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Abstract 
Achieving a global warming limit of 2°C is likely only possible if humanity ceases to emit 

greenhouse gases (GHG) well before the end of this century. This can only be accomplished 

through, among other things, a massive transformation of a deeply unpredictable global energy 

system on which billions of people depend. This thesis aims to illustrate three methodologically 

distinct approaches that could be integrated into a framework for energy decision-making 

capable of guiding thoughtful and equitable planning for robust reductions in GHG emissions in 

the face of deep, largely irreducible uncertainty. Although the primary object of study is the US 

energy system, all three analyses aim to draw generalizable conclusions that are useful in other 

contexts.  

 

Chapter 2 attempts to characterize the predictability and volatility of the US energy system by 

analyzing errors in past US government projections and historical fluctuations in the price, 

production, and consumption of key energy quantities. This work finds that the period from 

2005-2014 contained a disproportionate number of the largest projection errors and inter-year 

fluctuations in almost all of the 17 quantities examined. This indicates that the US energy system 

itself was more volatile and harder to predict in this period than in previous decades.  

 

Chapter 3 uses observational residential electricity consumption data to estimate the effect of a 

low-income electric subsidy on electricity demand, and the externality costs associated with 

increased electricity generation and higher peak demand. This work finds that the externality 

costs are on the order of 11% of total subsidy disbursements, with no significant change in this 

number if intra-day estimates are used instead of time-invariant estimates. Decarbonization of 

the electric power system will likely eliminate most emissions from power plants, leaving only 
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capacity costs of roughly 5% of subsidy disbursements. Thus, policy makers considering low-

income subsidies as a means of ensuring that low-income households do not disproportionately 

bear the burden of an energy transition can use such estimates of price responsiveness to estimate 

any adjustments in peak capacity requirements that may result from increased demand.  

 

Chapter 4 uses an optimization-based techno-economic model to characterize the decision space 

for deep decarbonization of liquid-dependent sectors such as aviation and long-distance road 

transportation. With today’s technology electrofuels, synthetic hydrocarbons produced using 

CO2 captured from the atmosphere and hydrogen from electrolysis of water, are likely a more 

expensive mitigation strategy than continuing to use petroleum-based fuels and offsetting the 

resulting emissions with direct air capture (DAC) of CO2 with sequestration (DACS). However, 

if DAC and electrolyzer manufacturers are able to meet near-term cost targets, electrofuels may 

be competitive with DACS if the cost of petroleum fuels rises substantially or if sequestration 

costs are higher than anticipated. Several decades into the future, electrofuel costs may fall as 

low as $2.70 per gallon of gasoline equivalent, potentially achieving cost parity with petroleum 

fuels. Electrofuel cost is most sensitive to the capital cost the DAC, electrolyzer, and renewable 

electricity systems, confirming their importance as priorities for research, development, and 

deployment (RD&D). However, without the operational flexibility afforded by storage or 

supplementary natural gas or grid electricity interconnections, costs could rise by more than 

80%. This points to some less intuitive RD&D priorities, such as metallic phase change materials 

capable of storing heat above 900°C and low-cost, seasonal CO2 storage. 
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As a whole, this work aims to characterize the depth the uncertainties posed by the task of energy 

transition while synthesizing insights from analysis of historical data and modeling based on 

engineering knowledge and expert judgment to gain policy-relevant insights into pathways 

toward deep decarbonization of the energy system. I hope this represents a small step toward a 

decision-making paradigm capable of addressing the deep uncertainties we face while using the 

wealth of data and insight at our disposal to chart a thoughtful course ahead. 
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 1 

1. Chapter 1. Introduction and background 

Achieving a global warming limit of 2°C is likely only possible if the global economy ceases to 

emit greenhouse gases (GHG) well before the end of this century 1. This can only be achieved 

through a massive transformation of the global energy system on which billions of people 

depend and which accounts for the bulk of global GHG emissions 2. 

Efforts to transition the global energy system to a low-carbon or carbon-negative future within 

the span of several decades poses great challenges. The future of the energy system has been 

notoriously difficult to predict more than a few years out 3,4. This uncertainty is compounded by 

policy and technology uncertainty, highlighted by the past decade’s rapid, largely policy-driven 

advances in low-carbon energy technologies such as solar photovoltaics and lithium-ion batteries 

5–7.  

The United States (US) energy system accounted for 15% of global fossil GHG emissions in 

2014 8. Thus, decarbonizing the US is a prerequisite for achieving a warming limit of 2°C or 

less. Thankfully, the US energy system is remarkably well-documented with a wealth of publicly 

available current and historical data, thanks in large part to the work of the Energy Information 

Administration (EIA). Thus, the US energy system is an important and convenient object of 

study, and many lessons learned will generalize, at least in part, to other contexts around the 

world. 

Much of the US energy system consists of long-lived capital assets such as power plants, 

electricity transmission lines, trucks, automobiles, pipelines, and airplanes, with lifetimes of 

twenty to fifty years or more. As a result, the energy decisions made now under deep uncertainty 

will have major repercussions for decades. In addition, such investments may, at least 
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temporarily, raise the cost of energy, placing a disproportionate burden on low-income 

households. 

There is no clear blueprint for how to smoothly transition to a deeply decarbonized energy 

system. We have many technological and policy tools at our disposal, but the most cost-effective 

methods for doing so, particularly for difficult-to-decarbonize sectors such as aviation and long-

distance road transportation, will likely require technological advances that are necessarily 

difficult to predict. 

In this context, energy decision-makers, including policy makers, energy producers, and energy 

transmission and distribution utilities could benefit greatly from decision-making frameworks 

capable of robustly navigating deep uncertainty.  

This dissertation consists of three distinct but related studies that work in different ways toward 

this the development of such an integrated approach to decision-making for deep decarbonization 

of the energy system. 

Chapter 2, Estimation of the year-on-year volatility and the unpredictability of the United States 

energy system, investigates the historical capacity of US government projections to predict the 

long-term future of the energy system. This work finds that despite the best efforts of analysts at 

the EIA to project the likely development of the US energy system under certain constraining 

assumptions surrounding technological and policy change, i.e. to predict the future under a set of 

limited constraints, the most extreme errors in their Annual Energy Outlook (AEO) projections 

have actually increased in frequency in recent years. My coauthors and I believe that this is not 

because EIA’s modeling has somehow gotten worse, but because for various reasons the US 

energy system itself became more volatile and inherently harder to predict starting in the mid-

2000s. 
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This result motivates an alternative approach to long-term energy investment and policy 

decision-making that attempts to reduce decision-makers’ reliance on the elusive ability to 

accurately predict the empirical details of the energy system, such as the price and production 

levels of key primary energy quantities, beyond a few years into the future. 

Chapter 3, Characterizing the relationship between low-income electric subsidies and the intra-

day timing of electricity consumption, looks at feedbacks between equity-based energy policies 

and energy infrastructure decision-making. An energy transition will likely require substantial 

expenditures which may increase system costs, at least in the short-run. Electric subsidies are one 

way to ensure these costs are not disproportionately borne by low-income households, for whom 

energy expenditures can represent a substantial fraction of total income. However, reductions in 

price are likely to encourage an increase in consumption, the magnitude of which may vary 

throughout the day. Such an increase could result in higher emissions of GHG and criteria 

pollutants as well as a rise in costly peak consumption. An integrated approach to energy 

transition could benefit from incorporating these indirect effects of equity-based programs into 

broader decarbonization and resource adequacy planning processes. 

Chapter 4, Electrofuel synthesis from variable renewable electricity: An optimization-based 

techno-economic analysis, introduces a modeling framework to guide investment in research, 

development, and deployment (RD&D) of new energy and climate change mitigation 

technologies. Direct air capture (DAC) of carbon dioxide (CO2) could enable decarbonization 

pathways that allow continued use of long-lived energy assets in two ways. First, DAC facilities 

can offset emissions from industrial processes and other difficult-to-decarbonize economic 

sectors. Second, DAC can supply CO2 as a feedstock for production of electrofuels, such as 
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synthetic jet fuel or diesel, which can then function as net a carbon-neutral fuel in existing 

infrastructure for aviation, heavy trucking, and other applications. 

The long-term cost of emerging technologies such as DAC and electrofuel production facilities 

are inherently uncertain. Today’s cost estimates are necessarily constrained to engineering 

estimates and the cost of a small number of commercially deployed systems. If manufacturers 

can achieve targeted cost reductions for DAC and electrofuels within the next few decades, this 

could substantially reduce the cost of deep decarbonization by, among other things, forestalling a 

need to rapidly turn over costly energy-related infrastructure. 

The techno-economic model used in Chapter 4 was conceived as a tool for characterizing the 

sensitivity of the cost of low-carbon electrofuel production to potential advances in component 

technologies. The model simulates the operation of a renewably-powered electrofuel production 

facility in enough engineering detail to identify key sensitivities while remaining flexible enough 

to easily explore alternative designs of components with very different engineering properties, 

e.g. high-temperature and low-temperature DAC systems. Following the mantra of co-advisor 

and mentor Max Henrion, I aimed to make the model as simple as possible and no simpler. 

I have dubbed the model the Power-to-X Optimization Tool (PtXOpt) because it can simulate 

production of electrofuels and many other products from variable electricity. This model aims to 

guide current RD&D priorities both for DAC and electrofuels as a whole and for specific 

component technologies. Some enabling technologies, such as hundred-megawatt-scale high-

temperature electric heating and low-cost seasonal CO2 storage, do not currently exist 

commercially, but could likely be engineered with relative ease once there is a clear need. 
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In conclusion, this work aims to motivate a framework for energy decision-making that is 

capable of guiding thoughtful and equitable planning for robust reductions in GHG emissions in 

the face of deep uncertainty.   
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2. Chapter 2. Estimation of the year-on-year volatility and the 

unpredictability of the United States energy system* 

 

2.1. Abstract 

Long-term projections of energy consumption, supply, and prices heavily influence decisions 

regarding long-lived energy infrastructure. Predicting the evolution of these quantities over 

multiple years to decades is a difficult task. Here we estimate year-on-year volatility and 

unpredictability over multi-decade time frames for many quantities in the US energy 

system using historical projections. We determine the distribution over time of the most extreme 

errors (unpredictability) from 1985-2014, and the largest year-over-year changes (volatility) in 

the quantities themselves from 1949-2014. Our results show that both volatility and 

unpredictability have increased in the past decade, compared to prior decades. These findings 

may be useful for energy decision-makers to consider as they invest in and regulate long-lived 

energy infrastructure in a deeply uncertain world. 

2.2. Introduction and background 

The United States (US) energy system consists of an enormous interconnected network of long-

lived infrastructure, which accounts for a large fraction of national greenhouse gas and air 

pollution emissions, as well as substantial expenditures. Oil and gas extraction alone contributed 

$255 billion to GDP in 2015, while transportation of goods and passengers contributed $981 

                                                
* This chapter is based on the following published work, reproduced with permission from:  

Sherwin, E. D., Henrion, M. & Azevedo, I. M. L. Estimation of the year-on-year volatility and the 
unpredictability of the United States energy system. Nat. Energy 3, 341–346 
(2018). https://www.nature.com/articles/s41560-018-0121-4  
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billion 9. Present investment decisions relating to energy infrastructure will influence the cost, 

and environmental and health impacts of the US energy system for decades. Understanding how 

a national energy system is likely to evolve is a difficult task 3, but critically important for 

informing long-term energy investment decisions. Understanding historical changes in the 

projected and actual values of key energy quantities can help decision-makers create robust 

strategies for a deeply uncertain future.  

One way to assess the accuracy of past energy forecasts and projections is to perform 

retrospective analysis. Early work in this field largely began in the 1980s. One approach, led by 

Huss (1985) 3-5 and Nelson and Peck (1985) 10–13, focuses on comparing historical errors from 

different sets of projections, in this case electricity demand projections from the 1970s, primarily 

for the purpose of model selection. Taking another approach, Landsberg (1985) 14 describes and 

attempts to explain historical errors from a set of long-term, national US energy projections 

using anecdotes. 

Further work in the 1990s and 2000s seeks to explain the historical causes of large projection 

errors. Huntington (1994) 15 attempted to explain large oil price projection errors in the 1980s. 

Sohn (2007) 16 computes retrospective errors from the World Input-Output model, created in the 

1970s, and discusses reasons for these errors, in largely qualitative terms. Every year since 1996, 

the Energy Information Administration (EIA) has released a retrospective report, detailing its 

historical projections for 19-21 key quantities from the Annual Energy Outlook (AEO) 17. These 

retrospective reports discuss the largest historical projection errors, proposing explanations for 

these errors, and guidelines for interpreting EIA projections in light of past errors. In addition, 

Shlyakhter et al. (1994) 18 and Kaack et al. (2017) 19 attempt to characterize the distribution of 

projection errors from the AEO. 
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The early 2000s saw a number of thoughtful review articles comparing numerous sets of past 

projections 3,20,21. These articles attempt to convey inherent unpredictability in the energy system 

and the inadequacy of point projections, with the aim of instilling humility in energy modelers 

and those who use projections. These articles tend to discuss ways in which projections are 

useful despite the near-inevitability of large errors. In doing so, they attempt to inform future 

projection creation processes. Building on these results, Koomey et al. (2003) 4 issued a plea for 

retrospective analysis of historical energy projections to further inform future projection creation 

and decision-making practices. 

Since then, numerous analyses have sought to assess the historical accuracy of projections, 

particularly the Annual Energy Outlook and World Energy Outlook. The majority of these 

analyses seek, in some way or another, to determine historical bias, generally on the basis of 

mean percent error, or changes in error magnitude over time, using mean absolute percent error 

and related metrics 22–29. 

The existence of retrospective analyses raises the question of the extent to which insights into 

past errors can help predict future errors. In short, will the future be as difficult to predict as the 

past was? We note that the AEO’s own low and high oil price scenarios began to widen 

substantially in AEO 2006, suggesting higher uncertainty in at least that quantity (see the 

supplementary information (SI), Sections 6.1 and 0, and Supplementary Figures Figure 17 and 

Figure 18). AEO projections are ideal for retrospective analysis because they have been 

produced every year since 1982 by a stable government organization, using consistent methods 

(see the SI, Sections 6.3 and 6.4), although the process is not stationary in a strict statistical sense 

(see the SI, Section 6.5). The stated goal of the AEO is not to forecast the future, but to project 

the likely development of the US energy system under the policies in place at the time of the 
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study, and assuming there are no major technological breakthroughs 30. Still, if the AEO is to 

guide decision-making, we believe it is important to characterize its historical prediction 

accuracy. 

We attempt to understand whether today’s energy system has in fact been harder to predict than 

in the past by quantifying unpredictability (the frequency of extreme errors) through a 

retrospective analysis of US energy projections from the AEO reference case. We also 

investigate whether year-on-year volatility, the frequency of the largest year-on-year changes in 

key energy quantities, has changed over time. We find that both unpredictability and volatility 

have been larger in the past decade than in the prior two decades. 

2.3. Methods and data 

 Experimental design 

This study aims to identify historical periods characterized by large fluctuations, year-on-year 

volatility, and extreme errors, unpredictability, for key US energy quantities. We use publicly 

available historical values and projections for seventeen US energy quantities, described below 

and in the Supplementary Methods, to compute these fluctuations and projection errors. We use 

several nonparametric methods to compare the prevalence of extreme changes and extreme 

projections errors for these quantities by decade. 

 Data 

All projection data and observed historical values used in the extreme error analysis come from 

either the Annual Energy Outlook (AEO) retrospective reports, or from the individual AEO 

reports themselves. The single exception to this is GDP, which is derived from a combination of 

AEO projections of GDP growth and US Bureau of Economic Analysis (BEA) values of 

historical US GDP, described in further detail in Supplementary Methods. For a graphical 
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representation of these projected and historical values for all quantities examined, see 

Supplementary Figures Figure 27, Figure 28, and Figure 29. 

For our analysis of extreme year-over-year changes, year-on-year volatility, in observed 

historical values of energy quantities since 1949, we draw data from the EIA’s Monthly Energy 

Review, November 2015 when available 31. The exceptions are US GDP and inflation, which we 

draw from the US BEA 32,33. All prices in the volatility analysis are in nominal dollars. 

Data collection and integration are described further in Supplementary Methods. 

 Statistical Information 

We define unpredictability as the frequency of extreme errors for one or several projection years 

(the projection year would be 2000 for a projection produced in 1990, projecting values for the 

year 2000).  

We define an extreme error relative to its percent error distribution, the distribution of all 

percent projection errors for that quantity. We use percent projection error rather than the simple 

difference between the projected and actual value because we are interested the magnitude of the 

error relative to the observed historical value. We define an extreme error as being outside a 

specified percentile of the error distribution. In the baseline analysis, we designate as extreme 

errors all percent projection errors above the 97.5th percentile, or below the 2.5th percentile. Thus, 

roughly 5% of all projection values for each quantity are designated as “extreme errors” (small 

sample size effects can increase or decrease this rate by up to ±0.6%.). We obtain separate 

extreme error thresholds from the percent error distributions for each projection interval, short-

term (1 to 5 year), medium-term (6 to 10 year), and long-term (11 to 21 year) projections. In the 

SI, Section 6.8, we test the effect of alternative definitions of extreme error on our results. 
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In Figure 1 we demonstrate this method of computing extreme error thresholds, using natural 

gas production as an example. The vertical axis shows the cumulative distribution function of all 

projection errors for natural gas production since 1985 and the horizontal axis shows the 

corresponding percent projection error values. Positive projection errors mean that the projected 

value was higher than the observed historical value (an over-projection), and vice-versa. We 

show error distributions separately, by projection interval, in black, blue and red lines. The 

bounds of the 95% probability interval, 2.5th and 97.5th percentiles, are highlighted in horizontal 

magenta lines. In Figure 1 we see that in the short-term, cases where natural gas production was 

over-projected by more than 11% or under-projected below -19% are considered extreme errors. 

In this case, there is little median drift for short-term and medium-term quantities, which have a 

median at -1.3% error. There is a median drift of 3.1% for long-term projections. For more on 

mean and median drift, see the SI, Table 17 and Table 18. 

See the SI, Figure 30, Figure 31, and Figure 32 for error cumulative distribution functions and 

extreme error thresholds for all twenty quantities, including three derivative quantities: oil and 

natural gas imports and energy-related CO2 emissions. See the SI, Section 6.16 for a related 

discussion of mean and median drift among the quantities examined. 

We estimate the probability that our main results could have occurred by chance using Monte 

Carlo simulation, representing extreme errors and extreme changes as draws from a Bernoulli 

distribution and an integer uniform distribution respectively. 

For extreme errors, we simulate a set of projections for the seventeen quantities analyzed. We 

use a Bernoulli distribution to randomly assign each projection as either an over-projected 

extreme error (probability 0.025), or not (probability 0.975). We similarly assign each projection 

as either an under-projected extreme error (probability 0.025), or not (probability 0.975). In this 
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way, 2.5% of all projections are under-projected extreme errors, and 2.5% are over-projected 

extreme errors. For each quantity, we simulate 71 projection errors in 1985-1994, 126 in 1995-

2004, and 181 in 2005-2014. These correspond to the number of projections for sixteen of 

seventeen quantities. GDP has only 45 in 1985-1994, 124 in 1995-2004, and 181 in 2005-2014. 

For simplicity, we give GDP the same number of simulated projections as the other quantities. 

We use Monte Carlo simulation to replicate this process of random extreme error generation 

1000 times per simulation. 

We then simulate cross-quantity correlations in two ways. First, we parametrically set a fixed 

cross-quantity correlation for all pairs of unique quantities for all years. Second, we use cross-

quantity correlations derived from projection errors from each individual AEO. We measure 

cross-quantity error correlation !"#,"%,&, between quantities qi ≠ qj, for a given AEO, k, as:  

 !"#,"%,& = ()**+(	./,+,&, .0,+,&), 

Where εi,t,k is the projection error for quantity q, projection year t, and AEO base year, k. Corrt() 

is correlation, operating over projection years, t. 

This analysis does not model serial correlation which, if included, could increase the simulated 

probability of our results occurring by chance. There are two types of serial correlation of 

concern. The first is serial correlation between errors from the same AEO for successive 

projection years. The second is serial correlation between errors for the same projection year 

from AEO reports from successive years. See the SI, Section 6.12 for approximate bounds on the 

effects of serial correlation. 

The two key results we examine are first, the increase in the frequency of extreme errors in 2005-

2014 relative to 1995-2004 for 15 of the 17 quantities, and second, that extreme errors occur in 



 13 

2005-2014 for 10 of the 17 quantities. We use Monte Carlo simulation to estimate the probability 

of each of these events, P(increase in 15 quantities in ‘05/’14 v. ‘95/’04), and P(All + extreme 

errors for 10 quantities in ‘05/’14), respectively. We estimate these probabilities as the fraction 

of the 1000 Monte Carlo iterations in a given simulation in which each respective condition is 

met. 

Figure 5 shows P(increase in 15 quantities in ‘05/’14 v. ‘95/’04) using cross-quantity correlation 

derived from projection errors in each AEO report for which there are at least four projection 

errors (AEO 1982-2011). The middle column of Table 1 shows P(increase in 15 quantities in 

‘05/’14 v. ‘95/’04) using parametric cross-quantity correlation. Note in Figure 5 that for 

correlations derived from all AEO reports, P(increase in 15 quantities in ‘05/’14 v. ‘95/’04) is 

less than 5%. 

We see instances in which all over-projected extreme errors occur for two to ten quantities, when 

using empirical correlations from errors in AEO 1982-2011. Thus, the probability of the 

observed ten quantities occurring by chance is less than 0.5%. 

In the vast majority of simulations, we find that no iteration produces ten or more quantities in 

which all over-projected extreme errors occur in 2005-2014. This occurs only in one of 1000 

iterations using correlations from AEO 2004. Figure 6 shows the maximum number of quantities 

in which all over-projected extreme errors occur in 2005-2014 for simulations using cross-

quantity correlations from each AEO report. 
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Table 1. Probability of observed results from a frequency of extreme errors analysis under uniform cross-quantity 

correlation between all unique pairs of quantities. Probability is computed as the fraction of the 1000 Monte Carlo 

iterations in a given simulation for which the desired condition holds true. The odds of the first outcome occurring 

by chance are below 5% for correlations less than 75%, while the second outcome does not occur by chance with 

probability at least 5% even with 99% correlation. 

Cross-quantity 
correlation 

P(increase in 15 quantities in 
‘05/’14 v. ‘95/’04) 

P(All + extreme errors for 10 
quantities in ‘05/’14) 

0% 0.1% 0.0% 

10% 0.0% 0.0% 

50% 1.6% 0.0% 

75% 5.7% 0.0% 

90% 13.4% 0.0% 

99% 30.5% 0.4% 

 

The right column of Table 1 shows the probability of observing ten or more quantities for which 

all over-projected extreme errors occur in 2005-2014, P(All + extreme errors for 10 quantities in 

‘05/’14), using parametric cross-quantity correlation. The measured probability is zero in all 

cases except 99% cross-quantity correlation, in which case it is less than 0.5%.  

These results suggest that the most extreme errors have indeed become larger for many quantities 

in the period from 2005-2014. We estimate that it is unlikely, but not inconceivable that we 

could observe our results by chance. We find that accounting for both types of serial correlation 

described above may increase the probability of an increase the frequency of extreme errors in 

2005-2014 relative to 1995-2004 for 15 of the 17 quantities to above 5%. Adding serial 

correlation does not increase the probability that all extreme errors occur in 2005-2014 for 10 of 

the 17 quantities to above 5% unless the values of one or both types of serial correlation are 

consistently at or above 99%. Spearman serial correlations in both directions described above 
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have a median value of 75%, with a standard deviation of 36%, well below the 99%+ level 

required. See the SI, Section 6.12 and Table 19 for further details. 

Similarly, we simulate the probability that our key volatility results could have occurred by 

chance using Monte Carlo simulation, assigning an upward and downward extreme change for 

each quantity using an integer uniform distribution over the years between 1950 and 2014. By 

definition, there is one upward and one downward extreme change for each quantity over the full 

study period. Our key results are that in 2005-2014, there are nine of a total of thirty-four 

extreme changes, eight of which are downward. For each quantity, we randomly select two years 

from an integer uniform distribution between 1950 and 2014, an upward and a downward 

extreme change. Note that because the data go to 1949, year-over-year changes begin in 1950. 

Also, because of sampling with replacement, there is a 1.5% chance of both the upward and 

downward extreme change occurring in the same year. This will slightly bias our results toward a 

higher probability of multiple extreme changes in the same decade. We consider cross-quantity 

correlation between pairs of unique quantities, using both a constant parametric correlation 

between all quantities, and correlations derived from the historical values of the quantities. 

Table 2 shows the probability of both key results occurring by chance, the percentage of 

iterations in which there are nine or more extreme changes in 2005-2014, P(9 extreme changes in 

‘05/’14), and the percentage in which there are eight or more downward extreme changes in 

2005-2014, P(8 downward extreme changes in ‘05/’14). In Table 2, we see that using historical 

Spearman correlations, both of the baseline results occur with greater than 10% probability, 

meaning that it is not unlikely that they occurred by chance. The historical correlations are 

roughly analogous to a uniform correlation level of 50%. 
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Table 2. Probability of observed results from extreme change analysis. Using historical correlations, or cross-

correlations above 50%, the probability of each of the two outcomes occurring by chance is well above 5%.  

Rank Correlation P(9 extreme changes in 
‘05/’14) 

P(8 downward extreme changes 
in ‘05/’14) 

0% 2.1% 0.1% 

10% 7.3% 0.9% 

50% 18.5% 9.4% 

90% 25.6% 15% 

99% 27.5% 15.6% 

Historical correlations 27.3% 14.9% 

 

2.4. Analysis and results 

 Year-on-year volatility and unpredictability 

We measure changes in the year-on-year volatility and unpredictability for seventeen key US 

energy-related quantities — the price, consumption, and production of oil, natural gas, and coal; 

electricity price and sales; residential, commercial, transportation, and total energy consumption; 

gross domestic product (GDP), and inflation. We measure year-on-year volatility (volatility) by 

computing year-over-year changes in observed historical values, Δht, from 1949 to today for 

each quantity, computed as: 

	Δℎ+ =
4564578
|4578|

,  (1) 

where ht is the historical value of an energy quantity in year t. We identify the years in which the 

single most positive and most negative changes occur for each quantity as extreme changes. 

Periods with more extreme changes across different quantities are more volatile. We compare 

alternative definitions of volatility in the SI, Section 6.6 and in Figure 19 and Figure 20. 
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This metric allows comparison of the relative volatility of different quantities, including those 

with particularly large or small historical variation, for annual-resolution data. Similar metrics 

are used in the finance and energy forecasting literatures (see the SI, Section 6.7). We define 

unpredictability as the prevalence of extreme errors within a time period. We define a projection 

error, ei,t, from a projection, pi,t, made in year i for year t, as:  

:/,+ =
;#,5645
|45|

, (2) 

 

where ht is the historical value in year t.  

We define projection length (li,t), with li,t = t – i. Because the nearer future may be easier to 

predict, we perform our analysis over different projection intervals, defined as short-term (1 

≤ li,t ≤ 5), medium-term (6 ≤ li,t ≤ 10), and long-term (11 ≤ li,t ≤ 21). For each projection, pi,t, its 

projection length, li,t, falls in one of these projection intervals, categorizing that projection as 

short-term, medium-term, or long-term. Some grouping is necessary to ensure adequate 

statistical power in our analysis. In 6.8, we define projection intervals in different ways and find 

that our key results are generally robust to different projection intervals. For each projection 

interval, we define extreme errors as those errors located outside the 95% probability interval – 

i.e. below the 2.5th percentile or above the 97.5th percentile of errors (See Methods and data, 

Section 2.3, and Figure 1). 
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Figure 1. Cumulative distribution functions (CDFs) of the percent projection errors for natural gas production 

separated by projection interval. The 2.5th and 97.5th percentiles are shown as magenta horizontal lines, whose 

intersection with the CDFs are the extreme error thresholds. Projections 1-5 years into the future are short-term, 6-10 

years are medium-term, and 11-21 years are long-term. Note that the median value for short-term and medium-term 

projections is close to zero, while the median for long-term projections is closer to 3%. 

We measure unpredictability by comparing the frequency of extreme errors, ft, over a time-

period, t: 

<= =
>?,=
>;,=

 

 

(3) 

Where Ne,t is the total number of extreme errors in time-period t, Np,t is the total number of 

projection values in time-period t, and t is a single year, or a set of years.  
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 Increase in volatility and unpredictability 

We compare the relative frequency of extreme changes (year-on-year volatility) and extreme 

errors (unpredictability) in consecutive 10-year periods.   

Our definition of volatility is based on year-over-year percent changes, shown below for natural 

gas price and oil production in Figure 2. Note that the largest decrease in natural gas price and 

the largest increase in oil production between 1949 and 2014 occur between 2005 and 2014. See 

the SI, Figure 21 for plots of the remaining quantities. 

 

Figure 2. Year-over-year percent changes for two energy quantities. a) natural gas price (in constant 2005 dollars) 

and b) oil production data show that the largest decrease in natural gas price and the largest increase in oil 

production both occur between 2005 and 2014.   

The last decade (from 2005 to 2014) was more volatile than the preceding three decades: 

comparable levels of volatility are only seen in the 1950s and 1960s. Figure 3 shows extreme 

changes for each energy quantity over time. Black triangles indicate the year of the greatest 

increase, ∆ht, in each quantity since 1949, and red triangles indicate the year of greatest decrease.  
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Figure 3. Extreme changes for seventeen energy quantities, from 1949 to 2014. The black and red triangles indicate 

the largest year-over-year increases and decreases in the quantities. Note the high concentrations in the 1950s, 

1960s, and from 2005-2014. 

By our definition, there are thirty-four extreme changes, two for each of the seventeen quantities. 

Nine of these quantities fall between 2005 and 2014, with only seven in the entire thirty-year 

period from 1975 to 2004. The remaining eighteen fall between 1950 and 1974. Only in the 

1950s and 1960s is there a comparable concentration of extreme changes, largely driven by high 

economic growth rates during that period, a tighter relationship between economic growth and 

energy consumption, and smaller baseline levels for most quantities.  

The few extreme changes that occur between 1975 and 2004 are associated with oil and natural 

gas, due to major swings in international oil markets in the 1970s and 1980s, and rapid changes 

in the use and regulatory structure of natural gas in the 1980s and 1990s34. 
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Of the nine extreme changes in the decade from 2005 to 2014, eight are abrupt decreases, most 

likely due to the Financial Crisis and its aftermath. The widespread adoption of horizontal 

drilling with hydraulic fracturing in shale formations, particularly after 2007, is unquestionably a 

major factor in the 17% increase in oil production in 2014, and the 54% decline in natural gas 

prices in 2009.  

If we normalize energy production and consumption quantities and GDP, by total US population, 

the volatility results are similar, with eight extreme changes in 2005-2014 and seven in 1975-

2004 (see the SI, Section 6.9). 

 Unpredictability in recent years 

We find that unpredictability, measured as the frequency of extreme errors in AEO projections, 

has increased in the most recent decade. Figure 4 shows the frequency of over-projected (red) 

and under-projected (black) extreme errors since 1985 (the first year for which there are AEO 

projections). The placement of circles along the x-axis corresponds to the year in which extreme 

errors occur. The size of each circle corresponds to the frequency of extreme errors: for example, 

the 47% frequency of over-projected extreme errors in coal consumption in 2012 means that 

47% of all projections of coal consumption for year 2012 from different AEO reports resulted in 

over-projected extreme errors. See Supplementary Data 1 for data underlying Figures 3 and 4. 
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Figure 4. Annual frequency of extreme errors for each quantity. Red and black circles correspond to over-projected 

and under-projected extreme errors, respectively. The size of each circle corresponds to the frequency of extreme 

errors in that year. Note that for ten quantities, all over-projected extreme errors occur in 2005-2014. 

The high concentration of extreme errors in the last decade consists largely of under-projections 

for prices and inflation and over-projections for energy production, and consumption. All over-

projected extreme errors over the thirty-year study period occur in 2005 to 2014 for ten 

quantities: production and consumption of natural gas and coal; oil production; electricity sales; 

total, residential, and transportation energy consumption; and GDP. This means that the largest 

over-projected errors in this period for the short-, medium-, and long-term for these quantities 
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were larger than any seen in the preceding twenty years. In the same period, 2005-2014, fifteen 

quantities, all except total and commercial energy consumption, experience an increase in the 

overall frequency of extreme errors relative to 1995-2004. See the SI, Figure 22 and Figure 23, 

and Section 6.10 for analogs to Figure 3 and Figure 4 that include three derivative but important 

quantities, oil and natural gas net imports and energy-related carbon dioxide emissions. 

To evaluate the probability of these results occurring by chance, we perform Monte Carlo 

simulation. In each simulation, we randomly generate 1,000 datasets of projection errors from 

the seventeen quantities. Drawing from a Bernoulli distribution, each simulated projection error 

has a 2.5% chance of becoming a positive extreme error, and a 2.5% chance of becoming a 

negative extreme error. The probability of an event occurring by chance, the p-value, is the 

fraction of simulated scenarios in which that event occurred. We replicate each simulation using 

cross-quantity Spearman correlations derived from the projection errors in each AEO report (see 

Section 2.6 for these and other related correlations, and the SI, Section 6.11 for further 

discussion of these correlations). We report an upper bound on the highest p-value across all 

such simulations as the probability of an event occurring by chance. 

Our results suggest that under realistic levels of cross-quantity projection error correlation, it is 

unlikely but possible, with probability below 5% in all cases, that we would observe an increase 

in extreme errors from 1995-2004 to 2005-2014 for 15 quantities by chance in a time-stationary 

process (see Figure 5 and Table 1). It is highly unlikely, with probability below 0.5%, that all 

over-projected extreme errors would occur in 2005-2014 for 10 quantities (see Figure 6). In 

other words, both of these results are, in a certain sense, statistically significant. See Section 2.3 

and the SI, Section 6.12 for a further discussion bounding the effects of serial correlation. 
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Figure 5. The simulated probability of observing increases in the frequency of extreme errors for at least fifteen of 

seventeen quantities between in 2005-2014 v. 1995-2004. This uses correlations from AEO 1982-2011. In all cases, 

this probability is less than 5%, the dashed horizontal line. 

 

Figure 6. The maximum number of quantities for which all over-projected extreme errors occur in 2005-2014. This 

is derived from 1000 simulations using empirical cross-quantity correlations from each AEO report. The dashed 

horizontal line is at the observed value of ten. 

Using similar methods, described in Materials and Methods, we compute the probability of the 

volatility results occurring by chance. Given historical levels of correlation between the 
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quantities themselves, Table 2 shows roughly a 10%-20% chance of finding the observed 

disproportionate clustering of extreme changes in 2005-2014 in a time-stationary process. The 

large number of under-projected extreme changes is consistent with extreme errors results, 

especially the large number of quantities for which all over-projected extreme errors occur in 

2005-2014. 

In the SI, Section 6.8, we test the robustness of these results to alternative definitions of extreme 

error, and subsets of the data. See the SI, Figure 24 and Figure 25 for graphical representations 

of these results. 

2.5. Conclusions and policy implications 

We find an increase in both year-on-year volatility and unpredictability for a broad range of 

quantities in the most recent decade relative to the immediately preceding decades. In the SI, 

Section 6.13, we demonstrate a case in which considering errors from 2005-2014 makes the 

difference between profit and loss for a liquefied natural gas export terminal (see Supplementary 

Figure 10 for the natural gas price scenarios used). Still, volatility was highest in the period from 

1950-1974, meaning that the relative quiescence from 1975-2004 may itself be the anomaly. 

Also, the observed increase in volatility may be due to increased flexibility in energy 

infrastructure deployment, e.g. distributed energy resources and hydraulic fracturing wells, but 

the implications for energy decision-makers are largely the same regardless. Note that high 

concentrations of extreme errors begin before both the massive expansion of hydraulic fracturing 

and the Great Recession. For example, a concentration of extreme errors between 2005 and 2006 

for natural gas production, consumption, and prices is visible in Figure 4. This suggests that the 

observed increase in volatility and unpredictability in this decade is due to a number of 

interlinked, unanticipated developments. While all the authors of this paper have worked on 
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topics related to energy systems, we do not claim to be experts on all the drivers of the observed 

results. We suggest that these developments may have contributed to the observed results:  

In the late 1990s, natural gas was cheap and abundant, and projected to remain so for decades 35. 

These expectations, coupled with newly restructured electricity markets in many US states, 

encouraged construction of natural gas electricity generation plants on an unprecedented scale, 

particularly between 1999 and 2005 36. However, large increases in offshore production and 

Canadian imports of natural gas predicted in the 1990s and early 2000s failed to materialize, 

driving up natural gas prices 30. As a result, generation costs for new natural gas plants were 

higher than anticipated, and plant utilization was much lower 30. After 2007, tight oil and natural 

gas production increased massively, driving down natural gas prices, and encouraging increased 

use of natural gas for electricity generation, displacing generation from coal 30. Global oil prices 

rose substantially in the mid-2000s, peaking in 2008, largely as a result of increased demand in 

Asia, particularly China, and the Middle East 37. High prices fostered the expansion of 

unconventional oil extraction in the US and internationally. The Financial Crisis of 2007-2009 

and the ensuing Great Recession depressed demand for energy 30, placing a downward pressure 

on energy prices, including oil and natural gas.  Vehicle transportation usage declined, with 

vehicle miles traveled peaking on a per-capita basis in 2005 and on a national total basis in 2007 

38. Finally, industrial energy consumption fell due to deindustrialization and increased energy 

efficiency, a trend in many sectors of the economy. In combination, these factors led to an 

unexpected decline in total US energy consumption from its peak in 2007 30. 

The observed increase in the volatility and unpredictability of key energy-related quantities may 

suggest complex structural shifts in the US and world economies and energy systems. Any 

improvements in the world’s most sophisticated energy system models would likely have been 
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overwhelmed by these changes. This turbulence may or may not continue. However, this 

analysis should serve as a stark reminder of the importance of considering the possibility of 

further surprises when planning for the future.  

2.6. Data availability statement 

Data that support the plots within this paper are available from the US Energy Information 

Administration (https://www.eia.gov/outlooks/aeo/archive.php), the Bureau of Economic 

Analysis (https://www.bea.gov/industry/xls/io-annual/GDPbyInd_VA_1947-2016.xlsx), and Oak 

Ridge National Laboratory (http://cdiac.ornl.gov/ftp/trends/emissions/usa.dat), and are described 

further in Supplementary Methods.  
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3. Chapter 3. Characterizing the relationship between low-

income electric subsidies and the intra-day timing of electricity 

consumption 

With Inês M. L. Azevedo, Dept. of Engineering and Public Policy, Carnegie Mellon University 

3.1. Abstract 

Electricity rate subsidies have long been used to provide low-income households with greater 

access to affordable energy services, which can bring enormous quality of life benefits. Such 

policies are likely to increase consumption and indeed this is arguably an intended consequence. 

Increases in electricity consumption necessitate additional electricity generation, with associated 

greenhouse gas (GHG) and criteria pollutant emissions, and may lead to increases in peak 

capacity requirements as well. We estimate the effect of the California Alternate Rates for 

Energy (CARE) subsidy on electricity consumption in northern California with a panel of 

interval electricity consumption data from more than 30,000 households using a difference-in-

differences model. We find that CARE enrollment is associated with an increase in electricity 

consumption of 13% [10%, 15%], with a comparable increase in the hot Central Valley, a lower 

increase on the Coast, and a higher increase in the Inland Hills region in between. There is 

significant intra-day variation across all regions and seasons, with significant increases during 

current peak demand periods of 3-9pm as high as 6% [3%, 10%] in all cases except in the 

Central Valley. Using a time-invariant estimate of the price elasticity of demand, we estimate the 

climate and human health damages and peak capacity costs associated with this increase in 

consumption at $31M [$25M, $37M], $14M [$11M, $17M], $29M [$23M, $34M], respectively. 

Switching to intra-day estimates increases these costs by up to $4M, although this increase is not 
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statistically significant. In light of these externalities, it would be useful to compare the cost-

effectiveness of energy subsidies with other methods of ensuring affordable access to energy 

services, including subsidies for energy efficiency, which may in some cases achieve the same 

result without increasing emissions or stressing the grid. Policy makers may want to consider 

such indirect costs as part of a holistic energy policy strategy, as they represent roughly 11% of 

annual expenditures on CARE disbursements. A time-invariant price elasticity of demand will 

likely be sufficient for most purposes.   

3.2. Introduction 

Throughout the United States and internationally, many electric utilities offer subsidized 

electricity rates to low-income households to ensure affordable access to important energy 

services 39,40. As governments enact policies to reduce greenhouse gas (GHG) emissions from the 

electric power sector, subsidies will remain an option to help ensure that the associated costs are 

not borne disproportionately by low-income households.  

Economic theory suggests that the implementation of subsidies will increase electricity demand 

in enrolled households through a price elasticity of demand 41,42. Because electricity supply must 

always match instantaneous demand, the timing as well as the magnitude of this increase will 

affect the cost and reliability of the electric power system as a whole. In addition, the marginal 

emissions of GHG and criteria pollutants from the electric power sector change over time, 

meaning that consumption at different times can result in greater or smaller damages 43,44. 

The importance of timing will likely become even more pronounced in an electric power system 

with high levels of non-dispatchable renewable electricity, such as wind and solar. California’s 

high levels of solar photovoltaic electricity are already suppressing midday springtime wholesale 

prices to very low, or even negative values 45. This means that increased consumption during 
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those hours places relatively little incremental burden on the system and, if this consumption 

prevents curtailment of renewable electricity generation, few additional emissions of GHG or 

criteria pollutants. However, as the sun sets and many people return home from work, a host of 

dispatchable fossil-fired electric power generators must come online to meet demand. Additional 

consumption during this period requires additional dispatchable generation capacity that must be 

available and likely adds GHG and criteria pollutant emissions from fossil fuel combustion as a 

result. Furthermore, incremental electricity demand during peak hours, e.g. additional air 

conditioning during the hottest hours of the year in California, increases requirements for 

peaking electricity generation capacity and transmission and distribution infrastructure. In the 

United States, all of these costs are generally borne by electric ratepayers.  

Policymakers interested in ensuring affordable, low-carbon electricity for all can thus gain 

important insights into the broader impacts of low-income subsidies by considering not only the 

average effect of low-income subsidies on electricity demand, but also the intra-day timing of 

these effects across different regions and seasons. Such analysis can then inform the design of 

future time-of-use residential electricity rates that can help ensure affordable, clean electricity for 

all. 

 Background 

Numerous studies estimate the price elasticity of residential electricity demand, the marginal 

change in electricity demand induced by a marginal change in electricity price, across different 

populations in different countries. Estimated values for the short-run, often defined as the 

response within the same month as a change in price, fall between 0 and -2.5 41,42,46–53, with a 

median around -0.35 41. In the long-run, generally timescales of months to years, estimates range 

from 0 to -4.56 41,42,46–53, with a median around -0.81 41. This wide range is partially attributable 
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to the time and geographical location at which each study was conducted, how long a time series 

was used, and inherent uncertainty in what are generally observational estimates of a causal 

parameter. However, it is also indicative of heterogeneity in local climates, and customer 

characteristics. Given this, it is reasonable to believe that the price elasticity of residential 

electricity demand may be different depending on the time of day. There is evidence that the 

price elasticity of national electricity demand tends to fall as gross domestic product increases in 

industrialized economies 54, but the relationship between income and price elasticity is less clear 

at the household level. 

The widespread deployment of advanced metering infrastructure (AMI) by many electric utilities 

over the past decade and a half facilitates more detailed analysis of intra-day variation in the 

effect of various interventions on residential electricity consumption 55. Jessoe et al. 56 use a 

randomized controlled trial to estimate the intra-day responsiveness of household electricity 

consumption to critical peak electricity pricing, in which electricity rates rise during anticipated 

peaks in system-wide electricity demand. Boomhower et al. 57 use quasi-experimental methods to 

estimate the timing of electricity savings from an air conditioner repair program. Qiu et al. 58 

estimates hourly energy consumption effects of Energy Star and Leadership in Energy and 

Environmental Design (LEED) building certifications. 

This analysis focuses on the California Alternate Rates for Energy (CARE) subsidy, which is 

available to low-income California households who receive electric or natural gas service from 

investor-owned utilities 39. Eligible households must have income within 200% of the federal 

poverty level or must meet one of a number of categorical criteria, such as enrollment in other 

state or federal means-tested programs 39. In 2012, just after the period for which we have data, 

the program provided an average subsidy of 33%, or $29 per month to 3.2 million California 
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households, with households in the Pacific Gas and Electric Co. (PG&E) service territory 

receiving an average discount of 42%, or $40 per month 39. CARE is funded by a public purpose 

customer charge included in electricity rates, with $4 billion approved for the 2012-2014 budget 

cycle 39. Thus, CARE constitutes a transfer payment from all non-CARE customers. 

California has had low-income electricity subsidies since 1989, with substantial expansions in 

the aftermath of the 2001 Energy Crisis. In 2012, 32% of California households, and 30% of 

PG&E households, were eligible for CARE 39. In 2011, 93% of eligible California households 

were enrolled in CARE, with 90% participation in the PG&E service territory 39, a 31% increase 

over 2008 enrollment 59. This is consistent with estimates that approximately 10% of eligible 

households may be choose not to participate in CARE 60. See the SI, Section 7.1 for further 

historical and demographic information. 

 Potential for intra-day variability in the price elasticity of demand 

Existing estimates of the price elasticity of demand generally do not capture intra-day variability 

in consumption effects. CARE enrollment could also result in relatively time-invariant increases 

in electricity consumption, such as the purchase of an additional refrigerator. However, a low-

income subsidy could also result in differential effects at different times in numerous ways. 

Lower prices may incentivize households to increase use of occupancy-dependent energy 

services, i.e. end uses that people only use when they are at home. This could include new capital 

purchases, e.g. a new television, or more intensive use of existing devices, e.g. watching more 

television. 

Occupancy-dependent loads depend on occupancy patterns. Thus, one would expect such 

increases to occur primarily in the evenings after work or school and to a lesser extent in 

mornings as many occupants are preparing to go to work or school. 
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In warmer regions of California in particular, the presence of a subsidy may encourage adoption 

or more intensive use of air conditioning, a major determinant of peak demand. In the Central 

Valley, where roughly 95% of the population has some form of air conditioning 61, electricity 

demand approximately doubles during the summer in our sample (see the SI, Section 7.2.5 for 

further details). Conversely, electricity demand in the Coast and Inland Hills is fairly flat 

throughout the year, with a modest winter peak. The climate is substantially cooler on the Coast, 

where ~15% of households have air conditioning, and fairly moderate in the Inland Hills, where 

~60% of households have air conditioning 61. 

This suggests that CARE enrollment is unlikely to spur air conditioner adoption in the Central 

Valley but could encourage additional use of existing air conditioning. Households in warmer 

areas of the Inland Hills may adopt air conditioning. The cooler climate on the Coast suggests 

that CARE enrollment is unlikely to spur adoption of air conditioning and any additional air 

conditioners likely would not be used very often, although perhaps they would be used on hot 

summer peak demand days. 

 Aims 

This study aims to estimate the relationship between enrollment in the CARE low-income 

electric subsidy in northern California and subsequent electricity consumption for households 

across different California regions and in different seasons. The primary goal is to establish 

whether there are significant intra-day differences in the estimated effect. That is, does the price 

elasticity of demand vary throughout the day? We then evaluate whether accounting for these 

intra-day differences substantively changes estimates of the indirect costs of this subsidy 

program.  
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3.3. Methods and data 

 Hourly panel of household electricity consumption 

We use hourly electricity consumption data from a random sample of roughly 30,000 households 

in northern California, acquired from the Pacific Gas & Electric Co. (PG&E) service territory 

through the Wharton Customer Analytics Initiative. Data include enrollment and disenrollment 

dates for the CARE program and several other utility programs, as well as dates of participation 

in rebate programs for energy-efficient appliances and services. These data also include each 

household’s census block, which allows matching both to neighborhood-level demographics 

from the 2010 Census and to temperature data from nearby weather stations. 

Advanced metering infrastructure (AMI) was installed at dwellings during the study period of 

2008-2011. For each dwelling, hourly data begin after the installation of AMI, which was staged 

across the three regions of the Central Valley, Inland Hills, and Coast, shown in the SI, Sections 

7.2.1 and 7.2.2. As a result, the panel is unbalanced, with two or more years of data from most 

Central Valley dwellings and less than one year of data for most dwellings on the Coast. This 

stratified sample includes 8,597 dwellings on the Coast, 11,391 in the Inland Hills, and 10,217 in 

the Central Valley, totaling 30,205 dwellings.  

Table 3 shows demographic statistics for the sample based on census block-level information. 

Households in the predominantly agricultural Central Valley tend to have lower incomes, lower 

home values, and less education than those in the Coast and Inland Hills, which together include 

most of the wealthy San Francisco Bay Area, including Silicon Valley. Rates of renting are 

higher on the more urban Coast than in the more suburban and rural Inland Hills and Central 

Valley.  
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Table 3. Summary statistics for 2010 census block neighborhoods of households in the sample*. The Central Valley 

has the lowest incomes and home values.  

 Central Valley Inland Hills Coast Full 
sample 

Median Home Value* 282,000 586,000 597,000 479,000 
Median Income* 51,800 78,500 63,400 65,600 
Median % Renters 34 32 51 38 
Median % w/ Bachelors (or 
higher) 

17 38 40 32 

Number of dwellings 8,597 11,391 10,217 30,426 
* These values are medians from our sample of Census block neighborhood medians. The values are top-coded by 

the US Census at $1M and $250k, respectively. We report the values rounded to the nearest $1000 for median home 

value, and to the nearest $100 for median income values. Adapted from Meyer 62. 

CARE enrollment surpasses 30% of the sample by the end of the study period. CARE 

households are distributed across all three regions, in rich and poor areas. In the Central Valley, 

households in the poorest tertile of census block income have CARE participation rates of 55% 

at the end of 2011. In the Inland Hills and Coast, CARE participation in poor census blocks is 

also above 40%. Even in census blocks with relatively high incomes, CARE participation is at 

least 10% in all three regions. See the SI, Section 7.2.3 for further details. 

Households also had access to several other utility programs offered through PG&E. These 

included energy efficiency rebates, an air conditioner demand response program, a seasonal bill 

smoothing program, critical peak pricing, direct electricity purchases from an alternate supplier, 

and the option to purchase carbon emission offsets. These programs are described further in the 

SI, Section 7.2.4. 
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 Regression specification 

We estimate intra-day variation in the relationship between enrollment in the CARE low-income 

electric subsidy and electricity consumption using a difference-in-differences regression model. 

The main analysis uses the following regression specification, inspired in part by Boomhower et 

al. 57: 

 

ln	(B/+4) = C4(DEF/+14 + IJK/+41L#5MNOP°R + ISK/+41L#5MTOP°R + U/4 + VS4 + W/+4   (4) 

 

Where yith is electricity consumption in kWh by dwelling i in day-of-sample t in hour-block h, 

where the day is divided into eight three-hour blocks, starting at 12am. The three-hour blocks 

from 3pm-6pm and 6pm-9pm roughly correspond with peak electricity pricing periods in 

PG&E’s current residential time-of use rates, which are offered at 3pm-8pm or 4pm-9pm 63. We 

consider ln	(B/+4) as the independent variable both because this analysis ultimately aims to 

estimate a price elasticity of demand, which is more easily calculated with logarithmic 

coefficients, and because the distribution of electricity consumption across households is 

approximately lognormal (see the SI, Section 7.1). CAREit is CARE enrollment status of 

dwelling i in day-of-sample t. This is an indicator variable, which takes the value of 1 when a 

household is enrolled in the program. 14 is an indicator each hour-block of the day. Tith is the 

temperature at dwelling i in day-of-sample t in hour-block h, using the average temperature from 

the three weather stations closest to the census block of dwelling i across the three hours in the 

hour-block, with data from the National Oceanic and Atmospheric Administration 64.  

Electricity rates did not have substantial seasonal variation during the study period, but 

California has recently adopted seasonally-varying time-of-use rates to more accurately price 
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peak consumption 63. In seasonal regressions, we divide the sample into two seasons based on 

time-of-use rates currently available through PG&E 63. The four-month Summer is June-

September, while Winter is the remaining eight months, October-May. 1L#5MNOP°R and 1L#5MTOP°R 

are indicator functions for whether the average temperature in hour-block h is above or below 

65°F. This piecewise linear representation of temperature response accounts for heating and 

cooling. U/4 is a fixed effect term for dwelling i in hour-block-of-day h. VS4 is a fixed effect 

term for hour-block h of week-of-sample w, with separate fixed effects for weekdays and 

weekends. W/+4is an error term corresponding to dwelling i in day-of-sample t in hour-block h.  

Intra-day coefficient estimates use the first hour-block, 12am-3am, as the baseline. Coefficients 

for other hour-blocks represent deviations from the baseline. 

The key differences between this regression specification and that used in Boomhower et al. 57 

are: 1) We estimate 8 C4 coefficients (one for each hour-block), while they estimate 288 

C4Xcoefficients (24 hours for each month); 2) For us t is the week-of-sample, separated into 

weekdays and weekends, while they treat t as the week-of-sample; 3) We control for temperature 

response. Boomhower et al. study air conditioner energy efficiency, meaning that the 

introduction of temperature controls would have potentially confounded estimation of efficiency 

gains for this highly temperature sensitive load 57. 

We use Eq. 4 to estimate the hourly relationship between CARE enrollment and electricity 

consumption for the full sample and for regions within the sample. In all cases, we use cluster-

robust and heteroskedasticity-robust standard errors.  

In the baseline cases, we use the full sample, including dwellings that never enrolled in CARE, 

those that enrolled in CARE during the study period, and those that are enrolled in CARE 

throughout the entire study period. As a result, some dwellings have no pre-treatment data. 
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Including these dwellings helps capture any differential trends in dwelling electricity 

consumption between CARE and non-CARE households, such as income shocks that 

disproportionately affect low-income households. 

To quantify the benefits of estimating an hourly price elasticity of demand, we compare the 

above intra-day estimates of the effect of CARE with time-invariant estimates. Eq. 5 uses the 

same dataset as Eq. 4 but drops intra-hour differentiation from the treatment effect estimate, CY, 

and from the dwelling-level and week- and weekend-of-sample fixed effects, U/ and VS. 

 

ln	(B/+4) = C(DEF/+ + IJK/+41L#5MNOP°R + ISK/+41L#5MTOP°R + U/ + VS + W/+4   (5) 

 

We also consider a battery of robustness checks, described in detail in the SI, Section 7.5.3. 

 Bounding analysis: Estimating the value of characterizing intra-day variability in 

price-responsiveness 

We estimate the climate change and human health damages, and electric power system peak 

capacity costs associated with the estimated increase in electricity consumption associated with 

enrollment in CARE. We compare costs estimated using intra-day and flat estimates. 

In the base case, we estimate the marginal damages associated with changes in hourly electricity 

consumption from the Western Electricity Coordinating Council (WECC) from 2011 using 

marginal emission factors from Azevedo et al., described in further detail below in Section 3.3.4 

65. We estimate peak electricity capacity costs at $170/kW-yr based on the cost of new entry for a 

natural gas combustion turbine plus transmission and distribution capacity costs from PG&E 66. 

See the Section 3.3.5 below for further detail. Capacity costs are estimated using estimates of the 

increase in electricity consumption associated with CARE enrollment from 6-9pm, capturing 
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much of PG&E’s residential peak pricing period in both the 3-8pm and 4-9pm options available 

to customers 63. 

We estimate the total energy and power increase due to CARE assuming the average household 

in the sample is representative of the average household in PG&E, with a flat demand profile for 

simplicity. This corresponds to annual household consumption of 7,643 MWh at 0.87 kW of 

constant power demand. CARE enrollment reached roughly 34% of PG&E’s 4,550,000 

customers enrolled at the end of 2011. Thus, we apply the estimated time-invariant or intra-day 

increase associated with CARE enrollment to the roughly 1,530,000 the estimated households 

enrolled in CARE in 2012 in the PG&E service territory and compare the climate change, human 

health, and capacity costs associated with both methods 39. 

 Climate and human health effects 

We compute the climate and human health effects of marginal changes in electricity generation 

at different hours of the day using hourly emission factors from Azevedo et al. for WECC in 

2011 65. Marginal emission estimates for greenhouse gases and criteria pollutants are based on 

regression analysis of historical electricity generation patterns, described in Siler-Evans et al. 43. 

Marginal human health damage estimates use the AP2 integrated assessment model, which links 

emissions in a particular location to human health damages 67.  

We place a cost value on greenhouse gas and criteria pollutant emissions using a social cost of 

carbon of $40/t(CO2) and a value of statistical life of $6M for consistency with similar policy 

analysis, recognizing that policy makers may wish to use a substantially higher or lower social 

cost of carbon 65. Climate and human health damages are reported in 2010 dollars. 

Confidence intervals for each hour-block are computed by adding confidence intervals for the 

baseline coefficient to the corresponding hour-block. Damages are then computed for each hour-
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block and the resulting mean estimates and confidence intervals are then summed to produce a 

single confidence interval. Note that this represents an upper bound on the true confidence 

interval, as standard errors add in quadrature. However, the primary source of uncertainty is the 

confidence interval of the baseline estimate, which represents a low bound on the true confidence 

interval.  

 Cost of peak electricity consumption 

We use a cost of incremental peak electricity consumption based on the California Public 

Utilities Commission’s 2018 Avoided Cost Calculator 66. Marginal generation capacity is met 

with a simple-cycle natural gas turbine at $1,250/kW, annualized over a 20-year lifetime at a 

7.4% weighted average cost of capital to $121.7/kW-yr, with $12/kW-yr in fixed operations and 

maintenance (O&M) expenditures 66. This analysis ignores variable O&M and energy costs, 

which will be small for a peaking plant that will operate for a very small fraction of the year. 

Thus, the annualized cost of peak generation is $133.7/kW-yr. 

Historical average transmission costs across PG&E’s 18 service divisions are roughly $35/kW-

yr, with secondary distribution costs at $2.5/kW-yr 66.  

This brings the total effective cost of additional peak consumption to $171.1/kW-yr, which we 

round to $170/kW-yr. 

 Statistical significance 

Note that in the intra-day specification in Eq. 4, it is possible for there to be a statistically 

significant increase in electricity consumption in one hour-block of the day that falls within the 

confidence interval of the baseline estimate for the hours 12am-3pm. This adds complexity to the 

question of whether an increase in damages is statistically significant. In this analysis we say that 

a mean difference is statistically significant only if it falls outside the confidence interval 
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computed as the simple summation of the mean estimates and confidence intervals for each hour 

of the day, recognizing that this is, strictly speaking, an upper bound on the true confidence 

interval. 

 Limitations 

This analysis is an observational study of a mature utility program attempting to characterize 

what is fundamentally a causal relationship between electric subsidies and electricity 

consumption. As a result, there is substantial potential for selection bias and, in this case, we 

were not able to identify a clear natural experiment or other technique that would enable a 

convincing improvement over the rich fixed effects difference-in-differences model in Eq. 4. 

The SI, Section 7.4, details some of the key limitations of the dataset, such as confounding of 

CARE enrollment with unobserved changes in income and employments status and lack of 

access to transparent electricity rate information. The section describes methods traditionally 

used to address such concerns and explains why they likely are not well-suited for this particular 

case. These methods include instrumental variables, propensity score matching, and regression 

discontinuity. 

3.4. Analysis and results 

Participation in the CARE program is associated, as expected, with an overall increase in 

electricity consumption and significant intra-day variation in all cases.  

Figure 7 shows the estimated mean and intra-day increases in electricity consumption associated 

with enrollment in CARE. The black dashed lines represent the baseline estimate in the hours of 

12am-3am, with black dotted lines representing the 95% confidence interval. In the full sample, 

electricity consumption increases by 11.6% with a 95% confidence interval of [9.2%, 14.2%], 

with a minimum of across all six scenarios of 7.0% [0.9%, 13.5%] on the Coast and a maximum 
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of 13.5% [8.9%, 18.3%] in the Inland Hills. Note that logarithmic coefficients and their 

confidence intervals are converted to percentages using the formula ex – 1. 

Intra-day coefficients are statistically significant at the 5% level if their 95% confidence interval 

does not contain the baseline value, the black dashed line in Figure 7. All cases except the 

Central Valley show significant intra-day increases in electricity consumption during 3-6pm 

(hours 15-17) or 6-9pm (hours 18-20), which fall within PG&E’s current residential summer 

peak pricing periods of 3-9pm 63. In addition, the Full Sample sees a significant increase within 

the system’s historical afternoon peak period of roughly noon-6pm, apparently driven by the 

Coast and Summer 68.

 

Figure 7. The estimated percent increase in electricity consumption due to CARE. Intra-day changes, with 95% 

confidence intervals, are relative to the estimate for the first three baseline hours of the day, 12am-3am, the black 

dashed line, whose 95% confidence interval is represented with black dotted lines. An increase is significant if its 

95% confidence interval does not contain the black dashed line. All cases see baseline increases in electricity 

consumption between 7% and 14%, with significant increases during PG&E’s current peak hours of 3-9pm, hours 

15-20, in all cases. The absolute increase in consumption is largest in the Inland Hills, Central Valley, and Summer, 

but the intra-day effects are most pronounced on the Coast. 
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Note that although the percent increase associated with CARE participation is relatively flat in 

the Central Valley, there is more seasonal and intra-day variation in that warm region’s 

electricity consumption due primarily to summer air conditioning demand (see the SI, Section 

7.2.5). As a result, a constant percentage increase in electricity demand in the Central Valley 

may correspond to a greater absolute increase in on-peak electricity consumption than a time-

varying increase in the Coast or Inland Hills. 

The temperature coefficients in Eq. 4 are roughly symmetric in most cases. This may imply a 

roughly equivalent response to heating and cooling demand, but the fixed effects likely capture 

predictable seasonal or intra-day temperature response, potentially leading temperature 

coefficients to underestimate actual responsiveness to temperature. In the Full Sample, each 

degree Fahrenheit above or below 65°F is associated with an electricity consumption increase of 

2.06% [2.01%, 2.12%] for heating and 2.51% [2.45%, 2.56%] for cooling. The largest 

coefficients are in the Summer, with 4.00% [3.91%, 4.02%] and 3.75% [3.70%, 3.80%] for 

heating and cooling, respectively. The relatively large summer heating coefficient may be due to 

the fairly rare and less predictable nature of heating in the summer, which would make it less 

likely that weekday/weekend-of-sample fixed effects would capture this temperature-dependent 

variation. The smallest temperature coefficients are on the Coast, with -0.51% [-0.61%, -0.41%] 

and -0.40% [-0.49%, -0.31%], respectively. This unintuitive apparent temperature response and 

the relatively small magnitude of temperature coefficients in all of these regressions, is likely 

because the fixed effects absorb much of the temperature-dependent variation in electricity 

consumption. See the SI, Section 7.5 for all temperature coefficients from Eq. 4.  
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Table 4The time-invariant effects of CARE estimated in Eq. 5, shown in Table 4, are similar in 

magnitude to the average of the intra-day estimates. Temperature response coefficients are 

slightly larger but generally have the same order of magnitude, further suggesting that the fixed 

effects used in Eq. 4 likely capture some of the temperature response that has a predictable intra-

day pattern. Weekday-of-sample and weekend-of-sample fixed effects still likely capture some 

seasonally-dependent temperature response. 

 
Table 4. Estimated time-invariant effect of CARE on household electricity consumption by region, using Eq. 5. 

CARE coefficients are similar to the average value of the hourly coefficient in the corresponding scenario. Note that 

households are more responsive to changes in temperature during the summer and appear to be equally responsive to 

heating and cooling. Coefficients are roughly interpretable as a percent increase associated with enrollment in 

CARE or, for temperature coefficients, per °F of temperature deviation from 65°F. Weekday- and weekend-of-

sample fixed effects likely capture some of the seasonally-dependent temperature response. 

[%] Full sample Summer Winter Coast Hills Valley 
CARE 12.7%  

[10.2, 15.1]  
14.4%  
[11.0, 17.9] 

12.3%  
[9.7, 14.9] 

9.7%  
[3.8, 16.0] 

14.9%  
[10.7, 19.3] 

11.9%  
[8.6, 15.3] 

Temp ≤ 65°F 2.14%  
[2.08, 2.20] 

4.47%  
[4.39, 4.55] 

-0.32%  
[-0.36, -0.28] 

-0.32%  
[-0.42, -0.23] 

0.03%  
[-0.05, 0.11] 

1.21%  
[1.15, 1.27] 

Temp > 65°F 2.53%  
[2.48, 2.59] 

4.08%  
[4.01, 4.15] 

0.01% 
[-0.03, 0.05] 

-0.23%  
[-0.32, -0.14] 

0.29%  
[0.21, 0.36] 

1.71%  
[1.64, 1.77] 

 

 Elasticity estimation 

We use the above estimates to compute the implicit price elasticity of electricity demand. 

Lacking detailed rate information, we assume all CARE households receive PG&E’s average 

discount of 42% 39. Thus, the Full Sample time-invariant effect of 12.7% [10.2%, 15.1%] 

translates to a price elasticity of electricity demand of -0.30 [-0.24, -0.36]. This is within the 

range of estimates for the short-run and long-run price elasticity of demand. It is slightly below, 

but not statistically distinguishable from the median short-run estimate from the literature of -

0.3541, and well below the median estimate of the long-run price elasticity of demand of -0.8141.  
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 Climate, human health, and electric power system externalities 

CARE enrollment is associated with substantial incremental electricity consumption, resulting in 

associated climate, human health damages and capacity costs. However, note that the benefits of 

affordable access to energy services, such as improved physical and mental health and reduced 

reliance on high-interest short-term loans, are not quantified in this study and may well outweigh 

these costs 69,70. The time-invariant full sample increase in electricity consumption of 12.6% 

[9.2%, 16.0%] for 34% of PG&E’s customer base corresponds to an annual increase in demand 

of 1.48 TWh [1.20 TWh, 1.77 TWh] and 169 MW [137 MW, 203 MW] of incremental peak 

capacity 39.  

This increase in electricity consumption is associated with climate and human health damages in 

the tens of millions of dollars per year. Figure 8A estimates climate damages associated with a 

time-invariant elasticity at $31.3M [$25.2M, $37.4M], with CO2 emissions priced at $40/t(CO2). 

Figure 8B shows human health damages in the Full Sample at $14.0M [$11.3M, $16.8M] from 

human health effects of criteria air pollutants assuming a value of statistical life of $6M. 

However, the magnitude of these damages does not vary significantly if intra-day elasticities of 

demand are used instead of time-invariant elasticities.  

In all cases, the increases in climate and human health damages are statistically significant in the 

sense that the confidence intervals do not contain zero. However, using intra-day or time-

invariant elasticities results in essentially identical estimates of mean damages, within 2.5%, with 

confidence intervals spanning 39-126% of the mean estimate for time-invariant estimates and 43-

228% for intra-day estimates. The magnitude of damages in Figure 8B is weighted by the 

fraction of the population, assumed to be evenly distributed through the three regions, and the 
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fraction of the year simulated, 171 days for summer (June-September) and 248 days for winter 

(October-May). 

Capacity costs shown in Figure 8C are comparable to climate and human health damages, with a 

maximum value of $37.7M [$24.7M, $49.0M] based on the estimated effect of CARE in the 

Summer from 6pm-9pm. Using the Full Sample and a time-invariant estimate, costs are $28.8M 

[$23.2M, $34.4M]. In no case is there a statistically significant difference between capacity costs 

using a time-invariant or intra-day elasticity. The mean estimates differ by as much as $3.8M in 

the Summer case and by as little as $0.4M in the Central Valley case, representing a change of 

12% and 5% compared to the time-invariant case, respectively. These changes are still within the 

confidence intervals of the intra-day and time-invariant estimates, which span 39%-126% and 

43%-179% of the mean estimate, respectively.  

  



 47 

 

Figure 8. Comparison of societal costs associated with A) marginal climate damages from greenhouse gas 

emissions, B) human health damages from criteria pollutant emissions, and C) increases in peak electricity 

consumption attributable to the estimated increase in electricity consumption due to CARE during 2011, assuming a 

social cost of carbon of $40/t(CO2), a $6 million value of statistical life, and a capacity cost of $170/kW-yr 66, 

described in Section 3.3.5. Regional estimates consider consumption increases only in the regional population. 

Capacity costs assume the increase from 6pm-9pm translates to an increase in system-wide peak demand. Costs are 

on the order of millions to tens of millions of dollars in each scenario. Red and blue dots represent the mean and 

95% confidence interval using intra-day or time-invariant estimates of the consumption increase due to CARE 

enrollment. In all cases, the mean estimates are close and the confidence intervals strongly overlap. Climate and 

human health damage estimates using intra-day elasticity estimates are slightly below those using time-invariant 

estimates, within $400,000 and $75,000, respectively, within 2.5% of the time-invariant mean estimates. Capacity 

costs using intra-day elasticity are $0.4-3.8M, respectively, representing an increase of 5-12%.  
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 Robustness checks 

We estimate the robustness of the regression results using several subsamples of the data and 

alternative regression specifications.  

We apply Eq. 4 to the following subsamples of the data: an event study that includes only 

households that enroll in CARE with at least 90 days of pre- and post-enrollment data; Only 

households that either enroll during the study period or never enroll in CARE, excluding those 

enrolled in CARE throughout the full study; Only weekdays; Only weekends; Only the years 

2010 and 2011, aiming to exclude the effects of the 2008 Financial Crisis and the Great 

Recession; Only households above the 5th percentile or below the 95th percentile of average 

household electricity consumption, aiming to test the extent to which particularly high or low 

users drive the results; Households with median census block incomes in the bottom 40% or top 

60% of the sample; Excluding perpetual CARE enrollees; and including only households that are 

always or never enrolled in CARE. These specifications are described in further detail in the SI, 

Section 7.5.3. 

We also apply three alternative regression specifications: Eq. 4 using untransformed electricity 

consumption as the dependent variable, replacing ln(kWh) with kWh; Eq. 4 including intra-day 

controls for enrollment in other utility programs; A monthly specification using an aggregated 

version of the dataset to simulate traditional billing analysis. 

We find that the main results are robust across all of the above specifications, with a baseline 

increase on the order of 10% and significant intra-day increases for at least one three-hour period 

between 3pm and 9am except for cases with only higher-income neighborhoods or including 

only households always or never enrolled in CARE. 
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Estimates of the baseline increase in electricity consumption vary from 10%, for households 

from poorer neighborhoods, to 14% for the monthly panel, with standard errors on the order of 

2% in all cases. 

Almost all variations on Eq. 4 reproduce increases in electricity consumption of roughly 2-3% 

for the period from 6pm-9pm. The major exceptions are the event study, which includes only 

households that enroll in CARE only once and have 90 days of pre-enrollment and post-

enrollment data, and the cases that exclude households perpetually enrolled in CARE or include 

only households perpetually enrolled or never enrolled in CARE. In the event study, the baseline 

value is similar to the main results, 11.2% [7.5%, 14.9%], but intra-day increases are larger, with 

a significant increase of 3.6% [1.2%, 6.0%] from 3pm-6pm, 6.0% [3.9%, 8.1%] from 6pm-9pm, 

and 4.4% [3.0%, 5.8%] from 9pm-12am. This event study formulation considers only 

households enrolled in CARE and thus may miss trends controlled for in specifications that 

include all households. The case that excludes perpetual enrollees has a larger baseline increase 

of 18.2% as well as larger incremental evening increases of 4.1% [2.4%, 5.9%] from 6-9pm and 

3.5% [2.3%, 4.7%] from 9pm-12am. The case that includes only households that are perpetually 

enrolled or never enrolled captures any differential secular trends between CARE and non-

CARE households. This case shows a smaller baseline increase of 7.7% [0.02%, 15.9%] with no 

significant intra-day variation. This suggests that there may be secular differential trends 

between CARE and non-CARE households, but the observed intra-day effects likely correspond 

to behaviors associated with new CARE enrollment. Thus, the inclusion of perpetual enrollees in 

the main regression specification may have a downward bias on the estimated magnitude of 

intra-day effects. 
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Note that controlling for hourly effects of enrollment in other programs does not substantially 

change the results compared to the main analysis. 

The linear formulation, which uses un-transformed electricity consumption as the dependent 

variable, also shows a baseline increase in electricity consumption of 0.75 [0.55, 0.95] kWh per 

three-hour period, or 0.25 [0.18, 0.23] kW, with significant increases from 3pm-12am, with a 

maximum increase from 6pm-9pm of 0.13 [0.08, 0.18] kW. For the average household in our 

sample, this constitutes a 2.3% [1.7%, 3.0%] increase in electricity consumption for the hours of 

6pm-9pm. Note that the distribution of household electricity consumption is approximately 

lognormal, meaning that this linear specification is likely highly sensitive to changes in 

consumption for high-consumption households. See the SI, Section 7.3 for further discussion of 

the distribution of electricity consumption. 

See the SI, Section 7.5 for further full regression results. 

3.5. Conclusions and policy implications 

Policy makers across the world are currently weighing options for deep decarbonization of the 

electric power system to prevent the worst effects of climate change. Such a transition likely 

requires substantial costs, at least in the short-run, raising equity concerns surrounding issues of 

who should bear those costs. Low-income electricity subsidies are one option available to policy 

makers to address equity concerns in an energy transition.  

This analysis suggests that a major low-income electric subsidy program is, unsurprisingly, 

associated with an increase in electricity consumption in line with existing estimates of the price 

elasticity of demand. 

We estimate annual climate and human health damages at roughly $31.3M [$25.2M, $37.4M] 

and $14.0M [$11.3M, $16.8M], respectively, with peak demand externality costs associated with 
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this increase in electricity consumption at roughly $28.8M [$23.2M, $34.4M]. This represents 

2%, 4% and 5% of PG&E’s 2012 expenditures on the CARE program, respectively, totaling 

11% of expenditures 39. 

Climate and human health damages from California’s electric power sector have fallen rapidly in 

the past decade 71 and will likely decline further as renewable electricity continues to displace 

fossil fuels. However, increasing levels of variable renewable resources such as solar 

photovoltaic and wind electricity, are already placing strain on California’s electric power 

system during shifting peak times 72. 

Intra-day estimates find statistically significant variation in the response of households to subsidy 

enrollment. However, estimates of climate, human health, and peak demand externalities using 

intra-day or flat price responsiveness estimates both have similar mean values and strongly 

overlapping error bars.  

Thus, policy makers and electric transmission and distribution system operators pursuing a low-

carbon energy future can likely gain sufficient insight into the secondary effects of low-income 

electricity subsidies using time-invariant estimates of the price elasticity of demand, without 

accounting explicitly for intra-day variation in customer sensitivity to prices. 

In addition, the human health effects of increased electricity consumption may be borne 

disproportionately by low-income households. These effects will likely be worse in areas with 

more pollution-intensive electric grids. This can be mitigated through policies to reduce air 

pollution, which California is already pursuing. This also highlights the potential role of energy 

efficiency policies, such as California’s Energy Savings Assistance Program, in helping low-

income households achieve a targeted level of energy services while decreasing or reducing 

growth in electricity consumption 39. However, the efficacy of energy efficiency programs can be 
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difficult to measure because of uncertainty surrounding the counterfactual case in which there 

was no intervention. Econometric estimates of the US Weatherization Assistance Program, 

which provides heating efficiency measures to low-income households, suggests that engineering 

estimates substantially over-predicted realized savings 73. Thus, any energy efficiency program 

intended to replace a subsidy must be subject to rigorous measurement and verification to ensure 

that households indeed gain increased access to the desired energy services. 

The agreement of our estimates with the price elasticity of demand literature supports the validity 

of the estimation strategy employed in this study. However, given the innate limitations of this 

observational approach, selection bias and other confounding factors could bias these estimates 

upward or downward.  

Our estimates are based on household response to a low-income electricity subsidy, which may 

also affect electricity consumption through social norms or other non-price mechanisms. A 

household receiving subsidized electricity with the explicit aim of ensuring access to energy 

services may increase consumption more than if they simply received a lower electricity price, 

e.g. due to a perceived expectation that they should increase electricity consumption. The 

opposite may also be true, e.g. if recipients wish to minimize their reliance on social assistance. 

Thus, these results may not be representative of the response of low-income households, or for 

that matter higher-income households, to decreases or increase in electricity price that are not 

mediated through a subsidy. These results also do not necessarily generalize to intra-day 

responses to changing price signals throughout the day, such as time-of-use pricing, as 

residential customers appear to respond to average electricity price, i.e. bills, rather than 

marginal prices 74. 
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States and utilities could likely benefit from empirically estimating price responsiveness for their 

own populations. A wide range of estimates of the price elasticity of demand exist in the 

literature. This is in part because of the uncertainty inherent in the available estimation strategies 

but. More fundamentally this is because people in different places in different contexts use 

electricity differently. It is unclear whether California policy makers and utilities explicitly 

model this effect and, if so, what price elasticity of demand they use. 

Note that electric utilities are in a unique position to experimentally measure the price-

responsiveness of their customers through randomized controlled trials, e.g. by randomly giving 

discounted electricity to some customers and comparing their consumption to that of similar 

customers.  

The expanded deployment of inflexible resources such as wind and solar, places increasing value 

on understanding the flexibility of electricity demand. Advanced metering infrastructure offers 

policy makers and electric utilities a unique opportunity to better understand electricity demand 

and further integrate these insights into a rapidly transitioning electric power system. This in turn 

could ensure that a suite of policies succeeds in providing access to affordable, clean, low-carbon 

energy for all. 

3.6. Data availability statement 
Household electricity consumption and other household-level data were provided by Pacific Gas 

and Electric Company through the Wharton Customer Analytics Initiative via a non-disclosure 

agreement. Temperature data were provided by the National Oceanographic and Atmospheric 

Administration and are publicly available 64. Census block demographic information are from the 

2010 US Census and are publicly available 75.  
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4. Chapter 4. Electrofuel synthesis from variable renewable 

electricity: An optimization-based techno-economic analysis 

 

4.1. Abstract 

Policies consistent with a global warming limit of 2°C or lower will likely require substantial 

cuts in greenhouse gas (GHG) emissions from sectors such as aviation that currently have limited 

ability to substitute away from liquid fuels. This analysis characterizes the economic viability of 

electrofuels, synthesized from CO2 from direct air capture (DAC) and hydrogen from electrolysis 

of water, powered primarily by solar or wind electricity. This optimization-based analysis 

compares the GHG mitigation cost-effectiveness of electrofuels with continued use of 

petroleum-based fuels offset by DAC with sequestration (DACS) under a range of techno-

economic assumptions. Using today’s technology, hydrocarbon electrofuels are likely to cost 

upwards of $12/gallon of gasoline equivalent (GGE) and are thus a substantially more expensive 

mitigation strategy than DACS. However, in a scenario in which cost targets for the next decade 

are met, electrofuels powered by the world’s best solar resources could achieve mitigation cost 

parity with DAC if pre-tax petroleum fuel prices reach $3/GGE. Electrofuels could be the 

preferred strategy here if CO2 sequestration costs are unexpectedly high. In a longer-term 

breakthrough scenario, the cost of electrofuels could fall below $3.00/GGE, making them a 

preferred mitigation strategy to DACS and potentially competitive with petroleum fuels. 

Electrofuel cost is most sensitive to the capital cost the DAC, electrolyzer, and renewable 

electricity, confirming their importance as priorities for research, development, and deployment 

(RD&D). Due to operational flexibility afforded by storage or supplementary natural gas or grid 

electricity interconnections wind brings cost reductions over solar only if it can produce bulk 
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electricity at a comparable cost with solar, despite its higher capacity factor. Without this 

operational flexibility, costs rise by more than 80%. This points to some less intuitive RD&D 

priorities, such as metallic phase change materials capable of storing heat above 900°C and low-

cost, seasonal CO2 storage. 

4.2. Introduction and background 

Avoiding 2°C or more of global warming likely requires the complete elimination of net carbon 

dioxide (CO2) emissions from the global economy within four to seven decades 1. This would 

require decarbonization of difficult-to-mitigate sectors, including aviation, long-distance road 

transportation, and ocean shipping, representing roughly 6% of global energy-related greenhouse 

gas (GHG) emissions 76. 

These applications currently use energy-dense liquid fuels to operate capital-intensive fleets of 

airplanes, trucks, and ships with asset lifetimes of 20 years or more. Thus, even with research 

and development breakthroughs in electric or hydrogen propulsion systems, a rapid transition to 

these fuels would likely require premature retirement or retrofitting on a massive scale. As a 

result, a carbon-neutral hydrocarbon fuel with the ability to “drop in” to existing infrastructure 

could greatly reduce the cost of deep decarbonization in these sectors and buy time for a smooth 

transition to lower-cost technologies if they arise. 

All hydrocarbons emit CO2 when combusted, so achieving carbon neutrality requires that the 

carbon embedded in a hydrocarbon be sourced from the atmosphere. Biofuels achieve this by 

using carbon captured by plants, algae, or other living organisms. However, biofuel production 

generally results in substantial net life-cycle emissions 77, thus only partially mitigating 

emissions from displaced petroleum fuels. 
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Electrofuels are hydrocarbon or oxygenate fuels derived from CO2 and H2 from electrolysis of 

water through processes that rely primarily on electrical energy 78. Potential products include 

methanol, dimethyl ether, methane, and Fischer-Tropsch liquid hydrocarbons such as gasoline, 

diesel, and jet fuel 78. Techno-economic estimates of the cost of electrofuels range from $0.40-

$135/GGE, with harmonized ranges of $7.70-10.80/GGE using today’s technology and $6.20-

8.10/GGE in 2030 78. Most analyses assume CO2 is sourced at low cost from industrial waste, 

such as biofuel production or cement manufacturing 78.  

Electrofuels only achieve substantial net CO2 emissions reductions compared to petroleum-based 

fuels if they are powered by very low-carbon energy. The cost of variable renewable electricity, 

particularly solar photovoltaics (PV), has fallen precipitously in the past decade, making it one of 

the cheapest sources of electricity available 5,6. Fasihi et al. 79–81 estimate the cost of electrofuel 

production from combined wind and solar installations using CO2 from direct air capture (DAC) 

with point estimates of techno-economic parameters and an aggregated representation of 

variability in renewable electricity, finding costs on the order of $4/GGE. 

This analysis uses an optimization-based techno-economic framework to characterize the range 

of possible costs of electrofuel production using CO2 from DAC, powered primarily by variable 

renewable electricity. In addition to estimating the future cost of electrofuel production, this 

approach identifies system components and characteristics for which additional research, 

development, and deployment (RD&D) is likely to yield the greatest reductions in system cost. 

In addition, this work compares the cost of electrofuel production to the cost of simply 

continuing to use petroleum-based liquid fuels and using DAC with sequestration (DACS) to 

offset a corresponding amount of CO2. Alternative mitigation strategies for deep decarbonization 

of hydrocarbon liquid-dependent applications, not modeled in this paper, include advanced 
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biofuels such as camelina-based jet fuel 82, electrification, hydrogen fuel cell designs, and carbon 

dioxide removal technologies such as biomass energy with carbon capture and sequestration, 

enhanced weathering, coastal blue carbon, afforestation and other forms of land management 83. 

Biofuels capable of acting as jet fuel generally have substantial life-cycle greenhouse gas 

emissions, ranging from roughly 10% to 75% of petroleum jet fuel emissions. Staples et al. 

estimate that such fuels could avert at most about 70% of global aviation emissions, requiring 

that biofuel constitute over 85% of total jet fuel 84. Thus, even with substantial cost reductions, a 

biofuel-based mitigation strategy for aviation would still require substantial carbon dioxide 

removal to achieve net-zero emissions. Hydrogen fuel cell airplanes are still in early stages of 

development 85. Forms of carbon dioxide removal other than DAC may be available at lower 

cost, but their capacity is limited and may be needed for other applications 83. 

4.3. Methods and data 

 System components 

This analysis models the cost and operation of an electrofuel production system comprised of 

variable renewable electricity production, a DAC system heated either by an electric kiln or by 

natural gas, an electrolyzer, and Fischer-Tropsch hydrocarbon fuel synthesis infrastructure, 

transporting liquid fuel to market through a pipeline. To manage variability in electricity supply, 

the system can build storage of electricity, modeled as a lithium-ion battery system; heat, 

modeled as a molten salt, phase change material, or supercritical CO2 system; hydrogen, either in 

a pressurized above-ground tank or in an underground formation; CO2 in a pressurized tank; and 

fuel in a tank. The system can also build natural gas and grid electricity interconnections, paying 

a carbon price for the associated fossil CO2 emissions. Figure 9 shows a diagram of the 

electrofuel production system modeled here. Each component is introduced below. 
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Figure 9. Process diagram for electrofuel production. The simulated electrofuel production system uses solar or 

wind electricity, supplemented with grid electricity and natural gas, to power an electrolyzer and a direct air CO2 

capture system, heated by a kiln powered by electricity, natural gas, or both. CO2 and hydrogen are then converted 

into hydrocarbon fuels, such as diesel and jet fuel, through a fuel synthesis process, in this case the Fischer-Tropsch 

process. The fuel is transported to market through a pipeline. The system optimizes annual operation of all 

components, including storage of electricity, heat, carbon dioxide, hydrogen, and liquid fuel, in four-hour 

increments. Energy and material input requirements shown produce one barrel of oil equivalent of hydrocarbon fuel, 

such as jet fuel, diesel, or gasoline, assuming the electrolyzer and fuel synthesis are both 70% efficient. 

Each technology is modeled using three sets of techno-economic parameters. The first case 

estimates the cost of building an electrofuel production system using the best available 

technology Today. The second is a Next-decade scenario using parameters that the literature 

suggests could be achieved within roughly a decade or less with significant RD&D efforts. The 

final case considers the potential for a Breakthrough in each of the component technologies in 

the next few decades. The Today case considers only a low-temperature DAC system, as high-
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temperature systems have not yet been built commercially. The Next-decade and Breakthrough 

cases consider both low-temperature and high-temperature DAC systems. Parameters are based 

on the available literature, with values described in detail below and in Section 4.3.4.7. 

4.3.1.1. Renewable electricity generation 

The cost of wind and particularly solar PV electricity have fallen rapidly in the past decade 5,6, 

making them some of the lowest-cost sources of bulk electricity. Thus, this analysis considers 

both solar and wind electricity as a primary energy source for electrofuel production.  

This analysis simulates renewable electricity production profiles from the System Advisor Model 

(SAM), produced by the National Renewable Energy Laboratory (NREL) 86. Both solar PV and 

wind are simulated in locations within the United States with very high-quality resources: 

Tucson, Arizona and southern Wyoming, respectively, with capacity factors of 29.3% and 

57.5%. 

The production characteristics of the solar PV system follow default specifications from SAM 86 

for a utility-scale PV installation with single-axis tracking. However, we assume the alternating 

current (AC) inverter is sized to the full rated capacity of the generation. Utility-scale solar PV 

installations often undersize the inverter to achieve a DC to AC ratio of 1.2 to reduce grid 

interconnection costs 86.  

The production characteristics of the wind turbine also follow default specifications from SAM 

for a utility-scale installation 86. The 1,500 kW GE 1.5sle turbines reach their maximum power 

plateau at wind speeds of 15-25 m/s, shutting off at higher wind speeds for safety 86.  

For solar PV, the capital cost in the Today case is based on the installed cost of $900/kW(AC) 

($600/kW(DC)), achieved in the best locations in the United States in 2017 6. This may be 

slightly generous due to the assumption of single-axis tracking. However, it may also be 
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conservative given the rate of cost declines in the past decade. Operations and maintenance 

(O&M) costs are set at 1% of capital cost per year in all cases 87. With the Today case’s 10% 

weighted average cost of capital (WACC), this corresponds to a levelized cost of electricity 

(LCOE) of $39/MWh(e). The Next-decade cases assume a cost structure similar to that in 

Mexico, where the average power purchasing agreement was $20.8/MWh(e) in Q4 of 2017, and 

where installers regularly sign unsubsidized power purchasing agreement contracts below 

$20/MWh(e) 88. With the Next-decade case’s 8% WACC, this amounts to a capital cost of 

$500/kW(AC), with an LCOE of $18.8/MWh(e). The Breakthrough case considers the 

possibility of further advances in solar PV technology, perhaps including high-efficiency DC-DC 

inverters to power the electrolyzer and electric kiln, both of which can use DC directly. This case 

assumes a capital cost of $400/kW with a WACC of 5%, which equates to an LCOE of 

$11.8/MWh(e). 

For wind, the capital cost in the Today case is $1,500/kW(AC), in the lower range of installed 

cost in the US Midwest region in 2017 87. O&M costs in all cases are 2.5% of capital cost per 

year 87. At a 10% WACC, this amounts to an LCOE of $40.2/MWh(e). In the Next-decade cases, 

capital cost falls to $1,250/kW(AC), or $29.4/MWh(e) at an 8% WACC, roughly matching the 

lowest-cost installations in the US in 2017 5. In the Breakthrough cases, capital cost falls to 

$1,000/kW(AC), or $19.0/MWh(e) at a 5% WACC, matching the lowest installed costs on 

record in 2006, before materials prices and other factors led to substantial cost increases on a 

kW(e) basis 5. 



 61 

4.3.1.2. Electrolyzer 

Electrolysis of water uses electricity to convert water into hydrogen gas and oxygen. Alkaline 

electrolysis has been industrially available for decades and has long been used to manufacture 

chlor alkali, an $8bn dollar industry in North America 89.  

The prospect of using renewable hydrogen as a low-carbon fuel for transportation and other 

applications has spurred renewed interest in electrolysis. Emerging proton exchange membrane 

(PEM) and solid oxide electrolyzers, as well as next-generation alkaline electrolyzers, are 

projected to achieve substantial cost reductions and efficiency gains 78,90,91. 

This analysis considers both alkaline and PEM electrolyzers. Solid oxide electrolyzers are likely 

to have higher capital costs 78,91, making it more difficult to justify intermittent operation. 

Both alkaline and PEM electrolyzers typically operate at temperatures from 50-80°C 78,91, 

although alkaline electrolyzers are capable of operating above 100°C 91. Solid oxide electrolyzers 

operate at much higher temperatures on the order of 850°C 92. 

Produced oxygen can be sold or reused in the fuel synthesis infrastructure 93,94 or in an oxygen-

fired natural gas kiln to produce process heat for the DAC system, producing a pure stream of 

CO2 from combustion of natural gas that can either be sequestered or used as a feedstock for 

electrofuel synthesis. 

For current alkaline and PEM electrolyzers, the stack must be replaced after 60,000-90,000 hours 

of operation, 7.6-11.4 years at a 90% capacity factor, incurring an additional 50-60% the capital 

cost of the electrolyzer at each replacement 91. Stack replacement costs are incorporated 

explicitly into the Today case using the conservative assumption that the stack must be replaced 

every 9 years regardless of the level of utilization. At a 10% WACC, two stack replacements 
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over the system’s 25-year lifespan, at 50% of upfront capital cost each, increase the effective net 

present value of the capital cost of the electrolyzer by 37.5%. 

The Today case capital cost for alkaline electrolyzers is drawn from a manufacturer estimate for 

2015, €2012760/kW(e), $872.4/kW(e) in 2017 dollars 91,95,96. Including the stack replacements 

above, this amounts to a present value of roughly $1,200/kW(e). The Next-decade and 

Breakthrough electrolyzer capital cost estimates apply the same escalation factor to a 2025 low-

end cost estimate for alkaline electrolysis, €2012370/kW(e), and a 2030 low-end cost estimate for 

PEM electrolysis, €2012250/kW(e), resulting in effective capital costs of $584.1/kW(e) and 

$394.7/kW(e), which are rounded to $580/kW(e) and $390/kW(e). Using the same escalation 

factor does not fully capture the complexities of future technological advances, but the lower 

discount rate in the Next-decade and Breakthrough cases at least partially offsets the benefit of 

stack lifetime extensions. 

4.3.1.3. Direct air CO2 capture 

Existing and proposed DAC technologies include both low-temperature amine systems, such as 

those used by Climeworks and Global Thermostat and high-temperature hydroxide-based 

systems, such as that used by Carbon Engineering 97. This analysis does not model a moisture-

swing adsorption system, such as that being developed by Infinitree 98.  

All of the high- and low-temperature DAC systems considered use an air contactor, similar to a 

horizontal cooling tower, to expose atmospheric CO2 to a sorbent, either an amine or a 

hydroxide. Once CO2 is adsorbed by the sorbent, the sorbent solution undergoes an energy-

intensive regeneration process through which it releases pure CO2, which can then be used or 

sequestered. In low-temperature amine systems, this regeneration takes place through a 

temperature swing. Relatively low-temperature heat, approximately 100°C, is used to regenerate 
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the amine 98. This temperature swing, from low to high temperatures, takes at least several hours 

99. Thus, the heat demand and CO2 production of a low-temperature system operating at full 

capacity are not constant over time. The process also requires electricity, described below 98. 

4.3.1.4. Carbon Engineering’s high-temperature system 

Carbon Engineering’s air contactor uses an aqueous potassium hydroxide (KOH) sorbent to 

capture CO2, forming K2CO3 and H2O 97. This K2CO3 then reacts with calcium hydroxide, 

Ca(OH)2, in a pellet reactor to regenerate KOH, which is recycled, creating CaCO3, which is 

dried into pellets. CaCO3 is then heated to 900°C in a calciner, where it breaks apart into CaO 

and CO2. CaO is then mixed with water in a slaker to reconstitute Ca(OH)2, which is recycled 

into the pellet reactor to close the loop. The entire process requires 5.25 GJ of heat, including 4 

GJ at 900°C for calcination, and 366 kWh(e) of electricity, much of which is used to compress 

CO2 to 151 bar for pipeline transport 97. A low-pressure configuration that produces CO2 at 1 bar 

uses only 77 kWh(e) of electricity, implying that 289 kWh(e) are used for compression of CO2.  

Carbon Engineering’s proposed first-generation design uses oxygen-fired natural gas for all 

process heat requirements, co-capturing the resulting pure CO2 stream with the CO2 released 

during calcination 97. As a result, the use of natural gas for process heat adds 0.3 t(CO2) to each 

t(CO2) captured from the atmosphere 97.  

High-temperature electric kilns capable of reaching 900°C exist commercially but are largely for 

specialized manufacturing applications. Electric kilns on the hundred megawatt scale necessary 

for large-scale DAC do not appear to exist commercially. However, given the high efficiency of 

resistive heating and the existence of inexpensive industrial insulators, such products will likely 

materialize rapidly given market demand. Indeed, clever engineers can likely design kilns 

capable of using heat from both oxygen-fired natural gas, or even hydrogen, and electricity 
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simultaneously. For this reason, we consider a high-temperature electric resistive kiln capable of 

cofiring with oxygen-fired natural gas, using conservative cost and efficiency assumptions based 

on the unit cost of existing small-scale kilns described in Section 4.3.1.6. 

Carbon Engineering’s cost estimates for high-temperature DAC systems range from $94-

232/t(CO2) 97, depending on the level of previous deployment, financing assumptions, system 

configuration, and other factors. This is substantially lower than previous cost estimates for high-

temperature systems, due both to substantial differences in design choices and techno-economic 

assessment methods 100,101. This corresponds to capital costs ranging from $694-

1,046/(t(CO2)/yr) Keith et al. 97 estimate O&M costs for a system operating at a 90% capacity 

factor at roughly 4%/yr of capital cost. 

The Next-decade case uses the baseline capital cost estimate for an early-build high-temperature 

DAC system, costing $1,146/t(CO2/yr). This system has heat and electricity demand of 5.25 

GJ(th) and 366 kWh(e), respectively 97. The system produces CO2 at 151 bar, so CO2 can be 

stored without additional compression energy. The Breakthrough case assumes a mature low-

pressure system from Keith et al. 97, with capital cost of $694/t(CO2/yr). Heat demand remains 

5.25 GJ(th), but electricity demand falls to 77 kWh(e) 97. Thus, CO2 storage requires an 

additional 289 kWh(e)/t(CO2) for compression. O&M costs are modeled at 4% of capital cost per 

year, based on the O&M cost estimates from Keith et al. 97, which range from 3.8%-4% of 

capital cost per year. High-temperature systems are not modeled in the Today case, as they have 

not yet been built commercially.  

4.3.1.5. Climeworks’ low-temperature system 

The cost of current low-temperature DAC systems is estimated at $500-600/t(CO2) 102. 

Climeworks states that it has a clear engineering pathway to $200/t(CO2), with an aspirational 
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target of $100/t(CO2) 102. Global Thermostat claims long-term costs could fall as low as $15-

50/t(CO2), but have not yet described the details of how such costs could be achieved 103. 

Climeworks’ current technology, used in the Today case, is estimated to consume 2,200 

kWh(th), 7.9 GJ(th), of heat and 700 kWh(e) of electricity 104. Climeworks’ long-run target, used 

in the Next-decade case, is 1,600 kWh(th), 5.8 GJ(th), of heat and 400 kWh(e) of electricity 104. 

Global Thermostat’s competing low-temperature technology, assumed in the Breakthrough case, 

claims only 4.4 GJ(th) of heat demand and 160 kWh(e) of electricity demand 98. Because low-

temperature systems can use low-grade waste heat, this analysis assumes the above cost 

estimates assume free heat. Climeworks claims a current lifetime of 20 years, used in the Today 

case, with a target of 30 years, used in the Next-decade and Breakthrough cases 104. 

Estimates of the capital cost of low-temperature DAC systems are based on the above estimates 

of levelized cost and projections stated by manufacturers Climeworks and Global Thermostat to 

the media. Annualized capital and fixed O&M costs are derived from the above levelized cost 

estimates after energy costs are subtracted out, using Eq. 6. Climeworks’ long-term levelized 

cost estimates likely assume low-temperature heat demand is met using waste heat or another 

low- or zero-cost heat source. As a result, this analysis assumes free heat in the capital cost 

calculations. These calculations assume energy demand for the Climeworks systems in the 

Today and Next-decade cases, with electricity cost at $0.10/kWh(e), in line with industrial 

electricity rates in Europe, where Climeworks is based 105. Electricity rates fall to $0.05/kWh(e) 

in the Breakthrough case, closer to industrial rates in low-cost locations the United States, using 

energy demand projections from Global Thermostat 106. This analysis assumes O&M costs of 

4%/yr, based on O&M estimates for high-temperature systems, even though amine replacements 

may raise costs further. However, this does not affect the results of this analysis because the 
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optimization uses annualized capital and fixed O&M costs interchangeably and these capital 

costs are back-calculated to reproduce the above levelized cost statements. 

 

Capex = (LevelizedCost – ElectricityPrice*(Electricity/t(CO2)))/(CCF + O&M%)    (6) 

 

Where CCF, the capital charge factor is computed using Eq. 7, with the lifetimes described 

above and the corresponding WACC from each scenario (10%, 8%, 5%).  

 

CCF = WACC/(1 – (1 + WACC)-lifetime)    (7) 

 

The Today case assumes a levelized cost of $600/t(CO2), based on the cost of current 

commercial systems, falling to $200/t(CO2) in the Next-decade case, based on Climeworks’ 

expected cost reductions for its current system, and $100/t(CO2) in the Breakthrough case, based 

on Climeworks’ aspirational target. The resulting capital cost is $3,029/(t(CO2)/yr) in the Today 

case, $1,118/t(CO2) in the Next-decade case, and $788/(t(CO2)/yr) in the Breakthrough case. 

These numbers are rounded to $3,030/(t(CO2)/yr), $1,120/(t(CO2)/yr), and $790/(t(CO2)/yr), 

respectively. 

Note that for low-temperature amine-based DAC systems such as those used by Climeworks and 

Global Thermostat, the process of temperature-swing adsorption of CO2 implies a temporal 

profile to heat demand. Wurzbacher et al. suggest that the system takes roughly 120 to 180 

minutes to heat from 20°C to 90°C, with the majority of the swing completed in 60 to 120 

minutes 99. This heating releases CO2 bound to the amine. The system must then cool for some 

period of time. Thus, heat demand is not constant and would likely require heat storage or 
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dispatchable heat production, such as natural gas. These heat storage costs, not modeled here, 

would modestly increase the capital cost of a low-temperature system. 

4.3.1.6. Electric kiln 

Electric resistive heating is an established technology, used for space and water heating and a 

variety of other applications. However, electric kilns capable of efficiently generating heat at or 

above 900°C are primarily available for specialized manufacturing applications and do not 

appear to be commercially available on scales of 100 MW(e) or more. 900-1,100°C industrial 

high-temperature electric ceramic tunnel kilns are available for $10,000-120,000 at capacities of 

85-150 kW 107. Using the low numbers from both ranges for a 900°C kiln, this amounts to 

$125/kW(e). This unit cost would likely decline substantially at the much larger scales required 

for electrofuel production. This analysis assumes 95% kiln efficiency, due to the nearly 100% 

efficiency of resistive heating and the maturity of high-temperature industrial insulation in 

numerous applications 108. Current specialized industrial electric kilns may operate at lower 

efficiencies, tolerating higher losses. Efficiency is held constant in all scenarios and varied in the 

sensitivity analysis. 

Balancing the tradeoffs between cost reductions through economies of scale and cost increases 

due to greater use of insulation, the Today case for a high-temperature electric kiln assumes 

$125/kW(e), falling to $75/kW(e) and $25/kW(e) in the Next-decade and Breakthrough cases, 

respectively, assuming economies of scale outweigh additional insulation costs in the long-run. 

Requiring a high-temperature electric kiln is a conservative assumption for systems that use low-

temperature DAC. However even at this level, electric kiln capital cost represents less than 1% 

of levelized system cost. Kiln lifetime is assumed at 10 years based on discussions with industry. 

O&M costs are assumed to be 1% of capital cost per year. 
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4.3.1.7. Fuel synthesis 

The Fischer-Tropsch process, patented in the 1920s, was originally used to convert coal and 

other fossil fuels into liquid transportation fuels 109. It was used extensively in Germany during 

the Second World War and by South Africa since the 1980s 109. As a result, the technology is 

fairly mature. Fischer-Tropsch plants exist across the world 110. 

A reverse water-gas shift (RWGS) reactor converts CO2 and H2 into synthesis gas, a mixture of 

CO and H2. The process is mildly endothermic, but this heat can often be supplied using waste 

heat from another source, such as from the Fischer-Tropsch reaction itself 111. 

A Fischer-Tropsch reactor takes in synthesis gas, and outputs hydrocarbons with a chain-length 

distribution that depends on the temperature, pressure, and catalysts used. These hydrocarbons 

must then be processed to produce liquid transportation fuels. Waxes are converted into shorter-

chain hydrocarbons through a hydrocracking process. The product distribution for liquid 

transportation fuels is fairly flexible. This analysis focuses on jet fuel production. Jet fuel can be 

as much as 50% of the product or more, with the remainder split between diesel and naphtha, 

which can be refined into gasoline 81. The remaining diesel and gasoline could likely be sold at a 

similarly competitive price for difficult-to-decarbonize applications such as long-distance road 

transport. 

The full fuel synthesis process produces hydrocarbon fuels that embody 65-80% of the input 

energy from the H2 111. The process is highly exothermic, producing much of the heat required to 

meet low-temperature DAC heat demand and other heat demand at or below its operating 

temperature of roughly 120-350°C 81,112. 



 69 

Cost estimates for this full fuel synthesis apparatus range from $350-1,500/kW(fuel), depending 

on the scale, configuration, assumed system integration costs, and other factors 78. O&M cost 

estimates range from 3-4 % per year of capital cost 81,113. 

In the Today case, Fischer-Tropsch fuel synthesis has a capital cost of $800/kW(fuel) based on 

pessimistic assumptions for a large-scale, 200 MW(fuel) facility from Brynolf et al. 78. The Next-

decade case uses $450/kW(fuel), based on the reference case from Brynolf et al. 78. The 

Breakthrough case uses $350/kW(fuel) based on the most optimistic case from Brynolf et al. 78. 

O&M costs are set at 3% per year of capital cost 81. 

The system has a 70% H2 to fuel energy conversion efficiency in the Today and Next-decade 

cases, rising to 75% in the Breakthrough case 78,114. Each MWh(fuel) requires 0.28 t(CO2) of 

input, which is converted at 95% efficiency 78. Unconverted CO2 is assumed to be in a solid form 

akin to biochar, for which the cost of disposal is not considered. As a result, unconverted CO2 is 

not released into the atmosphere and does not incur a CO2 price. 

The main analysis assumes that the fuel synthesis can ramp up and down at a rate of 10% of 

nominal capacity per hour and that each kW(fuel) of ramping incurs an energy penalty 

equivalent to the H2 required to produce one kWh(fuel). The sensitivity analysis, described in 

Section 4.3.10, tests the sensitivity of the cost of electrofuel to these assumptions. 

4.3.1.8. Electricity Storage 

Fu et al. 7 estimate the current cost of a 60 MW(e), 240 MWh(e) lithium-ion (Li-ion) battery 

system for a utility-scale solar-plus-storage installation at $380/kWh(e). This estimate includes 

$22/kWh(e) in sales taxes and $18/kWh(e) in net profit, which are not included for other 

components in this analysis 7. Thus, the Today case electricity storage capital cost is 

$350/kWh(e). Darling et al. estimate long-term Li-ion battery costs at as low as $225 [200, 
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250]/kWh(e) 115. Kittner et al. propose a pathway to $100/kWh(e) for Li-ion batteries, which is 

used as the Breakthrough value 116. The Next-decade case is roughly halfway between the Today 

and Breakthrough values at $250/kWh(e). 

Efficiency estimates for of utility-scale Li-ion batteries range from 75-90% 117, with operational 

efficiencies often closer to 70-80% 118. The Today case assumes electricity storage with 80% 

efficiency, rising to 85% in the Next-decade case and 90% in the Breakthrough case. O&M costs 

are estimated at 1% of capital cost per year, based on Zakeri et al. and Cole et al. 119,120. 

This analysis assumes a 10-year battery lifetime 115–117. Battery capital and O&M costs are 

annualized on a net present value basis without explicit consideration of the number of battery 

replacements that would be necessary over the full system’s 25-year lifetime. If the electrofuel 

production system is retired before the end of a battery’s functional life, the battery can likely be 

re-sold to recoup stranded costs. The same is true for the electric kiln. 

Note that this analysis uses battery costs representive of scales over 100 MWh(e). Reducing 

scale to 30 MWh(e) could more than double the unit cost 7. However, linear optimization does 

not allow cost to scale with capacity. Thus, storage costs represent a lower bound in cases where 

substantially less than 100 MWh(e) are built. 

4.3.1.9. Hydrogen storage 

Hydrogen (H2) can be stored on an industrial scale in pressurized steel tanks or underground in 

salt caverns, depleted oil and gas wells, and other appropriate natural and man-made formations 

121.  

Cost estimates for steel tank H2 storage range from $12.9-32.2/kWh(H2) 121, with a US 

Department of Energy (DOE) 2020 cost target of $500/kg(H2), or $15.0/kWh(H2) 122. Geologic 

storage is less expensive, but its availability is location-specific. The cost of geologic storage 
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ranges from $6.1-8.2/kWh(H2), including compressor costs 121. Pressurizing H2 requires roughly 

0.036 kWh(e) for tank storage, the Today and Next-decade cases, and 0.033 kWh(e) for geologic 

storage in the Breakthrough case 121. Compressor capital cost is included in the capital cost of H2 

storage. 

The Today case assumes steel tank storage at $25/kWh(H2) 121,122, with a Next-decade value 

assuming the DOE’s target of $15.0/kWh(H2) is met 122, and a Breakthrough case using geologic 

storage at $6/kWh(H2) 121. 

H2 storage is assumed to be 99% efficient, not including compression energy. This is consistent 

with assessments that H2 storage in structurally sound tanks and geologic formations, e.g. in salt 

caverns, does not have appreciable leakage concerns 123,124. H2 compression itself introduces 

leakage of roughly 0.05% of total mass flow 125, potentially rendering this a conservative 

estimate of H2 storage efficiency. 

4.3.1.10. Heat storage 

Molten salts and phase change materials (PCM) are commonly used for industrial heat storage 

above 100°C 126,127. Molten salt heat storage at up to 550°C has been applied in numerous utility-

scale concentrated solar thermal power plants, with cost estimates ranging from $20-40/kWh(th), 

with a DOE 2020 target of $20/kWh(th) 86,128–130. Such facilities have demonstrated thermal 

efficiencies as high as 93% 131. Some concentrated solar thermal power plant designs are able to 

use molten salt directly as a working fluid for electricity generation, reducing heat exchanger 

losses. An electrofuel production system would likely require a heat exchanger. 

Storing heat for high-temperature DAC requires higher-temperature storage. Si49Mg30Ca21 phase 

change materials capable of storing heat at 865°C are available at an estimated $201352/kWh(th), 

or $201753/kWh(th) 127. Metallic PCM capable of storing heat above the 900°C required for 
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calcination in the DAC process exist but are not widely commercially available 132. In high-

temperature DAC cases, we consider Si49Mg30Ca21 phase change materials and assume that the 

heat is boosted to 900°C using a small amount of H2. Hydrogen flows for this temperature 

boosting are currently not modeled, meaning that the system currently assumes that heat is stored 

at 900°C.  

The Today case assumes molten salt heat storage at $25/kWh(th) 86,133. For low-temperature 

systems, the Next-decade case assumes DOE’s 2020 target of $20/kWh(th) for molten salt 

storage is met 129, using $15/kWh(th) supercritical CO2 storage in the Breakthrough case 129. 

High-temperature systems assume Si49Mg30Ca21 phase change material storage at $55/kWh(th) in 

the Near-term case and reach parity with current molten salt storage at $25/kWh(th) in the 

Breakthrough case, assuming an alternative material 127. Energy efficiency is assumed to be 90% 

in all cases, slightly below the best performance achieved for molten salt systems 131, and is 

varied in the sensitivity analysis. 

4.3.1.11. CO2 storage 

Note that this analysis uses the term “storage” to refer to a system in which CO2 can be deposited 

and easily withdrawn and “sequestration” to refer to a system in which CO2 is deposited with the 

intention of permanently preventing it from returning to the atmosphere. 

CO2 becomes a dense liquid or supercritical fluid at high pressures 134. Thus, it is generally cost-

effective to store CO2 in pressurized vessels. Refrigerated liquid CO2 tanker ships have been 

proposed and analyzed for transportation of captured CO2 to offshore sequestration locations 135. 

Such systems have leakage rates on the order of 3% over the course of a voyage of a few days or 

weeks, and thus may not be suitable for cost-effective seasonal storage of CO2 135. 
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CO2 could also be stored in suitable geologic features. Bulk CO2 storage systems on the scale of 

tens of thousands of tons do not commercially exist but could likely achieve further cost 

reductions through economies of scale. 

Appropriately pressurized steel tanks themselves cost roughly $1000/t(CO2) 136, while 

compressors cost roughly $9000/t(CO2) 137. Energy required to compress CO2 from 1 bar to 151 

bar is modeled as 289 kWh(e), based on the difference in the energy requirement between high-

pressure and low-pressure DAC systems in Keith et al. 97.  

The Today case makes the conservative assumption that low-loss CO2 storage is prohibitively 

expensive, setting its cost to $50,000/t(CO2). The Next-decade case assumes $10,000/t(CO2) for 

a tank and compressor system. The Breakthrough case considers $1,000/t(CO2) for an 

unspecified system. In open spaces with inexpensive land, a low-pressure system such as an 

ensemble of durable inflatable plastic cells could dramatically reduce compressor and material 

cost requirements. O&M costs are assumed at 5% of capital cost per year 136. CO2 storage is 

assumed to be lossless, with 100% efficiency. In practice, any losses could be captured through a 

secondary containment shell and used in fuel synthesis, which is essentially always in operation.  

4.3.1.12. Fuel storage 

Hydrocarbon fuel tank costs follow a roughly linear trend with a slope and intercept estimated at 

$0.52/gallon and $331,900/tank, respectively 138. This fit has support for tanks of 500,000 

gallons to 4 million gallons 138. However, the modeled system does not build fuel tanks that 

large. This analysis extrapolates the linear fit to a 100,000-gallon tank, still larger than the 

amount of fuel storage that the system builds. Indeed, the availability of a fuel pipeline often 

obviates the need for a fuel storage tank. However, for the linear fit likely breaks down for 

smaller fuel tanks. This leads to unit costs of $3.8/gallon for a 100,000-gallon tank, falling to 
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$0.6/gallon for the 500,000-gallon tank. For jet fuel, this translates to $0.1/kWh(fuel) and 

$0.016/kWh(fuel), respectively 139. Thus, assuming a tank on the order of 100,000 gallons, the 

capital cost is set to $0.1/kWh(fuel) in all three cases. Fuel storage is assumed to be lossless, with 

100% efficiency. 

Because the system does not build fuel storage in most cases, its cost and other parameters are 

not considered in the sensitivity analysis. 

4.3.1.13. Electric grid interconnection 

The cost of an electric grid interconnection is modeled as the capital cost of constructing electric 

transmission infrastructure to the facility. The system assumes AC transmission with two 

substations, one on each end, to transform the voltage. A 230 kV, single-circuit, three-phase AC 

transmission line with Southwire 795kcmil ACSR conductors has an ampacity of 884-918 amps 

and a total power capacity of 350-366 MVA 140. Pletka et al. estimate that such a transmission 

line costs $969,000/mi, with a multiplier of 1.05 for desert terrain, which describes the Arizona 

case 141. For consistency, this analysis assumes the same cost for Wyoming. Costs on the plains 

are likely similar, but costs could escalate by a multiplier of as much as 1.75 for mountainous 

terrain 141. The two 230 kV substations cost $1.7M each 141. Assuming a power factor of 0.86, 

350 MVA equates to 303 MW(e) 142. 

In the Today case, the location is assumed to be 100 miles from the nearest interconnection point 

to external infrastructure, at 50 miles and 10 miles in the Next-decade and Breakthrough cases. 

This equates to $344/kW(e), $178/kW(e), and $45/kW(e), respectively, which are rounded to 

$340/kW(e), $180/kW(e), and $45/kW(e). The system builds interconnections of roughly 

2MW(e)-500 MW(e). In a real system, constructing a grid interconnection at the low end of this 

range would likely not be economical, as the cost of cable, poles, etc. do not scale linearly with 
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power. In such cases, electricity storage or even on-site electricity generation from H2 or liquid 

fuel would likely substitute for grid electricity to satisfy this very small electricity demand at 

negligible incremental cost. 

Grid electricity is assumed to cost $0.65/kWh(e), the average industrial electricity rate in 

Arizona 106. Wyoming rates are $0.69/kWh(e), but the Arizona value is used for consistency 106. 

Grid electricity has the recent average carbon intensity of the Western Electricity Coordinating 

Council (WECC), the western US interconnection, 360 kg(CO2)/MWh(e), or 794 

lb(CO2)/MWh(e) 143.  

The model currently does not allow sale of excess electricity to the grid. In a decarbonizing 

electric power system with high levels of renewables, bulk electricity would likely be abundant 

and have little resale value at times when the system currently wastes excess electricity. 

4.3.1.14. Natural gas pipeline 

An 8” natural gas pipeline at a relatively low pressure of 200 psi 144 and a relatively slow flow 

rate of 33 ft/s 145 has 166 MW(th) of capacity, assuming natural gas at 37 MJ/m3 at atmospheric 

pressure and ideal gas compression to 510 MJ/m3 146. This analysis uses these values in a 

regression model from Parker et al. for 100-mile, 50-mile, and 10-mile pipelines in the Today, 

Next-decade and Breakthrough cases, for costs of $225/kW(th), $115/kW(th), and $25/kW(th), 

respectively 147. The system tends to build roughly 100-200 MW(th) of natural gas 

interconnection capacity, at less than 0.5% of levelized cost. 

Natural gas price is $3/MMBtu(th), $0.01/kWh(th), representing recent low values for industrial 

customers 148. Natural gas price is held constant through all scenarios and varied in the sensitivity 

analysis. 
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4.3.1.15. Fuel export pipeline 

The unit cost of a hydrocarbon liquids pipeline depends on pipeline length, diameter and flow 

rate. Even a small, 8” jet fuel pipeline with a relatively slow 3 ft/s flow rate amounts to 1 

GW(fuel) of capacity 139,149. Pipeline costs are derived from a regression model in Rui et al 150. 

The Today case assumes a 100-mile pipeline, with a cost of $125/ft3 this amounts to 

$22.16/kW(fuel), rounded to $20/kW(fuel) 150. The Next-decade and Breakthrough cases assume 

50-mile and 10-mile pipelines at the same unit cost, amounting to $10/kW(fuel) and 

$2/kW(fuel), respectively. At these costs, the system tends to build roughly 500 MW(fuel) of 

pipeline capacity, half the 1 GW(fuel) of the above 8” pipeline. Thus, these costs may be slightly 

optimistic, but fuel pipeline costs represent less than 0.1% of levelized cost in the final results. 

Note that a 100-mile 48” pipeline with a faster 10 ft/s flow rate has a capacity of 125 GW(fuel) 

and a unit cost of roughly $1/kW(fuel) 150. 

4.3.1.16. Water 

Both Arizona and Wyoming are water-stressed regions. This analysis assumes a relatively high 

cost of $1/t(H2O), roughly the cost of desalinated water 151. This could also represent the cost of 

building a pipeline to bring water from a lower-cost location. 

4.3.1.17. CO2 sequestration 

Although it is not yet widely commercialized, permanent sequestration of CO2 in sandstone and 

other appropriate geologic formations appears to be technically feasible in at least some 

locations. Industrial volumes of CO2 from the oil and gas industry have been successfully 

sequestered in the Sleippner formation for over twenty years 152.  

Most techno-economic estimates of the cost of transportation and sequestration of CO2 fall 

between $1-20/t(CO2) 153. 
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However, the cost and efficacy of sequestration likely depends on formation-specific features. In 

locations close to seismically active faults, pressure accumulation from CO2 injection in 

sandstone formations could induce earthquakes, potentially compromising the shale seal required 

to ensure CO2 does not return to the surface 152. This pressure can be relieved either by reducing 

the CO2 injection rate at individual wells or by extracting a corresponding volume of brine. With 

these pressure management techniques, Anderson et al. find sequestration costs of $55/t(CO2) or 

more at high injection volumes 154. 

Basalt formations are less ubiquitous than sandstone formations in the United States and their 

properties are not as well understood 83. 

Due to this uncertainty in the long-term cost of large-scale sequestration, this analysis models 

only the cost of capturing CO2. Whether electrofuels or DAC is a more cost-effective option for 

mitigating liquid hydrocarbon-dependent CO2 sources then depends on the realized cost of 

sequestration, as well as the price of fossil liquid fuel. 

 Waste heat recycling 

Waste heat from the fuel synthesis system and electrolyzer, generally produced at around 160-

350°C and 50-80°C, respectively 91,112. This waste heat can be recycled to meet heat 

requirements for low-temperature DAC, which uses heat at roughly 100°C. The high-

temperature fuel synthesis heat can be mixed with lower-temperature electrolyzer heat to yield 

some amount of 100°C heat. High-temperature PEM electrolyzers operating between 100°C and 

200°C and higher-temperature alkaline electrolyzers are under development 91. By default, 100% 

of this waste heat is assumed to be reusable with 90% losses through a heat exchanger 81. 

This waste heat is likely not hot enough to meaningfully contribute to the 4 GJ of 900°C heat 

demand for calcination in high-temperature DAC systems, but could displace at least some of the 
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remaining 1.25 GJ of lower-temperature heat demand 97. However, this analysis does not 

currently assume any heat recycling in high-temperature DAC scenarios. 

 Optimization-based techno-economic analysis 

The operation of all system components is optimized to produce a fixed annual amount of liquid 

fuel at the lowest attainable cost using renewable electricity with a fixed generation profile, 

supplemented by natural gas for process heat and more expensive grid electricity.  

The linear program optimization can build capacity for each of the thirteen system components: 

Production and storage of each of the five products, electricity, heat, hydrogen, carbon dioxide, 

and liquid fuel, as well as an electric grid interconnection and pipelines for importing natural gas 

and exporting liquid fuel. System operation is then optimized based on the year’s renewable 

electricity production profile using a perfect foresight model. The perfect foresight assumption is 

likely justifiable for solar in the desert, but may be less defensible for wind, particularly if the 

system makes seasonal storage decisions based on knowledge of wind production months in 

advance. 

Operation of the true system would likely also have integer variables, such as minimum capacity 

or operation levels. The potential effects of this relaxation are discussed in the SI, Section 7.7. 

The linear optimization is outlined below, with the full formulation described in the Section 

4.3.4.5: 

Minimize Annualized system cost 
Subject to Fixed total annual electrofuel production 

Fixed renewable electricity production profile throughout the year 
Production ≤ capacity for each component 
Storage level ≤ capacity 
Storage input ≤ production 
Storage output ≤ storage level 
Conservation of energy and matter 
Conservation of storage levels 
Ramping constraints 
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Because this optimization-based model can produce electrofuel, CO2, H2, or other products using 

electricity, it is named the “Power-to-X Optimization Tool”, PtXOpt. 

 Optimization formulation 

4.3.4.1. Indexes 

Electrofuel production consists of flows of five primary products, electricity (e), hydrogen (h), 

heat (q), CO2 (c), and fuel (f). Water (w) flows are also considered, but are derived from other 

decisions and are not modeled explicitly. 

System components consist of production and storage of each product as well as external 

interconnections to the electric grid (ex), natural gas system (gx), and fuel distribution pipeline 

system (fx). Thus, there are thirteen system components. 

4.3.4.2. Decisions 

Capacity, xi, for each component, i, is a time-invariant decision. Thus, there are thirteen total 

capacity decisions. 

In each time period, each of the eight non-storage components has a production level (pi,t) and 

ramping (rk,t) and upward ramping decisions (uk,t). Each of the five storage components, l, has 

three associated time-dependent decisions: Input (yl,t), storage level (sl,t), and output (xl,t). Each 

of the five products can be disposed of as waste (wj,t) as well. With four-hour resolution, a year-

long simulation with 2,190 time periods thus requires thirteen capacity decisions and 72,270 

operational decisions. 

4.3.4.3. Objective function 

This linear program optimization minimizes the annualized present value of constructing and 

operating an electrofuel production system to meet a fixed annual level of fuel production. The 

system models operation for a single representative year of renewable electricity production. 
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The objective function, Equation 8, includes the annualized capital and fixed O&M costs for 

each system component, using a weighted average cost of capital (WACC) and the component’s 

lifetime to compute the annualized cost, ci, of component i. These costs for each scenario are 

computed and shown in Section 4.3.4.7, Table 8. 

 (8) 

Time-varying operation, vi, upward ramping, ak, and disposal, bj, costs are also included in the 

objective function. These costs are assumed to be zero for most system components (zero costs 

are set to $10-9/unit to discourage component vacuous use, with a negligible effect on the 

levelized cost of electrofuel). By default, use of fossil carbon and disposal of CO2 incurs a 

carbon price (see Section 4.3.4.7).  

Ideally, the system would minimize the cost of greenhouse gas mitigation, rather than the cost of 

electrofuel production. However, this would require dividing the objective function by the fossil 

carbon avoided through electrofuel use, making the problem nonlinear. This analysis 

approximates the same objective through the use of a carbon price based on the assumed cost of 

offsite DAC. By paying the carbon price, the electrofuel production facility is essentially paying 

another facility to offset any fossil carbon it opts to use. The carbon price is described further in 

Section 4.3.7. 

Production, pk,t, for each non-storage component, k, must be nonnegative and less than the 

installed level of production capacity. Production incurs variable cost, vk. Variable operational 

costs for the electric grid and natural gas interconnections represent grid electricity and natural 

gas prices, subject to a carbon tax. These values are given for each scenario in Section 4.3.4.7, 

min
xi,pikt, l,t,sl,t,⇠l,t,rk,t,uk,t,wj,t

X

i,j,t

cixi + vkpk,t + vl( l,t + sl,t + ⇠l,t) + ↵kuk,t+�jwj,t (1)

(Levelized capital and fixed O&M + variable O&M {negligible} + upward ramping + disposal)

Such that
X

t

pf,t = Ptot (Fix total annual production) (2)

pk,t  xk (Production is below capacity) (3)

sl,t  xl (Storage level below capacity) (4)

 l,t  �l xl (Storage input limit) (5)

⇠l,t  �l⇠xl (Storage output limit) (6)

sl,t = sl,t�1 +  l,t�1 � ⇠l,t�1 if t 6= 0 (Storage level conservation) (7)

sl,0 = 0 for t = 1 (Storage starts empty) (8)

rk,t = pk,t � pk,t�1 (Ramping definition) (9)

�⇣kxk  rk,t  ⇣kxk (Ramping limits) (10)

rk,t  uk,t (Upward ramping � ramping) (11)

0  uk,t (Upward ramping positive) (12)

pgx,t  ⌘gc⌘hcpc,t (Natural gas carbon limit) (13)

(Conservation of electricity)

pe,t + pex,t + ⌘es⇠e,t =
ph,t
⌘e,h

+
pq,t
⌘q,h

+ ⌘e,cpc,t + ⌘hse h,t+⌘cse c,t + ⌘creuc,t +  e,t + we,t (14)

(Conservation of hydrogen)

ph,t + ⌘h,s⇠h,t =
pf,t
⌘h,f

+  h,t + ⌘frhuf,t + wh,t (15)

(Conservation of heat)

pq,t + ⌘gqpgx,t + (1� ⌘hf )⌘fqpf,t + (1� ⌘e,h)⌘hqph,t + ⌘hs⇠h,t =
pc,t
⌘hc

+  h,t + ⌘crhuc,t + wh,t (16)

(Conservation of carbon dioxide)

pc,t + ⌘gxcpgx,t + ⌘cs⇠c,t =
⌘cf
pf,t

+  c,t + wc,t (17)

(Conservation of fuel)

pf,t + ⌘fs⇠f,t =pfxt +  f,t + wf,t (18)

(Conservation of water)

pw,t =
ph,t
⌘hw

+
pc,t
⌘cw

+
pw,t

⌘fw
(19)

Where i 2 {⇥p,⇥s,⇥x}, (System components) (20)

j 2 ⇥, (Products); (21)

k 2 ⇥p, (Production component); (22)

l 2 ⇥s, (Storage component); (23)

t 2 1, 2, 3, ..., T ; (24)

xi, pk,t, l,t, sl,t, ⇠l,t, uk,t, wj,t 2 R+, (Nonnegativity)

rk,t 2 R, (Ramping can be negative)

2
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Table 9. For all other quantities, production variable cost is set to $10-9/kWh or $10-9/t(CO2) to 

discourage vacuous production.  

Production generally occurs with some associated efficiency or mass or energy requirement for 

conversion of inputs to outputs. hi,j, represents the ratio of quantity produced by component i to 

the quantity of product j required to produce it. This is interpretable as an energy efficiency for 

components with a single energy input and a single energy output, such as the electrolyzer, 

whose efficiency, hh,e, is the ratio of output hydrogen energy to input electrical energy. Values of 

hi,j are given in Section 4.3.4.7. The electrolyzer converts electricity and water into H2, hh,e and 

hh,w, and potentially reusable waste heat, hh,q. Water flows are not modeled explicitly, but are 

represented assuming an all-in levelized cost of $1/m3 for desalinated water 151,155. The electric 

kiln converts electricity into heat, hq,e. The DAC system converts electricity and heat to CO2, hc,e 

and hc,q. The fuel synthesis system converts H2 and CO2 into liquid fuel, hf,h and hf,c, producing a 

potentially reusable waste heat and water, hf,q and hf,w. Natural gas is combusted to produce heat, 

hgx,q. The fuel synthesis also incurs an upward ramping energy penalty, requiring hydrogen 

equivalent to production of hfr,hhf,h kWh of electrofuel for each kW(fuel) of upward ramping. 

The DAC system also incurs ramping energy penalties of hcr,qhc,q and hcr,ehc,e, requiring heat and 

electricity equivalent to 1 t(CO2) of production for each t(CO2)/hr of upward ramping.  

Ramping, rk,t, is the positive or negative change in a component’s production relative to the 

previous time period. Each production component is subject to symmetric ramping constraints, 

requiring that |rk,t| not exceed a fixed percentage of installed capacity, zk. zk is 100% for all 

components except fuel synthesis and DAC, where it defaults to 10%.  
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Upward ramping, uk,t, is defined as the nonnegative increase in a component’s production from 

the previous period. Upward ramping incurs cost, ak, to penalize increases in component 

operation level, which are often associated with increased energy requirements and other costs.  

Storage input, yl,t, must be less than or equal to total production of a given quantity, including 

reusable waste production potential, in each time period, including all potential sources of each 

product. For CO2, H2, and liquid fuel, there is only one source of production. Heat can come 

from the electric kiln, natural gas, or waste heat from the fuel synthesis and the electrolyzer. The 

model does not currently differentiate between low-temperature and high-temperature heat. For 

high-temperature DAC systems in particular, waste heat from the fuel synthesis and the 

electrolyzer is of limited utility, as it cannot replace calciner heat demand unless it is mixed with 

substantial amounts of much higher-temperature heat. For this reason, waste heat recycling is 

disallowed by default in high-temperature DAC scenarios. H2 and CO2 are stored in pressurized 

vessels with compression energy requirements, hjs,e, described Sections 4.3.1.9 and 4.3.1.11. 

Storage input must be nonnegative and cannot exceed a fixed percentage of installed storage 

capacity, gly, 100% by default. 

Storage level, sl,t, tracks the cumulative amount of product in storage and is equal to the level in 

the previous time period plus any input and minus any output in the previous period. Storage 

level begins at zero by default in the first time period, must be nonnegative, and cannot exceed 

installed storage capacity. 

Storage output, xl,t, must be less than or equal to the storage level in the previous period. 

Storage operates with some efficiency, with losses incurred during output. Storage efficiencies, 

hjs, are described in Section 4.3.1 and are given in Table 12. Storage output must be nonnegative 

and cannot exceed a fixed percentage of installed storage capacity, glx, 100% by default. 
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Waste, wj,t, for each of the five products allows for disposal of resources that would be 

uneconomic to store. By default, disposal costs, bj, are numerically zero, set at $10-9/kWh to 

avoid vacuous waste for all quantities except CO2, for which the disposal cost is the system-wide 

CO2 price. See Section 4.3.7 for further discussion of the CO2 price. 

4.3.4.4. Conservation of product 

Each of the five products is subject to a conservation constraint, which ensures that mass and 

energy are conserved. System inflows must match outflows in each period. 

 

Figure 10. Conservation of Electricity. Inflows are renewable electricity generation, grid electricity, and electricity 

storage output. Outflows are consumption from the electrolyzer, electric kiln, and the DAC system, electricity 

storage input, DAC ramping electricity consumption, H2 and CO2 compressor energy consumption, and waste 

electricity. Storage losses are incurred upon discharge. 
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Figure 11. Conservation of Heat. Inflows are electric kiln and heat storage output, natural gas combustion, and 

recycled waste heat from the fuel synthesis system and electrolyzer. Outflows are consumption from the DAC 

system, DAC ramping heat, heat storage input, and waste heat. Storage losses are incurred upon discharge. 

 

Figure 12. Conservation of Hydrogen. Inflows are electrolyzer and H2 storage output. Outflows are consumption 

by the fuel synthesis system, fuel synthesis ramping, H2 storage input, and waste H2. Storage losses are incurred 

upon discharge. 
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Figure 13. Conservation of carbon dioxide. Inflows are DAC production and CO2 storage output and emissions 

from combustion of natural gas, which are assumed to be co-captured through oxygen-firing and can thus be 

converted into electrofuel. The system does not explicitly represent oxygen flows. However, H2 production through 

electrolysis produces more than enough oxygen for oxygen-firing of natural gas to meet DAC heat demand. 

Outflows are fuel synthesis and CO2 storage input and waste CO2. Storage losses are incurred upon discharge. 

Natural gas CO2 emissions are captured through oxygen-firing and are thus available for reuse. Grid electricity CO2 

emissions occur offsite, and thus incur a carbon price but are not available for reuse within the facility. 

Fuel inflows are fuel synthesis and fuel storage output. Outflows are fuel sent into the export pipeline and waste 

fuel. 
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4.3.4.5. Full formulation 

Below is the optimization that underpins the PtXOpt model used in this analysis, Equation 8:  

 

min
xi,pikt, l,t,sl,t,⇠l,t,rk,t,uk,t,wj,t

X

i,j,k,l,t

cixi + vkpk,t + vl( l,t + sl,t + ⇠l,t) + ↵kuk,t + �jwj,t (8.1)

(Levelized capital and fixed O&M + variable O&M + upward ramping + disposal)

Such that
X

t

pf,t = Ptot (Fix total annual production) (8.2)

pk,t  xk (Production is below capacity) (8.3)

sl,t  xl (Storage level below capacity) (8.4)

 l,t  �l xl (Storage input limit) (8.5)

⇠l,t  �l⇠xl (Storage output limit) (8.6)

sl,t = sl,t�1 +  l,t�1 � ⇠l,t�1 if t 6= 0 (Storage level conservation) (8.7)

sl,0 = 0 for t = 1 (Storage starts empty) (8.8)

rk,t = pk,t � pk,t�1 (Ramping definition) (8.9)

�⇣kxk  rk,t  ⇣kxk (Ramping limits) (8.10)

rk,t  uk,t (Upward ramping � ramping) (8.11)

0  uk,t (Upward ramping positive) (8.12)

pgx,t  ⌘gx,c⌘cqpc,t (Natural gas carbon limit) (8.13)

(Conservation of electricity)

pe,t + pex,t + ⌘es⇠e,t =
ph,t
⌘he

+
pq,t
⌘qe

+
pc,t
⌘ce

+
 h,t

⌘hse
+
 c,t

⌘cse
+

uc,t

⌘cre
+  e,t + we,t (8.14)

(Conservation of hydrogen)

ph,t + ⌘hs⇠h,t =
pf,t
⌘fh

+  h,t +
uf,t

⌘frh
+ wh,t (8.15)

(Conservation of heat) (8.16)

pq,t +
pgx,t
⌘gxq

+ (1� ⌘fh)
pf,t
⌘fq

+ (1� ⌘he)
ph,t
⌘hq

+⌘qs⇠q,t =
pc,t
⌘cq

+  q,t +
uc,t

⌘crq
+ wq,t

(Conservation of carbon dioxide)

pc,t +
pgx,t
⌘gxc

+ ⌘cs⇠c,t =
pf,t
⌘fc

+  c,t + wc,t (8.17)

(Conservation of fuel)

pf,t + ⌘fs⇠f,t =pfx,t +  f,t + wf,t (8.18)

(Conservation of water) (8.19)

pw,t =
ph,t
⌘hw

+
pc,t
⌘cw

+
pw,t

⌘fw
(8.20)

Where i 2 {⇥p,⇥s,⇥x}, (System components)

j 2 ⇥, (Products)

k 2 {⇥p,⇥x}, (Production or interconnection component)

l 2 ⇥s, (Storage component)

t 2 1, 2, 3, ..., T

xi, pk,t, l,t, sl,t, ⇠l,t, uk,t, wj,t 2 R+, (Nonnegativity)

rk,t 2 R, (Ramping can be negative)

2
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4.3.4.6. Indexes 

Products and materials 

  

Production components 

  

Storage components 

  

External interconnections 

  

 t Î {1, 2, 3, …, T} is the time period. With four-hour resolution T=2,190. 

 

 

 

3 Parameter interpretation

3.1 Indices

3.1.1 Products: Energy and material

⇥ = {e = Electricity,

h = Hydrogen,

q = Heat,

c = Carbon dioxide,

f = Fuel,

g = Natural gas,

w = Water}

3.1.2 Production components

⇥p = {ep = Electricity production, (Renewable generation, exogenous)

hp = Hydrogen production, (Electrolyzer)

qp = Heat production, (Electric kiln)

cp = Carbon dioxide production, (Direct air CO2 capture)

fp = Fuel production, (Fischer-Tropsch with reverse water-gas shift)

3.1.3 Storage components

⇥s = {es = Electricity storage,

hs = Hydrogen storage,

qs = Heat storage,

cs = Carbon dioxide storage,

fs = Fuel storage

3.1.4 External interconnections

⇥x = {ex = Electric grid interconnection,

fx = Fuel pipeline,

ge = Natural gas pipeline,

we = Water pipeline,

t 2 {1, 2, 3, ..., T} is the time period.
By default, t is in increments of one hour, with T = 8, 760, representing a full year of operation.
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bility per unit time.
pk2{⇥p,⇥e},t is output from production component or external interconnection i at time t.
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4.3.4.7. Optimization parameter values 

The system produces Ptot = 4.5 TWh(fuel)/yr, equivalent to an average production of 7,570 bbl/d. 

The scale determined by the size of the DAC system modeled in Keith et al. 97, which produces 1 

Mt(CO2)/yr.  

Table 5. Capital costs. Capital cost for the water interconnection is not modeled, as the water price is assumed to 

contain the interconnection cost. DAC and fuel synthesis costs are given per unit output capacity, while all other 

production costs are modeled in terms of input power requirements. Some costs have been converted from different 

units or dollar-years, as described in Section 4.3.1. All costs are in 2017 dollars. 

Component Units Today Next-decade Breakthrough 
Solar PV $/kW(e) 900 6 500 88 400  
Wind $/kW(e) 1,500 5 1,250 5 1,000 5 
Electrolyzer $/kW(e) 1,200 91 580 91 390 91 
Electric kiln $/kW(e) 125 107 75 25 
Direct air capture 
[high-temperature] 

$/(t(CO2)/yr) N/A 1,046 97 694 97 

Direct air capture [low-
temperature] 

$/(t(CO2)/yr) 3,030 102 1,120 102 790 102 

Fuel synthesis $/kW(fuel) 800 78 450 78 350 78 
Grid interconnection $/kW(e) 340 140,141 180 140,141 45 140,141 
Fuel pipeline $/kW(fuel) 20 156 10 156 2 156 
Natural gas pipeline $/kW(th) 225 147 115 147 25 147 
Electricity storage $/kW(e) 350 7 250 100 116 
H2 storage $/kW(H2) 25 121,122 15 122 6 121 
Heat storage 
[Low-temperature] 

$/kW(th) 25 86,133 20 129 15 129 

Heat storage 
[High-temperature] 

$/kW(th) N/A 55 127 25 

CO2 storage $/t(CO2) 50,000  10,000 136,137 1,000 
Fuel storage $/kW(fuel) 0.1 138,139 0.1 138,139 0.1 138,139 
WACC % 10% 8% 5% 

 

  



 89 

Table 6. Operations and maintenance costs. Non-energy costs of operating and maintaining each component. Units 

are % of capital cost per year. Includes both fixed and variable O&M. Reasons for these choices are described 

further in Section 4.3.1. 

Component %/year 
Solar PV 87 1% 
Wind 87 2.5% 
Electrolyzer 78,91 3% 
Electric kiln  1% 
Direct air capture 97 4% 
Fuel synthesis 113 4% 
Grid interconnection 1% 
Fuel pipeline 1% 
Natural gas pipeline 1% 
Electricity storage 
119,120 

1% 

H2 storage 1% 
Heat storage  1% 
CO2 storage 136 5% 
Fuel storage 1% 

 

  



 90 

Table 7. System lifetime. Held constant in all cases. The 25-year lifetime of the DAC system dictates the full system 

lifetime and thus maximum component lifetime 97. Thus, citations below may have a longer lifetime. Reasons for 

these choices are described further in Section 4.3.1. 

Component Years 
Solar PV 87 25 
Wind 87 25 
Electrolyzer 78,91 25 
Electric kiln 10 
Direct air capture 97,104 25 
Fuel synthesis 78 25 
Grid interconnection  25 
Fuel pipeline 25 
Natural gas pipeline 25 
Electricity storage 115–117 10 
H2 storage 25 
Heat storage 25 
CO2 storage 25 
Fuel storage 25 

 

The model does not include a separate estimate of the cost of integrating components into a 

functioning system. Each component consumes and produces one or a few products, each of 

which can be transported at low cost through pipelines or wires. This suggests that system 

integration costs would be low. Still, this assumption biases results in favor of electrofuel 

production, which requires additional system integration costs over standalone DACS. 

Annualized capital and non-energy O&M costs are combined using Eq. 9 to form the ci costs 

used in the optimization, shown in Table 8. Capital costs are annualized according to their 

lifetime and the weighted average cost of capital (WACC) using the capital charge factor 

described in Equation 7. 

 

ci = capexi (CCFi + O&M%i )      (9) 
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Table 8. Annualized capital and non-energy O&M cost. Derived from Table 5, Table 6, and Table 7 using Eq. 9. 

Component Units Today Next-decade Breakthrough 
Solar PV (cep) $/kW(e)-yr 108.2 51.8 32.4 
Wind (cep) $/kW(e)-yr 202.8 148.3 96.0 
Electrolyzer (chp) $/kW(e)-yr 168.2 71.7 39.4 
Electric kiln (cqp) $/kW(e)-yr 15.0 7.8 2.0 
Direct air capture [high-
temperature] (ccp) 

$/(t(CO2)/yr)-yr N/A 139.8 77 

Direct air capture [low-
temperature] (ccp) 

$/(t(CO2)/yr)-yr 455.0 149.7 87.7 

Fuel synthesis (cfp) $/kW(fuel)-yr 120.1 60.2 38.8 
Grid interconnection (cee) $/kW(e)-yr 40.9 18.7 3.6 
Fuel pipeline (cfe) $/kW(fuel)-yr 2.4 1.0 0.2 
Natural gas pipeline (cge) $/kW(th)-yr 27.0 11.9 2.0 
Electricity storage (ces) $/kWh(e)-yr 60.5 39.8 14.0 
H2 storage (chs) $/kWh(H2)-yr 3.0 1.6 0.5 
Heat storage (cqs) $/kWh(th)-yr 3.0 5.7 2.0 
CO2 storage (ccs) $/t(CO2)-yr 8008 1437 121 
Fuel storage (cfs) $/kWh(fuel)-yr 0.01 0.01 0.01 

 

Table 9. Variable cost, vi, is assumed to be zero in all cases except for external interconnections to grid electricity, 

natural gas, and water and carbon payments, which are added as well. 

Component Unit Today 
Grid electricity price (vee) 
106 

$/kWh(e) 0.65  

Natural gas price (vge) 148 $/MMBtu(th) 3 
Water (vwe) 151,155 $/t(H2O) 1 

 

Table 10. Fossil CO2 emissions. For natural gas and grid electricity, carbon payments are represented as variable 

costs within vk, as the product of the carbon price and the CO2 intensity of the fuel. 

Component Units Today Next-
decade 

Breakthrough 

Grid CO2 intensity  lb(CO2)/MWh(e) 794 143 397 0 
Natural gas emissions  lb(CO2)/MMBtu(th) 117 157 117 157 117 157 
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Table 11. Carbon price in each scenario. See Section 4.3.7 for further details. 

CO2 price $/t(CO2) 
Today, low-temperature 102 600 
Next-decade, high-temperature 97 232 
Next-decade, low-temperature 102 200 
Breakthrough, high-temperature 97 126 
Breakthrough, low-temperature 102 100 

 

Table 12. Efficiency and energy and material requirements. Solar and wind efficiencies are built into capital costs 

and the production profile. External interconnections are assumed to be lossless. 

Component Units Today Next-
decade 

Breakthrough 

Electrolyzer electricity (ηhe)  kWh(e)/kWh(H2) 65% 78,91 70% 78,91 75% 78,91 
Electrolyzer water (ηhw) kg(H2O)/kWh(H2) 0.27 78 0.27 78 0.27 78 
Electric kiln (ηqe) kWh(e)/kWh(th) 95% 95% 95% 
Direct air capture heat 
[high-temperature] (ηcq) 

GJ(th)/t(CO2) N/A 5.25 97 5.25 97 

Direct air capture electricity 
[high-temperature] (ηce) 

kWh(e)/t(CO2) N /A 366 97 77 97 

Direct air capture water 
[high-temperature] (ηcw) 

t(H2O)/t(CO2) 4.7 97 4.7 97 4.7 97 

Direct air capture heat  
[low-temperature] (ηcq) 

GJ(th)/t(CO2) 7.9 104 5.8 104 4.4 98,158 

Direct air capture electricity 
[low-temperature] (ηce) 

kWh(e)/t(CO2) 700 104 400 104 160 98,158 

Direct air capture heat  
[low-temperature] (ηcw) 

t(H2O)/t(CO2) -1 104 -1 104 -1 104 

Fuel synthesis CO2 (ηfc) t(CO2)/MWh(fuel) 0.28 78 0.28 78 0.28 78 
Fuel synthesis H2 (ηfh) kWh(H2)/kWh(fuel) 70 114,159 70 114,159 75 114,159 
Electricity storage (ηes) % 80 117,118 85 117 90 117 
H2 storage (ηhs) % 99 99 99 
Heat storage 
[Low-temperature] (ηqs) 

% 90 131 90 131 90 131 

Heat storage 
[High-temperature] (ηqs) 

% 90 131 90 131 90 131 

CO2 storage (ηcs) % 100 100 100 
Fuel storage (ηfs) % 100 100 100 
Natural gas combustion 
(ηgxq) 

kWh(th)/kWh(th) 100 100 100 
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Table 13. Storage compression energy. Incurred upon storage input. 

Component Units Today Next-decade Breakthrough 
H2 storage (ηhse) kWh(e)/kWh(H2) 0.036 121 0.036 121 0.033 121 
CO2 storage (ηcse) kWh(e)/t(CO2) 289 97 289 97 289 97 

 

Table 14. Ramping energy penalty incurred for each hourly unit of upward ramping as a percentage of input energy 

requirements for one t(CO2) for DAC and one kWh(fuel) for fuel synthesis. 100% means that for every kW(fuel) of 

ramping, the fuel synthesis infrastructure consumes H2 equal to what it would use to produce 1 kWh(fuel). DAC 

ramping incurs analogous heat and electricity penalties based on input requirements per t(CO2). 

Component Units  
Direct air capture (ηcre,	ηcrh) % 100% 
Fuel synthesis (ηfrh) % 100% 

 

Table 15. Waste heat reusability rate. Includes heat exchanger losses. Waste heat recycling is only available for 

low-temperature DAC systems. 

Component Units Today Next-
decade 

Breakthrough 

Electrolyzer (ηhq) % 0% 0% 90% 81 
Fuel synthesis (ηfq) % 0% 90% 81 90% 81 

 

Ramping 

All components except the DAC and fuel synthesis can ramp to full capacity within one hour (zk 

= 100%). Renewable electricity is treated as exogenous. Existing alkaline and PEM electrolyzers 

are capable of cold start to minimum load times of 20 minutes or less, with the ability to ramp up 

and down to and from full capacity within seconds to minutes once they have begun operating 91. 

Electric resistive heating simply requires a that current be applied to a heating element, which 

could be kept hot in an insulated containment vessel. Lithium-ion electricity storage can 

comfortably ramp on timescales of seconds or less. Gas and liquid storage systems are limited 
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primarily by compression and decompression, which likely would take minutes for foreseeable 

input and output demands. 

Due to their operational complexity and potential for high operating temperatures, the DAC and 

fuel synthesis are assumed to take 10 hours to reach full capacity, thus zcp = zfp = 10%. The 

sensitivity analysis varies this from 1% to 100%.  

If time is aggregated below hourly resolution, zk is multiplied by the number of hours per time 

period, with a maximum value of 100%. Thus, for four-hour resolution, the effective value of zcp 

= zfp = 40%. 

Table 16.  Ramping limit. Maximum absolute hourly ramping as a fraction of installed production capacity. 

Component % 
Solar PV (zep) 100% 
Wind (zep) 100% 
Electrolyzer (zhp) 100% 
Electric kiln (zqp) 100% 
Direct air capture (zcp) 10% 
Fuel synthesis (zfp) 10% 
Grid interconnection (zex) 100% 
Fuel pipeline (zfx) 100% 
Natural gas pipeline (zgx) 100% 

 

Storage power capacity 

The flow rate in and out of storage components is limited only by storage capacity. In practice, 

modeled storage inflows and outflows are generally much smaller than rated capacity. 

Natural gas carbon limit 

CO2 from combustion of natural gas is assumed to be co-captured in an oxygen-fired kiln used to 

heat the DAC process. This is based on the high-temperature system design in Keith et al. 97, 

which could be implemented to provide heat to a low-temperature system as well. In an 

electrofuel production system, oxygen from electrolysis of water would be abundantly available. 
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Oxygen flows are not modeled explicitly in this analysis and doing so would likely have only a 

marginal effect on the system operation and overall cost. 

Co-captured CO2 can be used for electrofuel production, displacing captured CO2. 

Unconstrained, the model tends to prefer low-cost fossil CO2 to captured CO2. The model guards 

against excessive reliance on fossil CO2 in two ways. First, the carbon tax gives fossil CO2 an 

effective cost on par with captured CO2. Second, the model includes a constraint that prevents 

instantaneous natural gas CO2 emissions from exceeding instantaneous DAC CO2 demand. 

 No storage scenarios 

“No storage” scenarios assume storage and external grid electricity and natural gas 

interconnections are not available, constraining all system components to operate at the same 

capacity factor as the renewable electricity consumption. These cases remove ramping 

constraints and costs and do not allow any product to be wasted.  

 Levelized cost of fuel 

The levelized cost of electrofuel is the optimal annualized electrofuel production system cost, the 

optimal objective function value, divided by the total quantity of electrofuel produced. This is 

reported in $/gallon of gasoline equivalent (GGE). 

 Carbon price 

The model includes a carbon price to penalize the use of fossil carbon from natural gas and grid 

electricity, as well as waste of captured CO2. By default, the CO2 price is the levelized cost of 

DAC claimed by manufacturers under the technology assumptions in the corresponding scenario. 

The carbon price is based on cost claims by manufacturers, which may involve different 

assumptions than those modeled here, particularly the potential use of low-cost waste heat or on-

site natural gas electricity generation. For low-temperature systems, this corresponds to 
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$600/t(CO2) for Today 102, based on Climeworks’ estimated current costs, $200/t(CO2) in the 

Next-decade, and $100/t(CO2) in the Breakthrough case, based on Climeworks’ statements to the 

media 102. High-temperature systems use Carbon Engineering’s estimated costs from Keith et al., 

with early build costs of $232/t(CO2) for the next-decade assuming a 12.5% capital return factor 

and Nth-of-a-kind costs of $126/t(CO2), assuming a 7.5% capital return factor, for a system 

producing pipeline-ready CO2 at 151 bar 97. These carbon prices assume free sequestration, in 

line with literature estimates that place sequestration costs as low as $2/t(CO2) 153. This is also 

consistent with estimates of the cost of standalone DAC in this analysis, in which the highly 

uncertain cost of sequestration is treated as an unknown parameter whose value determines the 

cost differential that makes electrofuel production a more or less cost-effective mitigation 

strategy than DACS. See the SI, Section 7.9.1 for a simulation with no carbon price. 

 Electrofuel greenhouse gas mitigation cost-effectiveness 

For electrofuels, the cost of mitigating fossil GHG emissions depends on the life-cycle carbon 

content of equivalent petroleum-based fuels and the relative price of the two fuels. This analysis 

uses petroleum jet fuel for comparison because there is less potential for fuel substitution in 

aviation than in ground or water transportation and thus likely a greater willingness to pay for a 

carbon-neutral hydrocarbon fuel. 

The main analysis computes electrofuel mitigation cost, Cmitigation, using Eq. 10, assuming that the 

carbon price paid during electrofuel production is used to offset emissions from the use of fossil 

carbon. 

 

Cmitigation = (Celectrofuel – Cpetro-fuel)/GHGpetro-fuel    (10) 
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Where Celectrofuel is the production cost of electrofuel, Cpetro-fuel and GHGpetro-fuel are the assumed 

unit cost and life-cycle GHG emissions intensity of equivalent petroleum-based fuels. 

Combustion of a gallon of gasoline equivalent (GGE) of jet fuel produces 8.15 kg(CO2)/GGE 160. 

Oil refining is assumed to be 87% efficient, based on efficiency for low-sulfur diesel, which is 

chemically similar to jet fuel, resulting in an additional 1.22 kg(CO2)/GGE 161. Emissions from 

extraction and transportation of oil vary widely, with a median estimate of 1.04 kg(CO2)/GGE 

162. Thus, the life-cycle carbon content of petroleum-based fuels, GHGpetro-fuel, is estimated at 

10.4 kg(CO2)/GGE(fuel). 

Since 2008, unsubsidized jet fuel prices for domestic US flights have ranged from $1.50-

3.20/GGE, averaging around $2/GGE 163. This analysis treats $2/GGE as the baseline cost of jet 

fuel, considering a $3/GGE case as well. 

Note that this is not a perfect comparison, as it does not account for life-cycle emissions 

associated with electrofuel production apart from direct emissions due to the use of fossil energy. 

This analysis also does not account for profit margins, which are included in oil prices. Taxes are 

not included here in electrofuel or DAC production or oil prices. 

See the SI, Section 7.9.1 for a case without a carbon price. 

 DAC-only analysis 

The electrofuel GHG mitigation cost is compared to the cost of a standalone DAC system under 

the same scenario assumptions. These cases use the same optimization formulation described in 

Section 4.3.4, but the system captures 1 Mt(CO2) from the atmosphere per year instead of 

producing 4.5 TWh of electrofuel. Thus, DAC-only simulations do not include hydrogen or 

hydrocarbon fuel-related infrastructure. As with electrofuels, the levelized cost of DAC is the 
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objective function. The annualized cost of production is annualized system cost divided by the 

total CO2 produced in the simulated year. This is reported in $/t(CO2). 

With access to natural gas, the standalone DAC cases operate at roughly a 100% capacity factor. 

The levelized cost comparison with electrofuel production inflates the levelized cost of DAC by 

a factor of 1/0.9 to simulate a 90% capacity factor, which is the level targeted in Keith et al. 97. In 

this analysis, electrofuel production scenarios tend to operate the DAC at capacity factors 

between 80% and 90%. The system could likely be taken down for maintenance during lulls in 

renewable electricity availability with a modest impact on annualized system cost. 

 Sensitivity analysis 

The sensitivity analysis individually varies each parameter from its baseline value in the Next-

decade high-temperature solar electrofuel case, with the following exceptions: 

1. DAC and fuel synthesis ramping energy consumption and ramping rate limits, as well as 

compression energy requirements for H2 storage, all of which are constant in the main 

analysis, are set to 0 and ten times their baseline value. 

2. CO2 compression energy remains at 0 kWh(e)/t(CO2) in the baseline Next-decade case 

because the DAC system modeled produces pressurized CO2. The high value remains at 

the level in the Today case. The low value remains at 0 kWh(e)/t(CO2). 

3. Kiln efficiency, held constant at 95% in the main analysis, varies from 75% to 99%. 

4. Heat storage efficiency, held constant at 90% in the main analysis, varies from 70% to 

95%. 

5. A high heat storage cost of $150/kWh(th) is used instead of the Today case cost of 

$25/kWh(th), which represents the cost of molten salt heat storage 86,133. This represents a 

case in which high-temperature thermal storage is roughly as expensive as the assumed 
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long-term cost of electricity storage. A low cost of $15/kWh(th) is used to represent the 

US DOE 2020 target for supercritical CO2 thermal storage for concentrated solar 

electricity generation facilities 129. Such storage would not reach 900°C but represents an 

option for low-temperature systems and an aspirational goal for high-temperature heat 

storage. 

6. Lifetimes differ across components. The low and high cases consider lifetime changes of 

±20% of the baseline values. 

For computational reasons, the sensitivity analysis considers only a subset of the year, still with 

4-hour resolution. Hours 1,501-2,500 reproduce a levelized electrofuel cost of $5.02/GGE, 6% 

below the baseline value simulated over the full year. As a result, this simulation will miss 

seasonal effects, allowing components to be undersized to match the simulated electricity 

production profile and potentially undervaluing seasonal CO2 storage as well. However, most 

storage decisions take place over timescales of one or a few days, suggesting that this shorter 

simulation will yield insight into the system’s sensitivity to key parameters in a full annual 

simulation.  

Switching to 8-hour resolution allows the system to dispense with electricity storage simply due 

to aggregation effects, preventing exploration of important uncertainties. For this reason, 

sensitivity is not simulated at 8-hour resolution, even though this would allow a computationally 

tractable exploration of seasonal sensitivities. 

4.4. Analysis and results 

The levelized cost of electrofuel, shown in Figure 14, varies substantially across the six 

scenarios.  A system running with Today’s technology at a fixed capacity factor, 29.3% for solar 

and 57.5% for wind produces fuel at $25.60/GGE and $14.94/GGE, respectively. Adding storage 
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and electric grid and natural gas interconnections to the system allows capital-intensive assets 

such as the DAC system to run at a capacity factor over 89% in all solar cases and over 80% in 

all wind cases (see the SI, Section 7.8.1 for the capacity factor of each component). Under the 

same assumptions, adding storage and external interconnections reduces the levelized cost to 

$13.85/GGE and $12.75/GGE for solar and wind, respectively.  

In the Next-decade cases, costs fall to $5.25-5.35/GGE or $5.89-5.68/GGE for solar- and wind-

powered systems, respectively. Low-temperature DAC’s higher capital and fixed O&M costs are 

offset by its ability to reuse waste heat from fuel synthesis. In the Breakthrough cases, costs fall 

further to $2.69-2.78/GGE for solar and $2.97-3.07/GGE for wind, with nearly all heat demand 

in the low-temperature case met by waste heat from the fuel synthesis and the electrolyzer.  

In all cases, the levelized cost of electrofuel is dominated by the capital and O&M costs of the 

DAC system, the electrolyzer, and the renewable electricity generation. The electrolyzer 

continues to operate intermittently, but at a capacity factor of 38-40% for solar and 57-62% for 

wind, above well above the 29.3% capacity factor for solar, but comparable to wind’s 57.5% 

capacity factor. Note that for cases with storage, fuel synthesis capital represents only 4-7% of 

levelized cost. This is due in part to a capacity factor above 80% and a capacity requirement 

roughly 25% that of the electrolyzer, roughly 1/3 on an energy input basis assuming 70% 

efficiency. See the SI, Section 7.8.1 for installed capacities and capacity factors for all 

production components. 

Note that for low-temperature cases, water produced from the DAC system is sufficient to supply 

the electrolyzer. However, water costs in high-temperature cases represent at most $0.05/GGE, 

or 1.6% of total cost.  
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Figure 14. The levelized cost of electrofuel per gallon of gasoline equivalent (GGE) of liquid hydrocarbon fuel 

produced using solar (A) and wind (B) electricity. In all six cases, the three largest cost components are capital and 

non-energy operating costs for the direct air carbon capture (DAC) system, the electrolyzer, and the renewable 

electricity generation. Fuel synthesis and storage capital and operating costs are far smaller in all cases. However, 

storage of electricity, hydrogen, heat, and carbon dioxide, as well as grid electricity or natural gas interconnections, 

allow the direct air capture, fuel synthesis infrastructure, and other components to operate at a higher capacity factor 

than the renewable electricity, resulting in an $11.75/GGE savings for a solar-powered system built with today’s 

technology, including a low-temperature DAC system, but only result in $2.19/GGE in savings for a wind-powered 

system due in part to an electrical capacity factor nearly double that of the solar. Most cases opt to use some natural 

gas or grid electricity despite carbon payments commensurate with the cost of direct air capture in the assumed 

scenario. Under Next-decade assumptions in which near-term cost and performance targets are achieved, the cost of 

production falls below $6/GGE for both the low-temperature system and high-temperature system, falling to 

$5.23/GGE in the solar low-temperature case. Longer-term technological Breakthroughs in each of the constituent 

technologies could lead to production costs of roughly $3/GGE or lower in all cases. Despite wind’s higher capacity 

factor, the presence of storage and natural gas and electric grid interconnections make solar’s lower levelized cost of 

electricity the decisive factor in achieving lower fuel cost than wind in the Next-decade and Breakthrough cases. 
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The system opts to use some natural gas for process heat in all scenarios in which it is available 

despite carbon prices of $126-600/t(CO2). Natural gas interconnection capacity is 99.5-291.7 

MW(th). For cases without waste heat recycling, all but the low-temperature Next-decade and 

Breakthrough cases, this interconnection is used at a capacity factor of 61-83%. Cases with waste 

heat recycling have capacity factors of 21-49%. Note that many cases opt to use more natural gas 

than electricity for process heat. In cases with storage and without heat recycling, electric kiln 

capacity is 215.5-577.5 MW(e), used at capacity factors of 1-22%. The Next-decade low-

temperature cases, which only reuse waste heat from the fuel synthesis, build 38.2-82.6 MW(e) 

of capacity at a 7% capacity factor. The Breakthrough low-temperature cases do not build 

electric kiln capacity. 

All cases with storage build a grid interconnection of 9-55 MW(e). The solar Today case uses 10 

MW(e) at a 17% capacity factor. The solar Next-decade cases use 48-53 MW(e) at a capacity 

factor of 28-31%. The solar Breakthrough cases use 9-14 MW(e) at a capacity factor of 3-6%. 

Wind cases build 31-55 MW(e) at a capacity factor of 1-2% 

As a result of fossil energy use, primarily from natural gas, carbon credit payments represent as 

much as $1.42/GGE or 10.2% of total cost in the Today solar scenario and $0.44/GGE or 8% of 

total cost in the solar Next-decade high-temperature scenario. However, in no case does the 

system rely entirely on DAC process heat from natural gas.  

Despite their enormous importance in lowering system cost, storage and external interconnection 

capital costs represent only 2-5% of total cost in all cases. For solar electrofuels, storage of 

electricity, hydrogen, and heat is generally diurnal, retaining enough electricity, heat, and 

hydrogen to run the DAC and fuel synthesis systems through the night. The electric grid and 

natural gas interconnections are direct substitutes for electricity and heat storage. In the Next-
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decade cases, natural gas entirely replaces heat storage (see the SI, Section 7.8.1 for installed 

storage capacities). The Breakthrough cases use some heat storage, at less than 0.25% of total 

cost. If natural gas and grid electricity are not available in the Next-decade high-temperature 

solar case, the system builds 4.2 GW(th) of heat storage, representing $0.18/GGE of a total 

levelized cost of $5.68/GGE, resulting in a cost increase of $0.33/GGE over the corresponding 

case that allows use of natural gas and grid electricity. See the SI, Section 7.9.2 for further details 

of this case. 

Removing the carbon price encourages further use of fossil energy. In the Next-decade high-

temperature solar case, removing the carbon price reduces levelized cost from $5.35/GGE to 

$4.89/GGE, for a cost reduction of $0.46/GGE. In the corresponding case with a carbon price, 

carbon payments represent $0.44/GGE. System operation changes only slightly, with natural gas 

rising from $0.12/GGE to $0.13/GGE and grid electricity costs rising from $0.05/GGE to 

$0.12/GGE. This results in a 20% increase in the net fossil carbon intensity of electrofuel, from 

1.9 kg(CO2)/GGE to 2.28 kg(CO2)/GGE, compared to a life-cycle carbon intensity of petroleum 

jet fuel estimated at 10.5 kg(CO2)/GGE in Section 4.3.8.  

Recall that the carbon payments roughly represent the cost of deploying direct air capture with 

sequestration to offset fossil emissions. Thus, without carbon payments, this increase in the fossil 

intensity of electrofuel results reduces net fossil CO2 emission savings by approximately 20%, 

increasing the implicit mitigation cost of electrofuel accordingly. 

CO2 storage serves as a medium for seasonal energy storage in the Breakthrough cases, building 

12-44 kt(CO2) of capacity, representing roughly  3-12 days of DAC production at full capacity. 

In the Breakthrough high-temperature solar case, CO2 is stored for nearly 200 days (see the SI, 

Section 7.9.3 for further details). The Next-decade cases build 1.5-9 kt(CO2) storage with 
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charge-discharge periods as long as two months. Even with very expensive CO2 storage in the 

Today case, the system builds 0.5-2.7 kt(CO2) storage, highlighting the importance of CO2 

storage in maintaining a high capacity factor for the DAC system. 

All cases opt to waste 4-8% of the electricity produced in the solar cases and 3-11% in the wind 

cases. This allows the system to reduce capacity requirements for capital-intensive components, 

thus lowering system cost. Low-temperature systems also waste a substantial amount of heat due 

to the high availability of costless recyclable waste heat from the fuel synthesis and, in the 

Breakthrough case, the electrolyzer. No scenario wastes H2, CO2, or fuel, as producing each 

incurs substantial efficiency losses without a corresponding reduction in storage costs compared 

to alternative methods of energy or material storage. See the SI, Section 7.8.1 for simulated 

waste levels. 

Figure 15 compares the implicit GHG mitigation cost of electrofuel to the cost of standalone 

DAC under the same techno-economic assumptions, assuming $2/GGE (A) and $3/GGE (B) for 

equivalent petroleum-based fuels. The method for computing this implicit mitigation cost is 

described in detail in Section 4.3.5. The cost of standalone DAC does not include CO2 

sequestration costs. As a result, DACS is only a more cost-effective mitigation strategy if it is 

cheaper than mitigation through electrofuels by at least the cost of sequestration. Estimates of 

sequestration costs generally range from $1-20/t(CO2) with some at $50/t(CO2) or more once the 

cost of reservoir pressure management is included 153,154. Higher petroleum fuel prices also 

reduce the mitigation cost of electrofuels, which is based on the cost differential between the two 

fuels. 
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Figure 15. The cost of electrofuel production from solar or wind electricity as a greenhouse gas mitigation strategy 

compared with standalone direct air capture (DAC). Electrofuel mitigation costs are based on the cost increase 

relative to petroleum fuels at $2/GGE (A) and $3/GGE (B) and on the resulting carbon emissions avoided. 

Mitigation costs in the Today cases range from $630-$2,170/t(CO2), falling to $210-1,150/t(CO2) in the Next-decade 

cases, and $-30-120/t(CO2) in the Breakthrough cases. DAC cost estimates do not include the cost of sequestration, 

estimates of which generally range from $1-20/t(CO2) with some at $50/t(CO2) or more 153,154, meaning that DAC 

with sequestration (DACS) is a lower-cost mitigation strategy than electrofuel production as long as sequestration 

costs and petroleum fuel prices do not negate the savings above. DAC is likely the more cost-effective option using 

Today’s technology. Under Next-decade assumptions with petroleum fuels at $2/GGE, DAC is still $93-150/t(CO2) 

less expensive, requiring correspondingly high sequestration costs to achieve parity. If petroleum fuels rise to 

$3/GGE, wind electrofuels fall within $35-54/t(CO2) of DAC, within the high-end range of current sequestration 

A) $2/GGE petroleum 

B) $3/GGE petroleum 
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cost estimates 154. In the Next-decade cases at $3/GGE, solar electrofuels approach or achieve cost parity with DAC, 

leading to cost differentials of $-3-17 t(CO2). In the Breakthrough cases, electrofuels are always a lower-cost 

mitigation strategy than DAC, with solar electrofuels achieving cost parity petroleum fuels at $3/GGE. 

In the Today case with storage, electrofuels cost $304-475/t(CO2) more than DAC. This means 

that the cost of sequestration would have to reach this level or the cost of petroleum fuels would 

need to roughly double or triple for electrofuels to be a more cost-effective mitigation strategy. 

Note that without storage, wind-powered electrofuels are actually preferred to wind-powered 

DAC for petroleum fuels at $3/GGE. 

In the Next-decade cases, electrofuels have mitigation costs of $214-322/t(CO2) with 

conventional fuels at $2/GGE, making them are $93-150/t(CO2) more expensive than DAC. 

With petroleum fuels at $3/GGE, this cost differential falls to $35-53/t(CO2) for wind cases, 

within the range of some estimates of the cost of sequestration with active pressure management 

154. For solar cases, the cost differential falls to $-3-17/t(CO2), meaning that in the low-

temperature case, solar electrofuels are a more cost-effective climate mitigation strategy than 

DACS even if sequestration were costless. 

Figure 16 shows the sensitivity of the levelized cost of solar electrofuel in the Next-decade high-

temperature scenario to variation in individual parameters to high and low values. In most cases, 

the high values are from the Today low-temperature case and the low values are from 

Breakthrough high-temperature case. Sensitivity assumptions are described in detail in Section 

4.3.10. The three most sensitive parameters are the capital cost of DAC, the electrolyzer, and 

renewable electricity generation, which introduce cost swings of $2.41/GGE, $1.91/GGE, and 

$1.37/GGE, respectively. The next most sensitive parameter is the weighted average cost of 

capital (WACC), which determines the present value of capital costs, with a cost swing of 

$1.45/GGE.  
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Electrolyzer and fuel synthesis efficiency are sensitive parameters, but the range of potential 

variation is small, resulting in cost swings of $0.39/GGE and $0.19/GGE, respectively. Lifetime 

changes of ±20% introduce a cost swing of $0.48/GGE. 

Carbon price and natural gas price are two of the next most sensitive parameters, with cost 

swings of $0.46/GGE and $0.22/GGE, respectively. These parameters are largely substitutable, 

although the carbon price also affects the effective cost of grid electricity.  

DAC heat demand varies by 4.4-7.9 GJ(th), 1,225-2,200 kWh(th), while DAC electricity demand 

varies from 77-700 kWh(e). DAC electricity demand introduces a cost swing of $0.28/GGE, 

while DAC heat demand introduces only $0.13/GGE. Thus, the availability of relatively low-cost 

natural gas and the higher cost of electricity storage and grid electricity render the system more 

sensitive to changes in electricity consumption than heat consumption. 

Fuel synthesis capital cost, DAC electricity demand and H2 storage capital cost are the last 

components with appreciable sensitivity, with cost swings of $0.24/GGE, $0.15/GGE and 

$0.20/GGE, respectively.  

CO2 storage introduces a cost swing of $0.13/GGE, demonstrating the modest but significant 

potential role of low-cost seasonal CO2 storage to reduce system costs. This effect is likely 

underestimated as the sensitivity analysis simulates only 1000 hours of operation and thus cannot 

fully capture the benefits of seasonal storage. 

Note that although the system is not very sensitive to the cost of individual forms of storage, this 

is largely because there is a high potential for substitution between different forms of storage as 

well as natural gas and electricity interconnections. Figure 14 shows that the Today case without 

any storage or external interconnections sees a substantial increase in cost. 
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Figure 16. Sensitivity of the Next-decade high-temperature electrofuel production scenario, individually varying 

parameters to their Today and Breakthrough values. The four most sensitive parameters, which introduce production 

cost swings of over $1/GGE, are the capital and non-energy operating costs of direct air carbon capture system, the 

electrolyzer, the renewable electricity generation. The weighted average cost of capital and system lifetime, which 

substantially influence the levelized cost of these capital components, also have a major impact. Production cost is 

highly sensitive to electrolyzer and fuel synthesis efficiency, but the range of likely values is smaller, leading to a 

cost swing of less than $0.50/GGE. Fuel synthesis capital cost, natural gas price, and the carbon tax lead to cost 

swings of $0.22-0.46/GGE. The system is largely insensitive to changes in the cost of storage and interconnection to 

grid electricity and natural gas, largely because they can serve as substitutes for one another. Parameters with 

sensitivity less than $0.10/GGE are not shown. 

 

4.5. Conclusions and policy implications 

Hydrocarbon electrofuels have many characteristics that make them an attractive option for 

decarbonizing hard-to-reach sectors such as aviation, long-distance road travel, and heavy 
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shipping. They have a high energy density, which is particularly critical for aviation. They are 

chemically very similar to conventional jet fuel, diesel, and gasoline and can be used at high 

levels in existing engines with few if any engine modifications 112,164. 

Using today’s technology, the cost of electrofuel production is an expensive greenhouse gas 

mitigation option. However, if anticipated near-term reductions in the capital cost of DAC 

systems and electrolyzers materialize, an electrofuel production system co-located with the 

world’s best solar resources, could fall below $6/GGE, implying greenhouse gas (GHG) 

mitigation costs that could compete with DAC at roughly $200/t(CO2) if the price of 

conventional fuel rises to $3/GGE.  

Electrofuels could be competitive at lower conventional fuel prices if sequestration costs are 

substantially higher than anticipated. Much of the literature suggests that sequestration costs will 

be well below $50/t(CO2) 83. However, many of these estimates do not account for reservoir 

pressure management techniques such as brine removal that may be necessary to avoid induced 

seismicity, which could increase sequestration costs to $50/t(CO2) or higher 152,154.  

In addition, public acceptance may place limitations on sequestration. Research based on focus 

groups, interviews, and surveys suggests that public acceptance concerns are likely to be similar 

to those surrounding oil and gas extraction, but with the sequestration industry still in its infancy, 

public acceptance remains highly uncertain 165. 

Within several decades, foreseeable breakthroughs in the cost of DAC, electrolyzers, and other 

technologies could bring electrofuel costs below $3/GGE, potentially reaching cost parity with 

petroleum fuels. The following specialized technological advances would facilitate these cost 

reductions: 
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• Electric kilns capable of supplying 900°C process heat for calcination at scales of 

hundreds of megawatts, prioritizing ensuring high efficiency over capital cost reductions. 

• Heat storage systems capable of operating at or above 900°C. Metallic phase-change 

materials are capable of achieving these temperatures but are not widely commercially 

available. As an alternative, Si49Mg30Ca21 phase-change materials capable of storing heat 

at 865°C are more mature 127. Such systems could use a specialized calciner to combust 

small amount of oxygen-fired H2 at 3,200°C 166, using O2 from electrolysis, to boost this 

stored heat to 900°C or higher. This would be particularly useful if natural gas is 

unavailable for process heat. 

• Low-cost direct-current (DC) to DC inverters to supply solar PV electricity with lower 

losses to the electrolyzer and perhaps the electric kiln. 

• Alkaline or PEM electrolyzers designed for intermittent operation, with long stack 

lifetimes that depend primarily on intensity of use, rather than requiring replacement after 

a fixed number of years. Large capital cost reductions may justify substantial efficiency 

penalties. 

• Low-cost, high-efficiency CO2 storage. Current industrial CO2 storage tends to operate in 

space-constrained environments, generally opting for high-pressure liquid CO2 tank 

storage. As a result, compressor capital costs represent a large fraction of total capital 

costs for a CO2 storage system. Electrofuel production systems would likely be built in 

remote areas, such as deserts, with fewer space constraints. Low-pressure CO2 storage 

may allow substantial reductions in compressor and material costs as well as compression 

energy requirements. At $1000/t(CO2), roughly the cost of current high-pressure steel 

tanks without compressors, CO2 storage can function as bulk seasonal energy storage.  
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The above recommendations demonstrate the role of optimization-based techno-economic 

analysis in identifying research, development, and deployment (RD&D) priorities for deep 

decarbonization of specific sectors. This model also demonstrates the ability of such models to 

quantify the value of storage and other forms of system flexibility for capital-intensive assets that 

rely on variable resources. 

Achieving a warming limit of 2°C or less will likely require the complete elimination of net 

GHG emissions from the global economy within roughly half a century. In this context, decision-

makers seeking to transform the global energy system must make substantial long-lived 

investments under enormous and largely irreducible technology uncertainty 167.  

Such models can serve as screening tools to identify infrastructure pathways, dead-ends, and 

cross-sector interdependencies to inform the deployment of long-lived energy infrastructure and 

avoid technology lock-in. For instance, this analysis suggests that it may indeed be possible to 

achieve deep decarbonization in aviation, long-distance road travel, and heavy shipping with at 

most minor changes to the existing vehicle fleet (See the SI, Section 7.10). Thus, the 

development of electric and hydrogen alternatives certainly deserves serious investigation, but 

deep decarbonization does not depend solely on accelerated turnover of long-lived and capital-

intensive airplanes, heavy trucks, and ocean freighters.  

 High- or low-temperature DAC? 

Under near-term and long-term cost targets, high-temperature and low-temperature DAC 

systems produce electrofuel at comparable cost. High-temperature DAC systems may have lower 

capital cost but require higher-temperature heat, with associated engineering challenges. Low-

temperature DAC systems are more capital-intensive, but can reuse waste heat from other 
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processes, reducing energy costs. These cost targets are based on inherently uncertain 

engineering estimates and assume substantial cumulative deployment.  

Low-temperature DAC systems are currently commercially available and can be deployed in 

smaller units of capacity than high-temperature systems. 

Because high- and low-temperature DAC systems are largely substitutable, an RD&D strategy 

that pursues both technologies simultaneously is most likely to produce substantial reductions in 

the cost of electrofuel.  

 Land and water use 

Replacing all US jet fuel with electrofuel from systems modeled here would require roughly 370-

5,500 mi2 of land using wind electricity, amounting to 0.01-0.08% of US land area and 0.2-2.9% 

of Wyoming, assuming very high-quality wind resources are available in sufficient quantities 75. 

Solar electrofuels would require 12,000-13,000 mi2, or 0.2% of US land area and 5.5-5.9% of 

Arizona 75. 

Low-temperature systems have the added benefit of producing enough water to supply the 

electrolyzer, whereas high-temperature systems require substantial water input. However, even 

assuming relatively expensive desalinated water is used, water costs represent less than 2% of 

the levelized cost of electrofuel. Still, replacing all US domestic jet fuel consumption with 

electrofuel using high-temperature DAC would require roughly 1.4 Gt(H2O)/yr, about 0.3% of 

US water consumption and 17% of Arizona’s water current consumption 168. To avoid placing 

undue strain on local water resources, this would likely require construction of pipeline 

infrastructure, perhaps to transport desalinated water from the ocean or another non-potable 

resource. This would likely increase electrofuel costs by at most a few percent. See the SI, 

Section 7.11 for further details. 
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 Potential vulnerabilities of DACS 

Another potential concern surrounding the use of DACS to offset emissions from petroleum-

based fuels is bookkeeping uncertainty. With electrofuels, CO2 is captured before fuel is 

combusted. Airlines and other industries would likely purchase credits for DACS, which may 

include the option of paying for credits before any CO2 is actually captured and sequestered. 

Thus, a system that relies on DACS or other forms of CO2 removal to offset difficult-to-abate 

emissions is susceptible to weaknesses in policy, legal, and financial institutions, e.g. a collapse 

in a carbon trading marketplace, in ways that electrofuels are not. 

Many projected pathways to a 2°C or 1.5°C warming target require net negative GHG emissions. 

In such a scenario, CO2 removal technologies dictate the marginal cost of GHG mitigation. The 

cost of safely sequestering CO2 in widely available saline aquifers within sandstone formations 

may have a strong nonlinear dependency on the injection rate 154. If injection rates are already 

high, the marginal cost of sequestration could rise to $50/t(CO2) or higher 154, imposing a 

diminishing value on the expanded deployment of DACS. This is of particular importance for 

natural gas-fired DACS, which requires sequestration of at least 0.3 t(CO2) from natural gas per 

t(CO2) captured from the atmosphere 97. 

 Electrofuels as a pathway to DACS 

Finally, electrofuel production represents a way to begin deploying DAC systems commercially 

at scale. A decarbonization pathway that fosters the electrofuel industry in the next few decades 

and could create a market for DAC, engendering cost reductions through innovation and learning 

through deployment. This would allow policy-makers to make more informed evaluations of the 

likely cost of mature DACS systems and the viability of mass deployment of standalone DACS 

as a mitigation strategy. 
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If aggressive RD&D in a suite of component technologies succeeds in fostering anticipated 

breakthroughs, near-term investment in electrofuels could result not only in cost-effective 

DACS, but also in low-cost electrofuels as a direct competitor with petroleum fuels, assuming oil 

prices only modestly above their recent ten-year average. In addition, low-cost electrofuels, 

particularly methanol or dimethyl ether, could serve as a dispatchable, seasonally storable, easy-

to-transport, carbon-neutral energy carrier capable of enabling integration of high levels of 

variable renewable electricity into the electric power system. 

4.6. Data availability statement 
Annual solar and wind electricity production data are derived from the National Renewable 

Energy Laboratory’s publicly available System Advisor Model using settings described in 

Section 4.3.1.1 86. 
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5. Chapter 5. Conclusions and policy implications 

Deep decarbonization compatible with a global warming limit of 2°C or less is likely achievable 

with a concerted, globally coordinated effort using the technologies that exist today and those 

that develop through a major research, development, and deployment (RD&D) effort. There are 

many conceivable pathways available to us, surrounded by enormous uncertainties. Given the 

long lifetime of energy infrastructure, pursuing a pathway to a dead-end could be incur 

substantial additional cost and may in fact render a desired warming limit unattainable. 

Chapter 2 characterizes the depth of important uncertainties in the future production, 

consumption, and price of key energy quantities. Despite the commendable modeling efforts of 

the Energy Information Administration (EIA), whose National Energy Modeling System 

represents many facets of the US energy system in great detail, our ability to predict these 

quantities more than a few years into the future has not improved. If anything, emerging 

volatility and a host of technological and economic surprises have rendered the energy system 

even more difficult to predict than in the past. As such, a deep decarbonization strategy that 

relies heavily on precise predictions a decade or more into the future will likely be very 

vulnerable to uncertainty at a time when the recent history of the US energy system has been 

defined by surprises such as shale oil and gas, the financial crisis, the boom and bust cycle in 

natural gas, and the rise of low-cost wind and solar electricity. 

Chapter 3 uses a wealth of observational data to estimate the demand side effects of a low-

income electric subsidy in California, characterizing the associated effect on electric power 

system emissions and peak capacity requirements. Policy makers considering equity measures 

such as energy subsidies can use such estimates to foresee these indirect effects and account for 

them when crafting emissions reduction targets and resource adequacy plans. 
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Chapter 4 provides practical intuition into the future viability of electrofuels as a climate 

mitigation strategy. The analysis suggests that if direct air capture (DAC) is able to achieve 

targeted cost reductions, electrofuels could be a cost-effective alternative to simply using DAC 

with geologic sequestration of the captured CO2 to offset emissions from aviation and other 

difficult-to-decarbonize applications that require liquid fuels. This is particularly true if the cost 

of electrolysis of water and renewable electricity continues to decline.  

Perhaps more importantly, this analysis demonstrates the potential role of optimization-based 

techno-economic models in guiding RD&D investment in new technologies. The process of 

building the PtXOpt model forced me to think through every step of the engineered system I was 

designing. Can we use electricity to efficiently produce 900°C heat? How can we store that high-

temperature heat? What are our options for storing massive amounts of CO2 for months at a 

time? How much would all of this cost? 

In some cases, it turns out that the cost of electrofuel production is largely insensitive to the 

likely range of costs of an emerging technology. Small-scale electric tunnel kilns currently cost 

roughly $125/kW107, and costs would likely go down at larger scales. Even at this cost, electric 

kiln capital cost represents less than 1% of total cost for an electrofuel system heated entirely 

with electricity. 

In other cases, commercialization of new enabling technologies, such as metallic phase-change 

materials for high-temperature heat storage or low-cost, particularly if natural gas is unavailable 

for process heat. There is currently little to no market pull for such technologies at scale. If we 

would like to use them in the future, the time for RD&D is now. 

Skillfully navigating toward deep decarbonization in the face of massive uncertainties requires 

three things. First, we must acknowledge the magnitude of what we do not know and strive to 
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characterize the large uncertainties we face. Second, we must use the wealth of data available to 

us to learn as much as we can about the fundamental dynamics of different components of the 

energy system, including human behavioral responses to changing incentives, so we can 

incorporate these factors into energy policy and decision-making. Third, we must use 

thoughtfully-constructed, interpretable quantitative models to gain insight into the likely effects 

of a wide range of energy technology and policy futures. 

Taken together, these elements form a blueprint not for a golden road to deep decarbonization 

but for an adaptive decision-making framework to guide each step we take, using the results of 

each step to inform the next one. Such an approach can help balance tradeoffs between focusing 

limited resources on accelerating the deployment of the solutions that are most effective at the 

moment and investing in a wide array of technology and policy options to keep many pathways 

available. 

5.1. Future work 

The field of deep decarbonization research is in many ways reaching a new level of maturity 

since the first modern integrated assessment models were built thirty years ago. Exponential 

growth in data availability and computing power have laid the foundation for sophisticated 

analyses that only the most forward-thinking researchers could have conceived of at that time. 

This allows us to look back with fresh eyes on past energy policies and learn important lessons. 

At the same time, we now have first-hand experience with the potential for surprisingly rapid 

development of low-carbon technologies such as wind, solar photovoltaics, and lithium-ion 

batteries, as well as the potential for stagnation in much-anticipated technologies such as 

advanced nuclear and fossil electricity with carbon capture with sequestration. 
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Each of the three studies in this dissertation raises more questions than it answers. I list what I 

think are some of the most interesting research questions. I plan to work on at least some of them 

in the next stage of my career. 

A decision-making framework capable of thoughtfully incorporating the uncertainties inherent in 

the future of the energy system must assimilate the particularities of the decisions at hand. There 

is little in the academic literature that documents how long-term energy projections and forecasts 

are actually used to make energy policy and investment decisions related to long-lived energy 

infrastructure. Before proposing changes to these decision-making practices, we need to 

understand how they currently work. To this end, I propose a series of interviews with analysts, 

managers, and forecasting departments at major energy companies and government regulatory 

agencies, such as public utilities commissions, characterizing how in-house and government 

long-term energy projections are actually used to inform energy investment and policy. Such 

research would draw on the management science and organizational behavior literature, 

informed by detailed knowledge of the engineering characteristics of the relevant components of 

the energy system for each company or agency interviewed. 

Energy utilities and policy makers have only begun to harness the potential insights available 

through energy consumption data from advanced metering infrastructure. Chapter 3 

demonstrates both the potential value and the limitations of simply making observational data 

available to academic researchers. While much can be learned from observational data, the most 

pertinent questions for those planning an energy transition are often causal relationships, which 

are difficult to estimate accurately without an experiment. I hope to work with energy utilities to 

implement experimental randomized controlled trials to accurately measure the responsiveness 

of residential energy demand to changes in prices and other interventions. This work would draw 
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on the experimental microeconomics literature, potentially employing machine learning 

techniques such as those developed by Athey et al. 169 to more accurately measure heterogeneous 

responses to different interventions. 

The degree to which an energy decarbonization pathway succeeds will depend in large part on 

RD&D decisions for current and emerging technologies. Chapter 4 is a case study in the 

potential value of optimization-based techno-economic models for guiding RD&D decisions 

related to electrofuel production systems and component subsystems such as DAC. I hope to 

continue developing and using this and other models to further characterize the tradeoffs 

associated with potential pathways toward deep decarbonization.  

In particular, I am interested in assessing the value of maintaining existing fossil pipeline 

distribution infrastructure as an option in case of major cost reductions in electrofuel production. 

Liquid or gaseous hydrocarbon or oxygenate electrofuels have numerous properties that make 

them attractive for certain difficult-to-decarbonize applications. Liquid fuel pipelines transport 

energy at one to two orders of magnitude lower cost than electric transmission lines and do not 

require phase or voltage synchronization. Liquids can also be stored seasonally at low cost. 

These attributes make low-cost liquid electrofuels an ideal energy carrier to provide flexible 

electricity in a low-carbon electric power system dominated by inflexible solar, wind, or nuclear 

electricity.  

Building space and water heating is another such application. Electric heating options such as 

air-source heat pumps must currently switch to inefficient resistive heating at temperatures 

substantially below freezing. Power-to-gas, electrofuel methane, may thus be a more economical 

home heating option in very cold climates such as the US upper Midwest or much of Canada. 

However, it may be a few decades before power-to-gas achieves the necessary cost reductions. 
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As a result, a decarbonization strategy that prioritizes the expedited elimination of fossil fuels 

could result in the retirement of aging urban natural gas distribution infrastructure, essentially 

removing power-to-gas as a home heating option even if it achieves the requisite cost reductions. 

In addition, many of the component technologies studied in Chapter 4 have not yet been studied 

in detail in the context of electrofuel production. In many cases, detailed engineering analysis 

and expert elicitations would likely produce innovative component designs, new ideas for 

RD&D spending and a better-informed range of possible future costs. 

In conclusion, addressing these and similar questions is likely too large a task to fit into a single 

researcher’s career (even with a small army of graduate students). I look forward to pursuing 

some of these questions and working with the growing community of deep decarbonization 

decision researchers as we continue to figure out the nuts and bolts of solutions to one of the 

great problems of our age. 
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6. Supporting information for Chapter 2 

6.1. Supplementary Note 1 

 

The longest-running AEO side cases account for low and high oil price and low and high 

economic growth. Supplementary Figure 1 shows high and low constant-dollar oil price 

scenarios from AEO 1999 through AEO 2014 (years for which these data are digitally available). 

Supplementary Figure 2 shows the ratio of high to low oil price in these two scenarios. Note that 

the range between low and high scenarios begins to grow in AEO 2006 and rises substantially 

thereafter. This is no doubt influenced by the rapid rise in oil prices that began in the mid-2000s. 
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6.2. Supplementary Figures 

 

Figure 17. High and low oil price scenarios from AEO 1999-2014. a) displays high oil price scenarios, while b) 

displays low oil price scenarios. Note that the scenarios become increasingly divergent from AEO 2006 onward. 

Price is reported in constant 2005 dollars. 
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Figure 18. The ratio of high to low oil price scenarios. Note this ratio begins increasing sharply with AEO 2006, and 

grows to a maximum in AEO 2010. 
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Figure 19. Five- and ten- year rolling standard deviation for all seventeen quantities. Note that there is a local 

minimum between 1995 and 2004 followed by a subsequent increase for all but three quantities (inflation, l, oil 

price, a, and natural gas price, b). 
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Figure 20. Extreme changes defined as a year with a year-over-year change of greater than 2s or less than 1 – 

(1+2s)-1 for each quantity. 1985-2005 has the smallest number of extreme changes of any period. 2005-2014 has the 

largest concentration of negative extreme changes of any decade. 
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Figure 21. Year-over-year changes for the seventeen quantities examined. Data are from 1949-2014, except for 

electricity price, which begins in 1960. Note that price quantities (a-d) have substantially higher variance than non-

price quantities (e-q). Note that eight quantities, natural gas price, electricity sales, inflation, GDP, and total, 

residential, transportation, and commercial energy consumption, have the most negative year-over-year change 

between 2005 and 2014. 
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Figure 22. Extreme changes for twenty energy quantities, including three derivative quantities: Oil and natural gas 

imports, and CO2 emissions, from 1949 to 2014. The black and red triangles indicate the largest year-over-year 

increases and decreases in the quantities. Ten of forty extreme changes occur in 2005-2014.  
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Figure 23. Annual frequency of extreme errors for twenty quantities, including three derivative quantities: Oil and 

natural gas imports, and CO2 emissions. Red and black circles correspond to over-projected and under-projected 

extreme errors, respectively. The size of each circle corresponds to the frequency of extreme errors in that year. Note 

the high concentration of extreme errors in 2005-2014.

5%   frequencyOver-projection
Under-projection

Color Size

50% frequency



 

 

Figure 24. The percentage point change in the frequency of extreme errors in 2005-2014 relative to 1985-1994 and 1995-2004 for different definitions of 

“extreme error” and subsets of the data, described in Supplementary Note 6. A positive number is an increase in the frequency of extreme errors in 2005-2014. 

Note that most quantities show increases in most scenarios. Note that some scenarios have a higher base frequency of extreme errors than others, so comparing 

the relative magnitude of an increase or decrease across scenarios may not be meaningful. 
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Figure 25. The total number of quantities, of the seventeen in the main manuscript, with all over-projected or under-projected extreme errors in a single decade, 

for each scenario. Note that the number in 2005-2014 is greater than in the previous two decades for both over-projected and under-projected extreme errors in 

all scenarios.
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Figure 26. Domestic US natural gas price scenarios. Baseline is the AEO 2015 reference case, with constant 

interpolation after 2040. Two high price multiplier scenarios are considered, one based on the 2.5th percentile of 

historical errors from the AEO from 1985-2014, and one based only on 1985-2004, with an enforced monotonicity 

constraint to ensure the price multiplier increases or remains constant as projections go further into the future. 
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Figure 27. Annual Energy Outlook projections v. observed historical values for oil and natural gas quantities. 

Shows observed historical values (black solid line) for all quantities, and AEO projections out to 2040 (dashed 

lines). Most quantities tend to have distinct periods of over-projection and under-projection. [bbl = barrel; Mbbl = 

million barrels; Mcf = thousand cubic feet; tcf = trillion cubic feet]. Prices are in constant 2005 dollars. 
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Figure 28. Annual Energy Outlook projections v. observed historical values for coal and electricity quantities. 

Shows observed historical values (black solid line) for all quantities, and AEO projections out to 2040 (dashed 

lines). Most quantities tend to have distinct periods of over-projection and under-projection. [MMBtu = million 

British thermal units (Btu); Mt = million short tons; kWh = kilowatt-hour]. Prices are in constant 2005 dollars. 
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Figure 29. Annual Energy Outlook projections v. observed historical values for energy consumption by sector, CO2, 

and macroeconomic quantities. Shows observed historical values (black solid line) for all quantities, and AEO 

projections out to 2040 (dashed lines). Most quantities tend to have distinct periods of over-projection and under-

projection. [Quad = quadrillion btu; MMTCO2 = Million metric tons carbon dioxide equivalent]. 
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Figure 30. Error cumulative distribution functions and extreme error thresholds for oil and natural gas quantities. 
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Figure 31. Error cumulative distribution functions and extreme error thresholds for coal and electricity quantities 

and CO2 emissions. 
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Figure 32. Error cumulative distribution functions and extreme error thresholds for energy consumption by sector, 

and macroeconomic quantities
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6.3. Supplementary Note 2 

 

The process by which the AEO reports are generated is not stationary over time in the statistical 

sense (see Supplementary Note 4). However, the EIA, which produces the AEO, has remained 

relatively stable as an organization, producing the AEO over the years with a consistent mission 

and approach. As a result, we claim that the AEO projections over the past three decades are the 

result of a relatively stationary organizational process, and thus it is appropriate to consider them 

as a single dataset. The legal mandate behind the AEO has remained constant over time. Section 

57.a.2 of the Federal Energy Administration Amendments (FEAA) of 1976 charges the Director 

with producing:  

“[A]n annual report which includes … short-, medium-, and long-term energy consumption and 

supply trends and forecasts under various assumptions; and, to the maximum extent practicable, a 

summary or schedule of the amounts of mineral fuel resources, nonmineral energy resources, and 

mineral fuels that can be brought to market at various prices and technologies and their 

relationship to forecasted demands170.” 

The Department of Energy Organization Act of 1977, which replaced the Federal Energy 

Administration with the newly established Energy Information Administration, transferred this 

responsibility to the EIA in Section 205.c171. Fulfilling this obligation, every AEO report 

includes a reference case projection of the future trajectory of the US energy system assuming no 

departure from current policies, along with alternative scenarios35,172. 

  

Since its inception, the EIA has used techno-economic models of the US energy sector, such as 

the National Energy Modeling System, described below, to produce its projections173. Sections 



139  

52.a and 54.b.4 of the FEAA of 1976 mandate that the EIA maintain such a model171. In 

addition, the organizational and funding structure of the EIA was designed to ensure a high 

degree of organizational independence from other government agencies174. As a result, although 

there is not stationarity in the models used to generate projections, the mission of the EIA, and its 

organizational structure have been relatively stable since its creation in 1979. On this basis we 

assert that it is reasonable to treat AEO projections from 1982-2014 as a unified dataset for 

statistical analysis. 

 

6.4. Supplementary Note 3 

 

AEO projections come from the National Energy Modeling System (NEMS), a large energy-

economic model of the US energy system, produced and maintained by the EIA. NEMS consists 

of 13 separate modules, representing different energy supply, demand, and conversion 

components of the US energy system. NEMS uses a computable equilibrium approach to 

determine a set of energy production, consumption, and price quantities that equilibrate the US 

energy market175. Prior to the introduction of NEMS in AEO 1994, the EIA used the 

Intermediate Future Forecasting System to produce AEO projections. IFFS had a modular 

structure, similar to NEMS, and used a similar method to locate an equilibrium176. 

 

NEMS has four energy supply modules, representing Oil and Gas Supply, Natural Gas 

Transmission and Distribution, Coal Market, and Renewable Fuels. The four demand modules 

are Residential, Commercial, Transmission, and Industrial Demand. The two energy conversion 

modules represent the Electricity and Liquid Fuels markets. The Macroeconomic Activity 
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Module models economic activity at national, regional, and industrial levels, producing 

projections of economic variables that drive energy supply and demand quantities177. The 

International Energy module includes major trends in the global oil market, and the effects of 

those trends on the US oil market178. The integrating module controls NEMS’ solution algorithm 

and manages data flows between modules. All NEMS modules are fully documented and 

publicly available, with the exception of the Macroeconomic Activity Module, which relies 

heavily on the proprietary IHS Global Insight Model of the US Economy175. NEMS employs the 

Gauss-Seidel method of solving simultaneous linear equations, equilibrating modules iteratively, 

replacing module inputs with outputs from previously solved modules. Although some equations 

in NEMS are nonlinear, NEMS is expected to converge to an equilibrium because all equations 

are monotonic, either increasing or decreasing175. All of the quantities we analyze are computed 

endogenously in NEMS. The general GDP growth path is specified exogenously, but projected 

GDP growth is computed endogenously in the Macroeconomic Activity Module177. 

 

6.5. Supplementary Note 4 

 

We wish to evaluate the significance of our key finding that year-on-year volatility and 

unpredictability increased in 2005-2014. The data do not allow traditional tests of statistical 

significance, such as t-tests, which would require that historical and projected values of energy 

quantities be statistically independent and identically distributed, generated by a process that is 

stationary over time. 

The US energy system is a highly non-stationary system, constantly changing in unpredictable 

ways. The massive increase in oil and natural gas production from hydraulic fracturing is a 
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testament to this. In addition, the process that generates AEO projections is not stationary. The 

computational methods used to create AEO projections have changed over time, in accordance 

with advances in computational technology and changing national energy policy priorities. 

Projected and historical values of energy quantities are highly correlated across quantities, 

particularly prices, production, and consumption of the same quantity (see Supplementary Table 

3). In addition, projection errors for a single quantity from a single AEO projection, or for a 

single year are correlated (see Supplementary Note 9). 

As a result, we assess the significance of our findings in two ways. We conduct a sensitivity 

analysis, described in Supplementary Note 6, and a Monte Carlo analysis, described in Materials 

and Methods. 

 

6.6. Supplementary Note 5 

 

Our primary definition of year-on-year volatility, based on the largest year-over-year percent 

increase and decrease for each quantity, allows straightforward comparison of values in a single 

year or small set of years. The more standard definition of volatility is based on the standard 

deviation of percent changes over time. We include two definitions of volatility based on such a 

standard deviation metric. The first computes annual volatility as the standard deviation over the 

previous five or ten years (see Supplementary Figure 3). The second defines extreme changes 

based on the standard deviation of year-over-year changes in each quantity (see Supplementary 

Figure 4). 
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Supplementary Figure 3 shows the five-year and ten-year standard deviation of each of the 

seventeen quantities considered in the primary analysis. The highest standard deviation in all 

quantities tends to occur before 1995. In both cases, all but three quantities (inflation, oil price, 

and natural gas price) have a local minimum between 1995 and 2004, followed by a subsequent 

increase. This suggests that by this metric as well, there is a general increase in volatility in 

2005-2014 relative to at least the previous decade. 

 

Supplementary Figure 4 defines extreme changes based on the standard deviation of year-over-

year percent changes for each quantity. An extreme change is defined as a year with a year-over-

year percent change of greater 2s or less than 1 – (1+2s)-1. This definition is multiplicatively 

symmetric, meaning that if s=1, an extreme change is defined as a change of greater than 200% 

or less than -50%. 

 

Most non-price quantities have strongly positive trends between 1950 and 1985, leading to a 

large number of upward extreme changes. Due to these upward trends, ten quantities do not have 

any negative extreme changes: Oil production, natural gas consumption, coal price, electricity 

price, electricity sales, inflation, GDP, and total, commercial, and transportation energy 

consumption. 1985-2005 has five extreme changes, the smallest number of extreme changes in 

any period. These extreme changes occur only in oil and natural gas price. 2005-2014 has the 

largest concentration of negative extreme changes of any decade, with six negative extreme 

changes in oil and natural gas price, coal consumption, and residential energy consumption. 

2005-2014 also has three positive extreme changes in oil production, due to an increase in 

hydraulic fracturing. 
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6.7. Supplementary Discussion 

Our method of computing year-on-year volatility and unpredictability draws on methods from 

extreme value theory and quantitative finance. Extreme value theory studies the statistical 

characteristics of either the most extreme single values of a distribution, or of the most extreme 

values in a distribution beyond some threshold value, sometimes called peaks-over-threshold 

(PoT)179. The thresholds can be computed in a number of ways, and there is often a subjective 

element to threshold selection179. 

In our study of year-on-year volatility, we use the former definition due to small sample size 

considerations, and the latter in the study of unpredictability.  

The equivalent to extreme value theory’s peaks-over-threshold (PoT) analysis in the finance 

literature is called the value-at-risk (VaR) metric180. VaR is commonly used to measure a 

portfolio’s exposure to losses181. A study from McKinsey & Company found that of 18 leading 

financial institutions, all considered VaR in their decision-making processes, and 75% used 

historical simulation (HS) to compute VaR181. HS takes the desired percentile of the distribution 

of historical values (returns on investment in most cases)181, which is exactly analogous to our 

method of computing extreme error thresholds, except that we consider historical projection 

errors instead of historical returns. 

In many contexts, volatility is synonymous with the standard deviation of a quantity over 

time182–184. However, in energy markets the concept of volatility is deeply intertwined with price 

shocks, a phenomenon studied closely in the economics literature, particularly in oil markets185–

193. Several papers in the energy finance literature use VAR of oil and electricity prices, looking 

at the most extreme changes, albeit on shorter timescales, primarily to improve quantitative 
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treatment of risk in financial trading models179,180,194,195. Due to our small sample size, a result of 

analyzing annual changes in quantities, our analysis of year-on-year volatility simply considers 

only the most extreme upward and downward year-over-year changes instead of determining a 

percentile of the distribution of historical changes. 

6.8. Supplementary Note 6 

We evaluate the robustness of the results of our unpredictability analysis through a sensitivity 

analysis, using twenty-three sensitivity scenarios, each with alternative definitions of extreme 

error or subsets of the data, described at the end of this section. 

This sensitivity analysis tests the robustness of two main results, the increase in unpredictability, 

the frequency of extreme errors, in 2005-2014 relative to prior decades for the majority of 

quantities, and the high number of quantities for which 2005-2014 contains all over-projected 

extreme errors. Because some sensitivity scenarios define extreme error differently than the 

baseline, many have more or fewer overall extreme errors than others. As a result, one cannot 

directly compare the change in the frequency of extreme errors across decades. One can, 

however, compare the number of scenarios that have an increase in the frequency of extreme 

errors relative to other decades. If an increase or decrease holds for all scenarios, we say the 

increase is robust. If the result holds for a majority of scenarios, this still suggests that it is not 

simply an artifact of a particular definition of extreme error. 

Supplementary Figure 8 shows the percentage-point change in unpredictability, the frequency of 

extreme errors, in 2005-2014 compared with 1985-1994 (left), and 1995-2004 (right) for all 

quantities and all sensitivity scenarios. For example, for oil prices there is an increase in 

unpredictability relative to 1995-2004 in the baseline, and in eighteen other scenarios, with a 
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decrease in four scenarios. For oil production, however, there is an increase relative to 1995-

2004 for all 23 scenarios, thus this increase is robust. Note that Supplementary Figure 8 includes 

sensitivity results for the three derived quantities, oil and natural gas imports and CO2 emissions. 

Reported results below are for the only the seventeen quantities listed in the main manuscript. 

Relative to 1995-2004, unpredictability increases in the baseline scenario for fifteen of seventeen 

quantities considered in the manuscript. For sixteen quantities, there is an increase in the 

majority of scenarios, with robust increases in three quantities: Oil production, and natural gas 

production and consumption. Relative to 1985-1994, unpredictability increases in the baseline 

scenario for ten of seventeen quantities. For twelve quantities, unpredictability increases in the 

majority of scenarios, with robust increases in seven quantities: Gross domestic product, coal and 

natural gas production and consumption, electricity sales, and residential energy consumption. 

Note that quantities with baseline decreases in unpredictability relative to 1985-1994 tend to be 

prices or inflation. Thus, there is a convincing increase in the frequency of extreme errors for 

more quantities relative to 1995-2004, but there is a robust increase for more quantities relative 

to 1985-1994. 

Supplementary Figure 9 shows the number of quantities, of the seventeen in the main 

manuscript, for which all over-projected and under-projected extreme errors fall in 2005-2014 

for all twenty-three sensitivity scenarios. The total number of quantities, out of seventeen, for 

which this is true varies from scenario to scenario, largely due to a higher number of extreme 

errors in some scenarios than others. However, in all scenarios the number of quantities with all 

over-projected or under-projected extreme errors in 2005-2014 is always greater than the number 

in the previous two decades. This strongly supports our finding that many quantities saw 

unprecedented errors in at least one direction during 2005-2014. 
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Description of scenarios: Our sensitivity analysis uses 23 scenarios, each of which uses either 

an alternative definition of extreme projection error, or an alternative subset of the data. 

11 scenarios use the baseline definition of extreme error, in some cases slightly perturbed. 

“Baseline”, “Baseline, 1.5%”, and “Baseline, 5%” use the baseline definition, with extreme 

error thresholds at the 2.5th and 97.5th, 1.5th and 98.5th, and 5th and 95th percentiles of the 

historical percent error distributions respectively (with thresholds computed separately for short-

term, medium-term, and long-term errors). We include these scenarios to determine whether a 

more or less restrictive definition of extreme error, within the baseline framework, produces a 

similar increase in the frequency of extreme errors. 

We include a series of scenarios with the baseline definition, but changes to the data. The 

“Absolute errors” scenario performs the baseline method using absolute, rather than percent 

errors, i.e. the simple difference between the projected and historical values. “No long term” 

removes from the data all projections beyond 10 years out into the future. This addresses the 

concern that the measured increase in the frequency of extreme errors could be primarily 

attributable to long-term projections.  

The Financial Crisis and subsequent Great Recession likely had a substantial and unpredictable 

effect on many aspects of the US energy system. To address the possibility that these events 

entirely account for the measured increase in the frequency of extreme errors, we include a “No 

Great Recession” scenario, in which we remove projection years 2007-2014 from the analysis. 

To address the potential effects of the baseline definition of projection intervals, we include two 

scenarios with alternative definitions. “Short 1-10 mid 11+” defines short-term as 1-10 years, 

and medium-term as 11-21 years, with no separate long-term interval. “Short 1-5 mid 6+” 
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defines short-term as 1-5 years, and medium-term as 6-21 years, with no separate long-term 

interval. “All errors together” groups all projection errors together into a single interval. 

The “Only NEMS” scenario uses only projections that came from the NEMS model, i.e. AEO 

1994 onward. “Only NEMS, no long-term” also removes projections with length more than 10 

years because almost all of these lie in 2005-2014 (91 out of 94 for each quantity except CO2 

emissions, for which 63 of 66 fall in 2005-2014).  

Seven scenarios aim to control for the possibility that one or a few particularly high-error years 

or projections caused the increase in extreme errors. These scenarios apply the baseline 

definition of extreme error but allow only one extreme error per base year or projection year, or 

both. We describe these scenarios below: 

 

“One per base year, first”: FreqExtremeErrorsq = Ne,i,t / Np,t, where Ne,i,t is the number of base years (AEOs), 

i, for which the first (earliest projection year) extreme error is within time-period t. Np,t is the total number of 

projection values in time-period t. We divide by the total number of projection values, rather than the total 

number of base years within time-period t, because within a given time-period t, some base years will have 

more projection values than others.  

“One per base year, last”: Analogous to “One per base year, first”, but using the last (latest projection year) 

extreme error from each base year (AEO). 

“One per projection year”: FreqExtremeErrorsq = Ne,t / Np,t, where Ne,t is the number of projection years that 

contain extreme errors within time-period t, and Np,t is the total number of projection values in time-period t. 

“One per proj. then base, first”: FreqExtremeErrorsq = Ne,p,t,i,f / Np,t, where Ne,p,t,i,f is the number of base 

years, i, whose first extreme error is also the first (earliest AEO) extreme error of a projection year within 

time-period t. 
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“One per proj. then base, last”: FreqExtremeErrorsq = Ne,p,t,i,l / Np,t, where Ne,p,t,i,l is the number of base 

years, i, whose last extreme error is also the last (latest AEO) extreme error of a projection year within time-

period t. 

“One per base then proj., first”: FreqExtremeErrorsq = Ne,p,i,t,f / Np,t., where Ne,p,i,t,f is the number of 

projection years within time-period t whose first extreme error is also the first extreme error of base year i. 

“One per base then proj., last”: FreqExtremeErrorsq = Ne,p,i,t,l / Np,t, where Ne,p,i,t,l is the number of projection 

years within time-period t whose last extreme error is also the last extreme error of a base year i. 

Alternative definitions of “extreme error”: Five scenarios employ different definitions of 

extreme error. “Flat 15%” designates all percent projection errors above 15% or below -15% as 

extreme errors. We use 15% because all quantities examined have errors of at least 15%, 

whereas some energy production and consumption quantities do not have errors above 20%.  

The standard deviation scenarios define extreme errors based on the standard deviation of the 

historical errors themselves. Each of these scenarios first computes the standard deviation of the 

historical percent errors, separated into the aforementioned short-term, medium-term, and long-

term intervals, under the implicit (and incorrect) assumption that these errors are not correlated 

over projection year or base year. In the “1*SD, additive” scenario, we set extreme error 

thresholds at ± the computed standard deviation for each projection interval. The “2*SD, 

additive” scenario uses twice the computed standard deviation. The “1*SD, multiplicative” 

scenario places thresholds at -1 + (1 + σ)±1, where σ is the computed standard deviation. This 

definition is multiplicatively symmetric, meaning that if σ=100%, the extreme error thresholds 

are +100% and -50%. “2*SD, multiplicative” uses -1 + (1 + 2σ)±1. 

6.9. Supplementary Note 7 

 



149  

If quantities are normalized by population, derived from the decadal US Census and linearly 

interpolated in the intervening years, the year-on-year volatility results change for three 

quantities.  

The downward extreme change for oil production moves from 1989 to 1958. The upward 

extreme change for coal production moves from 1955 to 1979. The downward extreme change 

for commercial energy consumption moves from 2012 to 1953.  

As a result, there are eight instead of nine of thirty-four extreme changes in 2005-2014. There are 

also six instead of seven of thirty-four extreme changes in 1975-2004. Thus the qualitative result 

of a relative increase in extreme changes in 2005-2014 relative to the preceding two decades still 

holds. 

The question of population growth matters for projections as well. If the Annual Energy 

Outlook’s projections of population growth are off, this will certainly increase error in other 

directions. Population projections, which we do not show in this paper, are historically based on 

the US Census, and tend to have relatively small error compared with other quantities, with a 

maximum error of less than 5%. 

Given that AEO projections of population growth are fairly accurate, we expect that errors in 

population growth should have only a small effect on errors in energy production and 

consumption quantities. 

6.10. Supplementary Note 8 

We reproduce versions of Figures 3 and 4 from the main text including oil and natural gas 

imports, as well as CO2 emissions from the energy system. These three quantities can be derived 

from the seventeen primary quantities, so they were excluded from the main analysis. Still results 

for these quantities can be informative in their own right. 
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Supplementary Figure 6 plots extreme changes for all twenty quantities, including the three 

derived quantities. Overall, ten of forty, as opposed to nine of thirty-four extreme changes occur 

in 2005-2014. One of the two extreme changes for CO2 emissions occurs in 2005-2014, with the 

remaining five extreme changes for the three derived quantities occurring before 1960.  

Supplementary Figure 7 plots the frequency of extreme errors, including the three derived 

quantities, oil and natural gas imports, and CO2 emissions. Including these quantities, all over-

projected extreme errors occur in 2005-2014 for twelve of twenty quantities, including natural 

gas imports and CO2 emissions. 

6.11. Supplementary Note 9 

AEO projections errors are correlated across different quantities, and also have serial correlations 

within a given quantity across projection years within a given AEO base year, and across AEO 

base years within a given projection year. We include tables of the following correlations in 

Supplementary Data 2: Pearson and Spearman cross-quantity error correlations by AEO, Pearson 

and Spearman error serial correlations by AEO and projection year, and Pearson and Spearman 

cross-quantity correlations for projections and historical values of each quantity. We include 

summary statistics across all seventeen quantities for each set of correlations in Supplementary 

Table 3. 

For AEO projection errors, cross-quantity Pearson and Spearman correlations have a median and 

mean close to zero, meaning that there are a comparable number of positive and negative 

correlations. Spearman correlations for AEO errors have a median of about 0.75 in both 

directions, meaning that errors tend to increase or decrease in the same direction across different 

quantities. Pearson and Spearman cross-quantity correlations for AEO projection values each 

have a median value of about 0.95, meaning that many of the projected quantities have a roughly 
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linear relationship with one another. Spearman and Pearson cross-quantity correlations of the 

historical values of quantities have a median value around 0.60, implying substantial correlation 

between quantities, but not as much as the AEO projects. 

For each form of energy, price and consumption quantities are substantially anti-correlated 

across AEO reports, but historical values are not necessarily positively correlated. From 1985-

2014, the correlation between historical oil price and consumption is 0.34, while the median 

value across all AEO reports is -0.65. Similarly, historical correlation between natural gas price 

and consumption is 0.21, while the median across AEO reports is -0.38. This discrepancy 

suggests that the AEO may not be capturing feedbacks beyond simple supply and demand. By 

contrast, historical correlation between coal and electricity price and consumption is -0.77 and -

0.60 respectively, while in the AEO reports it is -0.71 and -0.38 respectively. This suggests that 

coal and electricity market dynamics are better captured by traditional supply and demand than 

oil and natural gas markets. 

We analyze the relationship between annual metrics of unpredictability and year-on-year 

volatility with historical quantities, including the energy intensity of GDP, which we define as 

total energy consumption divided by GDP (see Supplementary Methods). We define annual 

unpredictability as the total number of extreme errors divided by the total number of projections 

in a given year over all seventeen quantities from 1985-2014. We define year-on-year volatility 

as the fraction of all extreme changes over all seventeen quantities that occur in a single year 

from 1950-2014. 

We find that oil price and natural gas production are the most highly correlated with annual 

unpredictability, at 0.40 and 0.41 respectively. Annual unpredictability is most anti-correlated 

with the energy intensity of GDP, at -0.25. The oil price result is consistent with the pivotal 
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importance of oil in the US economy. As unpredictability increases most in 2005-2014, the 

increase in natural gas production due to hydraulic fracturing and slowdown in energy 

consumption growth following the Financial Crisis. Year-on-year volatility is anti-correlated 

with most quantities, and is most strongly anti-correlated with oil consumption, -0.17, and total 

energy consumption, -0.15, with positive correlations for three quantities: Oil price, 0.08, 

electricity price, 0.11, and the energy intensity of GDP, 0.07. Correlations here are smaller than 

for unpredictability, suggesting that there may not be a clear relationship between our metric of 

year-on-year volatility and any of these quantities. 

Further work is needed to formally decompose the drivers of this year-on-year volatility, 

unpredictability, and the above-mentioned anomalies in historical correlations. Such analysis 

could perhaps follow the work of196. 

6.12. Supplementary Note 10 

There are two forms of serial correlation of concern: (1) projections from different AEO reports 

(different base years) for the same year (projection year) may be correlated, and (2) projections 

from a single AEO base year may be correlated across different projection years. 

We bound the effect of serial correlation as follows: 

First, we compute both forms of serial correlation for each quantity. Second, we estimate the 

probability of our results occurring by chance in a Monte Carlo analysis that only accounts for 

cross-quantity correlations using the projection errors from each AEO report. Third, we compare 

these Monte Carlo results to an analogous Monte Carlo that treats all correlations between all 

distinct pairs of quantities as a single parametric constant, e.g. 50%. Fourth, we compare the 

estimated probability of our results occurring by chance in the second and third steps and find the 

level of parametric cross-quantity correlation from the third step that approximately matches the 
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probability of results occurring by chance from the second step. Fifth, we estimate the likely 

effect of adding the serial correlations from the first step to the parametric cross-quantity 

correlations from the fourth step. 

First, we compute both forms of serial correlation across all quantities (see the Supplementary 

Data 2). In Supplementary Table 3, we show the summary statistics of the distribution of ranked 

(Spearman) serial correlations from projection errors computed in both directions, across base 

years and projection years. In both directions, the median serial correlation is 0.74 and 0.77 

respectively, with means of 0.62 and 0.67 respectively (see Supplementary Table 3). We have 

also computed the Pearson correlations and also report these in Supplementary Data 2. We find 

that the Pearson correlations are similar to Spearman correlations, with median correlations of 

0.77 and 0.84 for correlations across base years and projection years respectively (see 

Supplementary Table 3). 

Second, we estimate the probability of our results occurring by chance in a Monte Carlo analysis 

that only accounts for cross-quantity correlations using the projection errors from each AEO 

report (see Materials and Methods, Figures 5 and 6). We find that the probability of an increase 

in the frequency of extreme errors for at least 15 of 17 quantities between 1995-2004 and 2005-

2014 is less than 5%, while the probability of all over-projected extreme errors for 10 of 17 

quantities occurring between 2005 and 2014 is less than 0.1%. 

Third, we compute an analogous Monte Carlo that treats all correlations between all distinct 

pairs of quantities as a single parametric constant, e.g. 50% (see Materials and Methods, Table 

1). We compute the probability of our key results occurring by chance under parametric 

correlation.  
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Fourth, we compare the estimated probability of our results occurring by chance in the second 

and third steps and find the level of parametric cross-quantity correlation from the third step that 

approximately matches the probability of results occurring by chance from the second step. 

Using parametric cross-quantity correlations, we find that the probability of an increase in the 

frequency of extreme errors for at least 15 of 17 quantities between 1995-2004 and 2005-2014 is 

1.6% at a parametric correlation level of 50%, and 5.7% at a correlation level of 75%, roughly 

bounding the results observed using cross-quantity correlations from the AEO. The probability 

of all over-projected extreme errors for 10 of 17 quantities occurring between 2005 and 2014 is 

less than 0.1% at as high as 90% parametric cross-quantity correlation. Thus, by this metric the 

empirical cross-quantity correlations from the AEO are roughly equivalent to 75% or less for our 

first key result, and 90% for our second key result. 

Fifth, we estimate the likely effect of adding the serial correlations from the first step to the 

parametric cross-quantity correlations from the fourth step. It is likely that adding two forms of 

serial correlations, with average magnitude between 60% and 85%, would increase the 

probability of the first result, an increase in the frequency of extreme errors for at least 15 of 17 

quantities between 1995-2004 and 2005-2014, above 5%. We expect that adding the same serial 

correlations would not move the probability of the second result, all over-projected extreme 

errors for 10 of 17 quantities occurring between 2005 and 2014, above 5%. Even with 99% 

parametric cross-quantity correlation, this probability is only 0.4%. 

Thus, we believe that adding both forms of serial correlation may increase the probability of one, 

but not both of our main results occurring by chance to above 5%. 
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6.13. Supplementary Note 11 

Here we illustrate a potential application of our methods, and the importance of including the 

years 2005-2014 in any analysis based on historical errors from the Annual Energy Outlook 

(AEO). 

Suppose a firm in the year 2015 is considering investing in a liquefied natural gas (LNG) 

terminal in the United States to export LNG to markets in Europe and Asia. The firm considers a 

number of scenarios, varying important exogenous parameters to evaluate the soundness of the 

investment. We focus on the firm’s evaluation of a “high export price” scenario, in which the 

going rate of exported LNG is $15/mcf, in the high range of the preceding ten years197. 

The firm uses domestic natural gas price projections from the AEO for its baseline scenario. 

Suppose the CEO would like to use historical errors from the AEO to create a “High domestic 

price” scenario for natural gas but believes that the volatile years 2005-2014 were an anomaly, 

and asks company analysts to include a scenario that excludes these years from their 

retrospective analysis.  

The firm then uses a modified version of the baseline projection combined with information 

about historical projection errors to create a “High domestic price” scenario, based on the 2.5th 

percentile, g, of historical errors in the AEO for natural gas prices for short-term (1-5 year), 

medium-term (6-10 year), and long-term (11+ year) projections. In other words, the firm 

computes the extreme error thresholds using historical AEO errors for all prior years, 1985-2014, 

and for only 1985-2004, excluding 2005-2014. The “High domestic price” scenarios assume the 

AEO baseline projections will be correspondingly low, using the formula: 

 

price’ = price/(1 - g)  
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For both scenarios, the resulting values of g are: 

1985-2014: 0.53, 0.63, 0.63 

1985-2004: 0.50, 0.56, 0.36 

 

Note that g is not monotonic in the 1985-2004 scenario, decreasing from medium-term to long-

term. The analysts at this company enforce weak monotonicity over time.  

 

1985-2004 monotonic: 0.50, 0.56, 0.56 

 

The resulting price multipliers are: 

1985-2014: 2.13, 2.70, 2.70 

1985-2004 monotonic: 2.00, 2.27, 2.27 

 

Other parameters used in the analysis are: 

Terminal capacity: 1M mcf/d 

(A mid-sized terminal among those approved by the Federal Energy Regulatory 

Commission as of May 1, 2017198.) 

Capital cost: $5bn/(mcf/d)  

(Based on the cost of the Sabine Pass LNG terminal, with a capacity of 1.067 bcf/d, and a 

capital cost of $5 billion199.) 

Natural gas export price: $15/mcf197 

Capacity factor: 90% 
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LNG export cost: $3.37/mcf  

(This is a low range of costs, with $2.25/MMBTU fixed costs, including liquefaction, 

$1/MMBTU transportation in addition to domestic natural gas price200, with a conversion 

rate of 1.037 Mcf/MMBTU201.) 

Discount rate: 0.07  

Asset lifetime: 50 years 

(AEO prices and high domestic natural gas price scenarios use flat interpolation of prices 

beyond 2040.) 

 

We find that under these circumstances, the AEO reference case natural gas price scenario has a 

net present value (NPV) of $26 billion. Under a high domestic natural gas price scenario that 

ignores the years 2005-2014 and enforces monotonicity in prices, the terminal still turns a 

substantial profit of $2.9 billion in NPV. However, even with this highly favorable export price, 

and low export costs, an LNG terminal under the “1985-2014” scenario loses $220 million. 

In other words, a high domestic natural gas price scenario that excludes the years 2005-2014 

produces a different, and perhaps misleading picture of the risks facing an LNG export terminal 

in the United States. Even with high export prices, constructing an LNG export terminal is not a 

no-regrets scenario. 

We recognize that this is far from a comprehensive analysis of the decision to build an LNG 

export terminal. Many of the above assumptions would require sensitivity analysis, particularly 

natural gas export price. This analysis does, however, illustrate how excluding or including the 

years 2005-2014 from a retrospective analysis of projection errors from the Annual Energy 

Outlook could influence one major energy infrastructure investment decision. 
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6.14. Supplementary Methods 

 Data collection and processing. 

Extreme error analysis: All projection data and observed historical values used in the extreme 

error analysis come from either the Annual Energy Outlook (AEO) retrospective reports, or from 

the individual AEO reports themselves. The single exception to this is Gross Domestic Product 

(GDP), which is derived from a combination of AEO projections of GDP growth and US Bureau 

of Economic Analysis (BEA) values of historical US GDP, described in further detail below. 

All values for AEO 1993 and earlier come from the 2010 AEO retrospective report172, except 

values for “projection year” 2010 (i.e. projections for the year 2010), which come from the 

individual AEO reports30. All values from AEO 1994 onward come from the 2014 AEO 

retrospective report35, with exceptions listed below. 

Projected values and observed historical values for projection year 2014 are not available in the 

2014 AEO retrospective report. We draw these values from individual AEO reports. 

We derive any missing projection values through linear interpolation between values from 

projection years before and after the missing value. 

We use the term “base year” to describe the year in the AEO report name for AEO 1982-1987, 

and one year prior to that for AEO 1989-2015 as a result of a change in the AEO naming 

convention relative to release years. There is no AEO 1988 because EIA changed the naming 

convention in that year. 

We analyze all projected price quantities in constant 2005 dollars to disentangle the effects of 

inflation projections embedded within nominal dollar projections. 
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 Effects of interpolation on our results 

Many of the earlier AEO reports produced by the EIA, listed below, only reported longer-term 

projections in five-year increments. The one exception is AEO 1990, which reported only five-

year increments from 1990 to 2005. We include a comprehensive list of AEO reports with 

missing values below. 

Missing values occur in the following AEO reports: 

 

AEO 1998 skips from 2010 to 2015 to 2020. AEO 1996 skips from 2010 to 2015. The AEO 

2014 retrospective reports values for AEO 1996 and 1998 up to 2012, which we use in our 

analysis. AEO 1990 only reported every 5 years after 1990, through to 2005.  AEO 1987 skips 

from 1995 to 2000. AEO 1983 and 1984 skip from 1990 to 1995 

 

In almost all cases, this interpolation simply follows the previous linear trend. For this reason, we 

do not believe linear interpolation introduces significant bias into our results. Two notable 

exceptions occur in AEO 1990, in which projections for final ten years reverse a previous 

upward trend for natural gas production and consumption. For natural gas consumption, this 

projection closely approximates the actual historical trend, thus interpolation does not introduce 

a clear bias. For natural gas production, there is a slight over-projection, thus interpolation of this 

concave curve introduces a slight bias toward smaller projection errors. 

 Adjustments to individual quantities 

Coal production: Reported coal production values from AEO 2006 and beforehand include 

waste coal. From AEO 2007 on, we manually add waste coal to regular coal production to match 

AEO retrospective reports, which apparently include waste coal in all years but AEO 2013. 
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Because of this apparent discrepancy in the retrospective reports, for this quantity we use these 

computed values, drawn directly from the AEO reports. 

CO2 emissions: Carbon dioxide emissions were reported in units of carbon mass through AEO 

2003. We convert these to CO2 mass using the molecular mass ratio of carbon to carbon dioxide, 

12/44 kg C/kg CO2. 

Oil volume quantities: Some oil volume quantities were reported in Mbbl/yr (million barrels 

per year) instead of Mbbl/day (million barrels per day). These are converted to Mbbl/day by 

dividing by the number of days in the year in question (accounting for leap years). To match the 

AEO retrospective reports, we define oil imports as follows. 

AEO 1990-1993: Net imports (including Strategic Petroleum Reserve) 

AEO 1996-2007: Crude oil imports + All refined products including ethanol 

AEO 2008-2015: Crude oil imports + refined products + ethanol + biodiesel 

Natural gas price: The AEO retrospective reports for natural gas price use an average price per 

thousand cubic feet (Mcf) in the lower 48 US states from AEO 1982-2012, switching to Henry 

Hub prices per million Btu ($/MMBtu) in AEO 2013-2014 (without reporting a lower 48 

average). The AEO 2013 retrospective report apparently fails to perform a corresponding unit 

conversion 202. The AEO 2014 retrospective report instead reports natural gas prices to electric 

generating plants 35. For this reason, we use natural gas price data from the AEO 2013 

retrospective report when available, in lieu of the AEO 2014 retrospective report. For both 

nominal and constant dollar values for AEO 2013-2015, we convert from $/MMBtu to $/Mcf 

using the EIA’s reported average annual heat content of dry natural gas produced in the US, 

assuming each AEO report used the constant conversion factor from its release year. These 
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values are 1.024, 1.027, and 1.032 MMBtu/Mcf for AEO 2013, 2014, and 2015 respectively203–

205. 

Coal price: While the AEO retrospective reports present coal prices on an energy basis, 

$/MMBtu, the AEO 1983-1993 reports present coal price on a mass basis, $/short ton. We 

convert these prices to $/MMBtu using values of coal energy content from the AEO reports. 

AEO 1983 and 1984 each include projected values for 1985 and 1995. AEO 1990-1993 each 

provide a single projected value. All of these values are between 20.8 and 21.2 MMBtu/short 

ton. We determine projected coal energy content for AEO 1983-1993 by linearly interpolating 

these values over all projection years206–216, assigning years not between two projected values the 

constant value of the nearest projected value. We then estimate this conversion factor for AEO 

reports that do not include a projected energy content value through the same linear interpolation 

process across all AEO reports (across the AEO base year). 

Inflation: AEO retrospective reports do not include projections of inflation. We use values of 

cumulative inflation, measured through the GDP or GNP Price Index, gathered from each 

individual AEO report. We compare this inflation rate with AEO’s implied inflation projections 

in years for which there are price projections of both nominal and constant dollars. We confirm 

that of all reported inflation metrics, GDP Price Index is the closest match. For AEO 1998-2014 

we use a quantity titled “GDP Chain-Type Price Index”, for AEO 1987-1997 we use a quantity 

titled “GDP implicit price deflator”, for AEO 1983-1986 we use a quantity titled “NIPA GNP 

Price Deflator”, and for AEO 1982 we use a quantity titled “GNP Deflator”. Note that GDP price 

index values were not available prior to AEO 1987.  

Because the inflation projections come from different quantities over time (e.g. GDP and GNP 

Price Index), there is no single time series of historical inflation values that would match up in all 
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cases. We derive “observed historical values” from the most recent AEO that includes a 

projected value for the projection year in question. Because all AEO reports include projections 

for historical years, these values are all from reports released at least two years after the inflation 

value, except for projection year 2014, which comes from AEO 2015, with only a one-year lag.  

GDP: The 2010 and 2014 AEO retrospective reports present GDP growth values in 2005 and 

2009 chain-weighted dollars respectively. Individual AEO reports use different chain-weighted 

dollar-years. Chain-weighting is an extremely complex process, and conversion between chain-

weighted dollar years is a highly nontrivial task217. To produce an intercomparable set of 

projections of US GDP, we combine percent GDP growth projections from the AEO with 

observed historical values of US GDP in 2009 chain-weighted dollars from the US Bureau of 

Economic Analysis (BEA) 32. We get percent real GDP growth in chain-weighted 2009 dollars 

from the 2010 and 2014 AEO retrospective reports. The 2014 retrospective report goes through 

projection year 2013. For missing values and values for projection year 2014, we compute real 

GDP growth from projections of chain-weighted real US GDP, which we draw from AEO 1982-

2015203–216,218–236. Note that this is an approximate method, which does not fully account for the 

complexities of the chain-weighting process. 

Quantities for year-on-year volatility analysis: For our analysis of extreme year-over-year 

changes (year-on-year volatility) in observed historical values of energy quantities since 1949, 

except electricity price, which begins in 1960, we draw data from the EIA’s Monthly Energy 

Review, November 2015 when available31. The exceptions are US GDP and inflation, which we 

draw from the US BEA, and CO2 emissions, which we draw from Oak Ridge National 

Laboratory (ORNL) 32,33,237. ORNL only reports CO2 emissions through 2011, for subsequent 
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years, we use year-over-year changes derived from AEO retrospective CO2 emissions data35. All 

prices here are in nominal dollars.  

Low and high oil price scenarios are derived from the following sources: 

AEO 1999: https://www.eia.gov/outlooks/archive/aeo99/results.html 
AEO 2000: https://www.eia.gov/outlooks/archive/aeo00/results.html 
AEO 2001: https://www.eia.gov/outlooks/archive/aeo01/results.html 
AEO 2002: https://www.eia.gov/outlooks/archive/aeo02/results.html 
AEO 2003: https://www.eia.gov/outlooks/archive/aeo03/results.html 
AEO 2004: https://www.eia.gov/outlooks/archive/aeo04/results.html 
AEO 2005: https://www.eia.gov/outlooks/archive/aeo05/results.html 
AEO 2006: https://www.eia.gov/outlooks/archive/aeo06/aeolowprice.html 
        https://www.eia.gov/outlooks/archive/aeo06/aeohighprice.html 
AEO 2007: https://www.eia.gov/outlooks/archive/aeo07/aeolowprice.html 
        https://www.eia.gov/outlooks/archive/aeo07/aeohighprice.html 
AEO 2008: https://www.eia.gov/outlooks/archive/aeo08/aeolowprice.html 
        https://www.eia.gov/outlooks/archive/aeo08/aeohighprice.html 
AEO 2009: https://www.eia.gov/outlooks/archive/aeo09/aeolowprice.html 
        https://www.eia.gov/outlooks/archive/aeo09/aeohighprice.html 
AEO 2010: https://www.eia.gov/outlooks/archive/aeo10/aeolowprice.html 
        https://www.eia.gov/outlooks/archive/aeo10/aeohighprice.html 
AEO 2011: https://www.eia.gov/outlooks/archive/aeo11/topic_prices.cfm 
AEO 2012: https://www.eia.gov/outlooks/archive/aeo12/topic_prices.cfm 
AEO 2013: https://www.eia.gov/outlooks/archive/aeo13/topic_prices.cfm 
AEO 2014: https://www.eia.gov/outlooks/aeo/data/browser/#/?id=12-
AEO2014&cases=ref2014~highprice~lowprice&sourcekey=0 

Further notes: For AEO 2009 values, we use the updated AEO report produced with funds from 

the federal stimulus package at that time233. These values match those reported in AEO 

retrospective reports. 
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6.15. Supplementary Tables 

Table 17. Mean values of short-, medium-, and long-term distributions of AEO errors for each of twenty quantities, 

including derived quantities. Note that fifty-two of sixty cases have positive mean drift. 

 Short-term  
(1-5 yrs) 

Medium-term  
(6-10 yrs) 

Long-term  
(11+ yrs) 

Oil price 4.3% 16.8% -15.8% 
Oil consumption 1.8% 4.6% 6.9% 
Oil production 0.6% -1.6% -7.0% 
Oil imports 9.1% 21.3% 39.6% 
Natural gas price 14.6% 41.0% 19.1% 
Natural gas consumption -1.4% 0.3% 4.3% 
Natural gas production -1.7% -0.6% 2.4% 
Natural gas imports 15.0% 42.0% 67.5% 
Coal price 8.0% 21.9% 21.0% 
Coal production 2.8% 6.5% 9.4% 
Coal consumption 2.7% 7.1% 13.9% 
Electricity price 1.3% 3.3% 3.7% 
Electricity sales 0.1% 2.1% 2.7% 
GDP 2.1% 3.2% -0.8% 
Inflation 2.0% 8.9% 22.4% 
Total energy cons. 2.0% 4.5% 7.4% 
Residential energy cons. 2.4% 3.3% 2.5% 
Commercial energy cons. 0.5% 0.7% -2.2% 
Transportation energy cons. 0.9% 2.4% 4.7% 
CO2 emissions 1.9% 8.7% 13.3% 

 

Table 18. Median values of short-, medium-, and long-term distributions of AEO errors for each of twenty 

quantities, including derived quantities. Note that forty-two of sixty cases have positive median drift. 

 Short-term  
(1-5 yrs) 

Medium-term  
(6-10 yrs) 

Long-term  
(11+ yrs) 

Oil price -3.1% -0.2% -45.7% 
Oil consumption 0.6% 0.2% 5.6% 
Oil production 1.7% -1.8% -1.9% 
Oil imports 3.5% 4% 13.8% 
Natural gas price 11.6% 18.6% -6.6% 
Natural gas consumption -2.5% -1.3% 4.9% 
Natural gas production -1.3% -1.3% 3.1% 
Natural gas imports 5.7% -3.1% 12.2% 
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Coal price 6.9% 31.5% 22.2% 
Coal production 1.3% 2.3% 5.5% 
Coal consumption 2.2% 4.7% 12.3% 
Electricity price 1.8% 11.0% 7.7% 
Electricity sales -0.1% 1.0% 2.3% 
GDP 0.9% 0.1% -4.5% 
Inflation 1.2% 8.7% 21.2% 
Total energy cons. 1.5% 2.0% 6.0% 
Residential energy cons. 2.9% 2.6% 1.8% 
Commercial energy cons. 0.0% -1.3% -3.7% 
Transportation energy cons. 1.2% -0.4% -0.4% 
CO2 emissions 1.4% 6.1% 15.8% 

 

Table 19. Summary statistics for cross-quantity and serial correlations for AEO projection errors, AEO projection 

values, and historical values of the seventeen selected energy quantities. See Supplementary Data 2 for all 

correlation values. 

 Median Mean Standard deviation 
Pearson error corr. cross-quantity 0.12 0.07 0.67 
Spearman error corr. cross-quantity 0.10 0.06 0.66 
Pearson error serial corr. by AEO 0.84 0.71 0.36 
Pearson error serial corr. by proj. yr 0.77 0.67 0.36 
Spearman error serial corr. by AEO 0.77 0.67 0.35 
Spearman error serial corr. by proj. yr 0.74 0.62 0.37 
Pearson proj. cross-quantity corr. 0.94 0.52 0.70 
Spearman proj. cross-quantity corr. 0.97 0.54 0.70 
Pearson cross-quantity historical corr. 0.62 0.34 0.62 
Spearman cross-quantity historical corr. 0.59 0.35 0.59 

 

6.16. Supplementary Note 12 

Supplementary Figures 14-16 show cumulative distribution functions of projection errors for 

each quantity by projection interval. Extreme error thresholds, the 2.5th and 97.5th percentiles of 

each distribution, are also displayed. In Supplementary Tables 1 and 2, we also compute mean 

and median drift for each quantity. 
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Extreme error thresholds vary dramatically in magnitude from quantity to quantity, with a 

maximum over-projection threshold value of 362% for medium-term projections for natural gas 

imports, and a minimum magnitude under-projection threshold value of -2% for long-term 

inflation. Prices tend to have larger-magnitude thresholds than energy production and 

consumption quantities or macroeconomic indicators such as GDP.  

Considering twenty quantities, including the three derived quantities, short-term thresholds tend 

to be smaller in magnitude than medium-term or long-term thresholds, for 19 of 20 over-

projection thresholds and 15 of 20 under-projection thresholds. However, the number of 

quantities for which the magnitude of the long-term threshold is greater than the medium-term 

threshold falls to 17 of 20 for high thresholds and 16 of 20 for low thresholds. Thus, errors tend 

to increase with projection length. 

All quantities have at least some mean and median drift (see Supplementary Tables 1 and 2).  

Median mean drift across all twenty quantities is 2.0% for short-term, 4.5% for medium-term, 

and 5.8% for long-term projections. Median drift tends to be slightly smaller, with a median 

median drift across all twenty quantities of 1.3% for short-term, 1.5% for medium-term, and 

5.2% for long-term projections. Mean and median drift tend to be positive, or over-projections, 

with fifty-two of sixty means positive, and forty-two of sixty medians positive.  
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7. Supporting information for Chapter 3 

7.1. Demographics of the CARE program 

The majority of eligible California households (51%) reside in single-unit structures in 2011, 

with 32% in multi-family housing of five or more units, 11% in two-to-four-unit structures, and 

6% in mobile homes 39. 64% rent their homes, compared to 55% of all households. 93% of low-

income households California reside in more urbanized counties, although 15% of low-income 

PG&E customers reside in largely rural counties 39. Most low-income households, 54% spoke a 

language other than English at home, with 38% primarily speaking Spanish and 9% using an 

Asian language 39. 20% are “linguistically isolated, with no household member aged 14 or older 

who can speak English fluently 39. This is double the general population rate of 10% 39. 42% 

reported Hispanic ethnicity, followed by 36% white, 10% Asian, and 9% African American 39.  
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7.2. Additional data description 

 Regions within PG&E 

 

Figure 33. Regions in the Pacific Gas and Electric Company (PG&E) service territory. PG&E 

randomly selected approximately 10,000 dwellings from each of the region to construct the 

sample. Note that these regions were grouped by climate and thus are not fully geographically 

connected, particularly the Coast and Inland Hills. However, these disconnected eastern areas 

classified as Coast and Inland Hills are in sparsely-populated mountainous locations and thus 

likely have little impact on our results. Figure from the Wharton Customer Analytics Initiative. 

  

Region 
Coast 
Inland Hills 
Central Valley 
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 Deployment of advanced metering infrastructure 

 

 

Figure 34. Advanced metering infrastructure deployment within the sample, March 1, 2008 to December 31, 2011 

by region. Deployment began in the Central Valley, followed by the Inland Hills, followed by the Coast. The result 

is an unbalanced panel, with more observations in later time periods. Also shown in Sherwin et al. 238. 

 CARE enrollment by region and neighborhood income 
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Figure 35. Enrollment rate in CARE as a fraction of households in the dataset over time, by region and median 

census block median income, with thresholds of $52,252.33 and $81,572.00, the 1/3 and 2/3 quantiles of households 

in our sample respectively. Shaded areas are 95% probability interval, considering sample error. A large fraction of 

CARE participants lives outside low-income census blocks. The increasing trend in CARE participation is likely in 

part due to AMI deployment decisions, not changes in population enrollment. Also shown in Sherwin et al. 238. 

 Other utility programs 

Table 20. Description of the PG&E programs and the total and maximum number of participants observed in the 

dataset. Includes total and maximum participation. Adapted from Meyer 62. 

Program Total Part.  Max Part.  Description 

Rebates 2,804 2,773 
Energy efficiency rebates subsidize the purchase of efficient 
appliances, services, and household equipment through an 
after-purchase mail-in rebate. 

BPP 2424 1,574 

Balanced Payment Plan: Provides a bill smoothing service, in 
which PG&E calculates the household’s average monthly 
utility bill and the customer pays a flat amount for each 
monthly billing cycle. This value is an average annualized 
value 

CARE 10,193 9,337 
California Alternate Rates for Energy: Subsidizes monthly 
energy bills based on income and occupant criteria such as 
enrollment in other means-tested programs.  

Climate 
Smart 147 147 

Households pay for carbon offsets through monthly utility bills  

Direct Access 
(DirAccess) 668 631 

Allows customers to purchase their electricity from alternative 
(non-PG&E) power providers, using PG&E as the distribution 
company (New customers have not been able to join the Direct 
Access program since the California energy crisis in 2001, 
though existing customers have been able to remain in the 
program)  

Smart AC 1,069 856 
Allows customers to opt in to a central air conditioning 
curtailment program during peak-load events during the 
summer cooling season. 

Smart Rate 154 117 

Lower average electricity tariff (3¢/kWh reduction) in 
exchange for accepting a higher rate (60¢/kWh) during peak 
hours in some days during the summer cooling months. These 
days are communicated to the consumer a day ahead via text, 
email, or phone 
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Figure 36. Enrollment rate in PG&E programs as a fraction of households in the dataset over time. The CARE low-

income subsidy is by far the most prevalent. We exclude DirAccess, ClimateSmart, and SmartRate from detailed 

analysis due to low participation rates, and the fact that PG&E no longer allows new enrollment in DirAccess. Also 

shown in Sherwin et al. 238.  
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 Variation in electricity consumption across seasons and regions 

 

Figure 37. Deciles of daily household electricity consumption shaded by region and day, from the 10th percentile to 

the 90th percentile. Also shown in Sherwin et al. 238. 

7.3. Approximate lognormality of residential electricity consumption 

 

Figure 38. A histogram of the logarithm of electricity consumption in the full panel with 3-hour resolution. Note 

that the distribution of electricity consumption is approximately lognormal, further motivating the use of ln(kWh) as 

the dependent variable in the main analysis. 
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7.4. Limitations to causal identification 

7.4.1.1. Confounding with income and employment 

Households that newly enroll in CARE may do so because they are newly eligible for the 

program. This likely equates to a decline in household income, potentially due to a change in 

employment status, or a change in household size that would likely coincide with CARE 

enrollment. A reduction in income would likely trigger curtailment of electricity consumption 

through an income elasticity of demand. Depending on the size of the income shock, this effect 

could be comparable in magnitude to any change in electricity consumption due to a subsidized 

electricity rate. Increases in household size would also likely increase electricity demand. Intra-

day variation in the timing of these effects is unknown, potentially confounding estimates of the 

intra-day effects of the CARE program. 

Changes in employment status, such as a transition from full-time to part-time or shift work or to 

unemployment may introduce changes in household occupancy patterns that could substantially 

change both the magnitude and timing of electricity consumption. Although our data do not 

explicitly include unemployment, except at the census block level, one could conceivably extract 

unemployment information from interval electricity consumption data alone using machine 

learning or other statistical methods. However, such an approach would likely require ground 

truth measurements of employment status, which we do not have. 

7.4.1.2. Lack of transparent electricity rate information 

During the study period, PG&E’s residential electricity rates were based on a multi-tier inclined 

block structure, in which prices increase after a customer surpasses one of several threshold 

values 74. These thresholds differ across regions depending on local weather and other factors. In 

addition, the CARE subsidy is not a fixed percentage of rates, but varies across regions, with 
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discounts that depend on a customer’s consumption tier 39. As a result, the discount received by a 

household enrolled in CARE varies substantially across regions. In 2012, the average CARE 

discount in for PG&E customers was 42%, while for it was 24% for Southern California Edison 

customers 39. 

The data do not include enough information about customer rates to reconstruct the magnitude of 

the CARE discount for individual customers or for the sample as a whole. We use the PG&E 

population average discount of 42% to estimate the price elasticity of electricity demand 39. This 

lack of rate information is one reason we believe that the primary contribution of this analysis is 

estimation of the likely magnitude of intra-day variation in the price elasticity of demand, rather 

than estimation of the magnitude of the price elasticity of demand itself. 

7.4.1.3. Instrumental variables 

Observational studies often employ plausibly exogenous instrumental variables to mitigate the 

effect of selection bias on their causal estimates. For a means-tested program such as CARE, one 

could conceive of instrumental variables based on unemployment, perhaps using exogenous 

localized employment shocks. The Financial Crisis and subsequent Great Recession of 2007-

2008 and the accompanying collapse of much of the California housing market likely had 

differential effects on unemployment across the PG&E service territory, potentially affecting 

urban, rural, and suburban household differently. However, even with time-varying household-

level employment data, AMI deployment was in its early stages in 2008, with less than 10% of 

our sample, almost all in the Central Valley, covered by December 31, 2009. 

7.4.1.4. Propensity score matching 

In the absence of a clear natural experiment or instrumental variable, many econometricians rely 

on propensity score matching or synthetic controls to improve observational causal estimates. 
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Such an approach compares treated households with non-treated households that have similar 

observable characteristics. Roughly 90% of eligible households were enrolled in CARE during 

the study period 39. As a result, even with individual-level demographic information, which we 

do not have, only a small fraction of non-enrolled households have incomes comparable to 

CARE households. In addition, it is likely that eligible non-enrolled households are different in 

important ways from CARE households 60, and thus may not be suitable matches. 

As a rough approximation to matching, we compute separate estimates for subsamples based on 

median census block income represented in the sample, i.e. we compare households to peers in 

neighborhoods with similar median income. This approximates matching in that households in 

poorer neighborhoods tend to have higher CARE enrollment and may be more similar to each 

other in important unobserved ways than households in wealthier neighborhoods. See the SI, 

Sections 7.5.3.5 and 7.5.3.6 for these results.  

7.4.1.5. Regression discontinuity 

In many ways, means-tested programs are well-suited for a regression discontinuity approach, 

which can leverage the income threshold eligibility criterion to compare consumption in 

households with incomes above and below the threshold. We have only census block-level 

income information, which is likely too coarse and imprecise to add meaningful information 

beyond the difference-in-differences model. Even with such data, which electric utilities do not 

generally possess, there is large potential for confounding with other means-tested programs, 

many of which have similar eligibility criteria. In addition, there is a potential for households 

near the eligibility threshold to underreport income to gain access to such programs, which 

would further confound causal estimates.  
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7.5. Coefficient values from main figures and tables and robustness checks 

The regression tables below correspond to the results in Figure 7 and Table 1, applying Eq. 4 

for intra-day estimates and Eq. 5 for time-invariant estimates.  

Coefficients for cases in which the dependent variable is ln(kWh) are reported below. These are 

converted to percentages in the main text using the formula ex – 1. 

Regressions use a high-dimensional fixed effects (HDFE) regression specification.
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 Time-invariant regressions 

 Full sample Coast Inland Hills Central Valley Summer Winter 

CARE 
0.119*** 
 (0.0112) 

0.093** 
 (0.0285) 

0.139*** 
 (0.019) 

0.112*** 
 (0.0153) 

0.135*** 
 (0.0154) 

0.116*** 
 (0.0117) 

Temp ≥ 65°F 
0.021*** 
 (0.0003) 

-0.003*** 
 (0.0005) 

0 
 (0.0004) 

0.012*** 
 (0.0003) 

0.044*** 
 (0.0004) 

-0.003*** 
 (0.0002) 

Temp < 65°F 
0.025*** 
 (0.0003) 

-0.002*** 
 (0.0005) 

0.003*** 
 (0.0004) 

0.017*** 
 (0.0003) 

0.040*** 
 (0.0003) 

0 
 (0.0002) 

Constant 
1.303*** 
 (0.0053) 

1.382*** 
 (0.0104) 

1.590*** 
 (0.0066) 

1.601*** 
 (0.0077) 

0.872*** 
 (0.0084) 

1.643*** 
 (0.0042) 

R-squared 0.51 0.56 0.51 0.47 0.58 0.51 
N clusters 30,080 10,118 11,288 8,465 29,082 30,030 
N observations 143,558,079 28,636,816 57,521,638 56,464,270 50,893,578 92,664,497 

Standard errors in parentheses. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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 Intraday regressions 

 
 

Full sample Coast Inland Hills Central Valley Summer Winter 

CARE baseline 0.110*** 
 (0.0115) 

0.068* 
 (0.0299) 

0.127*** 
 (0.0211) 

0.108*** 
 (0.0154) 

0.118*** 
 (0.0154) 

0.112*** 
 (0.0124) 

CARE3am -0.005 
 (0.0036) 

-0.002 
 (0.0075) 

-0.013 
 (0.0076) 

-0.004 
 (0.0046) 

-0.005 
 (0.0053) 

-0.005 
 (0.0038) 

CARE6am 0.003 
 (0.0055) 

0.025* 
 (0.0128) 

0.014 
 (0.0114) 

-0.007 
 (0.0071) 

0.004 
 (0.007) 

0.004 
 (0.0061) 

CARE9am 0.005 
 (0.0075) 

0.037* 
 (0.0161) 

0.002 
 (0.0148) 

0 
 (0.01) 

0.01 
 (0.0097) 

0.001 
 (0.0082) 

CARE12pm 0.006 
 (0.0077) 

0.018 
 (0.0169) 

-0.003 
 (0.0143) 

0.009 
 (0.0104) 

0.021* 
 (0.0105) 

-0.005 
 (0.0081) 

CARE3pm 0.014 
 (0.0078) 

0.033* 
 (0.0164) 

0.015 
 (0.0139) 

0.011 
 (0.0107) 

0.032** 
 (0.0108) 

0.002 
 (0.0082) 

CARE6pm 0.024*** 
 (0.0072) 

0.060*** 
 (0.0166) 

0.040** 
 (0.0135) 

0.01 
 (0.0096) 

0.035*** 
 (0.0095) 

0.015*   
 (0.0078) 

CARE9pm 0.023*** 
 (0.0049) 

0.031** 
 (0.0114) 

0.041*** 
 (0.01) 

0.014* 
 (0.0063) 

0.033*** 
 (0.0066) 

0.017**  
 (0.0053) 

Temp ≥ 65°F 0.020*** 
 (0.0003) 

-0.005*** 
 (0.0005) 

0 
 (0.0004) 

0.013*** 
 (0.0003) 

0.039*** 
 (0.0003) 

-0.004*** 
 (0.0002) 

Temp < 65°F 0.025*** 
 (0.0003) 

-0.004*** 
 (0.0005) 

0.002*** 
 (0.0003) 

0.018*** 
 (0.0003) 

0.037*** 
 (0.0002) 

-0.0005*   
 (0.0002) 

Constant 1.311*** 
 (0.0052) 

1.407*** 
 (0.0106) 

1.600*** 
 (0.0064) 

1.592*** 
 (0.0076) 

0.948*** 
 (0.0068) 

1.649*** 
 (0.0041) 

R-squared 0.558 0.616 0.564 0.51 0.634 0.562 
N clusters 30,072 10,115 11,287 8,461 29,051 30,023 
N observations 143,557,960 28,636,757 57,521,610 56,464,239 50,893,226 92,664,394 

Standard errors in parentheses. 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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 Robustness checks 

7.5.3.1. Only weekdays 
Includes only electricity consumption during weekdays. 
7.5.3.2. Only weekends 
Includes only electricity consumption during weekends. 
7.5.3.3. Only 2010 and 2011 
This specification uses Eq. 4 but excludes all years before 2010, which may capture short-run 

dynamics caused by the Financial Crisis of 2008 and the subsequent recession. 

7.5.3.4. No consumption extremes 
This specification uses Eq. 4 but excludes dwellings with average annual electricity consumption 

above the 5th percentile or below the 95th percentile of the sample. 

7.5.3.5. Lower-income neighborhoods 
Dwellings in the bottom 40% of census block income of our sample. 

7.5.3.6. Higher-income neighborhoods 
Dwellings in the top 60% of census block income of our sample. 

7.5.3.7. Event study 
This specification uses Eq. 4 with a restricted sample considers only dwellings that enroll in 

CARE a single time during the study period with at least 90 days of pre-and post-enrollment 

data. This reduces the sample to 1,524 dwellings. Households with multiple enrollments are an 

interesting case as well, but likely leave the program due to changes in income, household size, 

or other factors that would substantially influence electricity consumption. 

7.5.3.8. No perpetual enrollees 
This specification uses Eq. 4 with a restricted sample includes dwellings that never enroll in 

CARE and those that enroll during the study period but excludes the roughly 8,000 dwellings 

that are enrolled in CARE for the entire study period or enroll multiple times throughout their 

time with PG&E.  
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7.5.3.9. Always/never enrolled 
This specification uses Eq. 4 with a restricted sample includes only dwellings that never enroll in 

CARE and those that enroll only once in CARE and are enrolled in CARE for the entire study 

period. This excludes the roughly 5,500 households that enroll in CARE during the study period 

or enroll multiple times throughout their time with PG&E.  

7.5.3.10. Un-transformed kWh 
This specification uses a modified version of Eq. 4, replacing ln(kWh) with kWh as the 

dependent variable. These coefficients are interpretable as a linear increase in kWh of electricity 

consumed per 3-hour period. Divide by three to convert to kW. 

7.5.3.11. 10% data subsample 
This specification uses Eq. 4 with a random 10% subset of electricity consumption readings from 

the full sample. For computational tractability, the same random subset is used for the robustness 

check that includes hourly coefficients for other utility programs. The qualitative results are 

similar to those from the full sample. 

7.5.3.12. Interactions with other programs 
This specification uses a modified version of Eq. 4, including intra-day coefficient estimates for 

all available utility programs, described in the SI, Section 7.2.4. 

7.5.3.13. Monthly analysis 
This specification uses an aggregated monthly version of the dataset and Eq. 11, below. This 

mimics traditional billing analysis of residential energy consumption. 

 

ln	(%&') = *+,-.&' + 01+223456°8 + 09:223;56°8 + <& + =' + >&'  (11) 

 

CARE enrollment is determined based on whether a household was enrolled for at least half of a 

month. Hourly temperature is converted into heating and cooling degree-days using a 65°F set 

point. m is the month-of-sample. We use household-level and month-of-sample fixed effects. 
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7.5.3.14. Robustness checks using intra-day specification 

 Full sample Weekdays Weekends 
2010 and 
2011 only 

No 
consumption 

extremes 

Lower-
income 

neighborhood 

Higher-
income 

neighborhood 
Event 
study 

No 
perpetual 
enrollees 

Always/ 
never 

enrolled 
CARE 

baseline 
0.110*** 
 (0.0115) 

0.110*** 
 (0.0116) 

0.111*** 
 (0.0116) 

0.116*** 
 (0.0131) 

0.105*** 
 (0.0118) 

0.096*** 
 (0.0157) 

0.122*** 
 (0.0169) 

0.106*** 
 (0.0169) 

0.167*** 
 (0.0138) 

0.074*   
 (0.0375) 

CARE3am 
-0.005 

 (0.0036) 
-0.004 

 (0.0039) 
-0.008* 

 (0.0036) 
-0.008 

 (0.0042) 
-0.005 

 (0.0037) 
-0.001 

 (0.0051) 
-0.011* 

 (0.0049) 
-0.007 

 (0.0054) 
-0.009 

 (0.0044) 
-0.011 

 (0.0092) 

CARE6am 
0.003 

 (0.0055) 
0.005 

 (0.0059) 
0 

 (0.0056) 
0.003 

 (0.0063) 
0.006 

 (0.0058) 
0.003 

 (0.0075) 
0.005 

 (0.0082) 
0.017*   
 (0.008) 

0.002 
 (0.0069) 

0.023 
 (0.0135) 

CARE9am 
0.005 

 (0.0075) 
0.003 

 (0.008) 
0.01 

 (0.0076) 
0.004 

 (0.0085) 
0.007 

 (0.0078) 
0.009 

 (0.0104) 
0 

 (0.0108) 
0.023*   

 (0.0113) 
0.006 

 (0.0094) 
0.022 

 (0.0198) 

CARE12pm 
0.006 

 (0.0077) 
0.005 

 (0.0082) 
0.007 

 (0.0076) 
0 

 (0.0086) 
0.007 

 (0.008) 
0.012 

 (0.0108) 
-0.003 

 (0.0108) 
0.021 

 (0.0116) 
0.007 

 (0.0095) 
0.03 

 (0.0239) 

CARE3pm 
0.014 

 (0.0078) 
0.016 

 (0.0083) 
0.009 

 (0.0076) 
0.012 

 (0.0087) 
0.016 

 (0.0082) 
0.019 

 (0.011) 
0.007 

 (0.0108) 
0.035**  
 (0.0116) 

0.023* 
 (0.0095) 

0.019 
 (0.0238) 

CARE6pm 
0.024*** 
 (0.0072) 

0.026*** 
 (0.0076) 

0.019** 
 (0.007) 

0.030*** 
 (0.0082) 

0.026*** 
 (0.0076) 

0.027** 
 (0.0099) 

0.02 
 (0.0104) 

0.058*** 
 (0.0104) 

0.041*** 
 (0.0086) 

0.012 
 (0.0223) 

CARE9pm 
0.023*** 
 (0.0049) 

0.024*** 
 (0.0052) 

0.020*** 
 (0.0048) 

0.028*** 
 (0.0056) 

0.024*** 
 (0.0051) 

0.023*** 
 (0.0065) 

0.023** 
 (0.0074) 

0.043*** 
 (0.0071) 

0.034*** 
 (0.0059) 

-0.002 
 (0.0135) 

Temp ≥ 65°F 
0.020*** 
 (0.0003) 

0.019*** 
 (0.0003) 

0.026*** 
 (0.0003) 

0.019*** 
 (0.0003) 

0.021*** 
 (0.0003) 

0.021*** 
 (0.0004) 

0.018*** 
 (0.0004) 

0.024*** 
 (0.001) 

0.020*** 
 (0.0003) 

0.018*** 
 (0.0003) 

Temp < 65°F 
0.025*** 
 (0.0003) 

0.023*** 
 (0.0003) 

0.030*** 
 (0.0003) 

0.024*** 
 (0.0003) 

0.025*** 
 (0.0003) 

0.026*** 
 (0.0004) 

0.022*** 
 (0.0004) 

0.030*** 
 (0.001) 

0.024*** 
 (0.0003) 

0.022*** 
 (0.0003) 

Constant 
1.311*** 
 (0.0052) 

1.326*** 
 (0.005) 

1.250*** 
 (0.0061) 

1.308*** 
 (0.0056) 

1.308*** 
 (0.0055) 

1.172*** 
 (0.0089) 

1.436*** 
 (0.0063) 

1.274*** 
 (0.0173) 

1.357*** 
 (0.0049) 

1.378*** 
 (0.0078) 

R-squared 0.558 0.569 0.553 0.573 0.465 0.534 0.573 0.512 0.578 0.596 

N clusters 30,072 30,068 30,023 30,059 26,667 12,021 18,051 1,524 22,118 
             

24,666  
N 

observations 143,557,960 102,690,602 40,867,134 124,571,172 130,214,929 57,097,674 86,460,276 10,192,045 105,394,612 
    

112,628,194  
Standard errors in parentheses. 
* p < 0.05, ** p < 0.01, *** p < 0.001
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7.5.3.15. Intra-day specification with other programs 

 Full sample 10% sample 
All 
programs 

CARE12am 
0.110*** 

 (0.0115) 

0.108*** 

 (0.012) 

0.108*** 

 (0.012) 

CARE3am 
-0.005 

 (0.0036) 

-0.011 

 (0.006) 

-0.011 

 (0.006) 

CARE6am 
0.003 

 (0.0055) 

0.005 

 (0.0076) 

0.005 

 (0.0076) 

CARE9am 
0.005 

 (0.0075) 

0.01 

 (0.0092) 

0.01 

 (0.0092) 

CARE12pm 
0.006 

 (0.0077) 

0.004 

 (0.0097) 

0.004 

 (0.0097) 

CARE3pm 
0.014 

 (0.0078) 

0.020* 

 (0.0097) 

0.020*   

 (0.0097) 

CARE6pm 
0.024*** 

 (0.0072) 

0.026** 

 (0.0092) 

0.026**  

 (0.0092) 

CARE9pm 
0.023*** 

 (0.0049) 

0.027*** 

 (0.0073) 

0.027*** 

 (0.0073) 

Temp ≥ 65°F 
0.020*** 

 (0.0003) 

0.020*** 

 (0.0003) 

0.020*** 

 (0.0003) 

Temp < 65°F 
0.025*** 

 (0.0003) 

0.025*** 

 (0.0003) 

0.025*** 

 (0.0003) 

Rebate12am  

0.022 

 (0.0136) 

Rebate3am   

0.001 

 (0.0079) 

Rebate6am   

0.033*** 

 (0.01) 

Rebate9am   

0.013 

 (0.0121) 

Rebate12pm  

0.007 

 (0.0118) 

Rebate3pm   

0.023 

 (0.0121) 

Rebate6pm   

0.048*** 

 (0.0122) 

Rebate9pm   

0.035*** 

 (0.0095) 

BPP12am   

0.081*** 

 (0.021) 

BPP3am   

-0.011 

 (0.0109) 

BPP6am   

-0.014 

 (0.0137) 

BPP9am   

-0.032 

 (0.0167) 

BPP12pm   

-0.01 

 (0.0168) 

BPP3pm   

0.017 

 (0.0161) 

BPP6pm   

0.015 

 (0.0166) 
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 Full sample 10% sample 

All 
programs 

BPP9pm   

0.025 

 (0.0133) 

ClimateSmart12am  

-0.09 

 (0.3071) 

ClimateSmart3am  

0.122 

 (0.1007) 

ClimateSmart6am  

0.323 

 (0.1687) 

ClimateSmart9am  

0.074 

 (0.2471) 

ClimateSmart12pm  

-0.221 

 (0.3097) 

ClimateSmart3pm  

0.099 

 (0.1858) 

ClimateSmart6pm  

-0.36 

 (0.3484) 

ClimateSmart9pm  

-0.176 

 (0.3208) 

DirAccess12am  

0.076*   

 (0.0317) 

DirAccess3am  

-0.016 

 (0.0178) 

DirAccess6am  

0.026 

 (0.0191) 

DirAccess9am  

-0.005 

 (0.0211) 

DirAccess12pm  

0.017 

 (0.0228) 

DirAccess3pm  

0.01 

 (0.0252) 

DirAccess6pm  

0.005 

 (0.021) 

DirAccess9pm  

0.017 

 (0.0191) 

SmartAC12am  

0.056*   

 (0.0268) 

SmartAC3am  

0.013 

 (0.0144) 

SmartAC6am  

0.021 

 (0.0177) 

SmartAC9am  

-0.018 

 (0.0208) 

SmartAC12pm  

-0.022 

 (0.0187) 

SmartAC3pm  

-0.001 

 (0.019) 

SmartAC6pm  

0.009 

 (0.0199) 

SmartAC9pm  

-0.016 

 (0.0173) 

SmartRate12am  

0.058 

 (0.0371) 

SmartRate3am  

0.028 

 (0.0325) 
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 Full sample 10% sample 

All 
programs 

   

SmartRate6am  

-0.004 

 (0.0237) 

SmartRate9am  

-0.038 

 (0.0302) 

SmartRate12pm  

-0.039 

 (0.035) 

SmartRate3pm  

0.014 

 (0.039) 

SmartRate6pm  

-0.011 

 (0.0411) 

SmartRate9pm  

-0.013 

 (0.031) 

Constant 
1.311*** 

 (0.0052) 

1.313*** 

 (0.0054) 

1.303*** 

 (0.0057) 

R-squared 0.558 0.565 0.565 

N clusters 30,072 30,023 30,023 

N observations 143,557,960 14,354,313 14,354,313 
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7.5.3.16. Linear electricity consumption independent variable 

 Linear kWh 

CARE baseline 
0.748*** 

 (0.1036) 

CARE3am 
-0.087**  

 (0.0308) 

CARE6am 
-0.106*   

 (0.0524) 

CARE9am 
-0.056 

 (0.0815) 

CARE12pm 
0.062 

 (0.0903) 

CARE3pm 
0.231*   

 (0.0983) 

CARE6pm 
0.393*** 

 (0.0825) 

CARE9pm 
0.295*** 

 (0.0488) 

Temp ≥ 65°F 
0.310*** 

 (0.0098) 

Temp < 65°F 
0.353*** 

 (0.0096) 

Constant 
3.608*** 

 (0.1487) 

R-squared 0.686 

N clusters            30,112  

N observations   146,162,009  

 

7.5.3.17. Monthly specification, ln(kWh) 

 Monthly 

CARE 
0.133*** 

 (0.012) 

Cooling degree-days 
0.003*** 

 (0.00003) 

Heating degree-days 
0.000006 

 (0.000004) 

Constant 
0.583*** 

 (0.007) 

R-squared 0.705 

N clusters            30,125  

N observations   621,241  
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Supporting information for Chapter 4 

7.6. Effects of aggregating from 1-hour to 4-hour resolution 

The main analyses aggregate hourly renewable electricity production profiles to 4-hour blocks, 

beginning with the first hour of the year. This can have the effect of reducing peaks and 

increasing local minimum electricity production, particularly for solar.  

In the solar Next-decade case with a high-temperature DAC, the levelized cost of electrofuel is 

$5.43/GGE with 1-hour resolution, falling to $5.36/GGE in the 4-hour resolution case used in the 

main analysis, a difference of 1.2%. Aggregation effects are likely to be smaller for wind 

production, where the system does not have as strict a diurnal pattern and regularly attains 

maximum power for hours at a time (see the SI, Section 7.8.2). 

Aggregation to 8-hour blocks can introduce a small amount of electricity consumption through 

the night, unphysically eliminating the need for electricity storage or grid electricity in some 

solar cases. 

7.7. Potential effects of integer variables and constraints and nonlinearities 

In practice, operation of an electrofuel production system would likely also have integer 

variables, such as minimum capacity or operation levels, particularly for high-temperature 

components such as the fuel synthesis or high-temperature DAC. In practice, however, the 

system tends to operate the DAC and fuel synthesis at high levels with minimal intra-day 

ramping, suggesting that adding such integer variables or constraints likely would not 

substantially change the results. 

There are also many nonlinearities in true engineered systems, which system designers and 

operators would need to consider when building and operating systems. Accounting for these 

nonlinearities is outside the scope of this analysis. 
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7.8. Detailed results 

 System operation characteristics 

Table 21. Installed capacity for each production component. 

Solar PV Today, no 

storage 

Today, low-

temp 

Next-

decade, 

high-temp 

Next-

decade, low-

temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Renewables 

[MW(e)] 5339 4741 4110 4047 3470 3427 

Electrolyzer 

[MW(e)] 3859 2876 2713 2741 2361 2419 

Kiln [MW(e)] 1136 408 215 83 201 0 

DAC [t(CO2)/yr] 4307 1045 1153 1165 1064 1284 

Fuel synthesis 

[MW(fuel)] 1756 603 615 626 619 624 

Grid connection 

[MW(e)] 0 10 48 54 14 9 

Fuel pipeline 

[MW(fuel)] 1756 603 615 626 619 624 

Natural gas 

[MW(th)] 0 262 192 214 177 99 

 

Wind Today, no 

storage 

Today, low-

temp 

Next-

decade, 

high-temp 

Next-decade, 

low-temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Renewables 

[MW(e)] 2715 2504 2079 2035 1768 1713 

Electrolyzer 

[MW(e)] 1962 1819 1755 1812 1521 1600 

Kiln [MW(e)] 577 322 223 38 222 0 

DAC [t(CO2)/yr] 2190 1164 1274 1307 1265 1332 

Fuel synthesis 

[MW(fuel)] 893 715 807 816 768 788 

Grid connection 

[MW(e)] 0 50 48 55 31 34 

Fuel pipeline 

[MW(fuel)] 893 715 807 816 768 788 

Natural gas 

[MW(th)] 0 292 212 240 211 186 
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Table 22. Capacity factor for each production component. 

Solar PV Today, no 

storage 

Today, low-

temp 

Next-

decade, 

high-temp 

Next-decade, 

low-temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Renewables 0.29 0.29 0.29 0.29 0.29 0.58 

Electrolyzer 0.39 0.39 0.38 0.39 0.38 0.62 

Kiln 0.11 0.14 0.07 0.12 Null 0.15 

DAC 0.91 0.89 0.94 0.96 0.95 0.82 

Fuel synthesis 0.85 0.83 0.82 0.83 0.82 0.72 

Grid connection 0.17 0.28 0.31 0.06 0.03 0.02 

Fuel pipeline 0.75 0.75 0.49 0.83 0.26 0.67 

Natural gas 0.85 0.83 0.82 0.83 0.82 0.72 

 

Wind Today, no 

storage 

Today, low-

temp 

Next-

decade, 

high-temp 

Next-decade, 

low-temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Renewables 0.58 0.58 0.58 0.58 0.58 0.58 

Electrolyzer 0.62 0.60 0.58 0.60 0.57 0.62 

Kiln 0.15 0.14 0.07 0.22 Null 0.15 

DAC 0.82 0.81 0.83 0.83 0.90 0.82 

Fuel synthesis 0.72 0.64 0.63 0.67 0.65 0.72 

Grid connection 0.02 0.01 0.02 0.01 0.02 0.02 

Fuel pipeline 0.67 0.67 0.45 0.61 0.21 0.67 

Natural gas 0.72 0.64 0.63 0.67 0.65 0.72 
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Table 23. Installed storage capacity. 

Solar PV Today,  

low-temp 

Next-

decade, 

high-temp 

Next-

decade,  

low-temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Electricity [MWh(e)] 734 0 0 83 208 

Hydrogen [MWh(H2)] 9840 9225 9581 8988 9309 

Heat [MWh(th)] 974 0 0 57 649 

CO2 [t(CO2)] 561 2228 1587 32208 11943 

Fuel [kWh(fuel)] 0 0 0 0 0 

 

Wind Today,  

low-temp 

Next-

decade, 

high-temp 

Next-

decade,  

low-temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Electricity [MWh(e)] 0 0 0 0 0 

Hydrogen [MWh(H2)] 9548 4252 5374 8069 10488 

Heat [MWh(th)] 169 0 0 0 283 

CO2 [t(CO2)] 2731 9026 7559 33390 44035 

Fuel [kWh(fuel)] 0 0 0 0 0 

 

Table 24. Average waste electricity as a percentage of total renewable electricity production.  

 Today,  

low-temp 

Next-

decade, 

high-temp 

Next-

decade,  

low-temp 

Breakthrough, 

high-temp 

Breakthrough, 

low-temp 

Solar PV 7.7% 6.3% 5.9% 4.4% 4.2% 

Wind 11.4% 5.2% 3.7% 2.8% 2.8% 
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 Component operation profiles 

 

Figure 39. Annual average operation profile for production components for the solar Next-decade high-temperature 

case. The DAC operates almost constantly during the summer, made possible through use of natural gas, grid 

electricity, and heat and electricity storage. 

 

Figure 40. Annual average operation profile for production components for the wind Next-decade high-temperature 

case. Despite a capacity factor above 57%, wind’s irregular and highly seasonal production profile require 

substantial curtailment of DAC production, particularly during the summer months. 
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7.9. Supplementary results 

 No carbon price 

Removing the carbon price in the solar Next-decade high-temperature case results in electrofuel 

at $4.89/GGE, a cost reduction of 8.5% from the corresponding case with a carbon price. The 

bulk of this cost savings is simply due to the absence of $0.44/GGE in carbon payments. The net 

fossil carbon content of the resulting electrofuel rises by 21%, thus reducing the effective 

mitigation value of the electrofuel. 

 No fossil carbon 

Removing natural gas and grid electricity requires the system to operate entirely using renewable 

electricity, eliminating the possibility of directly attributable fossil greenhouse gas emissions 

(excepting life-cycle emissions from materials and construction). In the solar Next-decade high-

temperature case, this increases electrofuel cost to $5.68/GGE, an increase of 6%. 

 Seasonal storage of CO2 

 

Figure 41. CO2 storage levels as a fraction of capacity in the solar Next-decade high-temperature case. Note that 

CO2 is stored for almost 200 days, from winter to summer, allowing the system to undersize the DAC while making 

use of abundant summertime solar irradiation for hydrogen production for fuel synthesis.  
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7.10. Barriers to mass adoption of electrofuels 

Fischer-Tropsch liquids are currently used for a variety of commercial applications. Fischer-

Tropsch-based synthetic paraffinic kerosene is approved by the ASTM for blending into jet fuel 

at up to 50% 164. Higher levels of blending would require either blending of supplementary 

aromatics or engine modifications 164. 

Fischer-Tropsch gasoline and diesel have been used commercially in South African vehicles for 

decades with few if any vehicle modification requirements 112. 

7.11. Land and water use 

Estimates of solar land use are based on average total direct area impacts of systems larger than 

20 MW(e) for 1-axis tracking installations, 8.3-9.0 acre/MW(e) 239. 

Estimates of wind land use of 0.1-1.5 MW(e)/ha are based on permanent direct area impact for 

utility-scale wind turbines 240. 
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