclidean distances and Ward’s minimum variance method42. For a given number of 
clusters, 𝑛, I re-specify my regression as: 
 
 𝑦D) = 𝛋D&𝛃𝑥D) + 𝛂&𝐳D) + 𝛾D + 𝛿) + 𝛾D𝑡 + 𝜀D), (5) 
 
where 𝛋D& = κ:P	𝜅SD …	𝜅UD  is a vector indicating the cluster to which urban area 𝑢 belongs 
(𝜅VD = 1 if urban area 𝑢 is in cluster 𝑖 and 𝜅VD = 0 otherwise) and 𝛃 = 𝛽:	𝛽S …𝛽U & is the 
vector of treatment coefficients for each cluster. I run a series of models sweeping from 𝑛 ∈
2, 3, … ,10  clusters and estimate cluster-specific TNC entry effects as described.  

I test the sensitivity of my clustering analysis by varying the clustering algorithm (divisive rather 
than agglomerative), the distance measure (Manhattan rather than Euclidean), the linkage 
function (complete rather than Ward’s method) and by using a subset (rather than all) of urban 
area features: vehicle registrations per capita, population, population density, and percent of 
population commuting by transit. 

I again fit an additional linear model to identify significant differences between clusters 
of urban areas where treatment effects are positive and significant versus insignificant using the 
following specification: 
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 𝛕D = 𝛂&𝐳D) + 𝜀D), (6) 
 
where 𝜏D is a binary indicator for whether the treatment effect for the cluster to which an urban 
area belongs is significant and positive or not. 
 
3.4.5. Interaction Analysis 

In a final variation on the primary regression in equation (1), I interact specific variables 
with treatment. I specify these interaction regressions as: 
 
 𝑦D) = 𝛽:𝑥D) + 𝛽S𝑥D)𝜁D) + 𝛂&𝐳D) + 𝛾D + 𝛿) + 𝛾D𝑡 + 𝜀D), (7) 
 
where 𝛽: is the average treatment coefficient and 𝛽S is a treatment interaction coefficient 
estimating how the average treatment varies with 𝜁D, an element of 𝐳D). I interact a categorical 
measure of 𝜁D): 1 indicates a value greater than the mean for a given UA in a given year; while, 0 
indicates not. Also, when the interaction term is vehicle registrations per capita, to avoid 
endogeneity problems (as a function of modeling a dependent measure of vehicle registrations 
per capita with an independent measure of the same), the interaction term refers to a pre-
treatment categorization (i.e., vehicle ownership rates in an urban area in the year 2010). 
 
3.4.6. Robustness 

I subject my results to a variety of checks including a set of robustness checks, sensitivity 
analysis, and event studies. The battery of robustness checks and sensitivity analyses that I apply 
support my findings. All significant effects in my primary model are robust (i.e., still estimated 
as significant at similar magnitude) to five robustness checks, as follows: 

(1) Randomized Treatment: I conduct placebo tests, in which I reassign the set of true TNC 
entry dates to other urban areas at random and re-specify my regressions, to ensure that 
the effects I estimate are unique to the particular observed pattern of treatments, rather 
than a result of the structure of the model. Estimated effects are considered robust if they 
fall in the tails (>95%) of the distribution of randomized treatment-estimated effects;  

(2) Leave-One-Out: I conduct leave-one-out tests to ensure that my estimates do not hinge on 
accuracy of the timing of TNC entry in, or the data from, any one urban area. Estimated 
effects are considered robust if they remain significant when systematically leaving each 
urban area out;  

(3) Leave-Multiple-Out: because some dependent variables exhibit what could be perceived 
as discontinuities resulting from data collection/input or other error for several urban 
areas, I incrementally remove urban areas that exhibit the largest year-on-year change in 
decreasing order. Estimated effects are considered robust if estimated magnitude and 
significant are similar after systematically excluding up to 25 urban areas; 

(4) Alternative Quantiles: in my targeted interaction regressions, I increase the number of 
quantiles (the top and bottom 50%iles are compared in the main text) to confirm 
significant treatment interaction terms are robust and consistent across varying 
categorical interaction variable quantile sizes; 

(5) Continuous Interaction: in my targeted interaction regressions, I replace the categorical 
with a continuous measure of the interaction term to test whether interaction effects are 
linear;  
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(6) Alternative Clustering: in my cluster analysis, I change the urban area features and 
algorithms used for clustering (including Manhattan instead of Euclidean distance 
measures, a complete instead of Ward’s linkage function, a divisive instead of 
agglomerative algorithm, and an alternative feature selection, including only those 
features identified as significant in my HTE analysis) to confirm correlations between 
TNC effects on vehicle registration and fuel economy outcomes are consistent 
independent of clustering features and/or method; and  

(7) Event Study: I model an event study by adding relative time indicators for the number of 
years before and after TNC entry to confirm the presence of post-treatment (i.e., post-
TNC entry) effects without pre-treatment anticipation (i.e., estimated effects occur only 
after treatment). 

Robustness test results are summarized in Table 26 below; details for all are provided in the SI. 
 
Table 26. Summary of robustness tests and results. 

 
 

3.5. Data 
 I describe and identify data sources for dependent variables, treatment, and control 
variables below:  
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3.5.1. Dependent Variables: 
• Vehicle registrations and fuel economy: IHS Markit (formerly Polk) collects and sells 

vehicle registration information from U.S. state agencies responsible for vehicle 
registration data43. I rely on annual versions of the dataset from 2010–2017 that report 
individual vehicle make, model, and engine size for the approximately 240 million light-
duty vehicles registered in the U.S.  I aggregate vehicle counts to and average fuel 
economies at the urban area level. 

• Transit ridership: U.S. DOT’s Federal Transit Administration (FTA) reports annual 
summary statistics, including ridership, on more than 660 transit providers receiving 
federal funding in the National Transit Database (NTD)44. I focus on transit providers that 
consistently report data for all years of this analysis (2010–2017) and aggregate 
individual transit agencies by urban area, per classification in the database. 

 
3.5.2. Treatment Variables:  

• Uber and Lyft entry dates: I adopt data from previous sources that aggregated and 
published a time-series of Uber market entry dates. A 2014 Forbes article first aggregated 
Uber launch dates from 2010–201445 by service area, as originally announced on Uber’s 
official blog (on a post no longer available) and/or in local media from each new service 
area. Forbes continued to update that dataset to reflect additional Uber markets launched 
through December 2015. Those dates are cross-referenced against Uber market launch 
date data that were independently gathered and published in two later studies45,46 as well 
as the authors’ own systematic comparison with local newspaper announcements. Burtch 
et al. include a table of market launch dates for UberX—Uber’s lower-cost, on-demand 
service provided in the driver’s personal vehicle, which the authors compiled directly 
from the Uber Blog for the rest of the analysis period (through 2017). Lyft market launch 
dates were requested from and provided by Lyft47. For each urban area, I use an 
annualized measure of the first entry date (Uber or Lyft) in my analysis to indicate when 
on-demand mobility became available (annualized Lyft market entry years are the same 
or later than annualized Uber market entry years in all but several cases in upstate New 
York). 

 
3.5.3. Control Variables 

• Control variables are 5-year American Community Survey (ACS) estimates reported by 
the U.S. Census and include: (i) population, (ii) unemployment rate, (iii) income, (iv) 
portion of households without children, and (v) percent of population commuting by 
transit. A state-level measure of gasoline price, published annually by the Energy 
Information Administration, is also included as a control variable48. Additional ACS 
variables used to determine IPTW weights include: population density, portion of the 
population over age 16 and 65, respectively, and percent of population that is female.  

 
3.6. Supplemental Information 

The following text and figures offer additional detail in support of the main text, 
methods, and results reported in “Ridesourcing Affects Different Cities Differently: 
Heterogeneity in Impacts on Vehicle Ownership, Fuel Economy, and Transit Ridership in Urban 
Areas in the United States.” It is organized as follows: 
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• Section 1. Descriptive Statistics: this section summarizes in tabular form annual means 
and standard deviations of the variables included in this study over the analysis period 
2011–2017; 

• Section 2. Results: the tables and figures in this section are organized to accompany the 
results section in the main text, starting with a balance table offer context for the 
effectiveness of the inverse probability of treatment weights (IPTW) used in the various 
regressions in this section. The remaining tables and figures in this section report details 
on average-effect regression results (including diagnostic plots examining model fit), 
heterogeneous treatment effect (HTE) analysis (including urban area-specific treatment 
effect estimates and an accompanying discussion about level of significance), cluster 
analysis (including estimated effects, descriptive statistics by cluster, and a presentation 
of a k=4 clusters case as a complement to the k=3 cluster case in the main text), and the 
interaction regression analysis (including a series of three tables reporting regression 
result details and an additional accompanying table contrasting the mean and standard 
deviation for the lower and upper 50%ile for each respective interaction term). The 
section concludes with a data table detailing the values of each data point plotted in main 
text Figure 5 and summary table comparing the relationships between TNC market entry 
effects and the dimensions of heterogeneity identified as significant in each of the HTE, 
cluster, and interaction regression analyses; and 

• Section 3. Robustness Checks: this final section offers detailed results and/or illustrative 
diagrams as evidence for the robustness checks described and summarized in the main 
text. For each of the randomized treatment, leave-one-out, and leave-multiple-out 
robustness checks, an illustrative set of histograms is presented to confirm results “pass” 
(i.e., remain consistent in terms of sign, magnitude, and level of significance) each 
robustness check. Next, an event study is presented in the form of a relative time model 
estimating in the years before and after TNC entry annual effects on vehicle registrations 
per capita (since no significant TNC entry effect was estimated on average fuel economy 
and transit ridership, they are not analyzed). The last sets of tables and figures focus on 
alternative approaches to the interaction regression (include variations on the number of 
quantiles included in the categorical interaction model described in the main text as well 
as an additional model using continuous measures of each interaction variable) and 
clustering analyses (including variations to distance measure, linkage function, hierarchy, 
and features included for clustering). 

 
3.6.1. Descriptive Statistics 

This section consists of one table offering annual means and standard deviations across 
all urban areas as a tabular summary of the variables included in this study, along with a quick 
reference at the relevant units and encoding names. 
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Table 27. Descriptive statistics (means and standard deviations) across n=485 urban areas 
annually for the analysis period 2011–2017.  

 
 
3.6.2. Results 

Before diving into regression results, this section opens with a balance table quantifying 
the differences in control variables across the treatment and control groups before the application 
of inverse probability of treatment weights (IPTW) and to what extent those weights succeed in 
“balancing” the control sample (i.e., such that the means are similar to those of the treatment 
sample). 

The remaining tables and figures in this section are organized to accompany the results 
section in the main text, starting with detailed regression results (including covariate coefficient 
estimates not presented in the main text for brevity) and accompanying diagnostic plots 
demonstrating no evidence of regression misspecification (in terms of indicators examining 
potential structure in the distribution of residual errors, heteroskedasticity, and leverage). Then, 
as in the main text, the focus shifts to heterogeneous treatment effect (HTE) analysis, including a 
detailed list of urban area-specific treatment effect estimates for vehicle registrations, fuel 
economy, and transit ridership effects and a related couple of plots and accompanying discussion 
about the relationships between the level of significance (p-value) of HTE-estimated effects and 
TNC entry year by urban area. The next tables and figures present the detailed results for cluster 
analysis, including firstly the estimated effects on vehicle registrations per capita and average 
fuel economy and descriptive statistics by cluster for clusters of urban areas estimated in a 3-
cluster and 4-cluster analysis and secondly a set of cluster analysis results for the 4-cluster case 
as a complement and/or alternative to the 3-cluster case presented in the main text.  

Moving on to the interaction regression analysis (again, in alignment with the main text), 
a series of three tables then reports detailed interaction regression results, and an additional 
accompanying table contrasts the mean and standard deviation for the lower and upper 50%ile 
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for each respective interaction term: vehicle registrations per capita, population, change in 
population, household income, and transit commuting rate. The section concludes with a data 
table detailing the values of each data point plotted in main text Figure 5 and summary table 
comparing the relationships between TNC market entry effects and the dimensions of 
heterogeneity identified as significant in each of the HTE, cluster, and interaction regression 
analyses. 
 
Inverse Probability of Treatment Weights (IPTW): the balance table presented below quantifies 
the differences in control variables across the treatment and control groups both before and after 
the application of inverse probability of treatment weights (IPTW). It is clear from the table that 
nearly all significant differences before weighting are balanced after weighting. A significant 
difference remains between treatment and control mean unemployment rate, but the values (7.7% 
and 8.1%, respectively) are practically similar. 
 

Table 28. Balance table for inverse probability of treatment weights (IPTW), showing significant 
differences across population, density, unemployment, income, female population percentage, 
and transit commuting rate that are balances (i.e., no significant differences) in the weighted 
sample (except for unemployment rate, which, though still statistically significantly different, is 
practically similar at 7.7% and 8.1% for the treated and control groups, respectively). 

 
 
Regression results: the following table offers the same regression results as are presented in 
Table 1 of the main text with additional detail, including coefficient estimates for all additional 
covariates (year and urban-area fixed effect estimates are omitted for brevity and readability). An 
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illustrative series of diagnostic plots (for the TNC entry effect on vehicle ownership case) is also 
depicted to explore model fit. 
 
Table 29. Regression results estimating the effect of TNC market entry (“Treatment”) on three 
dependent variables of interest—vehicle ownership, fleet fuel efficiency, and transit ridership—
as a function of control variables (coefficients shown) both with inverse probability of treatment 
weighting (IPTW) and without (i.e., ordinary least squares, OLS). 
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Figure 29. Diagnostic plots for an IPTW regression model estimating TNC market entry effect 
on vehicle ownership. The residuals-vs.-fitted values plot (top, left) confirms no structure in 
residual error; the normal quantile-quantile plot (top, right) illustrates a generally normal 
distribution of residual errors with heavy tails; the scale-location plot (bottom, left) suggests 
residuals are generally randomly spread over the range of fitted values (and my main text reports 
cluster-robust standard errors); and the residuals-vs.-leverage plot suggests no disproportionately 
influential observations. 
 
Heterogeneous treatment effect (HTE) detailed results: the following table offers a detailed list 
of urban area-specific treatment effect estimates for vehicle registrations, fuel economy, and 
transit ridership effects, and the two plots and accompanying captions offer insight regarding the 
relationship between levels of significance (p-value) of HTE-estimated effects and TNC entry 
year by urban area. 
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Table 30. Urban area-specific treatment effect estimates from the heterogeneous treatment effect 
(HTE) regressions modeling vehicle registrations, fuel economy, and transit ridership. 
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Figure 30. At left, a comparison of the level of significance (p-value) of all estimated urban 
area-specific TNC entry treatment effects on vehicle ownership as a function of TNC entry date 
into each urban area, as well as the average level of significance by TNC entry year. At right, the 
percentage of urban areas with a significant estimated TNC entry effect on vehicle ownership by 
TNC entry year as well as the distribution of the number of urban areas with a significant 
estimated TNC entry effect on vehicle ownership by TNC entry year. 

 
Cluster analysis detailed results: the following table presents estimated effects on vehicle 
registrations per capita and average fuel economy and descriptive statistics by cluster for clusters 
of urban areas estimated in a 3-cluster and 4-cluster analysis. Subsequently, a version of Figure 4 
from the main text is presented as a complement and/or alternative to the 3-cluster case on which 
the main text focuses for discussion. 
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Table 31. Estimated effects on vehicle registrations per capita and average fuel economy and 
descriptive statistics by cluster for clusters of urban areas estimated in a 3-cluster and 4-cluster 
analysis. 

 
 

 
Figure 31. Cluster analysis results for the 4-cluster case: a comparison of the average 
characteristics of “Big, dense UAs” versus “Other UAs” (left), and “Slow growth UAs” versus 
“Other UAs” (right). Highlighted cells indicate significant differences (p<0.05). “Big, dense 
UAs” is a cluster where TNC entry results in increased per capita vehicle registrations, and 
“Slow growth UAs” is a cluster where TNC entry results in increased per capita registrations and 
increased fleet average fuel efficiency. 
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Interaction regression detailed results: the following series of three tables reports interaction 
regression results in more detail than is presented in main text Table 2. Afterwards, an additional 
accompanying table contrasts the mean and standard deviation for the lower and upper 50%ile 
for each respective interaction term: vehicle registrations per capita, population, change in 
population, household income, and transit commuting rate.  
 

Table 32. Regression results estimating heterogeneity of the effect of TNC market entry 
(“Treatment”) on vehicle ownership with a series of several estimated interaction effect 
coefficients: vehicle registrations per capita (here, in pre-treatment year 2010), population, 
population growth, household income, and transit commuting rate. 

 
 

Table 33. Regression results estimating heterogeneity of the effect of TNC market entry 
(“Treatment”) on average fuel economy with a series of several estimated interaction effect 
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coefficients: vehicle registrations per capita, population, population growth, household income, 
and transit commuting rate. 

 
 
Table 34. Regression results estimating heterogeneity of the effect of TNC market entry 
(“Treatment”) on transit ridership with a series of several estimated interaction effect 
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coefficients: vehicle registrations per capita, population, population growth, household income, 
and transit commuting rate. 
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Table 35. Comparison of mean and standard deviation for the lower and upper 50%ile for each 
respective interaction term: vehicle registrations per capita, population, change in population, 
household income, and transit commuting rate. 

 
 

Main text summary figure data: this section concludes with a data table detailing the values of 
each data point plotted in main text Figure 5 and summary table comparing the relationships 
between TNC market entry effects and the dimensions of heterogeneity identified as significant 
in each of the HTE, cluster, and interaction regression analyses. 
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Table 36. Data shown in main text Figure 5 by urban area: estimated TNC entry effect on 
vehicle registrations per capita, household income, and population growth rate.  

 
 

Estimate Income
Population 

Growth 
Rate

Estimate Income
Population 

Growth 
Rate

Aberdeen--Bel Air South--Bel Air North, MD -4.5% 80,206$       0.4% Mobile, AL -2.7% 43,750$      0.1%
Albuquerque, NM -2.8% 51,651$       0.7% Modesto, CA 3.8% 50,630$      0.7%
Allentown, PA--NJ 4.8% 58,997$       -0.4% Monessen--California, PA 3.4% 40,670$      -0.4%
Anchorage, AK -8.9% 76,054$       0.5% Monroe, LA -3.6% 38,697$      0.2%
Ann Arbor, MI -3.0% 58,261$       0.9% Montgomery, AL 2.8% 48,281$      -0.4%
Asheville, NC -4.2% 45,143$       0.9% Myrtle Beach--Socastee, SC--NC 3.7% 43,477$      2.7%
Baton Rouge, LA -9.4% 54,396$       0.9% New Orleans, LA -5.7% 46,335$      1.6%
Binghamton, NY--PA -0.9% 47,083$       -0.4% Ogden--Layton, UT -3.9% 63,596$      1.5%
Boise City, ID 2.1% 57,052$       1.7% Oklahoma City, OK 3.6% 52,290$      1.6%
Bonita Springs, FL 3.2% 59,313$       1.7% Olympia--Lacey, WA -2.7% 64,173$      1.2%
Boulder, CO 15.5% 59,312$       -1.5% Orlando, FL 6.2% 54,852$      1.8%
Bridgeport--Stamford, CT--NY 5.6% 91,415$       -0.5% Pensacola, FL--AL -4.0% 46,631$      0.6%
Cedar Rapids, IA -2.4% 57,213$       0.8% Phoenix--Mesa, AZ 6.1% 57,194$      1.3%
Charlotte, NC--SC -3.5% 60,899$       2.3% Raleigh, NC -3.4% 68,221$      2.7%
Chattanooga, TN--GA -3.0% 48,407$       0.8% Reading, PA 7.6% 53,213$      -0.1%
Chicago, IL--IN 4.1% 64,438$       0.2% Redding, CA -11.2% 43,760$      0.0%
Clarksville, TN--KY 4.8% 48,143$       3.7% Round Lake Beach--McHenry--Grayslake, IL--WI 2.8% 75,308$      0.3%
Colorado Springs, CO 2.7% 61,701$       0.8% Sacramento, CA -7.1% 63,810$      1.1%
Columbus, GA--AL -3.6% 44,194$       1.4% Salisbury, MD--DE -2.7% 50,374$      1.1%
Concord, NC -5.1% 49,201$       1.1% Salt Lake City--West Valley City, UT -6.0% 62,879$      2.4%
Davenport, IA--IL -3.3% 49,793$       0.3% San Diego, CA 11.0% 65,008$      0.2%
Dayton, OH 2.6% 51,266$       -0.2% San Francisco--Oakland, CA 5.5% 76,253$      1.3%
Denver--Aurora, CO 5.5% 64,730$       1.9% Santa Barbara, CA 6.8% 69,125$      0.8%
Detroit, MI 3.5% 55,536$       -0.1% Santa Clarita, CA 4.5% 89,521$      0.8%
Durham, NC -5.2% 54,392$       1.9% Santa Rosa, CA 1.3% 62,617$      0.7%
Fayetteville, NC -9.3% 45,045$       1.2% Scranton, PA 3.8% 45,402$      -0.1%
Frederick, MD -5.8% 87,305$       1.1% Seaside--Monterey, CA 2.6% 63,809$      0.8%
Gainesville, FL 16.2% 40,285$       -2.3% Shreveport, LA -3.3% 44,100$      0.3%
Greeley, CO 6.9% 44,232$       1.5% Simi Valley, CA 1.9% 89,958$      0.4%
Greensboro, NC -4.8% 49,000$       1.2% South Lyon--Howell, MI 3.2% 73,081$      0.7%
Greenville, SC 5.0% 45,026$       1.2% Spartanburg, SC 6.2% 43,724$      -0.3%
Hagerstown, MD--WV--PA 12.6% 51,198$       -2.5% Springfield, MA--CT -6.4% 56,130$      0.5%
Harrisburg, PA 4.0% 60,349$       0.7% St. Cloud, MN 3.2% 51,034$      0.7%
High Point, NC -3.2% 46,105$       0.6% St. Louis, MO--IL 4.4% 59,156$      0.2%
Jacksonville, FL 2.7% 55,109$       0.7% Tulsa, OK 8.4% 51,796$      1.0%
Kennewick--Pasco, WA -3.2% 59,480$       2.1% Turlock, CA 4.7% 51,028$      0.9%
Kissimmee, FL 3.0% 48,553$       2.8% Urban Honolulu, HI 3.6% 71,684$      0.9%
Lafayette, LA -4.6% 49,643$       1.1% Waldorf, MD -4.0% 94,150$      1.3%
Lansing, MI 6.5% 48,834$       -1.1% Waterloo, IA -4.4% 44,154$      0.4%
Leominster--Fitchburg, MA 7.3% 58,633$       -0.7% Wilmington, NC -4.3% 50,575$      1.7%
Logan, UT -2.2% 48,046$       1.6% Winter Haven, FL 3.6% 41,390$      1.6%
Manchester, NH 3.9% 68,718$       0.3% Worcester, MA--CT 2.1% 70,396$      0.0%
Mauldin--Simpsonville, SC 2.5% 59,653$       2.4% York, PA 5.5% 53,345$      -0.8%
Memphis, TN--MS--AR 4.8% 50,573$       0.4% Zephyrhills, FL 6.6% 46,112$      0.1%
Middletown, OH 14.1% 50,523$       -2.4%
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Table 37. Summary of heterogeneity in estimated TNC entry effect on vehicle registrations per 
capita, average fuel economy, and transit ridership along dimensions of vehicle registrations per 
capita, population, population growth, household income, and transit commuting rate.  

 
 
3.6.3. Robustness Checks 
 This section offers detailed results and/or illustrative diagrams as evidence for the 
robustness check summary offered in the main text. Tables and figures are organized to align 
with the order of robustness checks described and summarized in the main text: randomized 
treatment, leave-one-out, leave-multiple-out (alternatively called discontinuity sensitivity), event 
study, alternative quantiles and continuous interactions, and alternative clustering. 
 For the first few robustness checks—randomized treatment, leave-one-out, and leave-
multiple-out—an illustrative set of histograms is presented as an indication that, despite 
systematic perturbations to the regression specifications presented in the main text (i.e., via 
scrambling treatment dates, as in the randomized treatment test, systematically excluding each 
urban area, as in the leave-one-out test, or systematically excluding increasing numbers of urban 
areas with vehicle registration trends that could be labeled discontinuities), results remain 
consistent in terms of sign, magnitude, and level of significance. 
 An event study is presented in the form of a relative time model estimating in the years 
before and after TNC entry annual effects on vehicle registrations per capita. Neither average 
fuel economy nor transit ridership are analyzed, as regressions modeling those dependent 
variables in the main text did not identify a significant TNC entry effect to test. 
 The last sets of tables and figures focus on alternative approaches to the interaction 
regression and clustering analyses. Alternative methods for interaction regressions include 
variations on the number of quantiles included in the categorical interaction model described in 
the main text as well as an additional model using continuous measures of each interaction 
variable. And, for clustering, alternative approaches include variations to distance measure (i.e., 
Manhattan vs. Euclidean), linkage function (complete vs. Ward’s), hierarchy (divisive vs. 
agglomerative), and features included for clustering (several reasonable approaches are 
contrasted). 
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Regression robustness checks: randomized treatment, leave-one-out, and leave-multiple out: the 
next few figures present a series of related histograms for an illustrative case from the main text. 
Each is presented as an indication that systematic perturbations to the regression specifications 
presented in the main text (i.e., via scrambling treatment dates, as in the randomized treatment 
test, systematically excluding each urban area, as in the leave-one-out test, or systematically 
excluding increasing numbers of urban areas with vehicle registration trends that could be 
labeled discontinuities) do not change the results reported in the main text in terms of sign, 
magnitude, and level of significance. 
 

 
Figure 32. Distributions of average TNC entry effect estimated on vehicle registrations per 
capita (top left), average fuel economy (top right), and transit ridership (bottom left) after 
randomizing TNC entry across urban areas. In general, the distributions are centered about zero 
and symmetric, suggesting that the estimated effects in the main text are not the inadvertent 
result of model structure. 
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Figure 33. Distributions of average TNC entry effect estimated on vehicle registrations per 
capita (top left), average fuel economy (top right), and transit ridership (bottom left) after 
systematically excluding one urban area at time. Limits of the x-axis are set to match the 
confidence interval presented in the main text, such that the tightness of the distribution is 
meaningful. In general, the distributions are centered tightly about the value estimated including 
all urban areas, suggesting no one urban area has undue influence in biasing or driving the 
estimates presented in the main text. 
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Figure 34. Distributions of the estimated interaction effect between TNC entry and a categorical 
measure of income on vehicle registrations per capita (top left), average fuel economy (top 
right), and transit ridership (bottom left) after systematically excluding one urban area at time. 
Limits of the x-axis are set to match the confidence interval presented in the main text, such that 
the tightness of the distribution is meaningful. In general, the distributions are centered tightly 
about the value estimated including all urban areas, suggesting no one urban area has undue 
influence in biasing or driving the estimates presented in the main text. 
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Figure 35. Distribution of changes in per-capita vehicle registrations over the 2011–2017 
analysis period by urban are (top left) as well as distributions of the estimated interaction effect 
between TNC entry and a categorical measure of income on vehicle registrations per capita (top 
right), average fuel economy (bottom left), and transit ridership (bottom right) after 
systematically excluding an increasing number of urban areas in order greatest change in vehicle 
ownership over the analysis period. Limits of the x-axis are set to match the confidence interval 
presented in the main text, such that the tightness of the distribution is meaningful. In general, 
the distributions are centered tightly about the value estimated including all urban areas, 
suggesting no one urban area has undue influence in biasing or driving the estimates presented in 
the main text. 

Event study: the following figure presents a relative time model estimating in the years before 
and after TNC entry annual effects on vehicle registrations per capita. Neither average fuel 
economy nor transit ridership are analyzed, as regressions modeling those dependent variables in 
the main text did not identify a significant TNC entry effect to test. 
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Figure 36. Event study showing estimated relative time effect of TNC entry on vehicle 
registrations per capita. 

Alternative quantiles and continuous interactions: the next figure and table present alternative 
approaches to the interaction regression presented in the main text. The figure depicts variations 
on the number of quantiles included in the categorical interaction model described in the main 
text, and the table summarizes an alternative regression model using continuous measures of 
each interaction variable.  
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Figure 37. Estimated effect of TNC entry on average fuel economy for varying quantiles (from 
2, i.e. lower vs. upper 50%ile, to 20, i.e., increments of 5 %ile) of a categorical measure of 
vehicle ownership. The x-axis reflects the number of quantiles included, and the bottom-most 
quantile (i.e., lowest vehicle ownership) is emphasized with larger points for ease of 
interpretation. Darker points reflect lower levels of vehicle ownership; lighter points reflect 
higher values. All significant effects are highlighted in red (bottom quantile as a red dot; other 
quantiles with a red ring). The figure makes clear that there is a significant increase in fuel 
economy for lower levels of vehicle ownership, and the pattern associated with that increase is 
fairly consistent across the varying quantiles. 
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Table 38. Treatment effects of TNC entry in the U.S. from regression models estimating vehicle 
registrations per capita, average fuel economy, and transit ridership per capita using continuous 
measures (rather than categorical measures) of interaction variables. 

 
 

Alternative clustering: the next figures depict alternative approaches to clustering, including 
variations to distance measure (i.e., Manhattan vs. Euclidean), linkage function (complete vs. 
Ward’s), hierarchy (divisive vs. agglomerative), and, in a separate set of related figures, features 
included for clustering (several reasonable approaches are contrasted). 
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Figure 38. TNC treatment effect on the change in per-capita vehicle registrations varying by 
urban area typology and as a function of clustering method: Euclidean vs. Manhattan distance 
(panel A vs. B), Ward’s vs. complete linkage (panel A vs. C), and agglomerative vs. divisive 
algorithm (panel A vs. D). In all cases, statistically significant effects are highlighted in blue, and 
estimates that are not significant are grey. The size of each circle reflects the number of urban 
areas in each cluster. 
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Figure 39. TNC treatment effect on the change in per-capita vehicle registrations varying by 
urban area typology and as a function of the urban area features used for classification: all 
features (panel), only significant features identified in the HTE analysis (panel B), and 
significant features identified in the HTE analysis plus a measure of their rates of change (panel 
C). In all cases, statistically significant effects are highlighted in blue, and estimates that are not 
significant are grey. The size of each circle reflects the number of urban areas in each cluster. 
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Chapter 4. Cleaning Air but Clogging Streets? The Environmental Tradeoffs of Shifting 
Personal Travel from Private Vehicles to Transportation Network Companies 
 
This study is based on a working paper co-authored with Jeremy Michalek and Constantine 
Samaras and is in preparation for journal submission.  
 
 In this chapter, I zoom in from the aggregate data and econometric tools employed at the 
state and urban area levels in the preceding chapters to stochastic simulation at the individual trip 
level to study how shifting personal travel from private to TNC vehicles affects external costs. 
My specific interests are firstly about net costs (or benefits) associated with changes to trip-level 
emissions and, secondly, how the additional consideration of travel externalities (i.e., congestion, 
crashes, and noise) further affects net (both emissions and traffic) external costs. These net 
effects are worth studying because the net effects are not obvious a priori: shifting personal 
travel from a private vehicle to a TNC vehicle can lead to both external costs and benefits. For 
example, on the one hand, TNCs can increase vehicle miles traveled (VMT) per passenger trip 
and associated emissions of greenhouse gases (GHGs) and air pollutants; on the other hand, 
vehicles emit far more when started cold (i.e., after the vehicle has not been used for several 
hours) than when driven at hot operating temperature, and TNCs can reduce cold starts per 
passenger mile traveled. I propose and apply a framework to quantify the external costs and 
benefits of shifting personal travel from private to TNC vehicles affects external costs by 
systematically characterizing TNC deadheading (the portion of VMT without a passenger), 
modeling representative TNC vehicle driving schedules and associated avoided cold starts, and 
quantifying the relative size of public benefits and costs from TNC vehicles for the nine largest 
TNC markets in the U.S. I find that shifting travel from private vehicles to TNCs offers net 
external benefit in some areas while incurring a net external cost in others. I conduct targeted 
sensitivity and policy analyses to illustrate how transportation and urban planning decisions can 
increase external benefits and/or reduce negative external costs. 
 
4.1. Introduction 

On-demand ridesourcing services provided by transportation network companies (TNCs), 
such as Uber and Lyft, have changed how many urban travelers move, and this transformation to 
the transportation system has been quick: in 2018, only 6 years after its first market entry, Uber 
served over 1.3 billion trips (over 3.5 million trips per day) in the U.S. As Figure 40 shows, 
shifting personal travel from a private vehicle to a TNC vehicle can lead to both external costs 
and benefits: on the one hand, TNCs can increase vehicle miles traveled (VMT) per passenger 
trip and associated emissions of greenhouse gases (GHGs) and air pollutants for two primary 
reasons: 1) TNC vehicles need to travel from the end of one passenger trip to the beginning of 
the next, and 2) many vehicles cruise additional miles while waiting for ride requests. On the 
other hand, vehicles emit far more when started cold (i.e., after the vehicle has not been used for 
several hours) than when driven at hot operating temperature (for some pollutants, one cold start 
produces as much emissions as 200 miles of travel at stable operating temperature), and, because 
Uber and Lyft often serve multiple trips each time a counterfactual private vehicle would have 
been started, TNCs can reduce cold starts per passenger mile traveled. 
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Figure 40. Illustrative schematic of personal travel in a private vehicle versus in a TNC vehicle 
for two example trips (denoted by the numbers 1 and 2 and the start and stop locations 
highlighted in green and red, respectively). 
 

I propose and apply a framework to quantify the external costs and benefits of TNC’s 
disruption to the transportation energy system by systematically characterizing TNC 
deadheading (the term commonly used to describe the portion of VMT without a passenger), 
modeling representative TNC vehicle driving schedules and associated avoided cold starts, and 
quantifying the relative size of public benefits and costs from TNC vehicles for the nine largest 
TNC markets in the U.S. 

This chapter focuses on external costs in the U.S. to highlight and quantify changes to 
externalities—here, the energy-, environmental-, congestion-, crash-, and noise-related side 
effects and consequences not reflected in the costs of vehicle travel and that affect third parties 
not directly involved—that result from shifting travel from private to TNC vehicles. While oil 
dependency costs, the quantification and inclusion of which is still debated in recent U.S policy1 
(and which only potentially account for ~5% of relevant external costs), are not included, this set 
of externalities is otherwise consistent with that examined in recent literature2. These external 
costs differ from the private costs paid by a consumer to travel via private vehicle—e.g. the 
capital costs to purchase and finance a personal vehicle plus the operating costs of fuel and 
potential additional fees in the form of road tolls and parking—or TNC vehicle—e.g. TNC-
imposed charges and optional tip—which have been quantified and compared previously3,4. 
External costs also differ from, but are a component of, social costs, which accounts for all 
private and external costs, the latter of which in a full social cost accounting would include not 
only the energy and emissions costs considered here but also others such as safety, privacy, 
discrimination, labor standards, and curb-space utilization, among possible others. Previous 
studies have proposed social cost frameworks to evaluate TNC travel5,6,7; though, exactly which 
external costs to include and their relative importance varies, underscoring the need for this study 
focused on energy and environmental external costs. And, conducting this external cost analysis 
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for the U.S. not only affects input assumptions such as vehicle emissions and fuel economy but 
also the valuation of local air pollutant health damages and traffic externalities. 

Additionally, this chapter focuses on the relatively near term, assuming individual trips 
are shifting from personal to TNC vehicles without other major changes to the transportation 
system. By contrast, an analysis over the slightly longer term, might consider continued TNC 
market growth and associated feedbacks (i.e., greater supply and demand could increase system 
efficiency and decrease deadheading ratios and associated externalities on a per-trip basis but 
increased vehicle travel overall could exacerbate damage coefficients); such dynamics are not 
considered here. In the even longer-term, larger-scale TNC travel could lead to fundamental 
changes in land use and lifestyle (as opposed to per-trip) travel behavior, which could introduce 
other complicating dynamics that are out of scope for this study. 
 
4.2. Prior Literature 

One the one hand, personal travel in a TNC vehicle presents an opportunity to forego 
turning on a private vehicle, thereby avoiding the additional air pollutant emissions and lower 
fuel economy associated with the period after ignition before the engine and emissions control 
system have heated up. On the other hand, traveling via TNC is associated with additional 
deadhead miles traveled and associated emissions, fuel consumption, and traffic implications. 
Table 39 summarizes the positive and negative tradeoffs of shifting a passenger trip from a 
private to a TNC vehicle, and the paragraphs that follow explore each component consideration 
in more detail. 
 

Table 39. Avoided and additional emissions and fuel consumption associated with shifting a 
passenger trip from a private vehicle (started cold) and a TNC vehicle (started hot but incurring 
additional deadhead miles traveled). 

Emissions and fuel consumption avoided 
per passenger trip shifted 

Additional emissions, fuel consumption, 
and traffic per passenger trip shifted 

• Avoided NOx emissions: 20–30%  
• Avoided PM2.5 emissions: 18–30% 
• Avoided VOC emissions: 60–75% 
• Fuel economy and GHG emissions 

improvement from all-hot operation: 13–
25% 

• Fuel economy and GHG emissions 
improvement from more efficient TNC 
vehicle fleet: 14% 

• Additional miles traveled: 20–47% 
o Associated NOx, PM2.5, and VOC 

emissions 
o Associated fuel consumption and 

GHG emissions 
o Associated expected congestion, 

crashes, and noise 
 

 
Starting a vehicle from ambient temperatures (i.e., roughly 25ºC) is called a “cold start”, 

since the range of typical daily temperatures (e.g., as low as –20ºC to as high as 40ºC) are well 
below the operating temperatures associated with the internal combustion engine, which a 
coolant loop maintains around 90ºC8, and emissions control system, optimally around 500ºC for 
catalytic converters9. Cold starts result in additional air pollutant emissions and fuel consumption 
for at least two principle reasons: 

• First, before a catalytic converter reaches its “light-off” temperature of around 300–
350ºC, little chemical reaction occurs10,11,12 and emissions of oxides of nitrogen (NOx) 
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and volatile organic compounds (VOCs)—as well as other hydrocarbons (HC)—pass into 
the exhaust stream largely unconverted. After the converter lights off, it converts more 
than 97% of carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) 
emissions to air, carbon dioxide, and water vapor11. NOx and VOC emissions during cold 
starts have been estimated to account for 20–30% and 60–75% of total gasoline vehicle 
emissions, with lower proportions at warmer ambient temperatures13, and the cold-start 
emissions for some VOC species have been equated to that of roughly 200 miles of hot 
operation (i.e., after the engine and emissions control systems reach operating 
temperature)14. 

• Second, when an engine starts cold, it operates less efficiently (due to higher oil pump 
friction, among other reasons) and starts fuel-rich, both of which contribute to elevated 
fuel consumption and emissions of fine particulate matter (PM2.5)15. Cold starts have been 
estimated to decrease fuel economy by 13–25% (and 10–80% in more extreme 
cases)16,17,18 during the first five to twenty minutes of operation; larger decreases are 
associated with lower ambient temperatures16 and less aggressive driving behavior17. 
Similarly, cold starts increase PM2.5 emissions 18–30% per trip13,19.   

While all additional air pollutant emissions from cold starts can be problematic, I focus 
on the emissions of fine particulates (PM2.5) and their precursors (SO2, NOx, and VOCs)20 not 
only because of these particles’ dangerous effects on the heart and lungs but also because 
researchers have worked to quantify the external costs associated with these pollutant emissions, 
such that a comparison with other external costs is possible. In particular, AP2 (and its processor 
the Air Pollution Emission Experiments and Policy analysis model)21 and InMAP (the 
Intervention Model for Air Pollution)22 are reduced-complexity (so-called because they employ 
simplified representations of more complex and computationally demanding chemical transport 
models) integrated assessment models that connect emissions of local air pollutants to monetary 
damages associated with physical health and environmental effects. These models can effectively 
assign a monetary value to changes in vehicle air pollutant emissions associated with shifting a 
passenger trip from a private to a TNC vehicle. A third reduced-complexity model, EASIUR, is 
not used because the model does not offer VOC damage estimates, since those damages can vary 
greatly by VOC species. It is worth noting that AP2 and InMAP both assign VOC damages 
without differentiating VOC species. 

For example, Figure 41 shows NOx, VOC, and PM2.5 cold start emissions from gasoline 
passenger car for model years 1990 through 2020, estimated using EPA’s MOVES model 
(version 2014b)23, and the associated AP2- and InMAP-estimated monetary damages: a MY1990 
passenger car emitted 2.6 g, 3.3 g, and 0.12 g of NOx, VOC, and PM2.5, respectively, resulting in 
22¢ in total air pollutant emissions damages per start per AP2 and 52¢ per InMAP. MY2020 
cold-start emissions are more than 90% lower (as the result of EPA tightening emissions 
standards over time along with other voluntary emissions reductions, such as the 2001 rollout of 
national low emissions vehicles24), as are associated damages: 1.5¢ and 3¢ per start, according to 
AP2 and InMAP, respectively. Shifting a personal trip from a private vehicle that has to be 
turned on to a TNC vehicle already running hot, then, can save 1.5¢–52¢, depending on the 
model year of the private vehicle replaced and assuming a population-weighted average of 
county-level damage coefficients. For the 12 to 15 trips per TNC vehicle served daily, on 
average (12 according to New York City’s summary statistics of for-hire vehicles25 and 15 
according to California’s Clean Miles Standard base-year analysis26), emissions costs avoided 
sum to $0.18–$7.50, or, on a larger scale, for the 10 billion trips Uber completed between 2010 
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and 201827, that translates to between $150 million and $5.2 billion in cold-start emission 
damages avoided. 

 

 
Figure 41. Average pollutant emissions per passenger car cold start, as estimated using EPA’s 
MOVES model (edition 2014b), and fuel economy by vehicle model year (at left), indexed to 
1990 values (oxides of nitrogen, NOx = 2.6 g; volatile organic compounds, VOC = 3.3 g; fine 
particulate matter, PM2.5 = 0.12 g, and fuel efficiency, 0.4 gal./mi., i.e., conventionally expressed 
in the U.S. as a 25.4-mpg fuel economy), and the estimated external costs associated with those 
emissions (at right), as estimated by the reduced-complexity models AP2 and InMAP and 
assuming a population-weighted average of county-level damage coefficients. 

 
 Social benefits from avoided cold-start emissions come at the expense of external costs 
from additional greenhouse gases emitted during additional miles traveled between passenger 
trips, as Figure 40 depicts. Wenzel et al.28 and Moura et al.29 in two separate studies summarize 
the range of deadheading ratios reported in other literature, spanning 20% to 47%, with specific 
estimates across a range of cities: including 20–44.8% for San Francisco30,31,32,33; 35.8–40% for 
Los Angeles31,32; 37–45% for Austin28,34; 40.8% for Denver35; 41% for New York36; 41–45% for 
Chicago37; 45% each for Boston and Washington, DC31; and 47% for Seattle31. But, deadhead 
miles (and all TNC miles) are, on average, traveled more efficiently than would be in the private 
vehicle replaced: Wenzel et al. also find that TNC vehicles are 14% more efficient (25.5 vs. 22.3 
miles per gallon) and two years newer (model year 2011.9 vs. 2009.7)32. The U.S. Federal 
Government has estimated the social cost of carbon to be as low as 10 dollars per metric tonne 
and as high as 212 dollars per metric tonne (depending on discount rate, year of future damages, 
and central vs. high-impact estimates)38, and more recent literature has suggested estimates could 
be even higher39,40. 
 In addition to air pollutant and greenhouse gas external cost considerations, shifting 
personal travel from private to TNC vehicles has external travel cost considerations in the form 
of congestion, crashes and noise. In a meta-study of the external costs of transportation in the 
U.S., Delucchi and McCubbin explain external costs from congestion as including opportunities 
foregone due to travel delay (the estimates of which are described as relatively robust, given 
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previous studies on the value of travel time) along with the discomfort of crowding and the 
impact of travel-time uncertainty on the reliability of arrival and delivery times (both of which 
are less well understood)41. They quantify a range of external costs ranging from 0.88–5.7 cents 
per passenger mile based on several previous studies2,42,43,,44. It is important to note that these 
costs are per average passenger mile, rather than marginal passenger mile, which is more 
relevant to shifting personal travel from a private vehicle to a higher-mileage TNC vehicle and 
may differ from the average value. I can look to more recent reports on variation in congestion 
costs by urban area as an indicator to how average costs vary and find tighter, similar, and wider 
proportional ranges, where the upper bound is as low as three to as high as ten times the lower 
bound (e.g., annual estimates of $439–$2,67645 per commuter, $681–$2,205 per driver46, and 
$100–$1,112 per person47). 

Returning to Delucchi and McCubbin’s meta-study, external costs from crashes include 
“medical costs, property damage, lost productivity, insurance administration, emergency 
services, and the nonmonetary costs of lost quality of life and pain and suffering as a result of 
death and serious injury,” the sum of which range from 1.4–14.4 cents per passenger mile (again, 
average rather than marginal), also based on previous studies2,43,44,48. This range of uncertainty is 
wider than the proportional range of variability reported in a separate study on crash cost 
variation by urban area ($618–$3,747 per person47). Finally, the external costs of noise include 
the damages from excess noise experienced (e.g., disturbed sleep, disrupted activities, hindered 
work, and impeded learning) plus the cost of any defensive actions or avoidance behavior and is 
estimated to range from 0–0.9 cents per passenger mile41,49. 
 
4.3. Methods 

Our analysis first extracts passenger car air pollutant emissions rates from EPA’s 
MOVES model, extracts relevant damage estimates from two reduced-complexity integrated 
assessment models, and then uses those to inform a stochastic simulation of the vehicles, 
emissions, and travel behavior associated with what is meant to represent a TNC driver shift. 
Details of both my implementation of the MOVES model and my stochastic simulation follow. 
 
4.3.1. The MOVES model 

EPA’s MOtor Vehicle Emissions Simulator (“MOVES”) is a mobile-source emission 
modeling tool that quantifies criteria air pollutant, greenhouse gas, and air toxic emissions rates 
and inventories by transportation mode considering equipment usage and ambient conditions 
nationally and down to the county level. It is specifically useful for this analysis because it 
reports cold-start emissions for PM2.5 and its precursors (NOx, SO2, and VOCs). I characterize 
these emissions for the set of nine U.S. counties containing the center cities that Schaller (2018) 
reports account for more than 70% of TNC trips in 201737: Suffolk County, MA (Boston); Cook 
County, IL (Chicago); Los Angeles County, CA (Los Angeles); Miami-Dade County, FL 
(Miami); King’s County, NY (New York); Philadelphia County, PA (Philadelphia); San 
Francisco County, CA (San Francisco); King County, WA (Seattle), and Washington, DC. 

I operationalize MOVES by specifying a run specification with county-level input 
assumption detail. The run specification focuses on emissions rates of PM2.5 and its precursors 
from gasoline-fueled passenger cars for a set of representative summer (July) and winter 
(January) temperatures by hour of day. For each county, I use EPA’s county-specific default 
values for fuel formulation details, inspection and maintenance programs, and local temperature 
and relative humidity values. For all counties, I make arbitrary assumptions about vehicle 
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population (50,000 passenger cars) and travel (12,000 miles annually across an even distribution 
of road types) since my focus is emissions per start, which is independent of both vehicle fleet 
size and distance traveled. I include an equal number of vehicle model years from 1990 through 
2020 to ensure that cold starts are reported for each. MOVES generates a database of emissions 
per cold start by pollutant, vehicle model year, and temperature (by hour of day and season), 
which inform the stochastic simulation model posed next. 
 
4.3.2. Air pollutant damage estimates 

The reduced-complexity integrated assessment models AP2 and InMAP are used for two 
sets of health damages estimates for emissions of fine particulate matter and its precursors for the 
nine counties that will be considered in my stochastic simulation model, as are summarized in 
Table 40. 
 
Table 40. Air pollutant damage estimates from reduced complexity models AP2 and InMAP for 
fine particulate matter (PM2.5) and its precursors (NOx, SO2, and VOCs) for Suffolk County, MA 
(Boston); Cook County, IL (Chicago); Miami-Dade County, FL (Miami); Philadelphia County, 
PA (Philadelphia); and San Francisco County, CA (San Francisco).  

 
 
4.3.3. Stochastic scenario simulation 

I structure and execute a stochastic scenario simulation tool meant to reflect personal 
travel via TNC vehicle at the TNC driver shift level (i.e., for a number of TNC trips taken in a 
single TNC vehicle over the course of one TNC driver’s shift) with an explicit consideration of 
relevant uncertainties. Figure 42 offers a graphical summary of the model, and Table 41 
summarized the model’s underlying parametric distributions. 
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Figure 42. Schematic depicting notional flow of Monte Carlo scenario analysis at the TNC shift 
level. Parameters for which values are assigned stochastically are highlighted in red italics, and 
parameters for which underlying distributions differ by metropolitan area are denoted with an 
asterisk (*). 
 

Each run begins by establishing TNC shift operating context: in which of nine 
metropolitan areas is the shift taking place and under what weather conditions. Next, the model 
year of the TNC vehicle is determined stochastically, as is the type of personal vehicle from 
which TNC passengers are shifting their travel. Greenhouse gas emissions rates for both the 
TNC vehicle and personal vehicles replaced are defined deterministically as a function of those 
vehicles model years. Air pollutant emission rates are defined similarly but with an additional 
consideration of ambient temperature (as emissions are greater at lower temperatures). Next, 
three parameters describing the operational details of the TNC shift—the number of trips 
completed during the shift, the average length of those trips, and the deadheading ratio 
describing the number of additional miles traveled without a passenger between those trips—are 
assigned. Total shift emissions, both avoided and emitted, are calculated as the product of the 
emissions rates and relevant characteristics describing shift operation. In a final step, external 
cost coefficients are assigned stochastically for air pollutants, greenhouse gas emissions, and 
travel (i.e., congestion, crashes, and noise) and used to convert total shift externalities to total 
shift external costs. Air pollutant emissions damage coefficient distributions differ by urban area; 
greenhouse gas emission and travel cost coefficient distributions are identical. The simulation is 
repeated 10,000 times for each urban area. 
 

TNC shift
(i.e., series of trips in single TNC vehicle)

• Metro area (selected)
• Weather conditions* 

(temperature and humidity)

TNC vehicle
(i.e., used instead, operating hot)

• Model year (which 
determines emissions rates)

Personal vehicle
(i.e., replaced)

• Model year (which 
determines emissions rates)

TNC shift behavior
• Number of trips
• Average trip length
• Deadheading ratio

Social costs
• Damage coefficients*
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Table 41. Details of parameterization. 

 
 
4.4. Results 

On average, shifting personal travel from a private to a TNC vehicle increases net 
external costs approximately 50%, or 57¢ per trip, as Figure 43 depicts. Compared to a private 
vehicle trip, traveling via TNC does reduce cold-start emissions almost entirely (from 5–10¢ per 
trip to near zero), but that benefit is almost or fully counterbalanced by an increase in operating 
emissions (from 25–30¢ per trip to 30–40¢ per trip). Traffic externalities account for the bulk of 
external costs, increasing from about 80¢ per private vehicle trip to $1.40 per TNC vehicle trip. 

There is considerable heterogeneity in the results across the five counties modeled, as 
Figure 44 shows, and there are locations where shifting to TNCs yields net emissions benefits. In 
some urban areas, like Chicago and San Francisco, the external benefits of avoided pollutant 
emissions more than outweigh the external costs of additional GHG emissions in 80–85% of 
model runs. In other urban areas, Miami and Philadelphia, the emissions external costs outweigh 
the benefits (in 75% and 90% of runs, respectively). Across all metro areas, external benefits 
from emissions are greater than respective costs in 65% of model runs. Adding congestion, 
crashes, and noise increases expected external costs across all urban areas to roughly 50¢ per 
trip, which is an order of magnitude greater than the emissions-only results. Total net external 
costs from emissions and travel externalities combined outweigh benefits in more than 95% of 
model runs, both within each county and across all counties considered. 
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Figure 43. Simulation results for TNC travel-induced changes to external costs in total and from 
cost start emissions, operating emissions, and travel externalities using air pollutant damage 
coefficients from the AP2 and InMAP reduced-complexity models at left and right, respectively. 
 

 
Figure 44. Changes to external costs of shifting personal trip from a private to a TNC vehicle, by 
county containing the following major metropolitan areas: Boston (BOS), Chicago (CHI), Miami 
(MIA), Philadelphia (PHL), and San Francisco (SFO). 
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Heterogeneity by vehicle age also matters: shifting from older private to newer TNC 
vehicles offers greater emissions benefits (and vice-versa: shifting from newer private to older 
TNC vehicles results in greater emissions costs). As Figure 45 shows, from a “passenger 
perspective”, for the oldest private vehicles considered here (i.e., MY1990), traveling instead in a 
newer TNC vehicle results in emissions benefits in all scenarios (i.e., across all model years of 
TNC vehicle); whereas, for the newest private vehicles considered here (i.e., MY2020), traveling 
instead in any TNC vehicle results in increase emissions external costs. So, owners of MY1990 
and MY2020 vehicles can always and never reduce emissions by taking a TNC instead, 
respectively. From a “TNC driver perspective”, emissions benefits or cost are not as 
categorically obvious: whether a TNC vehicle is relatively old or new, the direction of the 
change in emissions costs still depends on the private vehicle replaced. 
 

 
Figure 45. Sensitivity of emissions external costs across all urban areas in this study as a 
function of TNC vehicle model year and private vehicle (replaced) model year. 
 

My simulation model oversimplifies its representation of a TNC shift in at least two 
important ways. First, all TNC trips are assumed to replace a trip that would otherwise happen in 
a private automobile; when, in reality, some trips are shifted from other modes (transit, walking, 
biking) or would not have been taken at all. Our doing so overestimates the benefit of avoided 
cold starts, since not every TNC trip involves not starting a private vehicle. Second, I ignore 
ride-pooling, wherein multiple TNC trips are provided in the same TNC vehicle at the same 
time, or with at least some overlap. Doing so potentially underestimates avoided cold starts, 
assuming pooled trips are shifted from multiple different private vehicles, and potentially 
overestimates deadheading costs, since multiple passenger miles can be traveled at a time. 

I pose two illustrative variations on my simulation to explore what incorporating a 
measure of mode shifting and ride-pooling would have. First, I designate a range of 33%–66% of 
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TNC trips shifted from what I call zero-emission modes (as an illustrative bound) based on 
survey results from several survey studies35,37,50,51,52,53 compiled and reported in Anair et al. 
(2020)29. Next, I consider the case where 10%–40% of TNC trips are pooled, borrowing the 
extreme values from two separate datasets on pooled rides29,54. Figure 46 presents the results of 
the modified simulation model. With a consideration of mode shifts, TNC trips always incur 
external costs (across all urban areas modeled), both for emissions alone and for emissions and 
travel externalities taken together, and a TNC trip diverted from a zero-emissions mode can incur 
up to three times the incremental external costs of shifting that trip from a private vehicle. 
Separately, considering trip pooling can increase both emissions- and traffic related external 
benefits (by taking multiple private vehicles off the road per pooled TNC trip), such that total 
incremental external benefits and costs are counterbalanced when 40% of trips are pooled (costs 
are higher for lower levels, and benefits are higher for higher levels). When a TNC trip is known 
to be pooled, the net incremental benefit is 75¢ per trip, an increase of 250% compared to the 
base case. 

In an additional illustrative modeling sensitivity, all TNC vehicles are electric and 
powered by a zero-carbon grid. In this scenario, travel externality costs still swamp any zero-
carbon grid EV emission benefits. This observation has potential regulatory ramifications: while 
electrification offers external benefits in an emissions-only framework, it overlooks the larger 
problem (at least in terms of the relative magnitudes of respective external cost) of travel 
externalities.  

 

 
Figure 46. Distributions of external costs considering trips not replacing a personal vehicle (i.e., 
diverted from an assumed zero-carbon transportation mode or induced from no travel) (a) from 
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emissions only and (b) from emissions and travel along with distributions of external costs 
considering pooled trips (c) from emissions only and (d) from emissions and travel. 

 
In a final sensitivity variation on my simulation (not shown), I consider an additional 

dimension of uncertainty: whether adding an additional vehicle to a potentially already crowded 
road (i.e., shifting a trip to a TNC vehicle and associated marginal VMT) incurs greater external 
costs than does a vehicle on the road on average (i.e., average VMT). Published literature 
suggests marginal VMT external costs could be equivalent to those of average VMT55, as much 
as 60% higher56, or somewhere in between57. Adding a marginal-mile multiplier (from a uniform 
distribution from 0 to 60%) increases expected net external costs by 27% and the proportion of 
runs where external costs exceed benefits to 99% across model runs (and in at least 97% of runs 
for each respective metro area). 
 
4.5. Discussion 

Our results suggest that shifting personal travel from a private to a TNC vehicle can 
causes changes in vehicle emissions that correspond to both net external costs and benefits. In 
some urban areas, and on average overall, the benefits associated with avoided cold-start 
emissions do not outweigh the costs associated with additional emissions from deadhead travel; 
however, in other urban areas, like Chicago and San Francisco, they do. In general, emissions 
benefits are greater when the TNC vehicle is newer, and, according to my analysis, TNC 
companies could ensure travel shifted from a non-TNC vehicle always offers expected net 
emissions benefits by restricting the TNC vehicle fleet to model years 2018 and newer. 
Similarly, emissions benefits are greater when the private vehicle replaces is older, and, owners 
of private vehicles from model year 2008 or older can always reduce their expected net 
emissions costs by shifting a trip from their private to a TNC vehicle. Additionally, avoided 
cold-start emissions benefits increase at lower temperatures, such that shifting travel to a TNC 
vehicle in colder weather increases net emissions benefits (or decrease costs). 

We find the net effect of ridesourcing on energy use is, on average (without mode 
shifting, ride-pooling, or vehicle electrification), a 45% increase (with a 95% quantile interval 
ranging from 42% to 48%), which agrees generally with Wenzel et al.’s finding that, despite a 
more efficient TNC fleet (compared to the overall fleet of private vehicles), shifting travel to a 
TNC vehicle increases net energy use 41–90%. This analysis also adds an explicit consideration 
of cold starts and offers a broader framework that also includes traffic externalities and finds that 
while shifting travel from a private to a TNC vehicle reduced cold-start emissions, the net effect 
is a 50% increase in total external costs (95% quantile interval: 39% to 62%). 

Emissions benefits and costs are only part of the story, as costs associated with travel 
externalities (congestion, crashes, and noise) are greater than monetized emissions externalities 
by an order of magnitude. In fact, no emissions benefit in my analysis is sufficiently large to 
outweigh the external costs of travel. The biggest lever to pull, then, in working towards 
increasing TNC external benefits (and/or reducing external costs) is targeting and reducing 
congestion, crashes, and noise, for example, through special training for TNC drivers to help 
avoid fatal accidents (though, recent research suggests the opposite is happening: the arrival of 
ridehailing is associated with an increase of approximately 3% in the number of fatalities and 
fatal accidents for both vehicle occupants and pedestrians58). 
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4.6. Conclusions 
I model the external costs and benefits of changes to air pollutant and greenhouse gas 

emissions and travel externalities associated with shifting personal trips from private vehicles to 
TNC vehicles and find that, while external benefits from avoided cold-start air pollutant 
emissions outweigh external costs from additional greenhouse gas emissions from deadhead 
VMT in some metro areas, travel externality considerations are sufficiently large to result in net 
external costs in almost all cases ($0.50/trip, on average). Avoided cold-start emissions benefits 
are higher in colder temperatures and denser metropolitan areas, and these benefits generally 
counterbalance costs from greenhouse gas emissions in metro areas with relatively cold winters 
or high population densities (or both). Shifting personal travel from older private vehicles to 
newer TNC vehicles also increases avoided cold-start emissions benefits: replacing a private 
with a TNC vehicle generally yields emissions benefits when the private vehicle is model year 
2007 or older (independent of TNC model year) or when the TNC vehicle is model 2014 or 
newer (independent of the model year of the private vehicle replaced). When travel externalities 
(congestion, crashes, and noise) are included, lower deadheading ratios can reduce net external 
costs, but even at the lowest deadheading ratio considered (20%), external costs from travel 
externalities are generally not counterbalanced by potential emissions benefits.  

Two variations on shifting a trip from one private vehicle to a TNC vehicle—ride pooling 
and mode shifting—can both increase and decrease external costs. On the one hand, mode 
shifting eliminates some number of avoided cold starts and increases net external costs, since 
TNC travel is shifted from a mode without trip-specific cold starts. On the other hand, ride 
pooling avoids additional cold-start emissions and effectively decreases deadheading external 
costs (by allocating some portion of those costs over multiple trips), such that TNC travel offers 
a net benefit (vs. private vehicle travel) in 25% of overall cases and 95% of cases that are pooled. 
Adding a consideration of mode shifting reduces the number of cases with net benefits to 13% of 
all trips and 50% of pooled trips, respectively.  

Electrifying the TNC fleet and powering it with zero-carbon electricity reduces cold-start 
and greenhouse gas emissions (for a net emissions external benefit in all cases), but associated 
external benefits are not sufficiently large to overcome external costs from travel externalities. 
Net external costs are reduced only 10% compared to a baseline scenario without EVs: shifting 
personal travel to zero-emission EV TNC trips still incurs a net 47-cent external cost, on average, 
due to congestion, crashes, and noise. In fact, congestion and crashes are the largest component 
of net external costs across all cases modeled, such that they present the biggest target for 
potential policies to reduce external costs (and increase external benefits). Ride pooling can do 
so by distributing travel externalities across multiple trips and potentially offers the added benefit 
of avoiding cold starts from multiple private vehicles. Other policies to minimize deadheading 
(e.g., efficient routing and/or limited-to-zero unnecessary in-between passenger trip travel) can 
also help. Policies can also consider novel approaches to targeting travel externalities, such as 
training professional (or semi-professional) TNC drivers to avoid crashes (for example, recent 
literature has suggested that crash avoidance technology can reduce crashes by over 20%59) 
and/or to select routes that minimize system-level congestion. Alternatively, policies could 
internalize external costs by levying a per-trip fee, such as the $0.50/trip average external cost 
from the base case modeled in this study or a more sophisticated price model that considers 
external cost factors in real time (e.g., emissions as a function of ambient conditions, traffic 
congestion, etc.). 
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Our models do not consider several factors that could affect external benefit and cost 
factors and calculations. For example, I assume similar vehicle fleets—both for TNC vehicles 
and the private vehicles they replace—across metro areas; when, in reality, systemic differences 
in certain cities could increase net external benefits (either due to newer TNC vehicles, older 
private vehicles, or both) or vice versa. I also assume similar road networks and travel patterns 
across metro areas; when, again, systemic differences could increase net external benefits (due to 
shorter average trip distances or deadheading ratios, more trips per TNC shift or pooled trips, 
and/or fewer trips induced or diverted from zero-emission modes). Travel externality costs (both 
on average and on the margin) could also vary (e.g., as a function of differences in traffic 
congestion or accident rates); though, I use similar distributions across cities. Future work can 
build on the findings here by incorporating these factors and offer complementary insights by 
considering potential implementations of and associated effectiveness, efficiency, and equity of 
potential policies mentioned above. Finally, better data to inform the parameters modeled using 
uncertainty distributions here will offer broad benefits for future work, policy and policymakers, 
and knowledge about TNC effects on personal travel more generally. 
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Chapter 5. Conclusions and Contributions 
 
This thesis provided an initial understanding of the potentially fundamental changes to the way 
Americans travel given the introduction of ridesourcing via transportation network companies 
(TNCs), like Uber and Lyft and the effects those changes have on energy and environmental 
outcomes. Complementary econometric analyses in Chapters 2 and 3 found that TNCs have 
already significantly affected transportation outcomes, and that the direction and magnitude of 
these effects depends on how the data are sliced. A first analysis in Chapter 2 found a decline in 
vehicle ownership, on average at the state level after TNC market entry; whereas, a second 
analysis in Chapter 3 found an average increase in vehicle ownership in urban areas, with the 
difference in sign explained by heterogeneity of effects across urban areas. The data and 
estimated effects look different depending how they are sliced: TNC entry tends to increase 
vehicle ownership more in urban areas with higher initial vehicle ownership and lower 
population growth rates, increase overall fleet efficiency more in urban areas with fewer 
childless households, and decrease transit ridership more in urban areas with higher median 
incomes and more childless households. A third study in Chapter 4 explored how displacing a 
personal with a TNC vehicle trips affects external costs and concluded that such shifts in 
personal travel can offer emissions benefits but always incurs a net external cost when travel 
externalities are included. Additional concluding contextual details for each of these studies are 
provided below. 
 
Chapter 2 studied whether TNC entry increased or decreased vehicle ownership, personal travel, 
energy use, and emissions outcomes at the state level and whether those effects were larger in 
more urbanized states. Using publically available data, and two sets of inverse-probability-of-
treatment-weighted (IPTW) difference-in-difference (DiD) regression models—one to estimate 
the average effect of TNC market entry across outcomes of interest and a second to explore 
heterogeneity in those effects as a function of the level of urbanization within a state—on 
average, I found a 3.1% decrease in vehicle registrations (based on real-world measurements), a 
4.5% decline in VOC emissions (based on EPA-modeled values), and no significant effect on 
other outcomes. I did estimate a decline in VOC emissions but viewed that finding as 
exploratory, since the estimate used EPA-modeled values rather than real-world measurements 
and therefore warrants repeated modeling and/or other study with real-world data. Monetizing 
the exploratory value translated to external benefits totaling $300 million to $900 million. 
Despite these potential benefits, other external costs associated with other uncertainty outcomes 
meant that the net effect was also uncertain: external costs associated with VMT ranged from 
−$1 billion to $6 billion, and those for gasoline consumption ranged from −$600 million to $500 
million, such that the net effect could range from −$600 million to $500 million, spanning zero 
and underscoring the need for further study.  
 
Chapter 2 did not find significant effects on personal travel, energy use, or emissions outcomes 
in U.S. states, possibly because available data constrained the analysis to net effects at the state 
level (such that opposing effects could offset, such as increased miles per-trip counteracted by 
fewer vehicle trips, more efficient vehicles counterbalanced by more travel in those vehicles, or 
increased operating emissions offset by avoided cold starts), using state-level observational units 
could have obscured potential underlying nuance at the urban area (or finer) resolution, and TNC 
effects are still a relatively small component of overall state-level indicators and trends. These 
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outcomes warrant further study, as each has policy ramifications, sometimes at multiple levels of 
government: increased vehicle travel intensity and associated external costs could affect federal, 
state, and local planning policies; changes to fuel use could affect national policies surrounding 
energy security as well as regional economic interests; and air pollution and GHG emissions 
warrant consideration by EPA and the California Air Resources Board, potentially among others.     
 
Using higher-resolution data at the urban area level, Chapter 3 examined whether TNC entry 
increased or decreased vehicle ownership, fuel economy, and transit ridership outcomes as well 
as in what kinds of cities Uber caused vehicle ownership and efficiency and transit ridership 
outcomes to increase versus decrease. I again used a series of IPTW DiD regression models to 
estimate average effects and found evidence that TNC entry causes an average 0.7% increase in 
vehicle registrations and no average effect on overall fleet efficiency or transit ridership. 
Complementary methods to explore heterogeneity (heterogeneous treatment effects (HTE), 
cluster analyses, and interaction regressions) found effects different across all outcomes. First, 
TNC entry tended to increase vehicle ownership more in urban areas with higher initial vehicle 
ownership and lower population growth rates. That more vehicles prior to TNC entry resulted in 
even more vehicles after suggested already relatively car-dependent areas remained or became 
even more so after the introduction of TNCs as a travel option. And, while TNC-stimulated new 
vehicle acquisitions outpaced new residents in slower-population-growth areas, in faster-
population-growth areas, more new residents afforded the flexibility of being a potential TNC 
passenger depressed overall private vehicle registrations. Second, TNC entry was estimated to 
increase overall fleet efficiency more in urban areas with fewer childless households; though, 
TNC drivers may, in reality, have bought similarly efficient vehicles across urban areas, such 
that in urban areas with more childless households where pre-existing vehicle stock was smaller-
sized and already disproportionately efficient, TNC entry resulted in a smaller relative efficiency 
increase. Finally, TNC entry was found to decrease transit ridership more in urban areas with 
higher median incomes, where potential passengers possess a greater ability to pay for a more 
expensive travel mode, and more childless households, where a greater number of potential 
passengers are in a life stage that affords flexibility in making travel choices (i.e., TNC versus 
other modes). 
 
Heterogeneity in TNC effects on vehicle ownership, fleet efficiency, and transit ridership 
motivates concomitant heterogeneity in policy implications. Firstly, while vehicle ownership 
does not translate clearly to energy and emissions outcomes, vehicle ownership is generally 
correlated with higher energy use, which, in turn, is entails higher emissions. In historically 
vehicle-reliant, slower-growth urban areas where vehicle ownership was estimated to increase, 
then, special attention to and further study of potential increases in energy use and associated 
emissions may be warranted. Secondly, increases in average fuel economy can reduce fuel 
consumption (though a net effect also depends on potential changes in travel behavior, which 
was not studied here) and associated emissions. So, while urban areas with more households with 
children where fuel economy was estimated to increase may see declines in fuel consumption 
and local emissions, other urban areas with fewer households with children may consider how to 
incentivize similar efficiency gains. Finally, potential declines in transit ridership are potentially 
worrying for higher-income localities with more childless households where ridership was 
estimated to decline more (relative to lower-income urban areas with fewer childless 
households), as transit revenues could be affected. Additionally, if changes to transit ridership 
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are the result of trips diverted to TNC travel, then increases in energy use, emissions, and road 
congestion could be local concerns, too. 
 
Chapter 4 focused at the vehicle level to examine how shifting personal travel from private to 
TNC vehicles affects external benefits, with a specific eye whether the external benefits of 
avoided cold-start emissions from private vehicles outweigh the additional external costs of 
deadheading between trips and how the additional consideration of travel externalities (i.e., 
congestion, crashes, and noise) affect total external benefits (considering both emissions and 
traffic effects). I proposed and applied a framework to quantify the external benefits of TNC 
disruption to the transportation energy system by systematically characterizing the avoided cold 
start emissions and additional deadhead miles and associated emissions and quantifying the 
relative size of external benefits from TNC vehicles for several of the largest TNC markets in the 
U.S. I found that shifting travel from private vehicles to TNCs offered net emissions benefits in 
some areas but net costs in others, and including congestion, crashes, and noise yielded net 
benefits everywhere ($0.50 per TNC passenger trip, on average).  
 
Findings from Chapter 4 suggested the roughly net-zero emissions effect of shifting personal 
travel from private to TNC vehicles do not necessitate major policy action from a combined 
emissions-only perspective; however, separating air quality (a relatively local issue) from GHGs 
(a global issue) may raise different implications for local versus national policymakers. 
Additionally, travel externalities incur relatively large incremental external costs at the local 
level that at least warrant a consideration of changes to traffic planning and roadway allocation 
and passing associated costs along to TNCs to correct the market failures associated with 
unpriced externalities. Mode shifting exacerbated negative outcomes (and perhaps underscores a 
greater need for congestion controls in cities where more TNC trips are shifted from non-vehicle 
modes); while, ride-pooling emerged as the biggest lever for minimizing external costs (and even 
maximizing external benefits). Electric vehicles powered by zero-emission electricity, for 
example, were found to offer net emissions benefits but fail to address still relatively large travel 
externalities. Promising policies for increasing overall external benefits associated with TNC 
travel include some combination of incentivizing ride pooling and avoiding deadheading miles 
(when possible), targeting a reduction in the external costs of deadheading (e.g., potentially 
through semi-professional driver training), and/or internalizing external costs with user fees 
(such as the $0.50 per TNC passenger trip, on average, the study estimated). 
 
Future work can build on the findings in this thesis by addressing specific limitations 
acknowledged herein and offer complementary insights by considering possible implementations 
of potential policy options mentioned. For example, since Chapters 2 and 3 were limited to 
examining net effects estimated econometrically using aggregate data, additional study could 
explore the component effects underlying overall increases or decreases in vehicle ownership 
(e.g., what are the individual relative dynamics of aspiring drivers registering new vehicles 
versus increasingly TNC-reliant passengers shedding old vehicles?). Similarly, Chapter 2 did not 
estimate significant effects on fuel consumption or several emissions species just as Chapter 3 
did not estimate significant average effects for fuel economy and transit ridership, suggesting a 
role for further study via better-powered econometric models (i.e., with more data) or using 
alternative methods. In Chapter 4, TNC vehicle travel patterns and non-revenue miles in 
particular were critically important in driving net external cost calculations, but assumptions 
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were based on the limited data available (i.e., for a limited number of geographic regions and/or 
for a limited number of vehicles). Targeted studies on fleet-wide operations to minimize 
deadheading promises to offer social benefits, and more and better data collection and 
dissemination can benefit both those studies and knowledge and policy more broadly. 
Additionally, external costs associated with vehicular travel and air pollutants involved large 
uncertainty ranges, and travel costs, in particular, weighed heavily on my results. Focused study 
on external travel costs at the margin (i.e., either shifting a non-vehicle trip to a TNC vehicle or a 
private vehicle trip to a TNC vehicle trip involving more miles traveled) and heterogeneity 
across urban forms by time of day is needed. Finally, and in general, more and better data on 
personal travel via TNCs (especially about deadheading, mode-shifting, and ride-pooling, but 
also about TNC vehicle characteristics and travel patterns, all with sufficient geographic and 
temporal resolution to be representative of any potentially important differences in effects and 
outcomes by location and/or time) will offer broad benefits for future work, policy and 
policymakers, and knowledge about TNC effects on energy consumption, greenhouse gas and air 
pollutant emissions, and personal travel overall. 


