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Abstract

The U.S. power sector faces several vulnerabilities due to climate change. On the demand

side, increasing temperatures may result in shifting electricity consumption patterns and

increase need for energy. On the supply side, changes in air temperatures, water avail-

ability, and water temperatures could reduce the capacity and efficiency of thermal units,

which currently represent 85% of generating capacity. Previous studies that analyze cli-

mate change effects in the power sector have mostly focused on analyzing these risks sep-

arately. Further, studies in the supply side risks usually looked only at effects of climate

change only in existing thermal generators. However, such studies fail to capture how

these demand and supply risks interact with each other and with the operation of the

power grid in general. In order to analyze these risks in more detail, it is important to in-

tegrate them into system-wide assessments. Such assessments should take into account the

economic dispatch of the complete generator fleet and future economic decisions to expand

this fleet.

This dissertation attempts to understand how climate change will affect the power sec-

tor in the U.S. We implemented an integrated framework where we use different model-

ing methods to represent the different risks the power sector faces due to climate change.

We used our modeling framework in a case study of the SERC Reliability Corporation

(SERC), one of eight regional electric reliability councils under North American Electric

Reliability Corporation authority (NERC).
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Firstly, we used an econometric model to estimate changes in hourly electricity demand

due to climate change. We used this model to analyze changes hourly electricity demand

patterns in the Tennessee Valley Authority (TVA) region for different seasons of the year.

Our results suggest that climate change could result in an average increase in annual elec-

tricity consumption in the TVA region. However, this increase was not uniformly dis-

tributed throughout the year. During summer, total electricity consumption could increase

on average by 20% while during winter it may decrease on average by 6% by the end of

the century.

Secondly, we combined the estimates of future hourly electricity demand described in Chap-

ter 2 with simulations of decreases in available capacity of thermal generators due to cli-

mate change. We integrated these simulations in a capacity expansion (CE) model. This

CE model is a mixed integer linear programming (MILP) model that we adapted and de-

veloped for this study. It finds the composition of the future generator fleet that minimizes

costs subject to the estimated effects of climate change. We ran this model under different

climate change scenarios from 2020 to 2050. Our results showed that by including these

effects due to climate change in the decision making process, the estimated participation of

renewables in the generator fleet in 2050 increased from 24% to over 37–40%. Solar power

plants could become more economically attractive. As they have higher energy output

during the summertime, they could help to offset the climate-induced loss of thermal ca-

pacity during this season because of higher air and water temperatures.

Thirdly, we simulated the operation of SERC’s power system assuming the different sce-

narios and generator fleets presented in Chapter 3. To accomplish this, we used a unit

commitment and economic dispatch (UCED) model. The UECD model is a mixed inte-

ger linear programming (MILP) model that we adapted and developed for this study. We

used this model to investigate the tradeoffs between investing or not in the generator fleet

assuming different climate change scenarios. Our results suggest that by not including cli-
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mate change effects in the planning stage, SERC’s power system could experience loss of

load levels of 12% and overall energy costs could be 260% higher if climate change condi-

tions do materialize by 2050.
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Chapter 1

Introduction

1.1 Background

In 2018, the Intergovernmental Panel on Climate Change (IPCC) published the Special

Report on Global Warming of 1.5 ◦C (SR15). According to the SR15, average global tem-

peratures are likely to rise 1.5◦ C above pre-industrial levels by 2052 [45]. The IPCC also

projects a likely increase in meteorological variability, climatic extremes, and droughts.

These projected changes in climate pose a serious threat to different human and natural

systems.

As the impacts of climate change become more widespread, society must decide how to

address this issue. The amount of future climate change will be determined by the re-

sponses society makes about carbon emissions. Response actions can be categorized into

two broad classes: mitigation and adaptation [68]. Mitigation usually refers to actions

taken to reduce the amount and speed of future climate change by reducing emissions of

heat-trapping gases or removing carbon dioxide from the atmosphere. On the other hand,

adaptation stands for actions that can be taken to prepare and adjust to the new climate
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conditions. Mitigation and adaptation actions are interconnected in multiple ways. For

example, effective mitigation may reduce the need for future adaptation. Also, some adap-

tation measures could result in activities that have lower carbon emissions. Because of the

long-lived nature of many of the gases emitted in the past, some additional climate change

and related impacts are considered unavoidable at this time. Therefore, both mitigation

and adaptation actions are considered essential parts of a comprehensive climate change

response strategy [68].

The U.S. power sector, considered one of the largest contributors to the emissions of green-

house gases (GHG) in the country [107], faces several vulnerabilities related to climate

change [100, 99]. On the demand side, increasing temperatures may result in shifting de-

mand patterns. Higher temperatures can result in higher cooling demand in the summer

and lower heating demand in the winter [5]. The magnitude of these variations, however,

will be highly dependent on different local factors, such as electricity consumption be-

haviors. These changes in demand could by themselves result on challenges to the oper-

ation of the power sector. However, these threats are compounded by vulnerabilities on

the generation side as well. In the U.S., thermoelectric power plants generate roughly 85%

of the electricity in the U.S. [102] and could be affected by climate change through sev-

eral pathways. Decreased water availability and increased water temperatures could re-

duce the capacity and efficiency of thermal units that use once-through cooling. Addition-

ally, increased air temperature and humidity could reduce the capacity and efficiency of

thermal units that use re-circulating cooling. Increased air temperature could also reduce

the capacity and efficiency of gas turbines. Finally, all the aforementioned threats become

even more critical because of the nature of energy infrastructure planning and investment.

Planning horizons can span several decades – the typical service life of most energy assets

– and associated investments can extend into the billions of dollars. Because of all these

vulnerabilities, adaptation responses to climate change could be an important factor in the

design of the future U.S. electricity grid. Planning agents in the power sector should take
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into account the risks imposed by climate change into their decision making process in or-

der to ensure a reliable and affordable electricity supply.

Recent events in the U.S. and European power systems have already underscored the vul-

nerabilities of the power sector to weather extremes. In the summer of 2007, acute drought

conditions in the southeast U.S. resulted in the curtailment and shutdown of some nuclear

and coal-fired plants within the Tennessee Valley Authority (TVA) system. In France,

many nuclear power plants had to reduce operations during a serious drought in 2003 [48].

With climate change, such hazards may become even more serious and frequent. There

will likely be more frequent hot temperature extremes on daily and seasonal timescales. It

is also anticipated that heat waves will occur with a higher frequency and longer duration

[44].

The analysis of climate-induced hazards in energy systems is not a new topic. In recent

years, many studies have looked at the impacts of climate change on global systems, in-

cluding energy systems. One important class of such studies are those that use Integrated

Assessment Models (IAMs). IAMs typically include a representation of agriculture, energy,

economic, water, and climate systems. These models have different types of spatial and

temporal coverage. Most IAMs are developed for more general scenario analyses, provid-

ing output at coarse spatial and temporal resolutions and do not include detailed processes

that incorporate more detailed impacts on electricity supply and demand [111]. To cap-

ture the spatial and temporal heterogeneity of the power system, models usually used for

capacity planning and system operations require data in higher resolution. Therefore, cou-

pled hydrological-electricity modelling approaches are considered more suitable to analyze

climate impacts on the power system [111].

Several studies have looked at the impacts of climate change in electricity demand and

generation [23, 19, 85]. On the demand side, most of the studies that have assessed the

impacts of climate change on electricity demand used historical data to fit multiple linear
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regression models relating regional electricity consumption and weather variables. Many

of such models used data in a monthly time-frame [12, 84, 83, 42, 4, 82, 70] and typically

employ cooling degree-day (CDD) and heating degree-day (HDD) metrics as the weather

regressors. For example, Sailor and Muñoz [84] used multivariate linear regression models

to analyze the sensitivity of electricity demand to climate in eight U.S. states. The authors

used, among others, CDD and HDD as regressors. They found that climate variables are

statistically significant and the magnitude of the sensitivity coefficients varied substan-

tially between the different states (which indicates the importance of performing regional

analysis). Amato et al. [4] explored regional energy demand responses to climate change

in the Commonwealth of Massachusetts. The authors found that climate change scenarios

resulted in 2.1% increase in per capita residential electricity consumption by 2020. More

recently some studies have started looking at higher temporal resolution in order to repre-

sent inter-day or intra-day variability in demand [95, 75, 34, 6]. For example, Franco and

Sanstad [34] used detailed data to estimate the relationships between temperature and

both electricity consumption and peak demand at a sample of locations around Califor-

nia. The authors found that climate change could result in an increase in annual electric-

ity and peak load demands of up to 18% by the end of the century. Auffhammer, Baylis,

and Hausman [6] used daily data at the level of load balancing authorities in the conti-

nental U.S. to analyze the relationship between average or peak electricity demand and

temperature. The authors found moderate and heterogeneous changes in consumption due

to climate change, with an average increase of 2.8% by end of century.

On the supply side, studies have analyzed how climate change can affect the production

of electricity by thermoelectric power plants. Usually, these studies have focused on as-

sessing reductions in capacity and efficiency of existing individual generators. Koch and

Vögele [49] estimated available capacity reduction for nuclear power plants in Germany

by 2050. Koch et al. [50] used a similar approach to analyze the effects of climate change

on power plants and adaptation options at the city of Berlin, Germany. Van Vliet et al.
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[112] estimated that the average useable capacities of 61 thermal plants in the eastern U.S.

could decrease by up to 16% by 2060. Furthermore, the frequency of significant (>50%)

and extreme (>90%) capacity reductions could increase significantly. Bartos and Chester

[10] found similar results for generating capacity in the Western United States. Miara

et al. [69] analyzed capacity shortfalls of individual U.S. power plants due to climate–

water impacts in a regional electric grid context. They found that reserve margins (a mea-

sure of systems-level reliability) could drop by 2.3–6.9% in the Eastern Connection, and

1.9–4.3% in the Western Interconnection. Payet-Burin et al. [76] developed an integrated

water-power model and performed a system-wide analysis of climate change impacts at the

Iberian Peninsula’s power system. They found that average available capacity of freshwater-

cooled thermal power plants is reduced by 16 – 30% while production is reduced by 5–12%

in summer. Tobin et al. [96] assessed the impacts of climate change on wind, solar photo-

voltaic, hydro, and thermoelectric power generation in Europe. Their results showed that

climate change has negative impacts on electricity production in most countries and for

most technologies. Henry and Pratson [39] investigated the separate effects of temperature-

induced efficiency loss (TIEL), drought-induced capacity loss (DICL), and regulation-

induced capacity loss (RICL) on usable capacity of power plants with once-through cool-

ing. They found that if surface waters warm 3 ◦C and river discharges drop 20%, droughts

would account for up to 20% of total capacity reduction, warming surface waters ≤2.3%,

and environmental regulations as most as 80%. Peter [77] did an assessment of power sys-

tem planning under pre-defined climate change scenarios. However, this study used ex-

ogenous climate change assumptions, instead of estimating them endogenously in their

analysis. For example, the author used average thermal capacity reduction values calcu-

lated in other studies [96]. He found that climate change impacts increase system costs of

a system designed without climate change anticipation. Turner et al. [97] analyzed how

combined climate change impacts on loads and hydropower generation could influence the

nature and seasonality of power shortfall risk in the U.S. Pacific Northwest. They found
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that potential shortfall events in the Northwest could occur more frequently, but with less

severity.

While this previous work helps to shed light on risk to individual components of the power

system, most of them fail to capture how these effects interact with the operation of the

power grid and with changes in electricity demand patterns. Few of these studies have

integrated their findings into a comprehensive system level analysis, a necessary step to

understand how climate change may affect cost and reliability of the power system as a

whole. For instance, large reductions in generators’ capacities in a region would pose a

greater threat to system reliability if they were coincidental across the fleet than if they

were not. Moreover, as mentioned previously, periods of high air and water temperatures

could result on curtailment of thermal power generation at the same time that demand for

electricity could be peaking. Also, the few studies that have performed system level analy-

sis, have done so either using a present time system configuration or have used exogenous

assumptions of future expansions of the generator fleet. In order to have a better under-

standing of the vulnerabilities of the power system to climate change, it is important to

integrate these different aspects into a more complete system-wide analysis.

1.2 Research Questions and Scope

In this thesis I propose and implement an integrated framework for analyzing the potential

effects of climate change on three different parts of the power sector: electricity demand,

planning of the expansion of the generator fleet, and operation of the system. I plan to do

so by addressing the following research questions, divided into three chapters:

1. Seasonal effects of climate change on intra-day electricity demand

• How will climate change affect the intra-day demand profile?
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• How will this estimated effect differ between different seasons?

2. Effects of climate change on power system planning

• How will climate change affect the decisions to expand the generation fleet?

• How will these effects translate in terms of the compositions of the generation

fleet?

• How sensitive are these results to different projections of climate change?

3. Effects of climate change on power system operation

• How could climate change affect power system cost and reliability through gen-

erator capacity and efficiency reductions?

• What tradeoffs exist between power system planning and operations under cli-

mate change?

I apply this integrated framework on a study case of the entire SERC Reliability Corpo-

ration (Figure 1.1), one of eight regional authorities within the North American Electric

Reliability Council. According to the National Climate Assessment, the Southeast U.S. is

a region particularly vulnerable to some of the expected impacts of climate change [68].

The proposed modeling configuration uses a combination of different quantitative meth-

ods. In Chapter 2, I use multivariate linear regression to model the relationship between

weather variables and hourly electricity demand and estimate future electricity demand

under climate change. In Chapter 3, I combine these projections of hourly electricity de-

mand with simulations of thermal power plant curtailments into a Mixed Integer Linear

Programming (MILP) model in order to simulate the least-cost capacity expansion (CE)

policy considering different scenarios of climate change. Finally, I combine the results from

previous chapters into a unit commitment and economic dispatch (UCED) model to look
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Figure 1.1: Illustration of the area included in the study case in this thesis (SERC Relia-
bility Corporation)

at how these climate induced impacts in the power sector can impact different measures

of efficiency and reliability in the power sector. Figure 1.2 presents a complete view of the

methodological framework used in this thesis and how the results from each chapter relate

to the other ones.
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Figure 1.2: Diagram illustrating the complete methodological framework presented in this thesis. The blue rectangle rep-
resents the electricity demand model used in the analysis of Chapter 2. The green rectangle includes the capacity expan-
sion model used in the analysis of Chapter 3. The red rectangle includes the unit commitment model used in the analysis of
Chapter 4
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Chapter 2

Seasonal effects of climate change on

intra-day electricity demand patterns

2.1 Background

While significant efforts are being made to mitigate emissions of greenhouse gases that

contribute to climate change, there is increasing interest in using Integrated Assessment

Models (IAM) to understand the social costs of climate change and possible adaptation

strategies across the world and across economic sectors [90, 47]. An important component

of these costs is the impact climate change can have in the power sector [99]. A straight-

forward – but important – example of this impact is that higher temperatures can result

in higher cooling demand and lower heating demand [5]. However, the actual costs due to

these changes are highly dependent on local factors. Regions where natural gas is the pri-

mary source of electricity will have different impacts than those that rely more heavily on

hydroelectricity. Also, electricity consumption patterns differ by geography. For instance,

peak electricity demand (the maximum quantity of electricity demanded during an hour)
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in the United States typically occurs in the summer. However, some areas in the south-

eastern U.S. experience winter peak demand due to their use of electricity for ambient

heating. This heterogeneity in the characteristics of electricity demand across the coun-

try underscores the importance of regional impact analysis that captures important local

factors.

In recent years many studies have looked at the impacts of climate change on global sys-

tems, including energy systems. Integrated Assessment Models include a representation

of global agriculture, energy, economic, water, and climate systems. Prior work with IAM

has included analyses of energy demand implication of climate change [37, 46, 32, 52, 120,

117, 20, 67, 29, 3, 21]. However, IAMs typically have a coarse spatial and temporal repre-

sentation. Power system models used for capacity planning and system operations require

hourly data, which are not usually available in IAMs.

Other work on climate impacts on electricity demand has relied on historical data to fit

multiple linear regression models relating regional electricity consumption and weather

variables. Many of such models use data in a monthly time-frame [12, 84, 83, 42, 4, 82,

70]. These monthly models typically employ cooling degree-day (CDD) and heating degree-

day (HDD) metrics as the weather regressors. Models also differ on the type of demand

they represent. While some examine only residential or commercial electricity demand,

others aim to represent overall electricity demand for the entire system. Moreover, these

models also differ in the way they represent long-term, non-climate trends in electricity

demand. The most common practice1 has been to explicitly include variables associated

with these trends (such as population growth, economic activity, and changes in energy

efficiency) in parametric models.

1The inclusion of additional time-varying explanatory variables may absorb residual variation, hence
producing more precise estimates. However, adding more controls will not necessarily produce an estimate
of the coefficient of interest that is closer to the true parameter. If the additional controls are themselves
outcomes of changes in climatic variables, which may well be the case for controls such as GDP, institu-
tional measures, population, and socioeconomic variables, including them will induce an “over-controlling
problem.” (see [27]). For example, suppose that poorer counties in the U.S. tend to be both hot and have
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Recently, some studies have argued that using data averaged over large temporal or spatial

ranges instead of higher resolution data can result in different conclusions when estimating

some of the social costs of climate change [87, 88, 92, 40]. For example, the actual deci-

sion to dispatch power plants occurs at an hourly or sub-hourly resolution. Different types

of power plants have specific operational and economic properties that affect their abil-

ity to be turned up or down quickly. Because of these characteristics, some types of power

plants (such as nuclear) are better suited for base load generation, while other types (such

as natural gas) are typically used to meet hourly changes in electricity demand. There-

fore, planning studies that focus on changes in demand on monthly (or even daily) tem-

poral resolutions may miss important constraints that occur in the actual operation of the

power system. Some studies have started to work with data with higher temporal reso-

lution in order to represent inter-day or hourly variability in demand [95, 75, 34, 6]. Our

study expands on this previous work to improve our understanding of how climate change

can affect the hourly patterns of demand using hourly demand data. We also focus on the

seasonal aspects of these changes and how this in turn could affect the operations of the

power system. For this analysis, we use a linear regression model that combines a piece-

wise linear function with fixed effects coefficients in order to capture unobserved factors

that distinctively affect hourly electricity demand. Additionally, we use a simplified eco-

nomic dispatch model to analyze how these changes in demand can alter some of the dis-

patch patterns of power plants at the level of the local balancing authority. The high res-

olution of our dataset makes it possible to perform different analysis of the resulting simu-

lations, such as analyzing changes in the simulated hourly demand profile and constructing

probability distributions of the changes in demand. We can also analyze how the climate-

induced changes in demand profiles could affect the capacity factors of different types of

power plants and how these impacts are different in each season of the year. We apply our

low-quality institutions. If hot climates were to cause low-quality institutions, which in turn cause low in-
come, then controlling for institutions can have the effect of partially eliminating the explanatory power of
climatic variables, even if climate is the underlying fundamental cause.
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method to analyze the potential effects of climate change on the electricity demand pat-

terns of the Tennessee Valley Authority (TVA) area as a case study. TVA is a corporate

agency of the United States that provides electricity to customers in the southeast United

States. TVA has a diverse generation portfolio (that includes fossil-based power plants and

a significant contribution of hydroelectricity), and a demand profile with peaks in both

summer and winter. According to the National Climate Assessment, it is a region that is

particularly vulnerable to some of the expected impacts of climate change [68].

2.2 Data & Methods

2.2.1 Electricity Demand Data

Hourly electricity demand data for the TVA service area came from the Federal Energy

Regulatory Commission (FERC) Form 714 [33] for the years 2006–2015. Figure 2.1 shows

the time series plot of TVA’s hourly electricity demand. The gray line shows the observed

hourly demand and the black line represents the annual moving average of the hourly

data. The light gray shaded areas in the background represent summer periods. From this

figure we can observe that TVA’s average annual electricity consumption has experienced

a consistent downward trend in the last decade, after peaking around 2007/2008. Between

2007 and 2015, TVA’s annual electricity consumption has decreased by approximately

13%. This downward trend in TVA’s electricity demand is credited to a combination of an

increase in energy efficiency, economic changes, and distributed energy generation [41, 81].

Additionally, TVA regularly faces events of high peak demand during the winter months.

For example, in 2014 and 2015 the annual peak demand values occurred during the winter.
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Figure 2.1: Hourly electricity demand for the TVA area, January 1, 2006 to December 31,
2015. The gray line represents the observed hourly demand. The black line shows the an-
nual moving average of the hourly data. The light gray shaded areas in the background
represent summer periods.

2.2.2 Weather Data

To fit our regression model, we use weather data from the University of Idaho Gridded

Surface Meteorological Data (UofI METDATA) dataset [1]. This dataset combines desir-

able spatial attributes of gridded climate data from the PRISM dataset [78, 26] with de-

sirable temporal attributes from the regional reanalysis dataset NLDAS-2 [71] to derive

a high-resolution (1/24th degree, ∼4 km) gridded dataset of daily surface meteorological

variables. This dataset has been validated by its authors against an extensive network of

weather stations. The daily data is then disaggregated to hourly values using the Moun-

tain Microclimate Simulation Model (MTCLIM) [15]. We use the air temperature data of

the grid cell in Nashville, TN to represent the typical weather patterns in the TVA ser-

vice area. We tested using data from other locations inside the TVA area, but because of

the high spatial correlation between different grid cells, the results of our model did not
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change. Figure 2.2 shows the observed relationship between hourly demand and hourly air

temperature in our historical data set. We can observe the nonlinear relationship between

demand and temperature. The main reason for this “U-shaped” relationship is that elec-

tricity can be used for both ambient heating and cooling [103]. In winter months, higher

temperatures will result in decreased electricity demand for space heating. On the other

hand, higher temperatures during the summer lead to increased electricity demand for

space cooling.

Figure 2.2: TVA’s hourly electricity demand plotted against temperature (degrees Celsius)
for the period January 1, 2006 to December 31, 2015.

To simulate the changes in electricity demand induced by climate change, we first need

projections of our explanatory weather variables (air temperature and air humidity). We

obtained the output of twenty different Global Circulation Models (GCM) from the Cou-

pled Model Intercomparison Project 5 [93], spatially downscaled using the Multivariate

Adaptive Constructed Analogs (MACA) method [2]. In addition, these projections were

also disaggregated to hourly values using the Mountain Microclimate Simulation Model

(MTCLIM).
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Note that we use the UofI METDATA dataset for climate data between 2006 and 2015

to fit our regression model because this is the same dataset used in the training phase of

the MACA method used to downscale projections of future climate. Therefore, our base-

line meteorological data will be coherent with our projected weather variables from the

downscaled GCMs. This way we avoid potential biases between the data generated by

the climate model and the historical data used as a baseline to fit the regression model

[7, 6]. We focus on the projections of air temperature and air humidity simulated by the

20 GCMs under the Representative Concentration Pathway (RCP) 8.5, which is usually

called the “business as usual” scenario, since it assumes that concentrations will keep in-

creasing in the same rate as in the present. We focus on the projections for two different

periods: 2055-2065 and 2089-2099.

2.2.3 Electricity Demand Model

To estimate the typical response function of hourly electricity demand to weather changes,

we use the historical data described above to fit a multiple regression model. We used a

piece-wise linear function to represent the non-linear relationship between electricity con-

sumption and temperature [65] (more details about this formulation are available in the

Appendix). This formulation also enforces continuity on the breakpoints of the piece-wise

linear curve. To control for unobserved factors affecting electricity demand in each hour

of the day, our model includes fixed effects coefficients for each hour of the day in differ-

ent seasons and different types of day (workday or weekend). The annual long-term trends

are modeled using fixed-effects for each year in the historical data set. This way our model

is capable of controlling for changes in the demand in electricity caused by economic and

technological shifts in our historical dataset.

We also experimented with using air humidity as an explanatory variable. We used in-

16



teractions between air temperature and air humidity in each temperature bin of our esti-

mated piece-wise linear function to capture the heterogeneity of how changes in air humid-

ity affect demand for different air temperature levels [86]. However, the resulting fit of the

model did not improve significantly, while the interpretability of the resulting model was

considerably compromised. Therefore, we chose the more parsimonious model (without air

humidity as an explanatory variable).

Equation 2.1 shows the regression model.

yt = β0 + αhds + γa +
N∑
j=1

δjT
c
jt + εt (2.1)

where t denotes hourly data, h hour of the day (h ∈ [1, 24]), d type of day (workday vs.

non-workday), s season of the year, and a calendar year. yt represents hourly demand at t

(in MW). T c
jt is the j-th piecewise linear component of the temperature at hour t. Finally,

αhds and γa are, respectively, the fixed effects for hour of the day by different seasons and

types of day, and year fixed effects.

All coefficients in our model are estimated by Ordinary Least Squares (OLS). The different

fixed effects coefficients estimated by our model aim to capture unobserved factors in our

dataset that influence hourly electricity demand and may be related to changes in tem-

perature. The annual fixed effects (γa) capture all observed and unobserved variables that

change on an annual basis such as economic activity, energy efficiency gains, and popula-

tion changes. The hourly fixed effects (αhds) capture hourly patterns of electricity demand

in different seasons, controlling for unobservable behavioral responses regarding consumers’

utilization electric appliances, and other time-varying decisions not easily observable. This

way, the estimated coefficients of our response curve of electricity demand to temperature

will not be biased because of the omission of these unobserved hourly, seasonal, or annual

effects.
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2.2.4 Dispatch Model

In order to simulate dispatch patterns due to changes in electricity demand resulting from

climate change, we use a similar approach outlined in previous studies [14, 113]. A reduced-

form economic dispatch model simulates the order in which power plants would be dis-

patched to meet hourly electricity demand. For each 24-hour day in the complete simu-

lation period, a linear programming (LP) optimization model finds the dispatch schedule

that minimizes the total generation cost. To define the short-run marginal costs of each

power plant we compile data from different sources. Heat rates of thermal power plants

come from the Emissions & Generation Resource Integrated Database (eGRID) [106] from

the United States Environmental Protection Agency (EPA). Fuel costs for each power

plant come from the Energy Information Agency (EIA) Form 923 [31], which collects de-

tailed electric power data on electricity generation, fuel consumption, fossil fuel stocks,

and receipts at the power plant level. In the cases of specific power plants for which this

type of data is missing, we use regionally appropriate fuel costs and national average heat

rates reported by the EIA. Combining all these data sources, we compute the short-run

marginal costs of each individual power plant in our study. These costs are used in the lin-

ear programming problem to define the optimal daily dispatch policy.

Figure 2.3 plots the estimated short-run marginal costs of TVA’s individual plants. Fol-

lowing the methods outlined in previous studies [14, 113], we represent planned mainte-

nance and forced outages in thermal power plants by using an availability factor as an up-

per bound of the plant’s generation. This availability factor was computed as a percentage

of nameplate capacity as reported by EPA’s Integrated Planning Model (IPM). Also, in

the case of wind and solar power plants we use capacity factors instead of availability fac-

tors, since the former better represent the constraints these type of power plants face [113].

One difference in our model is that, for hydroelectric power plants, we impose a restriction

that at a specific hour the power plant may generate up to its available power. However,
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its total daily energy generated cannot be above its capacity factor (as reported in the

eGRID data base). This flexibility is needed in order to meet peaks of demand throughout

the day in areas that had a significant share of hydroelectric power. Turndown constraints

are represented as a 50% minimum-operation limit for coal steam and nuclear units. These

constraints ensure that these plants – which typically are operated as base load generators

– are not cycled.

Figure 2.3: Estimated short-run marginal cost curve (supply curve) for Tennessee Valley
Authority (TVA)

Equation 2.2 shows the formulation of the linear programming problem. Table 2.1 presents

the variables used in the formulation and a brief description of each of them.
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Table 2.1: Variables used in the definition of the dispatch problem

P Set with all the power plants in TVA
Pmin Set with the power plants in TVA with minimum generation constraints

(Pmin ⊂ P)
Phyd Set with all the hydro power plants in TVA (Phyd ⊂ P)
H Period of simulation (24-hour day)
xp,h hourly generation (MWh) in hour h ∈ H of power plant p ∈ P
cp generation cost ($/MWh) of power plant p ∈ P
yh total demand (in MWh) at hour h ∈ H
Cp maximum capacity power plant p ∈ P (in MW)
CFp capacity factor of power plant p ∈ P (in %). Used only for hydro plants.
Gmin

p minimum dispatch value of power plant p ∈ P (in MW)

min
∀xp,h

∑
h∈H

∑
p∈P

cpxp,h

s.t. ∑
p∈P

xp,h ≥ yh ∀h ∈ H

xp,h ≤ Cp ∀h ∈ H , ∀p ∈ P

xp,h ≥ Gmin
p ∀h ∈ H , ∀p ∈ Pmin∑

h∈H

xp,h ≤ |H| ∗ CFp ∗ Cp ∀p ∈ Phyd

xp,h ≥ 0 ∀h ∈ H , ∀p ∈ P

(2.2)

The objective function represents the total generation cost over the period H (in this case,

a 24-hour day). This total cost is the sum of the hourly costs of each power plant p in the

set of all the power plants owned by TVA (P). The first constraint states that for each

hour h, total generation must be greater than the demand (yh). The second constraint

represents the capacity upper bound: in each hour, generation of each power plant (xp,h)

must be smaller than its capacity (Cp). The third constraint applies to thermal generators

that have turn-down restrictions such as coal plants. To emulate these restrictions, we use

lower bound on their dispatch (Gmin
p ). The fourth constraint is an energy restriction that

applies to hydro generators. Generators of this type cannot generate more than their av-
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erage capacity factor (CFp) over the period H. This constraint assures that the simulated

dispatch of hydro generators will not be unrealistically large. Finally, the fifth constraint is

the non negativity constraint, to ensure that the solution will not have negative generation

values.

Validating the results of the dispatch simulations can be difficult task as the dispatch model

does not include many factors that affect real-time power plant dispatch. For example,

system operators have to consider real world constraints such as transmission limits and

ramping constraints in thermal power plants. The constraints on the operation of dams

would also affect the amount of hydro generation available. For the purpose of this paper,

the objective was to make a comparison between the results in a baseline (or present) sce-

nario without the effects of climate change, and a scenario with the estimated effects of

climate change. Using the same model formulation and basic assumptions ensures that the

biases that result from the model specification are constant in all the simulations. The rel-

evant results relate to the comparison between the scenarios and the implications of such

differences.

2.3 Results

We use our complete historical data set (years 2006 – 2015) to estimate the coefficients

of our regression model by Ordinary Least Squares (OLS). The specified model results in

R2 = 0.853 and R2
adj = 0.853, meaning that 85.3 percent of the variation in hourly elec-

tricity demand in the TVA area is explained by our model. Figure 2.4 presents the TVA’s

estimated response function of electricity demand to changes in temperature according

to our model. The Supplemental Material includes the estimated values of the slopes in

each temperature bin . The gray points in the background in Figure 2.4 represent the ob-

served values of hourly temperature and residualized electricity demand in our historical
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data set. The histograms at the top and at the right of the panel display the observed dis-

tribution of the variable on the respective axis. To compute the residualized electricity de-

mand we subtract our estimated values of αhds and γa (but not β0) from the observed val-

ues of hourly demand. This way we are left with our estimated values of hourly electricity

demand that are temperature dependent and are not influenced by non-observed hourly,

seasonal, or annual effects. We can observe that the estimated response function appears

to be capturing the overall shape of the relationship between air temperature and electric-

ity demand. One interesting aspect that we can observe from this scatter plot is that the

response curve appears to have a more symmetrical shape when compared to similar re-

sponse functions in other load regions, e.g., PJM [61]. This can be explained by the larger

use of electricity for ambient heating in the southeastern U.S. than other regions [103]. As

a result, increased winter temperatures lead to decreased electricity demand for heating,

while increased summer temperatures lead to an increase in demand for cooling.

After specifying the electricity demand model, we use it to simulate future electricity de-

mand given the scenarios of climate change from the different GCMs. We run the simula-

tion for two future periods: 2055-2065 and 2089-2099. Throughout this document we will

refer to these two simulation periods as 2060 and 2099, respectively. This way we aim to

account for normal inter annual variability in the weather data in each of these future pe-

riods being simulated. Also we avoid potential biases in our results due to the selection

of a single future year for our analysis. Since our goal is to study the impacts that pre-

dicted changes in climate trends can have on electricity demand, we create our simulations

of future electricity demand under the assumption that all other estimated factors will re-

main constant. For example, we use the estimated value of the annual fixed effect for 2015

(γ2015) in our simulations of demand in 2060 and at the end of the century. Additionally,

in order to create a comparable base case of present demand (i.e., without the effect of cli-

mate change), we use our model with historical air temperature data from 2005 to 2015

to backtrack hourly electricity demand in this period (also using the value of γ2015 for the
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Figure 2.4: Estimated hourly electricity demand temperature response function. The gray
dots represent the historical values (2006-2015) of hourly temperature and residualized
electricity demand (temperature dependent). The red solid line is the average response
curve according to our estimated model. To compute the residualized electricity demand
we subtract our estimated values of αhds and γa (but not β0) from the observed values of
hourly demand. The histograms at the top and at the right of the panel display the ob-
served distribution of the variable on the respective axis.

whole period).

Figure 2.5 presents the simulated average annual load duration curves (LDC) for the present

and each of the two future periods. The LDCs show the percentage of time in the year

that the hourly demand is above a certain value. The solid line is the average present load

curve (the average is taken over the 2005–2015 period). The dashed lines represent the av-

erage load curves simulated for the periods 2060 and end-of-century (averages are taken

over the 11 year period and over all 20 GCMs). The gray shaded areas show the range of

these future simulated averages LDCs over the 20 GCMs. The plot shows a significant in-

crease in the occurrence of peak demand values through the year in 2060 and 2099 when

compared with the present. Overall, the simulations indicate that annual consumption of

electricity in TVA increases by 2.5% by 2060 and 6% by the end of the century as a result
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of climate change. However, this increase is not uniformly distributed throughout the year.

Most of it occurs on approximately 25% of the year (2,500 hours). Additionally, if we fo-

cus on the highest 1,000 hourly values in each curve, the total consumption of electricity

during these hours increases by 11% by 2060 and 21% by the end of the century. Also, we

can see by the gray shaded area that the trend observed in the average curve is consistent

across all the 20 GCMs simulated.

The LDCs in Figure 2.5 do not show how changes in demand due to climate change may

be chronologically distributed throughout the year. Figure 2.6 shows the simulated average

hourly load curves for each season in the present and each of the future periods. As with

the LDCs, the solid curves represent the average hourly load curve according to present

weather conditions (the average is taken over the 2005–2015 period). The dashed lines rep-

resent the simulated average hourly load curves according to projected weather conditions

in 2060 and 2099 (averages are taken over each 11 year period and over all twenty GCMs).

The gray shaded areas show the range of these future simulated hourly load curves over

the twenty GCMs used in our simulations of electricity demand.

In winter time, electricity consumption decreases on average by 4% by 2060 and by 6%

using the simulated data for 2099. On the other hand, summer electricity consumption in-

creases on average by 11% by 2060 and by 20% using the simulated data for 2099. Figure

2.6 shows that there is a large spread on the potential increases in the hourly electricity

demand during summer time depending on which GCM is used to simulate future elec-

tricity demand. However, this uncertainty in the simulations results does not show up on

other seasons. Figure 2.4 shows a non-linearity in the response of hourly demand to tem-

perature. This suggest that a 1◦C change in summer temperature has a larger effect on de-

mand than a 1◦C change in winter. As a result, the variability in temperatures represented

in the different GCMs result in a wider spread in the summer demand values.

The results of the demand simulations under climate change highlight that electricity con-
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Figure 2.5: Present and future simulated average load duration curves (LDC). The solid
curves represent the average LDC according to present weather conditions. The dashed
lines represent the simulated average LDCs according to projected weather conditions in
2060 and end of century. The gray shaded areas show the range of these future simulated
averages LDCs over the 20 GCMs.

sumption during the summer will account for a larger proportion of the total annual con-

sumption under climate change in TVA. Furthermore, TVA will see changes in the dis-

tribution of daily peak demand. Figure 2.7 shows simulated kernel density plots of daily

peak demand. This figure suggests that there will be an increase in the probability of

larger values of peak demand, illustrated by the increase in the right tail of the distribu-

tion. The 95th percentile of these curves increases by 10% by 2060 and 19% by the end of

the century. These values are comparable to the ones found by previous studies such as

[6]. In that work, the authors found an increase between 15% and 21% of 95th percentile

of daily peak demand by the end of the century for different load zones in the US.

The changes in the seasonal distribution of electricity consumption and the distribution of

peak demand hours could affect the operations of the power system. Increased peak de-

mands in the summer require increased available generation capacity, which will not be

used in the winter, when increased temperatures will lead to decreased demand. To evalu-
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Figure 2.6: Present and future simulated average hourly load curves for each season. The
solid curves represent the average hourly load curve according to present weather condi-
tions. The dashed lines represent the simulated average hourly load curves according to
projected weather conditions in 2060 and end of century. The gray shaded areas show the
range of these future average hourly load curves over the 20 GCMs.
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Figure 2.7: Comparison of simulated kernel density plots of daily peak demand. The solid
curves represent daily peak demand values under present weather conditions. The dashed
and dotted lines represent daily peak demand values according to projected weather condi-
tions in 2060 and end of century, respectively.

ate these operational impacts, we used the projected values of electricity demand to simu-

late the generation dispatch using a linear programming model (see section 2.2.4).

Different types of power plants have different marginal costs of generation and different

operational properties that affect their ability to be turned up or down quickly. Nuclear

power plants, for example, have a low marginal cost of generation and have a limited abil-

ity to respond to rapid changes in demand for electricity. As result, nuclear power plants

are better suited for based load generation. Natural gas power plants, on the other hand,

have a higher marginal cost of generation but can very quickly respond to demand changes.

Therefore, natural gas plants have historically been used to “follow load.” The costs and

constraints of different power plants will affect how they are scheduled to meet hourly de-

mand under climate change. Figure 2.8 shows the simulated average capacity factors of

different plant types in TVA. The capacity factor for a power plant is the ratio between

annual generation (from the dispatch model) and the maximum amount of electricity the

plant can generate in a year given its rated power (assuming the plant operates at its rated
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capacity 24 hours a day, 7 days a week). Figure 2.8 does not include results for hydro and

nuclear power plants because the magnitude of the change in their capacity factors was

not substantial. In our simulation the variable operating cost of these types of plants is

zero or close to zero, therefore they are typically the first ones to be dispatched in every

season (with or without climate change). We display one plot for each season in the year

in order to be able to understand how the changes in demand affect the dispatch of the

different types of power plants in each season. The darkest bars show the average capacity

factor for each plant type resulting from the dispatch simulations using current demand

(without climate change). The bars of lighter colors show the simulated capacity factors

for each plant type in 2060 and 2099. The error bars represent the 90% uncertainty range

computed over each simulation period (11 years) and over all the 20 GCMs used in our

simulations. As expected, we observe a large increase on the average capacity factor in the

summer and a decrease in the winter using climate simulations for 2060. Furthermore, we

find coal, natural gas, and oil-based power plants experience most of the changes in their

average capacity factors, since the changes in demand by 2060 are within the range in the

supply curve in which these plants provide the marginal supply.

In the simulations for the end of the century we find that average peak demand values

during the summer can increase by more than 10% as a result of climate change. These

shifts move the peak demand values closer to the right region of the supply curve, result-

ing in an increase of the dispatch of the more expensive power plants, such as oil. Accord-

ing to our results, capacity factors of natural gas power plants in the summer would in-

crease from 8% in the present to more than 37% using end of the century temperatures.

On the other hand, during the winter they would decrease from 3% to virtually zero. The

capacity factor of coal power plants in the summer would increase from 71% to 84%, while

in the winter it would decrease from 67% to 60%. Oil plants would experience an increase

on their average capacity factors from approximately 0% to approximately 14% during the

summer.
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Figure 2.8: Barplots with average simulated capacity factors by generation fuel in each
season of the year. The error bars represent the 90% uncertainty range computed over
each simulation period and over all the 20 GCMs. We did not include hydro and nuclear
in this figure because the change in their capacity factors was not substantial.
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These results can have important implications for TVA’s planning agents. The projected

increase in electricity consumption in the summer and the decrease in consumption in the

winter may imply two effects. On the one hand, the decreased consumption in the win-

ter may offset part of the increased consumption in the summer. On the other hand, the

changes in seasonal peak demands might mean that more power plant capacity would re-

main idle in the winter, just waiting to be dispatched during the months of higher demand

in the summer. This could have implications for cost recovery and electricity tariffs in ver-

tically integrated utilities. In de-regulated regions that operate wholesale electricity mar-

kets, the shifts in seasonal capacity factors could have implications for spot prices, capac-

ity markets, and market design. While this analysis relies on the existing fleet of power

plants, which will not be the same by mid-century (much less by the end of the century),

these results highlight why the analysis of the climate-induced impacts on hourly load

curves is relevant for system planning and operations.

A related consequence of increased summer peak demand would be the need for additional

reserve margins, in order to cope with the increased probability of higher values of peak

demand. Currently, the “rule-of-thumb” in the power sector is that utilities should have

a reserve margin (i.e., amount of capacity above average peak demand) of 15% in order

to cope with values of peak demand higher than the expected ones. As peak demand in-

crease, so will the amount of capacity (in GW) needed to maintain appropriate reserve

margins, which would likely affect costs.

There are some caveats in our analysis. First, we assume that the only variable that af-

fects demand for electricity is temperature. This is a deliberate assumption, since our goal

is to estimate how the changes in climate projected by the GCMs will affect the demand

for electricity. However, changes in weather patterns will certainly not be the only factor

that will affect electricity demand. Even in our regression analysis, the amount of vari-

ability in the historical data of electricity demand that was explained by the estimated

30



temperature function was smaller than, for example, the variability explained by the an-

nual fixed effect terms. This suggests the non-observed socioeconomic variables that these

annual fixed effects are meant to represent (such as economic growth, population changes

and efficiency gains) have a larger effect on electricity demand than changes in tempera-

ture, as suggested by previous studies [82].

Incorporating alternative socioeconomic assumptions in our study would result in evalu-

ating their mitigating or compounding effects on the climate-induced impacts. However,

the direction of those effects can be ambiguous. Economic growth is usually related to in-

creases in electricity consumption. However, it may also result on greater investment on

energy efficiency technologies that could offset demand growth. As illustrated in Figure

2.1, TVA’s electricity demand has decreased in recent years despite positive population

and economic growth in the region in the same period, which is arguably a result of recent

energy efficiency gains [41]. Additionally, other changes in technology and infrastructure

could affect our estimated hourly fixed effects. For example, the possible increase in the

penetration of plug-in hybrid electric vehicles (PHEVs) could shift electricity demand pat-

terns [36] in ways that are not yet clear. Analyzing such effects could be the subject of

future studies.

These modeling limitations not-withstanding, the results in this paper suggest that tem-

perature changes as a result of climate change could, by themselves, affect demand pro-

files in important ways. These results suggest that total electricity consumption during the

summer in TVA under climate change could increase by up to 20% by the end of the cen-

tury, while overall winter electricity consumption could decrease by up to 6%. Such effects

are significant enough to suggest that power system planner and operators should account

for climate change-induced effects in electricity consumption when making decisions.
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2.4 Conclusion

In this chapter we analyzed the impacts of climate change on hourly electricity demand

and how these can affect the dispatch of power plants. We used a linear regression model

capable of representing hourly electricity demand and its non-linear relationship to air

temperature. This high resolution analysis can be important when trying to estimate the

social costs of climate change in the power sector, because it better approximates how the

system is operated (as opposed to using averaged/aggregated data). We focused our anal-

ysis on a case study of the TVA service area. However, the framework presented in this

study can be directly applied to other load areas where data are available. As observed

previously, these results are dependent on location-specific parameters, such as electric-

ity consumption behavior (for example, the higher share of electricity usage as a source of

energy for space heating) and the characteristics of the power plant fleet that supplies elec-

tricity for this region. Future work could expand this analysis to other regions of the U.S.

to compare how these regional issues affect our results. Additionally, it could also combine

the effects of climate change with scenarios of changes of other variables that affect elec-

tricity demand, such as economic activity and population growth.

In order to evaluate the system-effects of changes in demand patterns, we use a reduced-

form economic dispatch model. Dispatch decisions account for more constraints and vari-

ables than we included in our model [23]. Furthermore, climate may also affect the tech-

nical operations of power plants, and the hydrological conditions which may result in new

constraints. In future work, we will analyze potential interactions of climate impacts on

different components of the power system using more complex power system models than

the one used in this paper. It is clear from our results, however, that climate change could

have an important effect on the shape of the hourly load curve as well as on the differences

between seasons, and that these effects could have implications for the dispatch of power

plants, which in turn would affect the costs of power supply.
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Chapter 3

Capacity expansion of an electricity

generation fleet under climate change

3.1 Background

According to the Intergovernmental Panel on Climate Change (IPCC), average global tem-

peratures are likely to rise 1.5◦ C above pre-industrial levels by 2052 [45]. The IPCC also

projects a likely increase in meteorological variability, climatic extremes, and droughts.

Such changes will likely result in climate-related risks for natural and human systems.

Among the human systems that may be affected is the energy sector. In the United States,

the electric power sector faces many climate related challenges [100, 99]. On the demand

side, increasing air temperatures may result in shifting demand patterns [100], higher cool-

ing demand in the summer, and lower heating demand in the winter [100]. These changes

in demand could, by themselves, result in challenges to the operation of the power sec-

tor. However, these threats are compounded by vulnerabilities on the generation side. In

the U.S., thermoelectric power plants, which account for roughly 85% of power genera-
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tion [102], could be affected by climate change through several pathways. For example, de-

creased water availability and increased water temperature could reduce the capacity and

efficiency of thermal units that use once-through cooling [100]. Additionally, increased air

temperature and humidity could reduce the capacity and efficiency of thermal units that

use recirculating cooling [100].

Previous studies have mostly focused on analyzing these risks separately [24]. For exam-

ple, studies that focus on electricity demand [34, 38, 6, 79] have shown that by the end

of the century climate change could increase U.S. electricity consumption and daily peak

demand by 2.8% and 3.8% on average, respectively [6]. Recent assessments have also ana-

lyzed the vulnerabilities of thermoelectric power plants to climate change in the U.S. and

Europe [112, 10, 114]. These studies have shown that thermoelectric power plants could

experience a summer average decrease in their available capacity of 6%–19% in Europe

and 4%–16% in the United States [112, 114]. Peter [77] assessed power system planning

in Europe using average climate change impacts exogenously derived from other studies.

He found that climate change impacts increase system costs of a system designed with-

out climate change anticipation. While this previous work helps to shed light on risks to

individual power system components, it usually fails to capture systemic risks caused by

interactions between demand-side and supply-side impacts on the operation of the power

grid. These systemic risks become even more critical because of the nature of energy in-

frastructure planning and investment. Planning horizons can span several decades – the

typical service life of most energy assets – and associated investments can extend into the

billions of dollars. Therefore, it is imperative to evaluate how climate-induced risks could

affect capacity expansion planning and operations of the U.S. power system.

Here, we developed an integrated, multi-model framework to examine how climate-related

risks in the power sector can potentially affect power system planning decisions, which

would, in turn, change the composition of the future power plant fleet. Through this work,
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we simulated the different climate-change risks in a consistent way [96], by considering

the same ensemble of climate models, emission scenarios, and time horizons. At the cen-

ter of the multi-model approach, we implemented a deterministic capacity expansion (CE)

model that chooses future generator additions that minimize the sum of annualized fixed

investment costs and variable generation costs subject to user-defined constraints (such

as meeting electricity demand). Our analysis focused on the SERC Reliability Corpora-

tion (SERC), one of the North American Electric Reliability Corporation (NERC) sub-

regions. This region has a diverse generation portfolio (that includes fossil-based power

plants and a significant contribution of hydroelectricity) and a demand profile with peaks

in both summer and winter. According to the National Climate Assessment, the SERC

region is particularly vulnerable to some of the expected impacts of climate change [68].

To simulate the effect of climate on investment decisions, our model used spatially- and

temporally-differentiated estimates of weather-induced constraints to the system’s sup-

ply and demand. Figure 3.1 summarizes our modeling framework. We used the down-

scaled output from twenty different General Circulation Models (GCMs) [93, 2] to gen-

erate projections of hourly electricity demand [79]. We also used the output from these

climate models as inputs into a chain of hydrological models [56, 55, 115, 73, 116] to gen-

erate series of daily river flows and water temperatures, which we then used to estimate

hydropower potential under climate change. In addition, we used climate forcings and hy-

drological variables to estimate capacity deratings for existing and potential thermoelectric

power plants under climate change [57, 17, 119]. Moreover, we used U.S. National Renew-

able Energy Laboratory (NREL) data sets of simulated wind and solar generation profile

[109, 30] as upper bounds on wind and solar hourly generation. Finally, we combined all

the aforementioned simulations into our capacity expansion model.

35



Resulting Generator
Fleet

Initial Generator
Fleet

Capacity Expansion
Model

Wind & Solar
Capacity Factors

Thermal power
deratings

Hydro Generation
Potentials

Electricity
Demand

Stream Flow
& Water Temp.

Climate
Models

Figure 3.1: Diagram showing the modeling framework of our analysis.

3.2 Data & Methods

3.2.1 Configuration of study area

We focused our analysis in the SERC Reliability Corporation (SERC). To define the geo-

graphical domain of our study, we used the definitions of the Integrated Planning Model

(IPM) developed by the United States Environmental Protection Agency (EPA) [105]. In

IPM, there are 67 IPM model regions covering the 48 states in the contiguous U.S. and

District of Columbia. The IPM model regions are approximately consistent with the con-

figuration of the NERC assessment regions in the NERC Long-Term Reliability Assess-

ments. Further disaggregation of the NERC assessment regions and RTOs allows a more

accurate characterization of the operation of the U.S. power markets by providing the abil-

ity to represent transmission bottlenecks across RTOs and ISOs, as well as key transmis-

sion limits within them. The NERC assessment region SERC is divided into Kentucky

(S C KY), TVA (S C TVA), AECI (S D AECI), the Southeast (S SOU), and the Caroli-

nas (S VACA). In order to simplify the hydrological simulations needed for our analysis,

we did not include areas west of the Mississippi river1. Therefore, the IPM region AECI
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(S D AECI) was not included in our description of the SERC region.

The IPM model includes data on transmission limits between the different zones. Our ca-

pacity expansion model is capable of considering transmission limits between each region

in the analysis. However, for this study we did not set upper bounds on the electricity ex-

changed between the four IPM zones.

S_C_KY

S_C_TVA

S_SOU

S_VACA

30°N
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34°N

36°N

38°N
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t

Figure 3.2: Area of study

3.2.2 Existing generator fleet data

We imported the list of existing generator units in the SERC area from the National Elec-

tric Energy Data System (NEEDS) database [108]. NEEDS is a database that contains

the generation unit records used that represent existing and planned/committed units in

EPA modeling applications of the IPM model. It includes basic geographic, operating, air

1Adding areas west of the Mississippi river to our analysis would require simulating flows from the
river basins that feed into the Mississippi. This would result in a major increase of the simulation area of
the hydrological models, which would then include the whole northwestern region of the continental U.S.
Since the S D AECI IPM region represents a small fraction of the SERC area in IPM, we chose to exclude
it from our analysis.
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emissions, and other data on these generating units. It is compiled by EPA using different

sources such as surveys and reports from the Energy Information Administration (EIA),

and comments from utilities and regional EPA offices.

Emission rates for each power plant were imported from EPA’s Emissions & Generation

Resource Integrated Database (eGRID) [106]. eGrid is a comprehensive source of data

on the environmental characteristics of almost all electric power generated in the United

States.

Finally, cooling technologies for each power plant were imported from Form EIA-860 [104].

This survey collects generator-level specific information about existing and planned gener-

ators and associated environmental equipment at electric power plants.

This resulted in a current (as in 2015) fleet of 172 GW of installed capacity. Approxi-

mately 85% (149 GW) of this capacity was composed by thermoelectric power plants, in-

cluding nuclear (17%), coal (32%) and natural gas (37%). Hydroelectric power plants rep-

resented approximately 12% of SERC’s installed capacity. Other renewables, such as wind

and solar, represented around 1% of the generator fleet. Figure 3.3 shows the composition

of SERC’s generator fleet. Regarding cooling technologies of thermoelectric power plants,

once through cooling systems represented approximately 38.2 GW (around 25% of ther-

moelectric capacity). Recirculating cooling systems represented 77 GW (51% of thermo-

electric capacity). According to the data disclosed by form EIA-860, dry cooling systems

represented just a small fraction of the total thermoelectric capacity in SERC.

Figure 3.4 shows the remaining capacity of the existing fleet over time after considering

the retirements of existing generators due to estimated age limits. According to this data,

around 50% of the installed capacity available in 2020 could retire by 2050 due to age lim-

its.
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3.2.3 Climate and hydrology data

We used gridded projections of daily air temperature, air humidity, and air pressure from

the Global Circulation Models (GCM). We obtained the output of twenty different GCMs

(Table A.1) from the Coupled Model Intercomparison Project 5 [93], spatially downscaled

using the Multivariate Adaptive Constructed Analogs (MACA) method [2]. In addition,

these projections were also disaggregated to hourly values using METSIM (Meteorology

Simulator) [13].

To simulate regulated daily river flows and water temperatures in the study region we used

a physically based modeling framework. This process-based modeling approach consists

of three separate models. First, we used a macroscale, spatially distributed hydrological

model, the Variable Infiltration Capacity (VIC) model [56], to simulate runoff. Second, the

runoff was used as an input into a river routing model, the Model for Scale Adaptive River

Transport (MOSART) [55], dynamically coupled to a spatially distributed water manage-

ment model (WM) [115], to simulate reservoir storage and regulated streamflow. Third,

surface meteorological data and simulated hydrologic conditions are used to simulate reg-

ulated river temperatures, using a one-dimensional stream temperature model, the River

Basin Model (RBM) [116], coupled with a two-layer reservoir thermal stratification module

[73]. We ran these models at a grid resolution of 1/8 degree (∼ 12 km) using the climate

forcing data from twenty different GCMs from the Coupled Model Intercomparison Project

5 [93], spatially downscaled using the MACA method [2].

3.2.4 Electricity demand

We used an econometric model to estimate the projections of SERC’s electricity hourly de-

mand in future years under different climate change scenarios [79]. To fit this model, we

used historical hourly electricity demand data of the utilities within our study area im-

40



ported from the Federal Energy Regulatory Commission (FERC) Form 714 [33] for the

years 2006–2015. We also used weather data from the University of Idaho Gridded Surface

Meteorological Data (gridMET) dataset [1]. This dataset combines desirable spatial at-

tributes of gridded climate data from the PRISM dataset [78, 26] with desirable temporal

attributes from the regional reanalysis dataset NLDAS-2 [71] to derive a high-resolution

(1/24th degree, ∼4 km) gridded dataset of daily surface meteorological variables. This

dataset has been validated by its authors against an extensive network of weather stations.

Then, we disaggregate the daily data to hourly values using METSIM (Meteorology Sim-

ulator) [13]. After the parameters of the model were defined, we used projections of daily

air temperature of twenty different Global Circulation Models (GCM) from the Coupled

Model Intercomparison Project 5 [93], spatially downscaled using the Multivariate Adap-

tive Constructed Analogs (MACA) method [2]. In addition, we again disaggregated these

daily projections to hourly values using METSIM [13]. For each of the four subregions in

SERC considered in this study, we used hourly air temperature from the two most popu-

lous cities and compute their mean.

Note that we used the gridMET dataset for climate data between 2006 and 2015 to fit our

regression model because this is the same dataset used in the training phase of the MACA

method used to downscale projections of future climate. Therefore, our baseline meteo-

rological data was coherent with our projected weather variables from the downscaled

GCMs. This way we avoided potential biases between the data generated by the climate

model and the historical data used as a baseline to fit the regression model [7, 6].

The econometric model used a piece-wise linear function to represent the non-linear rela-

tionship between electricity consumption and temperature [65]. This formulation enforced

continuity on the breakpoints of the piece-wise linear curve. To control for unobserved fac-

tors affecting electricity demand in each hour of the day, the model included fixed effects

coefficients for each hour of the day in different seasons and different types of day (work-
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day or weekend). Annual long-term trends were modeled using fixed-effects for each year

in the historical data set. This way the model was capable of controlling for changes in the

demand in electricity caused by economic and technological shifts in our historical dataset.

Since our goal was to study the impacts that predicted changes in climate trends can have

on electricity demand, we created our simulations of future electricity demand under the

assumption that other factors that could influence electricity demand (such as economic

activity and population growth) would remain constant. For example, we used the esti-

mated value of the annual fixed-effect for 2015 (γ2015) in our simulations of future electric-

ity demand.

Figure 3.5 shows the estimated response functions of hourly electricity demand to temper-

ature. Each plot presents the response function of one of the load zones considered in this

study. These response functions and the other fixed-affects parameters of our regression

models are used to simulate future values of electricity demand under the climate change

conditions simulated by the twenty different climate models.

3.2.5 Technical and economic parameters of candidates tech-

nologies

In order to be able to analyze how climate change can impact the decisions to expand the

generator fleet, we need economic and technical specifications of different types of can-

didate power plants. These details were used by the optimization model to choose the

configuration of the power plant fleet that minimizes the sum of fixed and variables costs

while satisfying the operating and system constraints included in our model.

We used the technical and economic parameters detailed on the NREL Annual Technol-

ogy Baseline (ATB) [51]. ATB is a freely available database compiled by NREL that pro-

vides technology-specific cost and performance parameters such as capital expenditures
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Figure 3.5: Estimated hourly electricity demand temperature response function. The gray
dots represent the historical values (2006-2015) of hourly temperature and residualized
electricity demand (temperature dependent). The red solid line is the average response
curve according to our estimated model. To compute the residualized electricity demand
we subtract our estimated values of the fixed-effects αhds and γa (but not the intercept β0)
from the observed values of hourly demand. The histograms at the top and at the right of
the panel display the observed distribution of the variable on the respective axis.

(CAPEX), operations and maintenance (O&M) costs, and capacity factor estimates. These

estimates are put together for a range of resource characteristics, sites, or fuel price as-

sumptions for electricity generation technologies both at present and with projections

through 2050. Capex values include estimated overnight capital costs and financing costs,

and thus account for construction duration of different technologies.
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Table 3.1: Technical and economic parameters of candidate plants (Source: ATB)

Type
CAPEX

($/kW)

Fixed O&M

($/kW-year)

Fuel Costs

($/MWh)

Var. O&M

($/MWh)

Coal-CCS 90% 5,941 78.99 25.00 9.33

Coal 3,882 31.95 18.62 4.58

Gas-CC 1,036 10.20 18.24 2.67

Gas-CC-CCS 2,162 32.47 21.24 6.93

Nuclear 6,049 97.44 6.50 2.23

Wind 1,532 50.42 0.00 0.00

Solar PV 1,746 13.78 0.00 0.00

The capex values in Table 3.1 do not take into account potential tax credits and other fi-

nancial incentives. In our model we included the financial incentives given to renewable

technologies under the Business Energy Investment Tax Credit (ITC) [89]. The ITC offers

different levels of tax credits over capital expenditures for several types of renewable gen-

eration such as wind and solar generators. For wind generators, the tax credit expires in

2020. Values of the tax credit between 2016 and 2019 average around approximately 21%

of investment values. For solar generators, the tax credits decreases to 10% after 2020, but

do not expire. In our model, we updated the investment costs of new solar and wind gen-

erators in order to take into account these financial incentives.

The values shown in Table 3.1 are specifically for investments in these types of genera-

tors in 2016. The ATB also projects how these costs evolve over future years (in constant

monetary values). These changes in future investment costs try to capture typical cost re-

ductions resulting from expected improvements in the technology. Figures 3.6 – 3.9 show

the projected change in values of capex, fixed O&M, variable O&M, and fuel costs for each

of the technologies considered in this work, according the ATB database. Note that capex

values do not account for the ITC tax credits discussed above.
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Figure 3.6: Projection of CAPEX values (in 2015 $/kW) for different candidate technolo-
gies. The values in this plot do not take into account ITC tax credits. (Source: ATB)
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Figure 3.7: Projection of fixed O&M values (in 2015 $/kW-year) for different candidate
technologies. (Source: ATB)
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Figure 3.8: Projection of variable O&M values (in 2015 $/MWh) for different candidate
technologies. (Source: ATB)
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Figure 3.9: Projection of fuel costs values (in 2015 $/MWh) for different candidate tech-
nologies. (Source: ATB)

46



(a) Once through cooling (b) Recirculating cooling (c) Dry cooling

Figure 3.10: Types of cooling technologies (adapted from Koch and Vögele [49])

Another dimension of our analysis were the different cooling technologies that can be used

by thermal generators. In our work we focused on three types of cooling technologies:

once-through cooling, recirculating cooling, and dry cooling, as illustrated in Figure 3.10.

Once-through cooling systems (Figure 3.10a) operate by continuously withdrawing large

quantities of water from a (usually) large water source (such as a river or a lake), use this

water to absorb heat from exhaust steam, and subsequently discharge this higher temper-

ature water to the environment. The net consumption of water is considered negligible. In

recirculating cooling systems (Figure 3.10b), the water is recirculated to the condenser af-

ter it has been cooled in a cooling tower that lowers the water temperature mainly due to

evaporation of water in contact with ambient air. This type of cooling system minimizes

the withdrawal of water from the water bodies and avoids discharges of highly heated wa-

ter back into them. Finally, dry-cooling systems (Figure 3.10c) use the sensible heating of

atmospheric air passed across finned-tube heat exchangers to reject the heat from condens-

ing steam [118, 119, 58].

The choice of the different cooling systems can have important consequences for the op-

eration of power plants. Once-through systems need large volumes of water withdrawls to

operate their cooling systems. In times of drought or high water temperature, these sys-

47



tems may not have enough resources in order to properly lower the temperature of the ex-

haust heat. This could result in loss of efficiency. Moreover, because once-through cooling

systems typically discharge large volumes of high temperature water back into the envi-

ronment, they could have negative impacts on aquatic ecosystems, including fish kills in

certain ecosystems and impacts on species diversity. The U.S. Environmental Protection

Agency (EPA) and a majority of states in the U.S. have environmental regulations regard-

ing water temperature standards that apply to the operation of thermal power plants. If

the operation of a power plant results in a violation of these standards, the plant may be

required to curtail its generation.

Recirculating and dry-cooling plants can suffer from unfavorable ambient conditions. High

air temperatures and high humidity could reduce the capacity of the evaporation process,

which could result in efficiency losses. Moreover, compared to once through systems, these

recirculating and dry-cooling typically have higher capacity and operating expenses, and

lower efficiency rates [66].

To represent the additional costs of different cooling systems we used the Integrated En-

vironmental Control Model (IECM), previously developed at Carnegie Mellon University

[17, 119, 57]. This model outputs plant performance characteristics and costs for different

combinations of power plant technologies and cooling systems. Since the ATB data does

not have cooling technologies specifications, we made the assumption that those values are

associated with once-through cooling systems (which is the least expensive one). For the

other two cooling systems, we computed the differences in the IECM’s output with respect

to the once-trough system and applied this difference to the ATB values. We did this for

Coal Steam and Combined Cycle Natural Gas (with and without CCS), since these are the

power plant technologies currently modeled in IECM.
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Table 3.2: Summary of IECM outputs for Coal Steam and CCNG power plants. The val-
ues shown in this table are the differences in the IECM outputs of each variable with re-
spect to a power plant of the same type using once-through cooling. Values were compiled
using IECM Version 11.2.

Performance and costs Coal Coal CCS NGCC NGCC CCS

∆ Total capital requirement (2015 $/kW)

Recirculating 87.82 143.82 47.83 79.26

Dry-cooling 295.76 243.12 138.41 92.59

∆ Fixed O&M (2015 M$/yr)

Recirculating 1.57 2.03 1.07 1.30

Dry-cooling 3.70 2.97 2.21 1.70

∆ net plant efficiency (%)

Recirculating 0.91 2.95 0.62 1.38

Dry-cooling 4.91 5.56 2.10 1.91

3.2.6 Wind & solar generation data

In order to capture spatial and temporal variability in output among wind and solar farms,

we set upper bounds to the hourly generation of wind and solar power plants equal to sim-

ulated wind and solar generation profiles from the U.S. National Renewable Energy Lab-

oratory (NREL) [109, 30]. These wind and solar generation databases provide simulated

generation profiles for hypothetical plants in the SERC area at 5-minute increments, for

2007–2012 and 2006, respectively. We used 2009 wind generation data, since the overall

simulated capacity factor (CF) in this year was closer to the average over the complete

dataset. We aggregated generation data to hourly increments by calculating the aver-

age generation values for all time steps in each hour. After excluding several solar plants

with no generation data, hourly capacity factors for hypothetical wind and solar plants in

SERC in the NREL dataset ranged from 17%–55% and 12%–19%, respectively.
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For existing wind units in the CE model, we calculated the installed capacity of wind in

our initial fleet, and added wind farms from the NREL dataset to our fleet in order of

decreasing capacity factor. Note that existing wind units in each CE model run included

wind units added in previous CE runs. For instance, a wind unit added in the 2020 CE

run is considered an existing wind unit in the 2025 CE simulation. We performed the

same process for existing solar units. Since we did not account for transmission within

each of the four SERC subregions in our CE model, each existing wind and solar unit var-

ied only by capacity and hourly generation profile within each subregion. As such, in order

to improve the computational efficiency of the model, we combined existing wind and so-

lar units into single equivalent wind and solar units by summing up their capacities and

hourly generation profiles.

Similarly, in order to maintain computational tractability, rather than inputting numerous

small potential new wind and solar units with unique generation profiles to the CE model,

we instead determined capacity additions for blocks of size 1 GW of representative wind

units and representative solar units in the CE model. These blocks of representative units

each had an hourly generation profile. To determine the generation profiles, we estimated

capacity-weighted generation profiles for assumed capacities of wind and solar incremental

to the existing capacities of wind and solar.

We set these assumed capacities equal to 1 GW in order to balance two competing fac-

tors: first, the generation profile should represent marginal investment in wind and solar,

i.e. the next MW of additional wind and solar, but second, the CE model runs in 5-year

intervals, so wind and solar investment in each period will be on the order of gigawatts. To

calculate the generation profiles for 1 GW of incremental wind and solar capacities, first

we temporarily removed wind and solar farms from the NREL datasets with a combined

capacity equal to the existing fleet capacity in order of decreasing capacity factor. From

the remaining wind and solar farms in the NREL datasets, we obtained hourly generation
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profiles for 1 GW of wind and solar in order of decreasing capacity factor, then calculated

the capacity-weighted average hourly generation profile for those generators. As discussed

above, once wind or solar capacity were added by an annual step of the CE model, that

wind and solar capacity was treated as “existing” capacity in subsequent CE simulations.

Consequently, that added wind and solar capacity was assigned a generation profile in fu-

ture CE runs following the process described previously in this paragraph.

Note that it is possible that in some scenarios, installed wind and/or solar capacities ulti-

mately exceeded total capacity in the NREL databases. In those cases, we could not ob-

tain generation profiles for additional wind and/or solar capacity for the CE model from

the NREL databases, as no wind and/or solar capacities incremental to existing wind and

solar capacities exists in the NREL databases. Therefore, in these cases, we estimated gen-

eration profiles for additional wind and/or solar capacities as the capacity-weighted gener-

ation profiles of the least efficient (lowest annual CF) block of wind and/or solar units.

Figure 3.11 illustrates some characteristics of our dataset of solar sites in SERC. Figure

3.11a shows the distribution of annual capacity factors over the complete dataset of so-

lar sites. The best solar sites have an annual capacity factor close to 20%, while the worst

sites have one around 13%. The average capacity factor of the solar dataset is approxi-

mately 16%. Figure 3.11b presents the average hourly capacity factors of the solar sites.

We plot the average hourly capacity factors for both the complete year and the summer

period. The summer capacity factors are relevant because in our simulations, thermal

power plants experience a reduction in their available capacity mainly during summer-

time. In other seasons, the reduction in the capacity to generate electricity is not signifi-

cant. Therefore it is important to understand how other energy sources are able to com-

plement the scaling down of thermal capacity. As expected, the hourly generation profile

of solar sites in summertime is greater than during the rest of the year.

Figure 3.12 illustrates some characteristics of our dataset of wind sites in SERC. Figure
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Figure 3.11: Characteristics of SERC’s solar sites dataset. (a) shows the distribution of
annual capacity factors over the complete dataset of solar sites (b) presents the average
hourly capacity factors of the solar sites

3.12a shows the distribution of annual capacity factors over the complete dataset of wind

sites. The best wind sites have an annual capacity factor close to 55%, while the worst

sites have one around 17%. The average capacity factor of the solar dataset is approxi-

mately 16%. Figure 3.12b presents the average hourly capacity factors of the wind sites.

Again, we plot the average hourly capacity factors for both the complete year and the

summer period in order to understand how new wind energy power plants are able to com-

plement the summertime scaling down of thermal capacity due to climate change. In op-

position to the behavior of solar sites, the hourly generation profile of wind sites during

summertime is lower than the rest of the year.
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Figure 3.12: Characteristics of SERC’s wind sites dataset. (a) shows the distribution of
annual capacity factors over the complete dataset of wind sites (b) presents the average
hourly capacity factors of the wind sites

3.2.7 Capacity deratings of thermal generators

To simulate the effect of climate conditions on the operation of thermal power plants, we

used results from the Integrated Environmental Control Model (IECM) to estimate oper-

ating curves for a variety of thermal power plant configurations under different meteoro-

logical and hydrological conditions [17]. IECM allows the user to configure power plants

according to a variety of characteristics, including plant type, cooling technologies, boiler

type, and coal ranks. IECM was ran with a set of weather conditions and configurations

to observe the resulting operation characteristics including power plant efficiency, avail-

able power capacity, and water use intensities [57]. Then, linear regression models were

used to fit response surfaces to this simulated data [57]. This way we obtained operating

curves that represented how changes in meteorological and hydrological conditions due to

climate change could affect the operating conditions of existing and future thermal power

plants. In this analysis we included pulverized coal plants and natural gas combined cycle
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(NGCC) plants with different types of cooling systems (once-through, recirculating cool-

ing, and dry cooling). Because the IECM does not model nuclear power plants, we did not

have response curves for this type of technology. Therefore, for nuclear power plants we

did not simulate any weather related capacity reductions. However, we did simulate ca-

pacity reductions due to environmental regulations that control water quality in the rivers

that feed cooling water to these nuclear power plants.

Figure 3.13 presents the estimated response functions of the available capacity of coal

steam and NGCC power plants under different meteorological conditions. The three plots

in the top row (a–c) show the response functions for coal steam with once-through cooling,

coal steam with recirculating cooling, and coal steam with dry cooling. The three plots in

the bottom row (d–f) show the response functions for NGCC with once-through cooling,

NGCC with recirculating cooling, and NGCC with dry cooling.

Figure 3.14 presents the estimated response functions of the water withdrawal rate (in

kgal/MWh) of coal steam and NGCC power plants under different meteorological con-

ditions. The two plots in the top row (a–b) show the response functions for coal steam

with once-through cooling, and coal steam with recirculating cooling. The two plots in the

bottom row (c–d) show the response functions for NGCC with once-through cooling, and

NGCC with recirculating cooling. As mentioned previously, the IECM does not model nu-

clear power plants. For these types of power plants we used a fixed water withdrawal rate

according to figures reported in the literature [62]. This way we were able to simulate po-

tential capacity reductions related to environmental regulations that control water quality.

In our simulation, we combined these response curves with the spatially gridded hourly

projections of meteorological and hydrological variables mentioned in section 3.2.3. This

resulted in time series of hourly projections of available capacity and water withdrawal

rates for each existing and candidate power plant. We used the available capacities as up-

per bounds on the electricity generation of individual power plants in our capacity expan-

54



(a)

50

60

70

80

90

100

110

70 80 90 100 110

air temp. (°F)

w
at

er
 te

m
p.

 (
°F

)

(b)

20

40

60

80

100

70 80 90 100 110

air temp. (°F)

re
l. 

hu
m

. (
%

)

(c)

10

11

12

13

14

15

70 80 90 100 110

air temp. (°F)

ai
r 

pr
es

su
re

 (
ps

i)

(d)

50

60

70

80

90

100

110

70 80 90 100 110

air temp. (°F)

w
at

er
 te

m
p.

 (
°F

)

(e)

20

40

60

80

100

70 80 90 100 110

air temp. (°F)

re
l. 

hu
m

. (
%

)
(f)

10

11

12

13

14

15

70 80 90 100 110

air temp. (°F)

ai
r 

pr
es

su
re

 (
ps

i)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.13: Estimated effect of meteorological conditions on the fraction of available ca-
pacity of different types of thermal power plants. (a) coal steam with once-through cooling
(b) coal steam with recirculating cooling (c) coal steam with dry cooling (d) natural gas
combined cycle with once-through cooling (e) natural gas combined cycle with recirculat-
ing cooling (f) natural gas combined cycle with dry cooling. (Adapted from Loew [57])

sion model.

For power plants using once-through cooling, we also simulated the effects of water qual-

ity regulations that govern the cooling water sources. Once-through cooling systems with-

draw from a nearby large water body (such as rivers or lakes) and discharge the heated

cooling water downstream in the same water body, after it leaves the condenser. This wa-

ter discharged at high temperatures can result in negative impacts on aquatic ecosystems,

including fish kills in certain ecosystems and impacts on species diversity [8, 28]. To mini-

mize these environmental hazards, the U.S. Environmental Protection Agency (EPA) and

state environmental agencies regulate cooling water systems and thermal discharges under

the Clean Water Act [66]. Water quality standards differ by state, but they normally re-

quire surface water to remain under 32 ◦C [63]. If the water discharged by a power plant
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Figure 3.14: Estimated effect of meteorological conditions on the water withdrawal rate (in
kgal/MWh) of different types of thermal power plants. (a) coal steam with once-through
cooling (b) coal steam with once-through cooling (c) natural gas combined cycle with
once-through cooling (d) natural gas combined cycle with recirculating cooling (Adapted
from Loew [57])

causes stream temperatures to rise above this threshold, power plants could be forced to

shut down or curtail their power generation2.

We simulated operating constraints due to such environmental regulations on power plants

using once-through cooling. We used a thermal balance equation to compute the final

stream temperature after the mixing of the water from the river and the water discharged

from the power plant.

Tx =

mg

mr
Tg + Tr

mg

mr
+ 1

= Tr +

mg

mr
mg

mr
+ 1
·∆Tg = Tr +

mg

mg +mr

·∆Tg (3.1)

2According to McCall, Macknick, and Hillman [66], in practice the enforcing of the Clean Water Act
varies on a case-to-case basis, and limits are not always adequately set or enforced to protect aquatic life.
State regulators can issue thermal variances to individual power plants that allow these plants to exceed
water quality limits.
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where Tx is the final mixed stream temperature, mg is the water flow of the power plant

discharge, mr is the upstream flow of the river, and Tr is the upstream stream temperature

(before mixing, i.e. stream temperature in that cell). Tg is the temperature of the power

plant discharge (which equals Tr + ∆Tg). ∆Tg is the increase in temperature of cooling

water through the condenser, which we assumed is a fixed value that depends on the con-

denser design.

To estimate the withdrawal/discharge flow from a power plant (mg) we used the following

equation:

mg = min
(
γ ·mr, p · f (i,∆Tg)(x)

)
(3.2)

where i indicates the type of power plant. x represents a vector with a values for a set of

meteorological variables at the location of the power plant. f (i,∆Tg)(x) is the estimated

regression function mapping the values of x to water intensity estimates (in gal/MWh) for

a power plant of type i and design parameter ∆Tg (see Figure 3.14). p is the power output

of the power plant (in MWh). γ indicates the maximum fraction of the river flow that can

be extracted for cooling purposes.

Combining the two equations, we get:

Tx = Tr +

(
min

(
γ ·mr, p · f (i,∆Tg)(x)

)
min (γ ·mr, p · f (i,∆Tg)(x)) +mr

)
·∆Tg (3.3)

Our objective was to find the maximum value of p such that Tx is still less than the en-

vironmental limit. However, we can’t analytically solve the above equation for p . Also,

it does not explicitly account for environmental limits. However, given a mixed stream

temperature Tx, we can compare that to the regulatory limit and determine whether the

output of the power plant p needs to be curtailed.

Specifically, for each power plant, we iteratively tested a range of power output values be-
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tween 0 and its maximum capacity and determined the maximum potential power output

before mixed stream temperatures exceed regulatory limits. Using the same approach, we

also simulated the environmental limit on the maximum fraction of the river flow that can

be extracted for cooling purposes. If sufficient water was not available, then the available

capacity of the plant was reduced accordingly.

3.2.8 Hydro potential data

To simulate the potential effects of climate change in the available hydro energy at power

plants we combined historical data of hydro energy produced by the hydro power plants

in the SERC region with the simulations of river flows from the VIC and MOSART-WM

models. We assumed that the energy generated at each power plant is proportional to the

water released by the hydro dam simulated by the hydrological models.

We used monthly historical hydro generation for the hydro power plants in our data set

from 2003 to 2011 as reported by the Energy Information Agency (EIA). We used these

values to compute twelve monthly reference average generation values (ḡi,m) for each hydro

power plant i (where m is the month of the year, i.e. m ∈ [1, 12]).

Next we used the outputs from the VIC and MOSART-VM models to compute the ad-

justments in hydro power potential in the future. We used the period 1982 to 2011 as our

control period. For each power plant i, we computed a factor λy,i representing the ratio

between the total annual water flow in year y (wy,i) and the total average annual water

flow in the complete control period (1982 to 2011) at the location of the power plant i, i.e.,

λy,i =
wy,i∑

y′∈[1982,2011]wy′,i
y ∈ [2012, 2050] (3.4)

Then, the estimated potential of hydro energy generation at power plant i in future month
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m and year y is defined as

P
(H)
i,m,y = ηy,i × ḡi,m m ∈ [1, 12], y ∈ [2012, 2050] (3.5)

The values of P
(H)
i,m,y represent hydro energy potential at the site of power plant i, and not

estimated hydro generation by this power plant. Within the optimization model, the ac-

tual generation decision for each hydro generator is limited by both this potential and the

installed capacity of the power plant.

3.2.9 Cap on CO2 emissions

We analyzed how the implementation of CO2 emission caps on the power sector would af-

fect the investment decisions of our model. These limits on emissions were represented in

our optimization model as constraints that could be considered or not in our simulations

(see Appendix E). To simulate the scenarios with CO2 limits, we used a carbon emission

target of 50% reduction by 2050. This target would be consistent with 2 ◦C stabilization

pathway, as reported by the IPCC [45]. We used the reference year in our study (2015)

and the final year (2050) to derive the reduction goals. To define the reference emissions

in 2015 in our simulation, we ran the economic dispatch simulation in our CE model in

2015 to compute estimated generation of the existing fleet. To define electricity demand

values for this simulation, we used the reference case (no climate change). Next we used

emission factors for each generator in the fleet (imported from the eGrid model – see sec-

tion 3.2.2) to compute a reference carbon pollution value in 2015. This resulted in a total

carbon emissions amount of approximately 390 million metric tons of CO2. We used this

as our reference emissions value for 2015. Finally, we applied the 50% reduction level over

this estimated 2015 reference emission level. We applied a linear interpolation to define

emission limit values for the years between 2015 and 2050.
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3.3 Results

We ran the CE model in five year increments between 2015 and 2050. In each iteration,

the model selected what plant types to build to minimize total annualized system cost.

Specifically, the model had the choice to build wind, solar, coal steam, coal steam with

carbon capture and sequestration (CCS), combined cycle natural gas, combined cycle nat-

ural gas with CCS, and nuclear power plants. New coal and natural gas plants could use

recirculating or dry cooling systems. Although we account for existing hydropower facili-

ties, our analysis did not include hydropower plants as a candidate technology. Investment

in hydropower plants has been minimal in the last few decades [98] and available resources

for new hydro plants in our study area (the southeast U.S.) are limited [101].

To evaluate the effect of climate on investment decisions, we simulated three different fu-

ture scenarios: a reference scenario (where climate conditions are assumed to be the same

as historical until 2050), a scenario where climate conditions follow Representative Con-

centration Pathway (RCP) 4.5, and a scenario where climate conditions follow RCP 8.5.

In the reference scenario, we included simulations of electricity demand created using his-

torical meteorological conditions. However, we did not account for capacity deratings for

thermal power plants. For the two future scenarios assuming climate change (RCP 4.5 and

RCP 8.5), we used our estimates of electricity demand, hydro generation potential, and

thermoelectric available capacity estimated using projections of meteorological variables

from the GCMs. To account for the intrinsic inter-annual variability among the twenty dif-

ferent GCMs and mantain computational tractability, we included three different climate

simulations in the optimization step of our model. We sampled the output of three among

the twenty GCMs that represented the 20%, 50%, and 80% quantile values from the dis-

tribution of system-wide peak demand. We selected peak demand as a descriptive metric

because the electricity grid tends to be designed for maximum load days [6]. In the refer-

ence scenario we sampled the three quantile values from the distribution of system-wide
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peak demand estimated using our historical dataset (more details in appendixes D and E).

Figures 3.15a – 3.15b present the projected distributions of electricity consumption and

peak demand, respectively. In this analysis, we assumed that other factors that could af-

fect our projections of demand (such as changes in economic activity and population) re-

mained constant at their estimated 2015 levels. This way, we were able to isolate the im-

pacts of climate change on electricity demand. Figures 3.15a – 3.15b show that, by 2050,

annual electricity consumption and annual peak demand could increase by 3% and 16%,re-

spectively, when compared to the reference case. These values are comparable to results

found by previous studies [6, 79].

Figure 3.16 displays the distributions during summertime of the simulated daily available

capacity of four different existing thermal power plants using RCP 8.5. We show the re-

sults for these four power plants to exemplify the simulated impacts on different types of

thermal generators. These four power plants include coal steam with once-through cool-

ing (Hammond), coal steam with recirculating cooling (Ghent), natural gas combined

cycle with recirculating cooling (Richmond), and natural gas combined cycle with dry

cooling (Choctaw). The figure shows an overall trend of decreasing available capacity for

thermal power plants with once-through cooling and recirculating cooling. According to

these results, natural gas combined cycle power plants with dry cooling experienced no

climate-induced capacity deratings. Figure 3.6 plots the projected values of capacity in-

vestment costs for the different technologies considered in our study as potential candi-

dates for adding new capacity to the system in the future.

Figure 3.17 presents the results of the capacity expansion simulations without enforcing

carbon emission limits in the generator fleet. Figures 3.17a – 3.17c plot the resulting gen-

erator fleet in 2050 for the three scenarios (reference, RCP 4.5, and RCP 8.5). These fig-

ures show that including climate constraints in the planning process would result in capac-

ity investments that are roughly 40% higher than in the reference scenario. Increased peak
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Figure 3.15: Distributions of simulated future electricity demand under climate change (a)
shows the distribution of simulated annual electricity consumption in (TWh/year) using
all twenty GCMs for RCP 4.5 and RCP 8.5. (b) shows the distribution of simulated an-
nual peak electricity demand using all twenty GCMs for RCP 4.5 and RCP 8.5. Values of
future electricity demand are simulated under the assumption that other factors that could
influence electricity demand (such as economic activity and population growth) remain
constant.
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Figure 3.16: Distribution of the simulated summer time daily available capacity of four
different existing thermal power plants. The types of power plants include coal steam with
once-through cooling (Hammond), coal steam with recirculating cooling (Ghent), natural
gas with recirculating cooling (Richmond), and natural gas with dry cooling (Choctaw).
To simplify the figure we only show the available capacities simulated using RCP 8.5.

electricity demand and decreased available capacity from thermal generators under climate

change drive the requirement for higher installed capacity for the entire fleet. Figure 3.17a

shows that in the reference case (which does not account for future climate constraints),
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natural gas plants, wind power, and solar power accounted for 69 GW, 24 GW, and 12

GW in 2050, respectively (48%, 17%, and 8% of total installed capacity, respectively). Due

to plant decommissioning at the end of their life and high investment costs, coal accounted

for just 9 GW (6% of total installed capacity) in 2050 in this reference scenario. These

changes in coal-based capacity represent a considerable reduction compared to 2015, when

coal accounted for 55 GW (32% of installed capacity, see section 3.2.2).

Including climate change constraints in the planning model changes the composition of the

available power plant fleet in 2050, as shown in Figures 3.17b – 3.17c. Climate constraints

resulted in capacity deratings in natural gas plants, so the capacity expansion model com-

pensates by building more wind and solar than in the reference scenario. By 2050, assum-

ing RCP 4.5 and RCP 8.5, wind and solar account for 38% – 41% of total capacity relative

to 25% in the reference scenario.

The results for solar are worth noting. Solar capacity increased from 12 GW (8% of total

capacity) in the reference case to 57 – 65 GW (29% – 33% of total capacity) in the cases

with climate change. Unlike wind, solar power plants in the simulations typically have

high energy output during the summer (see Figure 3.11), which coincides with high ther-

mal generator deratings due to high air and water temperatures. Therefore, this surplus

summertime solar generation helps the system to offset part of the climate-induced losses

in thermal capacity. This characteristic of solar generation in summertime makes them

more economically attractive when we include summertime reductions in thermal capacity

due to climate change.

Finally, although we found that thermal power plants with dry cooling did not experience

major reductions in their capacity due to climate change (see Figure 3.16), these plants

are more expensive than plants with recirculating cooling. As a result natural gas addi-

tions in the simulations are in the form of plants with recirculating cooling.
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Figure 3.17: Final composition of SERC’s generator fleet in 2050 for each of the three sce-
narios (Reference, RCP 4.5, and RCP 8.5). (a) – (c) are simulated without considering
any constraints on CO2 emissions. (d) – (f) are simulated assuming limits on system-wide
CO2 emissions. The numbers in the center of each plot show the total installed capacity in
2050. The inner layer of the pie chart shows the breakdown into the different fuel sources
used by the power plants in SERC. The middle layer shows the types of generating tech-
nologies – where applicable – used for each type of fuel source. The outer layer presents
the cooling technologies used in the respective thermoelectric generators. The codes “OT”,
“RC”, and “DC” stand for, respectively: once-through cooling, recirculating cooling, and
dry cooling.
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We also simulated scenarios with a 50% reduction in total carbon emissions from power

generation in SERC by 2050 compared to 2015. This constraint is consistent with IPCC’s

mitigation levels needed to reach 2 ◦C stabilization targets [45]. We assumed that emis-

sion caps decrease linearly in the years between 2015 and 2050. Figures 3.17d–3.17f show

the results of the simulations of the three climate scenarios considering these CO2 emission

constraints. Results are similar to the ones without carbon emission caps. In the scenarios

without carbon emission limits, CO2 emissions had already decreased substantially be-

cause of the scheduled retirement of old coal power plants and the high costs of investing

in new coal power plants. However, in order to achieve the 50% target, the CE model had

to further invest in renewables in these scenarios. This resulted in a higher total installed

capacity and higher participation of renewables.

In the reference case, the total installed capacity increased by 5% compared to the results

without carbon constraints. The simulations for the RCP 4.5 and RCP 8.5 scenarios with

carbon constraints resulted in capacity requirements approximately 2% higher, compared

to the simulations without carbon constraints. Increased capacity requirements are largely

the result of increased use of solar and wind power, which account for 40%–42% of the to-

tal installed capacity in 2050. Because wind and solar typically have smaller capacity fac-

tors, total installed capacity in these cases is greater than the ones without carbon emis-

sion limits. Table 3.3 reports the breakdown of the total installed capacity of the generator

fleet in 2050 in each scenario simulated. Numbers in parentheses are the percentage of to-

tal capacity for each type of power plant.

The differences in the composition of the generator fleet in 2050 translate into changes in

the levels of fixed investment costs needed to implement such portfolios. In the reference

case, there was an addition of 73 GW of new capacity, most of it from natural gas plants

(52%). This represented a total investment in the order of $ 76 billion (USD 2015). In

cases including potential effects from climate change, there was an addition of 126 – 130
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Table 3.3: Installed capacity of each plant type (in GW) in 2050 for each of the three sce-
narios (Reference, RCP 4.5, and RCP 8.5)

With emission limits∗ Without emission limits

Reference RCP 4.5 RCP 8.5 Reference RCP 4.5 RCP 8.5

Coal 7.9 (5%) 7.9 (4%) 8.6 (4%) 9.1 (6%) 9.7 (5%) 9.3 (5%)

Hydro 21.4 (14%) 21.4 (10%) 21.4 (11%) 21.4 (15%) 21.4 (11%) 21.4 (11%)

Natural Gas 69.9 (47%) 80.7 (40%) 83.1 (42%) 69.1 (48%) 80.3 (40%) 83.5 (43%)

Nuclear 6.6 (4%) 6.6 (3%) 6.6 (3%) 6.6 (5%) 6.6 (3%) 6.6 (3%)

Other 0.3 (0%) 0.3 (0%) 0.3 (0%) 0.3 (0%) 0.3 (0%) 0.3 (0%)

Solar 14.8 (10%) 68.3 (33%) 61.3 (31%) 11.9 (8%) 65.0 (33%) 56.6 (29%)

Wind 29.3 (19%) 19.0 (9%) 18.0 (9%) 24.0 (17%) 15.8 (8%) 17.0 (9%)

Total 150.2 204.2 199.3 142.4 199.1 194.7

* CO2 emissions in 2050 are forced to be 50% of estimated emissions in 2015.

Values in parentheses are percentage of total capacity.

GW, representing a total investment of $ 111 – 113 billion. The increase in expected elec-

tricity demand and deratings in the available capacity of thermal power plants increased

investment costs by 46% – 48%. Total fixed investment costs also increased in the scenar-

ios with carbon emission constraints. In these scenarios fixed investment costs up to 2050

summed up to $ 82 billion in the reference scenario, and $ 131 – 137 billion in the cases

including potential effects from climate change.

There are some caveats in our analysis. First, in our simulations of future electricity de-

mand, we assumed all variables except climate conditions (for example, economic activity,

electrification of transportation, and changes in population) remained constant at present

levels. We made this strong (and non-realistic) assumption to isolate the impact of climate

changes on decisions to invest in new capacity. It was not our goal to predict the future

generator fleet. Instead, we examined how planning decisions to expand the generator fleet

could change by including climate risks into the decision-making process.
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In this analysis, we did not include transmission constraints between the four SERC sub-

regions or energy connections with neighboring regions. The capacity of transmission lines

could also be impacted by changes in the climate system [24]. Therefore, including trans-

mission constraints could change some of our results. Including transmission constraints

and its climate-induced vulnerabilities should be the focus of future work.

Climate change could also impact solar and wind generation potentials. However, the ef-

fects on solar and wind generators are not as clear as in other types of power plants. Past

studies have disagreed on the directions of the impacts of climate change on solar and

wind energy in the U.S. [24]. Particularly, in the southeast U.S. some studies have found

an increase in solar generation potential under climate change scenarios. Incorporating the

effects on wind and solar in our modeling framework could be the subject of future exten-

sions of this work.

Also, we only considered as candidate technologies to invest those that are currently ma-

ture. For example, we did not consider energy storage (i.e., batteries), fuel cells, next-

generation nuclear, among others. Finally, because of the specific characteristics of the

power system in the southeast U.S., the results of the case study may not be directly ap-

plicable to other regions.

Nevertheless, our results offer insights about the impacts of climate change on the power

system that can be useful for stakeholders outside the Southeast. Specifically, our results

indicate that including potential climate change effects on electricity demand and power

generation in the decision-making process of energy planners is likely to affect the choice of

power plants built and the associated investment costs. The specific choice of power plants

chosen is likely different in other areas of the U.S. For example, while we found that solar

output in the Southeast coincides with times of high capacity deratings in thermoelectric

power plants, the same is likely not true in the Midwest, where wind power may be bet-

ter aligned with deratings. On the other hand, the simulations for the Southeast may offer
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insights about the choice of cooling systems in thermoelectric power plants. Our results

suggest that natural gas power plants with recirculating systems would suffer deratings

under climate change scenarios. This finding is likely consistent in other regions east of

the Rocky Mountains, where climate change is likely to results in increased air tempera-

tures and humidity [59]. While power plants with dry cooling systems are less vulnerable

in these regions, our simulations suggest these plants are still too expensive to be competi-

tive with other generating technologies.

The results in this paper suggest that low-emission technologies such as nuclear and car-

bon capture remained uneconomical even with a 50% emissions cap. We did not include

potential tax credits in our evaluation of technologies with CCS. These tax credits (such

as the Section 45Q Tax Credit in the U.S.) would make thermal projects with CCS more

economically attractive and could change the investment decisions in our analysis. More-

over, it is likely that higher carbon constraints required to meet the 1.5-degree climate

stabilization target (net-zero emissions by 2050 [45]) would need the deployment of low-

carbon technologies that are more expensive than wind and solar power. Such technologies

may include advanced nuclear power plants, fossil-based power plants with CCS, but also

negative-emission sources like bioenergy with CCS or direct air capture of CO2, which we

did not include in this study [45]. Evaluating the vulnerability of these power plants to

climate change should be the focus of future work.

3.4 Conclusion

To our knowledge, this study is the first to explicitly and endogenously integrate the com-

bined effects of climate change on electricity demand and available capacity of thermal

generators in an analysis of capacity expansion in the U.S. power system. Currently, the

U.S. power sector accounts for approximately 28% of greenhouse gas emissions in the coun-
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try [107]. Designing a less carbon-intensive power system is a crucial step towards the goal

of reducing overall CO2 emissions. The findings in this paper suggest accounting for cli-

mate constraints in the planning process would result in different decisions about the fu-

ture of the power plant fleet. While we find that including such climate constraints may

lead to increased investment requirements, we did not evaluate the operational benefits of

planning for climate change. Future work will focus on simulating the operations of the

fleet of power plants built in each of the scenarios presented in this paper. Such simula-

tions will allow us to gain a complete understanding of the costs and benefits of planning

for climate change.
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Chapter 4

Tradeoffs in planning and operation

costs due to climate change

4.1 Background

Electric power systems are planned to supply electricity to end users in a reliable and af-

fordable way. When designing the power grid, planning agents must consider numerous

long-term and short-term factors with varying degrees of uncertainty in order to attain

these goals. Increasingly, the risks to the power sector due to climate change are becoming

an important factor in the decision making process of power system planners. According

to the Intergovernmental Panel on Climate Change (IPCC), average global temperatures

are likely to rise 1.5◦ C above pre-industrial levels by 2052 [45]. The IPCC also projects

a likely increase in meteorological variability, climatic extremes, and droughts. Utilities

have already started discussing adaptation strategies to address potential impacts of cli-

mate change in their grids [16, 94, 43]. These impacts will likely affect the power system

in several ways. On the demand side, for instance, warming temperatures will likely re-
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sult in changes in electricity consumption used for to ambient heating and cooling. These

changes could result in increased total consumption and peak electricity demand. On the

supply side, for example, changes in streamflow could affect hydropower generation. Also,

decreased water availability and increased water temperature could reduce the capacity

and efficiency of thermal units that use once-through cooling [100]. Additionally, increased

air temperature and humidity could reduce the capacity and efficiency of thermal units

that use recirculating cooling [100]. Recent events in the US and Europe have already

underscored the vulnerabilities of the power system weather extremes. In the summer of

2007, acute drought conditions in the southeast U.S. resulted in the curtailment and shut-

down of some nuclear and coal-fired plants within the Tennessee Valley Authority (TVA)

system. In France, many nuclear power plants had to reduce operations during a serious

drought in 2003 [48]. As the effects from climate change become more prevalent, such

events could become even more serious and frequent.

Given these aforementioned risks, a growing body of literature has analyzed how climate

change might affect electric power systems [24, 19, 85]. Most studies focused on estimating

impacts on individual components of the power system. On the demand side, a majority

of the previous work has used top-down econometric models in different spatial and tem-

poral resolutions to estimate changes in electricity demand patterns due to climate change

[12, 84, 83, 42, 4, 82, 70, 95, 75, 34, 6]. For example, Auffhammer, Baylis, and Hausman

[6] used daily data at the level of load balancing authorities in the continental U.S. to

analyze the relationship between average or peak electricity demand and temperature.

The authors found moderate and heterogeneous changes in consumption due to climate

change, with an average increase of 2.8% by end of century. On the supply side, studies

have analyzed how climate change can affect the production of electricity different types

of generators [49, 50, 112, 10, 69, 96, 39]. Usually, these studies have focused on assess-

ing reductions in capacity and efficiency of existing individual generators. For instance,

Van Vliet et al. [112] estimated that the average useable capacities of 61 thermal plants
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in the eastern U.S. could decrease by up to 16% by 2060. Notwithstanding the important

insights reached by analyzing these individual factors, it is important to integrate them

into a system-wide analysis to better comprehend the risks a power grid faces due to cli-

mate change. More recently, some studies have simulated how these climate-related shocks

would affect the operation of a power system [76, 77, 97]. However, virtually none of them

have integrated their analysis into a comprehensive and coherent configuration that in-

cludes how decisions to expand the generator fleet will be impacted by climate change.

In this study, we used a comprehensive and coherent integrated modeling framework to

analyze potential tradeoffs in planning and operations costs in the power grid due to cli-

mate change. Through this work, we simulated the different climate-change risks in a con-

sistent way [96], by considering the same ensemble of climate models, emission scenarios,

and time horizons. We performed a case study of the SERC Reliability corporation, in

the Southeast U.S. Figure 4.1 illustrates our modeling framework. We used the down-

scaled output from twenty different General Circulation Models (GCMs) [93, 2] to gen-

erate projections of hourly electricity demand [79]. We also used the output from these

climate models as inputs into a chain of hydrological models [56, 55, 115, 73, 116] to gen-

erate series of daily river flows and water temperatures, which we then used to estimate

hydropower potential under climate change. In addition, we used climate forcings and hy-

drological variables to estimate capacity deratings for existing and potential thermoelectric

power plants under climate change [57, 17, 119]. Moreover, we used U.S. National Renew-

able Energy Laboratory (NREL) data sets of simulated wind and solar generation profile

[109, 30] as upper bounds on wind and solar hourly generation. Then, we integrated all

the aforementioned inputs in a capacity expansion model to create future generator fleet

configurations under two climate change scenarios (no climate change impacts and assum-

ing climate change impacts). Finally, we used both generator fleet configurations to simu-

late them under the same two climate change scenarios. This way we were able to compare

potential costs and benefits of planning the electricity grid considering climate change haz-
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Figure 4.1: Diagram of the modeling framework

ards.

4.2 Data & Methods

4.2.1 Data

To represent historical weather conditions, we used weather data from the University of

Idaho Gridded Surface Meteorological Data (gridMET) dataset [1]. This dataset combines

desirable spatial attributes of gridded climate data from the PRISM dataset [78, 26] with

desirable temporal attributes from the regional reanalysis dataset NLDAS-2 [71] to derive

a high-resolution (1/24th degree, ∼4 km) gridded dataset of daily surface meteorological

variables. This dataset has been validated by its authors against an extensive network of

weather stations. Then, we disaggregated the daily data to hourly values using METSIM

(Meteorology Simulator) [13].

To represent future weather conditions under climate change, we used projections of daily

air temperature of twenty different Global Circulation Models (GCM) from the Coupled
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Model Intercomparison Project 5 (CMIP5) [93], spatially downscaled using the Multivari-

ate Adaptive Constructed Analogs (MACA) method [2]. In addition, we again disaggre-

gated these daily projections to hourly values using METSIM. We selected the output

of these climate models under representative concentration pathway RCP8.5. RCP8.5 is

usually referred as the “business as usual” emission scenario, since it assumes that carbon

emissions will keep increasing at present rates.

To simulate regulated daily river flows and water temperatures in the study region we used

a physically-based modeling framework. This process-based modeling approach consists

of three models. First, we used a macroscale, spatially distributed hydrological model, the

Variable Infiltration Capacity (VIC) model [56] to simulate runoff. Second, the runoff was

used as an input into a river routing model, the Model for Scale Adaptive River Transport

(MOSART) [55], dynamically coupled to a spatially distributed water management model

(WM) [115], to simulate reservoir storage and regulated streamflow. Third, surface mete-

orological data and simulated hydrologic conditions are used to simulate regulated river

temperatures, using a one-dimensional stream temperature model, the River Basin Model

(RBM) [116], coupled with a two-layer reservoir thermal stratification module [73]. We

ran these models at a grid resolution of 1/8 degree (∼ 12 km) using the climate forcing

data from twenty different GCMs from CMIP5 [93], spatially downscaled using the MACA

method [2].

We also simulated weather-induced deratings of thermoelectric power plants. We used

the Integrated Environmental Control Model (IECM) to estimate typical response curves

of thermal generators to changes in weather variables, stream temperatures, and stream

flow [57]. These response curves modeled the effects of these weather variables in a power

plant’s available capacity and water consumption. This way we could map simulated local

hourly weather and stream conditions to values of available capacity and water consump-

tion for thermoelectric power plants. For existing thermal power plants with once-through
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cooling, we also modeled how the water discharged from the power plants affects stream

temperatures using a mass balance equation. We used this estimate to simulate the max-

imum available capacity of these types of power plants that would not cause water tem-

peratures downstream of the power plant to rise above a certain threshold value. Water

quality standards vary by state, but they typically require surface water temperature to

remain under 32◦C [63]. We used this threshold value in our study.

In order to capture spatial and temporal variability in output among wind and solar farms,

we set upper bounds to the hourly generation of wind and solar power plants equal to sim-

ulated wind and solar generation profiles from the U.S. National Renewable Energy Lab-

oratory (NREL) [109, 30]. These wind and solar generation databases provide simulated

generation profiles for hypothetical plants in the SERC area at 5-minute increments, for

2007–2012 and 2006, respectively. We used 2009 wind generation data, since the overall

simulated CF in this year was closer to the average over the complete data set. These

databases have historical simulated generation profiles, hence we did not assume impacts

of climate change on solar and wind generation. We aggregated generation data to hourly

increments by calculating the average generation values for all time steps in each hour. Af-

ter excluding several solar plants with no generation data, average capacity factors for hy-

pothetical wind and solar plants in SERC in the NREL dataset ranged from 17%–55% and

12%–19%, respectively. Because we did not account for transmission within SERC in our

the UCED model, each existing wind and solar unit varied only by capacity and hourly

generation profile within each subregion. As such, in order to improve the computational

efficiency of the model, we combined existing wind and solar units into single equivalent

wind and solar units by summing up their capacities and hourly generation profiles.

To simulate the potential effects of climate change in the available hydro energy at power

plants we combined historical data of hydro energy produced by the hydro power plants

in the SERC region with the simulations of daily river flows from the VIC and MOSART-
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WM models. We assumed that the potential hydro energy available at each power plant is

proportional to the regulated stream flow simulated by hydrological models at the plants

location. Within the optimization model, the actual generation decision for each hydro

generator is limited by both this potential and the installed capacity of the power plant.

4.2.2 Generator fleet cases

We used two configurations of the generator fleet in 2050 in this study. The first was cre-

ated assuming no effects of climate change on supply and demand. The second was cre-

ated assuming the effects of climate change on supply and demand described in the previ-

ous sections. Both configurations were created by a capacity expansion model integrated

within our modeling framework, as described in chapter 3. The fleet configurations were

designed using the same same ensemble of climate models and emission scenarios used to

simulate effects on supply and demand used in this study.

Figures 4.2a – 4.2b show the two generator fleets used in this analysis. In Figure 4.2a, the

capacity expansion decisions were made without including climate induced changes in de-

mand and supply. Electricity demand in this case was simulated using historical weather

conditions (1979–2015). We assumed that thermoelectric plants would experience no weather

induced capacity deratings. We assumed that generation from individual hydropower plants

was the same as the historical average. The resulting fleet has an installed capacity of 142

GW. Wind and solar represent approximately 25% of the fleet. Natural gas power plants

total almost half of the total installed capacity in this case.

On the other hand, Figure 4.2b shows the resulting generator fleet when climate change

effects in demand and supply are taken into account. We used our estimates of electricity

demand, hydro generation potential, and thermoelectric available capacity estimated us-

ing projections of meteorological variables from the GCMs under RCP 8.5. In this case,
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Figure 4.2: Configurations of the generator fleet in 2050

the resulting fleet has an installed capacity of 195 GW (37% higher than in the no climate

change case). Wind and solar represent approximately 40% of the fleet. The participation

of natural gas power plants is 43%.

4.2.3 Unit commitment model

To analyze the tradeoffs between planning and operational costs under different climate

change assumptions, we used a unit commitment and economic dispatch (UCED) [23, 25].

The UCED model optimized electricity generation and reserve provision in order to mini-

mize operational costs while meeting electricity demand and generator-level unit commit-

ment constraints. Minimized operational costs are the sum of variable electricity genera-

tion, start-up costs, and estimated cost due to loss of load. We implemented a customized

version of this model that included climate induced generation constraints in thermal and

hydro generators, and impacts of climate change in electricity demand.

The UCED model ran sequentially for 365 daily simulations of hourly dispatch to build

a full 8760-hour simulation of the generation of individual plants. In order to account for
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inter-day generator operations, we executed each daily iteration of the UCED model with

a 24 hour optimization window plus a 24-hour look-ahead period. The solution of the first

24 hour period determined the initial conditions for the following UCED iteration. To ac-

count for variable wind and solar generation, and for generator outages, the UCED model

included three operating reserve types: regulation, flexibility, and contigency. These three

reserve types are represented as positive reserves, i.e. the system procures capacity for in-

creasing generation in case this is needed. The three types of reserves are modeled as con-

straints that commit a share of the system’s capacity in addition to the generation being

allocated to meet actual load. Given current standard operations, only coal steam, oil and

gas steam, and NGCC units can provide reserves.

Although our formulation of the UCED model did represent the reserve requirements, for

this analysis we turned off these constraints. One of our objectives was to compare how

the two generator fleets (built with and without climate change assumptions) would per-

form under different climate change conditions. A metric of interest in our study was to

analyze how loss of load events would change between the different scenarios simulated.

In such cases, procured operating reserves could be used to supply generation shortfalls.

Therefore, allocating capacity for operating reserves would mask the actual simulated loss

of load levels.

In our scenarios of grid operation under climate change, we ran one full annual UCED dis-

patch simulation for each of the twenty climate model outputs in our dataset. Each of the

twenty climate simulations resulted in distinct time series with 8760 values of hourly elec-

tricity demand, and 365 values of daily thermal capacity deratings, and hydropower poten-

tial. This resulted in twenty different dispatch simulations in each scenario. This way our

results took into account the inherent uncertainties in the climate simulations.

We repeated a similar approach in the scenarios of grid operation without climate change

effects. In this case, we simulated twenty distinct time series of hourly electricity demand
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Table 4.1: Scenario definition

Scenario Planning stage Grid operation stage

scenario 1 No climate change effects on demand
and supply

No climate change effects on demand
and supply

scenario 2 Climate change effects on demand
and supply (RCP 8.5)

Climate change efffects on demand
and supply (RCP 8.5)

scenario 3 Climate change effects on demand
and supply (RCP 8.5)

No climate change effects on demand
and supply

scenario 4 No climate change effects on demand
and supply

Climate change efffects on demand
and supply (RCP 8.5)

using the weather conditions of twenty unique years in our historical dataset. On the supply-

side, we assumed that hydro generation potentials were equal to historical averages, and

thermal power plants experienced no weather-related capacity deratings.

4.3 Results

To analyze possible tradeoffs between investment and operating costs related to climate

change in the electricity sector, we compared cost and reliability metrics of four different

scenarios. These four scenarios represent combinations of two grid expansion planning

cases and two grid operation cases. Table 4.1 describes the four scenarios considered in

this study.

Figure 4.3 compares the total average levelized cost of energy (LCOE) of the four sce-

narios analyzed. The LCOE is a metric that allows different power sources (or electric-

ity power portfolios) to be compared on a consistent basis. To compute the LCOE, we

summed up all fixed and variable costs and divided by the total electricity demand in each

scenario. The total LCOE in each scenario is decomposed in five components: capital ex-

penditures (capex) costs, fixed operation and maintenance (fixed O&M) costs, variable

O&M costs, fuel costs, and loss of load (LOL) costs. To compute the LCOE component of
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the LOL, we used a value of lost load (VoLL) of 5,000 $/MWh (in 2015 USD). This value

is based on a study made for ERCOT [60]. It used macroeconomic analysis to provide in-

dicative estimates of foregone economic value when electricity service is disrupted in Texas

using assumptions such as state gross domestic product and average rates paid by electric-

ity customers in Texas. Just as a comparison, this value is approximately 50 times higher

than the most expensive power plant in our initial fleet.

The total value of the average LCOE on scenarios 1, 2, 3, and 4 is 38.8 $/MWh, 42.5 $/MWh,

42.3 $/MWh, and 150 $/MWh, respectively (in 2015 USD). Both scenarios where the ex-

pansion policy is defined assuming no climate change effects (scenarios 1 and 4) resulted

in a capex cost of approximately 9 $/MWh. On the other hand, the capacity expansion

scenarios assuming climate change effects (scenarios 2 and 3) have a capex cost of approx-

imately 15 $/MWh (66% higher). Variable costs are slightly smaller in the expansion sce-

narios assuming climate change effects (scenarios 2 and 3). In these cases, the expansion

policy builds more wind and solar generators. Therefore, these types of generators rep-

resent a greater share of the total energy generated. Wind and solar generators typically

have marginal operating costs close to zero, which results in lower overall variable costs.

In scenarios 2 and 3 variable costs (fuel + variable O&M) are approximately 22 $/MWh,

while in scenarios 1 and 4 variable costs are approximately 24 $/MWh.

The chosen value of lost load used to compute the results in Figure 4.3 led to a large value

of the LOL component of the LCOE in scenario 4. This LOL component dominates the

resulting total value of the LCOE in scenario 4 (70% of the total LCOE value) and results

in the most expensive scenario analyzed. Therefore, the chosen VoLL assumption is crucial

to our results. Estimating values of lost load is an important and ongoing topic of study

in energy economics [74]. Studies usually rely on one of three ways to estimate VoLL [53].

The first uses consumer surveys and is based on stated preferences [11, 9, 91]. The sec-

ond way uses cost estimates from previous supply outages [22]. The third alternative is
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Figure 4.3: Comparison of the levelized cost of energy (LCOE) for the fours scenarios.

based on estimates of macroeconomic production functions [53, 18, 60]. Previous stud-

ies have found a wide range of values for VoLL in different regions, from 5,000 $/MWh to

45,000 $/MWh [60]. This variability is due both to methodological differences, and specific

characteristics of the regions analyzed. Estimating the value of lost load for the southeast

U.S. is beyond the scope of this work. However, we used our results to estimate the im-

plied cost of avoiding this large amount of load loss in scenario 4. This way we could com-

pare it to the estimated values in the literature. We calculated the difference in total costs

($/year) between scenarios 2 and 4 (we excluded from this computation the costs due to

loss of load). Then we divided this value by the average amount of LOL (in MWh/year)

in scenario 4. According to our results, the cost of avoiding the amount of load loss in sce-

nario 4 would be approximately 197 $/MWh. This value is approximately 4% of the VoLL

used in Figure 4.3. This suggests that the cost (in $/MWh) that the system would be pay-

ing to avoid the amount of LoL in scenario 4 would be substantially lower than the values

of the willingness of consumers to pay to avoid a period without power currently used in

the literature.

81



Figure 4.4 compares the average generation values of each source in each scenario. When

we assume climate change conditions in the grid operations (scenarios 2 and 4), total an-

nual electricity consumption is approximately 684 TWh, 3% higher than total electricity

consumption in scenarios 1 and 3 (without climate change conditions in the grid opera-

tions stage). Most of this increase in consumption is concentrated in the summer season.

In the summer, demand in scenarios 2 and 4 is 16% higher than in scenarios 1 and 3. On

the other hand, during the winter, electricity consumption is approximately 160 TWh in

scenarios 2 and 4 and 166 TWh in scenarios 1 and 3. These results are comparable to the

ones found by previous studies that analyzed the impact of climate change on electricity

demand in the U.S. ([6, 79])

The combinations of compositions of the generator fleet and grid operating conditions

result in different generation patterns in Figure 4.4. In scenarios 2 and 3, 40% of the in-

stalled capacity comes wind and solar power plants. However, the generation from wind

and solar represents, respectively, 10% and 12% of total generation in scenarios 2 and 3

(summing approximately 145 TWh). Generation from natural gas, on the other hand, ac-

counts for 52% of total generation in scenarios 2 and 3. The share of wind and solar gener-

ation is smaller in scenarios 1 and 4. In these scenarios, wind and solar represent 13% and

3% of total generation, respectively.

The generation profiles in the summer are of particular interest. In the summer, natural

gas power plants suffer from weather-related capacity deratings in scenarios 2 and 4. In

scenario 2, the fleet was planned taking these summertime deratings into account. There-

fore, to offset part of this derating, the fleet in scenario 2 has more solar power plants.

Solar power plants in the southeast U.S. typically have higher power output in summer-

time. By having more solar energy available in scenario 2, the system is able to supply

virtually all electricity demand. On the other hand, in scenario 4 the design of the gener-

ator fleet did not assume natural gas power plants would suffer weather-related deratings.
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Figure 4.4: Comparison of the generation by source in each season and scenario.

The cost-minimization decisions in the planning stage were to build relatively more nat-

ural gas power plants. When these power plants were not able to operate at full capacity

during summertime, there was a steep increase in the occurrence of loss of load events. In

scenario 4, the system is, on average, unable of delivering 13 TWh of the summertime con-

sumption.

We also analyzed the resulting reliability metrics in our simulations. Figure 4.5 shows the

distribution of loss of load probability (LoLP) in each of the four scenarios. These values

represent the expected number of hours in the year when a loss of load of any magnitude

happened in our simulations. As expected, the scenarios here the capacity expansion pol-

icy is planned assuming effects of climate change on supply and demand (scenarios 2 and

3) have low levels of LoLP. In scenario 2, the expansion policy built more capacity than

necessary because the policy assumed effects from climate change that did not material-

ize. This excess capacity results in virtually zero loss of load events. In scenario 3, again

the expansion policy assumed effects from climate change. But in this case, the effects as-
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Figure 4.5: Comparison of the loss of load probability (LoLP) in the fours scenarios simu-
lated.

sumed in the planning stage do materialize. This correct expansion policy results in small

expected value of loss of load events (0.18%). Similarly, there are low loss of load levels

in scenario 1 (0.18%). In this scenario, expansion policy does not include potential effects

from climate change and these effects do not materialize in the future. However, scenario

4 has LoLP levels of approximately 12%. This represents that during 12% of the year the

system is expected to suffer some kind of load loss. This high value of LoLP is due to two

interrelated affects that were not considered in the planning stage of this scenario: the in-

crease in electricity demand related to changes in climate conditions, and the potential

reduction in thermal capacity in summertime.

Figure 4.6 compares the kernel densities of the loss of load values in the four scenarios

simulated. Areas under each curve are scaled in order to better represent the different av-

erage probabilities in each scenario (illustrated in Figure 4.5). As expected, the density

plot for scenario 3 show virtually probability zero of any load events. The density plots for

scenarios 1, and 2 present similar distributions of LoL. Both distributions have low prob-
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Figure 4.6: Comparison of the kernel densities of loss of load (LoL) in the fours scenarios
simulated. Areas under the four curves are scaled in order to represent the different values
of the overall probabilities of loss of load.

abilities of any type of shortage event. The average loss of load value in scenarios 1 and 2

is approximately 4.2 GW and 5.2 GW, respectively. On the other hand, scenario 4 (where

the expansion policy did not include effects from climate change, but these effects did ma-

terialize) shows a wide range of possible values of load loss. The average load loss value

is approximately 14 GW. However, there is a 2% probability that simulated load losses

in this scenario could surpass 24 GW (17% of the average peak demand value in this sce-

nario).

We also compared the duration of loss of load events in the four scenarios. Figure 4.7

shows the kernel density plots of the loss of load in the four scenarios simulated. In sce-

narios 1 and 2, average duration of LoL is approximately 3.9 hours and 5.8 hours, respec-

tively. Scenario 3 shows virtually no LoL events. In scenario 4, on the other hand, the av-

erage duration of LoL is approximately 11 hours, an increase of 175% compared to sce-

nario 1. Moreover, in scenario 4 the probability that a given LoL event lasts more than 16
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Figure 4.7: Comparison of the kernel densities of the duration of the loss of load (LoL)
events in the four scenarios simulated. Areas under the four curves are scaled in order to
represent the different values of the overall probabilities of loss of load.

hours is at least 3%.

As commented previously, the high risk of shortages in scenario 4 is driven by two factors

that were not taken into account in the planning stage: the increase in electricity demand

related to changes in climate conditions, and the potential reduction in thermal capacity

in summertime. To better understand how these two factors are affecting the resulting

simulations of shortages, we decomposed the simulated values of LoL into thermal derat-

ings and lack of installed capacity. To accomplish this, we used a simplified rule of thumb:

shortages are driven first by thermal deratings and then by lack of installed capacity. The

rationale for this procedure is: if, by being able to operate thermal power plants at their

full capacities, the system would be able to supply all electricity demand, then there would

be no need to build more power plants. At the planning stage, agents did build enough ca-

pacity, however they did not account for climate-related thermal deratings. On the other

hand, if the LoL levels are even greater than the total level of thermal deratings, that
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means that planning agents did not build enough capacity to supply the increased demand

levels under climate change. Figure 4.8a shows the breakdown of the average LoL (in GW)

into the thermal derating and lack of capacity components. Lack of capacity accounts, on

average, for approximately 66% of the amount of average LoL. Thermal deratings acount

for approximately 34%. The error bars represent the range of variability of each compo-

nent over the twenty GCMs simulated.

The average values presented in Figure 4.8a do not show the frequency of how these com-

ponents drive the shortage events. Figure 4.8b shows the joint density plot of the two

components. The horizontal axis represents the value of the shortage component caused

by thermal deratings, while the value of the shortage component driven by lack of capac-

ity is in the vertical axis. Red colors represent higher frequency events, while blue colors

represent lower frequency events. The marginal densities of each component are also il-

lustrated in the plot. While, on average, lack of capacity accounts for the higher share of

shortage events, the most frequent events occur when thermal deratings appear to be the

main drivers. The mode of the distributions is located at a point where the value of the

thermal derating component is approximately 3 GW and the value of the capacity short-

fall component is close to zero. Load losses driven by thermal deratings have a maximum

value of approximately 7.5 GW. As illustrated in Figure 4.5, simulated load losses in sce-

nario 4 could total over 35 GW in some low probability events. Figure 4.8a shows that

these low probability events would be driven mostly by lack of installed capacity.

The results in Figure 4.8a could lead to some insights into possible adaptation strategies

to the potential effects of climate change on the power sector. First, we did not include

any reserve margin requirements when we simulated our capacity expansion scenarios. As

a “rule-of-thumb”, power system planners in the U.S. use a percentage of estimated peak

demand values (e.g., 15%) as a reserve margin (i.e., amount of installed capacity above es-

timated peak demand). This reserve margin is intended to allow the system to cope with
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values of peak demand higher than the expected ones. In our simulations, a reserve mar-

gin requirement could help to mitigate the low probability loss of load events driven by the

lack of installed capacity component. Additionally, the more frequent loss of load events

driven by thermal deratings could be mitigated by using dry cooling technologies. In our

simulations of thermal deratings, natural gas power plants with dry cooling had virtually

no weather-driven capacity deratings. Therefore, by retrofitting natural gas power plants

to dry cooling, the power grid would not experience the loss of load events driven mostly

by thermal deratings. For these cases, retrofitting to dry cooling could be a more cost ef-

fective measure than building additional power plants.

There are some caveats in our analysis that should be taken into account when interpret-

ing our results. First, the expansion decisions simulated in our capacity expansion model

in the period 2020–2050 are not fully dynamic. These expansion policies are defined as-

suming static and deterministic input scenarios. This way, all investment decisions in the

planning horizon (2020–2050) are defined once (during the planning stage) and do not

change. Then we simulate the resulting fleets using different climate conditions. In real

life, planning agents would adapt their decisions as they start to observe some of the ex-

treme hazards simulated in scenario 4 (where planning stage does not include climate

change effects, but these effects materialize in the grid operations stage). Therefore, sce-

nario 4 is an extreme case that is unlikely to occur. To represent a more realistic invest-

ment dynamics in the capacity expansion model, future extensions of this work could use a

different approach that inherently included uncertainty and the acquisition of information

during the planning stage (e.g., using a real options framework [35]).

Second, both in the planning and grid operating stages, we assumed that future electric-

ity demand would only differ from present values because of changes in climate conditions.

Therefore, we assumed that factors such as economic activity, electrification of transporta-

tion, and changes in population remained constant at present levels. We made this strong
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Figure 4.8: Decomposition of the loss of load values in scenario 4. The thermal derating
component corresponds to loss of load events that occurred because of the deratings of
thermal generators. The capacity shortfall component corresponds to those loss of loads
caused by the lack of installed capacity on the system. (a) shows the average value of
these components. The red error bars represent the range of values of each component
over the twenty GCMs simulated. (b) shows the two-dimensional probability density func-
tion of the two components.
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(and non-realistic) assumption to isolate a first order impact of climate change on planning

and operations costs of the power grid. This way we could analyze the tradeoffs in costs

when planning for climate change in the power sector. To get a more detailed assessment

of these tradeoffs in costs, future work could merge scenarios of climate, population, and

technology change.

Third, our simulations did not include transmission constraints, nor changes in solar and

wind generation because of climate change. Transmission capacity is sensitive to ambient

air temperature and climate change could result additional transmission restrictions. Cli-

mate change could also impact solar and wind generation potentials. However, the effects

on solar and wind generators are not as clear as in other types of power plants. Past stud-

ies have disagreed on the directions of the impacts of climate change on solar and wind

energy in the U.S. [24]. Particularly, in the southeast U.S. some studies have found an in-

crease in solar generation potential under climate change scenarios. Incorporating the ef-

fects on transmission, wind, and solar in our modeling framework could be the subject of

future extensions of this work.

In spite of these modeling limitations, the results in this paper suggest that climate change

could have serious impacts in the power grid that should be taken into account by plan-

ning agents. The extreme cost disparity and reliability degradation presented in the results

of scenario 4 stress the importance of including the effects of climate change in the plan-

ning of the electricity grid. Planning agents usually use standard target levels of reliability

metrics to design the expansion of the electricity grid. For example, an acceptable target

level of LoLP is 0.1 days/year (or equivalently, 0.03%). The simulations in scenarios 1,

2, and 3 all reach levels of LoLP close to this target. However, scenario 4 results in lev-

els of LoLP of 12%, which would be an unacceptable level of outages. Outages in scenario

4 were also of longer duration (120% longer on average than in scenarios 1 and 2) and of

larger magnitude (150% greater than in scenarios 1 and 2).

90



These high levels of LoLP in scenario 4 resulted in huge costs to the system (150 $/MWh,

260% higher than the other scenarios), mainly due to the implicit costs of loss of load.

The additional investments and operating costs needed to avoid the level of loss of load

simulated in scenario 4 would be of the order of 200 $/MWh, which is considerably lower

than estimated values of the willingness of electricity consumers to pay to avoid loss of

load.

4.4 Conclusion

The results presented in this study could inform planning agents in the power sector to

come up with adaptation strategies to cope with climate change risks. According to our

results, adaptation strategies could include increasing the participation of wind and solar

generation in the electricity grid. Solar power, in particular, could help to offset part of

the climate related capacity deratings of thermal power plants during summertime. Other

adaptation strategies not included in our analysis framework would also be important to

make the grid more resilient to the impacts of climate change. For example, in our anal-

ysis we assumed that energy efficiency would remain constant at present levels. However,

increasing efficiency of ambient cooling methods could also be an important adaptation

strategy. It is also interesting to point out that some of these adaptation strategies – such

as installing more wind and solar power plants – would also help to mitigate future carbon

emissions. This dual characteristic of these strategies (adaptation and mitigation) make

them even more attractive. As planning agents look into sustainable pathways for the de-

carbonization of electricity generation, studies that integrate the different vulnerabilities

of the power system to climate change could help decision-makers mitigate reliability and

affordability challenges facing the design of the future power grid.
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Chapter 5

Conclusion

The impacts of global climate change are already being experienced by communities in the

U.S. and other regions of the world [110]. Frequency of high temperature extremes and

heavy precipitation events are increasing. Wildfires in the western U.S. are becoming more

widespread and the average wildfire season is now longer than decades ago. As these ef-

fects become more prevalent, climate change awareness among the general population con-

tinues to increase in the U.S. [54]. In such a context, society shall expect policy makers

across different areas to implement effective response strategies to face the challenges and

hazards caused by the changes in the climate system.

Mitigation strategies will be an essential part of a coherent climate change response pol-

icy. According to the Intergovernmental Panel on Climate Change (IPCC), in order to

restrict temperature increase to 1.5 ◦C above pre-industrial levels, society would need to

reach and sustain a net zero global anthropogenic CO2 emissions by 2050 [45]. This would

require rapid and far-reaching transformations in energy, land, infrastructure, and indus-

trial systems. In the U.S., the electricity sector is currently responsible for approximately

28% of greenhouse gas emissions [107]. In recent years carbon emission from electricity
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generation have decreased because of – among other factors –a continued shift from coal

to natural gas, and increased use of renewables. However, in order to the reach the targets

recommended by the IPCC, electricity generation will need to change more substantially

to zero-emission sources such as nuclear, wind, and solar.

Because of the long-lasting lifecycle of carbon dioxide and other greenhouse gases, past

emissions will stay in Earth’s atmosphere for decades, if not centuries, to come [45, 80].

This means that society will likely need to implement adaptation strategies to some level

of changes in the climate system. Different human and natural systems will experience

distinct climate-related risks [110]. Decision makers will need to understand the specific

tradeoffs resulting from these climate-risks and how to address them efficiently. The U.S.

power sector is specially vulnerable to climate-related risks. Electric grid operations and

infrastructure in the U.S. are threatened by variety of climate impacts, including increas-

ing temperatures, heavy rainfall events, wildfires, hurricanes, and storm surge [99]. In or-

der to continue to deliver reliable, affordable, and clean electric power, planning agents will

have to adapt their decisions to these new conditions.

This thesis focused on analyzing adaptation strategies in the southeast U.S. power sector

to the impacts of climate change. The thesis used an integrated multi-model framework

to investigate how the projected changes in climate conditions could impact different and

inter-related dimensions of the electricity grid: electricity demand, expansion planning,

and grid operations. Integrating all these dimensions in a coherent and comprehensive

modeling framework is an important tool to understand the climate-related vulnerabilities

the electricity grid faces. Interactions between some of these vulnerabilities could result in

compounded risks for the power grid. For example, increases in air temperature could re-

sult in an increase in the frequency and magnitude of peak demand events in summertime,

at the same time that some thermal generators may experience climate-related capacity

deratings. Moreover, these risks could result in changes in the planning decisions, which
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could lead to a different composition of the future generator fleet.

In chapter 2, I used an econometric model to analyze how the projected changes in climate

conditions could impact intraday electricity demand patterns. I focused this first analy-

sis just at the Tennessee Valley Authority (TVA) region. Our results suggest that climate

change could result in an average increase in annual electricity consumption in the TVA

region. However, this increase is not uniformly distributed throughout the year. During

summer, total electricity consumption could increase on average by 20% while during win-

ter it may decrease on average by 6% by the end of the century.

In chapter 3, I expanded my analysis to the complete SERC region and focused on how

climate change would affect the decisions to expand the generator fleet. I expanded the es-

timates of future hourly electricity demand described in chapter 2 to the complete SERC

region. I also simulated decreases in generation of hydro and thermal generators due to cli-

mate change. I integrated these simulations in a capacity expansion (CE) model. This CE

model is a mixed integer linear programming (MILP) model that we adapted and devel-

oped for this study. It finds the composition of the future generator fleet that minimizes

costs subject to the estimated effects of climate change. We ran this model under different

climate change scenarios from 2020 to 2050. Our results showed that by including these

effects due to climate change in the decision making process, the estimated participation of

renewables in the generator fleet in 2050 increased from 24% to over 37–40%. Solar power

plants could become more economically attractive. This results from the fact that solar

energy has higher expected energy output during the summer, a season when thermal gen-

erators experience stronger reductions in their available capacity due to higher air and wa-

ter temperatures.

The results in chapter 3 informed how the effects of climate change would affect decisions

to expand the generator fleet. However, each run of the CE model was designed with a

deterministic assumption of the effects of climate change in the grid. Therefore, the expan-
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sion policy in each scenario was the approximate optimal one for that specific scenario. In-

vestment decisions were defined to satisfy demand requirements at the least cost available.

However, one question that the analysis in chapter 3 could not address was how these dif-

ferent expansion policies would perform if a different climate change scenario materialized.

What would be the cost tradeoffs of including the climate change assumptions in the plan-

ning stage of the electricity grid?

In chapter 4 I used the results from chapter 3 to analyze these issues. I implemented a

unit commitment and economic dispatch (UCED) model to investigate the tradeoffs be-

tween investing or not in the generator fleet assuming different climate change scenarios.

Our results suggested that by not including climate change effects in the planning stage,

SERC’s power system could experience loss of load levels of 12% and overall energy costs

could be 260% higher if climate change conditions do materialize by 2050. Most of this

increase in energy cost was because of the costs of loss of load. These high load levels

would be driven both by two inter-related factors. Firstly, the expansion policy would un-

derinvest in new capacity in the planning stage because of it would not expect a climate-

induced increase in electricity demand. Secondly, the expansion policy did not expect ther-

mal generators to experience capacity deratings during summertime.

The results presented in this thesis underscore the importance of including climate change

hazards in the planning stages of power grid. Energy system planners, owners, and oper-

ators should prepare for climate change by identifying vulnerabilities, investing in more

resilient infrastructure, improving operations, among other adaptation strategies.

The aforementioned results should be interpreted within the limitations of the modeling

framework. The modeling configuration used in this thesis linked several different models

into an integrated framework in order to represent in more detail different vulnerabilities

of the power sector to climate change. Each of these models have different levels of uncer-

tainty that could propagate throughout the simulation and could affect the final results in
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different ways. Moreover, in order to better represent power system dynamics and the ef-

fects of climate change, I used data in hourly timeframe and high resolution spatial data

when possible. While this high resolution data is important to simulate the power sys-

tem, it can also increase uncertainty of some of the results estimated within my modeling

framework. Some of these uncertainties have been explicitly incorporated in this analysis,

while other ones have not.

The main example of an uncertainty component explicitly included in this analysis is the

variability in the projections of climate variables. To account for this inherent uncertainty,

I included the results of twenty different climate simulations and two different emission

scenarios (RCPs) in the results. Because the output from the climate models propagates

through all other parts of the modeling configuration used in this work, this output can

have important effects in the final results. The output from the climate simulations di-

rectly affects estimates of electricity demand, availability of thermal generation, and hydro

potential.

This can be observed in the simulations of annual electricity consumption (Figure 3.15a)

and peak demand (Figure 3.15b). The relative range of annual electricity consumption val-

ues is around 5% of the mean values. The relative range of annual peak demand values is

approximately 12% of mean peak demand values. This larger variability in peak annual

demand values is expected since these are estimates of hourly values of demand. The un-

certainty in annual peak demand values is also more critical for some results in this the-

sis. Peak demand values were directly used in the capacity expansion model to define the

amount of new capacity needed to be added in the system. In order to make the results

more robust to this variability in the demand estimation, each annual iteration of the ca-

pacity expansion model used estimates of electricity demand resulting from three different

climate simulations. These three climate simulations represented specific percentiles of the

distribution of annual peak demand.
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Other sources of uncertainty that were not explicitly included in this analysis could also

impact demand values. In this analysis I assumed that future electricity demand would

only change in response to changes in air temperature conditions. This was a deliberate

assumption, since our goal was to isolate how the changes in climate projected by the

GCMs would affect the demand for electricity. However, as discussed in chapter 2, changes

in weather patterns will certainly not be the only factor that will affect future electricity

demand. Other important factors will also affect future electricity demand and could have

an impact on total values of electricity demand larger than the simulated effects of climate

change presented in this work. A few examples of these factors are: population changes,

efficiency gains in electricity end use, and an increase in electrification of energy end uses.

There is considerable uncertainty of how some of these factors will interact with changes

in the climate system and their final combined impact on electricity demand. The Na-

tional Renewable Energy Laboratory (NREL) projects a reference scenario where nation-

wide electricity consumption could increase by 24% by 2050 [64] (these projections do not

include climate change related impacts). However, under scenarios of higher electrifica-

tion of energy end uses electricity consumption could increase 49% (medium electrifica-

tion scenario) and 71% (high electrification scenario) by 2050 [64]. Most of this variation

is because of differences in the assumptions of the amount of electrification in the trans-

portation sector. These changes in the electrification of transportation could also impact

intraday electricity consumption patterns discussed in chapter 2 because of vehicle charg-

ing behavior. The effects of vehicle charging behaviors in the intraday load curve are still

uncertain. These uncertain effects could impact some of the results presented in this the-

sis. For example, an increase in “off-peak” hours electric vehicle charging could result in

changes in the optimal generation mix results presented in chapter 3.

While these socio-economic effects in electricity demand were not explicitly analyzed in

this work, it could be valuable to include them in a more detailed analysis. Possible feed-
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back effects between climate change and these socio-economic factors could change some

of the results presented in this thesis. The modeling framework presented in this thesis

could be extended to include specific socio-economic scenarios in the simulation of future

electricity demand.

Another limitation of this analysis was the definition of the set of future candidate tech-

nologies to invest in the capacity expansion model in chapter 3. I only considered as can-

didate technologies to invest those that are at a current mature development state. For

example, I did not include energy storage (i.e., batteries), fuel cells, next-generation nu-

clear, among others. Including these additional technologies would be straightforward in

our modeling framework, as long as there is reliable data available. Adding additional can-

didate technologies could change the tradeoff costs discussed in chapters 3 and 4.

The simulations in chapters 3 and 4 did not include transmission constraints, nor changes

in solar and wind generation because of climate change. Transmission capacity is sensi-

tive to ambient air temperature and climate change could result additional transmission

restrictions. Climate change could also impact solar and wind generation potentials. How-

ever, the effects on solar and wind generators are not as clear as in other types of power

plants. Past studies have disagreed on the directions of the impacts of climate change on

solar and wind energy in the U.S. [24]. Particularly, in the southeast U.S. some studies

have found an increase in solar generation potential under climate change scenarios. Incor-

porating the effects on transmission, wind, and solar in our modeling framework could be

the subject of future extensions of this work.

Finally, this analysis focused on the southeast U.S. While climate change will affect the

power sector in all regions in the U.S., impacts will vary by region. Different regions have

specific vulnerabilities. These vulnerabilities depend on changes to regional climates and

the types of energy systems in each region. Therefore, the conclusions presented in this

thesis should not be extended to other areas in the U.S. However, the modeling framework
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presented in this thesis can easily be extended to other regions of the country.

Climate change and extreme weather pose a serious threat to the U.S. power system. In

order to design an electricity grid that is resilient to the impacts of climate change, plan-

ning agents must understand the specific vulnerabilities of electricity grid to the changes in

the climate condition. Vulnerabilities in different parts of the power system could interact

with one another and result in compounding risks. Therefore, it is important to perform

system-wide integrated analysis such as the one performed in this thesis in order to inform

the decisions of planning agents in the power sector. Such informed planning decisions will

be essential to build a 21st grid that is able to supply electricity to end users in a reliable

and affordable way.
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[43] Hydro-Québec. Sustainability Report 2018. Tech. rep. 2018. url: http://www.

hydroquebec.com/data/documents-donnees/pdf/sustainability-report.pdf.

[44] IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I,

II and III to the Fifth Assessment Report of the Intergovernmental Panel on Cli-

106

https://doi.org/10.1016/j.enbuild.2008.01.005
http://linkinghub.elsevier.com/retrieve/pii/S0378778808000200
http://linkinghub.elsevier.com/retrieve/pii/S0378778808000200
https://doi.org/10.1021/acs.est.8b05718
https://pubs.acs.org/sharingguidelines
https://pubs.acs.org/sharingguidelines
https://doi.org/10.1021/es505027p
https://pubs.acs.org/doi/10.1021/es505027p
http://bakercenter.utk.edu/wp-content/uploads/2016/03/PolicyBrief-2-16-Holladay-Final.pdf
http://bakercenter.utk.edu/wp-content/uploads/2016/03/PolicyBrief-2-16-Holladay-Final.pdf
https://doi.org/10.1109/TPWRS.2005.857397
https://doi.org/10.1109/TPWRS.2005.857397
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1525139
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1525139
http://www.hydroquebec.com/data/documents-donnees/pdf/sustainability-report.pdf
http://www.hydroquebec.com/data/documents-donnees/pdf/sustainability-report.pdf


mate Change. Tech. rep. 2014. url: http://www.ipcc.ch/pdf/assessment-

report/ar5/syr/AR5_SYR_FINAL_SPM.pdf.

[45] IPCC. “Summary for Policymakers”. In: Global warming of 1.5 C. An IPCC Special

Report on the impacts of global warming of 1.5 C above pre industrial levels and

related global greenhouse gas emission pathways, in the context of strengthening the

global response to the threat of climate change, ed. by Valérie Masson-Delmotte et

al. Geneva, Switzerland, 2018, 32 pp. url: https://report.ipcc.ch/sr15/pdf/

sr15%7B%5C_%7Dspm%7B%5C_%7Dfinal.pdf.

[46] Morna Isaac and Detlef P. van Vuuren. “Modeling global residential sector energy

demand for heating and air conditioning in the context of climate change”. In: En-

ergy Policy 37.2 (2009), pp. 507–521. issn: 03014215. doi: 10.1016/j.enpol.2008.

09.051.

[47] IWGSCC. Social Cost of Carbon for Regulatory Impact Analysis Under Executive

Order 12866. Tech. rep. 2010, p. 53. url: https : / / www . epa . gov / sites /

production/files/2016-12/documents/scc%7B%5C_%7Dtsd%7B%5C_%7D2010.pdf.

[48] T. A. Kimmell and J. A. Veil. Impact of drought on U.S. steam electric power plant

cooling water intakes and related water resource management issues. Tech. rep. Ar-

gonne, IL: Argonne National Laboratory (ANL), Apr. 2009. doi: 10.2172/951252.

url: http://www.osti.gov/servlets/purl/951252-CV8mWm/.
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[84] David J. Sailor and J. Ricardo Muñoz. “Sensitivity of electricity and natural gas

consumption to climate in the U.S.A. - Methodology and results for eight states”.

In: Energy 22.10 (1997), pp. 987–998. issn: 03605442. doi: 10.1016/S0360-5442(9

7)00034-0.

[85] Roberto Schaeffer et al. “Energy sector vulnerability to climate change: A review”.

English. In: Energy 38.1 (2012), pp. 1–12. issn: 03605442. doi: 10.1016/j.energy.

2011.11.056. url: http://linkinghub.elsevier.com/retrieve/pii/S03605442

11007870.

[86] Michael J. Scott, Laura E. Wrench, and Donald L. Hadley. “Effects of climate change

on commercial building energy demand”. In: Energy Sources 16.3 (1994), pp. 317–

332. issn: 15210510. doi: 10.1080/00908319408909081.

[87] Kyle Siler-Evans, Inês Lima Azevedo, and M. Granger Morgan. “Marginal emissions

factors for the U.S. electricity system”. In: Environmental Science and Technology

46.9 (May 2012), pp. 4742–4748. issn: 0013936X. doi: 10.1021/es300145v.

[88] Kyle Siler-Evans et al. “Regional variations in the health, environmental, and cli-

mate benefits of wind and solar generation”. In: Proceedings of the National Academy

of Sciences 110.29 (July 2013), pp. 11768–11773. issn: 0027-8424. doi: 10.1073/

pnas.1221978110.

[89] DSIRE(Database of State Incentives for Renewables & Efficiency). Business Energy

Investment Tax Credit (ITC). 2018. url: http : / / programs . dsireusa . org /

system/program/detail/658 (visited on 12/12/2018).

113

https://doi.org/10.1016/S0360-5442(03)00033-1
https://doi.org/10.1016/S0360-5442(03)00033-1
http://linkinghub.elsevier.com/retrieve/pii/S0360544203000331
http://linkinghub.elsevier.com/retrieve/pii/S0360544203000331
https://doi.org/10.1016/S0360-5442(97)00034-0
https://doi.org/10.1016/S0360-5442(97)00034-0
https://doi.org/10.1016/j.energy.2011.11.056
https://doi.org/10.1016/j.energy.2011.11.056
http://linkinghub.elsevier.com/retrieve/pii/S0360544211007870
http://linkinghub.elsevier.com/retrieve/pii/S0360544211007870
https://doi.org/10.1080/00908319408909081
https://doi.org/10.1021/es300145v
https://doi.org/10.1073/pnas.1221978110
https://doi.org/10.1073/pnas.1221978110
http://programs.dsireusa.org/system/program/detail/658
http://programs.dsireusa.org/system/program/detail/658


[90] Nicholas Stern. “Economics, Ethics and Climate Change”. In: The Economics of

Climate Change: The Stern Review. Cambridge University Press, 2007, pp. 25–45.

doi: 10.1017/CBO9780511817434.006.

[91] Michael J Sullivan, Josh Schellenberg, and Marshall Macdonald Blundell. Updated

Value of Service Reliability Estimates for Electric Utility Customers in the United

States. Tech. rep. Berkeley, CA (United States): Lawrence Berkeley National Labo-

ratory (LBNL), Jan. 2015. doi: 10.2172/1172643. url: http://www.osti.gov/

servlets/purl/1172643/.

[92] Mili-Ann M. Tamayao et al. “Regional Variability and Uncertainty of Electric Vehi-

cle Life Cycle CO2 Emissions across the United States”. In: Environmental Science

& Technology 49.14 (July 2015), pp. 8844–8855. issn: 0013-936X. doi: 10.1021/

acs.est.5b00815. url: https://pubs.acs.org/doi/10.1021/acs.est.5b00815.

[93] Karl E. Taylor, Ronald J. Stouffer, and Gerald A. Meehl. “An overview of CMIP5

and the experiment design”. English. In: Bulletin of the American Meteorological

Society 93.4 (2012), pp. 485–498. issn: 00030007. doi: 10.1175/BAMS- D- 11-

00094.1. url: http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-

00094.1.

[94] Tennesse Valley Authority. Climate Change Adaptation Action Plan. Tech. rep.

2016. url: https://www.tva.gov/file%7B%5C_%7Dsource/TVA/Site%20Content/

About%20TVA/Guidelines%20and%20Reports/Sustainability%20Plans%20and%

20Performance/pdf/tva%7B%5C_%7Dclimate%7B%5C_%7Dadaptation%7B%5C_

%7Dplan%7B%5C_%7D2016%7B%5C_%7D%7B%5C_%7Dfinal.pdf.

[95] Marcus J. Thatcher. “Modelling changes to electricity demand load duration curves

as a consequence of predicted climate change for Australia”. In: Energy 32.9 (2007),

pp. 1647–1659. issn: 03605442. doi: 10.1016/j.energy.2006.12.005.

114

https://doi.org/10.1017/CBO9780511817434.006
https://doi.org/10.2172/1172643
http://www.osti.gov/servlets/purl/1172643/
http://www.osti.gov/servlets/purl/1172643/
https://doi.org/10.1021/acs.est.5b00815
https://doi.org/10.1021/acs.est.5b00815
https://pubs.acs.org/doi/10.1021/acs.est.5b00815
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1
http://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1
https://www.tva.gov/file%7B%5C_%7Dsource/TVA/Site%20Content/About%20TVA/Guidelines%20and%20Reports/Sustainability%20Plans%20and%20Performance/pdf/tva%7B%5C_%7Dclimate%7B%5C_%7Dadaptation%7B%5C_%7Dplan%7B%5C_%7D2016%7B%5C_%7D%7B%5C_%7Dfinal.pdf
https://www.tva.gov/file%7B%5C_%7Dsource/TVA/Site%20Content/About%20TVA/Guidelines%20and%20Reports/Sustainability%20Plans%20and%20Performance/pdf/tva%7B%5C_%7Dclimate%7B%5C_%7Dadaptation%7B%5C_%7Dplan%7B%5C_%7D2016%7B%5C_%7D%7B%5C_%7Dfinal.pdf
https://www.tva.gov/file%7B%5C_%7Dsource/TVA/Site%20Content/About%20TVA/Guidelines%20and%20Reports/Sustainability%20Plans%20and%20Performance/pdf/tva%7B%5C_%7Dclimate%7B%5C_%7Dadaptation%7B%5C_%7Dplan%7B%5C_%7D2016%7B%5C_%7D%7B%5C_%7Dfinal.pdf
https://www.tva.gov/file%7B%5C_%7Dsource/TVA/Site%20Content/About%20TVA/Guidelines%20and%20Reports/Sustainability%20Plans%20and%20Performance/pdf/tva%7B%5C_%7Dclimate%7B%5C_%7Dadaptation%7B%5C_%7Dplan%7B%5C_%7D2016%7B%5C_%7D%7B%5C_%7Dfinal.pdf
https://doi.org/10.1016/j.energy.2006.12.005


[96] I. Tobin et al. “Vulnerabilities and resilience of European power generation to 1.5

◦C, 2 ◦C and 3 ◦C warming”. In: Environmental Research Letters 13.4 (Apr. 2018),

p. 044024. issn: 17489326. doi: 10.1088/1748- 9326/aab211. url: http://

stacks.iop.org/1748-9326/13/i=4/a=044024?key=crossref.7132b6b600e244c4

4cef30e5d9da6a42.

[97] S. W.D. Turner et al. “Compound climate events transform electrical power short-

fall risk in the Pacific Northwest”. In: Nature Communications 10.1 (Dec. 2019),

p. 8. issn: 20411723. doi: 10.1038/s41467-018-07894-4. url: http://www.

nature.com/articles/s41467-018-07894-4.

[98] U.S. Energy Information Administration (EIA). Hydroelectric generators are among

the United States’ oldest power plants. 2017. url: https : / / www . eia . gov /

todayinenergy/detail.php?id=30312 (visited on 05/16/2019).

[99] US Department of Energy. Climate Change and the Electricity Sector: Guide for

Climate Change Resilience Planning. Tech. rep. Sept. 2016. url: https://www.

energy.gov/sites/prod/files/2016/10/f33/Climate%20Change%20and%20the%

20Electricity%20Sector%20Guide%20for%20Climate%20Change%20Resilience%

20Planning%20September%202016%7B%5C_%7D0.pdf.

[100] US Department of Energy. Climate Change and the U.S. Energy Sector: Regional

Vulnerabilities and Resilience Solutions. Tech. rep. 2015, p. 193. url: http : / /

energy.gov/sites/prod/files/2015/10/f27/Regional%7B%5C_%7DClimate%

7B%5C_%7DVulnerabilities%7B%5C_%7Dand%7B%5C_%7DResilience%7B%5C_

%7DSolutions%7B%5C_%7D0.pdf.

[101] US Department of Energy. Hydropower Vision. A New Chapter for America’s 1st

Renewable Electricity Source. Tech. rep. 2016, pp. 1–348. doi: DOE/GO- 102016-

4869. url: https://www.energy.gov/sites/prod/files/2016/10/f33/

Hydropower-Vision-Full-Report-10212016.pdf.

115

https://doi.org/10.1088/1748-9326/aab211
http://stacks.iop.org/1748-9326/13/i=4/a=044024?key=crossref.7132b6b600e244c44cef30e5d9da6a42
http://stacks.iop.org/1748-9326/13/i=4/a=044024?key=crossref.7132b6b600e244c44cef30e5d9da6a42
http://stacks.iop.org/1748-9326/13/i=4/a=044024?key=crossref.7132b6b600e244c44cef30e5d9da6a42
https://doi.org/10.1038/s41467-018-07894-4
http://www.nature.com/articles/s41467-018-07894-4
http://www.nature.com/articles/s41467-018-07894-4
https://www.eia.gov/todayinenergy/detail.php?id=30312
https://www.eia.gov/todayinenergy/detail.php?id=30312
https://www.energy.gov/sites/prod/files/2016/10/f33/Climate%20Change%20and%20the%20Electricity%20Sector%20Guide%20for%20Climate%20Change%20Resilience%20Planning%20September%202016%7B%5C_%7D0.pdf
https://www.energy.gov/sites/prod/files/2016/10/f33/Climate%20Change%20and%20the%20Electricity%20Sector%20Guide%20for%20Climate%20Change%20Resilience%20Planning%20September%202016%7B%5C_%7D0.pdf
https://www.energy.gov/sites/prod/files/2016/10/f33/Climate%20Change%20and%20the%20Electricity%20Sector%20Guide%20for%20Climate%20Change%20Resilience%20Planning%20September%202016%7B%5C_%7D0.pdf
https://www.energy.gov/sites/prod/files/2016/10/f33/Climate%20Change%20and%20the%20Electricity%20Sector%20Guide%20for%20Climate%20Change%20Resilience%20Planning%20September%202016%7B%5C_%7D0.pdf
http://energy.gov/sites/prod/files/2015/10/f27/Regional%7B%5C_%7DClimate%7B%5C_%7DVulnerabilities%7B%5C_%7Dand%7B%5C_%7DResilience%7B%5C_%7DSolutions%7B%5C_%7D0.pdf
http://energy.gov/sites/prod/files/2015/10/f27/Regional%7B%5C_%7DClimate%7B%5C_%7DVulnerabilities%7B%5C_%7Dand%7B%5C_%7DResilience%7B%5C_%7DSolutions%7B%5C_%7D0.pdf
http://energy.gov/sites/prod/files/2015/10/f27/Regional%7B%5C_%7DClimate%7B%5C_%7DVulnerabilities%7B%5C_%7Dand%7B%5C_%7DResilience%7B%5C_%7DSolutions%7B%5C_%7D0.pdf
http://energy.gov/sites/prod/files/2015/10/f27/Regional%7B%5C_%7DClimate%7B%5C_%7DVulnerabilities%7B%5C_%7Dand%7B%5C_%7DResilience%7B%5C_%7DSolutions%7B%5C_%7D0.pdf
https://doi.org/DOE/GO-102016-4869
https://doi.org/DOE/GO-102016-4869
https://www.energy.gov/sites/prod/files/2016/10/f33/Hydropower-Vision-Full-Report-10212016.pdf
https://www.energy.gov/sites/prod/files/2016/10/f33/Hydropower-Vision-Full-Report-10212016.pdf


[102] US Energy Information Administration. Electric Power Annual 2017. Tech. rep.

2018. url: https://www.eia.gov/electricity/annual/archive/pdf/03482017.

pdf.

[103] US Energy Information Administration. Winter residential electricity consump-

tion expected to increase from last winter. 2016. url: https://www.eia.gov/

todayinenergy/detail.php?id=29112 (visited on 12/17/2019).

[104] US Energy Information Administration (EIA). Form EIA-860 detailed data with

previous form data (EIA-860A/860B). 2019. url: https : / / www . eia . gov /

electricity/data/eia860/ (visited on 07/22/2019).

[105] US Environmental Protection Agency (EPA). Documentation for EPA’s Power Sec-

tor Modeling Platform v6: Using the Integrated Planning Model. 2018. url: https:

//www.epa.gov/sites/production/files/2018- 05/documents/epa%7B%

5C _ %7Dplatform % 7B % 5C _ %7Dv6 % 7B % 5C _ %7Ddocumentation % 7B % 5C _ %7D -

%7B%5C_%7Dall%7B%5C_%7Dchapters%7B%5C_%7Dv15%7B%5C_%7Dmay%7B%5C_%7D31%

7B%5C_%7D10-30%7B%5C_%7Dam.pdf.

[106] US Environmental Protection Agency (EPA). Emissions & Generation Resource In-

tegrated Database. English. 2016. url: https://www.epa.gov/energy/emissions-

generation-resource-integrated-database-egrid.

[107] US Environmental Protection Agency (EPA). Inventory of U.S. Greenhouse Gas

Emissions and Sinks: 1990 – 2017. Tech. rep. 2019. url: https://www.epa.gov/

ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks.

[108] US Environmental Protection Agency (EPA). National Electric Energy Data Sys-

tem (NEEDS) v6. url: https://www.epa.gov/airmarkets/national-electric-

energy-data-system-needs-v6 (visited on 07/22/2019).

116

https://www.eia.gov/electricity/annual/archive/pdf/03482017.pdf
https://www.eia.gov/electricity/annual/archive/pdf/03482017.pdf
https://www.eia.gov/todayinenergy/detail.php?id=29112
https://www.eia.gov/todayinenergy/detail.php?id=29112
https://www.eia.gov/electricity/data/eia860/
https://www.eia.gov/electricity/data/eia860/
https://www.epa.gov/sites/production/files/2018-05/documents/epa%7B%5C_%7Dplatform%7B%5C_%7Dv6%7B%5C_%7Ddocumentation%7B%5C_%7D-%7B%5C_%7Dall%7B%5C_%7Dchapters%7B%5C_%7Dv15%7B%5C_%7Dmay%7B%5C_%7D31%7B%5C_%7D10-30%7B%5C_%7Dam.pdf
https://www.epa.gov/sites/production/files/2018-05/documents/epa%7B%5C_%7Dplatform%7B%5C_%7Dv6%7B%5C_%7Ddocumentation%7B%5C_%7D-%7B%5C_%7Dall%7B%5C_%7Dchapters%7B%5C_%7Dv15%7B%5C_%7Dmay%7B%5C_%7D31%7B%5C_%7D10-30%7B%5C_%7Dam.pdf
https://www.epa.gov/sites/production/files/2018-05/documents/epa%7B%5C_%7Dplatform%7B%5C_%7Dv6%7B%5C_%7Ddocumentation%7B%5C_%7D-%7B%5C_%7Dall%7B%5C_%7Dchapters%7B%5C_%7Dv15%7B%5C_%7Dmay%7B%5C_%7D31%7B%5C_%7D10-30%7B%5C_%7Dam.pdf
https://www.epa.gov/sites/production/files/2018-05/documents/epa%7B%5C_%7Dplatform%7B%5C_%7Dv6%7B%5C_%7Ddocumentation%7B%5C_%7D-%7B%5C_%7Dall%7B%5C_%7Dchapters%7B%5C_%7Dv15%7B%5C_%7Dmay%7B%5C_%7D31%7B%5C_%7D10-30%7B%5C_%7Dam.pdf
https://www.epa.gov/sites/production/files/2018-05/documents/epa%7B%5C_%7Dplatform%7B%5C_%7Dv6%7B%5C_%7Ddocumentation%7B%5C_%7D-%7B%5C_%7Dall%7B%5C_%7Dchapters%7B%5C_%7Dv15%7B%5C_%7Dmay%7B%5C_%7D31%7B%5C_%7D10-30%7B%5C_%7Dam.pdf
https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks
https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6
https://www.epa.gov/airmarkets/national-electric-energy-data-system-needs-v6


[109] US National Renewable Energy Laboratory. Solar Power Data for Integration Stud-

ies. 2010. url: https://www.nrel.gov/grid/solar-power-data.html (visited on

07/15/2019).

[110] USGCRP. Impacts, Risks, and Adaptation in the United States: Fourth National

Climate Assessment, Volume II. Ed. by David R. Reidmiller et al. Washington, DC,

USA: U.S. Global Change Research Program, 2018, p. 1515. doi: 10.7930/NCA4.

2018. url: nca2018.globalchange.gov.

[111] Michelle T.H. Van Vliet et al. “Impacts of recent drought and warm years on water

resources and electricity supply worldwide”. In: Environmental Research Letters

11.12 (Dec. 2016), p. 124021. issn: 17489326. doi: 10.1088/1748-9326/11/12/

124021. url: http://stacks.iop.org/1748-9326/11/i=12/a=124021?key=

crossref.fe8bf630221dcb9684ebf68a1a51870c.

[112] Michelle T.H. Van Vliet et al. “Vulnerability of US and European electricity supply

to climate change”. In: Nature Climate Change 2.9 (Sept. 2012), pp. 676–681. issn:

1758678X. doi: 10.1038/nclimate1546. url: http://www.nature.com/articles/

nclimate1546.

[113] Aranya Venkatesh et al. “Implications of Near-Term Coal Power Plant Retirement

for SO ¡sub¿2¡/sub¿ and NO ¡sub¿X¡/sub¿ and Life Cycle GHG Emissions”. In: En-

vironmental Science & Technology 46.18 (Sept. 2012), pp. 9838–9845. issn: 0013-

936X. doi: 10.1021/es3023539. url: https://pubs.acs.org/doi/abs/10.1021/

es3023539.

[114] M. T.H. van Vliet et al. “Multi-model assessment of global hydropower and cooling

water discharge potential under climate change”. In: Global Environmental Change

40 (Sept. 2016), pp. 156–170. issn: 09593780. doi: 10.1016/j.gloenvcha.2016.

07.007. url: https://www.sciencedirect.com/science/article/pii/

S0959378016301236?via%7B%5C%%7D3Dihub.

117

https://www.nrel.gov/grid/solar-power-data.html
https://doi.org/10.7930/NCA4.2018
https://doi.org/10.7930/NCA4.2018
nca2018.globalchange.gov
https://doi.org/10.1088/1748-9326/11/12/124021
https://doi.org/10.1088/1748-9326/11/12/124021
http://stacks.iop.org/1748-9326/11/i=12/a=124021?key=crossref.fe8bf630221dcb9684ebf68a1a51870c
http://stacks.iop.org/1748-9326/11/i=12/a=124021?key=crossref.fe8bf630221dcb9684ebf68a1a51870c
https://doi.org/10.1038/nclimate1546
http://www.nature.com/articles/nclimate1546
http://www.nature.com/articles/nclimate1546
https://doi.org/10.1021/es3023539
https://pubs.acs.org/doi/abs/10.1021/es3023539
https://pubs.acs.org/doi/abs/10.1021/es3023539
https://doi.org/10.1016/j.gloenvcha.2016.07.007
https://doi.org/10.1016/j.gloenvcha.2016.07.007
https://www.sciencedirect.com/science/article/pii/S0959378016301236?via%7B%5C%%7D3Dihub
https://www.sciencedirect.com/science/article/pii/S0959378016301236?via%7B%5C%%7D3Dihub


[115] N. Voisin et al. “One-Way coupling of an integrated assessment model and a water

resources model: Evaluation and implications of future changes over the US Mid-

west”. In: Hydrology and Earth System Sciences 17.11 (2013), pp. 4555–4575. issn:

10275606. doi: 10.5194/hess-17-4555-2013. url: www.hydrol-earth-syst-

sci.net/17/4555/2013/.

[116] John R. Yearsley. “A semi-Lagrangian water temperature model for advection-

dominated river systems”. In: Water Resources Research 45.12 (Dec. 2009). issn:

00431397. doi: 10.1029/2008WR007629. url: http://doi.wiley.com/10.1029/

2008WR007629.

[117] Sha Yu et al. “Scenarios of building energy demand for China with a detailed re-

gional representation”. English. In: Energy 67 (Apr. 2014), pp. 284–297. issn: 03605442.

doi: 10.1016/j.energy.2013.12.072. url: http://linkinghub.elsevier.com/

retrieve/pii/S036054421400005X.

[118] Haibo Zhai and Edward S. Rubin. “Performance and cost of wet and dry cooling

systems for pulverized coal power plants with and without carbon capture and stor-

age”. In: Energy Policy 38.10 (2010), pp. 5653–5660. issn: 03014215. doi: 10.1016/

j.enpol.2010.05.013. url: www.elsevier.com/locate/enpol.

[119] Haibo Zhai, Edward S. Rubin, and Peter L. Versteeg. “Water use at pulverized coal

power plants with postcombustion carbon capture and storage”. English. In: En-

vironmental Science and Technology 45.6 (2011), pp. 2479–2485. issn: 0013936X.

doi: 10.1021/es1034443. url: http://pubs.acs.org/doi/abs/10.1021/

es1034443.

[120] Yuyu Zhou, Jiyong Eom, and Leon Clarke. “The effect of global climate change,

population distribution, and climate mitigation on building energy use in the U.S.

and China”. English. In: Climatic Change 119.3-4 (Aug. 2013), pp. 979–992. issn:

118

https://doi.org/10.5194/hess-17-4555-2013
www.hydrol-earth-syst-sci.net/17/4555/2013/
www.hydrol-earth-syst-sci.net/17/4555/2013/
https://doi.org/10.1029/2008WR007629
http://doi.wiley.com/10.1029/2008WR007629
http://doi.wiley.com/10.1029/2008WR007629
https://doi.org/10.1016/j.energy.2013.12.072
http://linkinghub.elsevier.com/retrieve/pii/S036054421400005X
http://linkinghub.elsevier.com/retrieve/pii/S036054421400005X
https://doi.org/10.1016/j.enpol.2010.05.013
https://doi.org/10.1016/j.enpol.2010.05.013
www.elsevier.com/locate/enpol
https://doi.org/10.1021/es1034443
http://pubs.acs.org/doi/abs/10.1021/es1034443
http://pubs.acs.org/doi/abs/10.1021/es1034443


01650009. doi: 10.1007/s10584-013-0772-x. url: http://link.springer.com/

10.1007/s10584-013-0772-x.

119

https://doi.org/10.1007/s10584-013-0772-x
http://link.springer.com/10.1007/s10584-013-0772-x
http://link.springer.com/10.1007/s10584-013-0772-x


Appendix A

List of General Circulation Models

The section presents details of the different General Climate Models (GCM) used in this

study. Table A.1 shows twenty different models used in our study. We obtained the output

of GCMs from the Coupled Model Intercomparison Project 5 [93], spatially downscaled

using the Multivariate Adaptive Constructed Analogs (MACA) method [2]. In addition,

these projections were also disaggregated to hourly values using the Mountain Microcli-

mate Simulation Model (MTCLIM) [15].

The following plots show the average seasonal air temperature simulated by each climate

model in each period used in our study. They show how different models differ on their

predictions of air temperature on our study region. We can see that in the summer there

are a couple of models that consistently predict higher air temperatures than the rest of

the climate models.
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Figure A.1: Average seasonal air temperature simulated by each climate model in the pe-
riod 2055-2065
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Table A.1: List of GCMs used in this study

Modeling Cen-
ter

Model Institution

BCC
BCC-CSM1.1
BCC-
CSM1.1(m)

Beijing Climate Center, China Meteorological Administration

CCCma CanESM2 Canadian Centre for Climate Modelling and Analysis

CNRM-
CERFACS

CNRM-CM5
Centre National de Recherches Meteorologiques / Centre Eu-
ropeen de Recherche et Formation Avancees en Calcul Scien-
tifique

CSIRO-QCCCE CSIRO-Mk3.6.0
Commonwealth Scientific and Industrial Research Organisation
in collaboration with the Queensland Climate Change Centre of
Excellence

GCESS BNU-ESM
College of Global Change and Earth System Science, Beijing
Normal University

INM INM-CM4 Institute for Numerical Mathematics

IPSL

IPSL-CM5A-LR
IPSL-CM5A-
MR IPSL-
CM5B-LR

Institut Pierre-Simon Laplace

MIROC MIROC5
Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

MIROC
MIROC-ESM
MIROC-ESM-
CHEM

Japan Agency for Marine-Earth Science and Technology, Atmo-
sphere and Ocean Research Institute (The University of Tokyo),
and National Institute for Environmental Studies

MRI MRI-CGCM3 Meteorological Research Institute

NCAR CCSM4 National Center for Atmospheric Research

NCC NorESM1-M Norwegian Climate Centre

NOAA GFDL
GFDL-ESM2G
GFDL-ESM2M

Geophysical Fluid Dynamics Laboratory

MOHC (addi-
tional realiza-
tions by INPE)

HadGEM2-
ES365
HadGEM2-
CC365

Met Office Hadley Centre (additional HadGEM2-ES realizations
contributed by Instituto Nacional de Pesquisas Espaciais)
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Figure A.2: Average seasonal air temperature simulated by each climate model in the pe-
riod 2089-2099
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Appendix B

Piecewise linear model

The relationship between hourly electricity demand and air temperature is modeled using

a piecewise linear model. An important aspect of this method is that it preserves conti-

nuity at the breakpoints of the estimated piecewise linear function. Figure B.1 shows a

simple example of an arbitrary piecewise linear function with two break points.

x′ x′′
x

y

Figure B.1: Example of a piece wise linear function with two break points (x′ and x′′)

Equation B.1 shows the expression that we use to model this function. In our case, the
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parameters β0, δ1, δ2 and δ3 are estimated using our data. 1x>a represents the indicator

function and is defined as being equal to 1 when x > a and zero otherwise.

y = β0 + δ1 min{x, x′}+ δ2 min{x− x′, x′′ − x′}1x>x′

+ δ3 min{x− x′′}1x>x′′

(B.1)

We can see this formulation preserves continuity on the break points by analyzing one of

the cases. If x ≤ x′, then we have y1 = β0 + δ1x. On the other hand, if x′ < x < x′′, then

y2 = β0 + δ1x
′ + δ2(x− x′) = (β0 + δ1x

′ − δ2x
′) + δ2x.

Now, if we have x → x′−, then y = y1 → β0 + δ1x
′. On the other hand, if x → x′+ then

y = y2 → (β0 + δ1x
′− δ2x

′) + δ2x
′ = β0 + δ1x

′. Since both limits converge to the same value,

we have preserved continuity at the breakpoint x′.

To estimate the parameters of the piecewise linear function, the air temperature variable T

is decomposed into N different temperature components T c
j (T ), where j ∈ {1, . . . , N} in

the same manner as done in [65]. The process of decomposing the temperature into these

components starts by first dividing the range of temperature values into N temperature

intervals. Let Bk be the bounds of the the intervals where k = 1, . . . , N − 1. Then each

temperature value T is decomposed using the following process:

1. If T > B1, then T c
j (T ) = B1. Otherwise, T c

j (T ) = T and T c
j (T ) = 0 ∀ j = 2, . . . , N

and the process ends.

2. For n = 2, . . . , N − 2, if T > Bn, then T c
j (T ) = Bn − Bn−1. Otherwise, T c

j (T ) =

T −Bn−1 and T c
j (T ) = 0 ∀ j = n+ 1, . . . , N and the process ends.

3. If T > BN−1, then T c
N−1(T ) = BN−1 −BN−2 and T c

N(T ) = T −BN−1

Table B.1 presents a simple numerical example of the decomposition of different tempera-
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ture values.

Table B.1: Example of computation of temperature components with bounds Bi = 10 × i
i = 1, . . . , 5 (in arbitrary temperature units)

T T c
1 T c

2 T c
3 T c

4 T c
5 T c

6

2 2 0 0 0 0 0
18 10 8 0 0 0 0
32 10 10 10 2 0 0
47 10 10 10 10 7 0
58 10 10 10 10 10 8
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Appendix C

Estimated coefficients of the linear

model

Table C.1 presents the estimated slopes of the piecewise linear function in each of the cho-

sen temperature bins. Standard errors are estimated using Newey-West standard errors

[72] that account for up to 14 days of serial correlation in the residuals. We tested several

different values for the lag parameter (L) in the Newey-West estimator. We chose a value

of L = 336 hours (14 days) as longer values of L did not change the standard errors signifi-

cantly.

Table C.1: Estimated slopes of the piecewise linear function

Temperature Bin [◦C] Coefficient Value [MW
◦C

] SE p-value

<= −30◦C 2 0.2 < 0.001
(−30◦C, 0◦C] -596 22.1 < 0.001
(0◦C, 10◦C] -372 11.1 < 0.001
(10◦C, 20◦C] -60 11.3 < 0.001
(20◦C, 30◦C] 537 13.9 < 0.001
> 30◦C 874 39.2 < 0.001

R2 = 0.853
R2

adj = 0.853

127



Appendix D

Definition of the capacity expansion

scenarios

We simulated a total of six different cases encompassing two different dimensions of our

problem: the climate change scenario considered, and SERC’s CO2 emission limit scenario.

Reference case (no climate change effects):

The reference case emulated the decisions of energy planners when they do not take into

account the potential effects of climate change on future electricity demand and on the

available capacity of thermoelectric power plants. It is supposed to be the baseline case,

against which the two other cases will be compared to in order to assess the potential ef-

fects of climate change in the decisions to expand the capacity of the generator fleet.

In this reference case, we did not simulate any type of curtailments on thermoelectric power

plants, which is typically the standard procedure in most capacity expansion simulations.

The available capacity of these thermoelectric plants is always the same (equal to the name-
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plate capacity).

The definition of the electricity demand projection was more cumbersome. Ideally, we

would have used a static annual electricity demand profile that would represent a typi-

cal current electricity demand under present climate conditions (without the effects of cli-

mate change). Because we were simulating one calendar year each time (in intervals of five

years), using present historical values of electricity demand would have resulted on pos-

sible selection issues. The year selected could have been a typically warm (or cold) year,

which would impact the demand values we would have used on the whole simulation hori-

zon. Also averaging several years into one single annual electricity demand profile would

end up over smoothing our time series of electricity demand. Moreover, there is the issue

that since our future projections with climate change are created by a regression model,

there will always be differences between the historical values and the simulated ones. Ide-

ally, we would like to use our regression model to backcast the electricity demand under

present conditions, so that both time series are directly comparable.

In order to use the regression model to simulate present electricity demand, we needed

typical weather variables to use as explanatory variables. This again will have the same

issues as the ones described in the previous paragraph. Using weather variables from a sin-

gle historical year will result in possible selection bias issues. Averaging several years will

over smooth our time series of air temperature (and other weather variables).

To overcome these issues, we used our historical data set (1979–2015) and our economet-

ric model to simulate hourly demand for all years in this data set. As explained in section

3.2.4, we assumed that the annual fixed-effect parameter is fixed at the value estimated

for 2015. This way the only factor changing in our simulation were the climate conditions.

For each year in our historical dataset we estimated the system wide hourly peak demand

value, resulting in a distribution of estimated peak demand values. We used this distribu-

tion as a representation of SERC’s electricity demand under present weather conditions.
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To account for the inter-annual variability in weather, we chose the three years in our sim-

ulated distribution of historical peak demand values that represented the 20%, 50%, and

80% quantile values of this distribution. We selected peak demand as a descriptive metric

because the electricity grid tends to be designed for maximum load days [6].

This way we tried to minimize some of the issues described above. First, by considering

over thirty years of weather conditions, we had a good representation of present weather

conditions. Second, since we chose three years representing three different quantiles, our

decision model took into account not a single year, but three different years that repre-

sented both years with high demand and low demand. This way, it was able to take this

variability into account and perform a trade-off between fixed investment costs and vari-

able generation costs.

Milder climate change effects (RCP 4.5):

In the “milder” climate change scenario we used our estimates of electricity demand, hydro

generation potential, and thermoelectric available capacity estimated using projections of

meteorological variables from the GCMs under RCP 4.5. Similarly to the issues described

in reference case, in the climate change case the choice of a specific GCM could lead to

problems in our simulation. Because we were simulating one calendar year each time (in

intervals of five years), using the output of the same GCM every year could result in pos-

sible selection and representation issues. The inter-annual variability of the GCMs could

end up hiding changes in the climate signal. For example, one year with mild tempera-

tures (which would result in low electricity demand values) could be due to this natural

variability and not because the climate is getting milder. A better representation of sim-

ulated climate conditions in one of the annual steps of our simulation is to consider the

distribution of the output of all twenty GCMs in that year. However, including all GCMs
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in the optimization problem would result in a model that could too big to be computa-

tionally solved. To overcome these issues, we performed a procedure analogous to the one

described for the reference case. In each year of our simulation, we estimated the sys-

tem wide hourly peak demand value for each of the twenty GCMS, resulting in a distri-

bution of estimated peak demand values. Next, we chose the output of three among the

twenty GCMs that represented the 20%, 50%, and 80% quantile values of the distribution

of system-wide peak demand. This way we could minimize the effect in our analysis of the

intrinsic inter-annual variability among the different GCMs (which could occur if we chose

the outputs of a specific GCM over the complete simulation horizon) without resulting in

an optimization problem that was too big to be solved..

Stronger climate change effects (RCP 8.5):

In the “stronger” climate change scenario we used our estimates of electricity demand, hy-

dro generation potential, and thermoelectric available capacity estimated using projections

of meteorological variables from the GCMs under RCP 8.5. We repeated the procedure

detailed in the “milder” scenario. In each year of our simulation, we chose the output of

three among the twenty GCMs that represented the 20%, 50%, and 80% quantile values of

the distribution of system-wide peak demand under RCP 8.5.
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Appendix E

Detailed formulation of the capacity

expansion model

We implemented the capacity expansion model in the General Algebraic Modeling System

(GAMS) Version 24.4 and solved it using CPLEX Version 12. In this section, we present

the detailed formulation of the capacity expansion model.

We ran the CE model in five year increments between 2015 and 2050. In each annual iter-

ation, the model selected what plant types to build in order to minimize the total annual-

ized system cost. This cost is represented by the sum of annualized fixed investment costs

and variable operating costs of the final generator fleet. Specifically, the model had the

choice to build wind, solar, coal steam, coal steam with carbon capture and sequestration

(CCS), combined cycle natural gas, combined cycle natural gas with CCS, and nuclear.

New coal and natural gas plants could use recirculating cooling or dry cooling systems.

Our analysis did not include hydro power plants as a candidate technology. Investment in

hydro power plant has been minimal in the last few decades [98] and available resources

for new hydro plants in this area are limited [99]. We could not include all grid cells as

132



potential sites for building thermal power plants, because doing so would result in a com-

putationally intractable model. Therefore, we chose approximately 45 sites in each region.

These 45 sites are approximately uniformly distributed inside each region. They were cho-

sen in order to maximize the spatial representation of each region and to maintain the size

of our problem within feasible dimensions.

In the cases including the effects of climate change we ran our optimization model consid-

ering the climate projections of three different GCMs. In each year of our capacity expan-

sion simulation, we used the output of three among the twenty GCMs that represented in

the 20%, 50%, and 80% quantile values of the distribution of system-wide peak demand.

This way we did not use the output of the same GCMs every year. Investment decisions

in each year were done in order to satisfy the operating constraints taking into account the

realization of the climate conditions represented by all three GCMs. By doing this, our re-

sults were more robust to the intrinsic variability within the different climate models. We

performed a similar procedure with the reference case, but we chose the 20%, 50%, and

80% quantile values from our historical data set (1979–2015).

For computational tractability, we ran each annual iteration of the CE model in hourly in-

tervals for a set of seven representative contiguous days per season. These representative

periods in each season were chosen such that they minimized the Root Mean Squared Er-

ror (RMSE) with respect to the total simulated hourly demand for each season. Addition-

ally we also included a set of two so called special days in our analysis. The first special

day is the calendar day when peak annual net demand occurs. The second is the calen-

dar day with the highest levels of system wide curtailments on existing thermal generators.

This way each annual time step in our CE simulation considered 4× 7× 24 + 2× 24 = 720

hourly periods for each of the three GCM projections included. An instance of this model

with these parameters presented over 4 million variables and over 4 million constraints.
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Table E.1: Decision Variables of the CE model

Variable Definition

n
(c)
c,j number of new thermal generators of type j in the class that CAN be

curtailed (the (c) superscript) built in CELL c

n
(c̄)
z,j number of new thermal generators of type j in the class that CAN-

NOT be curtailed (the (c̄) superscript) built in ZONE z

n
(r)
z,j number of new generators of type j in the class RENEWABLE (the

(r) superscript) built in ZONE z

p
(c)
g,c,j,t electricity generation (GWh) in scenario g at time t of new genera-

tors of type j in the class that CAN be curtailed (the (c) superscript)
built in CELL c

p
(c̄)
g,z,j,t electricity generation (GWh) in scenario g at time t of new genera-

tors of type j in the class that CANNOT be curtailed (the (c̄) super-
script) built in ZONE z

p
(r)
g,z,j,t electricity generation (GWh) in scenario g at time t of new generators

of type j in the class RENEWABLE (the (r) superscript) built in
ZONE z

pg,i,t electricity generation (GWh) in scenario g at time t of existing gener-
ator of index i

flowg,`,t flow on line ` (GW) in hour t and scenario g
sg,i,t electricity stored (in GWh) in scenario g at time t of existing pumped

hydro generator i ∈ I(ph)

cg,i,t electricity charged (in GWh) in scenario g at time t of existing
pumped hydro generator i ∈ I(ph)

Definition of the symbols

Tables E.1 – E.4 present the definitions of the symbols used in the capacity expansion

model.

Objective Function

The objective function Equation E.1 computes the total sum of annual fixed and variable

costs of the final generator fleet. The first line in Equation E.1 computes the total annual

fixed costs (capital expenses and fixed O&M) for new thermal power plants that can be

curtailed. The second line computes the total annual fixed costs for new thermal power
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Table E.2: Sets of the CE model

Set Definition

B set of user-defined time blocks. These are
needed for computational purposes. B =
{peak-hours, winter, summer, spring, fall, special periods}

I set of existing generators in the fleet.
I(z) subset of existing generators that are located in zone z. I(z) ⊆ I
I(w) subset of existing wind generators in the fleet. I(w) ⊆ I
I(s) subset of existing solar generators in the fleet. I(s) ⊆ I
I(h) subset of existing hydro generators in the fleet. I(h) ⊆ I
I(ph) subset of existing pumped hydro generators in the fleet. I(ph) ⊆ I
I(·)(z) subset of wind or solar generators that are located in zone z.

I(·)(z) ⊆ I(z)
C set of grid cells that new techs can be placed in.
C(z) subset of grid cells that new techs can be placed in that are located

in zone z. C(z) ⊆ C
J set of candidate plant types for new construction
J (c) subset of plant types for new construction that can be curtailed.

J (c) ⊆ J
J (c̄) subset of plant types for new construction that CANNOT be cur-

tailed. J (c̄) ⊆ J
J (r) subset of plant types for new construction that are renewable. J (r) ⊆

J
L set with transmission lines between load zones
Z set with user defined load zones
G set with climate model scenarios
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Table E.3: Parameters of the CE model

Parameter Definition

PMAX
g,c,j,t Maximum electricity generation capacity, accounting for deratings, of

plant type j ∈ J (c) at cell grid c at time t and in scenario g (GWh)
PNP
j Nameplate electricity generation capacity of plant type j ∈ J (GWh)
PMAX
g,i,t Maximum electricity generation capacity, accounting for deratings,

of existing generator i (non solar and non wind) at time t and in sce-
nario g (GWh)

PMAX
solar,t Maximum electricity generation by all existing solar generators at

time t (GWh)
PMAX
wind,t Maximum electricity generation by all existing wind generators at

time t (GWh)

P
(H)
g,i,m,y Maximum hydropower potential of hydro generator i at month m,

year y, and scenario g (GWh)

flow` Capacity of transmission line ` (GW)
FOMj Annual fixed operation and maintenance costs of plant type j

($/GW)
CAPEXj Capital expenses of new plant of type j ($/GW)
OC(·) Operating cost of plant type j or of existing plant i ($/GWh)
FC(·) Fuel cost of plant type j or of existing plant i ($/MMBTU)
HR(·) Heat rate of plant type j or of existing plant i (MMBTU/GWh)
M Planning reserve margin as fraction (%) of demand
Q Discount rate
Dj lifetime (years) of candidate plant of type j
SMAX
i maximum storage capacity (in GWh) of pumped hydro generator i ∈

I(ph)

ηi charging rate efficiency (as % of installed capacity) of pumped hydro
generator i ∈ I(ph)

Table E.4: Indices of the CE model

Indices Definition

b Time blocks representing peak-hours, winter, summer, spring, fall,
special periods. b ∈ B

c grid cells that new techs can be placed in. c ∈ C
` Transmission Lines. ` ∈ L
i existing generators in fleet. i ∈ I
z sub regions of SERC. z ∈ Z
g climate model scenario. g ∈ G
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plants that can not be curtailed. The third line computes the total annual fixed costs for

new renewable power plants. Finally, the fourth line in Equation E.1 computes the total

annual variable costs (fuel costs and variable O&M) for all power plants in the final gener-

ator fleet (both new and existing).

TC =
∑
c∈C

∑
j∈J (c)

n
(c)
c,j × PNP

j × (FOMj + CAPEXj × CRFj)

+
∑
z∈Z

∑
j∈J (c̄)

n
(c̄)
z,j × PNP

j × (FOMj + CAPEXj × CRFj)

+
∑
z∈Z

∑
j∈J (r)

n
(r)
z,j × PNP

j × (FOMj + CAPEXj × CRFj)

+
1

|G|
∑
g∈G

[∑
b

(
Wb

∑
tb∈Tb

(∑
c∈C

∑
j∈J (c)

p
(c)
g,c,j,tb

×OCj,tb +
∑
z∈Z

∑
j∈J (c̄)

p
(c̄)
g,z,j,t ×OCj,tb

+
∑
z∈Z

∑
j∈J (r)

p
(r)
g,z,j,tb

×OCj,tb +
∑
i∈I

pg,i,tb ×OCi,tb

))]
(E.1)

CRFj is the capital recovery ratio of each technology j and is defined as:

CRFj =
Q

1− (1/(1 +Q)Dj)
(E.2)

The variable operating cost OC (in $/MWh) for new and existing generators is equal to:

OCj = V OMj +HRj × FCj ∀ j ∈ J (new generators) (E.3)

OCi = V OMi +HRi × FCi ∀ i ∈ I (existing generators) (E.4)
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Supply vs Demand constraint

The supply vs demand constraint in Equation E.5 forces dispatched generation in every

hour of our simulation period to be the same as projected demand.

PD
g,t,z =

∑
i∈I(z)

pg,i,t +
∑
c∈C(z)

∑
j∈J (c)

p
(c)
g,c,j,tb

+
∑

j∈J (c̄)

p
(c̄)
g,z,j,tb

+
∑

j∈J (r)

p
(r)
g,z,j,tb

+
∑

`:end(`)=z

flowg,`,t −
∑

`:begin(`)=z

flowg,`,t ∀ g, t, z
(E.5)

Reserve margin constraint

The reserve margin constraint in Equation E.6 represents the common behavior of energy

planning agents of adding a reserve margin above projected hourly peak demand value in

order to account for generator failures, greater than expected demand values and other

risks. In this case, the reserve margin constraint takes into account simulated curtailments

from thermal generators and the typical generation from renewables at the projected peak

demand hour. We apply this reserve margin constraint for each zone in our analysis.

(1 +M)× PD
g(p),t(p),z ≤

∑
c∈C

∑
j∈J (c)

PMAX
g(p),c,j,t(p) × n(c)

c,j +
∑

j∈J (r)

PMAX
g(p),z,j,t(p) × n(r)

z,j × CFj,t(p)

+
∑

i∈I(z)\{I(w)(z)∪I(s)(z)}

PMAX
g(p),i,t(p) + PMAX

solar,z,t(p) + PMAX
wind,z,t(p)

(E.6)

where g(p) and t(p) are, respectively, the climate model simulation and the hour in the year

that peak demand value occurs for zone z (z ∈ Z).
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Maximum generation constraints

Equation E.7 – E.8 show the upper bound in hourly generation by existing solar and wind

generators, respectively. Existing solar and wind generators are aggregated in each load

zone z.

∑
i∈I(s)(z)

pg,i,t ≤ PMAX
solar,z,t ∀ g, z, t (E.7)

∑
i∈I(w)(z)

pg,i,t ≤ PMAX
wind,z,t ∀ g, z, t (E.8)

Equations E.9 represents the upper bound in hourly generation by existing non renewable

generators.

pg,i,t ≤ PMAX
g,i,t ∀ g, t and ∀ i ∈ I \ {I(w) ∪ I(s)} (E.9)

Equations E.10 – E.12 represent the upper bound in hourly generation by new thermal

generators, new thermal generators that are not curtailed, and new renewable generators,

respectively.

p
(c)
g,c,j,t ≤ PMAX

g,c,j,t × n
(c)
c,j ∀ g, c, t and ∀ j ∈ J (c) (E.10)
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p
(c̄)
g,z,j,t ≤ PMAX

z,j,t × n
(c̄)
z,j ∀ g, z, t and ∀ j ∈ J (c̄) (E.11)

p
(r)
g,z,j,t ≤ n

(r)
z,j × PNP

j × CFj,t ∀ g, z, t and ∀ j ∈ J (r) (E.12)

Hydro energy constraint

Equation E.13 represents the seasonal upper bounds on hydro energy generation for each

individual hydro plant.

Wb ×
∑
t∈b

pg,i,t ≤
∑
m,y∈b

P
(H)
i,m,y ∀ g, b ∈ B and ∀ i ∈ I(h)

(E.13)

Pumped hydro generation constraints

The set of equations in Equation E.14 represent the dynamics of a pumped hydro power

plant i ∈ I(ph). The first inequality limits the hourly generation to the state of charge of

the power plant. The second equation couples the state of charge at time t with state of

charge in the previous period. The third inequality limits the amount of energy (in GWh)

that can be stored to SMAX
i . The last inequality limits the rate of charge (in GWh/h) in
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time t

pg,i,t < sg,i,t−1 ∀ g, t and ∀ i ∈ I(ph)

sg,i,t = sg,i,t−1 − pg,i,t + cg,i,t ∀ g, t and ∀ i ∈ I(ph)

sg,i,t < SMAX
i ∀ g, t and ∀ i ∈ I(ph)

cg,i,t < ηi × PMAX
i ∀ g, t and ∀ i ∈ I(ph)

(E.14)

Transmission constraint

Equation E.15 represents the limits in transmission of electricity between the load zones.

0 ≤ flowg,`,t ≤ flow` ∀ g, `, t (E.15)

Carbon Emissions

Equation E.16 represents the limit on system wide annual carbon emission.

1

|G|
∑
g∈G

[∑
b

(
Wb

∑
tb∈Tb

(∑
c∈C

∑
j∈J (c)

p
(c)
c,j,tb
×OCj,tb +

∑
z∈Z

∑
j∈J (c̄)

p
(c̄)
z,j,t ×OCj,tb

+
∑
z∈Z

∑
j∈J (r)

p
(r)
z,j,tb
×OCj,tb +

∑
i∈I

pi,tb ×OCi,tb

))]
≤ CO2lim

(E.16)
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Appendix F

Additional results of the capacity

expansion model

Figure F.1 shows the resulting added capacity in each of the three cases (reference case,

RCP 4.5, and RCP 8.5) and in each of the years simulated. Decisions are grouped by each

of the four SERC subregions considered in our analysis. Because we did not impose trans-

mission constraints between the four regions in this analysis, there are some years (spe-

cially in 2040 for the RCP 4.5 case) when the model decides to overbuild in one specific

region.

Figure F.2 shows the simulated generation values of different types of power plants in

2050. All three cases were simulated without considering any constraints on CO2 emis-

sions. In the reference case, thermal, wind, and solar represent, respectively, 78%, 14%,

and 3% of total generation. In both cases with climate change effects, thermal, wind, and

solar represent, respectively, 73%, 10%, and 12% of total generation.

Figures F.3 and F.4 show, respectively, resulting added capacity and simulated generation

values of different types of power plants in 2050. All three cases were simulated assuming
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Figure F.1: New capacity added in each step of the capacity expansion simulation. Results
are shown for each of the three scenarios (Reference, RCP 4.5, and RCP 8.5) and each of
the four sub regions considered in SERC. All three cases are simulated without considering
any constraints on CO2 emissions.

fall special spring summer winter

R
C

P
 4.5

R
C

P
 8.5

R
eference

0

50

100

0

50

100

0

50

100

hour in simulation period

G
W

h

hydro pumped solar thermal wind Demand

Figure F.2: Simulated generation (in GWh) of different types of power plants in 2050. All
three cases were simulated without considering any constraints on CO2 emissions.
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Figure F.3: New capacity added in each step of the capacity expansion simulation. Results
are shown for each of the three scenarios (Reference, RCP 4.5, and RCP 8.5) and each of
the four sub regions considered in SERC. All three cases are simulated assuming limits
on system wide CO2 emissions. CO2 emissions in 2050 are forced to be 50% of estimated
emissions in 2015.

limits on system wide CO2 emissions. CO2 emissions in 2050 are forced to be 50% of esti-

mated emissions in 2015. In the reference case, thermal, wind, and solar represent, respec-

tively, 75%, 17%, and 4% of total generation. In both cases with climate change effects,

thermal, wind, and solar represent, respectively, 71%, 10%, and 13% of total generation.
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Figure F.4: Simulated generation (in GWh) of different types of power plants in 2050. All
three cases were simulated simulated assuming limits on system wide CO2 emissions. CO2

emissions in 2050 are forced to be 50% of estimated emissions in 2015.
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Appendix G

Detailed formulation of the unit

commitment and economic dispatch

model

We implemented the unit commitment and economic dispatch (UCED) model in the Gen-

eral Algebraic Modeling System (GAMS) Version 24.4 and solved it using CPLEX Version

12. In this section, we present the detailed formulation of the UCED model.

Definitions

Tables G.1 – G.4 present the definitions of the symbols used in the capacity expansion

model.
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Table G.1: Sets of the UCED model

Set Definition

T simulation time horizon (set of hours)
I set of generators in the fleet.
I(z) set of generators in the fleet located in zone z.
Is(z) set of solar generators in the fleet in zone z Is(z) ⊆ I(z)
Iw(z) set of wind generators in the fleet in zone z Iw(z) ⊆ I(z)
I(h) set of hydropower generators in the fleet I(h) ⊆ I
I(ph) set of pumped storage generators in the fleet I(ph) ⊆ I
L set with transmission lines between load zones
Z set with user defined load zones

Table G.2: Decision Variables of the UCED model

Variable Definition

gi,t Electricity generation above minimum stable load by generator i at time t
(MWh)

nsez,t Non-served energy at time t at zone z (MWh)
pi,t Electricity generation by generator i at time t (MWh)
ri,t Bi-directional regulation reserves provided by generator i at time t (MWh)
si,t Spinning reserves provided by generator i at time t (MW)
fi,t Flexibility reserves provided by generator i at time t (MW)
ui,t Binary variable indicating on/off state of generator i at time t, where 1 indi-

cates on {0,1}
vi,t Binary variable indicating generator i turns on at time t {0,1}
wi,t Binary variable indicating generator i turns off at time t {0,1}
flow`,t flow on line ` (GW) in hour t
ci,t electricity charged (in MWh) at time t of existing pumped hydro generator

i ∈ I(ph)

zi,t electricity stored (in MWh) at time t of existing pumped hydro generator
i ∈ I(ph)
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Table G.3: Parameters of the UCED model

Parameter Definition

CNSE Cost of non-served energy ($/MWh)
Gi Electricity generation above minimum load by generator i in last hour of

prior optimization period (MWh)
K Number of hours before which a generator can turn on in the current opti-

mization horizon, based on when it shut off in the last optimization period
and its MDT

MDTi Minimum down time for generator i, which indicates the number of hours
that must elapse before a generator can turn on once it shuts off (hours)

OCi,t Operating cost of generator i at time t ($/MWh)
Pi Electricity generation by generator i in the last period of the prior optimiza-

tion horizon (MWh)
PD
z,t Electricity demand in zone z at time t (MWh)
PMAX
i,t Maximum electricity generation capacity of generator i at time t (MWh)

PMAX,SOLAR
z,t Maximum electricity generation by all solar generators in zone z at time t

(MWh)

PMAX,WIND
z,t Maximum electricity generation by all wind generators in zone z at time t

(MWh)

P hydro
i Maximum daily hydropower potential of generator i ∈ I(h) (MWh)
PMIN
i Minimum stable load of generator i (MWh)
Rz,t Required bi-directional regulation reserves at time t and zone z (MWh)
Sz,t Required spinning reserves at time t and zone z (MWh)
Fz,t Required flexibility reserves at time t and zone z (MWh)
REi Generator i eligible (1) or not (0) to provide regulation reserves
SEi Generator eligible (1) or not (0) to provide spinning reserves
FEi Generator eligible (1) or not (0) to provide flexibility reserves
RR Scalar that translates hourly ramp limit to ramp limit over regulation re-

serve timeframe
RS Scalar that translates hourly ramp limit to ramp limit over spinning reserve

timeframe
RF Scalar that translates hourly ramp limit to ramp limit over flexibility reserve

timeframe
RLi Hourly ramp limit of generator i (MWh)
SUi Start-up cost for generator i ($)
Ui On/off state of generator i in the last period of the prior optimization hori-

zon {0,1}
ZMAX

i maximum storage capacity (in MWh) of pumped hydro generator i ∈ I(ph)
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Table G.4: Indices of the UCED model

Indices Definition

t time (hour) t ∈ T
` Transmission Lines. ` ∈ L
i generators in fleet. i ∈ I
z sub regions of SERC. z ∈ Z

Objective Function

The UCED model minimizes total operational costs (TC), or the sum of electricity genera-

tion, start-up, and non-served energy costs

TC =
∑

i∈I,t∈T

[pi,t ×OCi,t + vi,t × SUi] +
∑

t∈T,z∈Z

nsez,t × CNSE (G.1)

System-wide Electricity Demand and Reserve Requirement Constraints

Electricity generation plus non-served energy must equal system-wide demand in zone and

each time period:

PD
t,z =

∑
i∈I(z)

pi,t +
∑

`:end(`)=z

flow`,t −
∑

`:begin(`)=z

flow`,t + nsez,t (G.2)

Provided spinning (s), regulation (r), and flexibility reserves (f) must equal or exceed re-

quired spinning (S), regulation (R), and flexibility (F ) reserve requirements, respectively,
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in each zone and each time period:

∑
i∈I(z)

si,t ≥ Sz,t ∀ t ∈ T, z ∈ Z

∑
i∈I(z)

ri,t ≥ Rz,t ∀ t ∈ T, z ∈ Z

∑
i∈I(z)

fi,t ≥ Fz,t ∀ t ∈ T, z ∈ Z

(G.3)

Generator-Specific Generation and Reserve Constraints

Electricity generation is represented by two variables, total generation (pi,t in MWh]) and

generation above minimum stable load (gi,t in MWh):

pi,t = PMIN
i × ui,t + gi,t

gi,t ≤
(
PMAX
i,t − PMIN

i

)
× ui,t

(G.4)

Aggregate electricity generation by wind and solar generators must be less than or equal

to aggregate wind (PMAX,WIND
z,t in MWh) and solar (PMAX,SOLAR

z,t in MWh) generation

profiles:

∑
i∈Is(z)

pi,t ≤ PMAX,SOLAR
z,t ∀ t ∈ T, z ∈ Z (G.5)

∑
i∈Iw(z)

pi,t ≤ PMAX,WIND
z,t ∀ t ∈ T, z ∈ Z (G.6)
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The sum of hourly electricity generation by hydro generators must be less than or equal to

total estimated hydropower potential over the simulation period (P hydro
i in MWh):

∑
t∈T

pi,t ≤ P hydro
i i ∈ I(h)

(G.7)

Electricity generation plus provided reserves cannot exceed maximum capacity of each

generator:

pi,t + ri,t + si,t + fi,t ≤ PMAX
i,t ∀ i ∈ I (G.8)

Generators must be online and eligible to provide reserves, and cannot provide reserves in

excess of their ramp limit over the reserve timeframe:

si,t ≤ SEi ×RLi ×RS × ui,t ∀ i ∈ I, t ∈ T (G.9)

ri,t ≤ REi ×RLi ×RR× ui,t ∀ i ∈ I, t ∈ T (G.10)

fi,t ≤ FEi ×RLi ×RF × ui,t ∀ i ∈ I, t ∈ T (G.11)
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Ramp Constraints

Up and down ramp constraints limit changes in electricity generation above minimum sta-

ble load plus accounting for spinning and regulation reserves:

(gi,t + si,t + ri,t)− gi,t−1 ≤ RLi ∀ i ∈ I, t ∈ T (G.12)

gi,t−1 − (gi,t + ri,t) ≤ RLi ∀ i ∈ I, t ∈ T (G.13)

For t = 1, we define gi,t−1 = Gi. In the first UCED run, Gi = 0.

Unit Commitment Constraints

A generator is on or off depending on turn on and turn off decisions

ui,t = ui,t−1 + vi,t − wi,t ∀ i ∈ I, t ∈ T (G.14)

For t = 1, we define ui,t−1 = Ui. In the first UCED run, Ui = 0. Generators cannot turn on

until they reach their minimum down time (MDT ):

1− ui,t ≥ wi,t−(MDTi−1) + wi,t−(MDTi−2) + . . .+ wi,t ∀ i ∈ I, t > Ki (G.15)

To account for shut downs in the prior optimization window, carried hours of minimum

down time from the prior UC run (Ki) are enforced:

ui,t ≥ 0 ∀ i ∈ I, t ≤ Ki (G.16)
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Pumped hydro generation constraints

The set of equations in Equation G.17 represent the dynamics of a pumped hydro power

plant i ∈ I(ph). The first inequality limits the hourly generation to the state of charge of

the power plant. The second equation couples the state of charge at time t with state of

charge in the previous period. The third inequality limits the amount of energy (in MWh)

that can be stored to ZMAX
i . The last inequality limits the rate of charge (in MWh/h) in

time t

pi,t < zi,t−1 ∀t and ∀ i ∈ I(ph)

zi,t = zi,t−1 − pi,t + ci,t ∀ i ∈ I(ph)

zi,t < ZMAX
i ∀ i ∈ I(ph)

ci,t < ηi × PMAX
i ∀ i ∈ I(ph)

(G.17)

Transmission Constraint

Transfers of electricity in each transmission line are limited by the line’s capacity

0 ≤ flow`,t ≤ flow` ∀ `, t (G.18)
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