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Abstract 

Energy system development is driven by the complexity inherent in physical systems and the influence of 

a myriad of diverse, interacting stakeholders with heterogeneous preferences.  Transforming energy 

systems entails balancing multiple and often conflicting societal objectives.  This thesis presents new 

modeling approaches for energy systems planning and policy evaluation, with an emphasis on cumulative 

impacts, equity, and system heterogeneity. The application domain of this thesis is the U.S. natural gas 

system, although the analytical approaches and insight of this research are intended to extend to the broader 

domestic and global energy system.   

Chapter 2 adopts a traditional economic efficiency optimization approach, coupled with methane emissions 

and abatement cost simulations reflecting system heterogeneity, to evaluate and design system-wide and 

superemitter policies related to methane abatement in the U.S. transmission and storage system.  We find 

that most emissions, given the existing suite of technologies, have the potential to be abated.  We also 

demonstrate that there are high societal benefits from abatement policies, and minimal (if any) private costs 

under standard and tax instruments.  Superemitter policies, which target the highest emitting facilities, may 

reduce the private cost burden and achieve high emission reductions, especially if emissions across facilities 

are highly skewed.  However, detection across all facilities is necessary regardless of the policy option, and 

there are nontrivial societal benefits resulting from abatement of relatively low-emitting sources. 

Chapters 3 aims to develop and demonstrate a data-driven approach for characterizing systems-level 

cumulative impacts of current energy systems.  Specifically, we comprehensively assess the spatially-and 

temporally-resolved air, climate, and employment impacts from extraction to end use and over the life of 

natural gas plays in the Appalachian basin from 2004 to 2016.  Our approach highlights the attribution of 

impacts across the supply chain, the tradeoffs between near- and long-term impacts, and the evolution and 

accumulation of impacts over time with changing regulation, natural gas activity, and technological and 

operational efficiencies and practices.  We show that short-lived air quality and employment impacts track 

with the boom-and-bust cycle, while climate impacts persist for generations well beyond the period of 

natural gas activity.  We also find that employment effects are spatially concentrated in rural areas with thin 

labor markets where development is occurring, and more than half of cumulative premature mortality is 

within source emissions states.   We show that most premature mortality is associated with end uses, while 

upstream and midstream segments also account for a substantial portion of impacts.  With respect to climate 

change impacts, the magnitude of methane emissions across the supply chain produces temperature impacts 

nearly equivalent to that of carbon dioxide over a 30-year time horizon, but over longer integration periods, 

the warming impact from carbon dioxide dominates.  We estimate a tax on production of $2 per thousand 
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cubic foot (+172%/-76%) would compensate for cumulative climate and air quality externalities across the 

supply chain. 

In Chapter 4, we develop a multiobjective optimization model incorporating cumulative impact objectives 

to facilitate future energy system planning.  We develop natural gas system pathways by optimizing impacts 

with respect to sequential natural gas decisions regarding the timing and location of infrastructure and 

activity from extraction to end use.  Environmental and employment objectives are conflicting if we follow 

a natural gas pathway consistent with the status quo; however, a collection siting, emissions abatement, and 

renewable integration policies may collectively resolve and reverse these conflicts. 

In Chapter 5, we develop and demonstrate an approach for evaluating the equity state of an energy system.  

We apply variants of standard methods and present new methods and metrics to quantify spatial, temporal, 

and distributional equity, leveraging impact estimates of the shale gas boom in the Appalachian basin from 

Chapter 3.  We find that there are high temporal and spatial inequities with respect to cumulative air and 

employment impacts, and that spatial inequities are constant over time reflecting largely fixed  

infrastructure and consumption patterns.  We also present indicators of temporal climate inequities, 

estimating that long-term global temperature impacts are 100 times that of near-term impacts.  With respect 

to distributional equity of air quality impacts, we do not observe a disparity in mortality rates across 

subpopulations on the basis of income and poverty; however, there is a trend of increasing income 

corresponding to decreasing damages, which demonstrates the higher health burden of lower income 

communities.  With respect to distributional equity of labor markets, we find statistically significant 

declines in the income disparity and poverty rates in producing counties.  Pairwise comparisons of impacts 

reveal that changes in air and climate impacts are sensitive to changes in employment impacts. 

In Chapter 6, we develop future natural gas system pathways that optimize for the multiple dimensions of 

equity.  We expand upon the multiobjective optimization model developed in Chapter 4, deriving objectives 

that instill different normative concepts of spatial, temporal, and distributional equity that apply to air, 

climate, and employment impacts.  We find that there are inherent conflicts between different equity 

dimensions, as well as, between equity and cumulative impact objectives in a fossil-fuel dominated energy 

system.  However, low-carbon technologies have the potential to reduce inequities.  
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1 Introduction 

Requisite to transforming an energy system is addressing the multi-dimensional needs of today and the 

future.  This necessitates both a systems-level thinking to broadly scaffold the structure and elucidate the 

dynamics of societal objectives, as well as, the nuanced decomposition of objectives to enable the 

evaluation and design of policies targeting specific system components.  This thesis focuses on multiple 

objectives that influence decision-making processes and are often the subject of public discourse and 

concern, including climate change, employment, and air pollution impacts and equity.  Specifically, this 

thesis develops and demonstrates new approaches for energy systems modeling and policy evaluation, with 

an emphasis on systems heterogeneity, cumulative impacts, and equity.  In the following sections, we 

provide a brief overviews of energy system transitions, energy systems analysis and optimization, U.S. 

environmental policy research and evaluation, and the application domain, the U.S. natural gas system.  We 

additionally describe the overarching objectives of this research and outline the thesis chapters. 

1.1 Motivation 

1.1.1 U.S. energy system transitions 

Climate change has resulted in impacts to natural and human systems, and avoidance of serious impacts 

requires rapid and deep reductions in greenhouse gas (GHG) emissions and associated policies.1–3  The 

Paris  Agreement, adopted in 2015, aims to reduce GHG emissions to a level consistent with limiting the 

average global temperature to well below 2°C above pre-industrial levels.2,4  Studies have shown that a 

deeply decarbonized U.S. energy system can provide equivalent energy services as the status quo; however, 

deep decarbonization entails unprecedented and transformational changes in the energy system, such as 

drastically increasing efficiency of end uses, decreasing the carbon intensity of electricity, and switching 

end uses from direct combustion of fossil fuels to electricity.5–7  

Beyond technoeconomic challenges of decarbonization, accelerated transitions also depend upon 

widespread social acceptance and balancing potentially countervailing societal needs and objectives.8,9  
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Given the coupling of air and climate impacts related to fossil fuel production and use, transitioning to low-

carbon energy also contributes to reducing near-term air pollution impacts.10  Labor markets are also 

inherently linked to the transition, with a redistribution of jobs away from carbon-intensive energy sources, 

such as coal, to green infrastructure development.6,11  There are also distributional effects and equity 

implications of climate change and mitigation.12,13 

1.1.2 Energy systems optimization 

Technoeconomic optimization techniques are often used to evaluate energy systems and technologies, 

including their costs and environmental effects.  There are a wide array of energy systems models that vary 

in complexity and sectoral, spatial, and temporal scope, but few models currently focus on energy system 

transitions and deep decarbonization.5  We identify common elements of several existing energy 

optimization models that limit their application to future energy system contexts.  Many architectures use 

illustrative systems and networks that are not reflective of critical real world dynamics.8  Understanding the 

costs of energy transitions is fundamental, and thus, models almost exclusively employ monetized 

objectives, adopt an economic efficiency or utilitarian framing, and do not consider impacts.14–16  

Dominating are models that focus exclusively on electric power systems, ignoring the broader, 

interconnected energy sector and social system.17  In addition, energy system optimization models often do 

not consider long time horizons and multiperiod objectives.  

1.1.3 U.S. environmental policy 

Conventional approaches, such as benefit-cost analysis (BCA), that are widely used in U.S. environmental 

policy research, evaluation, and design have many limitations that partially parallel those described for 

energy systems optimization research, especially in relation to the treatment of long time horizons and focus 

on efficiency criteria and monetization.18–20  BCA has been described from a practical perspective as a 

consistent, systematic accounting framework for comparing benefits and costs in social decisions, and from 

a theoretical perspective as an optimizing tool that maximizes social welfare.21  While costs can be 

reasonably measured, benefits may be difficult to quantify and monetize, and even if benefits can be 
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monetized, the implied exchange rate between benefits and costs may not be reflective of preferences.22  

Underlying most federal environmental policy making is the Kaldor-Hicks (KH) efficiency criterion which 

maintains that a change from the current social state should be undertaken if the gainers compensate losers 

such that everyone would be better off; the KH criterion satisfies the Pareto criterion in which a change in 

state makes at least one individual better off without making any other worse off.23  Inevitably, regulatory 

policies involve winners and losers, even when aggregate benefits exceed costs,21 and the KH criterion does 

not require that compensation actually occurs, effectively ignoring the distributional aspects of a change.24  

Factors such as equity within and across generations are often ignored in U.S. environmental policy, despite 

being fundamental in many decision contexts25, including energy system transitions.  Another dominating 

construct in environmental policy evaluation, that has implications for long-term decisions and temporal 

equity, is the use of discounting, which renders benefits and costs that occur in different time periods 

comparable.26–28 

With respect to equity in U.S. environmental policy making, there are no federal environmental justice 

regulations; however, Executive Order (E.O.) 12898, Federal Actions to Address Environmental Justice in 

Minority Populations and Low-Income Populations, calls for agencies to integrate environmental justice 

into its mission “by identifying and addressing, as appropriate, disproportionately high and adverse human 

health or environmental effects of its programs, policies, and activities on minority populations and low-

income populations.”29,30  While the U.S. Environmental Protection Agency provides technical guidance 

on conducting environmental justice analyses, equity is treated as a subsidiary or supplemental, rather than 

central, criterion in regulatory decision making. 

While economic efficiency is a dominate framing in existing technoeconomic policy research and is part 

of U.S. writ, the approaches developed and demonstrated in this thesis are largely premised on the 

observation that conventional methods and assumptions of policy evaluation and design have largely not 

resulted in nor meaningfully iterated towards processes or outcomes that address inequities and the long-

term effects of climate change.   

https://en.wikipedia.org/wiki/Utility
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1.1.4 U.S. natural gas system 

The application domain of this thesis is the U.S. natural gas system, although the analytical approaches and 

insight of this research are intended to extend to the broader domestic and global energy system.  Here, we 

provide some background on the technological, economic, and policy evolution of the natural gas system. 

Rapid increases in U.S. natural gas production, resulting from advancements in horizontal drilling and 

hydraulic fracturing, have had reverberations on world energy markets and the domestic energy outlook.  

The U.S. has been the largest natural gas consumer and producer over the past decade, comprising 20% of 

the world market, and the domestic shale gas market has contributed to price volatility and a shift in global 

flows of natural gas.31  Increases in domestic supply and reserves have contributed to the displacement of 

coal32, but have also potentially delayed investment, development and deployment of renewables.33  In 

much of this thesis, we focus on the Appalachian basin, the largest natural gas basin in the U.S. with respect 

to both reserves and production over the past decade.34    

Recent studies indicate that the climate benefits of natural gas relative to other fossil fuels are countered, 

perhaps significantly, by emissions of methane, the primary constituent of natural gas and a potent 

greenhouse gas.35,36  Despite advances in emission controls, methane emissions from the U.S. natural gas 

system are already substantial and may increase with increasing production and without regulatory 

intervention.  Targeting emission reductions from new and modified oil and natural gas facilities, the 

Environmental Protection Agency (EPA) finalized New Source Performance Standards (NSPS) under the 

Clean Air Act in 2016 during the Obama Administration; the Trump Administration, which has advocated 

for the revival of the coal industry, has since proposed a rollback of these rules.37–41 

1.2 Research objectives 

The intent of this thesis is to develop and apply multiobjective, systems-level, and data-driven approaches 

for energy system modeling and policy evaluation that seek to address limitations of existing evaluative 

tools, with an emphasis on cumulative impacts, equity, and systems heterogeneity.  
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The first research objective is to present an approach for characterizing and quantifying spatially- and 

temporally-resolved cumulative environmental and socioeconomic impacts of energy systems across 

supply chains and development cycles.  Many existing policy research and evaluation tools, such as benefit-

cost analysis and life cycle assessment, and corresponding applications are not as comprehensive in scope. 

The second research objective is to develop and demonstrate an approach for characterizing and quantifying 

the multi-dimensional equity state of existing energy systems.  The systems-level spatial, temporal, and 

distributional effects and equity of energy systems – i.e., how benefits and costs are and should be 

distributed spatially, temporally, or among sub-populations on the basis of demographics – are still largely 

unexplored.29,42   

Building upon the first and second objectives, the third research objective is to construct a multiobjective 

energy system optimization model that incorporates cumulative impact and equity objectives.  The purpose 

of this model is to facilitate future energy system planning through the generation future development 

pathways, with respect to the timing, location, and magnitude of energy system activity and low-carbon 

interventions.  The goal is to develop a modeling architecture that is distinct from many existing energy 

systems optimization models because of the unique cumulative impact and equity objectives, spatial 

resolution, long time horizons, air and climate impact (rather than emission and monetary) measures 

leveraging reduced complexity models, and parameterization and structure reflecting a real (rather than 

illustrative) energy system. 

The final research objective, which intersects with the previously described objectives, is to draw upon the 

quantitative measures and insight derived from the systems-level quantitative modeling to design new 

policy and planning mechanisms to address system heterogeneity, cumulative impacts, and equity, which 

are largely unaccounted for in U.S. environmental policy and energy systems planning. 
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1.3 Outline 

The following outlines the chapters of this thesis and maps them to the previously described research 

objectives. 

In Chapter 2, we evaluate and design optimal system-wide and superemitter methane abatement strategies 

and policies for the U.S. natural gas system, with a focus on the transmission and storage segment  We 

formulate economic efficiency optimization models from private and societal perspectives, coupled with 

methane emissions and abatement cost simulations reflecting system heterogeneity, to assess policies across 

four broad dimensions: private and social costs and benefits, detection and abatement technologies, 

emissions reduction potential, and policy instruments. 

Whereas Chapter 2 develops an evaluative framework that in part adopts a traditional economic efficiency 

framing and targets specific policies for a segment of the natural gas supply chain, we take a more 

comprehensive approach and consider other societal objectives in Chapters 3 and 4 to facilitate long-term 

decision making and comparisons of natural gas to low-carbon energy technologies.    In Chapter 3, we 

develop an approach for evaluating and characterizing cumulative impacts from extraction to end use and 

over the life of natural gas plays.  Specifically, we demonstrate this approach through a retrospective case 

study of the shale gas boom in the Appalachian basin from 2004 to 2016, and we model data-driven, 

spatially- and temporally-resolved air quality, climate change, and employment impact estimates. 

While Chapter 3 provides a retrospective assessment of impacts, the goal of Chapter 4 is to evaluate how 

natural gas systems can develop in the future if cumulative air, climate, and employment impact objectives 

are incorporated into decision making.  We formulate a multiobjective optimization model, in which we 

develop future natural gas system pathways by optimizing impacts with respect to sequential natural gas 

decisions regarding the timing and location of infrastructure and activity from extraction to end use. 

We also develop and demonstrate approaches for evaluating the equity of energy systems in Chapters 5 and 

6.  In Chapter 5, we take a systematic, but exploratory, approach to quantify and characterize the multi-
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dimensional equity state of energy systems, using established economic methods in addition to developing 

supporting systems-level equity metrics.  We focus on establishing the state of spatial, temporal, and 

distributional equity as it relates to air, climate, and employment impacts during the shale gas boom in 

Appalachia. 

In Chapter 6, we develop future natural gas system pathways that optimize for the multiple dimensions of 

equity.  We expand upon the multiobjective energy system optimization model developed in Chapter 4, 

deriving objectives that instill different normative concepts of equity that apply to air, climate, and 

employment impacts. 

In Chapter 7, we summarize key findings and policy implications, as well as, outline a proposal for future 

work.  
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2 System-wide and Superemitter Policy Options for the Abatement of Methane 

Emissions from the U.S. Natural Gas System 

This paper assesses tradeoffs between system-wide and superemitter policy options for reducing methane 

emissions from compressor stations in the U.S. transmission and storage system.  Leveraging recently 

collected national emissions and activity datasets, we developed a new processed-based emissions model 

implemented in a Monte Carlo simulation framework to estimate emissions for each component and facility 

in the system.  We find that approximately 83% of emissions, given the existing suite of technologies, have 

the potential to be abated, with only a few emission categories comprising a majority of emissions.  We 

then formulate optimization models to determine optimal abatement strategies.  Most emissions across the 

system (approximately 80%) are efficient to abate, resulting in net benefits ranging from $160M to $1.2B 

annually across the system.  The private cost burden is minimal under standard and tax instruments, and if 

firms market the abated natural gas, private net benefits may be generated.  Superemitter policies, namely 

those that target the highest emitting facilities, may reduce the private cost burden and achieve high 

emission reductions, especially if emissions across facilities are highly skewed.  However, detection across 

all facilities is necessary regardless of the policy option and there are nontrivial net benefits resulting from 

abatement of relatively low-emitting sources. 

 

This paper has been published as: Mayfield, E. N., Robinson, A. L. & Cohon, J. L. System-wide and Superemitter 

Policy Options for the Abatement of Methane Emissions from the U.S. Natural Gas System. Environ. Sci. Technol. 

(2017). doi:10.1021/acs.est.6b05052 
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2.1 Introduction 

Recent studies indicate that the climate benefits of natural gas relative to other fossil fuels are countered, 

perhaps significantly, by emissions of methane, the primary constituent of natural gas and a potent 

greenhouse gas.35,43  Methane emissions from the natural gas sector alone account for approximately 24% 

of U.S. anthropogenic methane emissions.44  Despite advances in emission controls, methane emissions 

from the U.S. natural gas system are already substantial and may increase with increasing production and 

without regulatory intervention. 

In an effort to reduce emissions across the natural gas supply chain, the White House Climate Action Plan, 

which includes a strategy for reducing methane emissions, was released in March 2014; this was followed 

by an announcement that President Obama will use his executive authority to issue regulations with the 

intent of reducing emissions from the oil and natural gas sector by 40-45 percent from 2012 levels by 

2025.45,46  Targeting emission reductions from new and modified oil and natural gas facilities, the 

Environmental Protection Agency (EPA) finalized New Source Performance Standards (NSPS) under the 

Clean Air Act in June 2016.37–41  The EPA also proposed a new voluntary emissions reduction program, the 

Natural Gas STAR Methane Challenge, in July 2015.47 

Emissions inventories and estimates are often based on relatively small datasets that may not be 

representative of the current natural gas system.48  There have been substantial recent efforts to collect 

additional methane emissions data and refine activity counts to better understand the current and changing 

fleet of U.S. natural gas facilities.  These studies have revealed that, for many source categories and across 

the natural gas supply chain, methane emissions distributions are highly skewed – a few superemitters are 

responsible for a majority of emissions.48–53 

The heavy-tailed distributions of observed component- and facility-level emissions suggest that abating 

emissions from the highest emitting components or facilities has the potential to be a relatively efficient 

strategy for reducing emissions.  While potentially efficient from an abatement perspective, lacking a priori 
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knowledge of the location of high-emitting components or facilities, detection of emissions may be 

challenging and entail nontrivial costs.  Previous studies that evaluated abatement options and costs 

generally did not account for heterogeneity in emissions and uncertainty in other key input parameters.40,54,55  

This paper assesses system-wide and superemitter policy options for reducing methane emissions from the 

U.S. natural gas system. For the purposes of this analysis, system-wide and superemitter policies are broadly 

differentiated by their regulatory scope; the former includes detection and abatement of methane emissions 

at all facilities across the U.S. natural gas system, whereas the latter entails detection at all facilities and 

abatement at only a targeted subset of facilities with the highest absolute emissions or emissions rate.  

Further distinctions between these policy options are developed and discussed in the succeeding sections 

and summarized in Table 1. 

Table 1.  Description of system-wide and superemitter policy options. 

 System-wide Policy Superemitter Policy 

 

Unconstrained 

Facility-Level 

Percent Emissions 

Reduction Target 

Absolute Annual 

Emissions 

Threshold 

Proportional Loss 

Rate Threshold 

Scope of detection All facilities All facilities All facilities All facilities 

Scope of potential 

abatement 
All facilities All facilities 

Facilities w/ 

emissions above 

threshold (50th/90th 

percentile) 

Facilities with loss 

rate above threshold 

(50th/90th percentile) 

Regulated unit Component Facility 
Facility and 

component 

Facility and 

component 

Policy instrument 
Component-level 

standard OR Tax 

Facility-level percent 

emissions reduction 

target (10/50/75%) 

Component-level 

standard for subset of 

facilities 

Component-level 

standard for subset of 

facilities 

Emissions 

reduction 

criterion 

Maximize net 

benefits 

OR Maximum 

achievable reduction 

Minimize private 

costs 

OR Maximum 

achievable reduction 

Maximize net 

benefits 

OR Maximum 

achievable reduction 

Maximize net 

benefits 

OR Maximum 

achievable reduction 

 

2.2 Methods 
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We developed a modeling framework to analyze system-wide and superemitter policy tradeoffs across four 

broad dimensions: i) private and social costs and benefits, ii) detection and abatement technologies, iii) 

emissions reduction potential, and iv) policy instruments (e.g., standards versus taxes).  SI Figure A-1 

shows the six interacting sub-modules used in the assessment of policy options.  The formulation, 

assumptions, and data for these sub-modules are introduced in the following sections and elaborated upon 

in SI Appendices B-G. 

This study focuses on existing compressor stations in the transmission and storage (T&S) sector, as 

described in SI Appendix A.  We first develop a baseline methane emissions model for each component 

and facility in the T&S sector.  Then we simulate potential abatement measures, incorporating simulated 

emissions, as well as uncertainties in natural gas price forecasts, firm structure, abatement costs, and 

abatement efficacy.   We also evaluate costs and sensitivity of existing and emerging detection methods 

and assess marginal benefits associated with emission reductions, employing the social cost of methane.  

Combining results from the preceding sub-modules, we formulate an optimization model, in which net 

social benefits are maximized or private costs are minimized, in order to evaluate abatement strategies for 

the T&S system.  Finally, we summarize the sources of variability and uncertainty that we incorporate or 

omit in the model (SI Appendix G). 

2.2.1 Baseline Emissions Simulation 

We used a Monte Carlo simulation to model the baseline annual methane emissions for each component 

and facility in the U.S. T&S sector.  SI Figure C-1 is a depiction of the types of components (e.g., rod-

packing, isolation valves) or emission sources at transmission compressor stations and storage facilities.  

Rather than using emission estimates reported in the EPA Greenhouse Gas Inventory (GHGI), we employ 

emissions data from a study recently published by Zimmerle et al. (2015) because this dataset is relatively 

large and includes component-level estimates which are necessary for modeling heterogeneity in 

emissions.49  We simulate annual baseline emissions for each emission category and component in the 

population, explicitly accounting for variability in emission factors and annual operating hours.  Emission 
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categories are delineated by component type and operating mode (e.g., reciprocating compressor rod-

packing in an operating pressurized mode).  Baseline emissions for each facility in the system are simulated 

by assigning emissions for each component to a facility.  Each facility is described by a facility profile or 

inventory (i.e., component counts).  These profiles are known, at least in part, for some facilities, and we 

simulate unknown profiles, accounting for correlations between counts and types of components.  We 

additionally simulate a proportional loss rate for each facility, which is the quotient of annual emissions 

and throughput.  Overall, we simulated 100 realizations of emissions from each component and facility in 

the entire U.S. T&S system.  SI Appendix C provides greater detail regarding the mathematical formulation 

of the baseline emissions simulation.  

2.2.2 Emission factors and operating hours 

The input datasets are based on recent emission measurements by Subramanian et al. (2015) and the system-

wide emissions model by Zimmerle et al. (2015).  We develop annual emission factor distributions for 27 

emission categories, based on emission measurements from approximately 22,000 components at 45 

compressor stations across U.S facilities.48  We fit parametric distributions that attempt to capture the data 

skewness and uncertainty; as summarized in SI Appendix G, recent studies review parametric and 

nonparametric approaches for modeling uncertainties.36,56  Operating hour distributions are developed based 

on a database, compiled by Zimmerle et al. (2015), of hours reported for 24,000 components at 514 

compressor stations.  Using paired operating hours and emission factor measurements, we find that there is 

little correlation between operating hours and emission factors.    Input distributions for each emission 

category are summarized in SI Appendix B.1. 

2.2.3 Facility profiles and activity counts 

Zimmerle et al. (2015) compiled facility profile data at 922 facilities in 2012, including data from facilities 

that annually report to the Greenhouse Gas Reporting Program (GHGRP) and the Federal Energy 

Regulatory Commission (FERC), as well as data collected by Subramanian et al. (2014).  Although the 

precise number of T&S facilities is unknown, we assume that there are 1,758 compressor stations based on 
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the central estimate in Zimmerle et al. (2015).  Incorporating uncertainty in the number of facilities and 

activity counts is omitted because it would unnecessarily complicate the model and is unlikely to impact 

the overarching policy recommendations in a material way.  The baseline emissions model provides a 

snapshot of existing components and facilities in 2012 and does not reflect expanding and changing natural 

gas infrastructure. 

2.2.4 Proportional loss rates 

Proportional loss rate is a measure of the proportion of facility-level throughput that is emitted.  We fit 

probability distributions to paired horsepower and efficiency data for reciprocating and centrifugal 

compressors at 922 facilities compiled by Zimmerle et al. (2015).  Combining these simulated results with 

the facility profile assignment model, emission estimates, and operating hours for compressors, we develop 

estimates of throughput and proportional loss rates for each facility. 

2.2.5 Abatement Cost Simulation 

Monte Carlo simulation was also used to model abatement costs for each component in the T&S sector.  

The mathematical formulation is provided in SI Appendix D.  Abatement costs for each emission category 

and component are a function of the simulated baseline natural gas emissions, abatement efficacy for each 

category, annualized cost of abatement for each category and component, and natural gas prices (see SI 

Equation D-3).  The following sections introduce input assumptions and data, and Appendix B.2 elaborates 

on these inputs. 

2.2.6 Abatement efficacy 

We model abatement measures (e.g., repair or replacement of a valve) for each emission category.  We 

assume point estimates for efficacy derived from multiple sources, including supporting information for 

recent EPA rule-makings and abatement studies conducted by Carbon Limits, the EPA Natural Gas Star 

Program, and ICF International.38–40,57–60 
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The efficacy of an abatement measure is defined as the percentage reduction in emissions relative to 

baseline.  While similar definitions of efficacy are implicitly adopted in the NSPS Regulatory Impact 

Analysis and an ICF economic analysis, there are limitations to operationalizing efficacy as a percentage 

reduction.40,58   Percentage reduction does not account for potential correlation between baseline emissions 

and efficacy.  In addition, efficacy conceivably decreases over time after an abatement action is conducted.  

To account for structural limitations of modeling efficacy and to demonstrate the sensitivity of efficacy on 

the conclusions drawn, we perform a parametric analysis, conservatively reducing the point estimates of 

efficacy by half. 

2.2.7 Abatement costs 

We estimate annualized abatement costs as the present value of the capital and labor costs (beyond the 

status quo) of an abatement measure over an assumed abatement interval (e.g., replacement interval), 

converted to equal annual payments.  Annualized costs are a function of the capital recovery factor (CRF) 

and total abatement costs for each component type (see SI Equations D-1 and D-2).  The CRF is a function 

of the discount factor and the abatement interval.  We employ three discount rates, 3%, 5%, and 7%, which 

are consistent with those used in the 2015 NSPS Regulatory Impact Assessment and recommended in OMB 

Circular No. A-94.40,61 

We derive costs and abatement intervals for each abatement measure based on multiple sources, including 

supporting information for recent EPA rule-makings and cost studies conducted by Carbon Limits, the 

Clearstone Group, the EPA Natural Gas Star Program, and ICF International.37,38,40,54,55,57–59,62  Given that 

there is cost heterogeneity for each abatement measure, we fit simple distributions, reflective of reported 

cost ranges.  Triangular distributions are employed when there is a clustering of central estimates, and 

uniform distributions are used if only a range is available. 
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There are several other factors and sources of uncertainty that we do not account for that may impact costs.  

There is locational heterogeneity in labor costs, but given that our model is not spatially explicit, we do not 

account for this.  Emissions and abatement costs are also potentially correlated; for example, correlation 

may exist because of facility location (i.e., more remote areas may have higher emissions because 

maintenance is less frequent and more costly). 

2.2.8 Natural gas prices and firm cost structure 

Cost savings may be generated from reductions in losses of otherwise marketable natural gas.   However, 

transmission firms often do not own the gas and fixed methane loss rates may be stipulated in long-term 

contracts; thus, firms may not realize cost savings, at least in the near-term.  We do not have information 

to represent the distribution of firms that operate under different types of contracts; therefore, we perform 

a bounding analysis, modeling scenarios with and without savings.  Given that the model is not spatially 

explicit, we calculate savings by broadly applying the Henry Hub spot prices reported in the EIA 2015 

Annual Energy Outlook for the analysis year of 2020.  To encapsulate the forecast range, we model three 

price scenarios – reference ($4.30/MMBTU), high oil and gas resource ($3.12/MMBTU), and high 

economic growth ($5.03/MMBTU); we convert to real 2014 USD per SCF, assuming an energy 

consumption-to-volume conversion factor of 1,015 BTU per SCF and reported inflation rates.63–65 

2.2.9 Detection 

The approach used to detect emissions is itself an important policy decision.  For all of the modeled policies, 

we consider bottom-up or component-level quantification of emissions, rather than top-down, facility-level 

measurements.  We further assume that detection is conducted at all facilities, rather than a subset of 

facilities.  Given that some facilities already are performing detection in accordance with GHGRP, our 

detection cost estimate, which is based on full rather than incremental costs, may be overestimated. 

We model two common detection methods that comply with NSPS requirement, optical gas imaging and 

EPA Method 21, assuming onsite surveys are conducted quarterly.  We additionally model an emerging 
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technology based on the design criteria of the Environmental Defense Fund’s (EDF) Methane Detectors 

Challenge, which is a grant program that targets mature technologies for detecting larger leaks on a 

continuous basis that are deployable within the next two years.66,67  Each detection method has associated 

costs and detection limits, which we incorporate in the optimization model (refer to SI Appendix B.3). 

2.2.10 Social Cost of Methane 

Social benefits associated with emissions reductions are estimated using the social cost of methane (SC-

CH4), a metric representing the present value of the anticipated future damages that would arise from an 

incremental unit of methane emissions in a given year.68  SC-CH4 accounts for climate change impacts, 

such as changes in agricultural productivity and human health, property damage from increased flood risk, 

and changes in heating and cooling costs.  We do not account for benefits from concomitant reductions in 

volatile organic compounds and safety improvements. 

We treat SC-CH4 parametrically, employing four estimates (in units of 2014 USD per metric ton of 

methane) with differing discount rate assumptions, as reported in Marten et al. (2014; 2015): $601 (5% 

discount rate, mean), $1330 (3% discount rate, mean), $1780 (2.5% discount rate, mean), and $3560 (3% 

discount rate, 95th percentile).69  We choose an abatement or analysis year of 2020, which is reflective of a 

realistic regulatory horizon; benefits would differ if the analysis year differed.  SI Appendix E provides 

background information on direct modeling of the SC-CH4 using integrated assessment models and a 

comparison to indirect estimates based on conversion of non-CO2 emissions to carbon dioxide equivalents 

(CO2eq) using global warming potentials and applying the social cost of carbon (SCC). 

2.2.11 Optimization Model 

To assess different abatement strategies for the U.S. T&S system, we employ an optimization framework 

that leverages the previously described sub-modules.  To represent different system-wide and superemitter 

policies and associated policy instruments, we formulate integer linear programs with different objective 

functions, simulated inputs, and constraint sets.  The models select the components in the system at which 
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to perform abatement.  Table 1 lists the basic structure of each policy; further information regarding the 

formulations is provided in SI Appendix F.  The optimization models are coded in and solved using R and 

the General Algebraic Modeling System (GAMS). 

We assume that the analysis period is a year, which has practical implications for policy implementation.  

The relative timing of detection, classification of facilities as superemitters (which may be ephemeral from 

year-to-year), and abatement would have to determined to implement a policy; however, we assume that 

these activities all occur within a year and do not attempt to order and further discretize. 

2.2.11.1 Unconstrained System-Wide Policy 

The objective function of this optimization is to minimize net social costs (or equivalently maximize net 

benefits), which includes abatement and detection costs (less cost savings in some formulations) and social 

costs of methane.  The optimal level of abatement occurs where marginal benefits equate to marginal costs. 

2.2.11.2 System-Wide Policy with Facility-Level Emissions Reduction Target 

The objective function of this model is to minimize private costs, including abatement and detection costs 

(less cost savings in some formulations), subject to an emissions reduction target per facility (we looked at 

10, 50, and 75% reduction targets).  For each facility, the model selects the components to abate to just 

meet the emissions reduction target, if feasible.  For example, given a target of 50%, facilities must quantify 

emissions and perform abatement to achieve a 50% reduction.  Facilities for which it is not possible to 

achieve a given target, the maximum emissions reduction is selected. 

2.2.11.3 Superemitter Policy with Absolute Emissions Threshold 

Here, the objective function is the same as in the unconstrained system-wide policy, but abatement is only 

conducted at a subset of facilities with absolute annual emissions above a specified threshold.  We model 

two absolute emissions thresholds: 50th and 90th percentiles of simulated facility-level emissions (i.e., the 

subsets are comprised of the highest emitting 50% and 10% of facilities, respectively). 

2.2.11.4 Superemitter Policy with Proportional Loss Rate Threshold 
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In this scenario, the objective function is the same as in the unconstrained system-wide policy, but 

abatement is only conducted at a subset of facilities with proportional loss rates above a specified threshold.  

We model two thresholds: 50th and 90th percentiles of simulated facility-level proportional loss rates (i.e., 

the subsets are comprised of 50% and 10% of facilities with the highest proportional loss rates, 

respectively). 

2.3 Results and Discussion 

We first present intermediate results, including component- and system-level baseline emissions estimates 

and marginal abatement cost curves.  Then, we describe findings for the unconstrained system-wide policy 

optimization modeling with respect to net benefits, private costs, and emissions reductions, and summarize 

various sensitivity analyses.  We then compare facility- and system-level results across policy options and 

assess tradeoffs between different policy instruments. 

2.3.1 Baseline Emissions 

The modeled total methane emissions for the T&S sector (440,000 metric tons), accounting for some but 

not all emission sources, are similar to other recently published estimates.  Using the existing suite of 

abatement technologies considered here, approximately 94% of emissions are from emission categories that 

have the potential to be abated, with a few emission categories (i.e., reciprocating compressor isolation 

valves and rod-packing) comprising approximately 57% of abatable emissions.  SI Figure H-1 presents the 

estimated emissions for each emission category.   

Based on the emissions simulation, 30% of the facilities account for 60% of the emissions (see SI Figure 

F-2).  This skewness, which depends on the model structure and underlying data, may not be representative 

of the actual skewness and may not capture high-emitting facilities that are low in frequency across the 

T&S system.  To contextualize the modeled emissions, methane emissions from the injection well leak in 

Aliso Canyon, California, were reported to be approximately 100,000 metric tons, which is much higher 

than the maximum emitting-facility that was modeled.70 
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2.3.2 Marginal Abatement Costs 

For each emission category and corresponding abatement measure, we simulate marginal abatement cost 

(MAC) curves, accounting for variability in abatement costs, natural gas prices, emission factors, and 

operating hours (see SI Appendix H).  We also aggregate MAC curves for each emission category to create 

system-wide curves.  A MAC curve step function is presented in Figure 1a; each step represents the median 

simulated emissions reductions for an abatement measure, rank-ordered based on the median simulated 

marginal costs.  Assuming no savings from recovered gas and fixed marginal costs for each abatement 

measure, nearly all potential emission reductions from the T&S system have marginal costs less than $50 

per CO2eq metric ton.  For comparison, the Integrated Working Group (IWG) SCC estimate is $47 per 

CO2eq metric ton (year = 2020, 3% discount rate).71  Therefore, if a policy accounts for the IWG SCC 

estimates, this analysis indicates that most of the emissions should be abated.   

Figure 1b displays system-wide marginal abatement cost curves for 100 realizations of the T&S system, 

with each curve representing a rank-ordering of every component in the system based on increasing 

marginal abatement costs.  We observe that there is a distinct “knee” in the MAC curve at which point the 

marginal costs markedly increase.  Employing the efficiency criterion, whereby net benefits are maximized 

when marginal benefits equate to marginal costs, the optimal level of abatement (i.e., subset of components 

in the system to abate), without accounting for savings and assuming a social cost of methane of around 

$1330 per metric ton of methane (~$46 per metric CO2eq ton), occurs at ~80% reduction in emissions.  If 

we incorporate savings from marketing recovered gas, then an approximately 70% of emissions may be 

abated with positive net private benefits. 
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Figure 1.  (a) System-level marginal abatement cost curve step function based on simulated median 

emissions and marginal costs, assuming no savings from natural gas.  (b) Marginal abatement cost curve 

based on simulation of all components in the U.S. T&S system, accounting only for variability in 

emissions factors, operating hours, and abatement costs.  Blue curves represent 100 realizations of the 

T&S system, assuming no savings; red curves assume savings (using the EIA reference case natural gas 

price projection).  Green lines are marginal benefit curves at different assumed social costs of methane, 

based on modeling in Marten et al. (2015). 
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2.3.3 Policy Optimization 

The results shown thus far assume omniscience in which the emissions from and abatement cost-

effectiveness for each component in the T&S system are known ex-ante.  For optimization modeling of the 

different policy scenarios, we also account for detection to identify emission sources, a necessary condition 

prior to abatement (in our stylization of policies), and consider policies in which only a subset of facilities 

perform abatement. 

2.3.4 Unconstrained System-Wide Policy 

For the unconstrained system-wide policy, when maximizing net benefits under base case modeling 

assumptions, most components in the T&S system (i.e., those with marginal costs less than the social cost 

of methane) are selected by the model for abatement (as depicted in Figure 2 inset). 

Results of the optimization model, over a range of system-level emission reduction targets, are provided in 

Figure 2.  Under scenarios both with and without gas savings, the optimal emissions reduction is 

approximately 80%, which is similar to the maximum level of abatement (83%).  Figure 1b provides some 

insight into why this occurs; the marginal benefits curve intersects the vertical region of the MAC curve, in 

which marginal cost markedly increase with minimal emission reductions.  Optimal net benefits are $420M 

without savings, and increase by 25% when accounting for savings (assuming a natural gas price of 

~$5/MMBTU). 

We performed sensitivity analyses, parametrically varying uncertain inputs, including social cost of 

methane, natural gas price, detection technology, discount rate, and abatement efficacy.  Key results are 

shown in Figure 3 and additional details provided in SI Appendix H.4. 

Figure 3 shows that net benefits are most sensitive to the social costs of methane.  Across all of the single 

factor sensitivity analyses performed, the net benefits are positive, indicating that even with uncertainty in 

key inputs, regulation of methane emissions from the T&S sector is warranted.  Changes in natural gas 

price, abatement efficacy, detection technology, and discount rate slightly shift the marginal cost curve, but 
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the slope generally remains the same.  Thus, across the parametric analyses performed, the marginal 

benefits curve intersects the vertical region of the marginal cost curve; as a result, the optimal subset of 

components to abate, as well as the optimal system-wide emissions reduction, remains relatively constant.   

Since the optimal level of abatement occurs when marginal benefits are equivalent to marginal costs, the 

optimal emission reduction increases with increasing social costs of methane.  Even under the most 

conservative scenario modeled ($600 per metric ton of methane ~ $13 per metric CO2eq ton), mean net 

benefits at the optimal level of abatement are $160M.  At the highest social cost modeled ($3,600 per metric 

ton of methane ~ $136 per metric CO2eq ton), mean net benefits of $1.2B are estimated. 

Under scenarios assuming savings and varying natural gas prices, net social benefits are 16-25% higher 

than the scenario without savings, and private firms may experience net savings of upwards of $40M.  The 

breakeven natural gas price, at which private firms experience no net costs, is approximately $3/MMBTU, 

which is in the range of EIA projections.  As previously noted, transmission firms may not own the gas and 

their fee structure may be based on long-term contracts that stipulate fixed leak rates.  Thus, a clear fiscal 

incentive for firms to minimize leakage may not exist.  Even in other segments of the natural gas supply 

chain where there may be a fiscal incentive, firms have historically not adopted abatement practices, 

potentially because of a lack of information and cost uncertainty.  However, with the recent advent of efforts 

to measure emissions and advancements in the NG STAR voluntary emission reduction program, which 

together signal impending regulation, it is possible that more firms will adopt abatement practices. 

Although net benefits are relatively constant across detection technology scenarios, private costs are 

somewhat sensitive; private costs under the emerging technology scenario (based on the EDF Detectors 

Challenge) are 12-31% lower than for existing technology scenarios, which is solely attributable to 

differences in detection costs.  Across the detection technologies modeled, detection costs contribute 

between 1-32% of total private costs.  Additionally, at the breakeven point at which total social benefits are 

equivalent to total private costs, annual detection costs are estimated to be over $200,000 per facility, which 
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is substantially higher than the cost of the detection technologies modeled.  There are minimal differences 

in emissions reductions between technologies at both the optimal and maximum level of emissions 

reductions, despite the large range of detection limits modeled.  Results further indicate that the detection 

limit does not substantially impact which components are selected by the model to abate; rather cost-

effectiveness of abatement is typically limiting.  This implies that improvements in the sensitivity of 

detection technologies may not contribute to emission reduction efforts because very low-emitting 

components typically have higher marginal abatement costs. 

 

Figure 2.  Net social benefits and net private benefits at different levels of system-wide emission 

reductions for the unconstrained system-wide policy.  The results are expected values based on 100 

realizations of the U.S. T&S system.  Solid lines are for model runs assuming no savings from capturing 

natural gas.  Dashed lines are for model runs assuming savings (using the EIA reference case natural gas 

price projection). The inset bar chart depicts the mean percentage of components for each emissions 

category that are selected for abatement at the optimum. 
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Figure 3.  Tornado diagram representing expected value of net benefits across a range of parametrically 

varied inputs.  The inset box maps the base and varied inputs to the tornado plot. 

2.3.5 System-Wide Policy with Facility-Level Percent Reduction Target 

Tradeoffs between private costs, social benefits, and emissions reductions across different system-wide and 

superemitter policies are depicted in Figure 4.  We observe that the benefit-cost ratios (9 to 13) of all three 

system-wide policies with different facility-level targets (10, 50, or 75%) exceed the benefit-cost ratio (8) 

of the optimal unconstrained system-wide policy; this is attributable to conducting the most efficient 

abatement first (in aggregate across the system) relative to the unconstrained policy. While requiring all 

facilities to reduce emissions by an equivalent percentage may be equitable in a sense, some facilities may 

be required to conduct abatement at low-emitting components with high marginal abatement costs that 

exceed the social cost of methane (refer to SI Figure H-12).  In addition, some facilities may be unable to 

achieve a target, given the current suite of abatement technologies. 
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Figure 4.  Tradeoffs between system-wide and superemitter policies with respect to social benefits, 

private costs, and emission reductions.  Size of bubbles is proportional to the mean system-level percent 

emissions reduction, and the black center points represent the mean benefits and costs over 100 iterations 

of the model.  Open bubbles represent maximum emission reductions and closed bubbles represent 

optimal emission reductions.  Grey dotted lines indicate benefit-cost ratios (B:C). 
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2.3.6 Superemitter Policies with Absolute Annual Emission and Proportional Loss Rate 

Thresholds 

In both types of superemitter policies, the maximum achievable and optimal emissions reductions are less 

than reductions under the unconstrained system-wide policy, given that abatement is only conducted at a 

subset of facilities with the highest emissions or loss rates.  The superemitter policies with proportional loss 

rate thresholds are dominated by policies with absolute annual emission thresholds, which can achieve 

equivalent or greater emission reductions at lower cost.  We also observe that both types of superemitter 

policies are dominated by system-wide policies, which may be attributed to the requirement to perform 

detection at all facilities to identify superemitters.  The baseline emissions model may not capture low 

probability, catastrophic leaks from facilities; thus, if emissions across the system are more skewed than 

what has been modeled, there may be greater efficiency gains in targeting superemitters. 

2.3.7 Policy Instruments 

An additional dimension of this analysis is the assessment of different policy instruments, including 

component- and facility-level standards and a tax.  There are other possible instruments which we do not 

model, such as best management practices, a voluntary emission reduction program, and a cap-and-trade 

program. 

We computed the performance standards and tax rate required to achieve the optimal level of abatement 

under the unconstrained system-wide policy.  SI Appendix H.6 describes the process we developed to 

estimate component-level standards (or emissions thresholds).  The tax rate (applied to all unabated 

emissions that are detected and abatable) would have to be equivalent to the marginal benefits (or the social 

cost of methane).  Regardless of the regulatory instrument under an unconstrained system-wide policy, net 

social benefits are unaffected because the tax paid by private firms is transferred to the public (ignoring 

transaction costs).  Private costs under a performance standard policy include abatement and detection costs, 

whereas, under a tax instrument, private costs also include taxes paid on unabated emissions that are 
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detected and potentially abatable.  At the optimal level of abatement, private costs (without recovering the 

value of abated natural gas) are approximately $61M under a performance standard policy and $74M under 

a Pigouvian tax instrument.  Total detection costs across the system range from $1M to $24M, depending 

on detection technology.  To contextualize these private costs, the operating and maintenance costs and net 

income of all U.S. transmission facilities in 2012 were $6.2B and $4.8B, respectively; thus, the private costs 

under the modeled policy are relatively insignificant in aggregate and are roughly 1% of O&M costs and 

net income of private firms.72  The breakeven system-level emission reductions, where private costs equal 

zero, are approximately 8% and 74% under a performance standard and tax instrument, respectively, which 

are lower than the optimal level of emissions reduction (80%). 

Beyond differing private cost burdens, additional tradeoffs exist between taxes and performance standards.  

While both instruments (in theory) encourage innovation that may lower private costs, a tax also generates 

public revenue, which can be diverted to fund innovation or public services.  Private firms also possess the 

property rights to emit under a standard, whereas, rights shift to the public under a tax.  In the context of 

uncertain marginal costs and benefits, the policy instrument should, according to the Weitzman principle, 

mimic the slope of the marginal benefits curve.  Methane is a stock pollutant – a pollutant that accumulates 

in the environment over time before damages occur – and small, incremental changes in emissions generate 

benefits that are equivalent at the margin; thus, the marginal benefit curves are flat, suggesting that a tax is 

preferable.  However, current policy regulating emissions from natural gas facilities employs standards 

(e.g., NSPS), indicating that a standard may be more politically tractable. 

Under a system-wide policy with a facility-level percent reduction target, facilities may choose a (least 

cost) abatement strategy to meet a given target; thus, a performance standard and tax instrument are 

unnecessary.  For the superemitter policies, component-level standards, similar to those estimated for the 

unconstrained system-wide policy, may be employed to achieve the optimal level of abatement.  An 

alternative to system-wide or superemitter policies is to require facilities to perform the maximum 
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(achievable) level of abatement, which may be implemented through a component-level standard or 

technology requirement.  

2.4 Policy Implications 

Given the existing suite of abatement technologies, most methane emissions from the T&S system can be 

abated, with only a few emission categories comprising a majority of the abatable emissions.  Under an 

unconstrained system-wide policy, most emissions (approximately 80%) are efficient to abate, and the 

private cost burden under both performance standard and tax instruments is modest relative to the potential 

societal benefits and current operating costs of firms.  Furthermore, if firms market recovered gas, private 

benefits may result. 

System-wide policies with facility-level percentage emissions reduction targets have the advantage of 

requiring equivalent percent emission reductions across facilities and result in higher benefit-cost ratios (at 

the targets modeled) than other policies; however, at a facility-level, some facilities would be required to 

perform abatement at the margin that is economically inefficient. 

Superemitter policies, namely those in which only a targeted subset of facilities with the highest absolute 

annual emissions perform abatement, may reduce the system-level private cost burden and achieve high 

emissions reduction, especially if emissions across facilities are very skewed.  However, a superemitter 

policy is unprecedented, and there may be practical limitations to implementation, including the relative 

timing of detection, superemitter classification, and abatement.  In addition, detection across all facilities is 

necessary regardless of the policy option and there are non-trivial net social benefits resulting from 

abatement of relatively low-emitting sources. 
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3 Cumulative Air, Climate, and Employment Impacts of Natural Gas Systems 

Natural gas has become the largest fuel source for electricity generation and accounts for a third of energy 

production and consumption in the United States.  However, the cumulative environmental and 

socioeconomic impacts from extraction to end use and over the life of natural gas plays have not been 

comprehensively characterized to facilitate long-term decision making and comparisons to competing 

energy technologies.  Here, we present an approach for robust estimation of spatially- and temporally-

resolved cumulative air quality, climate change, and employment impacts through a case study of the shale 

gas boom in the Appalachian basin from 2004 to 2016.  We find that short-lived air quality impacts (1200 

to 4600 deaths; $23B +99%/-164%) and employment impacts (467,000 job-years ±30%; $21B ±30%) track 

with the boom-and-bust cycle, while climate impacts ($12B to $94B) persist for generations well beyond 

the period of natural gas activity.  Employment effects are spatially concentrated in rural areas with thin 

labor markets where development is occurring.  More than half of cumulative premature mortality is within 

source emissions states, while transboundary impacts are concentrated in populous coastal regions in the 

Northeast.   Most premature mortality is associated with end uses, while upstream and midstream segments 

also account for a substantial portion of impacts.  With respect to climate change impacts, the magnitude 

of methane emissions across the supply chain produces temperature impacts nearly equivalent to that of 

CO2 over a 30-year time horizon, and over longer integration periods, the warming impact from CO2 

dominates that of CH4.  We additionally find that there is an implied tradeoff of approximately 200 job-

years per death at a cumulative systems level.  We estimate a tax on production of $2 per thousand cubic 

foot (+172%/-76%) compensates for cumulative climate and air quality externalities across the supply 

chain. 
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3.1 Introduction 

Rapid increases in U.S. natural gas production, resulting from advancements in horizontal drilling and 

hydraulic fracturing, have had reverberations on world energy markets and the domestic energy outlook.  

The U.S. has been the largest natural gas consumer and producer over the past decade, comprising 20% of 

the world market, and the domestic shale gas market has contributed to price volatility and a shift in global 

flows of natural gas.31  Increases in domestic supply and reserves have contributed to the displacement of 

coal32, but have also potentially delayed investment, development and deployment of renewables.33   

The rapidly evolving energy landscape has presented new challenges in the areas of science and 

regulation.73  There is expanding literature on the impacts of natural gas development on water quality74–77, 

air quality78–80, ecosystems81,82, climate83–85, labor markets86–88, public health89,90, and several other 

environmental and socioeconomic factors.  However, the cumulative impacts over the boom-and-bust cycle 

and across the natural gas supply chain, as well as the spatial and temporal distribution of impacts, are still 

largely unexplored and unaccounted for in public and private decision making. 

Here, we develop an integrated architecture to compute and characterize the cumulative impacts of natural 

gas systems, which we apply to the shale gas boom (and decline) in the Appalachian basin, the largest 

natural gas basin in the U.S. with respect to both reserves and production.34   We examine air quality, 

climate change, and employment impacts across the supply chain from development to end use.  We 

develop robust spatially- and temporally-resolved estimates using detailed natural gas activity, 

demographic, and emissions data and based on an integrated set of models, including process-level 

emissions inventories, reduced complexity source-receptor air quality and climate change models, and fixed 

effects models for assessing employment effects.  Our approach highlights the attribution of impacts across 

the supply chain, the spatial distribution of impacts, and the evolution and accumulation of impacts over 

time with changing regulation, natural gas activity, and technological and operational efficiencies and 

practices.  We compute estimates in physical units (i.e., premature mortalities, temperature change, and 

employment) and monetary units, which provide differential insight for decision making and policy design. 
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3.2 Methods 

The intent of the study is to develop a framework with which we can comprehensively assess the temporal 

and spatial distribution and tradeoffs across multiple impact areas, each with differing magnitude, 

cumulative nature, and spatial and temporal dimensions.  There are many impacts from natural gas 

development; we chose a subset as a basis for developing and demonstrating the methodology.    These 

impacts include: premature mortality from primary fine particulate matter (PM2.5) and secondary PM2.5 

formed from the atmospheric oxidation of nitrogen oxides (NOX) and volatile organic compounds (VOCs) 

emissions, global mean temperature change from carbon dioxide (CO2) and methane (CH4) emissions, and 

employment effects associated with natural gas development. 

We focus this analysis on the development of the Marcellus and Utica shale gas plays, which are part of the 

Appalachian basin.  We model impacts from the rapid development of the plays beginning in 2004, the year 

in which the first shale gas well was drilled in the Marcellus play, to 2016.  We only consider impacts that 

directly stem from natural gas activity (from production through consumption) within Pennsylvania, Ohio, 

and West Virginia.  For example, we model emissions from activity within the tristate region and the 

corresponding mortalities which extend beyond tristate boundaries, but exclude emissions from gas 

exported to interstate and international markets and end use outside of the region [refer to Section 1 of the 

Supplementary Information (SI) for additional details].  

The magnitude, timing, and geographic location of shale gas activity, including well development, 

production, transmission, distribution, and processed volumes, and upstream, midstream, and end use fuel 

consumption volumes, are publicly reported and fundamental inputs that cut across impact areas (see SI 

Section 3, Table S2 and SI Section 4, Table S9).   Shale production volumes increased annually over the 

period of analysis, while drilling peaked in 2013 and has since rapidly declined (see SI Section 2, Figures 

S5 and S8).  Despite rising electricity generation from natural gas, shale gas production (7.7 tcf in 2016) 

has exceeded natural gas end use demand (2.1 tcf in 2016) within Pennsylvania, Ohio, and West Virginia 

in recent years, leading to substantial exports to other regions of the country (SI Section 2, Figure B9).  
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Processing volumes have also increased (18-fold increase from 2004 to 2016) with planned processing 

capacity expansions slated over the next decade, including the development of a regional petrochemical 

industry. 

Premature mortality and monetized damage estimates from air pollution emissions are derived for each 

segment of the natural gas supply chain (see SI Section 3).  We derive emissions estimates at the county or 

finer spatial resolutions and for each year.  We use both parametric and probabilistic process-level methods 

to characterize uncertainty in upstream emissions (i.e., drilling, hydraulic fracturing, well completion, 

trucking, wellhead compressors, condensate tanks, production fugitives, etc.), and we derive deterministic 

estimates of midstream (i.e., processing, transmission, distribution) and end use (i.e., electricity generation, 

residential, industrial, commercial) emissions based on operator-reported emissions and national 

inventories.  Upstream emission model formulations account for time-varying parameters, such as changing 

regulation, natural gas activity, and water management practices and operational efficiencies associated 

with upstream activities.  Premature mortalities are estimated by combining the emissions inventory with 

three source-receptor reduced complexity models (RCMs): Air Pollution Emission Experiments and Policy 

model (Version 3) (AP3)91,92, the Air Pollution Social Cost Accounting tool (APSCA)93, and Intervention 

Model for Air Pollution (InMAP)94, which are functionally different but provide complementary insight.  

We use these three different models because they use distinct approaches to represent pollutant fate and 

transport, and thus, provide a representation of exposure uncertainty.  Both AP3 and APSCA generate 

estimates of pollution-induced premature mortalities in downwind receptors associated with emissions from 

source locations.  We use the source-resolved version of InMAP whereby pollution-induced mortality risk 

is attributed to source location.  Premature mortality estimates are sensitive to the relationship between 

pollutant concentration and health response; therefore, we parametrically vary the concentration-response 

(C-R) relationship based on the American Cancer Society (ACS) and Harvard Six Cities (H6C) studies.95,96 

To develop monetized impact estimates, we use the value of a statistical life (VSL), a commonly used 

measure of the dollar value of small changes in mortality risk experienced by a large number of people.  
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We use a probabilistic VSL with a mean (and standard deviation) of $8.5M (±$5.7M), and we assume the 

VSL follows a Weibull distribution, following the approach used by the U.S. Environmental Protection 

Agency (in 2017 USD).97 

Greenhouse gas (GHG) emissions, global temperature change, and monetized damage estimates are derived 

for each segment of the natural gas supply chain and over different integration periods (SI Section 4).  We 

use both parametric and probabilistic methods to characterize uncertainty in process-level upstream and 

processing GHG emissions, and we derive deterministic estimates of transmission, distribution, and 

downstream emissions based on reported volumes.  Global temperature change is estimated using a 

convolution of the emissions model and the average global temperature potential (AGTP).98–103  AGTP is 

for a given time in the future and is due to a marginal pulse of emission.  It is a function of the temperature 

response to radiative forcing which, in turn, is due to a pulse emission, both of which are parameterized 

based on more complex models that explicitly include physical and chemical processes.99  We use a Monte 

Carlo simulation approach to reflect uncertainty in the AGTP values.  To generate monetized estimates of 

climate damages, we employ the social cost of carbon (SCC) and social cost of methane (SCCH4), metrics 

representing the present value of the anticipated future damages that would arise from an incremental unit 

of emissions in a given year.  We assume values ranging from $10 to $126 per metric ton of CO2 and $319 

to $2773 per metric ton of CH4, as reported in U.S. E.P.A. publications.68,71  These metrics account for 

climate change impacts, such as changes in agricultural productivity and human health, property damage 

from increased flood risk, and changes in heating and cooling costs. 

To isolate employment effects from shale gas activity, we compile a panel of county-level natural gas 

activity and demographic data (reported by state environmental agencies, U.S. Census Bureau, U.S. Bureau 

of Economic Analysis, U.S. Bureau of Labor Statistics) for Pennsylvania, West Virginia, Ohio, and New 

York over the period 2004 to 2016 (see SI Section 5).   Using an approach similar to that of Paredes et al. 

(2015)86, we specify fixed effects models, controlling for the diversity of local labor markets and including 

county fixed effects that control for observable and unobservable differences across counties and time fixed 
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effects that control for common shocks across counties that vary over time.   To estimate the models, we 

use ordinary least squares (OLS) regression, and to control for serial correlation, we estimate robust 

standard errors by clustering by county.  We test the effect of lag and lead variables to capture the dynamic 

effect of natural gas development, natural gas activity variables such as spud and producing wells, natural 

gas development and time interactions, and alternative rate-based employment dependent variables.  

Aggregate county-level employment over time is estimated by combining the natural gas activity data with 

the marginal employment effects.  To monetize employment effects, we apply the annual average earnings 

per county. 

3.3 Air quality impacts 

We model premature mortality and monetized damages from primary PM2.5 and secondary PM2.5 formed 

from the atmospheric oxidation of NOX and VOCs emissions.  Figure 5a-b show estimates of annual 

emissions and the spatial distribution of emissions.  VOC emissions are largely associated with upstream 

processes (61%), and spatially concentrated in counties with the highest cumulative production (SI Section 

3, Figures S15, S17).  End use processes contribute a majority of NOx (67%) and PM2.5 (73%) emissions 

across the natural gas supply chain, and NOx and PM2.5 are relatively evenly distributed across counties (SI 

Section 3, Figures S14, S16, S18).   Compared to total emissions within Pennsylvania, Ohio, and West 

Virginia in 2014 from all industries reporting in the National Emissions Inventory (NEI), shale gas activity 

accounted for approximately 10% of NOx emissions, while the contribution to total PM2.5 and VOC 

emissions was marginal (<2%).  As noted in other studies, many counties within and adjacent to Appalachia 

are designated nonattainment or maintenance areas under the Clean Air Act National Ambient Air Quality 

Standards (NAAQS), and increasing emissions from shale activity contribute to and are projected to 

continue to contribute to regional noncompliance.80,104  In isolation, most shale gas activities across the 

supply chain, including some natural gas electric generating units, do not constitute major sources under 

federal regulations, but in aggregate at the county-level may exceed thresholds. 
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We estimate 1200 to 4600 premature mortalities are associated with shale gas activity over the period 2004 

to 2016; the range reflects uncertainty in the model functional form through the use of three RCMs (factor 

of up to 1.6X) and uncertainty in the concentration-response relationship (factor of up to 2.6X).  As depicted 

in Figure 1c, more than half of the cumulative premature mortality is within source counties (54%), while 

transboundary impacts are concentrated in populous coastal regions in the Northeast and extend to the 

continental divide (SI Section 3, Figure B19).   While the majority of the premature mortality is associated 

with residential, industrial, commercial, and electricity generation end uses (57 to 67%), upstream (16 to 

21%) and midstream (17 to 22%) segments also contribute substantial cumulative air quality impacts (SI 

Section 3, Figure B20).  There is also an urban and rural divide, with 76% of premature mortalities occurring 

in urban areas.  Mean cumulative damages, based on mean mortality across six model specifications, 

amount to $23B (in 2017 USD), with a 95% confidence interval spanning two orders of magnitude ($2.3B 

to $61B) reflecting different VSL assumptions.  Annual mortalities (439) and damages ($3.7B) peaked in 

2014, the year after peak drilling activity.  These estimates of impacts associated with air pollution are 

conservative, given that out-of-state consumption of Appalachian natural gas feedstock is not included and 

the set of processes, species, and health and environmental endpoints other than premature mortality is not 

all-encompassing.  Furthermore, health impacts from natural gas extend beyond those associated with air 

pollution, such as health benefits associated with increased access to healthcare or costs associated with 

increased traffic accidents.  To contextualize the estimated mortality, a study by Fann et al. (2018) projected 

PM2.5-related premature mortalities attributable to emissions from the O&G sector in Pennsylvania and 

Ohio in 2025 to be 150 (95% CI 91 to 196).  Although not directly comparable, given that our study has a 

vastly expanded scope, a previous study by Litovitz et al. (2013) estimated damages of $8-35M from 

preproduction, production, and compressor station emissions in Pennsylvania in 2011 only.78
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Figure 5. Air quality emissions and impacts across the natural gas supply chain from 2004 to 2016.  (a) Annual NOx, PM2.5, and VOC emissions 

from sources within Pennsylvania, Ohio, and West Virginia. (b) Spatial distribution of cumulative NOx, PM2.5, and VOC emissions by county 

from 2004 to 2016. (c) Spatial distribution of cumulative premature mortality from 2004 to 2016 by receptor county.  Estimates based on AP3 and 

APSCA source-receptor RCMs using the American Cancer Society (ACS) concentration-response (C-R) relationship.  Larger figures depict 

Northeast U.S. and the insets depict the continental U.S.  Blue lines border the source emission states. (d) Annual premature mortality using 

different RCMs and C-R relationships.  Solid points represent estimates based on ACS C-R relationship, and open points represent estimates based 

on Harvard Six Cities (H6C) C-R relationship.  Circle, triangle, and square points represent estimates based on AP3, APSCA, and InMAP, 

respectively. Black lines represent average annual mortality across all six specifications.  Grey shaded regions represent range of annual estimates.  

(e) Annual damages associated with premature mortality from air pollution.  The black line and grey shaded region represent the simulated mean 

and 95% confidence interval, respectively, and reflect uncertainty in the VSL. Based on average annual mortality across all six specifications, as 

shown in (d). (f) Attribution of cumulative mortality from 2004 to 2016 by segment of the natural gas supply chain, emission source/non-source 

regions, urban/mixed/rural geographic regions, and air pollutant species. Attribution is estimated using premature mortality based on AP3 and 

ACS C-R specification.
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3.4 Climate change impacts 

We estimate global mean temperature change and monetized damages from CO2 and CH4 emissions.  As 

shown in  

Figure 6a, CH4 emissions are largely associated with production (63%) and gathering segments (15%), 

while processing, transmission, and distribution collectively account for the remaining emissions (SI 

Section 4, Table S14).  With respect to the distribution of CH4 emissions across the supply chain, our 

findings, which leverage recently collected emissions data, are consistent with recent estimation studies of 

emissions across the U.S. oil and gas (O&G) sector.  Compared to national O&G sector estimates (13 MMT 

in 2015)105, CH4 emissions from natural gas-related sources within Pennsylvania, Ohio, and West Virginia 

(1.25 MMT in 2015) account for 10% of emissions. 

End use processes contribute a majority of CO2 (85%) emissions across the supply chain, with remaining 

emissions attributable to well development (2%) and fuel consumption for production, processing, 

transmission, and distribution (13%).  Compared to CO2 emissions across the entire U.S. natural gas sector 

(1502 MMT in 2016) as reported in the U.S. Greenhouse Gas Inventory (GHGI)44, natural gas-related 

sources in Pennsylvania, Ohio, and West Virginia (134  MMT in 2016) account for 9% of emissions. 

We translate emissions into impacts, including global temperature change and monetized damages, which 

provide differential insight.  Impacts from climatically-relevant emissions are often described by the 

following illustrative chain:  emissions → atmospheric concentrations → radiative forcing → climate 

change → societal and ecosystem impacts → monetized damages.106–108  Stepping through the chain, there 

is cascading uncertainty and (arguably) increasing societal relevance.107,109   

Using the social costs of carbon and methane, consistent with traditional benefit-cost analyses, we develop 

estimates of monetized damages from natural gas activity (Figure 6Figure 6d).  Cumulative damages from 

natural gas activity over the period 2004 to 2016 range from $12B to $94B, depending on assumptions 

regarding social costs.  A recent study by Ricke et al. (2018) estimates a SCC ($177–805 per metric ton for 

2020 emissions) much greater than the highest estimate in this study ($126 per metric ton in 2016), 
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suggesting our damage estimates may be conservative.110  Although the use of physical metrics has been 

subject to criticism within the economics literature111–113, metrics related to climate change phenomena, 

e.g., temperature, precipitation, sea level rise, and extreme events, provide additional information (e.g., 

temporal trace of climate impacts) and apply a different set of assumptions than monetization. 

Translating emissions into global temperature change, the climate responses persists well beyond the period 

of shale gas activity, as shown in Figure 2b (see also SI Section 4, Figures S24-27).  Short- and long-lived 

species emitted across the sector have differential effects on the trajectory of climate response.  CH4 has an 

atmospheric lifetime of 12 years, whereas CO2 has multiple lifetimes, with 20% remaining for tens of 

thousands of years.114 The magnitude of CH4 emissions across the supply chain produces temperature 

impacts nearly equivalent to that of CO2 over a 30-year time horizon from the year of first production, 2004.  

Over longer time periods (e.g., 100 years), the warming impact from CO2 (77%) dominates that of CH4 

(Figure 6b).  We additionally find that greater than 65% of temperature impacts integrated over a 100-year 

period are associated with end use, namely CO2 emissions from natural gas combustion. 

The relative atmospheric lifetimes of CO2 and CH4 have implications for policy design.  CH4 emissions can 

be treated as a flow, where reductions using the existing suite of cost-effective abatement technologies (e.g., 

replacing leaking components at compressor stations) can reduce near-term warming rates and result in 

climate benefits realized over relatively short time horizons.  Furthermore, reducing CH4 emissions may 

also be key in the avoidance or delay of reaching “tipping points” in the climate system, irreversible 

thresholds with drastic consequences.115  In contrast, CO2 emissions can be treated as a stock, and reductions 

can only be achieved through deep decarbonization or a fundamental transition of the energy system away 

from fossil fuels, including natural gas, the benefits of which are derived by future generations. 

We only consider the temporal dimensions of climate change impacts from long lived GHGs.  Global 

metrics, including global temperature change and monetized damages using the SCC, are useful for 

characterizing spatially and temporally smooth climate responses from emissions of well-mixed GHGs.  
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However, other short-lived chemically reactive gases (NOx, CO, and VOCs) that indirectly lead to changes 

in climate forcers, as well as aerosols and precursors (black carbon, organic carbon, SO2), react on very 

different time-scales and have regionally heterogeneous effects; in addition, climate forcings may be both 

negative and positive, thereby contributing to both warming and cooling.101  Thus, a global metric provides 

a rather limited view of potentially nontrivial regional impacts when multiple-pollutant emission scenarios 

are considered.116 
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Figure 6. Climate change impacts across the natural gas supply chain from 2004 to 2016.    (a) Annual CH4 and CO2 emissions from sources 

within Pennsylvania, Ohio, and West Virginia.  Dotted black lines depict emissions under low and high scenarios. (b) Annual temperature impact 

indicating contributions from CH4 and CO2 emissions.  Dotted black lines depict temperature impact under low and high scenarios. (c) Attribution 

of cumulative temperature impact over 30- and 100-year integration periods (beginning in 2004) by segment of the natural gas supply chain and 

GHG species. (d) Climate change damages under different social cost of carbon (SCC) and social cost of methane (SCCH4) values.  SCC and 

SCCH4 estimates vary by year, and estimates for 2004 and 2016 (in units of $ per metric ton) are provided for reference.  All values unless 

otherwise noted are based on baseline scenario assumptions.
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3.5 Employment impacts 

Countervailing the environmental and public health impacts are the effects of the natural gas sector on local 

economic conditions, including local labor markets. Several empirical studies demonstrate that natural gas 

activity may: impact local labor demand within the sector; have spillover effects on the non-resource 

economy86,88; and alter the distribution of income117, poverty rates88,118, and educational attainment119.  Here, 

we focus on employment effects, including the marginal effect as it relates to upstream activity and the 

aggregate effect in producing counties over time. 

We observe a positive and statistically significant employment effect from natural gas activity, a finding 

that is robust across multiple model specifications (SI Section 5, Tables S17-25).   A model specification 

that includes both spud and producing wells as predictor variables, provides an intuitive result, 

differentiating the jobs directly or indirectly associated with drilling activities (16 jobs per spud well) and 

ongoing production operations (4 jobs per producing well).   In an alternative model specification, we find 

a mean effect size of 5 job-years per billion cubic feet (bcf) of natural gas production.  Other empirical 

labor market studies for the U.S. natural gas sector estimate slightly higher effects (6 to 16 job-years per 

producing well, 7 to 19 job-years per bcf), which potentially can be explained by the differing geographic 

scope and expanded number of years of data incorporated in this study.86–88,120  We additionally observe 

decreasing marginal employment effects from natural gas activity over time, with 75% fewer job-years 

supported per bcf of production after 2012; the intuition is that learning occurs and the industry becomes 

more efficient and automated over time.  [Refer to SI Section 5 for a detailed description of the fixed effects 

modeling including model formulation and additional specifications]. 

Employment effects are inclusive of not only those within the natural gas sector, but also spillover into 

other sectors, which can both positively and negatively impact local economies.  We estimate that each 

natural gas industry job is associated with 1.9 jobs outside of the resource sector, consistent with other 

studies that similarly observe relatively minor multiplier effects at the county level (1 to 1.4).86,88  A possible 

explanation for the low multiplier effect is that jobs associated with extractive industries, such as drilling 
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crews, are often held by transient workers because long-term residents in rural communities may not have 

the requisite skills and training.  In addition, production firms are largely based outside of the county of 

production and as such may source supplies and equipment elsewhere.  A limitation to the empirical 

approach used is that regional employment effects may be greater than those observable at the county 

level.121  Other studies show that there is minimal evidence of the negative implications of spillovers, 

including the phenomenon of the “natural resource curse,” often observed in relation to extractive 

industries, wherein resource-rich areas tend to grow more slowly than resource-poor areas.86,122 

We simulate aggregate employment over time, combining natural gas activity data with marginal 

employment effects.  For clarity, we use the metric job-year, which is a full- or part-time job over a single 

year, not a sustained job over multiple years or a career.  We find that the direct and induced job-years 

supported by the shale gas sector over the period 2004 to 2016 was 460,000 (95% CI ±30%).  As shown in 

Figure 3a, the trace of employment over time largely mimics the transiency of jobs and the boom-and-bust 

cycles of other extractive resources, with the annual number of jobs-years peaking in 2014 at 76,000 (95% 

CI ±30%), reflecting both increasing production and rapid growth and subsequent decline in drilling 

activity.  As highlighted in Figure 7c-d, the spatial distribution of jobs largely aligns with the intensity of 

drilling and production, with most jobs concentrated in rural (54%) and mixed rural-urban (31%) areas.   

The employment associated with shale gas activity comprised less than 1% of total employment in urban 

or low producing counties to over 60% of total employment in rural and high producing counties, and many 

jobs are in counties with thin labor markets.  We also estimate cumulative earnings of $21B ($8B to $33B), 

based on aggregate employment effects and annual average per capita earnings by county (see Figure 7b); 

this method does not segment employment and average earnings by sector, account for executive 

compensation, and differentiate between full- and part-time employment. 

These employment estimates only account for direct and spillover jobs associated with upstream activities 

and potentially co-located midstream and end use segments.  A recent study of electricity generation related 

employment effects estimates 0.11 job-years are supported per Gigawatt hour (GWh), which includes direct 
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natural gas generation-related employment associated with construction, installation, manufacturing, 

operating, maintenance, and fuel processing123; this suggests an additional 46,000 job-years may be 

associated with electricity generation using shale gas as a feedstock in the Appalachian basin.  For 

comparison, wind (0.17 job-years/GWh) and solar photovoltaics (0.87 job-years/GWh) have higher 

generation-related employment.
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Figure 7. Employment impacts across the natural gas supply chain from 2004 to 2016.  (a) Annual employment from natural gas activity, 

including direct effects within the natural gas sector and spillover effects into other sectors.  Based on marginal employment effects and actual 

natural gas activity.  Line represents mean simulated employment, and shaded regions are 95% confidence intervals (based on clustered standard 

errors). (b) Annual earnings from natural gas activity, including direct and spillover effects.  Based on marginal employment effects, actual natural 

gas activity, and reported annual earnings per capita by county.  Line represents mean simulated earnings, and shaded region is 95% confidence 

intervals. (c) Attribution of employment from natural gas activity by sector (direct and spillover), natural gas activity (spud and producing wells), 

and rural-urban regions.  The sector attribution is based on fixed effects model 16 fit with alternative dependent variables, total employment and 

mining employment (a proxy for direct jobs within the natural gas sector).  The natural gas activity attribution is based on 2004-2016 cumulative 

employment.  The rural, mixed rural-urban, and urban regions were classified based on the 2010 U.S. Census county rurality level tertiles and 

based on 2004-2016 cumulative employment. (d) Spatial distribution of 2004-2016 cumulative employment by county.  Color shading of counties 

represents cumulative employment from natural gas activity.  The color of the dots at county centroids represents the average annual size of the 

labor market, and the size of the dots represents the percentage of employment from natural gas activity out of total employment.  All results are 

based on mean marginal employment effects from fixed effects model specification 16.



 

45 

 

3.6 Tradeoffs between air, climate, and employment impacts 

We observe that after drilling peaked in 2013, air quality and employment impacts began to decline, 

whereas climate impacts are projected to continue to increase for another decade, all else equal, and persist 

over time horizons greatly exceeding the period of natural gas activity (Figure 8).  Pairwise comparisons of 

physical impacts reveal the implied tradeoffs from natural gas development decisions.  Job-years per 

premature mortality is both meaningful and understandable, whereas changes in average global temperature 

per job-year is less so.  Based on mid-range cumulative estimates of premature mortality from air pollution 

and employment, the implied tradeoff is 217 job-years per premature mortality at a systems level.  This 

tradeoff varies spatially among producing counties, ranging from 1 to 16,000 job-years per premature 

mortality. 

Weighting between these impacts is (in part) normative, and monetization is a common weighting approach.  

We monetize impacts for comparison of an approach that relates physical impacts to a traditional benefit-

cost analysis framing.  Comparisons of monetized impacts, although subject to uncertainty, show a variable 

relationship between impacts from 2004 to 2016.  As drilling activity declined, climate damages began 

exceeding air quality damages; although integrated climate damages obscure when impacts are realized.  

Based on mid-range estimates, cumulative employment impacts ($21B) are less than air quality ($23B) and 

climate change damages ($34B); however, no impact area stochastically dominates another, namely due to 

the vast range of VSL and social costs of methane and carbon that are considered.  The breakeven VSL at 

which mean monetized employment equates to cumulative air quality damages over the development 

horizon is $7.7M.  Similarly, the breakeven social cost of carbon at which mean monetized employment 

equates to cumulative climate damages over the development horizon is $25 per metric ton.
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Figure 8. Air, climate, and employment impacts over time.  Air quality impacts based mean annual mortality estimates across six model 

specifications (under different RCMs and C-R relationships).  Climate impacts under baseline scenario assumptions.  Employment impacts based 

on marginal effects from fixed effects specification 16.  Vertical axes are standardized to range from 0 to the maximum impact value.  The inset 

presents monetized impacts under mid-range assumptions: mean simulated VSL of $8.5M; SCC ranging from $29 (2004) to $44 (2016) per CO2 

metric ton; and SCCH4 ranging from $720 (2004) to $1161 (2016) per CH4 metric ton.
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3.7 Policy implications 

Estimates of cumulative air, climate, and employment impacts and interdependencies have implications for 

decision making and policy design.  Here, we focus on policies to address air quality and climate 

externalities.  Absent comprehensive policy, private firms across the supply chain have not faced the full 

costs of natural gas development, and the public has effectively subsidized waste disposal costs, with local 

communities bearing the largest share of costs.  Thus, production and activity across the supply chain were 

greater than it would have been had firms internalized environmental costs. 

We find that a severance tax on production of $2 per thousand cubic feet (mcf) (+172%/-76%) should be 

levied to account for air quality and climate damages, as shown in Figure 9.  The proposed Pigouvian tax 

is derived based on historical cumulative damages across the supply chain and production rates in the 

Appalachian basin.  A similar approach can be used to derive appropriate severance tax rates in other 

producing regions, such as the Permian basin, Anadarko basin, Eagle Ford play, and Barnett play.  The 

trajectory of production, changing system efficiencies, and other environmental policies are also relevant 

considerations in setting a future severance tax rate. 

We may further derive spatially and temporally differentiated severance tax rates that account for the 

dispersed and changing nature of impacts, as well as, the differing mandates of federal, state, or local 

executive, judicial, and legislative authorities.  While a tax that incorporates spatio-temporal variation may 

be optimal, the complexity of implementing such a policy may be prohibitive.  Similarly, a tax rate can be 

estimated for different segments of the supply chain or based on consumption rather than production.  

Depending on where along the supply chain a tax is applied, ostensibly different price signals may be 

established for upstream and end use producers and consumers, in addition to other policy makers and 

investors that are considering competing energy technologies.  

For context, wellhead prices, as reported in Security and Exchange Commission 10k filings of the top 

producing and publicly traded firms operating in the Appalachian basin, have been volatile (e.g., 
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approximately $4 per mcf in 2014 and $2 per mcf in 2016) and similar in magnitude as the proposed 

severance tax rate.  In addition, there is a large disparity between the proposed tax rate and the existing 

effective severance tax or impact fee rate ($0.08 per mcf), which we estimate based on past severance tax 

or impact fee revenue in Pennsylvania, Ohio, and West Virginia and production rates from 2004 to 2016; 

climate and air quality damages are seemingly not currently factored into existing state severance tax and 

impact fee structures.
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Figure 9. Climate change and air quality production tax rates.  Climate change and air quality tax rates are estimated based on annual or 2004 to 

2016 cumulative impacts and production.  Climate change impacts are based on mid-range social cost of carbon and methane values (3% mean 

discount rate), and air quality impacts are based on the mean simulated VSL ($8.8M).  The wellhead prices are based on Security and Exchange 

Commission 10-K filings of the top nine public producing firms in the Appalachian basin (as of 2017); the triangle points represent the 

production-weighted average price, and the lines represent the range.  The effective “tax” is based on the aggregate annual Pennsylvania impact 

fee, Ohio severance tax, and West Virginia severance tax revenues divided by annual production.
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3.8 Conclusions 

Rapidly increasing natural gas activity in the Appalachian basin corresponds with increasing impacts, with 

short-lived air quality and employment impacts tracking the boom-and-bust cycle and climate impacts 

persisting for generations well beyond the period of natural gas activity.  With evolving regulation and 

industry practices, there are efficiencies with respect to emissions and jobs supported by natural gas activity.  

We further find that more than half of cumulative premature mortality is within source emissions states, 

while transboundary impacts are concentrated in populous coastal regions in the Northeast.   Most 

premature mortality is associated with end uses, while upstream and midstream segments also account for 

a substantial portion of impacts.  With respect to climate change impacts, the magnitude of methane 

emissions across the supply chain produces temperature impacts nearly equivalent to that of CO2 over a 30-

year time horizon, and over longer integration periods, the warming impact from CO2 dominates that of 

CH4.  Employment is concentrated in rural areas with thin labor markets with minimal spillover effects, but 

ancillary evidence suggests that jobs are held by transient, higher skilled workers. 

This study focuses on some aspects of air, climate, and employment impacts, and it stands to be expanded 

to other outcomes and impact areas such as water quality and ecological health.  Furthermore, the scope of 

this analysis is solely inclusive of the natural gas supply chain, and an analogous approach that captures 

cumulative impacts can be applied to and comparisons can be made with other energy sources and 

technologies.  A prevailing comparison, especially with respect to climate change and air quality, has been 

natural gas versus coal.  While the coal boom-and-bust cycles may provide a useful analogue, the observed 

decreases in CO2 intensity of U.S. electricity production reflective of declining coal generation and 

corresponding increases in natural gas and wind32, perhaps signal the fading relevance of natural gas’ 

comparative advantage over coal with respect to the U.S. energy system.  Arguably more relevant 

comparisons, both currently and prospectively, are between natural gas and renewables.  Transitioning from 

natural gas to renewables would seemingly reduce or eliminate cumulative impacts with respect to climate 

change and air quality, while the relative employment effect is not as well understood.  Furthermore, the 
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argument that natural gas may serve as a bridge fuel, which is in part premised on its comparative climate 

advantage over coal and cost advantage over renewables and other energy technologies, is unsupported if 

natural gas prices are not reflective of the actual economics for producing firms or of climate and air quality 

damages. 

This study supports a need for multivalent policies that consider interdependencies and cumulative impacts 

over the life of the play and across the supply chain.   This includes cross-media policies that account for 

processes that emit species that may lead to air quality and climate impacts at varying spatial and temporal 

scales.  This also includes both fiscal and environmental policy which may realign incentives to produce 

and develop the broader energy system in a way that considers longer time horizons. 

Having a retrospective understanding of the cumulative impacts and implied tradeoffs of natural gas 

systems, we can ask larger normative and technical questions that are becoming more salient.  Considering 

air, climate, and labor market objectives, are we producing and consuming too much? Are we approaching 

technological lock-in?  What happens when the natural gas resources are played out? 
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4 Future Natural Gas System Development Pathways Incorporating Air, Climate, 

and Employment Objectives 

Natural gas system development is driven by the complexity inherent in physical systems and the influence 

of a myriad of diverse, interacting stakeholders with heterogeneous preferences.  The purpose of this study 

is to distill a portion of this complexity and provide insight into how the energy system theoretically could 

develop if other objectives that are often the subject of public discourse and concern, such as jobs, climate 

change, and health effects, influence the decision-making process.  While environmental and employment 

objectives are conflicting if we follow a natural gas pathway consistent with the status quo, the collection 

of siting, emissions abatement, and renewable integration policies can resolve and reverse these conflicts.  

There are pathway dependencies between these policies, and delaying implementation only amplifies the 

cumulative, negative tradeoffs between employment and environmental objectives.   
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4.1 Introduction 

Climate change has resulted in impacts to natural and human systems, and avoidance of serious impacts 

requires rapid and deep reductions in greenhouse gas (GHG) emissions and associated policies.1–3  The 

Paris  Agreement, adopted in December 2015, aims to reduce GHG emissions to a level consistent with 

limiting the average global temperature to well below 2°C above pre-industrial levels.2,4  Studies have 

shown that a deeply decarbonized U.S. energy system can provide equivalent energy services as the status 

quo; however, deep decarbonization entails unprecedented and transformational changes in the energy 

system, including drastically increasing efficiency of end uses, decreasing the carbon intensity of electricity, 

and switching end uses from direct combustion of fossil fuels to electricity.5–7  

Beyond technoeconomic challenges of decarbonization, accelerated transitions also depend upon 

widespread social acceptance and balancing potentially countervailing societal needs and objectives.8,9  

Given the coupling of air and climate impacts related to fossil fuel production and use, transitioning to a 

low-carbon energy also contributes to reducing near-term air pollution impacts.10  Labor markets are also 

inherently linked to the transition of the energy system, with a redistribution of jobs away from carbon-

intensive energy sources, such as coal, to green infrastructure development.6,11  There are also distributional 

effects of climate change and mitigation.12,13 

There is vast array of energy systems models that vary in complexity and sectoral, spatial, and temporal 

scope and application, but few models focus on energy system transitions and deep decarbonization.5  There 

are several common elements of existing model architectures that limit their application to future energy 

system planning.  First, many models use illustrative systems and networks that are not reflective of critical 

real world dynamics.8  Understanding the costs of energy transitions is fundamental, and thus, models 

almost exclusively employ monetized objectives, adopt an economic efficiency or utilitarian framing, and 

do not consider impacts.14–16  Many models focus on electric power systems, and do not consider the broader 

energy sector.17  Finally, few energy system optimization model incorporate long time horizons, and 

multiperiod objectives. 
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In this study, we develop a multiobjective energy system optimization model that incorporates cumulative 

air, climate, and employment impacts objectives.  This purpose of this model is to generate future natural 

gas system development pathways, with respect to the timing, location, and magnitude of natural gas 

activity and low-carbon interventions, which may provide insight for energy system planning and policy 

design.  The modeling architecture is distinct from many existing energy systems optimization models 

because of the unique cumulative impact objectives, spatial resolution, long time horizons, air and climate 

impact (rather than emission and monetary) measures leveraging reduced complexity models, and 

parameterization and structure reflecting a real (rather than illustrative) natural gas system.  We model 

alternative, theoretical natural gas development pathways by optimizing spatially and temporally explicit 

air quality, climate change, and employment impacts with respect to decisions regarding the magnitude, 

timing, and location of preproduction, production, and industrial, residential, commercial, and electric 

consumption.  We additionally specify policy scenarios, including infrastructure siting and planning, 

emissions abatement, and renewable integration, and demonstrate the relative effect and pathway 

dependence of implementing these policies.  We illustrate the approach by analyzing natural gas 

development pathways in the Appalachian basin.  

4.2 Model formulation 

To facilitate natural gas system planning, we formulate a multiobjective linear optimization model that 

incorporates socioeconomic and environmental objectives.  Herein, we provide a general formulation for 

natural gas systems, as well as, parameterize the model for the case of natural gas development in the 

Appalachian basin.  We model both retrospective and future cases, which provide insight regarding how 

the system could have been developed in the past and can be developed in the future accounting for air 

quality, climate change, and employment objectives.  We additionally specify modifications in which we 

integrate emissions abatement and renewables to displace natural gas.  The optimization model is 

implemented in the General Algebraic Modeling System (GAMS) and uses CPLEX to solve the linear 

program.  Table 2 includes indices, decision variables, and parameters. 
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4.2.1 Decision variables 

We incorporate decision variables related to six types of upstream and end use natural gas activities – the 

number of producing and spud wells, and residential, commercial, industrial, and electricity consumption 

volumes.  We do not include midstream processes, including gathering, processing, transmission, storage, 

and distribution, in this version of the model. 

The decision variables, which are non-negative and continuous, reflect the magnitude of natural gas activity 

for each county 𝑖 and year 𝑡.  We consider retrospective (𝑡 = 2005, . . ,2016) and future (𝑡 =

2017, . . ,2030) natural gas activity time horizons, and natural gas activity within 210 counties in 

Pennsylvania, Ohio, and West Virginia.  Given that impacts may be spatially and temporally disperse from 

natural gas activity, we assume a longer impact horizon (𝑠 = 2005, . . ,2100) to accommodate delayed and 

persistent climate change impacts, and we consider impact counties to include all of those within the 

continental U.S. to allow for spatial transport of air pollutant impacts. 

In the retrospective case, we assume that cumulative production and consumption are fixed to historical 

levels, but that the timing and location of production and the location of additional electric generation 

beyond 2004 levels are variable.  In the future case, we assume that consumption is spatially and temporally 

fixed to projected future levels, with the exception of the timing and location of additional electric 

generation and industrial end use beyond 2016 levels which are assumed to be variable.  We also allow the 

magnitude, timing, and location of future production to be variable, while accounting for the residual 

production from historical wells. 
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Table 2.  Indices, decision variables, and parameters. 

  

Indices 

𝑖 = {1, … , ℐ} county of natural gas activity  𝑡 = {1, … , 𝒯} year of natural gas activity 

𝑗 = {1, … , 𝒥} county of impact  𝑢 = {1, … , 𝒰} well production year 

𝑠 = {1, … , 𝒮} year of impact    

Decision variables 

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 commercial natural gas volume 

(mmcf) 
 𝑥𝑖,𝑡

𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔
 producing wells 

𝑥𝑖,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 electric generation natural gas 

volume (mmcf) 
 𝑥𝑖,𝑡

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 residential natural gas 

volume (mmcf) 

𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 industrial natural volume 

(mmcf) 
 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
 spud wells 

Parameters (primary) 

a𝑖,𝑗,𝑡
AIR,COMMERCIAL marginal premature mortalities 

from commercial end use (per 

mmcf) 

 b𝑡
CLIMATE,PREPRODUCTION marginal climate damages 

from preproduction ($ per 

spud well) 

a𝑖,𝑗,𝑡
AIR,ELECTRIC marginal premature mortalities 

from electric generation end 

use (per mmcf) 

 b𝑡
CLIMATE,PRODUCTION marginal climate damages 

from production ($ per 

producing well) 

a𝑖,𝑗,𝑡
AIR,INDUSTRIAL marginal premature mortalities 

from industrial end use (per 

mmcf) 

 b𝑡
CLIMATE,RESIDENTIAL marginal climate damages 

from residential end use ($ 

per mmcf) 

a𝑖,𝑗,𝑡
AIR,PREPRODUCTION marginal premature mortalities 

from preproduction (per spud 

well) 

 Ci,t
COMMERCIAL commercial consumption 

(mmcf) 

a𝑖,𝑗,𝑡
AIR,PRODUCTION marginal premature mortalities 

from production (per producing 

well) 

 Ci,t
ELECTRIC electric generation natural 

gas consumption (mmcf) 

a𝑖,𝑗,𝑡
AIR,RESIDENTIAL marginal premature mortalities 

from residential end use (per 

mmcf) 

 C𝑖,𝑡
INDUSTRIAL industrial consumption 

(mmcf) 

a𝑠,𝑡
CLIMATE,COMMERCIAL marginal temperature impact 

from commercial end use 

(milliKelvin per mmcf) 

 C𝑖,𝑡
RESIDENTIAL residential consumption 

(mmcf) 

a𝑠,𝑡
CLIMATE,ELECTRIC marginal temperature impact 

from electric generation end 

use (milliKelvin per mmcf) 

 p𝑖,𝑢 annual production per well 

(mmcf) 
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Table 2.  Indices, decision variables, and parameters (continued). 

  

a𝑠,𝑡
CLIMATE,INDUSTRIAL marginal temperature impact 

from industrial end use 

(milliKelvin per mmcf) 

 PCUMULATIVE cumulative production (mmcf) 

a𝑠,𝑡
CLIMATE,PREPRODUCTION marginal temperature impact 

from preproduction (milliKelvin 

per spud well) 

 R reserves (mmcf) 

a𝑠,𝑡
CLIMATE,PRODUCTION marginal temperature impact 

from production (milliKelvin per 

producing well) 

 VSL value of a statistical life ($) 

a𝑠,𝑡
CLIMATE,RESIDENTIAL marginal temperature impact 

from residential end use 

(milliKelvin per mmcf) 

 W𝑡
MAX annual maximum number of spud 

wells 

aEMPLOY,PREPRODUCTION marginal employment from 

preproduction (job-years per 

spud well) 

 W𝑖
MAX county well density (wells) 

aEMPLOY,PRODUCTION marginal employment from 

production (job-years per 

producing well) 

 WAGES𝑖,𝑡 average wage ($ per job) 

b𝑡
CLIMATE,COMMERCIAL marginal climate damages from 

commercial end use ($ per 

mmcf) 

 ZAIR QUALITY cumulative air quality impacts 

(premature mortalities) 

b𝑠,𝑡
CLIMATE,ELECTRIC marginal climate damages from 

electric generation end use ($ 

per mmcf) 

 ZCLIMATE CHANGE cumulative global temperature 

impact (milliKelvin-years) 

b𝑡
CLIMATE,INDUSTRIAL marginal climate damages from 

industrial end use ($ per mmcf) 
 ZEMPLOYMENT cumulative employment impacts 

(job-years) 

Parameters (intermediate) 

AGTP𝑠,𝑡
CH4 absolute global temperature 

potential from CH4 emissions 

(milliKelvin per metric ton) 

 EF𝑡
VOC VOC emissions factor (metric tons 

per unit natural gas activity) 

AGTP𝑠,𝑡
CO2 absolute global temperature 

potential from CO2 emissions 

(milliKelvin per metric ton) 

 M𝑖,𝑗,𝑡
PM2.5 marginal premature mortalities 

from PM2.5 emissions (per metric 

ton) 

EFCH4 CH4 emissions factor (metric 

tons per unit natural gas 

activity) 

 M𝑖,𝑗,𝑡
NOX marginal premature mortalities 

from NOx emissions (per metric 

ton) 

EFCO2 CO2 emissions factor (metric 

tons per unit natural gas 

activity) 

 M𝑖,𝑗,𝑡
VOC marginal premature mortalities 

from VOC emissions (per metric 

ton) 

EF𝑡
PM2.5 PM2.5 emissions factor (metric 

tons per unit natural gas 

activity) 

 SCC𝑡 social cost of carbon ($ per metric 

ton) 

EF𝑡
NOX NOx emissions factor (metric 

tons per unit natural gas 

activity) 

 SCCH4𝑡 social cost of methane ($ per 

metric ton) 
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4.2.2 Air quality objectives 

The air quality objective function is to minimize cumulative impacts, alternatively specified in terms of 

premature mortalities and monetized damages, resulting from primary fine particulate matter (PM2.5) and 

secondary PM2.5 formed from the atmospheric oxidation of nitrogen oxides (NOx) and volatile organic 

compounds (VOCs) emissions.  The general form of the objective function in terms of premature mortality 

is: 

Min ZAIR QUALITY = ∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑖,𝑗,𝑡

AIR,PRODUCTION ∙ 𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+𝑖,𝑗,𝑡

a𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙ 𝑥𝑖,𝑡

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 +

a𝑖,𝑗,𝑡
AIR,ELECTRIC ∙ 𝑥𝑖,𝑗,𝑡

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)         (1) 

where the coefficients a𝑖,𝑗,𝑡
AIR are the premature mortalities in receptor county 𝑗 associated with emissions in 

source county 𝑖 per unit of natural gas activity.  Objective coefficients (a𝑖,𝑗,𝑡
AIR) are derived using emission 

factors (EF𝑡
PM2.5, EF𝑡

NOX, EF𝑡
VOC) and marginal premature mortalities per unit of emission 

(M𝑖,𝑗,𝑡
PM2.5, M𝑖,𝑗,𝑡

NOX, M𝑖,𝑗,𝑡
VOC).  The coefficients a𝑖,𝑗,𝑡

AIR, which we specify for each natural gas process or segment, 

are of the general form: 

a𝑖,𝑗,𝑡
AIR = M𝑖,𝑗,𝑡

PM2.5 ∙ EF𝑡
PM2.5 + M𝑖,𝑗,𝑡

NOX ∙ EF𝑡
NOX + M𝑖,𝑗,𝑡

VOC ∙ EF𝑡
VOC     (2) 

We account for air pollutant emissions from preproduction processes (including drilling, hydraulic 

fracturing, well completion, trucking), production processes (including wellhead compressors, condensate 

tanks, production fugitives, etc.), and end use combustion.  Emission factors are derived based on Mayfield 

et al. (forthcoming), the US Environmental Protection Agency (EPA) National Emissions Inventory (NEI), 

and the US EPA Continuous Emissions Monitoring System (CEMS).124–126   

We use the source-receptor reduced complexity model (RCM), Air Pollution Emission Experiments and 

Policy model (Version 3) (AP3)91,92, which generates estimates of pollution-induced premature mortalities 

in downwind receptors associated with emissions from source locations.  Premature mortality estimates are 
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sensitive to the relationship between pollutant concentration and health response; therefore, we 

parametrically vary the concentration-response (C-R) relationship based on the American Cancer Society 

(ACS) (base assumption) and Harvard Six Cities (H6C) studies.95,96  To account for time-varying marginal 

mortality, we apply an annual population adjustment based on  historical, annual, county-level population 

reported by the U.S. Census Bureau, and state-level population projections reported by the US Centers for 

Disease Control and Prevention (CDC).127,128   

The general form of the objective function in terms of monetized air quality damages (US$ 2017) is: 

Min ZAIR QUALITY = VSL ∙ ∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑖,𝑗,𝑡

AIR,PRODUCTION ∙ 𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+𝑖,𝑗,𝑡

a𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙ 𝑥𝑖,𝑡

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡
AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 +

a𝑖,𝑗,𝑡
AIR,ELECTRIC ∙ 𝑥𝑖,𝑗,𝑡

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)         (3) 

where VSL is the value of a statistical life, a commonly used measure of the dollar value of small changes 

in mortality risk experienced by a large number of people.  We use a VSL of $8.5M (base assumption), the 

mean value recommended in the U.S. Environmental Protection Agency guidance.97  We also test the 

sensitivity of decisions to VSL, using a range of $0 to $100M. 

4.2.3 Climate change objectives 

The climate change objective function is to minimize cumulative climate change impacts, alternatively 

specified in terms of global temperature change and monetized damages, resulting from emissions of 

greenhouse gases (GHG), including methane (CH4) and carbon dioxide (CO2).  The general form of the 

objective function in terms of global temperature change (milliKelvin-years) is: 

Min  ZCLIMATE CHANGE = ∑ (a𝑠,𝑡
CLIMATE,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑠,𝑡

CLIMATE,PRODUCTION ∙ 𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+𝑖,𝑠,𝑡

a𝑠,𝑡
CLIMATE,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑠,𝑡
CLIMATE,COMMERCIAL ∙ 𝑥𝑖,𝑡

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡
CLIMATE,RESIDENTIAL ∙

𝑥𝑖,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + a𝑠,𝑡

CLIMATE,ELECTRIC ∙ 𝑥𝑖,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)       (4) 
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where the coefficients a𝑠,𝑡
CLIMATE are the global temperature change per unit of natural gas activity associated 

with emissions in year 𝑡 and climate response in year 𝑠.  Global temperature change per unit activity is 

estimated using a convolution of GHG emission factors (EFCH4, EFCO2) and the average global temperature 

potential (AGTP𝑠,𝑡).98–103  AGTP𝑠,𝑡 is a function of the temperature response to radiative forcing which, in 

turn, is due to a marginal pulse emission, both of which are parameterized based on more complex models 

that explicitly include physical and chemical processes; see Mayfield et al. (forthcoming) for additional 

details.99  The coefficients a𝑠,𝑡
CLIMATE, which we specify for each natural gas process or segment, are of the 

general form: 

as,t
CLIMATE = AGTP𝑠,𝑡

CH4 ∙ EFCH4 + AGTP𝑠,𝑡
CO2 ∙ EFCO2      (5) 

We account for GHG emissions from preproduction processes (including drilling, hydraulic fracturing, well 

completion, trucking), production processes (including wellhead compressors, condensate tanks, 

production fugitives, etc.), and end use combustion.  Emission factors are derived based on Mayfield et al. 

(forthcoming),and the US EPA CEMS.124,126 

The general form of the objective function in terms of monetized damages (US$ 2017) is: 

Min  ZCLIMATE CHANGE = b𝑡
CLIMATE,PREPRODUCTION ∙ 𝑥𝑖,𝑗,𝑡

𝑠𝑝𝑢𝑑
+ b𝑡

CLIMATE,PRODUCTION ∙ 𝑥𝑖,𝑗,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+

b𝑡
CLIMATE,INDUSTRIAL ∙ 𝑥𝑖,𝑗,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + b𝑡
CLIMATE,COMMERCIAL ∙ 𝑥𝑖,𝑗,𝑡

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + b𝑡
CLIMATE,RESIDENTIAL ∙

𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + b𝑠,𝑡

CLIMATE,ELECTRIC ∙ 𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐       (6) 

where the coefficients b𝑡
CLIMATE are the monetized climate damages per unit of natural gas activity.  

Monetized damages per unit activity are a function of the GHG emission factors, as well as, the social cost 

of carbon (SCC𝑡) and social cost of methane (SCCH4𝑡), metrics representing the present value of the 

anticipated future damages that would arise from an incremental unit of emissions in a given year 𝑡.  We 

apply mean estimated values assuming a 3% discount rate as reported in US EPA publications and 

historically used in federal regulatory analysis68,71; these values vary depending on emissions year from 
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2005 to 2030 – $29 to $58 per metric ton of CO2 and $720 to $1865 per metric ton of CH4 (base case 

assumption).  These metrics account for climate change impacts, such as changes in agricultural 

productivity and human health, property damage from increased flood risk, and changes in heating and 

cooling costs. To explore the sensitivity of decisions to the social cost of carbon, we use a range of $1 to 

$400 per metric ton.  The lower end of the range reflects the Trump administration’s executive order in 

2017 which lowered the social cost of carbon to be used in regulatory analysis to account for “domestic 

versus international impacts and the consideration of appropriate discount rates” and in order “to ensure 

sound regulatory decision making…[and] use estimates of costs and benefits in their regulatory analyses 

that are based on the best available science and economics.”129  The higher end of the range reflects mean 

estimates from Ricke et al. (2018).110  The coefficients b𝑠,𝑡
CLIMATE, which vary by natural gas process, are of 

the form: 

b𝑠,𝑡
CLIMATE = SCCH4𝑡 ∙ EFCH4 + SCC𝑡 ∙ EFCO2       (7) 

4.2.4 Employment objectives 

The employment objective function is to maximize cumulative impacts, alternatively specified in terms of 

job-years and wages, resulting from upstream natural gas activity.   The general form of the objective 

function in terms of job-years is: 

Max  ZEMPLOYMENT = ∑ (aEMPLOY,PREPRODUCTION ∙ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

+ aEMPLOY,PRODUCTION ∙ 𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

)𝑖,𝑡    (8) 

where the coefficients aEMPLOY,PREPRODUCTION and aEMPLOY,PRODUCTION are the job-years per spud and 

producing well, respectively.  The metric job-year is a full- or part-time job over a single year, not a 

sustained job over multiple years or a career, and includes direct jobs within the natural gas sector and 

spillover into the non-resource economy.   

The general form of the objective function in terms of wages (USD 2017) is: 
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Max  ZEMPLOYMENT = WAGES𝑖,𝑡 ∑ (aEMPLOY,PREPRODUCTION ∙ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

+ aEMPLOY,PRODUCTION ∙𝑖,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

)           (9) 

where WAGES𝑖,𝑡 is the wage per job-year for each county 𝑖 and year 𝑡, based on historical annual average 

wages per county. 

4.2.5 Multiobjective functions 

Multiobjective programming facilitates comparisons between conflicting objectives.  Here, we use two 

approaches for aggregating objective functions, which provide differing insight regarding development 

decisions. 

We evaluate pairwise tradeoffs between objectives in terms of their physical units (i.e., premature 

mortalities, Kelvin-years, job-years) using the ε-constraint method.130  The ε-constraint method is based on 

formulating an auxiliary model in which a single objective is optimized subject to a secondary objective 

which is reformulated as a constraint.  Are a projection on the employment and air quality of a three 

dimensional set This constraint imposes an upper limit ε on the value of the secondary objective and is 

iteratively solved to generate the Pareto set.  As an example of the pairwise tradeoff between air quality and 

employment, it can be expressed as: 

Max ZEMPLOYMNENT          (10) 

𝑠. 𝑡.   ZAIR QUALITY ≤ ε𝑘          (11) 

𝑤𝑖𝑡ℎ ε𝑘 = ε1, … , ε𝑛 and ELB ≤ ε𝑘 ≤ ELB       (12) 

In this example, climate change impacts are treated as a projection on the employment and air quality Pareto 

set.  The extreme points (ELB, ELB) are derived based on solving the single objective problems. 

We alternatively develop an aggregate monetized objective as follows: 

Max  ZTOTAL = ZEMPLOYMENT − ZAIR QUALITY − ZCLIMATE CHANGE    (13) 
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4.2.6 Natural gas system constraints 

We derive multiple natural gas activity constraints.  Here, we present a representative formulation of these 

constraint sets for both retrospective and future cases. 

Cumulative production constraint 

In the retrospective case, we require that cumulative shale gas production over the development period must 

be equivalent to historical production (PCUMULATIVE), as given by:  

∑ p𝑖,𝑢=1 ∙ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

𝑖,𝑡=1 + ⋯ + ∑ (p𝑖,𝑢=1 ∙ 𝑥𝑖,𝑡=𝒯
𝑠𝑝𝑢𝑑

+ ⋯ + p𝑢=1,𝑡 ∙ 𝑥𝑖,𝑡=1
𝑠𝑝𝑢𝑑

)𝑖,𝑡=𝒯 + ⋯ = PCUMULATIVE  

            (14) 

where p𝑖,𝑢 is the annual well productivity.  Well productivity profiles are derived from historical well 

production131–133, differentiating sweet and non-sweet production regions of the Marcellus and Utica plays, 

as delineated by the U. S. Geological Survey134,135; specifically, we derive profiles by regressing annual 

well production on well production year and whether a location is a sweet spot or not (n=53,653).  We 

additionally perform sensitivity analyses of well productivity, modifying the functional form.  We set 

cumulative production (PCUMULATIVE) based on historical production from 2005 to 2016 (27.8 tcf). 

In the future case, we assume that cumulative shale gas production over the development period must not 

exceed reserves (R), as given by:  

∑ p𝑖,𝑢=1 ∙ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

𝑖,𝑡=1 + ⋯ + ∑ (p𝑖,𝑢=1 ∙ 𝑥𝑖,𝑡=𝒯
𝑠𝑝𝑢𝑑

+ ⋯ + p𝑢=1,𝑡 ∙ 𝑥𝑖,𝑡=1
𝑠𝑝𝑢𝑑

)𝑖,𝑡=𝒯 + ⋯ ≤ R  (15) 

Our base assumption is the 2016 shale gas reserve estimate (99.6 tcf) for the Appalachian basin reported 

by the US Energy Information Administration (EIA).34  We additionally perform a sensitivity analysis to 

reflect a range of reserve estimates. 

Annual wells constraints 

We formulate a set of constraints that assign an upper limit on the number of wells that can be spudded in 

a given year, which reflect drilling crew and rig resource limits. 
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∑ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

𝑖 ≤ W𝑡
MAX  ∀𝑡 = 1, … , 𝒯        (16) 

where W𝑡
MAX is the maximum number of spud wells in a given year.  In the retrospective case, we assume 

that the industry cannot develop more rapidly than what actually occurred.  In the future case, we assume 

that drilling cannot exceed the annual peak observed from 2005 to 2016; it is possible that this drilling 

resource limit increases in the future as more drilling crews and rigs come online.   

Well density constraints 

We formulate a set of constraints that assign an upper limit on the well density in a given county.   

∑ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

𝑡 ≤ W𝑖
MAX  ∀𝑖 = 1, … , ℐ         (17) 

where W𝑖
MAX is the maximum number of spud wells in a given county.  We estimate the maximum number 

of wells that can be drilled in each county based on the land area of each county and the maximum well 

density observed for any county over the period 2005 to 2016 (1.75 producing wells per square mile).  The 

maximum well density may differ from this and vary by county based on the extent of the resource and 

other land uses. 

Cumulative number of spud wells equivalent to producing wells constraints 

We assume that the cumulative number of spud wells is equivalent to the number of producing wells.  This 

formulation implicitly assumes that after a well is spud it continues to produce until productivity declines 

to zero.  

𝑥𝑖,𝑡=1
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

− ∑ ∑ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

𝑡=1𝑖 = 0        (18) 

. 

. 

. 
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𝑥𝑖,𝑡=𝒯
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

− ∑ ∑ 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑𝒯

𝑡=1𝑖 = 0        (19) 

Residential end use consumption constraints 

In the retrospective and future cases, we assume that residential natural gas consumption must be equivalent 

to historical or projected future demand (C𝑖,𝑡
RESIDENTIAL), respectively.  We further assume that demand is 

spatially and temporally fixed, and it is largely unaffected by regional production, consistent with the 

historical residential consumption demand observations.  

𝑥𝑖,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 ≤ C𝑖,𝑡

RESIDENTIAL  ∀𝑖, 𝑡        (20)  

∑ 𝑥𝑖,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙

𝑖,𝑡 = ∑ C𝑖,𝑡
RESIDENTIAL

𝑖,𝑡         (21) 

We formulate the constraint set as such to allow for readily incorporating displacement of natural gas with 

alternative energy technologies.   To derive historical consumption by county and year, we use annual, 

state-level residential natural gas consumption reported by the EIA; state consumption is allocated to each 

county using the ratio of the number of housing units burning natural gas in a given county to the number 

of housing units burning natural gas in the state, as reported by the U.S. Census Bureau.  To develop future 

residential consumption, we estimate annual residential consumption growth rates from 2017 to 2030 based 

on EIA regional consumption projections (under the EIA reference case).  Then, we apply these growth 

rates to historical consumption by county in 2016. 

Commercial end use consumption constraints 

In the retrospective and future cases, we assume that commercial natural gas consumption must be 

equivalent to historical or projected future demand (C𝑖,𝑡
COMMERCIAL), respectively.  We further assume that 

demand is spatially and temporally fixed, and it is largely unaffected by regional production, consistent 

with the historical commercial consumption demand observations. 

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 ≤ C𝑖,𝑡

COMMERCIAL  ∀i, t        (22)  
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∑ 𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙

𝑖,𝑡 = ∑ C𝑖,𝑡
COMMERCIAL

𝑖,𝑡         (23) 

We formulate the constraint set as such to allow for readily incorporating displacement of natural gas with 

alternative energy technologies.   To derive historical consumption by county and year, we use an approach 

similar to that used in development of the NEI.  We use annual, state-level commercial natural gas 

consumption reported by the EIA; state consumption was allocated to each county using the ratio of 

employment in the commercial sector by county to commercial sector employment in the state, as reported 

by the U.S. Census Bureau.  To develop future commercial consumption scenarios, we estimate annual 

commercial consumption growth rates from 2017 to 2030 based on EIA regional consumption projections 

(under the EIA reference case).  Then, we apply these growth rates to historical consumption by county in 

2016. 

Industrial end use consumption constraints 

In the retrospective case, we assume that industrial natural gas consumption must be equivalent to historical 

demand (𝐶i,t
INDUSTRIAL) and it is spatially and temporally fixed. 

𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 ≤ Ci,t

INDUSTRIAL  ∀i, t         (24)  

∑ 𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙

𝑖,𝑡 = ∑ C𝑖,𝑡
INDUSTRIAL

𝑖,𝑡         (25) 

We formulate the constraint set as such to allow for readily incorporating integration of alternative energy 

technologies.   We modify this constraint set for the future case, allowing for additional industrial load 

beyond 2016 levels to be sited in any county, as follows: 

𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 ≥ C𝑖,𝑡=2016

INDUSTRIAL ∀𝑖, 𝑡         (26) 

∑ 𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙

𝑖 = ∑ C𝑖,𝑡
INDUSTRIAL

𝑖  ∀t        (27) 

To derive historical consumption by county and year, we use an approach similar to that used in 

development of the NEI.  We use annual, state-level industrial natural gas consumption reported by the 



 

67 

 

EIA; state consumption is allocated to each county using the ratio of employment in the industrial sector 

by county to industrial sector employment in the state, as reported by the U.S. Census Bureau.  To develop 

future industrial consumption, we estimate annual industrial consumption growth rates from 2017 to 2030 

based on EIA regional consumption projections (under the EIA reference case).  Then, we apply these 

growth rates to historical consumption by county in 2016. 

Electric power sector natural gas consumption constraints 

In the retrospective and future cases, we assume that electric power sector natural gas consumption must 

be equivalent to historical or projected future demand (C𝑖,𝑡
ELECTRIC).  We allow for additional electric power 

load beyond 2004 or 2016 levels for the retrospective and future cases, respectively, to be sited in any 

county, as follows: 

𝑥𝑖,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 ≥ C𝑖,𝑡=2005 ∥ 2016

ELECTRIC  ∀𝑖, 𝑡         (28) 

∑ 𝑥𝑖,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐

𝑖 = ∑ C𝑖,𝑡
ELECTRIC

𝑖  ∀𝑡         (29) 

To derive historical consumption by county and year, we use plant-level natural gas consumption volumes 

from CEMS.  To develop future electric power sector natural gas consumption, we estimate annual electric 

power sector consumption growth rates from 2017 to 2030 based on EIA regional consumption projections 

(under the EIA reference case).  Then, we apply these growth rates to historical consumption by county in 

2016. 

4.3 Results and discussion 

4.3.1 Retrospective tradeoffs between socioeconomic and environmental objectives 

To demonstrate the mechanics of the optimization, we begin with a discussion of the retrospective model 

of natural gas activity from 2005 to 2016.  In our presentation of results, we depict an approximation of the 

Pareto frontier based on the multiobjective formulation, as well as, the monetized optimum.  We 
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additionally denote the corner solutions, whereby each single objective is optimized, and define illustrative 

compromise solutions along the Pareto frontiers. 

The air-climate Pareto frontier in Figure 10a demonstrates that there is a nominal tradeoff.  We find that 

siting and planning policies with respect to upstream infrastructure and electricity generation capacity 

expansion, and assuming constant historical production and consumption volumes, may have decreased air 

quality impacts by greater than 15%, but such policies would have trivial effects on climate impacts (Figure 

10b).  We additionally observe that when optimizing for monetized air quality and climate change impacts 

under base case VSL and SCC assumptions, the solution is similar to the multiobjective corner solution 

where premature mortalities are minimized.  The monetized formulation incorporating all three impact 

areas iterates towards the employment optimum and is suboptimal relative to the air-climate multiobjective 

scenario. 

As shown in Figure 10c, there is an almost linear relationship between climate change and employment 

impacts absent additional climate mitigation policies.  Actual impacts are near Pareto optimal, when 

considering only climate and employment objectives.  In the monetized formulation, in which we consider 

either climate and employment only or all three impacts, the optimal solution is the same as the employment 

optimum. 

The air-employment Pareto frontier in Figure 10e depicts a near linear tradeoff.  There is an historical 

implied tradeoff of 84 job-years per premature mortality at a systems level.  Infrastructure siting and 

planning policies improve this tradeoff to 100 job-years per premature mortality; however, there is spatial 

heterogeneity with respect to this tradeoff, and policies may have the undesirable effect of making some 

communities worse off. 

Figure 11 shows the spatial distribution of impacts and natural gas activity for a compromise solution along 

the air-employment Pareto frontier, as well as, the actual distribution.  For the compromise solution, 

upstream activity and additional electric generation capacity shift towards lower population areas to 
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minimize air quality impacts.  Although cumulative premature mortality is notably less for the compromise 

solution relative to what actually occurred, there is an almost imperceptible difference in the spatial 

distribution; this is largely because we assume that industrial, commercial, and residential end use demands 

are spatially and temporally fixed.  We also observe that upstream activity shifts towards less productive 

portions of the Marcellus and Utica plays.  This in part occurs because drilling and producing wells require 

the same marginal labor factors, regardless of well productivity.  Thus, when maximizing employment, 

subject to fixed cumulative production, there is a tendency towards an outcome that is inefficient from the 

perspective of a private gas firm which ostensibly would seek to drill in the most productive regions and 

economize on labor.  We further find that upstream activity and electric generation capacity expansion are 

spatially more concentrated than the actual distributions, which may have equity implications.  Figure 12 

traces impacts and natural gas activity over time.  The shape of temporal profiles when optimizing for 

employment, air quality, climate change, and monetized impacts are similar. 
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Figure 10.  Tradeoffs between cumulative impacts for retrospective case. 
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Figure 11.  Spatial distribution of cumulative impacts, production, and electricity generation.  

Comparison of retrospective air quality-employment compromise solution and based on actual 

natural gas activity. 
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Figure 12.  Impacts and natural gas activity over time for retrospective case.  Red, blue, and yellow 

lines represent optimal solutions for pairwise multiobjective formulations in which all weight is on 

the air quality, climate change, or employment objective, respectively.  Green lines represent the 

monetized optimum, considering air quality, climate change, and employment impacts.  Black lines 

represent actual impacts or activity.  In (d), the solid and dotted lines represent producing and spud 

wells, respectively. 
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4.3.2 Future natural gas system planning 

In this section, we focus on future development pathways in the Appalachian basin from 2017 to 2030.  In 

addition to siting and planning policies, we consider emissions abatement and renewable integration. 

We find that air quality and climate change objectives are not in conflict, as shown in Figure 13.  Under 

both objectives, the model selects to cease drilling activities, although there is residual production from 

wells drilled prior to 2017 (Figure 13d).  While optimizing for these environmental impacts aligns with a 

fossil fuel divestment strategy or moratorium on new production, natural gas is still a fundamental part of 

the regional energy system.  As such, consumption does not cease, and meeting continued demand would 

necessitate the region becoming a net importer of natural gas, as was the situation prior to the shale gas 

boom.  Overall, there are still nontrivial climate change and regional air quality impacts, even at the 

optimum (Figure 13a, c), and much of the impact of upstream natural gas impacts are borne in other source 

fuel regions not included within the model.   

Figure 14a depicts the pairwise tradeoff between conflicting climate change and employment objectives.  

We find that the employment objective pulls the model to produce more, but not to deplete reserves over 

the development period.  We also observe that GHG emissions abatement decreases climate impacts.  

Abatement has the potential to increase the marginal number of jobs, an effect which we do not explicitly 

model; notwithstanding, abatement costs that make it inefficient for private firms to market and use natural 

gas may result in a loss of jobs within the industry and a labor shift into other sectors.  The marginal climate 

impacts are vastly greater than marginal employment effects from natural gas activity; thus, we find that 

the monetized and climate optimums are equivalent under base SCC assumptions.  Considering the 

monetized objective, the SCC would have to be less than $9 per metric ton to shift the decision away from 

the climate optimum. 

Figure 14b depicts the pairwise tradeoff between conflicting air quality and employment objectives.  Air 

pollutant emissions abatement decreases premature mortalities, while not impacting cumulative 
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employment; as with GHG abatement, the marginal number of jobs may increase with abatement.  The 

marginal air quality impacts are greater than marginal employment effects from natural gas activity; thus, 

we find that the monetized and air quality optimums are equivalent under base VSL assumptions.  With 

respect to the monetized objective, the VSL would have to be less than $2.6M to shift the decision away 

from the air quality optimum. 

 

Figure 13.  Impacts and natural gas activity over time for future case.  Red, blue, and yellow lines 

represent optimal solutions for pairwise multiobjective formulations in which all weight is on the 

air quality, climate change, or employment objective, respectively.  Green and orange lines 

represent the air quality-employment and climate change-employment compromise solutions, 

respectively. 
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Figure 14.  Tradeoffs between cumulative air quality, climate change, and employment impacts 

associated with natural gas activity from 2017 to 2030. 
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4.4 Timing and value of greenhouse gas emissions abatement 

Implementing abatement has the potential to improve the extensive margin of climate impacts, which has 

the effect of reducing conflicts between environmental and socioeconomic objectives.  In the previous 

section, we assumed a flat greenhouse gas emissions reduction of 50% beginning in 2017.  Here, we 

evaluate the temperature impacts and monetized value of alternative CO2 and CH4 abatement strategies 

and delayed abatement. 

We model two different development regimes – minimizing climate impacts and maximizing employment 

– which together provide a partial spread of development pathways.  Assuming abatement begins in 2017, 

we find that policies in which methane is reduced by 50% have a larger cumulative temperature benefit by 

mid-century than policies in which carbon dioxide is reduced by 50%, as shown in Figure 15a-b.  By the 

end of the century, carbon dioxide abatement has a larger cumulative temperature benefit than methane 

abatement.  While methane abatement strategies have a relatively minimal effect on the absolute warming 

in 2100, they may contribute to minimizing interim losses and could have drastic benefits in the case of 

climate tipping points. 

The value of abatement – expressed as the net monetized climate damages at the optimum without and with 

abatement – ranges from $0 to $58B, as depicted in Figure 16.  While the value of abatement would 

seemingly be higher in an employment maximizing regime where there is more natural gas activity than in 

a climate impact minimizing regime, we find that there is almost no difference in the value of carbon dioxide 

abatement between regimes. 

We also consider the effect of delaying abatement until 2025, as shown in Figure 15c-d.  Delaying 

abatement results in cumulative temperature benefits that are less than half that derived from abatement 

beginning in 2017.  We estimate that the cost of delay, or the forgone benefits of delay, (Figure 16) can be 

upwards of $28B. 
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In addition to or in lieu of the constraint sets derived, which provide a broad systems-level representation 

of natural gas production and consumption, it is possible to employ capacity expansion or dispatch 

constraint sets that may offer additional insight at higher temporal resolution and limits at the extensive 

margin of natural gas activity. 

 

Figure 15.  Effect of climate change abatement on global temperature.  (a) and (c) depict 

temperature impacts to 2100.  Blue and red lines represent temperature impact from minimizing 

climate impacts and maximizing employment impacts, respectively.  Solid lines represent optimal 

solutions without abatement.  Dotted, dashed, and dotted-dashed lines represent 50% reduction in 

CH4, CO2, or both, respectively.  Abatement either begins in 2017 (a-b) or is delayed until 2025 (c-
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d).  (b) and (d) depict the percent difference between cumulative temperature impacts of abatement 

scenarios relative to scenarios without abatement.  Mid- and end-of-century cumulative 

temperature impacts are provided.  

 

Figure 16.  Value of climate change abatement and the cost of delaying abatement.  The value of 

abatement is estimated under employment maximizing and climate change impact minimizing 

regimes.  The value of abatement is the net monetized climate damages at the optimum without and 

with abatement.  
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4.5 Conclusions 

Natural gas system development is driven by the complexity inherent in physical systems and the influence 

of a myriad of diverse, interacting stakeholders with heterogeneous preferences.  The purpose of this study 

is to distill a portion of this complexity and provide descriptive insight into how the energy system 

theoretically could develop if other objectives that are often the subject of public discourse and concern, 

such as jobs, climate change, and health effects, influence the decision-making process.  While 

environmental and employment objectives are conflicting if we follow a natural gas pathway consistent 

with the status quo, the collection of siting, emissions abatement, and renewable integration policies can 

resolve and reverse these conflicts.  There are pathway dependencies between these policies, and delaying 

implementation only amplifies the cumulative, negative tradeoffs between employment and environmental 

objectives.  Here, we demonstrate that future energy systems have the potential to meet multiple objectives. 
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5 Air, Climate, and Labor Market Equity of Natural Gas Systems 

In this study, we take a systematic, but exploratory, approach to quantify and characterize the multi-

dimensional equity of natural gas systems, considering the entire supply chain from production to end use 

and over the boom-and-bust cycle.  We assess equity of natural gas development in the Appalachian basin 

at a systems level and focus on spatial, temporal, and distributional equity as it relates to air quality, climate 

change, and labor market impacts.  We find that there are high temporal and spatial inequities with respect 

to cumulative air and employment impacts.  With respect to distributional equity of air quality impacts, we 

do not observe a disparity in mortality rates across subpopulations on the basis of income and poverty; 

however, there is a trend of increasing income corresponding to decreasing damages, which demonstrates 

the higher health burden on lower income communities.  With respect to distributional equity of labor 

markets, we find statistically significant declines in the income disparity and poverty rates in producing 

counties.  Pairwise comparisons of air, climate, and employment impacts reveal that they are highly 

correlated.  
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5.1 Introduction 

The U.S. energy landscape is rapidly evolving, and changes in the energy system over the past decade are 

largely associated with technological advancements enabling growth in domestic natural gas activity.  

Correspondingly, there is an expanding body of evidence regarding the impacts of natural gas activity 

across the supply chain on water quality74–77, air quality78–80, ecosystems81,82, climate83–85, labor markets86–

88, public health89,90, and several other environmental and socioeconomic factors.  However, the spatial, 

temporal, and distributional effects and equity of natural gas systems – i.e., how benefits and costs are and 

should be distributed spatially, temporally, or among sub-populations on the basis of demographics – are 

still largely unexplored.29,42  With respect to policy research, there have been few studies which solely 

investigate distributional effects of upstream natural gas infrastructure by race136, poverty88, or income117.  

As part of the regulatory process, often in relation to siting energy infrastructure, environmental justice 

analyses are performed to identify and assist in addressing disparate impacts on vulnerable populations at 

an early stage in the public and private decision-making process; however, existing analytical instruments 

and processes may be inadequate for informing and facilitating public and private decision making by 

regulators and developers, as evidenced by such events as those surrounding the Dakota Access Pipeline 

project.137  A systems-level approach that considers embodied energy injustices – the full spectrum of 

transboundary socio-environmental injustices across the supply chain – may better facilitate decision 

making.138 

Here, we take a systematic, but exploratory, approach to quantify and characterize the multi-dimensional 

equity of natural gas systems, considering the entire supply chain from production to end use and over the 

boom-and-bust cycle.  We assess equity at a systems level and focus on spatial, temporal, and distributional 

equity as it relates to air quality, climate change, and labor market impacts.  To evaluate equity, it is 

necessary to decide and operationalize which distributive rules apply and which metrics to use.139  We apply 

and interpret variants of standard methods and equity metrics, such as Gini coefficients and unit-hazard 

coincidence.  And to further measure and highlight tradeoffs and the distribution of impacts, we develop 
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new methods and metrics such as: job-years created per life-year lost (or premature mortality), premature 

mortalities by race, income, and poverty level, and cross-impact elasticities.  We apply this approach to  the 

shale gas boom (and decline) in the Appalachian basin from 2004 to 2016, leveraging previously derived 

temporally- and spatially-resolved estimates of impacts.124  These impacts include: premature mortality 

from primary fine particulate matter (PM2.5) and secondary PM2.5 formed from the atmospheric oxidation 

of nitrogen oxides (NOX) and volatile organic compounds (VOCs) emissions, global mean temperature 

change from carbon dioxide (CO2) and methane (CH4) emissions, and employment effects associated with 

natural gas development.  In the following sections, we step through each dimension of equity, for which 

we estimate and interpret quantitative measures, describe the limitations, and evaluate the utility of such 

measures for policy design and decision making. 

5.2 Methods 

Equity has been variably and sometimes divergently defined, interpreted, and operationalized in legislation, 

judicial decisions, and public policy, as well as in scholarly research in natural sciences, economics, 

behavioral science, and operations research.  For analytical purposes, we define equity as equality in the 

distribution of impacts across populations, a broad definition which provides the latitude for incorporating 

the nuances of scale, cross-disciplinary variation, and the spatial and temporal nature of each impact area.  

To assess equity, we employ previously derived spatially- and temporally-resolved estimates of impacts 

both in physical and monetary units.124  When selecting the appropriate scales of analysis, it is important to 

consider the nature of the impact, the area of a community or neighborhood based on cultural and social 

divisions, the scale at which data is aggregated and available, the scales at which statistical significance is 

observable, and the jurisdiction under which agencies or political agents have authority.  In this analysis, 

we assess spatial and distributional equity at the county level, the resolution of quantitative air quality and 

employment impact estimates, and we define various temporal scales, namely in relation to climate impacts.  

In the following sections, we provide an overview of each equity analysis and underlying data. 
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5.2.1 Standard equity metrics 

We estimate standard equity measures (e.g., Gini coefficient, Atkinson index, Thiel index, maximum 

difference, cumulative density functions, etc.), which provide information regarding the spatial and 

temporal variation of impacts across the system.  These metrics of equity, including descriptions, 

mathematical properties, and axiomatics properties of provided in Table C1 of the Supplemental 

Information.  

5.2.2 Premature mortality and mortality rates by race, income, and poverty level 

We derive mortality and mortality rates associated with natural gas activity from 2004 to 2016 across the 

supply chain that are stratified by race, income level, and poverty level.  We first modify receptor-resolved 

estimates of marginal mortality per metric ton of emissions, as specified in the reduced complexity air 

quality model Air Pollution Emission Experiments and Policy Analysis Model (Version 3) (AP3)91,92, using 

mortality rates and population data stratified by age, race, income level, and/or poverty level. 

The general form of the change in the number of premature mortality attributed to a change in concentration 

(∆𝑀𝑐,𝑡) is given by: 

∆𝑀𝑐,𝑡 = 𝛼 ∙ ∑ (𝑅𝑎,𝑐,𝑡 ∙ 𝑃𝑎,𝑐,𝑡)𝑎         (30) 

where 𝑅𝑎,𝑐,𝑡 and 𝑃𝑎,𝑐,𝑡 are the baseline mortality rate and population, respectively, for each age class 𝑎, 

county 𝑐, and year 𝑡.  𝛼 is equivalent to 𝑒𝛽𝐶𝑝 − 𝑒𝛽𝐶𝑏, where 𝐶𝑝 and 𝐶𝑏 are the perturbation and baseline 

emissions, respectively.  Modifications of this formulation for each subpopulation are limited by the 

availability of annual, county-level mortality rate and population data stratified by age and subpopulation, 

as outlined in Table C5.  We also systematically impute missing data. 

We estimate the marginal mortality by race as follows: 

∆𝑀𝑐,𝑡,𝑟 = 𝛼 ∙ 𝑅𝑐,𝑡,𝑟 ∙ 𝑃𝑐,𝑡,𝑟        (31) 
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where 𝑅𝑐,𝑡,𝑟 and 𝑃𝑐,𝑡,𝑟 are the baseline mortality rate and population, respectively, for each race 𝑟, county 

𝑐, and year 𝑡.  We use county-level mortality and population estimates by race (i.e., white, black or African 

American, Asian or Pacific Islander, Native American or Native Alaskan) as reported by the Centers for 

Disease Control and Prevention (CDC).140 

We estimate the marginal mortality by income as follows: 

∆𝑀𝑐,𝑡,𝑖 = 𝛼 ∙
𝑃𝑐,𝑡,𝑖

𝑃𝑐,𝑡
∙ ∑ (𝑅𝑎,𝑐,𝑡 ∙ 𝑃𝑎,𝑐,𝑡)𝑎        (32) 

where 𝑃𝑐,𝑡 is the population by county 𝑐 and year 𝑡, and 𝑃𝑐,𝑡,𝑖 is the population by income 𝑖, county 𝑐, and 

year 𝑡.  We use annual, county-level population estimates disaggregated by income level (i.e., <$15,000, 

>$15,000 to <$35,000, >$35,000 to <$75,000, >$75,000 to <$150,000, >$150,000) reported by the US 

Census Bureau.127 

We estimate the marginal mortality by poverty levels as follows: 

∆𝑀𝑐,𝑡,𝑝 = 𝛼 ∙ ∑ (𝑅𝑎,𝑐,𝑡 ∙ 𝑃𝑎,𝑐,𝑡,𝑝)𝑎        (33) 

where 𝑃𝑎,𝑐,𝑡,𝑝 is the population by poverty level 𝑝, age class 𝑎, county 𝑐, and year 𝑡.  We use annual, county-

level population estimates by age and poverty levels reported by the US Census Bureau.127 

Combining the previously described receptor-resolved marginal mortality estimates with the emissions 

model described in Mayfield et al. (forthcoming), we estimate total mortality by subpopulation associated 

with natural gas activity.  In addition, we estimate mortality rates by subpopulation as follows: 

𝑄𝑡,𝑟 =
∑ 𝑀𝑐,𝑡,𝑟𝑐

∑ 𝑃𝑐,𝑡,𝑟𝑐
    ∀𝑡, 𝑟         (34) 

𝑄𝑡,𝑖 =
∑ 𝑀𝑐,𝑡,𝑖𝑐

∑ 𝑃𝑐,𝑡,𝑖𝑐
    ∀𝑡, 𝑖         (35) 

𝑄𝑡,𝑝 =
∑ 𝑀𝑐,𝑡,𝑝𝑐

∑ 𝑃𝑐,𝑡,𝑝𝑐
   ∀𝑡, 𝑝         (36) 
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where 𝑀𝑐,𝑡,𝑟, 𝑀𝑐,𝑡,𝑖, and  𝑀𝑐,𝑡,𝑝 are total mortality estimates associated with natural gas activity by race, 

income, or poverty level, respectively.  𝑄𝑡,𝑟, 𝑄𝑡,𝑖, and 𝑄𝑡,𝑝 are mortality rates associated with natural gas 

activity by race, income, or poverty level, respectively. 

5.2.3 Spatial coincidence of upstream infrastructure with race, income, and poverty level 

We assess the spatial coincidence of upstream infrastructure with racial and socioeconomic variables, 

applying standard methods used in the environmental justice literature to assess demographic disparities in 

the distribution of environmental hazards.  Specifically, we compare producing counties and nonproducing 

counties using the unit-hazard coincidence method, as described in Mohai et al. (2007).141  This method is 

limited, in part because it does not adequately control for proximity between environmental hazards and 

nearby populations. 

We compile a dataset consisting of demographic and natural gas activity variables for all counties in 

Pennsylvania, Ohio, West Virginia, and New York over the period 2010 to 2016.  We use demographic 

data (i.e., percent black, percent nonwhite, percent below poverty level, median household income, per 

capital personal income, population) reported by the U.S. Census Bureau and the U.S. Bureau of Economic 

Analysis, and natural gas activity data reported by state agencies.131–133,142 

We first compute the mean and population-weighted mean values for each demographic variable for 

producing and non-producing counties.  Then, we estimate whether there are statistically significant 

differences between these two populations using the Welch two-sample t-test. 

To assess the relative importance of demographic characteristics in accounting for disparities, we also use 

binary logit regression, where the dependent variable is 1 if a county produced in a given year and 0 if not.  

The independent variables are a subset of the demographic variables used in the previous analysis (i.e., 

percent nonwhite, percent below the poverty level, median household income) to reduce multicollinearity.  

A statistically significant coefficient on demographic variables indicates a measurable difference between 

producing and nonproducing counites. 
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5.2.4 Income inequality and poverty level regression 

We explore the effect of the natural gas boom on income inequality and poverty rates within local labor 

markets using an approach similar to that employed in Marchand (2013).117  Changes in the measures of 

income inequality and poverty rates, before and after the boom and between treatment and comparison 

areas, are used to identify the distributional impacts of the natural gas boom through the local labor market 

variation using the following model specifications: 

∆𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐 = 𝛽 ∙ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑐 + 𝜀𝑐       (37) 

∆ ln(𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐) = 𝛽 ∙ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑐 + 𝜀𝑐      (38) 

where the change in the labor market between the pre-boom year of 2005 and the post-boom year of 2015 

are given by ∆𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐 = 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐,𝑡 − 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐,𝑡−1 and ∆ ln(𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐) = ln(𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐,𝑡) −

ln(𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑐,𝑡−1), and 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑐 is a binary variable indicating whether a county 𝑐 is in the treatment 

or comparison group. 

We compile a cross-sectional dataset comprised of poverty levels, Gini coefficients, and shale gas 

production of counties in 2005 and 2015 for Pennsylvania, Ohio, West Virginia, and New York.  We use 

poverty levels reported by the U.S. Census Bureau in Small Area Income & Poverty Estimate datasets; 

poverty levels are the predicted percent of people of all ages in poverty based on the American Community 

Survey.142  We develop county-level production estimates based on operator-reported production data for 

each shale well from state agencies.131–133   

We specify two treatment sets – full and top treatment – in efforts to discern the effects associated with 

different intensities in natural gas activity.  The full treatment set is comprised of all 90 counties with annual 

production exceeding 0 thousand cubic feet (mcf) in 2015.  The top treatment set is comprised of 23 counties 

with annual production exceeding 44,000 mcf in 2015, representing the top 25% of producing counties.  

The comparison set is constructed of 191 counties with no shale gas production in 2015.  We also exclude 

14 counties which we identify as metropolitan based on a cross-county comparison of 2010 population 
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estimates, whereby we classify counties as metropolitan if they are within the top 10 percentile based on 

population; including only nonmetropolitan counties creates a more homogenous sample, precluding 

counties with large cities from excessively influencing estimates.122 

5.2.5 Air quality and employment tradeoff metrics 

To further explore the tradeoff between air quality and employment, we derive the metrics, job-years 

created per premature mortality or per life-year lost.  A job-year is a full- or part-time job within the natural 

gas sector or spillover into the non-resource economy and that is held over a single year (rather than a 

sustained job over multiple years or a career).  Life-years lost – the years of life forgone due to dying 

premature of life expectancy – are estimated based on the number of premature mortalities and using the 

annual, county-level population distribution by age class reported by the U.S. Census Bureau and annual, 

national life tables of the life expectancy by age class reported by the Center for Disease Control (CDC).  

We calculate the simple quotient of the cumulative number of job-years created per premature mortality (or 

life-year lost), which provides information regarding the systems-level tradeoff across the supply chain and 

natural gas cycle.  We additionally estimate the marginal effect based on linearly regressing impacts 

aggregated by county or year.  To capture the spatial variability of this tradeoff, we also calculate the 

cumulative number of job-years created less the life-years lost for each county.   

5.2.6 Cross-impact elasticity 

We calculate cross-impact elasticities, which provide information with respect to the sensitivity of each 

impact to changes in other impacts.  We first regress one impact (𝑦) on another (𝑥) to determine the marginal 

effect (𝛽) associated with each pair of impacts, as follows: 

𝑦 =  𝛽0 + 𝛽𝑥           (39) 

Then, we calculate elasticities (𝜀), based on the following equation: 

𝜀 =
�̅�

�̅�
∙

∆𝑦

∆𝑥
=

�̅�

�̅�
∙ 𝛽          (40) 
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where �̅� and �̅� are average impacts.  We derive elasticities for pairs of the following impacts across the 

supply chain from 2004 to 2016: air quality impacts in units of premature mortality, employment impacts 

in units of job-years, and climate impacts (global temperature change) in units of kelvin-years integrated 

over 100 years.  To estimate pairwise elasticities, we use impact estimates stratified by year, as well as, 

employment and (source-resolved) air quality impact estimates stratified by county. 

5.3 Spatial equity of air quality and employment impacts 

Spatial equity refers to the distribution of benefits and costs on the basis of geographic location.  We apply 

several standard measures of equity to further characterize the spatial distribution of air quality and 

employment impacts.   We focus on the Gini coefficient (η) – an aggregate measure of equity across a 

system that compares each equity unit (e.g., county) to all other equity units and ranges in value from 0 for 

a completely equal distribution to 1 for complete inequity.  We also use Lorenz curves, which depict the 

proportion of the total impact that is cumulatively borne by a given segment of the population, and that are 

axiomatically equivalent to Gini coefficients.  Additional equity metrics are provided in the Supplemental 

Information (SI) (see Tables C2-3).  These standard equity measures are useful as aggregate comparative 

benchmarks of the state of the entire system, and may be used for comparing policies, such as siting and 

emission standards.  However, they are limited in their explanatory value of the underlying mechanisms of 

air quality and employment inequity and general interpretability for prescriptive decision making. 

As depicted in Figure 17a, over the shale boom from 2004 to 2016, we find that there are high spatial 

inequities of cumulative mortality across receptor counties within producing states (η = 0.69) and all 

receptor counties (η = 0.80), with 80% of mortalities concentrated in 20% of receptor counties.  However, 

spatial air quality inequities across counties have marginally declined over time (η = 0.77 in 2010 and η = 

0.66 in 2016) and the associated cumulative air quality burden has correspondingly increased over time, 

reflecting the expanding development of natural gas infrastructure within the basin (Table S2, Figure B1). 

Similarly, as depicted in Figure 1b, there are high spatial inequities of cumulative employment across 

producing counties (η = 0.88) and all counties within the tristate (η = 0.72), with 80% of employment 
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concentrated in 10% of counties within the tristate (Figure 1a).  Spatial inequities have remained relatively 

constant over time (Table C3, Figure C2).  For context, observed spatial inequities of air quality and 

employment impacts exceed that of income disparity in the U.S. (η = 0.39 for 2016).143  While these spatial 

inequities can in part be explained by the geological constraints of where natural gas is abundant, the siting 

of upstream infrastructure and general pattern of development across the supply chain are also influenced 

by local economic development decisions and industry learning.  Changing patterns of spatial equity over 

time are additionally affected by the increasing rate of development during the boom, as well as, the 

abundant but ephemeral nature of exploration and production activity and the relatively longer-term end 

use activity. 

In this analysis, we do not consider the spatial equity dimension of climate change impacts, given that we 

use global metrics including global temperature change and monetized damages using the social cost of 

carbon, which are useful for characterizing ubiquitous greenhouse gases but unsuitable for spatially 

allocating impacts.  There is also a nascent but expanding literature on spatially explicit climate change 

damages144 that provide important insight into the spatial dimensions of climate equity. 
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Figure 17. Spatial and temporal equity of air quality, employment, and climate change impacts across the 

natural gas supply chain from 2004 to 2016.  Air quality equity across the natural gas supply chain from 

2004 to 2016. (a) Lorenz curves and Gini coefficients representing premature mortality equity.  The 

following are the equity units and samples considered (and the associated color used in the bar chart and 

Lorenz curves): temporal equity of premature mortality across years, based annual mean mortality 

estimates across six model specification [using three different source-receptor (S-R) models and two 

concentration-response (C-R) relationships] (red); spatial equity of cumulative mortality between source 

counties, based on AP3 S-R model and ACS C-R (light blue); spatial equity of cumulative mortality 

between all counties with mortality >0.1, based on AP3 S-R model and ACS C-R (dark blue); spatial 

equity of cumulative mortality between source 36 x 36 km grid cells, based on APSCA S-R model and 

ACS C-R (light green); and spatial equity of cumulative mortality between 36 x 36 km grid cells with 

mortality >0.1, based on APSCA S-R model and ACS C-R (dark green).  (b) Lorenz curves and Gini 

coefficients representing employment equity.  We consider the following equity units: years (dark red), 

Pennsylvania, Ohio, and West Virginia counties (dark blue), and producing counties (dark green).  (c) 

Gini coefficients of climate change equity, assuming different equity units and equity horizons.  (d) 

Climate impacts over time with an intergenerational equity framing.  
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5.4 Temporal equity of natural gas development 

Temporal equity refers to the distribution of benefits and costs over time, and it is conceptually inclusive 

of intergenerational equity.  Within the natural gas system, it has been observed that short-lived air quality 

and employment impacts track with the boom-and-bust cycle, whereas climate impacts persist for 

generations well beyond the period of natural gas activity.124  Here, we apply a suite of systems-level equity 

metrics, similar to those used to evaluated spatial equity, as well as additional metrics to further elucidate 

temporal tradeoffs. 

Key to operationalizing temporal equity is the use of impact metrics that explicitly estimate temporally 

lagged responses.  Air quality and employment impacts in terms of premature mortality and jobs, 

respectively, temporally align with the natural gas activity, with a potential (but relatively minor) 

employment lag effect, and thus, are appropriate for use in equity analysis. A temporally-resolved climate 

change metric, such as the global mean temperature change that translates pulses of GHG emissions into 

future temperature response, is well-suited for equity analyses; this is in contrast to commonly employed 

time-integrated metrics that obscure when impacts are realized, such as global warming potential or 

monetized damages based on the social cost of carbon, which further assumes discounts rates and implies 

a modern economic and monetary structure.  Characterization of temporal equity also requires normatively 

defining the equity horizon – the period over which equity is assessed (e.g., 15, 50, 100 years) – and the 

equity units – the period over which impacts are integrated (e.g., year, decade, generation, century). 

As shown in Figures Figure 17a-b, over the period of natural gas activity from 2004 to 2016, we observe a 

high disparity between years with respect to air quality (η = 0.47) and employment (η = 0.44) impacts, 

reflecting the rapid increase in development over the boom period; depending on the future development 

pathway, temporal air quality and employment inequities will likely decrease as the industry contracts.  As 

depicted in Figure 1c, the temporal dispersion of climate impacts decreases as we increase the equity 

horizon or equity unit (Table C4, Figure C4); for example, there is greater equity between years in the long-

term (2004 to 2100) (η = 0.21) relative to the near-term (2004 to 2016) (η = 0.73) because of rapidly 
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increasing natural gas activity in the near-term, the lagged climate response, the relatively short atmospheric 

lifetime of CH4, and persistence of CO2 in the atmosphere.   Comparing the cumulative climate response in 

the near- to long-terms, we find that over an equity horizon out to 2100, the cumulative response in the 

long-term is 100 times that in the near-term (Figure C3).  Figure 17d provides a potentially more salient 

representation of the residual impacts of near-term production and consumption on future generations, that 

is not otherwise captured by quantitative system measures; we depict an intergenerational framing of air 

quality, climate change, and employment impacts, whereby we trace the descendants of a child born in 

2004, the year in which the first shale well was drilled in the Appalachian basin. 

Although we use quantitative measures of temporal equity to capture the absolute state of the system, they 

are more interpretable when used as comparative measures of different states of the system, such as under 

different policy interventions. For example, changes in the Gini coefficient can capture the differential 

effect of relatively marginal CH4 emissions abatement that may affect near-term warming rates, as 

compared to CO2 emission reductions through more systemic interventions to transition the energy system 

away from fossil fuels that result in benefits derived largely by future generations.  The Gini coefficient, 

however, does not capture the effect of reducing CH4 emissions as a strategy to avoid or delay of reaching 

“tipping points” in the climate system, irreversible thresholds with drastic consequences.115 
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5.5 Distributional equity with respect to racial and socioeconomic subpopulations 

Several studies have found evidence of racial and socioeconomic disparities in the distribution of 

environmental hazards and locally unwanted land uses.145  Here, we perform analyses to elucidate the 

decomposition of impacts and natural gas activity across different subpopulations based on income, race, 

and poverty levels, which have implications for policy design and decision making in the realm of both 

environmental justice and local economic development.  

5.5.1 Distributional equity of air quality impacts 

We assess the distribution of premature mortality and monetized air quality damages across subpopulations 

on the basis of race, income level, and poverty level.  Specifically, we estimate the subpopulation-weighted 

mortality and mortality rates (𝓂) – the mortality induced by natural gas activity for each subpopulation 

relative to the total subpopulation in the contiguous U.S. (in units of premature mortality per 100,000). 

We estimate mortality rates by income level, finding that there is not a noticeable spread across income 

levels, as shown in Figure 18c (Table C6).  We also find that populations below the poverty line do not 

experience higher mortality rates induced by natural gas activity, but rather we observe marginally higher 

annual mortality rates (6 to 10%) among populations above the poverty line relative to those below the 

poverty line, as depicted in Figure 18b.  This democratization of air quality impacts regardless of income 

and poverty level reflects the transport of air pollutants and the abundance of natural gas activity.  A major 

caveat of these analyses is that they do not account for differences in baseline mortality rates nor access to 

healthcare across income and poverty levels, given data limitations.  As provided in Figure 18d, however, 

we observe a trend of increasing income corresponding to decreasing damages (normalized by income) 

across counties within Pennsylvania, Ohio, and West Virginia, which demonstrates the higher health burden 

on lower income communities  

We also estimate population-weighted premature mortality and mortality rates by race, accounting for race-

based differences in baseline mortality.  As shown if Figure 18a, we find that annual mortality rates induced 
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by natural gas activity are marginally higher (13 to 20%) for white (𝓂 = 0.10)  than black or African 

American (𝓂 = 0.10)  populations, and annual mortality rates for white and black or African American 

populations are much higher (73 to 81%) than for Asian or Pacific Islander (𝓂 = 0.02) and American Indian 

or Alaska Native (𝓂 = 0.02) populations.  This result is unsurprising, given that communities within the 

Appalachian basin are predominately white and other receptor communities in the Northeast region have a 

higher proportion of black or African American populations than many other regions in the contiguous U.S. 

While transport of air pollutants results in a democratizing effect with respect to mortality rates, inequities 

on the basis of race and income may be borne out in infrastructure siting decisions, as evaluated in the 

subsequent section.  There are noteworthy limitations to these finding regarding distributional equity of air 

quality impacts.  The county-level resolution of this analysis may not reveal inequities that are observable 

only at finer spatial resolutions, and a population-level analysis only demonstrates average effects and not 

inequities experienced by individual communities.  We also only evaluate equity as it relates to premature 

mortality from primary PM2.5 and precursors for secondary PM2.5, and we would anticipate differing equity 

implications for other species and health outcomes.  Additionally, there are nontrivial methodological 

limitations associated with conducting equity based on health outcomes, such as premature mortality, rather 

than exposure; this is due to data limitations and a lack of robust evidence in the broader literature regarding 

differences in baseline mortality rates by race, income, and poverty level and the underlying mechanisms 

which account for such differences.
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Figure 18. Distributional equity of air quality impacts by race, income, and poverty levels.   Mortality rates associated with natural gas 

development across the supply chain from 2009 to 2016 by (a) race, (b) income, and (c) poverty level.  (d) 2016 mortality-related damages 

as a percentage of county personal income ranked by income from poorest to richest.  Includes counties within Pennsylvania, Ohio, and 

West Virginia. Dots and shaded regions represent mean and 95% confidence interval, respectively, and reflect uncertainty in the value of 

statistical life while assuming fixed baseline scenario assumptions regarding mortality.  Solid and dashed lines are spline regressions 

through mean and 95% CI values.



 

96 

 

5.5.2 Distributional equity of labor market impacts 

We explore the distributional effects of the natural gas boom on income inequality and poverty rates within 

local labor markets.  Regionally, in both producing and non-producing counties, there have been declines 

in income disparities and the percentage of the population below the poverty line between 2005 and 2015.  

However, we find statistically significant mean differences between producing and non-producing counties 

in the change in poverty rates and income Gini coefficient.   

Table 3 displays the marginal effects from the natural gas boom on poverty and income disparity measures. 

To discern the effects associated with different intensities in natural gas activity, we specify two treatment 

sets – a full treatment set comprised of all 90 producing counties and a top treatment set comprised of the 

top 25% of producing counties.  We find that the shale boom is associated with an absolute decline in the 

percentage below the poverty line of 1.08 (SE ± 24%) among all producing counties and 1.72 (SE ± 23%) 

among the top producing counties.  This is equivalent to a 9.9% (SE ± 17%) and 14.1% (SE ± 20%) decline 

in the poverty rates among all and top producing counties, respectively.  Our findings are consistent with 

several other studies showing that energy booms lower the poverty rate, at least in the short-run.88,117   It 

has further been shown in other studies that poverty rates increase during resource declines, and our findings 

are not reflective of long-run effects over the natural gas boom-and-bust cycle; as an analogue, the 1970s 

coal mining boom in the Appalachian region decreased poverty, but the 1980s bust reversed this 

reduction.146   

We additionally find that the shale boom is associated with a minimal, but statistically significant, absolute 

decline in the income Gini coefficient of 0.01 (SE ± 40%) or a 3.5% (SE ± 35%) decline in income disparity 

among all producing counties.  However, we do not observe a statistically significant change in income 

disparity among the top producing counties.  There is mixed evidence in the labor market literature with 

respect to the effect of energy booms on income inequality; for example, the recent energy boom in Western 

Canada generally increased local inequality with a U-shaped growth across income distributions.117 The 

distribution of the gains from energy booms depends on the skills of local residents and where they fall in 
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the income distribution, the extent of integration between local and regional labor markets, and the extent 

of spillover.147  Our finding of a minimal or insignificant change may indicate that income effects are almost 

equally distributed across the population.  Countervailing evidence suggests that labor demand from the 

shale gas boom is filled by transient workers because long-term residents in rural communities in 

Appalachia may not have the requisite skills and training.   Based on Security and Exchange Commission 

(SEC) filings in 2017 of the top publicly-traded producing firms in Appalachia, the median employee 

compensation ranged from $76,000 to $160,000, further suggesting a more skilled labor force, and there is 

evidence of vertical inequities within producing firms (Table C11).  

Table 3.  Distributional equity of labor market impacts.  Changes in poverty level and income Gini 

coefficients between 2005 and 2015 from natural gas activity. 

 Full Treatment Top Treatment 

Variable Estimate 

Std. 

Error P(>t)   Estimate 

Std. 

Error P(>t)   

△ % below poverty level -1.084 (0.257) 0.000 *** -1.723 (0.396) 0.000 *** 

Intercept 1.683 (0.118) <2e-16 *** 1.683 (0.118) <2e-16 *** 

Log △ % below poverty level -0.099 (0.017) 0.000 *** -0.141 (0.028) 0.000 *** 

Intercept 0.143 (0.009) <2e-16 *** 0.143 (0.009) <2e-16 *** 

△ Gini coefficient  -0.011 (0.004) 0.009 ** 0.001 (0.006) 0.925 
 

Intercept -0.080 (0.002) <2e-16 *** -0.080 (0.002) <2e-16 *** 

Log △ Gini coefficient  -0.035 (0.012) 0.002 ** -0.014 (0.02) 0.499 
 

Intercept -0.169 (0.006) <2e-16 *** -0.169 (0.006) <2e-16 *** 

Observations 258   191   

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 

Huber-White robust standard errors are reported. 

 

5.5.3 Racial and socioeconomic disparity in the geographic distribution of natural gas activity  

We assess racial and socioeconomic disparities in the distribution of natural gas activity and infrastructure, 

applying standard spatial coincidence methods used in the environmental justice literature.  We focus on 

upstream activity; however, an analogous method can be applied to evaluate disparities in the siting of other 

infrastructure, such as pipelines and power plants. 
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Comparing mean estimates of several demographic variables, we find that there are statistically significant 

differences between producing and non-producing counties (Table C10).  Population-weighted differences 

between producing and nonproducing counties with respect to racial variables (i.e., percentage nonwhite, 

percentage black) are nontrivial (e.g., nonwhite percentages in 2016 for producing and nonproducing 

counties are 8.5% and 25.7%, respectively); however, differences in per capita income, median household 

income, and poverty rates are minimal.  Assessing the relative importance of demographic characteristics 

in accounting for these disparities, as provided in Table 4, we find that over the period from 2010 to 2016, 

the percentage nonwhite (odds ratio = 0.926, p-value ≤ 0.00) and the log median household income (odds 

ratio = 0.005, p-value ≤ 0.00), and are statistically significant predictors of the geographic location of 

production, but the percentage below the poverty line (odds ratio = 0.964, p-value ≤ 0.15) is not.  As the 

nonwhite percentage decreases or the median household income decreases, there is an increasing 

probability that a county is producing natural gas.  Observed disparities based on this spatial coincidence 

approach may have both environmental justice and local economic development implications, but only if 

environmental risks or economic benefits are reasonably correlated with the geographic location of 

production.  When benefits or costs are dispersed and are not fully borne by local communities, such as in 

the transport of air pollutants, a simplistic spatial coincidence approach is limited.  

Table 4.  Racial and socioeconomic disparity in the geographic distribution of natural gas activity.  

Spatial coincidence of production and demographic variables, using a logistic regression approach. 

Variable 

2010 2016 2010 to 2016 

Estimate 

Odds 

Ratio P-value Estimate 

Odds 

Ratio P-value Estimate 

Odds 

Ratio P-value 

Percent nonwhite -0.132 0.876 0.060. -0.046 0.955 0.108 -0.077 0.926 0.000*** 

Log median household income -8.447 0.000 0.009** -8.685 0.000 0.000*** -5.213 0.005 0.000*** 

Percent below poverty line -0.026 0.975 0.800 -0.118 0.888 0.100. -0.036 0.964 0.147 

Constant 30.672 2.1E+13 0.022. 35.069 1.7E+15 0.000*** 20.031 5.0E+08 0.000*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

5.6 Pairwise air quality, climate change, and labor market tradeoffs 
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We are interested not only in the spatial, temporal, and distributional equities of individual impacts, as 

described in previous sections, but also pairwise comparisons of impacts that reveal the implied tradeoffs 

of natural gas development decisions. 

5.6.1 Cross-impact elasticity 

We estimate cross-impact elasticities (ε), which provide information regarding the sensitivity of each 

impact to changes in other impacts, as provided in Table 5.  At a systems level, based on cumulative impacts 

across the supply chain over the development period, each pairwise cross-impact elasticity is near unit 

elastic, which is an intuitive result given that all impacts are some function of the intensity of natural gas 

activity.  The employment elasticity of premature mortality (ε = 1.08) and cumulative global temperature 

change over a 100-year integration period (ε = 1.26) can be interpreted as a 1% increase in employment is 

associated with a 1.08% increase in air quality impacts and a 1.26% increase in climate impacts.  Similarly, 

the premature mortality elasticity of global temperature change over a 100-year integration period (ε = 1.17) 

is slightly elastic, with a 1% increase in air quality impacts corresponding to a 1.17% increase in climate 

impacts.  We would expect that as zero- or low-carbon energy technologies increasingly displace natural 

gas in the energy system, the employment elasticity of premature mortality and global temperature change 

would iterate towards becoming inelastic, with the decoupling of emissions and employment. 

Table 5.  Cross-impact elasticities. 

 ε 

Observations aggregated by year (n=13) 

Employment elasticity of air quality 1.08 

Employment elasticity of climate change 1.26 

Air quality elasticity of climate change 1.17 

Observations aggregated by county (n=210) 

Employment elasticity on air quality 0.48 
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5.6.2 Air quality and employment tradeoffs 

We derive additional metrics to further explore and provide salience to the tradeoff between air quality and 

employment impacts experienced in the near-term.  This tradeoff varies by supply chain segment, 

temporally, and spatially, and is subject to uncertainty with respect to air quality and employment modeling 

specifications. 

At a systems level across the supply chain from 2004 to 2016, the implied tradeoff, based on the simple 

quotient of employment and air quality impacts, is 217 job-years per premature mortality, with a range of 

100 to 410 job-years per premature mortality reflecting uncertainty in the air quality model functional form 

and concentration-response (C-R) relationship, as depicted in Figure 19a.  The mean marginal effect of air 

pollution on employment, whereby we regress employment on premature mortality based on annual average 

estimates, is 157 (95% CI 146 to 167) job-years per premature mortality (Table C13, Figure C6-10).  

Translating premature mortality into life-years lost, the tradeoff can also be expressed as 3 job-years created 

per life-year lost, with a range from <1 to 7 job-years per life-year reflecting uncertainty in the C-R 

relationship and employment estimates, as shown in Figure 19b. 

Air quality impacts are more spatially dispersed than employment effects, with communities in closest 

proximity to natural gas infrastructure experiencing the highest mortality rates.  The air quality and 

employment tradeoff varies spatially among producing counties, ranging from 1 to 16,000 job-years per 

premature mortality.124  To further explore this spatial tradeoff, as depicted in Figure 19c, we estimate the 

number of life-years lost minus the number of job-years created by county, finding a range from -1,100 to 

4,400.  In most producing counties, more job-year years are created than life-years lost, whereas, in all other 

counties there are more life-years lost than job-years created. 
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Figure 19. Air quality and employment tradeoffs across the natural gas supply chain from 2004 to 

2016.  (a) Job-years per premature mortality.  Based on job-year (mean) and premature mortality 

estimates from 2004 to 2016 reported in Mayfield et al. (forthcoming).  Solid points represent 

estimates based on American Cancer Society (ACS) C-R relationship, and open points represent 

estimates based on Harvard Six Cities (H6C) C-R relationship.  Circle, triangle, and square points 

represent premature mortality estimates based on AP3, APSCA, and InMAP, respectively. Black 

lines represent average annual mortality across all six specifications.  Grey shaded regions 

represent range of annual estimates.  (b) Job-years per life-year lost.  Life-years lost are based on 

premature mortality estimates using AP3.  Dark and light blue bars represent life-year lost 

estimates based on ACS and H6C C-R relationships, respectively.  The error bars represent the 

95% confidence interval, reflecting uncertainty in the job-year estimates.  (c) Spatial distribution of 

air quality and employment tradeoff in units of job-years created minus life-years lost.  Based on 

cumulative impacts across the supply chain from 2004 to 2016.  Life-years lost are based on 

premature mortality estimates using AP3 and ACS C-R relationship, and job-years are based on 

mean estimates. 
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5.7 Conclusions 

The intent of this study is to provide a descriptive evaluation of the state of systems-level equity.  We find 

that there are high temporal and spatial inequities with respect to cumulative air and employment impacts.  

With respect to distributional equity of air quality impacts, we do not observe a disparity in mortality rates 

across subpopulations on the basis of income and poverty; however, there is a trend of increasing income 

corresponding to decreasing damages, which demonstrates the higher health burden on lower income 

communities.  With respect to distributional equity of labor markets, we find statistically significant 

declines in the income disparity and poverty rates in producing counties.  Pairwise comparisons of air, 

climate, and employment impacts reveal that they are highly correlated.  
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6 Operationalizing Distributional, Spatial, and Temporal Equity Objectives in 

Energy System Planning 

Analytical approaches for evaluating and planning future energy system pathways often adopt efficiency 

or utilitarian objectives.  In this study, we develop a multiobjective optimization model, incorporating 

several objective functions which instill different concepts of spatial, temporal, and distributional equity.  

We apply this framework to future natural gas development decisions and pathways in the Appalachian 

basin.  We find that there are a range of conflicts and agreements between different equity objectives, as 

well as, between equity and cumulative air, climate, and employment impact objectives in a fossil-fuel 

dominated energy system.  For example, equity objectives which seek to minimize air quality impacts on 

populations below the poverty line, minority populations, rural communities, and communities with 

existing environmental burdens all generate different optimal natural gas system pathways. 
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6.1 Introduction 

Expanding upon an existing multiobjective energy optimization model presented in Chapter 4, we formulate 

equity objectives that reflect additional societal values, beyond the traditional economic efficiency 

maximization or utilitarian criteria.  The purpose of this study is to operationalize concepts of distributional, 

spatial, and temporal equity for future energy system planning and policy design.  We model alternative, 

theoretical natural gas development pathways by optimizing spatially and temporally explicit air quality, 

climate change, and employment impacts and equity with respect to decisions regarding the magnitude, 

timing, and location of preproduction, production, and industrial, residential, commercial, and electric 

consumption.  We additionally specify policy scenarios, including infrastructure siting and planning, 

emissions abatement, and renewable integration, and demonstrate the relative effect and pathway 

dependence of implementing these policies.  For contextualization, we focus on natural gas development 

decisions and pathways in the Appalachian basin. 

6.2 Model formulation 

To facilitate energy systems planning and environmental policy evaluation, we formulate a multiobjective 

linear optimization model that incorporates two types of objectives, equity and cumulative impacts.  We 

build upon an existing formulation in which cumulative air, climate, and employment impact objectives are 

optimized (see Chapter 4).  Herein, we provide a general formulation for energy systems, as well as 

parameterize the model for the case of natural gas development in the Appalachian basin.  We additionally 

specify modifications in which we integrate emissions abatement and renewables to displace natural gas.  

The optimization model is implemented in the General Algebraic Modeling System (GAMS) and uses 

CPLEX to solve the linear program.  Table 2 includes indices, decision variables, and parameters. 
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Table 6.  Indices, decision variables, and parameters. 

 

6.2.1 Decision variables 

We incorporate decision variables related to six types of upstream and end use natural gas activities – the 

number of producing and spud wells, and residential, commercial, industrial, and electricity consumption 

volumes.  We do not include midstream processes, including gathering, processing, transmission, storage, 

and distribution, in this version of the model. 

Indices 

𝑖 = {1, … , ℐ} county of natural gas activity  𝑗𝑝𝑜𝑣 ⊂ 𝑗 county with high population below poverty 

line 

𝑖𝑎, 𝑖𝑏 = {1, … , ℐ} aliases for  𝑖  𝑗𝑟𝑎𝑐𝑒 ⊂ 𝑗 county with high non-white population 

𝑗 = {1, … , 𝒥} county of impact  𝑗𝑟𝑢𝑟𝑎𝑙 ⊂ 𝑗 county with high rural population 

𝑗𝑎, 𝑗𝑏 = {1, … , 𝒥} aliases for  𝑗  𝑠 = {1, … , 𝒮} year of impact 

𝑗𝑙𝑜𝑤 ⊂ 𝑗 county with high population that 

is low income 

 𝑡 = {1, … , 𝒯} year of natural gas activity 

𝑗𝑛𝑜𝑛𝑎𝑡𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 ⊂ 𝑗 county classified as NAAQS non-

attainment 

 𝑡𝑎, 𝑡𝑏 = {1, … , 𝒯} aliases for  𝑡 

Decision variables 

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 commercial natural gas volume 

consumed (mmcf) 

 𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

 number of producing wells 

𝑥𝑖,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 electric generation natural gas 

volume consumed (mmcf) 

 𝑥𝑖,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 residential natural gas volume consumed 

(mmcf) 

𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 industrial natural volume 

consumed (mmcf) 

 𝑥𝑖,𝑡
𝑠𝑝𝑢𝑑

 number of spud wells 

𝜎1,𝑖𝑎,𝑖𝑏, 𝜎2,𝑖𝑎,𝑖𝑏,𝜎1,𝑗𝑎,𝑗𝑏 , 

𝜎2,𝑗𝑎,𝑗𝑏 

spatial slack variables  𝜙𝑖𝑎,𝑖𝑏 , 𝜙𝑗𝑎,𝑗𝑏 spatial binary variables 

𝜎1,𝑡𝑎,𝑡𝑏, 𝜎2,𝑡𝑎,𝑡𝑏 temporal slack variables  𝜆𝑡𝑎,𝑡𝑏 temporal binary variables 

     

Parameters (primary) 

a𝑖,𝑗,𝑡
AIR marginal premature mortalities per 

unit natural gas activity (per mmcf 

or well) 

 ℳ a very large number 

a𝑠,𝑡
CLIMATE marginal temperature impact per 

unit natural gas activity 

(milliKelvin per mmcf or well) 

 m number of counties 

aEMPLOY marginal job-years per unit natural 

gas activity (per mmcf or well) 

 n number of years 

GMAX maximum Gini coefficient  p𝑖,𝑗,𝑡
AIR marginal premature mortalities for 

population below the poverty line per unit 

natural gas activity (per mmcf or well) 

l𝑖,𝑗,𝑡
AIR marginal premature mortalities for 

low income population per unit 

natural gas activity (per mmcf or 

well) 

 r𝑖,𝑗,𝑡
AIR marginal premature mortalities for non-white 

populations per unit natural gas activity (per 

mmcf or well) 
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The decision variables, which are non-negative and continuous, reflect the magnitude of natural gas activity 

for each county 𝑖 and year 𝑡.  We consider a future natural gas activity time horizon (𝑡 = 2017, . . ,2030), 

and natural gas activity within 210 counties in Pennsylvania, Ohio, and West Virginia.  Given that impacts 

may be spatially and temporally dispersed from natural gas activity, we assume a longer impact horizon 

(𝑠 = 2017, . . ,2100) to accommodate delayed and persistent climate change impacts, and we consider 

impact counties to include all of those within the continental U.S. to allow for spatial transport of air 

pollutant impacts. 

We assume that consumption is spatially and temporally fixed to projected future levels, with the exception 

of the timing and location of additional electric generation and industrial end use beyond 2016 levels which 

are assumed to be variable.  We also allow the magnitude, timing, and location of future production to be 

variable, while accounting for the residual production from historical wells. 

6.2.2 Energy system constraints 

We specify multiple energy system constraints related to operational and technological efficiencies, 

consumption patterns, and natural gas, wind, and solar resources, which are further described in Chapter 4.  

6.2.3 Cumulative air, climate, and employment impact objectives 

We adopt three types of cumulative impact objectives; the reader is directed to Chapter 4 which describes 

the formulations and parameterization of these objectives.  The purpose of defining cumulative impact 

objectives is to explore and demonstrate the potential conflict between efficiency and equity, which are 

fundamentally different decision-making frameworks.  Herein, we refer to air, climate, and employment 

regimes to mean the energy system pathways under which air quality, climate change, or employment 

impacts are optimized, respectively. 

The air quality objective function is to minimize cumulative impacts, alternatively specified in terms of 

premature mortalities and monetized damages, resulting from primary fine particulate matter (PM2.5) and 

secondary PM2.5 formed from the atmospheric oxidation of nitrogen oxides (NOx) and volatile organic 
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compounds (VOCs) emissions.  The climate change objective function is to minimize cumulative climate 

change impacts, alternatively specified in terms of global temperature change and monetized damages, 

resulting from emissions of greenhouse gases (GHG), including methane (CH4) and carbon dioxide (CO2).  

The employment objective function is to maximize cumulative impacts, alternatively specified in terms of 

job-years and wages, resulting from upstream natural gas activity. 

6.2.4 Equity objective functions 

Equity, which is inherently subjective, may be variably and divergently defined and operationalized.  Here, 

we define six broad categories of equity: spatial, income / poverty, race, rural, existing environmental 

burden, and temporal.  Across these categories, we specify fifteen objective functions or equity rules.  While 

we tailor these categories and objectives for the regional case of the Appalachian basin, variants are more 

broadly applicable to the U.S. energy system.  Key inputs for defining some equity objectives are provided 

in Figure 20. 
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Figure 20.  Maps of low income, below the poverty line, non-white, nonattainment, and rural 

subpopulations.  Low income populations are people with an income of <$15,000.  Non-attainment 

counties are those classified under the National Ambient Air Quality Standards.  Rural counties are 

the third of counties with the highest percentage of rural populations. 



 

109 

 

1.  Minimize temporal inequity 

We formulate four temporal inequity objectives: minimize air quality temporal inequity (1a), minimize 

employment temporal inequity (1b), minimize combined air-employment temporal inequity (1c), and 

minimize combined air-climate-employment temporal inequity (1d). 

Equity objective 1a:  Min {
∑ |Z𝑡𝑎

AIR−Z𝑡𝑏
AIR|𝑡𝑎,𝑡𝑏

2n∙ZAIR }      (41) 

Equity objective 1b:  Min {
∑ |Z𝑡𝑎

EMPLOY−Z𝑡𝑏
EMPLOY|𝑡𝑎,𝑡𝑏

2n∙ZEMPLOY }     (42) 

Equity objective 1c:  Min {
∑ |Z𝑡𝑎

AIREMPLOY−Z𝑡𝑏
AIREMPLOY|𝑡𝑎,𝑡𝑏

2n∙ZAIREMPLOY }     (43) 

where 𝑡𝑎 and 𝑡𝑏 are indices that are aliases for activity year 𝑡, and n is the number of activity years. 

These objective functions (1a-1c) are based on the Gini index, an aggregate measure of equity across the 

system that compares each year to all other years.  We reformulate the objectives into sets of linear 

constraints.  Here, we provide an example for employment temporal equity. 

Z𝑡𝑎
EMPLOY − Z𝑡𝑏

EMPLOY = 𝜎1,𝑡𝑎,𝑡𝑏
EMPLOY − 𝜎2,𝑡𝑎,𝑡𝑏

EMPLOY       ∀ 𝑡𝑎 = 1, … , 𝒯;  𝑡𝑏 = 1, … , 𝒯  (44) 

𝜎1,𝑡𝑎,𝑡𝑏
EMPLOY ≤ ℳ ∙ 𝜆𝑡𝑎,𝑡𝑏

EMPLOY      ∀ 𝑡𝑎 = 1, … , 𝒯;  𝑡𝑏 = 1, … , 𝒯    (45) 

𝜎2,𝑡𝑎,𝑡𝑏
EMPLOY ≤ ℳ ∙ (1 − 𝜆𝑡𝑎,𝑡𝑏

EMPLOY)            𝑡𝑎 = 1, … , 𝒯;  𝑡𝑏 = 1, … , 𝒯   (46) 

∑ (𝜎1,𝑡𝑎,𝑡𝑏
EMPLOY − 𝜎2,𝑡𝑎,𝑡𝑏

EMPLOY)𝑡𝑎,𝑡𝑏 ≤ GMAX ∙ 2n ∙ ∑ Z𝑡
EMPLOY

𝑡      (47) 

where 𝜎1,𝑡𝑎,𝑡𝑏
EMPLOY and 𝜎2,𝑡𝑎,𝑡𝑏

EMPLOY are slack variables, 𝜆𝑡𝑎,𝑡𝑏
EMPLOY are binary variables, and ℳ is a very large 

number. 

We additionally specify an objective function which accounts for near- and long-term tradeoffs. 

2.  Minimize impacts on poor populations 
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We formulate four poverty and low income objectives: minimize air quality impacts on populations in the 

lowest income class (2a), on populations below poverty line (2b), in 10% of counties with highest 

proportion of population in lowest income class (2c), and in 10% of counties with highest proportion of 

population below poverty line (2d). 

Equity objective 2a:  Min{∑ (l𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ l𝑖,𝑗,𝑡

AIR,PRODUCTION ∙ 𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+𝑖,𝑗,𝑡

l𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + l𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙ 𝑥𝑖,𝑡

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 +

l𝑠,𝑡
AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + l𝑖,𝑗,𝑡
AIR,ELECTRIC ∙ 𝑥𝑖,𝑗,𝑡

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)} (48) 

where the coefficients l𝑖,𝑗,𝑡
AIR are the premature mortalities for populations in the lowest income class 

(<$15,000) in receptor county 𝑗 associated with emissions in source county 𝑖 per unit of natural gas activity. 

Equity objective 2b:  Min{∑ (p𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ p𝑖,𝑗,𝑡

AIR,PRODUCTION ∙𝑖,𝑗,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+ p𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + p𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + p𝑠,𝑡

AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + p𝑖,𝑗,𝑡

AIR,ELECTRIC ∙

𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}       (49) 

where the coefficients p𝑖,𝑗,𝑡
AIR are the premature mortalities for populations below the poverty line per unit 

activity. 

Equity objective 2c:  Min{∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑖,𝑗,𝑡

AIR,PRODUCTION ∙𝑖,𝑗∈𝑗𝑙𝑜𝑤,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+ a𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡

AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + a𝑖,𝑗,𝑡

AIR,ELECTRIC ∙

𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}       (50) 

where the coefficients a𝑖,𝑗,𝑡
AIR are the total premature mortalities per unit activity.  The subset 𝑗𝑙𝑜𝑤 are the 

10% of receptor counties with the highest proportion of their populations in the lowest income class 
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(<$15,000); we define the subset based on county-level populations by income class as reported by the US 

Census Bureau for 2016. 

Equity objective 2d:  Min{∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑖,𝑗,𝑡

AIR,PRODUCTION ∙𝑖,𝑗∈𝑗𝑝𝑜𝑣,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+ a𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡

AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + a𝑖,𝑗,𝑡

AIR,ELECTRIC ∙

𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}       (51) 

where the subset 𝑗𝑝𝑜𝑣 is the 10% of receptor counties with the highest proportion of their populations 

below the poverty line; we define the subset based on county-level poverty rates as reported by the US 

Census Bureau for 2016. 

3.  Minimize impacts on minority populations 

We formulate two race objectives: minimize air quality impacts on non-white populations (3a) and in the 

10% of counties with the highest proportion of their population that is non-white (3b). 

Equity objective 3a:  Min{∑ (r𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ r𝑖,𝑗,𝑡

AIR,PRODUCTION ∙𝑖,𝑗,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+ r𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + r𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + r𝑠,𝑡

AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + r𝑖,𝑗,𝑡

AIR,ELECTRIC ∙

𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}       (52) 

where the coefficients r𝑖,𝑗,𝑡
AIR are the premature mortalities for non-white populations per unit activity. 

Equity objective 3b:  Min{∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑖,𝑗,𝑡

AIR,PRODUCTION ∙𝑖,𝑗∈𝑗𝑟𝑎𝑐𝑒,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+ a𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡

AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + a𝑖,𝑗,𝑡

AIR,ELECTRIC ∙

𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}       (53) 
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where the subset 𝑗𝑟𝑎𝑐𝑒 is the 10% of receptor counties with the highest proportion of their populations that 

is non-white; we define the subset based on county-level non-white populations as reported by the US 

Census Bureau for 2016. 

4.  Minimize impacts on rural populations 

We formulate a single rural objective: minimize air quality impacts on counties with the highest rural 

populations (4a).   

Equity objective 4a:  Min{∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+ a𝑖,𝑗,𝑡

AIR,PRODUCTION ∙𝑖,𝑗∈𝑗𝑟𝑢𝑟𝑎𝑙,𝑡

𝑥𝑖,𝑡
𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔

+ a𝑖,𝑗,𝑡
AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡

𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 + a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙

𝑥𝑖,𝑡
𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡

AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡
𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 + a𝑖,𝑗,𝑡

AIR,ELECTRIC ∙

𝑥𝑖,𝑗,𝑡
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}       (54) 

where the subset 𝑗𝑟𝑢𝑟𝑎𝑙 is the third of receptor counties with highest rural population; we define the subset 

based on county-level rurality rates as reported by the US Census Bureau for 2016. 

5.  Minimize impacts on populations with existing environmental burden 

We formulate a single environmental burden objective: minimize air quality impacts on counties which are 

classified as nonattainment under the National Ambient Air Quality Standards (NAAQS) (5a).   

Equity objective 5a:  Min{∑ (a𝑖,𝑗,𝑡
AIR,PREPRODUCTION ∙ 𝑥𝑖,𝑡

𝑠𝑝𝑢𝑑
+𝑖,𝑗∈𝑗𝑛𝑜𝑛𝑎𝑡𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡,𝑡

a𝑖,𝑗,𝑡
AIR,PRODUCTION ∙ 𝑥𝑖,𝑡

𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔
+ a𝑖,𝑗,𝑡

AIR,INDUSTRIAL ∙ 𝑥𝑖,𝑡
𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 +

a𝑖,𝑗,𝑡
AIR,COMMERCIAL ∙ 𝑥𝑖,𝑡

𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙 + a𝑠,𝑡
AIR,RESIDENTIAL ∙ 𝑥𝑖,𝑗,𝑡

𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 +

a𝑖,𝑗,𝑡
AIR,ELECTRIC ∙ 𝑥𝑖,𝑗,𝑡

𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐)}     (55) 

where the subset 𝑗𝑛𝑜𝑛𝑎𝑡𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 is the receptor counties that were classified as nonattainment in 2017. 

6.  Minimize spatial inequity 
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We formulate three spatial equity objectives: minimize air quality spatial inequity (6a), employment spatial 

inequity (6b), and combined air-employment spatial inequity (6c). 

Equity objective 6a:  Min {
∑ |Z𝑗𝑎

AIR−Z𝑗𝑏
AIR|𝑗𝑎,𝑗𝑏

2m𝑎𝑖𝑟∙ZAIR }       (56) 

where 𝑗𝑎 and 𝑗𝑏 are indices that are aliases for receptor counties 𝑗, and m𝑎𝑖𝑟 is the number of receptor 

counties. 

Equity objective 6b:  Min {
∑ |Z𝑖𝑎

EMPLOY−Z𝑖𝑏
EMPLOY|𝑖𝑎,𝑖𝑏

2m𝑒𝑚𝑝𝑙𝑜𝑦∙ZEMPLOY }     (57) 

where 𝑖𝑎 and 𝑖𝑏 are indices that are aliases for source counties 𝑖, and m𝑒𝑚𝑝𝑙𝑜𝑦 is the number of source 

counties. 

Equity objective 6c: Min {
∑ |Z𝑗𝑎

AIREMPLOY−Z𝑗𝑏
AIREMPLOY|𝑗𝑎,𝑗𝑏

2m𝑎𝑖𝑟𝑒𝑚𝑝𝑙𝑜𝑦∙ZAIREMPLOY }     (58) 

where ZAIREMPLOY = ZEMPLOY − ZAIR, and ZAIR is a modification of the previously described impact 

objective function, where we convert premature mortalities to life-years lost. 

These objective functions are based on the Gini index, an aggregate measure of equity across the system 

that compares each equity unit (i.e., county) to all other equity units.  We reformulate the objectives into 

sets of linear constraints, which transforms the optimization into a mixed integer linear program.  Here, we 

provide an example for employment spatial equity. 

Z𝑖𝑎
EMPLOY − Z𝑖𝑏

EMPLOY = 𝜎1,𝑖𝑎,𝑖𝑏
EMPLOY − 𝜎2,𝑖𝑎,𝑖𝑏

EMPLOY       ∀ 𝑖𝑎 = 1, … , ℐ;  𝑖𝑏 = 1, … , ℐ  (59) 

𝜎1,𝑖𝑎,𝑖𝑏
EMPLOY ≤ ℳ ∙ 𝜙𝑖𝑎,𝑖𝑏

EMPLOY      ∀ 𝑖𝑎 = 1, … , ℐ;  𝑖𝑏 = 1, … , ℐ    (60) 

𝜎2,𝑖𝑎,𝑖𝑏
EMPLOY ≤ ℳ ∙ (1 − 𝜙𝑖𝑎,𝑖𝑏

EMPLOY)            ∀ 𝑖𝑎 = 1, … , ℐ;  𝑖𝑏 = 1, … , ℐ   (61) 

∑ (𝜎1,𝑖𝑎,𝑖𝑏
EMPLOY − 𝜎2,𝑖𝑎,𝑖𝑏

EMPLOY)𝑖𝑎,𝑖𝑏 ≤ GMAX ∙ 2m𝑒𝑚𝑝𝑙𝑜𝑦 ∙ ZEMPLOY    (62) 
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where 𝜎1,𝑖𝑎,𝑖𝑏
EMPLOY and 𝜎2,𝑖𝑎,𝑖𝑏

EMPLOY are slack variables, 𝜙𝑖𝑎,𝑖𝑏
EMPLOY are binary variables, and ℳ is a very large 

number. 

6.2.5 Multiobjective functions 

Multiobjective programming facilitates comparisons between conflicting objectives.  We evaluate pairwise 

tradeoffs between impact and equity objectives in terms of their physical units (i.e., premature mortalities, 

Kelvin-years, job-years, etc.) using the ε-constraint method.130  The ε-constraint method is based on 

formulating an auxiliary model in which a single objective is optimized subject to a secondary objective 

which is reformulated as a constraint.  This constraint imposes an upper (lower) limit ε on the value of the 

secondary maximization (minimization) objective and is iteratively solved to generate the Pareto set.  An 

example of the pairwise tradeoff between cumulative employment impacts and rural air quality impacts can 

be expressed as: 

Max ZIMPACT         (63) 

𝑠. 𝑡.   ZEQUITY ≤ 𝜀𝑘         (64) 

𝑤𝑖𝑡ℎ 𝜀𝑘 = 𝜀1, … , 𝜀𝑛 and 𝐸𝐿𝐵 ≤ 𝜀𝑘 ≤ 𝐸𝐿𝐵      (65) 

𝑍𝐼𝑀𝑃𝐴𝐶𝑇 and 𝑍𝐸𝑄𝑈𝐼𝑇𝑌 represent generic impact and equity objective functions, respectively.  In this 

example, other impact and equity objectives are treated as projections on the Pareto set based on the given 

impact and equity objective pair.  The extreme points (ELB, ELB) are derived based on solving the single 

objective ε-constraint problems. 

6.3 Interpreting equity rules for energy systems planning 

6.3.1 Minimize impacts on poor populations 

The poorest counties in Appalachia are primarily concentrated in West Virginia, southern Ohio, and 

Kentucky, which largely aligns with the location of historical extractive energy booms (refer to Figure 20).  

For all equity objectives in which air quality impacts on poor populations are minimized, the model selects 
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a natural gas system pathway in which production is spatially dispersed with somewhat greater siting within 

northern Pennsylvania or otherwise away from poor populations, as shown in Figure 22.  However, there 

is a noticeable difference in the spatial distribution of production and impacts with respect to whether an 

equity objective targets the aggregate population or counties with the highest rates of low income 

populations or populations below the poverty line (Figure 23).  We additionally find that end use demand, 

including electric generation, is largely fixed and unresponsive to the equity objectives. 

Figure 21 depicts the Pareto frontier representing the subset of solutions which are non-inferior – i.e., no 

other feasible solution will yield an improvement in one objective without degradation in at least one other 

objective.  The marginal rate of substitution (MRS), which is the slope along the Pareto frontier, can be 

interpreted as the rate at which some amount of cumulative impact can be exchanged for equity.  In climate 

and air quality optimization regimes, there are minor conflicts (if any) between impact and equity 

objectives, given that both types of objectives iterate to solutions which tend towards minimal natural gas 

activity; whereas, in an employment regime, there is a non-trivial, decreasing MRS between employment 

and equity objectives.   

 

Figure 21.  Pareto frontiers of pairwise equity and employment impact tradeoffs for equity 

objectives in which air quality impacts are minimized for poor populations. 
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Figure 22.  Spatial distribution of 2017 to 2030 production for equity objectives in which air quality 

impacts are minimized for poor populations.  Production values are based on the employment 

optimal solution along the relevant employment-equity Pareto frontier. 

 

Figure 23.  Spatial distribution of 2017 to 2030 impact for equity objectives in which air quality 

impacts are minimized for poor populations.  Impact values are based on the employment optimal 

solution along the relevant employment-equity Pareto frontier. 
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6.3.2 Minimize impacts on minority populations 

Counties with high non-white populations are primarily concentrated in urban and coastal states, outside of 

the Appalachian basin (refer to Figure 20).  We find that there is a noticeable difference in the spatial 

distribution of production and impacts with respect to whether an equity objective targets the aggregate 

non-white population or counties  with the highest rates of non-white populations, as shown in Figure 25 

and Figure 26.  In climate and air quality optimization regimes, there are minor conflicts (if any) between 

impact and equity objectives, given that both types of objectives iterate to solutions which tend towards 

minimal natural gas activity; whereas, in an employment regime, there are non-trivial conflicts between 

employment and equity objectives, as shown in Figure 24. 

While there are intersectionalities between poor and non-white subpopulations, the associated equity 

objectives do not iterate towards similar development pathways, given the differing general spatial 

distribution of these subpopulations.  There is not an observable systematic difference in spatial production 

and impact distributions between equity objectives minimizing impacts to poor and non-white 

subpopulations. 
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Figure 24.  Pareto frontiers of pairwise equity and impact tradeoffs for equity objectives in which 

air quality impacts are minimized for non-white populations. 
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Figure 25.  Spatial distribution of 2017 to 2030 production for equity objectives in which air quality 

impacts are minimized for non-white populations.  Production values are based on the employment 

optimal solution along the relevant employment-equity Pareto frontier. 

 

Figure 26.  Spatial distribution of 2017 to 2030 impacts and natural gas activity for equity 

objectives in which air quality impacts are minimized for non-white populations.  Impact values are 

based on the employment optimal solution along the relevant employment-equity Pareto frontier. 

 

6.3.3 Minimize impacts on rural populations 

We assign rural counties in Appalachia as a proxy for communities with historical extraction and concerns. 

We observe that the model selects a natural gas system pathway with more concentrated production and 

impacts in Pennsylvania and western Ohio, as shown in Figure 28 and Figure 29. 
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Figure 27.  Pareto frontiers of pairwise equity and impact tradeoffs for equity objectives in which 

air quality impacts are minimized for rural populations. 

 

Figure 28.  Spatial distribution of 2017 to 2030 production for equity objectives in which air quality 

impacts are minimized for rural populations.  Production values are based on the employment 

optimal solution along the relevant employment-equity Pareto frontier. 

 

 

Figure 29.  Spatial distribution of 2017 to 2030 impacts for equity objectives in which air quality 

impacts are minimized for rural populations.  Impact values are based on the employment optimal 

solution along the relevant employment-equity Pareto frontier. 
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6.3.4 Minimize impacts on populations with existing environmental burden 

Non-attainment counties are primarily more urban (refer to Figure 20).  Thus, in minimizing this objective, 

the model selects a natural gas system pathway in which production and net positive impacts are more 

concentrated in rural areas of West Virginia, as depicted in Figure 31 and Figure 32.  This is a systematically 

different pattern of development than equity objectives related to poor, minority, and rural populations.  In 

climate and air quality optimization regimes, there are minor conflicts (if any) between impact and equity 

objectives, given that both types of objectives iterate to solutions which tend towards minimal natural gas 

activity; whereas, in an employment regime, there is a non-trivial tradeoff between employment and equity 

objectives, as shown in Figure 30. 

 

 

Figure 30.  Pareto frontiers of pairwise equity and impact tradeoffs for equity objectives in which 

air quality impacts are minimized for non-attainment counties. 

 

Figure 31.  Spatial distribution of 2017 to 2030 production for equity objectives in which air quality 

impacts are minimized for non-attainment counties.  Production values are based on the 

employment optimal solution along the relevant employment-equity Pareto frontier. 
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Figure 32.  Spatial distribution of 2017 to 2030 impacts for equity objectives in which air quality 

impacts are minimized for non-attainment counties.  Impact values are based on the employment 

optimal solution along the relevant employment-equity Pareto frontier. 

6.4 The cost of equity 

As described in previous sections, varying degrees of conflict and agreement may exist between equity and 

cumulative impact objectives.  In air and climate minimization regimes, equity objectives limiting impacts 

on subpopulations based on demographics and existing environmental burdens are largely in agreement, 

given that both impact and equity objectives tend to limit production and other activity.  Whereas, in an 

employment maximization regime, which tends to select a development pathway where there is greater 

natural gas activity, there are fundamental conflicts with all equity objectives.  To further quantify these 

equity and impact conflicts, we estimate the average MRS by linearly regressing impacts on equity based 

on the Pareto optimal solutions; this approach is limited in that it does not capture increasing or decreasing 

MRS which are apparent in many of the Pareto frontiers.  We then monetized the average cost of equity 

using the value of a statistical life or average income per capita, as shown in Figure 33.  The cost of equity 

ranges from $11 to $580 million per avoided premature mortality for a given subpopulation. 
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Figure 33.  Cost of equity in units of million US$2017 per avoided mortality for given 

subpopulation.  The cost is based on multiplying the mean MRS with either the value of a statistical 

life ($8.5M) or the annual, county-level income per capita. 

6.5 Tradeoffs between equity objectives 

There are inherent conflicts between equity objectives, given different spatial and temporal patterns of 

populations and impacts.  Figure 34 presents a line graph, in which we normalize various equity metrics 

based on their best and worst values, to reveal the relative differences between equity objectives.  We show 

the relationship between equity objectives, assuming metrics are derived from the employment optimal 

solution along the relevant employment-equity Pareto frontier.  There are pronounced differences between 

the rural equity objective and other objectives, especially the non-attainment county objective which tends 

to select a development pathway that avoids urban impacts. We also note that minimizing impacts in poor 

and non-white communities differ.  Even within equity categories, objectives do not follow the same or 
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similar dominance structures (e.g., minimizing on air quality premature mortality on populations below the 

poverty line is not equivalent to minimizing on the 10% of counties with the highest poverty rates). 

 

Figure 34.  Comparison of equity objectives. 

6.6 Bending equity rules through low-carbon energy technologies 

In ongoing work, we explore and demonstrate how air pollutant and greenhouse gas emissions abatement, 

as well as integration of renewables to displace natural gas, can effectively bend the equity rules.  

Preliminary results suggest that despite inherent equity and impact conflicts in a fossil-fuel dominated 

energy system, low-carbon technologies have the potential to minimize inequities, while also reducing 

cumulative impacts. 
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6.7 Implications for policy and decision making 

To compensate for, mitigate, or otherwise address societal inequities between populations or 

subpopulations delineated on the basis on geographical, temporal, or demographic attributes 

This study provides an approach for developing future energy system pathways that optimize for different 

dimensions of equity.  We operationalize a small subset of the seemingly limitless interpretations and 

combinations of impact and equity objectives as they relate to energy systems analysis, planning, and 

policy.  We only generate pairwise comparisons to allow for comprehension of the most basic dynamics 

and tradeoffs, whereas the actual problem space has more than two dimensions and is much more complex.  

The framework presented is descriptive in nature, and there is no way to pick a particular Pareto optimal 

solution without appealing to ethical judgments.  Within a decision-making process, the tradeoffs and 

energy system pathways generated using this approach can be presented to decision makers and 

stakeholders, and equity and impact objectives can be iteratively refined.  This process may facilitate 

understanding that there are equity vs. impact and equity vs. equity tradeoffs, and may enable setting of 

goals and elucidation of preference hierarchies between different impact and equity criteria.  Policies may 

then be designed which instill these impact and equity preference structures. 

While it is possible to design public policy that explicitly addresses inequities, given preferences and 

technically feasible solutions, such policies are outside the norm of U.S. domestic environmental policy, 

which effectively adopts a Kaldor-Hicks efficiency criterion and treats equity as subsidiary or ignores it 

entirely.  Moreover, the energy system is dynamic and all equity rules explored in this study have a spatial 

and/or temporal dimension, requiring adaptable policy that matches this heterogeneity, such as location-

specific and temporally evolving siting, production, and consumption standards.  This suggests that equity 

policies are likely more complex to implement and enforce than traditional policies.  Furthermore, given 

that equity policies are non-standard, are derived based on potentially divergent ethical judgments, and have 

the potential to reverse the historically observed Not-In-My-Backyard phenomenon of siting decisions, 

such policies may be less politically tractable.  Practical limitations abound, but the historical and current 
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standards of public decision making and energy system planning have demonstratively contributed to 

observed and entrenched inequities. 

6.8 Conclusions 

The entangled strings of equity pull in many directions, which requires both delicately and pointedly 

addressing as a society, while also balancing cumulative societal impacts.  Increasing real and perceived 

inequities on all sides of the political and cultural spectrum in the U.S. are seemingly driving a societal 

moment demanding reconciliation and potentially contributing to further ideological entrenchment that may 

have cascading effects in a transition to a low-carbon energy system.  Many of the inequities within our 

society are rooted in slavery of the 19th and 20th centuries and the treatment of immigrant populations, 

which have percolated into racial and ethnic disparities in many facets of today’s society including 

environmental injustices.  Furthermore, our nation as a whole prospered from the exploitation of non-

renewable energy resources, but not without placing a disparate burden on certain subpopulations, such as 

the rural poor of Appalachia that have experienced multiple boom-and-bust cycles since the Industrial 

Revolution.  Piling onto the centuries-long inequities that persist in some form at present are the impending 

existential and intergenerational threats of climate change, which will be borne out on the order of millennia 

and temporally eclipse the historical inequities of the U.S.  



 

127 

 

7 Conclusions 

Transforming the energy system entails balancing multiple and often conflicting societal objectives.  This 

thesis presents new quantitative modeling approaches for energy and environmental systems planning and 

policy evaluation, with an emphasis on system heterogeneity, cumulative air, climate, and employment 

impacts, and temporal, spatial, and distributional equity.  The following summarizes key objectives, 

findings, and policy implications of this thesis.  In addition, we present a proposal for future work. 

7.1 Key findings and policy implications 

The chapters present a range of prescriptive and descriptive policy implications, applied and abstract insight 

derived through both retrospective and prospective lenses, and empirical and normative approaches.  All 

chapters are heavily data-driven, adopt a systems-level quantitative modeling approach, and seek to address 

limitations of existing evaluative tools for environmental and energy policy and planning.  

Chapter 2 adopts a traditional private and social economic efficiency maximization approach, coupled with 

methane emissions and abatement cost simulations reflecting system heterogeneity, to evaluate and design 

system-wide and superemitter policies related to methane abatement of the U.S. transmission and storage 

system.  We demonstrate that there are high societal benefits from abatement policies, and minimal (if any) 

private costs given the existing suite of abatement options, which is counter to the belief held by some that 

methane abatement and detection are necessarily in conflict with private interests.  We also find that 

superemitter policies, which target the highest emitting facilities, may reduce the private cost burden, while 

system-wide policies may be warranted given the non-trivial societal benefit of abating low-emitting 

sources.  This work contributes to our understanding of the prospects and limitations of evaluating and 

designing policies that account for system heterogeneity.   Our analysis also contributes to honest discourse 

regarding the merits of methane policies, especially in light of proposed rollbacks of federal methane rules.  

Chapters 3 and 5 aim to develop and demonstrate data-driven metrics and approaches for characterizing 

systems-level cumulative impacts and equity of current energy systems.  In Chapter 3, we assess the 
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spatially-and temporally-resolved air, climate, and employment impacts from extraction to end use and over 

the life of natural gas plays in the Appalachian basin from 2004 to 2016.  We show that short-lived air 

quality iand employment impacts track with the boom-and-bust cycle, while climate impacts persist for 

generations well beyond the period of natural gas activity.  We also find that employment effects are 

spatially concentrated in rural areas with thin labor markets where development is occurring, and more than 

half of cumulative premature mortality is within source emissions states.   We show that most premature 

mortality is associated with end uses, while upstream and midstream segments also account for a substantial 

portion of impacts.  With respect to climate change impacts, the magnitude of methane emissions across 

the supply chain produces temperature impacts nearly equivalent to that of carbon dioxide over a 30-year 

time horizon, but over longer integration periods, the warming impact from carbon dioxide dominates.  We 

estimate that a tax on production of $2 per thousand cubic foot (+172%/-76%) would compensate for 

cumulative climate and air quality externalities across the supply chain.  While we do not present the 

production tax as a policy recommendation, it does contextualize impacts relative to natural gas prices and 

production costs, which stimulates questions regarding whether firm decisions would change if they 

internalized environmental damages. 

In Chapter 5, we develop and demonstrate an approach for evaluating the equity state of an energy system.  

We apply variants of standard methods and present new methods and metrics to quantify spatial, temporal, 

and distributional equity, leveraging impact estimates of the shale gas boom in the Appalachian basin from 

Chapter 3.  We find that there are high temporal and spatial inequities with respect to cumulative air and 

employment impacts, and that spatial inequities are constant over time reflecting largely fixed  

infrastructure and consumption patterns.  We also present indicators of temporal climate inequities, 

estimating that long-term global temperature impacts are 100 times that of near-term impacts.  With respect 

to distributional equity of air quality impacts, we do not observe a disparity in mortality rates across 

subpopulations on the basis of income and poverty; however, there is a trend of increasing income 

corresponding to decreasing damages, which demonstrates the higher health burden of lower income 



 

129 

 

communities.  With respect to distributional equity of labor markets, we find statistically significant 

declines in the income disparity and poverty rates in producing counties.  Pairwise comparisons of impacts 

reveal that changes in air and climate impacts are sensitive to changes in employment impacts.  Chapter 5 

is intended to contribute to the policy evaluation toolset and to provide descriptive policy insight and 

salience, revealing the inequities that exist within the natural gas system.  These system analytics can be 

used to further assess changes in the equity state of an energy system. 

Chapters 4 and 6 develop and apply a multiobjective energy systems optimization model, which is informed 

and parameterized based on the data-driven quantitative modeling of Chapters 3 and 5.  We formulate 

cumulative impact and equity objectives that reflect additional societal values, beyond the traditional 

economic efficiency maximization criterion.  The modeling architecture is distinct from many existing 

energy systems optimization models because of the unique cumulative impact and equity objectives, spatial 

resolution, long time horizons, air and climate impact (rather than emission and monetary) measures 

leveraging reduced complexity models, and parameterization and structure reflecting a real (rather than 

illustrative) natural gas system.  The generated modeling scenarios represent alternative energy system 

futures, based on our understanding of the historical evolution of the system.  The scenarios also reflect the 

conflicts and agreements between cumulative air, climate, and employment impacts and spatial, temporal, 

and distributional equity objectives.  Preliminary results also demonstrate that conflicts may be reduced or 

reversed as a collection of low-carbon technologies are introduced into a fossil fuel-dominated energy 

system.  These chapters are intended to contribute to the policy process and evaluative toolset, rather than 

prescribe policy.  Given that we are modeling complex and highly uncertain futures, the modeling scenarios 

provide more abstract policy insight.  However, given that the modeling inputs and architecture represent 

details of the actual natural gas system in Appalachia, it is possible to generate prescriptive policy reflective 

of cumulative impact and equity preferences with iterative feedback from stakeholders and decision makers. 
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7.2 Future work 

This section proposes refinements and extensions to the studies in this thesis, as well as, general areas of 

future work. 

With respect to the multiobjective cumulative impact and equity optimization models presented in Chapters 

4 and 6, additional scenarios are in progress.  We are developing modules that allow for the abatement of 

air pollutant and GHG emissions and displacement of future natural gas electricity demand with renewable 

generation.  In addition, we intend to perform sensitivity analyses to explore the uncertainty and variability 

associated with the value of a statistical life, emission factors, dose-response relationships, representative 

climate pathways, absolute global temperature potential, social cost of methane and carbon, marginal labor, 

well productivity, and end use demand. 

There are several refinements and extensions to the multiobjective cumulative impact model which we do 

not intend to include in the studies presented in this thesis.  Other low-carbon interventions, such as energy 

efficiency, demand reduction, and electrification of commercial and industrial end use, may be modeled.  

In addition, cumulative impact objectives related to ecological, land, and water impacts and private costs 

may be specified.  The modeling structure can be broadened to include midstream natural gas activity and 

used for evaluating the tradeoffs of developing a petrochemical industry in southwest Pennsylvania.  There 

are additional uncertainties and dynamics which may be incorporated, including changing atmospheric 

sensitivities, correlation between air pollutant and GHG emissions, spatial variability in emission factors, 

economies/diseconomies on marginal labor, spatial employment spillovers, correlation between segments 

of the supply chain, declining well productivity as the play ages, technological advancements increasing 

well productivity, and variability in well productivity.  Some of these dynamics are structurally difficult to 

include in this optimization framework or not well understood, which may require auxiliary analyses.    

While we focus on natural gas activity within the Appalachian basin, the model is specified such that it is 

readily adaptable to the broader domestic energy system and can be used to explore environmental and 
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labor market tradeoffs associated with policy proposals and large-scale green infrastructure investment, 

such as proposals for a Green New Deal. 

The theoretical and applied field of incorporating systems-level equity into energy systems optimization 

and planning models is largely undeveloped, with the key exceptions of energy access for low-income 

households and the developing world.    Overall, we hope that the foundations of an approach for energy 

equity systems analysis presented in Chapters 5 and 6, spur other researchers to consider, if not contribute 

to, energy equity systems analysis.  There are seemingly limitless equity concepts that can be 

operationalized in quantitative terms and applied to other contexts.  For example, in the case of large-scale 

green infrastructure investment and siting, variants of spatial equity objectives may be formulated which 

enforce a more equitable distribution of both benefits and costs across counties or Congressional districts.  

In the case of publicly-funded infrastructure, these types of equity rules may facilitate legislative and 

stakeholder support for funding and siting of certain types of infrastructure that are high cost or otherwise 

controversial, such as transmission lines. 

Finally, much of the work in this thesis is currently framed for policy researchers and modelers.  Some of 

the main findings of this thesis can be translated and distilled for policy makers, elucidating the historical 

impacts of natural gas development in the Appalachian basin and demonstrating how an energy system 

transition and public and private investment in low-carbon energy technologies may relieve conflicts 

between environmental and employment impacts and equity. 
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A1 Introduction 

This supporting information document provides additional details regarding model formulations, 

assumptions, data, sources of uncertainty, and results.  Error! Reference source not found. is a conceptual 

mode depicting six interacting sub-modules used in the assessment of policy options. 

Figure A1.  Conceptual model. 

This study focuses on existing infrastructure in the transmissions and storage (T&S) sector.  We define the 

T&S system as the infrastructure between the receipt meter with the gathering and processing sector and 

the delivery meter with the distribution system.  The T&S sector contains both interstate and intrastate 

infrastructure, including compressor stations, pressurized pipeline networks, metering and regulation 

stations, and supporting equipment.  This analysis excludes pipelines and concentrates on compressor 

stations and storage facilities. 

We further focus this analysis on existing infrastructure, rather than new and modified natural gas facilities 

that are regulated by New Source Performance Standards (NSPS) under the Clean Air Act that were 

finalized by the Environmental Protection Agency (EPA) in June 2016. 
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A2  Input Parameter and Assumption Tables 

A2.1 Baseline emissions simulation input parameters and distributions 

The following table presents a list of additional key parameters and assumptions for the baseline emissions 

simulation.  Table A1 presents the distributions of emission factors and operating hours for each component 

type in each operating mode. 

Table A1.  Emission factor and operating hour inputs and distributions. 

Emission Category1 

Emissions Factor 

Distribution [Standard 

cubic feet per minute]2,3 

Annual Operating Hours 

Distribution [Hours] 

Centrifugal Compressor 

Blowdown Vent - NOP Exponential (1.422) TruncExponential (720,8784) 

Blowdown Vent - OP Exponential (1.422) TruncExponential (2636,8784) 

Isolation Valve - NOD Exponential (2.10) Uniform (0,8784) 

Dry Seal Vent - OP Exponential (2.63) TruncExponential (2869,8784) 

Wet Seal Vent - OP Exponential (7.772) TruncExponential (2313,8784) 

Compressor Component Leaks 

Connector Lognormal (0.18,0.71) 8784 

Open Ended Line Lognormal (3.65,48.2) 8784 

Pressure Release Valve Lognormal (0.43,5.53) 8784 

Valve Lognormal (0.20,0.88) 8784 

Meter Lognormal (0.43,5.53) 8784 

Non-Compressor Component 

Leaks 

Connector Lognormal (0.14,0.45) 8784 

Open Ended Line Lognormal (1.41,19.9) 8784 

Pressure Release Valve Lognormal (0.43,5.53) 8784 

Valve Lognormal (0.27,1.51) 8784 

Meter Lognormal (0.43,5.53) 8784 

Pneumatics 

High Bleed Lognormal (0.35,1.03) 8784 

Intermittent Bleed Not Modeled Not Modeled 

Low Bleed Lognormal (0.35,1.03) 8784 

Reciprocal Compressor 

Blowdown Vent - NOP Exponential (1.42) TruncExponential (2816,8784) 

Blowdown Vent - OP Exponential (1.42) TruncExponential (2992,8784) 

Isolation Valve - NOD Exponential (3.52) TruncExponential (2975,8784) 

RodPacking - NOP Exponential (6.34) TruncExponential (2816,8784) 

RodPacking - OP Exponential (3.49) TruncExponential (2992,8784) 

Transmission Tank 
Tank Vent Exponential (3.27) 8784 

Tank Flare Not Modeled Not Modeled 

Wellhead Components Not Modeled Not Modeled 

Blowdowns Not Modeled Not Modeled 

Combustion 

Lean 2 Stroke - OP Triangular (0,0.94,2.63) TruncExponential (2977,8784) 

Lean 4 Stroke - OP Triangular (0.09,0.75,3.22) TruncExponential (2940,8784) 

Rich 4 Stroke - OP Triangular (0,0.02,0.67) TruncExponential (2984,8784) 

Turbine - OP Exponential (0.0089) TruncExponential (2667,8784) 
1. Operating modes for components of reciprocating and centrifugal compressors are as follows: not operating pressurized (NOP), operating 

pressurized (OP), and not operating depressurized (NOD).  For some components, operating modes are not differentiated. 

2. Distribution designations are as follows: Exponential (lamba); Lognormal ( mean, standard deviation); Triangular (minimum, median, 

maximum); TruncExponential (lambda, maximum); Uniform (minimum, maximum). 
3.  Although we leverage datasets compiled by and some assumptions from the Zimmerle et al. (2015) study, we do not employ their 

emissions model.  Zimmerle et al. (2015) modeled emission factor and hour distributions differently, directly drawing from the empirical 

distributions.  The purpose of the Zimmerle et al. (2015) study was to derive aggregate estimates for the T&S system, whereas the purpose of 
the modeling in this study is to develop the details of emissions from individual components and facilities to assess policy options.  Thus, the 

functional form, treatment of uncertainty and variability, and other model details necessarily differ between the two models.  We explicitly 

make note of these differences where appropriate. 

 

A2.2 Abatement cost simulation input parameters and distributions 
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The following tables present a list of additional key parameters and assumptions for the abatement cost 

simulation.  Table A2 presents brief descriptions of abatement measures for each component type in each 

operating mode.  Table A3 includes the distributions of incremental abatement costs for each component 

type; note that these are not presented as annual costs, but rather total costs.  Table A4 and Table A5 present 

the abatement interval and abatement efficacy for each component type, respectively. 

Table A2.  Abatement measure description. 

Emission Source Abatement Measure 

Centrifugal 

Compressor 

Blowdown Vent - NOP Rebuild or replace valve. 

Blowdown Vent - OP Rebuild or replace valve. 

Isolation Valve - NOD Clean and inject sealant or replace valve. 

Wet Seal Vent - OP Replace wet seal vents with dry seal vents. 

Compressor 

Component Leaks 

Connector Replace or repair connector. 

Open Ended Line Replace or repair open ended line. 

Pressure Release Valve Replace or repair pressure release valve. 

Valve Replace or repair valve. 

Non-Compressor 

Component Leaks 

Connector Replace or repair connector. 

Open Ended Line Replace or repair open ended line. 

Pressure Release Valve Replace or repair pressure release valve. 

Valve Replace or repair valve. 

Pneumatics High Bleed Replace high bleed with low bleed. 

Reciprocal 

Compressor 

Blowdown Vent - NOP Rebuild or replace valve. 

Blowdown Vent - OP Rebuild or replace valve. 

Isolation Valve - NOD Clean and inject sealant or replace valve. 

Rodpacking - NOP Replace rodpacking rods and rings. 

Rodpacking - OP Replace rodpacking rods and rings. 

Transmission Tank Tank Vent Reroute to combustion component. 
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Table A3.  Total cost of abatement. 

Emission Source 
Parameter Distribution1,2 

[2014 USD] 
Source 

Centrifugal 

Compressor 

Blowdown Vent - NOP Uniform (150, 1,200) 
(Carbon Limits 2014; Clearstone 2006; EPA 

2003; EPA 2014b) 

Blowdown Vent - OP Uniform (150, 1,200) 
(Carbon Limits 2014; Clearstone 2006; EPA 

2003; EPA 2014b) 

Isolation Valve - NOD Uniform (95, 4,000) (EPA 2003; EPA 2014b) 

Wet Seal Vent - OP Uniform (55,000, 110,000) (EPA 2006b; EPA 2011; EPA 2014a; ICF 2014) 

Compressor 

Component 

Leaks 

Connector Triangular (11, 66, 5,000) 
(Carbon Limits 2006; Carbon Limits 2014; EPA 

2003; EPA 2014b) 

Open Ended Line Triangular (69, 200, 1,900) (Clearstone 2006; EPA 2003; EPA 2014b) 

Pressure Release Valve Triangular (90, 480, 830) (Clearstone 2006; EPA 2003; EPA 2014b) 

Valve Triangular (20, 50, 5,500) 
(Carbon Limits 2014; Clearstone 2006; EPA 

2014b) 

Non-

Compressor 

Component 

Leaks 

Connector Triangular (11, 66, 5,000) 
(Carbon Limits 2006; Carbon Limits 2014; EPA 

2003; EPA 2014b) 

Open Ended Line Triangular (69, 200, 1,900) (Clearstone 2006; EPA 2003; EPA 2014b) 

Pressure Release Valve Triangular (90, 480, 830) (Clearstone 2006; EPA 2003; EPA 2014b) 

Valve Triangular (20, 50, 5,500) 
(Carbon Limits 2014; Clearstone 2006; EPA 

2014b) 

Pneumatics High Bleed Triangular (580, 2,300, 9,800) (EPA 2011; EPA 2014c; ICF 2014) 

Reciprocal 

Compressor 

Blowdown Vent - NOP Uniform (150, 1,200) 
(Carbon Limits 2014; Clearstone 2006; EPA 

2003; EPA 2014b) 

Blowdown Vent - OP Uniform (150, 1,200) 
(Carbon Limits 2014; Clearstone 2006; EPA 

2003; EPA 2014b) 

Isolation Valve - NOD Uniform (95, 4,000) (EPA 2003; EPA 2014b) 

Rodpacking - NOP Uniform (5,900, 8,000) 
(Carbon Limits 2014; EPA 2011; EPA 2014a; 

EPA 2015c; ICF 2014) 

Rodpacking - OP Uniform (5,900, 8,000) 
(Carbon Limits 2014; EPA 2011; EPA 2014a; 

EPA 2015c; ICF 2014) 

Transmission 

Tank 
Tank Vent Uniform (91,000, 110,000) (EPA 2006a; ICF 2014) 

1. Estimates rounded to two significant figures. 

2. Distribution designations are as follows: Triangular (low, median, high); Uniform (low, high). 
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Table A4. Abatement interval. 

Emission Source 

Parameter 

Value 

[Years] 

Source 

Centrifugal 

Compressor 

Blowdown Vent – NOP  2 Average based on (Clearstone 2006; EPA 2014b) 

Blowdown Vent - OP 2 Average based on (Clearstone 2006; EPA 2014b) 

Isolation Valve - NOD 3 Average based on (EPA 2014b) 

Wet Seal Vent - OP 10 (EPA 2011; EPA 2014b) 

Compressor 

Component Leaks 

Connector 3 Average based on (Carbon Limits 2006; EPA 2014b) 

Open Ended Line 2 (Clearstone 2006; EPA 2014b) 

Pressure Release Valve 2 (Clearstone 2006; EPA 2014b) 

Valve 3 Average based on (EPA 2014b) 

Non-Compressor 

Component Leaks 

Connector 3 Average based on (Carbon Limits 2006; EPA 2014b) 

Open Ended Line 2 (Clearstone 2006; EPA 2014b) 

Pressure Release Valve 2 (Clearstone 2006; EPA 2014b) 

Valve 3 Average based on (EPA 2014b) 

Pneumatics High Bleed 10 (EPA 2011) 

Reciprocal 

Compressor 

Blowdown Vent - NOP 2 Average based on (Clearstone 2006; EPA 2014b) 

Blowdown Vent - OP 2 Average based on (Clearstone 2006; EPA 2014b) 

Isolation Valve - NOD 3 Average based on (EPA 2014b) 

Rodpacking - NOP 3 Average based on (Carbon Limits 2014; EPA 2015c) 

Rodpacking - OP 3 Average based on (Carbon Limits 2014; EPA 2015c) 

Transmission Tank Tank Vent 10 (Richards) 

 

Table A5.  Abatement efficacy. 

Emission Source 
Parameter 

Value 
Source 

Centrifugal 

Compressor 

Blowdown Vent - NOP 0.95 (Carbon Limits 2014; EPA 2003; EPA 2014b) 

Blowdown Vent - OP 0.95 (Carbon Limits 2014; EPA 2003; EPA 2014b) 

Isolation Valve - NOD 0.93 Average based on (Carbon Limits 2014; EPA 2006; ICF 2014) 

Wet Seal Vent - OP 0.92 Average based on (EPA 2011; ICF 2014) 

Compressor 

Component Leaks 

Connector 0.95 (Carbon Limits 2014; ICF 2014) 

Open Ended Line 0.95 (Carbon Limits 2014; ICF 2014) 

Pressure Release Valve 0.95 (Carbon Limits 2014; ICF 2014) 

Valve 0.93 Average based on (Carbon Limits 2014; EPA 2006; ICF 2014) 

Non-Compressor 

Component Leaks 

Connector 0.95 (Carbon Limits 2014; ICF 2014) 

Open Ended Line 0.95 (Carbon Limits 2014; ICF 2014) 

Pressure Release Valve 0.95 (Carbon Limits 2014; ICF 2014) 

Valve 0.93 Average based on (Carbon Limits 2014; EPA 2006; ICF 2014) 

Pneumatics High Bleed 0.93 Average based on (EPA 2011; ICF 2014) 

Reciprocal 

Compressor 

Blowdown Vent - NOP 0.95 (Carbon Limits 2014; EPA 2003; EPA 2014b) 

Blowdown Vent - OP 0.95 (Carbon Limits 2014; EPA 2003; EPA 2014b) 

Isolation Valve - NOD 0.93 Average based on (Carbon Limits 2014; EPA 2006; ICF 2014) 

Rodpacking - NOP 0.79 Average based on (EPA 2014c; EPA 2015c) 

Rodpacking - OP 0.79 Average based on (EPA 2014c; EPA 2015c) 

Transmission Tank Tank Vent 0.95 (EPA 2006; EPA 2015c; ICF 2014) 
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A2.3 Detection input parameters 

The following table presents a list of additional key parameters and assumptions for the detection sub-

module.  Table A6 presents the detection limits and costs. 

Table A6.  Detection input parameters. 

Detection Method Annual Detection Cost Detection Limit 

Parameter Value [2014 

USD per facility] 

Source Parameter Value 

[SCFM] 

Source 

EPA Method 21 13,4001 (Clearstone 2006; 

EPA 2014; ICF 2014) 

0.00001 (EPA 2014) 

Optical Gas Imaging 

(Base Assumption) 

5,7002 (Clearstone 2006; ICF 

2013; ICF 2014) 

0.024 (Allen 2013; EC/R Inc 

2001) 

Emerging Technology 4693 (EDF 2014b) 2.27 (EDF 2014b) 
1. The detection costs are the sum of the annualized capital costs and labor costs.  We assume detection surveys occur on a quarterly basis.  The 
annualized capital costs were calculated assuming a discount rate of 3%, a 5-year capitalization period, and capital costs of detection equipment 

and other costs of $52,200.  The labor costs are $3,100. 

2.  The detection costs are the sum of the annualized capital costs and labor costs.  We assume detection surveys occur on a quarterly basis.  
The annualized capital costs were calculated assuming a discount rate of 3%, 5-year capitalization period, and capital costs of detection 

equipment and other costs of $153,000.  The labor costs are $1,200. 

3.  The detection costs are the annualized costs.  We assume detection occurs continuously.  The annualized capital costs were calculated 
assuming a discount rate of 3%, 10-year equipment life, and capital costs of equipment of $1,000. 

 

In other analyses (ICF 2014; Clearstone 2006), it was assumed that more frequent detection is proportional 

to increased abatement (e.g., an increase in detection frequency from annually to quarterly results in a four-

fold increase in abated emissions).  Although more frequent or continuous measurement conceivably would 

allow for more rapid detection and abatement, lacking continuous methane measurement data, we do not 

explicitly model this.  Note that in addition to varying the detection method, to account for uncertainty in 

detection and subsequent timing of an abatement action, we perform sensitivity analysis of abatement 

efficacy and calculate detection costs at the break-even point (i.e., when system-wide net benefits are zero). 

A2.4 Throughput input parameters 

The following table presents a list of additional key parameters and assumptions for estimating throughput 

and proportional loss rates.  Table A7 presents the distributions of horsepower multiplied by efficiency for 

reciprocating and centrifugal compressors.  Distributions are based on datasets compiled by Zimmerle et 

al. (2015). 

Compressor 

Type 

Horsepower x Efficiency 

Distribution1 

Reciprocating Invgaussian (651,890) 

Centrifugal Lognormal (3897, 60,315) 
1. Distribution designations are as follows: Lognormal ( 

mean, standard deviation); Invgaussian (mean,lambda). 
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Table A7.  

Throughput 

input 

parameters. 
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A3 Baseline Methane Emissions Simulation Formulation 

Figure A2 is a depiction of the types of components (e.g., rod-packing, isolation valves) or emission sources 

at transmission compressor stations and storage facilities. 

 

 

Figure A2.  Transmission and storage system diagram.  Orange boxes represent emission sources that we 

assume are not abatable.  Green boxes represent emission sources that we assume are abatable. 
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Annual baseline emissions (ẽ𝑖,𝑗
ANNUAL) are simulated for each emission category i = 1,…, m (assuming there 

are m emission categories) and component number j = 1,…, n in the population (assuming there are n 

components).  We account for uncertainty in emission factors (ẽ𝑖
EF) and annual operating hours (h̃𝑖).  

Annual baseline emissions are simulated as follows: 

0. Set j = 0 

1. Draw random values from the emissions factor distribution (ẽ𝑖
EF) and annual operating hour 

distribution (h̃𝑖) for each 𝑗 ∈ D𝑖 = {component 𝑗 is of type 𝑖} 

2. Estimate annual emissions as follows: 

�̃�𝒊,𝒋
𝐀𝐍𝐍𝐔𝐀𝐋 = 𝟔𝟎 ∙ �̃�𝒊

𝐄𝐅 ∙ �̃�𝒊         (1) 

3. Repeat steps 1-2, 100 times 

4. j = j+1 

5. Repeat steps 1-4 until j=n 

Estimates of baseline annual emissions for each facility l in the U.S. natural gas transmission and storage 

sector are also simulated by assigning annual emissions for each component in the population to a facility.  

Each facility is described by a facility profile or inventory (i.e., number of components of each type at a 

facility), which are known, at least in part, for only some facilities in the population.  However, for a subset 

of facilities in which facility profiles are unknown, we simulate profiles based on known facility profiles, 

accounting for correlations between numbers and types of components.  Based on the facility profiles, we 

then assign component-level emissions to each facility, and develop facility-level emission estimates: 

�̃�𝒍
𝐅𝐀𝐂𝐈𝐋𝐈𝐓𝐘 = ∑ �̃�𝒋

𝐀𝐍𝐍𝐔𝐀𝐋
𝒋∈𝐅𝒍={𝐜𝐨𝐦𝐩𝐨𝐧𝐞𝐧𝐭 𝒋 𝐢𝐬 𝐨𝐟 𝐟𝐚𝐜𝐢𝐥𝐢𝐭𝐲 𝒍}       (2) 

This model simulates 100 realizations of each component and facility in the sector. 
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A4  Abatement Cost Simulation Mathematical Formulation 

For each component type i, we estimate annualized costs of abatement (c̃𝑖
ABATEMENT), representing the 

present value of the capital cost of an abatement measure over an assumed financial life, converted to equal 

annual payments.  Annualized costs are a function of the capital recovery factor (CRF) and capital 

expenditures for the abatement measure for component type i (CAPEX̃
𝑖
ABATEMENT).  The capital costs are 

incremental costs beyond the status quo.  The CRF is a function of the discount factor r and the abatement 

interval t (e.g., replacement interval).  Abatement costs are calculated as follows: 

c̃𝑖
ABATEMENT = CRF ∙ CAPEX̃

𝑖
ABATEMENT       (3) 

where the CRF is given by the following equation: 

CRF =
𝑟∙(1+𝑟)𝑡

(1+𝑟)𝑡−1
           (4) 

Abatement costs (c̃𝑖,𝑗
ABATEMENT) are simulated for each component type i = 1,…, m (assuming there are m 

component types) and component number j = 1,…, n in the population (assuming there are n components 

total of all types).  Abatement costs are simulated as follows: 

0. Set j = 0 

1. Draw a random value from the levelized annual cost of abatement distribution (c̃𝑖
ABATEMENT) for 

each 𝑗 ∈ D𝑖 = {component 𝑗 is of type 𝑖} 

2. Draw a random value from the baseline annual emissions (ẽ𝑖,𝑗
ANNUAL)  

3. Estimate abatement costs as follows: 

�̃�𝒊,𝒋
𝐀𝐁𝐀𝐓𝐄𝐌𝐄𝐍𝐓 = �̃�𝒊

𝐀𝐁𝐀𝐓𝐄𝐌𝐄𝐍𝐓 − 𝟏. 𝟏 ∙ 𝐀𝒊 ∙ �̃�𝒊,𝒋
𝐀𝐍𝐍𝐔𝐀𝐋 ∙ 𝐂𝐍𝐆     (5) 

4. Repeat steps 1-3, 100 times 

5. j = j+1 

6. Repeat steps 1-5 until j=n 

Note that in Equation 5, to estimate NG emissions, we multiply methane emissions by a factor of 1.1, which 

assumes that the methane content of NG is 90.4%.  
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A5  Social cost of methane comparison 

The social cost of methane emissions can be estimated indirectly or directly.  Indirect estimation, suggested 

by Price et al. (2007), converts non-CO2 emissions to carbon dioxide equivalents (CO2eq) using global 

warming potentials (GWPs), then applies estimates of the social cost of carbon (SCC).  GWP – which is a 

simplified index relating the contribution of non-CO2 greenhouse gas emissions to long-run measures of 

atmospheric radiative forcing to that of CO2 – was developed for practical purposes of transparency and 

ease of use (Marten and Newbold 2012).  The metric, GWP, has been critiqued from economic and scientific 

perspectives for reasons such as, among other things, arbitrary time horizons and constant concentration 

assumptions.   A few studies evaluated the magnitude of error in the context of cost-effectiveness analysis, 

finding that the increased cost of abatement required to achieve a temperature stabilization target due to 

utilizing proxies based on GWPs may be small in relative terms, but may not be insubstantial in absolute 

(Johansson et al. 2006).   

While there are limitations of indirect estimation, minimal direct estimates of the marginal costs of methane 

exist.  Marten and Newbold (2015) estimated the social costs of methane for the years 2010 to 2050 using 

an integrated assessment model that combines the DICE, PAGE, and FUND integrated assessment models 

with a climate model, Model for the Assessment of Greenhouse-gas Induced Climate Change (MAGICC), 

employing assumptions similar to those used by the United States Government Interagency Working Group 

on the Social Cost of Carbon (IWG SCC).  This study suggests that for single-gas policies, such as emissions 

abatement in natural gas systems, the estimation error when using GWPs can be large; the global damage 

potential for methane, which is analogous to GWP but based on direct estimation, is 4-84% higher in 2020 

than the 100-year GWP reported in the IPCC’s Fourth Assessment Report (Marten et al. 2014; Marten et 

al. 2015). 
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For comparative purposes, Table A8 includes direct estimates for abatement conducted in 2020 and 2050, 

as well as indirect estimates, derived using 100-year GWPs of 28 to 34, as reported in the IPCC’s Fifth 

Assessment Report, and the SCC estimates reported by the IWG SCC (IWG SCC 2015; Myhre et al. 2013).  

This comparison suggests that direct and indirect estimates are similar.  In this analysis, we use direct 

estimates ranging from 601 to 3560 USD per metric ton of methane. 

Table A8.  Social Cost of Methane [Units: 2014 USD per ton of methane]. 

Year 

Direct Estimates Indirect Estimates 

r=5% 

(mean) 

r=3% 

(mean) 

r=2.5% 

(mean) 

r=3% 

(95th 

percentile) 

r=5% 

(mean) 

r=3% 

(mean) 

r=2.5% 

(mean) 

r=3% 

(95th 

percentile) 

2020 601 1330 1780 3560 374 - 454 1310 - 1590 1930 - 2350 3830 - 4650 

2050 1450 2780 3450 7450 810 - 983 2150 - 2610 2960 - 3590 6600 - 8020 
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A6 Optimization model formulation 

Section A6.1 and A6.2 are the optimization formulations for the system-wide and superemitter policies, 

respectively.  Table A9 includes parameter and decision variable descriptions. 

A6.1 System-wide formulation 

For the system-wide policies, we assume that all components in the T&S system are regulated, and detection 

and abatement activities occur at all facilities.  Two system-wide formulations, aligning with different 

policy options, are derived: 1) an unconstrained formulation in which net social benefits are maximized 

(Section A6.1.1), and 2) a uniform percent emissions reduction target for each facility (10/50/75%) in which 

private costs are minimized, while meeting target (Section A6.1.2).  The models select the subset of 

components in the population to abate.   

A6.2 Unconstrained formulation 

The objective function of the unconstrained formulation, in which net social benefits are maximized, is as 

follows: 

{𝐌𝐢𝐧{𝒙𝒊,𝒋,𝒌,𝒍} ∑ {𝒙𝒊,𝒋,𝒌,𝒍 ∙ [�̃�𝒊,𝒋,𝒌,𝒍
𝐀𝐁𝐀𝐓𝐄𝐌𝐄𝐍𝐓 − 𝐀𝒊 ∙ �̃�𝒊,𝒋,𝒌,𝒍

𝐀𝐍𝐍𝐔𝐀𝐋 ∙ (𝟏. 𝟏 ∙ 𝐂𝐍𝐆 + 𝐂𝐒𝐂𝐂𝐇𝟒)]}𝒊,𝒋    (6) 

+𝐘 ∙ 𝐂𝐃𝐄𝐓𝐄𝐂𝐓𝐈𝐎𝐍}𝒌  

𝑥𝑖,𝑗,𝑘,𝑙 ∈ {0,1} ∀𝑖, 𝑗, 𝑘, 𝑙 is a binary decision variable, where a value of one indicates abatement of emissions 

for component type i, component number j in the population, and facility l, and a value of zero indicates 

emissions are not abated.  Each realization k aligns with a single iteration of the Monte Carlo simulation of 

baseline emissions and abatement costs for the entire system; in other words, each realization is a random 

configuration of each component and facility in the system.  Essentially, we are performing 100 sub-

optimization problems. 

We assume that only emissions that are detected may be abated.  Thus, we perform a pre-processing step 

prior to the optimization in which we eliminate components in the system in which the emissions factor in 

units of standard cubic feet per minute (ẽ𝑖,𝑗,𝑘,𝑙
EF ) is less than the detection limit (SDETECTION) for a given 

detection technology. 
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In alternative formulations of the base model, we assume a system-wide emissions reduction target 

(RSYSTEMWIDE
PERCENTAGE ) that cannot be exceeded: 

∑ ẽ𝑖,𝑗,𝑘,𝑙
ANNUAL∙A𝑖∙𝑥𝑖,𝑗,𝑘,𝑙𝑖,𝑗,𝑙

∑ ẽ𝑘,𝑙
UNABATABLE

𝑙 +∑ ẽ𝑖,𝑗,𝑘,𝑙
ANNUAL

𝑖,𝑗,𝑙
≤ RSYSTEMWIDE

PERCENTAGE   ∀𝑘       (7) 

From a policy implementation perspective, we perform ex-post calculations of component-level 

performance standards or taxes to achieve the optimal policy. 

Facility-level percentage reduction target 

The objective function of the unconstrained formulation is as follows: 

{Min{𝑥𝑖,𝑗,𝑘,𝑙} ∑ {𝑥𝑖,𝑗,𝑘,𝑙 ∙ [c̃𝑖,𝑗,𝑘
ABATEMENT − A𝑖 ∙ ẽ𝑖,𝑗,𝑘,𝑙

ANNUAL ∙ (1.1 ∙ CNG)]}𝑖,𝑗     (8) 

+Y ∙ CDETECTION}𝑘  

It is the same formulation as the net benefit maximization objective function (Equation F-1), except the 

social cost of methane term is removed.   We minimize private costs, rather than maximize net social 

benefits because we assume (from a policy implementation perspective) that the policy will be a facility-

level percentage reduction target, whereby the facility can choose the optimal (least cost) abatement 

strategy. 

We similarly account for detection limits in this formulation.  In addition, we instill the logic that each 

facility l must reduce emissions enough to just achieve the facility-level emissions reduction target 

(R𝑙
PERCENTAGE), which we assume is 10/50/75% in alternative scenarios: 

∑ ẽ𝑖,𝑗,𝑘,𝑙
ANNUAL∙A𝑖∙𝑥𝑖,𝑗,𝑘,𝑙𝑖,𝑗

ẽ𝑘,𝑙
UNABATABLE+∑ ẽ𝑖,𝑗,𝑘,𝑙

ANNUAL
𝑖,𝑗

≤ R𝑙
PERCENTAGE  ∀𝑘, 𝑙       (9) 

A facility abates components in the order of least to most marginal abatement costs, until it conducts just 

enough abatement to achieve the target.  If a facility cannot achieve an emissions reduction target, given 

that some emissions are not abatable and abatement is not completely effective, then the facility must 

perform the maximum level of abatement possible. 

A6.3  Superemitter formulation 

For the superemitter policies, we assume that bottom-up detection is conducted at all facilities, and 

abatement is only conducted at a subset of facilities.  Two superemitter formulations, aligning with different 

policy options, are derived: 1) net social benefits are maximized for a subset of facilities with absolute 

annual emissions exceeding an ex-ante threshold (50th and 90th percentile absolute annual emissions across 

all facilities) (Section A6.3.1), and 2) net social benefits are maximized for a subset of facilities with 
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proportional loss rates exceeding an ex-ante threshold (50th and 90th percentile proportional loss rate across 

all facilities) (Section A6.3.2).  Refer to Figure A3 for a depiction of the ex-ante absolute annual emissions 

and proportional loss rate thresholds.  The models select the components to abate.

 

Figure A3.  Cumulative percentage of facilities versus the cumulative percentage of methane emissions.  

The blue line represents simulated emissions (for a single model iteration), whereby facilities are ordered 

from least to greatest absolute annual emission.  The green line represents simulated emissions (for a 

single model iteration), whereby facilities are ordered from least to greatest proportional loss rate.  The 

vertical gray lines depict 50th and 90th percentiles of facilities. 

A6.3.1 Absolute annual emissions threshold 

The formulation is the same as for the unconstrained system-wide policy, except that abatement is 

conducted at a subset of facilities with absolute annual emissions (ẽ𝑘,𝑙
UNABATABLE + ∑ ẽ𝑖,𝑗,𝑘,𝑙

ANNUAL
𝑖,𝑗 ) that are 

less than an ex-ante absolute annual emissions threshold (FSTANDARD,ABSOLUTE). 

A6.3.2 Proportional loss rate threshold 
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The formulation is the same as for the unconstrained system-wide policy, except that abatement is 

conducted at a subset of facilities with proportional loss rates (L𝑘,𝑙) that are less than an ex-ante proportional 

loss rate threshold (FSTANDARD,RATE). 

Table A9.  Parameter and Decisions Variable Descriptions. 

Parameter Description 

𝑥𝑖,𝑗,𝑘,𝑙 {0 – do not abate emissions from component type i, population component number j, 

and for realization k; 1 – abate emissions} 

A𝑖 Abatement efficacy (percentage emissions reduction) [%] 

Y Number of facilities in population 

SDETECTION Detection method threshold [SCFM] 

RSYSTEMWIDE
PERCENTAGE

 Percentage emissions reduction target for the system [%] 

R𝑙
PERCENTAGE Percentage emissions reduction target for facility l [%] 

FSTANDARD,RATE Ex-ante proportional loss rate threshold for facility [%] 

FSTANDARD,ABSOLUTE Ex-ante annual emissions threshold for facility [SCF] 

L𝑘,𝑙 Proportional loss rate of facility l for realization k [] 

CDETECTION Annual cost of onsite detection for each facility [2014 USD] 

c̃𝑖,𝑗,𝑘,𝑙
ABATEMENT

 Annualized abatement cost for component type i, population component number j, 

and for realization k;  [2014 USD] 

CNG Market price of natural gas [2014 USD per SCF] 

CSCCH4 Social cost of methane [2014 USD per SCF] 

ẽ𝑖,𝑗,𝑘,𝑙
ANNUAL Annual emissions from component type i, component number j, and for realization k 

[SCF] 

ẽ𝑖,𝑗,𝑘,𝑙
EF  Minutely emissions from component type i, component number j, and for realization 

k [SCFM] 

ẽ𝑘,𝑙
UNABATABLE Annual emission from sources that are not considered abatable for facility l and 

realization k [SCF] 
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A7  Uncertainty 

Table A10 summarizes the sources of uncertainty that we currently incorporate into the model and those 

we exclude.  We model uncertain inputs in two way, as either probabilistic inputs in the simulation or 

parametric inputs in a sensitivity analysis.  In the paper, we explicitly qualify uncertainty reflected in our 

estimates and describe potential impacts of omitted uncertainties on policy recommendations. 

We parametrically vary uncertainties in detection technologies, discount rates, social costs of methane, 

abatement efficacy, and natural gas prices.  Other sources of uncertainty that we do not model (e.g., 

correlation between emissions and abatement costs, uncertainty in activity factors, spatial heterogeneity in 

abatement costs, changes in T&S infrastructure over time, and different years of abatement) will likely 

augment the variation between realizations of the system.  Of the sources of uncertainty that we do not 

model, we believe that incorporating spatial heterogeneity may provide insight into potential differences in 

policy recommendations by region; however, we do not believe incorporating the other sources of 

uncertainty that we list will alter policy recommendations in a material way. 

We acknowledge that the measurements for each emission category may not be representative of the entire 

population; however, the Subramanian et al. (2014) study was a substantial effort and a vast improvement 

on previous emission measurements.  Site selection for the Subramanian et al. (2014) study was not random, 

but rather constricted by location, survey team schedules, and site suitability.  Sites were reported as being 

broadly representative of the fleets of participating companies, which comprise ∼56% of interstate 

transmission facilities reporting to FERC (Zimmerle et al. 2015).  We do not aggregate across studies 

because the dataset used is relatively robust.  In addition, Brandt et al. (2016) outline the difficulties of 

cross-study aggregation; they show that measurements from similarly named sources across different 

studies rarely pass the Kolmogorov−Smirnov test, which indicates the studies’ samples seem to be drawn 

from different underlying populations. 

In an effort to reflect uncertainty and skewness in emission factors, we employ parametric distributions.  

Brandt et al. (2016) find that fitted parametric distribution may generate a narrow uncertainty range around 

the mean estimate and poorly represent the upper tail because body observations may outweigh the small 

number of tail observations.  However, nonparametric approaches, such as resampling, require an adequate 

sample size and a limited dataset may not include higher emissions (Brandt et al. 2016; Zavala-Araiza et 

al. 2017).   

In addition, the exact number of T&S facilities and components is unknown because only a subset of 

transmission and storage facilities annually report to the GHGRP and FERC, and the level of information 

collected by these reporting programs does not necessarily align with modeling needs.  Zimmerle et al. 
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(2015) explicitly modeled uncertainty in activity counts, which was appropriate for that modeling effort, 

given the purpose was to estimate aggregate emissions across the T&S system.  However, we do not 

incorporate uncertainty in the number of facilities and assume the mean estimate reported in Zimmerle et 

al. (2015). 

While we model different detection methods and perform a bounding analysis, there are several detection 

methods with associated costs, sensitivity, and error rates, which we do not model and that are out of the 

scope of this study.  Performing a more robust analysis of detection is a useful future extension of this 

model, potentially requiring structural changes to the model that capture error rates. 

Table A10.  Sources of uncertainty and variability. 

Uncertainty and variability 

accounted for in modeling 

Uncertainty and variability 

not accounted for in modeling 

• Emission factors 

• Operating hours 

• Correlation between emission factors and 

operating hours 

• Abatement capital costs 

• Correlation between types and counts of 

components at facilities 

• Discount rate 

• Natural gas prices 

• Abatement efficacy 

• Detection technology 

• Social cost of methane 

• Emissions measurement methods 

• Number of components 

• Number of facilities 

• Correlation between emissions and location 

• Correlation between costs and emissions 

• Correlation between emissions and efficacy 

• Spatial heterogeneity in abatement labor costs 

• Detection limit 

• Replacement interval 

• Year of analysis (i.e., year of abatement) 

• Change in transmission and storage system 

infrastructure over time 

 

  



164 

 

A8 Additional Results 

Section A8.1 includes results from the baseline methane emissions model.  Section A8.2 includes additional 

marginal abatement cost curves for emissions category.  Section A8.3 includes an additional aggregate 

marginal abatement cost curve step function.  A8.4 includes additional sensitivity analyses.  A8.5 includes 

the estimated performance standards.   

A8.1 Baseline methane emissions results 

Figure A4 depicts the simulated mean methane emissions by emissions category for the T&S system.  The 

estimated aggregate methane emissions for the T&S sector (440 MT) is within the range of published 

values:  2014 Greenhouse Gas Reporting Program (210 MT), 2014 Greenhouse Gas Initiative (1.9 MMT), 

and Zimmerle et al. (2015) (545 MT +128/-80%; 1.4 MMT +36/-23%).  These figures vary because of 

differing modeling approaches, data, incorporation of uncertainty and variability, and source inclusion.  

Some emission categories (including intermittent bleed valves, wellhead components, transmission tank 

flares, blowdowns) were excluded from this analysis based on the availability of data. 
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Figure A4.  Mean methane emissions by emission category for the entire U.S. T&S system, accounting 

for variability in emissions factors and operating hours.  Emission categories for which abatement is and 

is not possible, given the current slate of abatement technologies, are indicated in maroon and blue, 

respectively.  The cumulative percentage of emissions attributable to each emission category is depicted 

by the yellow line.  Approximately 94% of emissions are from abatable emission categories, with a few 

emission categories (i.e., rod-packing, reciprocating compressor isolation valves) accounting for 

approximately 57% of emissions from abatable emission categories.  Component abbreviations are as 

follows:  CC – centrifugal compressor, RC – reciprocating compressors, BV – blowdown valve, IV – 

isolation valve, OEL – open ended line, PRV – pressure release valve.  Operating modes for components 

of reciprocating and centrifugal compressors are as follows: not operating pressurized (NOP), operating 

pressurized (OP), and not operating depressurized (NOD). 
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A8.2 Component-level marginal abatement cost curves 

Figure A5 presents marginal abatement cost curves for each type of component, under conditions without 

and with natural gas savings, and employing base case assumptions.  Base case model assumptions are as 

follows: discount rate = 3%, detection technology – optical gas imaging, social cost of methane – 3% 

discount rate mean scenario, and no savings from capturing marketable natural gas.  Each marginal 

abatement cost curve is based on a single realization of the U.S. transmission and storage system.  The 

marginal abatement cost curves for each component include one or more abatement measures.  These curves 

account for uncertainty in both abatement costs and emissions. 

 



167 

 

 

Figure A5.  Marginal abatement cost curve for each emissions category.  Blue lines assume no savings.  

Red lines assume savings, where the natural gas prices is the EIA projection for 2020 for the reference 

case ($4.88/MMBTU).  Component abbreviations are as follows:  CC – centrifugal compressor, RC – 

reciprocating compressors, BV – blowdown valve, IV – isolation valve, OEL – open ended line, PRV – 

pressure release valve.  Operating modes for components of reciprocating and centrifugal compressors are 

as follows: not operating pressurized (NOP), operating pressurized (OP), and not operating depressurized 

(NOD). 
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Figure A5 (continued) 
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Figure A5 (continued) 
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Figure A5 (continued) 
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A8.3 System-level marginal abatement cost curves 

Figure A6 is the marginal abatement cost curve step function, assuming savings and the EIA reference case 

natural gas price projection. 

 

Figure A6.  Marginal abatement cost curve based on simulated median emissions and marginal costs, 

assuming savings based on the EIA reference case natural gas price projection for 2020 ($4.88/MMBTU). 

A8.4 Sensitivity analysis 

This section describes sensitivity analyses performed for the unconstrained system-wide policy.  We 

parametrically vary key input parameters to the optimization, including social cost of methane, natural gas 

price, detection technology, discount rate, and abatement efficacy.  Figures H7 to H10 depict net benefits, 

private costs (under performance standard and tax policies), and optimal emission reductions for the single 

factor sensitivity analyses. 

Social Cost of Methane 
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Figure A7.  Sensitivity of net benefits, private costs, and optimal emission reductions to social cost of 

carbon.  All estimates are mean values over 100 realizations of the U.S. T&S system. 

 

Natural Gas Price 

 

Figure A8.  Sensitivity of net benefits, private costs, and optimal emission reductions to natural gas price.  

All estimates are mean values over 100 realizations of the U.S. T&S system. 
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Detection Technology

 
Figure A9.    Sensitivity of net benefits, private costs, and optimal emission reductions to detection 

technology.  All estimates are mean values over 100 realizations of the U.S. T&S system. 

 

Discount Rate 

 

Figure A10.  Sensitivity of net benefits, private costs, and optimal emission reductions to discount rate.  

All estimates are mean values over 100 realizations of the U.S. T&S system. 

A8.5  Facility-level comparisons 
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In this section, we provide of comparison of the policies at the facility-level.  Figures A11 to H15 depict 

differences in annual emissions reductions per facility, percent emissions reduction per facility, private 

costs per facility, net benefits per facility, and marginal abatement costs per facility. 

 

Figure A11.  Simulated annual emissions reductions per facility across different policy options. 
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Figure A12.  Simulated percent emissions reductions per facility across different policy options. 

 

 

Figure A13.  Simulated private costs per facility across different policy options.  Private costs account for 

only detection and abatement costs and do not account for savings. 
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Figure A14.  Simulated net benefits per facility across different policy options.  Net benefits include the 

social cost of methane and detection and abatement costs. 

 

Figure A15.  Simulated marginal abatement costs per facility across different policy options.  These 

include only marginal abatement costs for facilities that perform abatement under each policy. 
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A8.6  Performance standards 

Box 1 describes the methodology derived to estimate component-level performance standards that would 

be needed to achieve the optimal level of abatement. 

 

  

Box 1:  Estimation of performance standards needed to achieve optimal level of abatement 

We provide an example for one component type – rod-packing.  The plot on the left depicts the marginal net benefits 

for each component as a function of annual emissions for a single realization of the U.S. T&S system.  Blue dots 

represent the optimal subset of components in the system selected by the model to abate, and black open dots 

represent components not selected.  The performance standard is set at the minimum annual emissions of the optimal 

subset (as shown in the inset).  We then map this annual standard to an emissions factor (EF) standard, as shown in 

the plot on the right.  We repeat this for all realizations of the T&S system.  For rod-packing, the mean (and 95th 

percentile confidence interval) annual standard would need to be 20.0 (0.5 to 69.7) metric tons, or alternatively, the 

EF would need to be 11.9 (0.0 to 19.8) scfh to achieve the optimal level of abatement for this component type. 

 

Optimal subset of 
devices to abate

Standard is set at the 
minimum annual emissions 
of the optimal subset

[SCFH]
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Table A11 presents the performance standards necessary to achieve the optimal level of abatement.  We 

provide results for the unconstrained system-wide policy under base case assumptions and without no 

savings of marketable natural gas.  The performance standards would vary with changing assumptions, 

given that the optimal subset of devices and marginal net benefits would change. 

 

Table A11.  Performance standards needed to achieve optimal level of abatement for each component 

type.  Mean estimates and 95% confidence intervals for 100 realization of the U.S. T&S system are 

included. 

 

Emission Source Emission Factor Standard 

[SCFH] 

Annual Emissions 

Standard [SCF] 

Centrifugal 

Compressor 

Blowdown Vent - NOP 2.3 (0.0 to 5.5) 5.2 (0.0 to 22.6) 

Blowdown Vent - OP 1.0 (0.0 to 2.5) 12.7 (0.3 to 46.8) 

Isolation Valve - NOD 1.0 (0.0 to 2.30 73.6 (0.8 to 312) 

Wet Seal Vent - OP 61.0 (39.6 to 83.3) 337 (7.6 to 1.1e3) 

Compressor 

Component Leaks 

Connector 0.4 (0.2 to 0.5) 2.4e3 (1.6e3 to 3.0e3) 

Open Ended Line 89.4 (87.1 to 90.9) 7.9e5 (7.7e5 to 8.0e5) 

Pressure Release Valve 3.9 (3.5 to 4.1) 3.42e4 (3.1e4 to 3.6e4) 

Valve 0.6 (0.4 to 0.7) 3.9e3 (2.6e3 to 5.0e3) 

Non-Compressor 

Component Leaks 

Connector 0.2 (0.1 to 0.3) 1.0e3 (503 to 1.5e3) 

Open Ended Line 21.3 (20.5 to 22.1) 1.9e5 (1.8e5 to 1.9e5) 

Pressure Release Valve 3.8 (3.5 to 4.1) 3.4e4 (3.1e4 to 3.6e4) 

Valve 1.2 (0.9 to 1.4) 9.4e3 (7.1e3 to 1.1e4) 

Pneumatics High Bleed 1.2 (0.8 to 1.5) 7.6e3 (5.2e3 to 1.0e4) 

Reciprocal 

Compressor 

Blowdown Vent - NOP 0.3 (0.0 to 1.5) 4.4 (0.1 to 19.7) 

Blowdown Vent - OP 0.3 (0.0 to 1.6) 4.3 (0.1 to 16.9) 

Isolation Valve - NOD 0.8 (0.0 to 2.5) 10.1 (0.4 to 38.3) 

RodPacking - NOP 11.9 (0.0 to 19.8) 20.0 (0.5 to 69.7) 

RodPacking - OP 9.5 (0.0 to 17.3) 14.4 (0.2 to 50.4) 

Transmission Tank Tank Vent 46.2 (0.0 to 54.1) 2.9e3 (45.9 to 1.3e4) 

Emission Source 
Emission Factor Standard 

[SCFH] 

Annual Emissions 

Standard [SCF] 

Centrifugal 

Compressor 

Blowdown Vent - NOP 2.3 (0.0 to 5.5) 5.2 (0.0 to 22.6) 

Blowdown Vent - OP 1.0 (0.0 to 2.5) 12.7 (0.3 to 46.8) 

Isolation Valve - NOD 1.0 (0.0 to 2.30 73.6 (0.8 to 312) 

Wet Seal Vent - OP 61.0 (39.6 to 83.3) 337 (7.6 to 1.1e3) 

Compressor 

Component Leaks 

Connector 0.4 (0.2 to 0.5) 2.4e3 (1.6e3 to 3.0e3) 

Open Ended Line 89.4 (87.1 to 90.9) 7.9e5 (7.7e5 to 8.0e5) 

Pressure Release Valve 3.9 (3.5 to 4.1) 3.42e4 (3.1e4 to 3.6e4) 

Valve 0.6 (0.4 to 0.7) 3.9e3 (2.6e3 to 5.0e3) 

Non-Compressor 

Component Leaks 

Connector 0.2 (0.1 to 0.3) 1.0e3 (503 to 1.5e3) 

Open Ended Line 21.3 (20.5 to 22.1) 1.9e5 (1.8e5 to 1.9e5) 

Pressure Release Valve 3.8 (3.5 to 4.1) 3.4e4 (3.1e4 to 3.6e4) 

Valve 1.2 (0.9 to 1.4) 9.4e3 (7.1e3 to 1.1e4) 

Pneumatics High Bleed 1.2 (0.8 to 1.5) 7.6e3 (5.2e3 to 1.0e4) 

Reciprocal 

Compressor 

Blowdown Vent - NOP 0.3 (0.0 to 1.5) 4.4 (0.1 to 19.7) 

Blowdown Vent - OP 0.3 (0.0 to 1.6) 4.3 (0.1 to 16.9) 

Isolation Valve - NOD 0.8 (0.0 to 2.5) 10.1 (0.4 to 38.3) 

RodPacking - NOP 11.9 (0.0 to 19.8) 20.0 (0.5 to 69.7) 

RodPacking - OP 9.5 (0.0 to 17.3) 14.4 (0.2 to 50.4) 

Transmission Tank Tank Vent 46.2 (0.0 to 54.1) 2.9e3 (45.9 to 1.3e4) 
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B1 Scope 

This study considers all segments of the natural gas supply chain from preproduction to end use.  However, 

we focus solely on impacts associated with shale gas, a type of unconventional gas in low permeability 

shale.  Unconventional refers to both the resource (i.e., shale gas, methane hydrates, tight sands) and 

extraction technologies (e.g., hydraulic fracturing, horizontal drilling) used to facilitate production. 

We further focus this analysis on impacts associated with natural gas activity within Pennsylvania, Ohio, 

and West Virginia in the Appalachian basin.   The geologically-defined Appalachian basin consists of the 

Marcellus and Utica, vast plays with combined 2016 proved reserves of 100 trillion cubic feet (tcf) (Figure 

B1).1   As of 2016, the Appalachian Basin was the largest natural gas basin in the U.S. with respect to both 

reserves and production.  Shale gas production in the Appalachian basin began in 2004, and the plays were 

rapidly developed, with production reaching 7.7 tcf in 2016 (Figure B2).   

We model impacts from 2004, the year in which the first well was drilled in the Marcellus play, to 2016.  

Only impacts which directly stem from shale activity within Pennsylvania, Ohio, and West Virginia are 

modeled; for example, we model emissions from activity within the source states and the corresponding 

premature mortalities which extend beyond these source state boundaries, but exclude emissions from shale 

gas exported to interstate and international markets and end use outside of the region. 

 

Figure B1.  Map of Appalachian basin.  The red outline is the extent of the Appalachian basin, as 

delineated by the U.S. Geological Survey.2  The shaded blue region is the Marcellus play, the shaded 

yellow region is the Utica play, and the shaded green region is the intersection of the Marcellus and Utica 

plays.3,4 
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Figure B2.  Shale gas withdrawals5–8, conventional natural gas withdrawals, and export and import 

volumes9 from 2004 to 2016 for Appalachia.  Import volumes include net interstate receipts to the tristate, 

and export volumes include net deliveries to outside of the tristate.  We exclude import and export 

volumes for transactions between Pennsylvania, Ohio, and West Virginia.  
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B2 Natural gas activity 

The magnitude, timing, and geographic location of natural gas activity, including producing and spud well 

counts, production, transmission, distribution, and processed volumes, and upstream, midstream, and end 

use fuel consumption volumes, are fundamental inputs cross-cutting each impact model.   The following 

gives an overview of natural gas activity data sources, data cleaning, and treatment of missing or 

misreported data. 

B2.1 Production 

We compile operator-reported data from the PA Department of Environmental Protection (PA DEP), Ohio 

Department of Natural Resources (ODNR), and West Virginia Department of Environmental Protection 

(WV DEP) of production, coordinate location, and other attributes (e.g., producing formation, well 

direction, spud date, operator, owner, etc.) for each shale well from 2004 to 2016.5–7  There was notable 

variation across states and reporting years with respect to production reporting requirements and data 

quality.  Significant data cleaning to ensure internal consistency across states and years, as well as, 

comparisons to national datasets was performed.   

For Pennsylvania, we include natural gas wells designated by the PA DEP as unconventional, which are 

horizontally or vertically drilled in unconventional formations and require stimulation through hydraulic 

fracturing.    We exclude conventional wells, which produce from conventional formations and are 

vertically drilled; although conventional wells typically require hydraulic fracturing, they do not require the 

volume of fluids typically required for unconventional wells.  Due to changing reporting requirements, 

annual production for 2010 cannot be extracted from the reported datasets; thus, we simulate 2010 

production by interpolating production per well between 2009 and 2011, and account for the year in which 

the well was spud.  For West Virginia, we include all wells designated in well permits by the WV DEP as 

horizontally configured and/or as having the Marcellus or Utica formations as the target producing 

formation.  For Ohio, we include all wells designated by the ODNR as horizontal shale and/or Utica wells. 

Figure B3 depicts the cumulative production aggregated by county, and Figure B4 depicts the time series 

of production aggregated by county.  Most unconventional natural gas wells drilled in Pennsylvania 

between 2004 and 2016 produce from the Marcellus shale formation, with production from the Utica shale 

beginning in 2012 and increasingly thereafter, although many wells produce from or penetrate multiple 

formations.  Production has continued to rise from 2004 to 2016, as shown in Figure B5, and there is high 

correspondence between the cleaned well-level production data and state-level estimates reported by the 

Energy Information Agency (EIA). 
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Figure B3.  Cumulative production from 2004 to 2016 for each shale gas well.  The brown shades 

indicate the cumulative production aggregated at the county level. 

 

Figure B4.  Maps of annual production from 2004 to 2016.  The brown shades indicate the production 

aggregated at the county level. 
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Figure B5.  Annual shale gas production from 2004 to 2016 for each state.  Bars represent cleaned, well-

level production data aggregated by state.5–7  The solid yellow line depicts shale production aggregated 

across Pennsylvania, Ohio, and West Virginia and reported at the state level by the EIA.8 

B2.2 Producing wells 

We derive spatially-resolved producing well counts based on the cleaned datasets described in section B2.1.  

We include all wells that reported production in a given year.  Producing well counts have continued to rise 

from 2004 to 2016, as shown in Figure B6. 
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Figure B6.  Annual shale gas producing wells from 2004 to 2016 for each state. 

 

B2.3 Spud wells 

We derive spatially-resolved spud well counts based on the cleaned datasets described in section B2.1.  The 

number of wells spud in a given year is estimated based on the reported or simulated year in which drilling 

commences.  PA DEP and ODNR publish the spud date for most wells, while WV DEP does not.  For wells 

without a reported spud year, we assume that the spud year is the year prior to when production is first 

reported.  To test the validity of this assumption, we compare the reported spud year to the year of first 

production for the subset of wells where both data exist, finding that there is an average lag of a year 

between spudding and start of production, as shown in the Table B1 and Figure B7.  We also note that some 

reported spud years for Pennsylvania are several years prior to 2004 when shale gas production began; this 

is possibly a reporting anomaly in which an unconventional well was re-spud in the same location as an 

existing conventional well. 

Figure B8 depicts the annual number of spud wells.  The first well was spud in Pennsylvania in 2004, while 

the first reported spud wells in West Virginia and Ohio were a few years later.  The aggregate number of 

spud wells peaked in 2013, after initial rapid purchases and development of leases.  
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Table B1.  Comparison of first production year and reported spud year. 

State # of 

producing 

wells 

# of wells 

with reported 

spud date 

Difference between first 

production year and 

reported spud year 

Pennsylvania 7962 7919 mean=1.15 

sd=1.02 

median=1 

Ohio 1917 1623 mean=0.92 

sd=0.71 

median=1 

 

Figure B7.  First reported production year versus reported spud year.  Blue dots are observations for 

Pennsylvania and red dots are observations for Ohio.  The opacity of the dots is indicative of the number 

of observations.  The grey line represents exact correspondence between first reported production year 

and reported spud year. 
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Figure B8.  Annual shale gas spud wells from 2004 to 2016 for each state. 

B2.4 Midstream and end use volumes 

Fuel consumption volumes from midstream and end use activity, a key input for modeling climate change 

impacts, are depicted in Figure B9.  Fuel consumption, transmission, and distribution volumes have 

increased slightly from 2004 to 2016, while processing volumes have increased 18-fold. 

As noted in section B1, we model impacts from shale gas only, excluding conventional natural gas.   

However, attributing air quality and climate change impacts from midstream and end use segments to shale 

production is challenging.  For example, the volume of natural gas that enters a processing plant is 

indistinguishably derived from conventional or unconventional production sources.  Moreover, flows of 

natural gas between segments and across state boundaries are inconsistent Figure B2.  As a proxy, we 

prorate reported natural gas volumes (or emissions), based on the percentage of shale gas out of total natural 

gas production, as provided in Figure B10. 
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Figure B9.  Midstream and end use natural gas volumes from 2004 to 2016 for Pennsylvania, Ohio, and 

West Virginia.  Processed gas10, lease fuel consumption11, plant fuel consumption12, pipeline and 

distribution consumption13, and electric power, industrial, commercial, residential, and vehicle 

consumption14–18 within Pennsylvania, Ohio, and West Virginia. 

 

Figure B10.  Prorate factor of shale to total natural gas production for Pennsylvania, Ohio, and West 

Virginia from 2004 to 20165–8. 
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B3 Air quality model 

B3.1 Methods 

We model spatially-resolved emissions of nitrogen oxides (NOX), volatile organic compounds (VOCs), 

and fine particulate matter (PM2.5) and health impacts associated with shale gas activities across the supply 

chain from preproduction to end use from 2004 to 2016.  We estimate health impacts in terms of premature 

mortalities and monetized mortalities associated with NOx, PM2.5, and VOCs using two source-receptor 

reduced complexity models (RCMs), Air Pollution Emission Experiments and Policy (Version 3) (AP3) 

and Air Pollution Social Cost Accounting (APSCA) model.  We also use another RCM, Intervention Model 

for Air Pollution (InMAP); although we do not use a receptor-resolved version of the model.  To account 

for major sources of uncertainty, we perform sensitivity analyses of key inputs, such as the dose-response 

relationship and the value of statistical life, and develop process-level emission ranges for upstream and 

midstream segments of the supply chain. 

B3.1.1 Emissions model 

In the following sections, we describe regional and unit-level emissions model formulations and 

assumptions for each segment.  Table B2 is a summary of emissions modeling input parameters, including 

definitions, values, and data sources. 

The inclusion of and detail in which we model each segment of and process within the natural gas sector 

varies based on the availability and quality of data, and the relative emissions contribution of each source.   

While we include many significant emission sources, there are several sources and species which we do not 

model.  We limit our analysis to emissions within Pennsylvania, Ohio, and West Virginia, and exclude 

sources from unconventional natural gas export to interstate and international markets and end use outside 

of the tristate.  In addition, we do not model emissions from the following sources: production pneumatic 

pumps, transmission and storage pneumatics, gathering station fugitives, transmission pipelines, and 

distribution service lines and mains. 

We use a combination of parametric and probabilistic methods to characterize uncertainty in upstream 

emissions, focusing on representing uncertainty of systems-level emissions rather than unit-level variation,  

We derive deterministic estimates of midstream and end use emissions. 

We account for time-varying parameters (where practicable), such as changing regulation, upstream 

practices, and activity factors.  With respect to regulation, we account for the phase-in of Tier 2 and Tier 4 

standards for non-road diesel engines, New Source Performance Standards (NSPS) Subpart JJJJ Standards 

of Performance for Stationary Spark Ignition Internal Combustion Engines, and NSPS Subpart 

OOOO/OOOOa Oil and Natural Gas Sector Emission Standards for New, Reconstructed, and Modified 

Sources.  With respect to midstream and end use segments, we use reported facility-, plant-, or county-level 
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emissions, which we assume inherently incorporate time-varying regulatory, efficiency, and activity 

factors. 

Coordinate locations for stationary sources, including wells, compressor stations, and electric generating 

units, and county-level location information for residential, commercial, and industrial sources, are based 

on publicly reported location data.  We assume that gathering and trucking are co-located within the county 

and grid cell that wells are located.  We aggregate emissions at county and 36 x 36 km grid cell resolutions, 

which are the resolutions of the marginal damage factors from the AP3 and APSCA, respectively. 

For modeling the preproduction, production, and gathering segments, we explicitly use shale gas activity 

factors.  To attribute emissions from midstream and end use segments to shale production, we use a prorate 

factor relative to total natural gas production (refer to section B2.4). 
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Table B2.    Emissions modeling parameter values, definitions, and data sources. 

  

Parameter Parameter Definition Parameter Value Units Source 

𝐶𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 emission control factor VOC: 95 % 19 

𝐶𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 emission control factor VOC: 95 % 20 

𝐶𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖 emission control factora NOx: Triangular (10,95,30) 

PM2.5: Triangular (60,81,97) 

VOC: Triangular (60,81,97) 

% 21,22 

𝐶𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖 emission control factorsa NOx: Triangular (10,95,30) 

PM2.5: Triangular (60,81,97) 

VOC: Triangular (60,81,97) 

% 21,22 

𝐶𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖 emission control factorsa NOx: Triangular (15,50,95) 

VOC: Triangular (30,60,95) 

% 21 

𝐷𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 time to drill a single well Triangular (14,30,35) days 21 

𝐷𝑃𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 distance between public water source and well site Uniform (4.9, 27.3) mi 23 

𝐷𝑆𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 distance between surface water source and well site Uniform (0, 9.9) mi 23 

𝐷𝑊𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑡 distance between well site and wastewater site Time-variant (see Figure 

B12) 

mi 24 

𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 VOC emissions factor for well completion Empirical (see Figure B11) metric 

ton/well 

21 

𝐸𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 percentage of time the drilling equipment operates Triangular (20,50,100) % 21,25 

𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 VOC emissions per volume of condensate production 

without emission controls 

Empirical (see Figure B11) g/bbl 26 

𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖 emissions factor for all drilling rig engines (in base 

year of 2009)b 

Empirical (see Figure B11) g/hp-hr 21 

𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔.𝑖 emissions factor for pump engine for fracturing Empirical (see Figure B11) g/hp-hr 21 

𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑐 fugitive TOC emission factor for each component 

types 𝑐 

valves: 4.5 

connectors: 0.2 

OEL: 2 

flanges: 0.39 

g/hr 21 

𝐹ℎ𝑒𝑎𝑡𝑒𝑟,𝑖 emissions factor per heater NOX: Triangular 

(0.022,0.045,0.091) 

VOC: Triangular 

(0.0013,0.005,0.003) 

g/scf 21 

𝐹𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖 emission factor per mile of heavy duty diesel trucks Empirical (see Figure B11) g/mi 21 

𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠 VOC emissions per pneumatic device per yearb Empirical (see Figure B11) g/device/

yr 

27 

𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖 emissions factor for wellhead compressor engines Empirical (see Figure B11) g/hp-hr 21 

𝐹𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑡 fraction of well completions in which emission 

controls are used 

Time-variant points -/- 28,29 

𝐹𝐶𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑡 fraction of wells with compressors 3 %  
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Table B2 (continued).  Emissions modeling parameter values, definitions, and data sources. 

  

Parameter Parameter Definition Parameter Value Units Source 

𝐹𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 cumulative fleet turnover fraction (relative to base 

year of 2009)c 

Time-variant points (see 

Figure B12) 

% 30–32 

𝐹𝑇𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑡 cumulative fleet turnover fraction (relative to base 

year of 2009)d 

Time-variant points (see 

Figure B12) 

% 30–32 

𝐻𝐻𝑉ℎ𝑒𝑎𝑡𝑒𝑟 heating value of natural gas 1000 BTU/cf 21 

𝐻𝑃𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛 horsepower per unit of production Uniform(0.125,0.15)  hp/BCF 21 

𝐻𝑃𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 total horsepower of all engines on the drilling rig Triangular 

(2000,7000,4260) 

hp 21 

𝐻𝑃𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔 total horsepower of pump engine for fracturing Triangular (35,000, 40,000, 

45,000) 

hp-hr 21 

𝐻𝑃𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 total horsepower of wellhead compressor engine Triangular (30, 101, 242) hp-hr 21,25 

𝐿𝐹𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛 average load factor of compressor station engine Uniform(40,80) % 21 

𝐿𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 average load factor for all engines on drilling rig Triangular (26,56,90) % 21,33 

𝐿𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔 average load factor of pump engine for fracturing 0.5 % 21,34 

𝐿𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 average load factor of wellhead compressor engine Empirical  % 21 

𝑁𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑐 number of components of type 𝑐 per well valves: 15 

connectors: 43 

OEL: 5 

flanges: 25 

compone

nts/well 

25,35 

𝑁ℎ𝑒𝑎𝑡𝑒𝑟 number of heaters per well Triangular (0,0.63,1.1) heaters/

well 

25 

𝑁𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠 total number of pneumatic device per well Empirical devices/

well 

27 

𝑃𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠𝑖𝑡𝑒,𝑠,𝑗,𝑡 condensate production per well per year Empirical (see Figure B11) bbl/well/

yr 

 

𝑃𝑃𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 percentage of water sourced (excluding 

reused/recycled water) from public water supplies 

0.2 % 23 

𝑃𝑆𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 percentage of water sourced (excluding 

reused/recycled water) from surface water supplies 

0.8 % 23 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 heater throughput 106 BTU/hr 21 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 heater throughput 106 BTU/hr 21 

𝑅𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑡  rate of reuse/recycling of wastewater Time-variant points (see 

Figure B12) 

% 24 

𝑅𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 reported (or simulated) county level emissions from 

commercial end use 

Time-varying metric 

tons 

36 

𝑅𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠𝑡𝑎𝑡𝑒  𝑖,𝑗,𝑡  reported (or simulated) emissions from distribution 

compressor stations 

Time-varying metric 

tons 

36 

𝑅𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑠𝑡𝑎𝑡𝑒  𝑖,𝑗,𝑡  reported (or simulated) emissions from electric 

utility facilities 

Time-varying metric 

tons 

36–38 
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Table B2 (continued).  Emissions modeling parameter values, definitions, and data sources. 

Parameter Parameter Definition Parameter Value Units Source 

𝑅𝐸𝑖𝑛𝑠𝑢𝑡𝑟𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒  𝑖,𝑗,𝑡 reported (or simulated) county level emissions from 

industrial end use 

Time-varying metric 

tons 

36 

𝑅𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠𝑡𝑎𝑡𝑒  𝑖,𝑗,𝑡 reported (or simulated) emissions from processing 

facilities 

Time-varying metric 

tons 

36 

𝑅𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒  𝑖,𝑗,𝑡 reported (or simulated) emissions from residential 

end use 

Time-varying metric 

tons 

36 

𝑅𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑠𝑡𝑎𝑡𝑒  𝑖,𝑗,𝑡 reported (or simulated) emissions from transmission 

compressor stations 

Time-varying metric 

tons 

36 

𝑆𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔.𝑡 number stages to fracture well Triangular (4,15,33) stages 21 

𝑇𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟𝑠𝑡𝑎𝑡𝑖𝑜𝑛 number of hours engine operates per day 24 hrs 21 

𝑇𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 

 
annual operating hours per well 

 

8760 hrs/year 35 

𝑇ℎ𝑒𝑎𝑡𝑒𝑟 number of hours heater operates per year Triangular (126, 2982,4601) hrs/yr 25 

𝑇𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 number of hours engine operates per year 8760 hrs/yr 21 

𝑈𝑠𝑡𝑎𝑡𝑒,𝑡 fraction of total unconventional production out of 

total production 

Time-varying (ranges from 

0 to 99%) 

-/- 5–8 

𝑇𝐶𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 truck fluid capacity 4620 gal 39 

𝑈𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 water usage per well Triangular (1.00, 4.05, 6.97) million 

gal/well 

23 

𝑈𝑊𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 wastewater produced per well Triangular (1.22, 1.38, 1.64) million 

gal/well 

40 

𝑉𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 VOC fraction of natural gas 0.02 -/- 21 

𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 number of spud wells Time-varying (refer to 

section B2) 

wells 5–7 

𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 number of spud wells Time-varying (refer to 

section B2) 

wells 5–7 

a  We assume ignition timing retard and selective catalytic reduction for NOx, diesel particulate filters for PM2.5, diesel oxidation catalysts for 

VOCs. 

b  To develop an empirical VOC emission factor distribution, we use whole gas emission factors and mole fractions of propane, butane, and 

higher hydrocarbons for a subset of 53 wells in the Appalachian region, as reported in Allen et al. (2014).  While the Allen et al. study measures 

emissions in multiple basins, we subset the reported data for those devices measured within the Appalachian region because of that finding that 

there is great variability in regional emissions resulting from differences in controller type (e.g., continuous and intermittent venting), frequency 

of actuation (e.g., more actuation in wet areas), and different applications (e.g., separators, process heaters).   We convert reported emission 

factors in terms of scf per hour to grams per year, under standard conditions (14.7 psia and 70oF) and assuming the pneumatic devices are 

operating 8760 hours per year. 

c  We assume the following to derive the fleet turnover curve:  a normally distributed scrappage curve32, average load factor of 0.43 for diesel 

bore / drill rigs30, annual activity of 466 hours per year for diesel bore / drill rigs30, an average life of large diesel engines of 7000 hours30, and a 

3.7% growth rate for diesel industrial engines31. 

d   We assume the following to derive the fleet turnover curve:  a normally distributed scrappage curve32, average load factor of 0.43 for diesel 

other oil equipment30, annual activity of 1231 hours per year for other oil equipment30, an average life of large diesel engines of 7000 hours30, and 

a 3.7% growth rate for diesel industrial engines31. 
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Figure B11.  Empirical distributions used in air quality emissions modeling.  Drilling emission factor distributions for (A) NOx, (B) VOC, and (C) 

PM2.5.  Hydraulic fracturing emission factor distributions for (D) NOx, (E) VOC, and (F) PM2.5.  Trucking emission factor distributions for (G) NOx, 

(H) VOC, and (I) PM2.5.  Completion emission factor distribution for (J) VOC.  Wellhead compressor emission factor distributions for (K) NOx, (L) 

VOC, and (M) PM2.5.  Pneumatic devices emission factor distribution for (N) VOC.  Blue lines and dots are empirical emission factor distributions 

(without emission controls).  Red lines are emission factor distributions, accounting for emission controls.   Grey dashed lines are regulatory standards, 

including Tier 1, 2, and 4 non-road (hp>750) diesel engine standards and NSPS for spark-ignition natural gas engines. 
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Figure B12.  Time-varying parameters used in air quality emissions modeling.  (A) Drilling rig fleet 

turnover based on EPA’s nonroad growth and scrappage methodology.32  (B) Hydraulic fracturing fleet 

turnover for fracturing pumps based on EPA’s nonroad growth and scrappage methodology.32  (C) 

Fraction of well completions with emission controls.28,29  (D) Wastewater reuse rate.  (E) Distance from 

well to disposal site. 
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B3.1.1.1 Preproduction 

We estimate drilling emissions (𝐸𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖,𝑗,𝑡) for each species 𝑖, source location 𝑗, and year 𝑡, using a 

modification of the approach used in Bar-Ilan et al. (2008), as follows25: 

𝐸𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖,𝑗,𝑡 = 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 ∙ [𝐹𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 ∙ 𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 + (1 − 𝐹𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡) ∙

𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡]         (1) 

where 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 is the number of spud wells and 𝐹𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 is the fleet turnover fraction.  

𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 and 𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 are the emission factors per well for each year when 

emission controls are or are not employed, respectively, and are given by: 

𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 = 𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖 ∙ (1 − 𝐶𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖) ∙ 𝐻𝑃𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 ∙ 𝐿𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 ∙ 𝐷𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 ∙ 𝐸𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔  

            (2) 

𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 = 𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖 ∙ 𝐻𝑃𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 ∙ 𝐿𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 ∙ 𝐷𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 ∙ 𝐸𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔  (3) 

where 𝐻𝑃𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is the horsepower of drilling rig engines, 𝐿𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is the load factor of the drilling rig 

engines, 𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 is the drilling time, and  𝐸𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is the engine-on-time percentage.  We use empirical 

distributions of engine emissions factors (𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖) for a base year of 2009, which were compiled in Roy 

et al. (2014).  We assume a fleet turnover fraction (𝐹𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡) and apply control factors (𝐶𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑖), 

which together reflect the phase-in of Tier 2 and Tier 4 standards for non-road diesel engines.  We develop 

emission factors (𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 and 𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡) representing the uncertainty in the 

systems-level mean rather than between-unit variability;  we use a Monte Carlo simulation approach and 

find the mean and the upper and lower 95% confidence interval. 

We estimate hydraulic fracturing emissions (𝐸𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖,𝑗,𝑡), using a modification of the approach used in 

Bar-Ilan et al. (2008), as follows25: 

𝐸𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖,𝑗,𝑡 = 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 ∙ [𝐹𝑇𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑡 ∙ 𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 + (1 − 𝐹𝑇𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑡) ∙

𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡]         (4) 

where 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 is the number of spud wells and 𝐹𝑇𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑡 is the pump engine fleet turnover fraction.  

𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 and 𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 are the emission factors per spud well for each year 

when emission controls are or are not employed, respectively, and are given by: 

𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 = 𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖 ∙ (1 − 𝐶𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖) ∙ 𝐻𝑃𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∙ 𝐿𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∙ 𝑆𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔.𝑡 (5) 

𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 = 𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖 ∙ 𝐻𝑃𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∙ 𝐿𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔 ∙ 𝑆𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔.𝑡    (6) 
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where 𝐻𝑃𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is the horsepower of drilling rig engines, 𝐿𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is the load factor of the drilling rig 

engines, 𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 is the drilling time, and  𝐸𝑇𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 is the engine-on-time percentage.  We use empirical 

distributions of pump engine emissions factors (𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖) for a base year of 2009, which were compiled 

in Roy et al. (2014).  We incorporate time variant elements, including emission regulations.  We assume a 

fleet turnover fraction (𝐹𝑇𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑡) and apply control factors (𝐶𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑖), which together reflect the 

phase-in of Tier 2 and Tier 4 standards for non-road diesel engines.  We develop emission factors 

(𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡 and 𝐸𝐹𝑓𝑟𝑎𝑐𝑘𝑖𝑛𝑔,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡) representing the uncertainty in the systems-level 

mean rather than between-unit variability;  we use a Monte Carlo simulation approach and find the mean 

and the upper and lower 95% confidence interval. 

Emissions from well completions are highly uncertain.41–43  We estimate VOC emissions from well 

completion (𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑖,𝑗,𝑡) as follows: 

𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑖,𝑗,𝑡 = 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 ∙ [𝐹𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑡 ∙ 𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 + (1 − 𝐹𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑡) ∙

𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡]         (7) 

where 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 is the number of spud wells and 𝐹𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑡 is the fraction wells with emission controls. 

VOC emission factors for wells with (𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑) and without emission controls 

(𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑), where the controlled emission factor is given by: 

𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 = 𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 ∙ (1 − 𝐶𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛)    (8) 

We use an empirical distribution of emissions factors (𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑖,𝑡) for a base year of 2009, 

which were compiled in Roy et al. (2014).  We attempt to reflect voluntary adoption of emission controls 

and rapidly evolving regulation, including the implementation of the NSPS subpart OOOO and National 

Emissions Standards for Hazardous Air Pollutants (NESHAP) standards, that require reduced emission 

completions (RECs) for hydraulically fractured wells.  We assume a changing fraction of well completions 

with emission controls (𝐹𝐶𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑡); the penetration of emission controls over time is uncertain, 

although recent emission measurement studies suggest that most wells in Appalachia (for which 

measurements were taken) have emission controls; in a study conducted in 2012 by Allen et al. (2013), all 

five measured well completions in Appalachia had emission controls, and in a study conducted in 2014 by 

Omara et al. (2016), all four measured well completions had emission controls, with three of having 

installed RECs.28,29  The emission factors represent the uncertainty in the systems-level mean rather than 

between-unit variability; we use a Monte Carlo simulation approach and find the mean and the upper and 

lower 95% confidence interval. 

Emissions from trucking, including transport of drilling and fracturing water and wastewater (𝐸𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖,𝑗,𝑡) 

are estimated as follows: 
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𝐸𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖,𝑗,𝑡 = 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 ∙ 𝐸𝐹𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖,𝑡        (9) 

where 𝑊𝑠𝑝𝑢𝑑,𝑗,𝑡 is the number of spud wells, and 𝐸𝐹𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖,𝑡 is the emission factor, as given by: 

𝐸𝐹𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖,𝑡 = [𝑈𝑊𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 ∙ 𝐷𝑊𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑡 + 𝑈𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 ∙ (𝐷𝑆𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 ∙ 𝑃𝑆𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 +

𝐷𝑃𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 ∙ 𝑃𝑃𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔) ∙ (1 − 𝑅𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑡)]/𝑇𝐶𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 ∙ 2 ∙ 𝐹𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖   (10) 

where 𝑊𝑊𝑈𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 and 𝑊𝑈𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 are the water and wastewater use per well, respectively.  

𝐷𝑊𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑡,  𝐷𝑆𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔, and 𝐷𝑃𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 are the distance per trip for transporting between the well 

site and the wastewater disposal, surface water source, and public water source, respectively.  𝑃𝑆𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 

and 𝑃𝑃𝑊𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 are the percentage of water from surface and public water supplies, respectively.  

𝑅𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑡 is the percentage of wastewater that is reused and 𝑇𝐶𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔 is the capacity per truck.  We use 

empirical distributions of emissions factors per mile for heavy duty diesel trucks (𝐹𝑡𝑟𝑢𝑐𝑘𝑖𝑛𝑔,𝑖) compiled in 

Roy et al. (2014).   We exclude trucking from other site operations, given that fluid transport is the most 

significant source of truck traffic.  We incorporate time variant elements reflective of changing wastewater 

management practices; specifically, we reflect the declining distance traveled to wastewater disposal sites 

and the increasing portion of wastewater that is reused, resulting from changing regulation and increasing 

wastewater infrastructure. 

B3.1.1.2 Production 

Emissions from wellhead compressors (𝐸𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖,𝑡) are estimated as follows: 

𝐸𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖,𝑡 = 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 ∙ 𝐹𝐶𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ∙ 𝐸𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖,𝑡   (11) 

where 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 is the number of producing wells, 𝐹𝐶𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the fraction of wells with 

compressors, and 𝐸𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖,𝑡 is the emissions factor per well, given by the following set of 

equations: 

𝐸𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖,𝑡≤2011 = 𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖 ∙ 𝐻𝑃𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ∙ 𝐿𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ∙

𝑇𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟          (12) 

𝐸𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖,𝑡≤2011 = (1 − 𝐶𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖) ∙ 𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖 ∙

𝐻𝑃𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ∙ 𝐿𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 ∙ 𝑇𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟    (13) 

where 𝐻𝑃𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the total horsepower of wellhead compressor engines per well, 

𝐿𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the load factor of wellhead compressor engines, 𝑇𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 is the number 

of operating hours per year, and 𝐶𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖 is the emission control factor.  We modified the 

approach used in Roy et al. (2014) to incorporate time variant elements, including the fraction of wellheads 

that have compressors and emission regulations.  We use empirical distributions of emissions factors for 
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wellhead compressor engines (𝐹𝑤𝑒𝑙𝑙ℎ𝑒𝑎𝑑𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟,𝑖) (for a base year of 2009) compiled in Roy et al. 

(2014).  To estimate emissions in other years, we assume an increasing fraction of wellheads with 

compressor and apply control factors, reflecting the phase-in of NSPS subpart JJJJ Standards of 

Performance for Stationary Spark Ignition Internal Combustion Engines for NOx and VOC.  Although 

wellhead compressors are currently uncommon in the Appalachian Basin, production pressure declines as 

the field ages, necessitating the use of wellhead compressors.  We assume all wellhead compressors after 

2011 have emission controls, given that wellhead compressor engines have short lifespans and there is low 

penetration of wellhead compressors (<1%) prior to 2011. 

Emissions from condensate volatilization (𝐸𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑗,𝑡) from tanks are estimated as follows: 

𝐸𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑗,𝑡 = ∑ 𝑃𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠𝑖𝑡𝑒,𝑠,𝑗,𝑡 ⋅ 𝐸𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠𝑠𝑖𝑡𝑒      (14) 

where 𝑃𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠𝑖𝑡𝑒,𝑠,𝑗,𝑡 is the well site-specific condensate production for a given spud year 𝑠, and 

𝐸𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠,𝑡 is the emissions factor per unit condensate production, given by the following set of 

equations:  

𝐸𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠<2011 = 𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒        (15) 

𝐸𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒,𝑠≥2011 = 𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 ∙ (1 − 𝐶𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒)      (16) 

where 𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 is the VOC emission factor per unit condensate production without controls, and 

𝐶𝐹𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒 is the emission control factor. We incorporate time variant elements, namely NSPS subpart 

OOOO, promulgated in 2012, for VOC emissions from storage vessels at production sites; the rule requires 

95% control for all storage vessels emitting at least 6 tpy of VOC, which were constructed, modified, or 

reconstructed after August 2011.  We use empirical distributions of emissions factors, representing 

uncontrolled condensate tank emissions compiled in Roy et al. (2014).  We assume that all wells spud prior 

to 2011 are uncontrolled, and those spud in 2011 or later are controlled and comply with the NSPS 95% 

control factor. 

Emissions from pneumatic devices (𝐸𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖,𝑗,𝑡) are estimated as follows:  

𝐸𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖,𝑗,𝑡 = 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 ∙ 𝐸𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖      (17) 

where 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 is the number of producing wells, and 𝐸𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖 is the VOC emissions per well, 

as given by: 

𝐸𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖,𝑗,𝑡 = 𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖 ∙ 𝑁𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠       (18) 

We base the emission factor per device (𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠,𝑖) and number of devices per well (𝑁𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠) 

distributions on measurements from a study by Allen et al. (2014).   The NSPS subpart OOOOa for VOC 
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emissions from pneumatic controllers at production sites were promulgated in 2012; the rule sets a whole 

gas bleed rate limit of 6 scf/h for continuous bleed, natural gas-driven pneumatic controllers, which 

commenced construction after August 2011, and are located between the wellhead and the point at which 

the gas enters the transmission and storage segment.  We do not account for any time-varying parameters, 

given field data for the Appalachian region reported in Allen et al. (2014) indicate most whole gas emission 

factors below the 6 scf/h standard and most pneumatic controllers are intermittent rather than continuous 

bleed; in addition, most wells in the Appalachian basin were constructed after the date put forth in the 2012 

NSPS. 

Heater emissions for each producing well (𝐸ℎ𝑒𝑎𝑡𝑒𝑟,𝑖,𝑗,𝑡) are estimated, using the approach described in Roy 

et al. (2014), as follows21: 

𝐸ℎ𝑒𝑎𝑡𝑒𝑟,𝑖,𝑗,𝑡 = 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 ∙ 𝐸𝐹ℎ𝑒𝑎𝑡𝑒𝑟,𝑖        (19) 

where 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 is the number of producing wells, and 𝐸𝐹ℎ𝑒𝑎𝑡𝑒𝑟,𝑖 is the emissions per well, as given 

by: 

𝐸𝐹ℎ𝑒𝑎𝑡𝑒𝑟,𝑖,𝑗 = 𝐹ℎ𝑒𝑎𝑡𝑒𝑟,𝑖 ∙ 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 ∙ 𝑇ℎ𝑒𝑎𝑡𝑒𝑟 ∙ 𝑁ℎ𝑒𝑎𝑡𝑒𝑟/𝐻𝐻𝑉ℎ𝑒𝑎𝑡𝑒𝑟     (20) 

where 𝑄ℎ𝑒𝑎𝑡𝑒𝑟 is the heater throughput, and 𝑁𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠 is the number of pneumatic devices per well.  We 

base the emission factor (𝐹𝑝𝑛𝑒𝑢𝑚𝑎𝑡𝑖𝑐𝑠), 𝑇ℎ𝑒𝑎𝑡𝑒𝑟 is the number operating hours per year, 𝐻𝐻𝑉ℎ𝑒𝑎𝑡𝑒𝑟 is the 

higher heating value, and 𝑁ℎ𝑒𝑎𝑡𝑒𝑟 is the number of heaters per well.  We do not anticipate any time-varying 

parameters over the period of analysis. 

Fugitive emissions (𝐸𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑗,𝑡) associated with leaking valves, connectors, flanges, and open-ended lines 

(OEL), are estimated as follows: 

𝐸𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑗,𝑡 = 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 ∙ 𝐸𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠       (21) 

where 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑗,𝑡 is the number of producing wells, and 𝐸𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 is the VOC emissions factor per 

well, as given by: 

𝐸𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑡 = 𝑇𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 ∙ 𝑉𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 ∙ ∑ (𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑐 ∙ 𝑁𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑐)𝑐     (22) 

where 𝑇𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 is the annual operating hours per well, 𝑉𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠 is the VOC fraction,  𝐹𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑐 is 

fugitive total organic carbon emission factor for each component type 𝑐, and 𝑁𝑓𝑢𝑔𝑖𝑡𝑖𝑣𝑒𝑠,𝑐 is the number of 

components of each type.   We do not account for any time-varying parameters and assume point estimates 

for each input variable, given that this is a relatively very minor emission source.  The NSPS subpart 

OOOOa for fugitive VOC emissions from production were promulgated but will not take effect (depending 

upon ongoing regulatory actions) until after the time horizon of this analysis.  In addition, Ohio EPA has 
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regulated fugitive emissions from production operations since 2014, requiring quarterly detection at some 

sites. 

B3.1.1.3 Processing 

Emissions from processing compressor stations (𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑖,𝑗,𝑡), including only those associated with 

natural gas liquids extraction facilities are estimated as follows: 

𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑖,𝑗,𝑡 = 𝑅𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡      (23) 

where 𝑅𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions, and 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡 is the proration factor 

based on the ratio of shale production to all production for each state.  We use reported facility-level 

emissions and point source coordinate locations from the EPA National Emissions Inventory (NEI) for 

facilities with NAICS 4862 for years 2005, 2008, 2011, and 2014.   For non-reporting years, we estimate 

emissions for each source location 𝑗 by linearly interpolating between years or extrapolating across years, 

using reported emissions aggregated to a given source location resolution (i.e., county or 36 x 36 km grid 

cell).  While the NEI dataset is inclusive of compressor stations associated with natural gas liquids 

extraction facilities, it does not include other types of processing, including ethane crackers or wellhead 

processing such as glycol dehydration; these other sources are likely non-trivial at present and will be even 

more significant in the coming years. 

B3.1.1.4 Transmission 

Emissions from transmission compressor stations (𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑖,𝑗,𝑡) are estimated as follows: 

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑖,𝑗,𝑡 = 𝑅𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡      (24) 

where 𝑅𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions.  We use reported facility-level 

emissions and point source coordinate locations from the EPA NEI for facilities with NAICS 211112 for 

years 2005, 2008, 2011, and 2014.   For non-reporting years, we estimate emissions for each source location 

𝑗 by linearly interpolating between years or extrapolating across years, using reported emissions aggregated 

to a given source location resolution (i.e., county or 36 x 36 km grid cell).  While the NEI dataset is inclusive 

of compressor stations, it does not include pipelines. 

B3.1.1.5 Distribution 

Emissions from distribution compressor stations (𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑖,𝑗,𝑡) are estimated as follows: 

𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑖,𝑗,𝑡 = 𝑅𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡      (25) 

where 𝑅𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions.  We use reported facility-level 

emissions and point source coordinate locations from the EPA NEI for facilities with NAICS 22121 for 

years 2005, 2008, 2011, and 2014.   For non-reporting years, we estimate emissions for each source location 
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𝑗 by linearly interpolating between years or extrapolating across years, using reported emissions aggregated 

to a given source location resolution (i.e., county or 36 x 36 km grid cell).  While the NEI dataset is inclusive 

of compressor stations, it does not include distribution lines and mains. 

B3.1.1.6 End use 

We estimate emissions from electric utilities (𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑖,𝑗,𝑡) as follows: 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑖,𝑗,𝑡 = ∑ 𝑅𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡𝑠𝑡𝑎𝑡𝑒       (26) 

where 𝑅𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions for each spatial unit 𝑗.   

A variety of sources report NOx emissions from the electric power sector, each with varying sectoral and 

temporal coverage, as shown in Figure B3.  For NOx emissions, we use reported plant-level emissions from 

the EPA Continuous Emissions Monitoring System (CEMS) because it provides estimates for all years 

from 2004 to 2016 and is reported at a high spatial resolution; we include facilities with a primary fuel type 

of pipeline natural gas and identified as electric utilities, including cogeneration.   The CEMS dataset is 

inclusive of most electric power generation, as indicated by the relative heat input and generation across 

datasets (Table B4). 

For VOC and PM2.5 emissions, we use reported facility-level emissions from NEI for years 2005,2008, 

2011, and 2014.  To extract natural gas facility emissions data from the NEI dataset and coordinate locations 

from the eGRID dataset, we do a crosswalk of the NEI, eGRID, and CEMS datasets.  For non-reporting 

years, we estimate emissions for each source location 𝑗 by linearly interpolating between years or 

extrapolating across years, using reported emissions aggregated to a given source location resolution (i.e., 

county or 36 x 36 km grid cell).   
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Table B3.  Comparison of electric power emissions sector data sources. 

Reporting 

system 

Sector Coverage Subsector Coverage Years Spatial 

Resolution 

CEMS Electric Power Industry 

(generators >25 MW) 

Electric Utility; Industrial Boiler; Pulp & 

Paper Mill; Iron & Steel 

2004 - 2016 plant 

eGRID Electric Power Industry 

(grid-connected) 

 - 2004, 2005, 

2007, 2009, 

2010, 2012, 

2014, 2016 

plant 

EIA Electric Power Industry Electric Utility; Industrial; Commercial 2013 - 2016 plant 

EIA Electric Power Industry Electric Utility; IPP NAICS-22 Non-

Cogen; IPP NAICS-22 Cogen; 

Commercial Cogen; Commercial Non-

Cogen; Industrial Cogen; Industrial 

Non-Cogen 

2004 - 2016 state 

 

Table B4.  Comparison of 2014 electric utility data for Pennsylvania, Ohio, and West Virginia. 

Reporting 

system 

NOx Emissions 

(short tons) 

Net Generation 

(TWh) 

Heat Input 

(million mmBTU) 

CEMS 3,996 71.0 574 

eGRID 4,286 75.9 573 

EIA 6,701 75.8 594 

 

Emissions from industrial end use (𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑖,𝑗,𝑡) are estimated as follows: 

𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑖,𝑗,𝑡 = 𝑅𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡       (27) 

where 𝑅𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions.  We use reported county-level 

emissions from the EPA NEI for commercial natural gas combustion for years 2008, 2011, and 2014; this 

includes natural gas that is combusted by industrial boilers and internal combustion engines.44  For non-

reporting years, we estimate emissions for each county by linearly interpolating between years or 

extrapolating across years; we use an area-weighting approach to develop estimates at the 36 x 36 km grid 

cell resolution. 

Emissions from commercial end use (𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑖,𝑗,𝑡) are estimated as follows: 

𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑖,𝑗,𝑡 = 𝑅𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡      (28) 
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where 𝑅𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions.  We use reported county-level 

emissions from the EPA NEI for commercial natural gas combustion for years 2008, 2011, and 2014; this 

includes natural gas that is combusted by commercial and institutional boilers and internal combustion 

engines.44  For non-reporting years, we estimate emissions for each county by linearly interpolating between 

years or extrapolating across years; we use an area-weighting approach to develop estimates at the 36 x 36 

km grid cell resolution. 

Emissions from residential end use (𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑖,𝑗,𝑡) are estimated as follows: 

𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑖,𝑗,𝑡 = 𝑅𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 ∙ 𝑈𝑠𝑡𝑎𝑡𝑒,𝑡      (29) 

where 𝑅𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠𝑡𝑎𝑡𝑒,𝑖,𝑗,𝑡 is the reported (or simulated) emissions.  We use reported county-level 

emissions from the EPA NEI for residential natural gas combustion for years 2008, 2011, and 2014; this 

includes natural gas that is combusted for residential household heating, grills, hot water heating, and 

dryers.44  For non-reporting years, we estimate emissions for each county by linearly interpolating between 

years or extrapolating across years; we use an area-weighting approach to develop estimates at the 36 x 36 

km grid cell resolution. 

B3.1.2 Mortality and monetized damages 

We estimate premature mortalities by combining the emissions model with three RCMs, AP3, APSCA, and 

InMAP.  We use source-receptor versions of AP3 and APSCA to generate spatially-resolved marginal 

statistical mortalities for each receptor area associated with emissions from a source area.  We use a source-

resolved version of InMAP, whereby marginal statistical mortalities are allocated to the source location..  

AP3 is an integrated assessment model which uses a dispersion model to link emissions to annual average 

concentrations, and then estimates exposures and mortalities based on predicted concentrations, 

demographic data, and dose-response functions.45,46  Marginal impacts by receptor location associated with 

NOx, PM2.5, and VOCs emissions from source locations are resolved at the county level and assume a base 

year of 2014.   To account for time-varying marginal mortality, we apply an annual population adjustment 

based on reported annual county-level population. 

APSCA is a receptor-resolved version of the Estimating Air Pollution Social Impact Using Regression 

(EASIUR) model.47   EASIUR marginal damages are derived using regression on simulations from CAMx, 

a state-of-the-art chemical transport model.48  Marginal impacts by receptor location associated with NOx 

and PM2.5 emissions from source locations are resolved at the 36 x 36 km grid cell level and assume varying 

base years.  We perform a single factor sensitivity analysis to account for uncertainty in the dispersion 

modeling in EASIUR using the 95% prediction interval multipliers reported Heo and Adams (2015).48 
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For all models, we parametrically vary the concentration-response relationship based on the American 

Cancer Society (ACS) and Harvard Six Cities (H6C) studies.49,50  Specifically, the relative risk values 

assumed are 1.06 (ACS) and 1.14 (H6C), terms of increased mortality per 10 µg PM2.5/m3 increase. 

To develop monetized impact estimates, we use the value of a statistical life (VSL), which is “a summary 

measure for the dollar value of small changes in mortality risk experienced by a large number of people. 

and premature mortality estimates to generate monetary damages.”51  We simulate VSL based on the EPA-

recommended default distribution for preparing economic analyses (Weibull distribution with a scale = 

9.42 and shape = 1.51 converted to 2017 USD using the Consumer Price Index); the simulated mean (and 

standard deviation) VSL is $8.5M (+/- $5.7M). 

B3.2 Additional results 

The following are additional results from the air quality emissions, mortality, and damages modeling. 
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Table B5.  Emissions per unit activity for 2004 and 2016 for preproduction and production processes.  Mean emissions per unit activity are provided, 

in addition to the percent change in emissions from 2004 to 2016.  Note that emissions reflect systems-level factors (e.g., fleet turnover of rate, 

percentage of wells with wellhead compressors).  Comparison to unit-level emissions for 2009 reported in Roy et al. (2014). 

 

 

 

Segment / process 

NOx VOC PM2.5 

2004 2016 %△ 

Roy et al. 

(2014) 2004 2016 %△ 

Roy et al. 

(2014) 2004 2016 %△ 

Roy et al. 

(2014) 

Preproduction (tons/spud wells) 

Drilling 5.07 4.40 -13% 4.4 0.60 0.46 -23% 0.5 0.32 0.24 -23% 0.3 

Hydraulic fracturing 1.88 1.20 -36% 2.2 0.23 0.08 -8% 0.25 0.14 0.05 -64% 0.16 

Trucking 1.83 0.12 -94% 6.9 0.10 0.01 -1% 0.4 0.02 0.00 -94% 0.07 

Well completion - - - - 0.79 0.08 -8% 3.8 - - - - 

Production (tons/producing well) 

Condensate tanks 

(tons/bbl) 
- - - - 0.01 0.00 0% 0.0003 - - - - 

Heaters 0.08 0.08 0% 0.0 0.00 0.00 0% 0.0 - - - - 

Pneumatics - - - - 0.00 0.00 0% 0.5 - - - - 

Fugitives - - - - 0.00 0.00 -2% 0.2 - - - - 

Wellhead compressors 0.02 0.01 -53% 1.1 0,01 0.00 0% 0.4 0.00 0.00 0% 0.01 



 

210 
 

 

Figure B13.  Emissions per unit activity from 2004 to 2016.  Mean emissions per unit activity are provided. 
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Table B6.  Cumulative air pollution emissions and percent attribution for each segment and process across the supply chain. 

Segment / process 

2004 to 2016 Cumulative Emissions 

NOx VOC PM2.5 

Emissions 

(thousand metric 

tons) 

% Emissions 

(thousand metric 

tons) 

% Emissions 

(thousand metric 

tons) 

% 

Preproduction 92 14% 14 10% 5.3 15% 

Production 5 1% 71 51% 0.0 0% 

Processing 0 0% 1 1% 0.0 0% 

Transmission 121 18% 18 13% 3.8 11% 

Distribution 4 1% 1 1% 0.3 1% 

End use 447 67% 34 24% 25.7 73% 

Total Supply Chain 670 100% 140 100% 35.1 100% 
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Figure B14.  Emissions by process/segment over time.  Preproduction (A) NOx, (B) VOC, and (C) PM2.5 emissions under baseline scenario.  

Production  (D) NOx, (E) VOC, and (F) PM2.5 emissions under baseline scenario.  End use (G) NOx, (H) VOC, and (I) PM2.5 emissions. 
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Figure B15.  Maps of cumulative emissions for each county for different segments of the supply chain.  
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Figure B16.  Maps of annual NOx emissions for each county. 
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Figure B17.  Maps of annual VOC emissions for each county. 
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Figure B18.  Maps of annual PM2.5 emissions for each county. 
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Figure B19.  Maps of annual premature mortalities using AP3 and ACS concentration-response relationship. 
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Figure B20.  Maps of cumulative premature mortalities using AP3 and ACS concentration-response relationship for each segment of supply chain. 
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Table B7.  Cumulative premature mortalities and monetized damages from 2004 to 2016.  Damages in 2017 USD.  Mortalities and damages based on 

base scenario emission assumptions.  Mean damages are provided, as well as, 95% confidence intervals (in parentheses) reflecting uncertainty in the 

VSL.  Estimates based on mean, all cause relative risk values from fine particulate matter reported in Pope et al. (2002) (ACS Cohort) and Lepeule et 

al. (2012) (Harvard Six Cities cohort). 

Segment Premature mortality Damages (billion $) 

ACS Cohort 

Study 

Harvard Six 

Cities Study 

ACS Cohort 

Study 

Harvard Six 

Cities Study 

AP3 

Upstream 461 942 4 (0.4 - 10) 8 (0.8 - 20) 

Midstream 450 921 4 (0.4 - 10) 8 (0.8 - 20) 

End use 1360 2766 12 (1 - 31) 23 (2 - 61) 

Supply chain 2270 4629 19 (2 - 51) 39 (4 - 103) 

APSCA 

Upstream 256 657 2 (0.2 - 6) 6 (0.5 - 15) 

Midstream 266 684 2 (0.2 - 6) 6 (0.6 - 15) 

End use 686 1763 6 (0.6 - 15) 15 (1 - 39) 

Supply chain 1208 3103 10 (1 - 27) 26 (3 - 69) 

InMAP 

Upstream 240 618 2 (0.2 - 5) 5 (0.5 - 14) 

Midstream 248 638 2 (0.2 - 6) 5 (0.5 - 14) 

End use 640 1643 5 (0.5 - 14) 14 (1 - 37) 

Supply chain 1129 2900 10 (0.9 - 25) 25 (2 - 65) 
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B4 Climate change model 

B4.1 Methods 

We model temporally-resolved emissions of methane (CH4) and carbon dioxide (CO2) and climate impacts 

associated with shale gas activities across the supply chain from preproduction to end use from 2004 to 

2016.  We estimate climate impacts in terms of global temperature change and monetized damages.  To 

account for major sources of uncertainty, we perform sensitivity analyses of key inputs, such as the absolute 

global temperature potential and the social cost of carbon and methane, and develop process-or site-level 

emission ranges for upstream and midstream processes. 

B4.1.1 Emissions model 

B4.1.1.1 Background 

Climate change impacts of natural gas activity are a function of greenhouse gases (GHG) emitted across 

the supply chain, from preproduction through end use.   Emissions are associated with various 

preproduction processes, such as well pad preparation, drilling, hydraulic fracturing, and well completion.41  

Emissions from other upstream and midstream segments, including production, gathering, processing, 

transmission and storage, and distribution, largely consist of vented and fugitive from fuel combustion.43,52–

54  Additional combustion emissions are associated with downstream processes, including electricity 

generation43,53,55, commercial or residential heating, industrial end use, use as alternative transportation 

fuel42,56, and liquefied natural gas exports57. 

According to the U.S. Greenhouse Gas Inventory (GHGI), the U.S natural gas sector in 2016 was the source 

of approximately a quarter of all GHG emissions and a third of all energy-related emissions.58  Within the 

natural gas sector, almost 90% of emissions result from downstream combustion, a majority of which are 

from electric power and industrial end use segments, and the remaining 10% stem from upstream and 

midstream processes, as shown in   
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Table B8.58  Annual emissions from upstream and midstream sources have slightly increased between 2004 

and 2016, reflecting both increasing natural gas activity and decreasing emission factors from voluntary 

and regulatory reductions. 

Several life cycle assessments (LCA) have been conducted to quantify the GHG emissions of current and 

emerging life cycle stages.  A common finding is that life cycle emissions from domestic use of natural gas 

(including unconventional shale gas) are lower than coal, even when considering uncertainty in methane 

leakage rates.41,43,53,54,59–61  The climate benefit of natural gas relative to coal is further supported at an 

energy systems level; the CO2 intensity of U.S. electricity production has decreased between 2001 and 2017 

by 30%, a trend reflective of declining coal generation and corresponding increases in natural gas and wind 

generation.62 
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Table B8.  U.S. Greenhouse Gas Inventory and life cycle assessment GHG emissions across the natural 

gas supply chain.41,53,58  

Segment U.S. Greenhouse Gas Inventory Life Cycle Assessmenta 

2004 2016 Emissions 

(CO2eq / 

MJ) 

% 

Emissions Emissions 

(CO2eq 

mmt) 

% 

Emissions 

Emissions 

(CO2eq 

mmt) 

% 

Emissions 

Preproduction 11 1% 1 0% 1.8 3% 

Production 57 4% 57 3% 9.7 14% 

Gathering 31 2% 53 3% b b 

Processing 31 2% 33 2% 4.3 6% 

Transmission and 

storage 37 3% 33 2% 1.4 2% 

Distribution 25 2% 12 1% 0.8 1% 

End Use 1183 86% 1476 89% 50 73% 

Total Supply Chain 1374 100% 1665 100% 68 100% 

a These are life cycle emissions for domestic use of natural gas. 

b Gathering emissions are included in production. 

 

In the following sections, we describe regional and unit-level emissions model formulations and 

assumptions for each segment.  Table B9 is a summary of emissions modeling input parameters, including 

definitions, values, and data sources. 

Using a combination of top-down and bottom-up approaches, we derive both regionally aggregated 

emissions estimates, as well as, segment-specific emission factors.  The inclusion of and detail in which we 

model each segment of and process within the natural gas sector varies based on the availability and quality 

of data, and the relative emissions contribution of each source, as indicted by national inventories and LCA 

studies.  We also focus on representing uncertainty of systems-level emissions rather than unit-level 

variation.  We use a combination of parametric and probabilistic methods for upstream processes, rather 

than employing a fully stochastic framework. 

We account for time-varying parameters (where practicable), such as evolving regulation and changing 

activity factors.  While we account for changing well completion regulation and corresponding practices 

over time, we do not explicitly differentiate between emission factors pre- and post- implementation of the 

2016 NSPS subpart OOOO which limits vented and fugitive methane emissions from production wells, 

gathering stations, processing facilities, and transmission and storage compressor stations.63  For the 

segments regulated under the NSPS subpart OOOO, we use data and modeling results from large-scale 

methane measurement studies conducted across the natural gas supply chain between 2013 and 201628,29,64–
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68; these studies provide the best available methane loss rates for each segment and thus the most appropriate 

for representing operating practices over the period of our analysis.  With respect to electricity generation, 

we use annually reported plant-level emissions, which we assume inherently incorporate time-varying 

regulatory, efficiency, and activity factors. 

Unlike for the air quality impact model, we do not develop spatially-resolved source GHG emission 

estimates given that the species considered are well-mixed GHGs and global forcing per unit of emission 

are independent of geographic location of emission.69  Spatial variability in GHG emission sources is 

potentially relevant from a regulatory perspective, namely with respect to classifying and identifying the 

regulated community or emitters for policy design and enforcement (e.g., methane superemitter policy).   

For modeling the preproduction, production, and gathering segments, we explicitly use shale gas activity 

factors, such number of well.  To attribute emissions from midstream and downstream segments to shale 

production, we use a prorate factor relative to total natural gas production (refer to section B2.4). 

  



 

225 
 

Table B9.  Emissions modeling parameter values, definitions, and data sources.  

Parameter Parameter Definition Parameter Value Units Source 

𝜃1,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 fitted parameter for estimating mean 

methane emission factor for production 

0.60 (0.44 to 0.81) - 70 

𝜃2,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 fitted parameter for estimating mean 

methane emission factor for production 

1.4 (1.3 to 1.8) - 70 

𝜎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 fitted parameter for estimating mean 

methane emission factor for production 

1.3 (1.1 to 1.6) - 70 

𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 fitted parameter for estimating mean 

methane emission factor for production 

3.0 (2.6 to 3.2) - 70 

𝑏𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 fitted parameter for estimating mean 

methane emission factor for production 

-2.2 (-2.6 to -1.8) - 70 

𝑐𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 fitted parameter for estimating mean 

methane emission factor for production 

0.20 (0.050 to 0.42) - 70 

𝐶𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝐶𝐻4 distribution methane content 93.4% % 71 

𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑡 production methane content for northeast 

National Energy Modeling System (NEMS) 

region 

time-varying (ranges from 83 to 

84%) 

% 71 

𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝑂2,𝑡 production carbon dioxide content for 

unconventional natural gas in northeast 

NEMS region 

3.5% % 71 

𝐶𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝐶𝐻4 transmission and storage methane content 93.4% % 71 

𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑎𝑓𝑡𝑒𝑟,𝐶𝑂2 carbon dioxide content after processing 1% % 71 

𝐶𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑏𝑒𝑓𝑜𝑟𝑒,𝐶𝑂2 carbon dioxide content prior to processing 7.4% % 71 

𝐸𝐹𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 carbon dioxide emission factor for natural 

gas combustion 

54 metric 

ton/mmcf 

72,73 

𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 methane emissions factor for completions 

with emission controls 

2.23 (base), 0.66 (low), 4.65 (high) metric 

ton/spud 

well 

28 

𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 methane emissions factor for completions 

without emission controls 

0.84 (base), 0.38 (low), 1.63 (high) metric 

ton/spud 

well 

28 

𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 carbon dioxide emission factor for drilling 390 (base), 280 (low), 500 (high) metric 

ton/spud 

well 

41 

𝐸𝐹ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 carbon dioxide emission factor for hydraulic 

fracturing pumping 

460 (base), 230 (low), 690 (high) metric 

ton/spud 

well 

41 

𝐸𝐹𝑚𝑎𝑖𝑛,𝑡𝑦𝑝𝑒 methane emissions factors for each mile of 

main 

cast iron: 1.16 (4.31), unprotected 

steel: 0.86 (2.32), protected steel: 

0.10 (0.37), plastic: 0.03 (0.06) 

metric 

ton/mile 

58,67 
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Table B9 (continued).  Emissions modeling parameter values, definitions, and data sources.  

Parameter Parameter Definition Parameter Value Units Source 

𝐸𝐹𝑚𝑒𝑡𝑒𝑟𝑠,𝑡𝑦𝑝𝑒 methane emissions factor for distribution 

meters and regulators 

meter > 300 psi: 2.14 (3.59), 

meter 100 - 300 psi: 1.00, meter 

< 100 psi: 0.73, regulator > 300 

psi: 0.87 (2.57), regulator 100 - 

300 psi: 0.14 (0.39), regulator 40 - 

100 psi: 0.16 (1.20), regulator < 

40 psi: 0.02, vault: 0.05 (0.07) 

metric 

ton/meter 

58,67 

𝐸𝐹𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑡𝑦𝑝𝑒 methane emissions factor for each service 

line 

unprotected steel: 0.01 (0.04), 

protected steel: 0.001 (0.002), 

plastic: 0.0003 (0.0004), copper: 

0.005 

metric 

ton/service 

line 

58,67 

𝐸𝐹𝑤𝑒𝑙𝑙𝑝𝑎𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 carbon dioxide emission factor for well pad 

preparation 

340 (base), 300 (low), 360 (high) metric 

ton/well 

41 

𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑡 fraction of well completions with emission 

controls 

time-varying -/- 28,29 

𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 reference higher heating value used in AP-42 

natural gas combustion carbon dioxide 

emission factors 

1000 BTU/cf 58 

𝐻𝐻𝑉𝑠,𝑡 higher heating value for delivered natural gas time-varying BTU/cf 74 

𝐿𝑔𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔 methane loss rate for gathering facilities 0.40% (base), 0.36% (low), 0.45% 

(high) 

% 75 

𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 methane loss rate for processing segment 0.18% (base), 0.16% (low), 0.20% 

(high) 

% 75 

𝐿𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 methane loss rate for transmission and 

storage segment 

0.35% (base), 0.28% (low), 0.45% 

(high) 

% 64 

𝑀𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠,𝑡,𝑡𝑦𝑝𝑒 number of meters and regulators time-varying (see Figure B21) meters 58,76 

𝑃𝑚𝑎𝑖𝑛,𝑠,𝑡,𝑡𝑦𝑝𝑒 length of main pipeline of each type time-varying (see Figure B21) miles 76 

𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡 production per well time-varying (refer to section 

B2.2) 

mcf 5–7 

𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑠,𝑡,𝑡𝑦𝑝𝑒 number of service lines of each type time-varying (see Figure B21) service 

lines 

76 

𝑈𝑠,𝑡 fraction total unconventional production out 

of total production 

time-varying (ranges from 0 to 

99%) 

-/- 5–8 

𝑉𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠,𝑡 volume of natural gas delivered to 

commercial consumers 

time-varying (see Figure B9) mmcf 16 

𝑉𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 natural gas combusted during well 

completions for wells with emission controls 

1.57 (base), 0.46 (low), 2.87 

(high) 

mmcf/well 28 

𝑉𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠,𝑡 volume of natural gas delivered to consumers time-varying (see Figure B9) mmcf 77 

𝑉𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠,𝑡 volume of natural gas delivered to industrial 

consumers 

time-varying (see Figure B9) mmcf 15 
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Table B9 (continued).  Emissions modeling parameter values, definitions, and data sources.  

Parameter Parameter Definition Parameter Value Units Source 

𝑉𝑙𝑒𝑎𝑠𝑒𝑓𝑢𝑒𝑙,𝑠,𝑡  natural gas lease fuel consumption time-varying (see Figure B9) mmcf 11 

𝑉𝑝𝑙𝑎𝑛𝑡𝑓𝑢𝑒𝑙,𝑠,𝑡 natural gas plant fuel consumption time-varying (see Figure B9) mmcf 12 

𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠,𝑡  natural gas processing volume (i.e., 

unprocessed volume received by plant) 

time-varying (see Figure B9) mmcf 10 

𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑠,𝑡 shale gas production volume time-varying (refer to section 

B2.1) 

mmcf 5–7 

𝑉𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠,𝑡 volume of natural gas delivered to residential 

consumers 

time-varying (see Figure B9) mmcf 18 

𝑉𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑓𝑢𝑒𝑙,𝑠,𝑡 transmission and distribution fuel 

consumption 

time-varying (see Figure B9) mmcf 13 

𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑡 number of producing wells time-varying (refer to section 

B2.2) 

wells 5–7 

𝑊𝑠𝑝𝑢𝑑,𝑡 number of spud wells time-varying (refer to section 

B2.3) 

wells 5–7 

 

B4.1.1.2 Preproduction 

We estimate well pad preparation emissions (𝐸𝑤𝑒𝑙𝑙𝑝𝑎𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛,𝑡) from land clearing and well pad 

construction for each year 𝑡 as follows: 

𝐸𝑤𝑒𝑙𝑙𝑝𝑎𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛,𝑡 = ∑ 𝐸𝐹𝑤𝑒𝑙𝑙𝑝𝑎𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ∙ 𝑊𝑠𝑝𝑢𝑑,𝑠,𝑡𝑠      (30) 

where 𝑊𝑠𝑝𝑢𝑑,𝑠,𝑡 is the number of spud wells for each year 𝑡 and state 𝑠.  We similarly estimate drilling 

emissions (𝐸𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡) as follows: 

𝐸𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔,𝑡 = ∑ 𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔 ∙ 𝑊𝑠𝑝𝑢𝑑,𝑠,𝑡𝑠         (31) 

We also estimate hydraulic fracturing emissions (𝐸ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐,𝑡) from pumping as follows: 

𝐸ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐,𝑡 = ∑ 𝐸𝐹ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐 ∙ 𝑊𝑠𝑝𝑢𝑑,𝑠,𝑡𝑠         (32) 

We use a range of emission factors for well pad preparation (𝐸𝐹𝑤𝑒𝑙𝑙𝑝𝑎𝑑𝑝𝑟𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛), drilling (𝐸𝐹𝑑𝑟𝑖𝑙𝑙𝑖𝑛𝑔), 

and hydraulic fracturing (𝐸𝐹ℎ𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐) based on modeling results from Jiang et al. (2011).  We do not 

account for changing practices and operating efficiencies related to well pad preparation, drilling, and 

hydraulic fracturing (e.g., a reduction in drilling time, a reduction in fracturing stages, and an increase in 

the number of wells per pad), which collectively are likely to have trivial impacts on total GHG emissions. 
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Emissions from well completions are highly uncertain, but are a relatively minor source, contributing less 

than 1% of life cycle GHG emissions.41–43  We estimate methane losses from well completion 

(𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4) as follows: 

𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑡 = ∑ [𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑡 ∙ 𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑 + (1 −𝑠

𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑡) ∙ 𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑] ∙ 𝑊𝑠𝑝𝑢𝑑,𝑠,𝑡    (33) 

We attempt to reflect voluntary adoption of emission controls and rapidly evolving regulation, including 

the implementation of the NSPS subpart OOOO and National Emissions Standards for Hazardous Air 

Pollutants (NESHAP) standards, that require reduced emission completions (RECs) for hydraulically 

fractured wells by 2015. 

We additionally derive methane emission factors for wells with emission controls 

(𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑), and without emission controls (𝐸𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑) based on a 

measurement study conducted by Allen et al. (2013).28  Given insufficient sample size, we do not further 

segregate types of emission controls. To derive a range of emission factor estimates, we employ a 

bootstrapping method used in other emission studies28,78–80; we resample with replacement n times from the 

dataset (where n=25 is the sample size), estimate the mean of the bootstrapped sample, iterate 100,000 

times, and then find the mean and 95% confidence interval across the bootstrapped means.  

We assume a changing fraction of well completions with emission controls (𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑡) and 

without emission controls (𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑢𝑛𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑡).  The penetration of emission controls over time is 

uncertain, although recent emission measurement studies suggest that most wells in Appalachia (for which 

measurements were taken) have emission controls.28,29 

We also estimate carbon dioxide flaring emissions from well completion (𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝑂2) as follows: 

𝐸𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝐶𝑂2,𝑡 = ∑ 𝐹𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛,𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑,𝑡 ∙ 𝑉𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 ∙ 𝐸𝐹𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 ∙ 𝑊𝑠𝑝𝑢𝑑,𝑠,𝑡𝑠      (34) 

where 𝐸𝐹𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛 is the carbon dioxide emissions factor for natural gas combustion. The volume of 

natural gas combusted during controlled well completions  (𝑉𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛) is derived using the previously 

described bootstrapping method, using data from Allen et al. (2013).28  Although we do not explicitly 

assume the flaring rate as in several previous studies, the combusted volume incorporates some observations 

in which flaring is employed.41–43,81 

B4.1.1.3 Production 

We develop a bottom-up estimate of methane losses from producing wells (𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑠,𝑡) based on a range 

of emissions factors (𝐸𝐹𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝐻4) conditional on site-level production as follows: 

𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑡 = ∑ 𝐸𝐹𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑤𝑒𝑙𝑙,𝑡𝑤𝑒𝑙𝑙 ∙ 𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔,𝑡     (35) 



 

229 
 

where the emission factor is: 

𝐸𝐹𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑤𝑒𝑙𝑙,𝑡 = 𝑒𝜇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡+1/2𝜎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
2
     (36) 

where 𝜎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the standard deviation (fitted value) and 𝜇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡 is the mean given by: 

𝜇𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡 = 𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑏𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑃
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡

𝜃1,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑐𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔𝑃
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡

𝜃2,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
 (37) 

where 𝑎𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑏𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝜃1,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛, and 𝜃2,𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 are fitted parameters, and 𝑃𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑤𝑒𝑙𝑙,𝑡 

is the annual production per well.  The empirical relationship defining the emission factor conditional on 

site-level production described by equations 36 and 37 is that derived in Alvarez et al. (2018), a study which 

comprehensively evaluated methane emissions for production based on several recent measurement 

studies.70  The study provides a range of fitted values for the parameters specific for the basin, defining the 

mean and 95% confidence interval of emission factors.  While the empirical relationship is based on site-

level rather than well-level data, we assume that the relationship applies at the well level; based on a GIS 

cluster analysis defining the number of wells per site in Alvarez et al. (2018), 96% of sites within the basin 

have one well. 

We also estimate carbon dioxide emissions from combustion of lease fuel (𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝑂2,𝑡) as follows: 

𝐸𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝐶𝑂2,𝑡 = ∑ 𝑉𝑙𝑒𝑎𝑠𝑒𝑓𝑢𝑒𝑙,𝑠,𝑡 ∙ 𝑈𝑠,𝑡 ∙ 𝐸𝐹𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛𝑠       (38) 

where 𝑉𝑙𝑒𝑎𝑠𝑒𝑓𝑢𝑒𝑙,𝑠,𝑡 is the lease fuel consumed (as reported by the EIA) and 𝑈𝑠,𝑡 is the unconventional 

prorate factor. 

B4.1.1.4 Gathering 

We develop a top-down estimate of methane losses from gathering facilities (𝐸𝑔𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔,𝑠,𝑡) based on 

gathering volume and methane loss rate as follows: 

𝐸𝑔𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔,𝑡 = ∑ (𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑠,𝑡 − 𝑉𝑙𝑒𝑎𝑠𝑒𝑓𝑢𝑒𝑙,𝑠,𝑡 ∙ 𝑈𝑠,𝑡) ∙ 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑡 ∙ 𝐿𝑔𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔𝑠   (39) 

where 𝑉𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑠,𝑡 is the shale production volume.  We develop scenarios by varying the main source of 

uncertainty, the methane loss rate (𝐿𝑔𝑎𝑡ℎ𝑒𝑟𝑖𝑛𝑔).  We use loss rate estimates from a study by Marchese et al. 

(2015), which is based on recent measurements of gathering facility emissions across the U.S., and 

specifically use loss rate estimates based on measurements in Pennsylvania, given that there is very high 

variability across regions; we further adjust central and high estimates to account for heavy-tailed 

distributions, as described in Alvarez et al. (2018).65,70   We do not model gathering pipeline leaks, given 

outdated and otherwise insufficient activity and emissions data.75  A recent study conducted by Zimmerle 

et al. (2017) measures gathering pipeline leaks, and while the study suggests that the GHGI may 
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underestimate gathering pipeline leaks, study data were reported as insufficiently representative to develop 

emission factors.82 

B4.1.1.5 Processing 

We estimate fugitive and vented methane losses (𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝐶𝐻4,𝑡) as follows: 

𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝐶𝐻4,𝑡 = ∑ 𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠,𝑡 ∙ 𝑈𝑠,𝑡 ∙ 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑡 ∙ 𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔𝑠     (40) 

where 𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠,𝑡 is the natural gas volume received by processing plants (as reported for each state by 

the EIA) and 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛,𝑡 is the methane content of natural gas prior to processing.  We develop scenarios 

by varying the main source of uncertainty, the methane loss rate (𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔).  We use loss rate estimates 

from a study by Marchese et al. (2015), which is based on recent measurements of gathering facility 

emissions across the U.S.; we further adjust central and high estimates to account for heavy-tailed 

distributions, as described in Alvarez et al. (2018).65,70 

We estimate carbon dioxide vented (𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝐶𝑂2 𝑣𝑒𝑛𝑡𝑖𝑛𝑔,𝑡) for each year t as follows: 

 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝐶𝑂2 𝑣𝑒𝑛𝑡𝑖𝑛𝑔,𝑡 = ∑ 𝑉𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝑠,𝑡 ∙ 𝑈𝑠,𝑡 ∙ (𝐶𝐵𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 − 𝐶𝐴𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔)𝑠   (41) 

where 𝐶𝐵𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 is the carbon dioxide content prior to venting and 𝐶𝐴𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 is the carbon dioxide 

content after venting to achieve a transmission grade composition of natural gas. 

We also estimate carbon dioxide emissions from combustion of plant fuel (𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝐶𝑂2 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛,𝑡) as 

follows: 

𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔,𝐶𝑂2 𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛,𝑠,𝑡 = ∑ 𝑉𝑝𝑙𝑎𝑛𝑡𝑓𝑢𝑒𝑙,𝑠,𝑡 ∙ 𝑈𝑠,𝑡 ∙ 𝐶𝐸𝑠      (42) 

where 𝑉𝑝𝑙𝑎𝑛𝑡𝑓𝑢𝑒𝑙,𝑠,𝑡 is the plant fuel consumed. 

B4.1.1.6 Transmission and storage 

We develop a top-down estimate of methane losses from transmission and storage infrastructure 

(𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝐶𝐻4,𝑡) as follows: 

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝐶𝐻4,𝑡 = ∑ (𝑉𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠,𝑡 + 𝑉𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑓𝑢𝑒𝑙,𝑠,𝑡) ∙ 𝑈𝑠,𝑡 ∙ 𝐶𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 ∙ 𝐿𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠  

            (43) 

where 𝐶𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 is the methane content of transmission natural gas.  Consistent with assumptions in 

Tong et al. (2015), we assume that the annual transmission volume is the sum of pipeline and distribution 

fuel use (𝑉𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠,𝑡) and volume delivered to end use customers (𝑉𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑓𝑢𝑒𝑙,𝑠,𝑡) (as reported by 

the EIA for each state).  We model a range of methane loss rate (𝐿𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛) scenarios; we use methane 

loss rates for the entire transmission and storage segment derived in a study by Zimmerle et al. (2015) that 

combines recent measurements across the U.S. with pipeline losses estimated in the GHGI. 
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We also estimate carbon dioxide emissions from combustion of transmission and distribution fuel 

(𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝐶𝑂2,𝑡) as follows: 

𝐸𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛,𝐶𝑂2,𝑡 = ∑ 𝑉𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑓𝑢𝑒𝑙,𝑠,𝑡 ∙ 𝑈𝑠,𝑡 ∙ 𝐸𝐹𝑐𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑜𝑛𝑠      (44) 

Given that the EIA reports transmission and distribution fuel consumption (𝑉𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑓𝑢𝑒𝑙,𝑠,𝑡) in 

aggregate, we combine combustion emission estimates across segments. 

B4.1.1.7 Distribution 

We estimate methane losses from distribution infrastructure (𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑡) as follows: 

𝐸𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝐶𝐻4,𝑡 = ∑ ∑ (𝑃𝑚𝑎𝑖𝑛,𝑠,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝐸𝐹𝑚𝑎𝑖𝑛,𝑡𝑦𝑝𝑒 + 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑠,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝐸𝐹𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑡𝑦𝑝𝑒 +𝑡𝑦𝑝𝑒𝑠

𝑀𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝐸𝐹𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑡𝑦𝑝𝑒) ∙ 𝑈𝑠,𝑡       (45) 

where 𝑃𝑚𝑎𝑖𝑛,𝑠,𝑡,𝑡𝑦𝑝𝑒 is the miles of mains of each material type and 𝑃𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑠,𝑡,𝑡𝑦𝑝𝑒 is the number of service 

lines of each material type, based on annual data reported by distribution operators to the Pipeline and 

Hazardous Materials Safety Administration (PHMSA).  𝑀𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑠,𝑡,𝑡𝑦𝑝𝑒 is the number of meters and 

regulators of each type.  We employ emission factors (𝐸𝐹𝑚𝑎𝑖𝑛,𝑡𝑦𝑝𝑒, 𝐸𝐹𝑠𝑒𝑟𝑣𝑖𝑐𝑒,𝑡𝑦𝑝𝑒, and 𝐸𝐹𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛,𝑡𝑦𝑝𝑒) 

reported in the GHGI and in a measurement study by Lamb et al. (2015) of 13 urban distribution systems; 

we model base and high scenarios.58,67  Rather than use the distribution system loss rate (0.10% to 0.22%) 

derived in Lamb et al. (2015), which accounts for the distribution of pipelines and meters of each type 

across the U.S., we use state-specific PHMSA activity data and emission factors by material type over time 

to reflect recent pipeline replacement efforts in urban areas, such as Pittsburgh, Pennsylvania, and 

Cincinnati, Ohio.  The implied methane loss rate under base case assumptions is 0.21% in 2004 and 

decreases to 0.15% in 2016. 

 

Figure B21.  (A) Miles of distribution mains and (B) number of distribution service lines from 2004 to 

2016 in Pennsylvania, Ohio, and West Virginia.76 
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B4.1.1.8 End Use 

We consider emissions from electric power generation, industrial, commercial, and residential end uses.   

A variety of sources report CO2 emissions from the electric power sector, each with varying sectoral and 

temporal coverage but high correspondence between reported aggregate emissions, as shown in Table B10 

and Table B11.  We use the state-level EIA emissions dataset because it provides estimates for all years 

from 2004 to 2016, includes emissions from all facilities within the electric power sector, and allows for 

sub-sector segregation to prevent double-counting.  We estimate annual emissions from electric power 

generation from utilities (𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠,𝑠,𝑡) as follows: 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠,𝑠,𝑡 = ∑ 𝑅𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠,𝑠,𝑡 ∙ 𝑈𝑠,𝑡𝑠       (46) 

where 𝑅𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑢𝑡𝑖𝑙𝑖𝑡𝑖𝑒𝑠,𝑠,𝑡 is the reported emissions.  Electric power generation from large industrial and 

commercial facilities are included in emission estimates for those segments. 
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Table B10.  Comparison of electric power emissions sector data sources. 

Reporting 

system 

Sector Coverage Subsector Coverage Years Spatial 

Resolution 

CEMS Electric Power Industry 

(generators >25 MW) 

Electric Utility; Industrial Boiler; Pulp & 

Paper Mill; Iron & Steel 

2004 - 2016 plant 

eGRID Electric Power Industry 

(grid-connected) 

 - 2004, 2005, 

2007, 2009, 

2010, 2012, 

2014, 2016 

plant 

EIA Electric Power Industry Electric Utility; Industrial; Commercial 2013 - 2016 plant 

EIA Electric Power Industry Electric Utility; IPP NAICS-22 Non-

Cogen; IPP NAICS-22 Cogen; 

Commercial Cogen; Commercial Non-

Cogen; Industrial Cogen; Industrial 

Non-Cogen 

2004 - 2016 state 

 

Table B11.  Comparison of 2014 electric utility data for Pennsylvania, Ohio, and West Virginia. 

Reporting 

system 

CO2 Emissions 

(million short tons) 

Net Generation 

(TWh) 

Heat Input 

(million mmBTU) 

CEMS 33.6 71.0 574 

eGRID 34.0 75.9 573 

EIA 34.7 75.8 594 

 

We estimate annual emissions from industrial facilities (𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠,𝑡) as follows: 

𝐸𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠,𝑡 = ∑ 𝐶𝐸 ∙ 𝑉𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠,𝑡 ∙
𝐻𝐻𝑉𝑠,𝑡

𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∙ 𝑈𝑠,𝑡𝑠       (47) 

where 𝑉𝑖𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙,𝑠,𝑡 is the volume of industrial consumption of natural gas, 𝐻𝐻𝑉𝑠,𝑡 is the higher heating 

value for each state s and year t, and 𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the reference higher heating value.  While the EIA 

reports emissions for a subset of large industrial facilities comprising less than 1% of industrial fuel 

consumption, we use the preceding estimation approach for all facilities. 

We estimate annual emissions from commercial consumption (𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠,𝑡) as follows: 

𝐸𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠,𝑡 = ∑ 𝐶𝐸 ∙ 𝑉𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠,𝑡 ∙
𝐻𝐻𝑉𝑠,𝑡

𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∙ 𝑈𝑠,𝑡𝑠      (48) 

where 𝑉𝑐𝑜𝑚𝑚𝑒𝑟𝑐𝑖𝑎𝑙,𝑠,𝑡 is the volume of commercial consumption of natural gas, 𝐻𝐻𝑉𝑠,𝑡 is the higher heating 

value for each state s and year t, and 𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the reference higher heating value.  The EIA reports 
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emissions for a subset of large commercial facilities, which we do not segregate, given that they comprise 

less than 1% of commercial fuel consumption. 

We estimate annual emissions from residential consumption (𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠,𝑡) as follows: 

𝐸𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠,𝑡 = ∑ 𝐶𝐸 ∙ 𝑉𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠,𝑡 ∙
𝐻𝐻𝑉𝑠,𝑡

𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
∙ 𝑈𝑠,𝑡𝑠      (49) 

where 𝑉𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙,𝑠,𝑡 is the volume of residential consumption of natural gas, 𝐻𝐻𝑉𝑠,𝑡 is the higher heating 

value for each state s and year t, and 𝐻𝐻𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the reference higher heating value.  
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B4.1.2 Climate impact model 

We use the metric, global temperature change, to assess the temporal trace and cumulative impact of natural 

gas activity on climate.  We additionally monetize the impacts based on the social cost of carbon and 

methane. 

We focus on global temperature change, a global metric which is useful for characterizing spatially and 

temporally smooth climate responses from emissions of well-mixed GHGs (including CO2 and CH4).  

However, other short-lived chemically active gases (NOx, CO, and VOCs) that indirectly lead to changes 

in GHGs, as well as, aerosols and precursors (black carbon, organic carbon, SO2) react on very different 

time-scales and have regionally heterogeneous effects; in addition, climate forcings may be both negative 

and positive, thereby contributing to both warming and cooling.83  Thus, a global metric provides a rather 

limited view of potentially nontrivial impacts when multiple-pollutant emission scenarios are considered.84  

While we model emissions of NOx and VOC emissions as they relate to health impacts, we do not 

incorporate these emissions into the climate impact model. 

We use absolute rather than relative metrics that normalize impacts across species to a reference gas, such 

as global warming potential (GWP) and global temperature potential (GTP).  GWP, the time-integrated 

radiative forcing due to a pulse emission relative to that of CO2, has become a default metric because of its 

simplicity, despite well-documented criticisms of its formulation.85  GWPs may be inappropriate for 

evaluating long-term effects, given that they do not take into account that if radiative forcing is applied for 

a short period, the climate system has time to relax back to equilibrium.86  A related metric that incorporates 

additional physical processes and has a less ambiguous interpretation, GTP, is the ratio of a change in global 

mean surface temperature at a moment in time in response to an emission pulse relative to that of CO2.85,87  

While these metrics lend themselves to a benefit-cost or cost-effectiveness framing of climate policy 

decisions88, they do not facilitate understanding the temporal trace of impacts.  

We focus on global temperature change, whereby the relationship between the equilibrium global mean 

surface temperature response (∆𝑇) and sustained radiative forcing (𝑅𝐹) has the general form69: 

∆𝑇 = 𝜆 ∙ 𝑅𝐹           (50) 

where 𝜆 is the climate sensitivity parameter.  Radiative forcing, typically expressed in units of watts per 

square meter, is a commonly used metric describing the net change in the energy balance of the climate 

system resulting from an imposed perturbation, such as emissions of GHGs from the natural gas sector.71  

Often radiative forcing and metrics derivative of radiative forcing are proportional to and describe the 

relation to the global mean temperature response, with fewer metrics describing the relation to other climate 

change phenomena.  Furthermore, radiative forcing-based metrics do not incorporate climate effects 

unrelated to radiative forcing, such as the effects of land cover change on evapotranspiration.  Thus, while 
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there is utility in quantifying the global mean temperature change resultant of an emission, such an exercise 

is imperfect given its limited perspective on the factors driving broader climate change. 

A more explicit form of the relationship is given by the following convolution of an emission scenario and 

the average global temperature potential (AGTP)91,97,98: 

∆𝑇(𝑡) = ∑ ∫ 𝐸𝑖(𝑠)𝐴𝐺𝑇𝑃𝑖(𝑡 − 𝑠)𝑑𝑠
𝑡

0𝑖         (51) 

where 𝑠 is the time of an emissions pulse and 𝑡 is the time of an emissions response.  𝐸𝑖(𝑠) for species 𝑖 is 

an emissions scenario (which we formulated and described in Section B4.1).  AGTP is the temperature 

change at time 𝑡 due to 1-kg emission at 𝑡 = 0, typically expressed in units of K kg-1.  The general form of 

AGTP is given by93,94,99: 

𝐴𝐺𝑇𝑃𝑖(𝑡) = ∫ 𝑅𝐹𝑖(𝑠)𝑅𝑇(𝑡 − 𝑠)𝑑𝑠
𝑡

0
        (52) 

where 𝑅𝐹𝑖 is the radiative forcing due to a pulse emission and 𝑅𝑇 is the temperature response to a unit of 

forcing, both of which are parameterized based on more complex models that explicitly include physical 

and chemical processes.94   For well-mixed greenhouse gases, the general form of radiative forcing has the 

form71: 

𝑅𝐹𝑖 = 𝐴𝑖 ∙ exp (−
𝑡

𝜏𝑖
)          (53) 

where 𝜏 is the perturbation lifetime for the removal of the gas from the atmosphere and 𝐴𝑖 is the radiative 

forcing per unit mass increase in atmospheric concentration (i.e., radiative efficiency).  It is assumed that 

𝐴𝑖 and 𝜏𝑖 are independent of the concentration of greenhouse gases; in reality, there are dependencies and 

nonlinearities in 𝐴𝑖 and 𝜏𝑖 which can lead to systematic biases in the absolute value of these metrics.71  The 

climate response function 𝑅𝑇 is given by94: 

𝑅𝑇(𝑡) = ∑
𝑐𝑗

𝑑𝑗
exp (−

𝑡

𝑑𝑗
)𝑀

𝑗=1          (54) 

where 𝑐𝑗 are climate sensitivity parameters and 𝑑𝑗 are response time parameters for all terms 𝑗 = 1, … , 𝑀.  

The absolute global temperature potentials for methane and carbon dioxide are given by71,100,101: 

𝐴𝐺𝑇𝑃𝐶𝐻4(𝑡) = (1 + 𝑓1 + 𝑓2)𝐴𝐶𝐻4 ∑
𝜏𝐶𝐻4𝑐𝑗

𝜏𝐶𝐻4−𝑑𝑗

2
𝑗=1 [exp (−

𝑡

𝜏𝐶𝐻4
) − exp (−

𝑡

𝑑𝑗
)]   (55) 

𝐴𝐺𝑇𝑃𝐶𝑂2(𝑡) = 𝐴𝐶𝑂2 ∑ {𝑎0𝑐𝑗 [1 − exp (−
𝑡

𝑑𝑗
)] + ∑

𝑎𝑘𝜏𝐶𝑂2,𝑘𝑐𝑗

𝜏𝐶𝑂2,𝑘−𝑑𝑗

3
𝑘=1 [exp (−

𝑡

𝜏𝐶𝑂2,𝑘
) − exp (−

𝑡

𝑑𝑗
)]}2

𝑗=1  

            (56) 

where there are multiple exponential terms 𝑗.  𝑎𝑘 for terms 𝑘 = 0, … ,3 are coefficients describing the 

fraction of CO2 remaining in the atmosphere after a pulse.  The additional terms 𝑓1 and 𝑓2 are effects due 
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to ozone and stratospheric water, respectively.  The radiative efficiency of carbon dioxide and methane is 

given by71: 

𝐴𝐶𝑂2 = 𝛼 [
log(𝐶0,𝑡+∆𝐶)

∆𝐶
]          (57) 

where 𝛼 is the radiative transfer coefficient.  𝐶0,𝑡 is the reference CO2 concentrations and ∆𝐶 is the change 

from the reference concentration (which we evaluate at ∆𝐶 = 1 ppm𝑣).  For emission pulses in years 2004 

to 2016, we use observed CO2 global atmospheric concentrations reported by the National Oceanic and 

Atmospheric Administration (NOAA), and for pulses after 2016, we use CO2 concentrations for four IPCC 

RCP scenarios.  The AGTP functions for 1-kg pulses from years 2004 to 2016 are depicted in Figure B22.  

We use a Monte Carlo simulation approach to reflect uncertainty in the AGTP values; we assign probability 

distributions to key input parameters and iterate 10,000 times.  The mean and 95% confidence interval of 

the AGTP are provide in Figure B22. 

Parameters, including their definitions, values or distributions, and sources, are provided in Table B12.   
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Table B12.  Climate impact input parameters, definitions, values, units, and sources. 

Parameter Parameter Definition Parameter Value / 

Distributiona 

Units Source 

α radiative transfer coefficient 5.35 W/m2 71 

𝐴𝐶𝐻4 radiative efficiency of CH4
b 3.62 x 10-4 W/m2/ppb𝑣 71 

𝑎𝑘 fraction of CO2 remaining in the 

atmosphere after a pulse 

k = 0:  0.2173 

k = 1:  0.2240 

k = 2:  0.2824 

k = 3:  0.2763 

unitless 100 

𝐶0,𝑡 reference mean atmospheric CO2 

concentrationc 

time-varying ppm𝑣 102 

𝑐𝑗 climate sensitivity parameters j = 1:  Uniform(0.631±0.2) 

j = 2:  Uniform(0.429±0.18) 

K / W / m2 90,94 

𝑑𝑗 response time parameters j = 1:  Uniform(8.4±30%) 

j = 2:  Uniform(409.5±30%) 

year 90,94 

𝑓1 ozone effect on CH4 radiative forcing Normal(0.5, 0.05) -/- 71,90,101 

𝑓2 stratospheric water effect on CH4 

radiative forcing 

Normal(0.15, 0.05) -/- 90,101 

𝜏𝐶𝐻4 CH4 perturbation lifetime Normal(12.4, 1) years 90,94 

𝜏𝐶𝑂2,𝑘 CO2 perturbation lifetime for each 

term 

𝜏𝑘=1 = 394.4 
𝜏𝑘=2 = 36.54 
𝜏𝑘=3 = 4.304 

years 100 

a  We represent normal distributions as Normal(mean, standard deviation).  We represent uniform distributions as Uniform(base value ± error term), 

where the minimum is the base value minus error term and the maximum is the base value plus the error term. 

b  We convert from values given per ppm𝑣 to kg, assuming the mean molecular weight of air is 28.97 kg/kmol, the molecular weight of methane is 

16.04 g/mol, and the total mass of the atmosphere is 5.1352 x 1018 kg. 

c  We convert from values given in ppm𝑣 to kg, assuming the mean molecular weight of air is 28.97 kg/kmol, the molecular weight of methane is 

44.01 g/mol, and the total mass of the atmosphere is 5.1352 x 1018 kg. 

 

 

Figure B22.  Absolute global temperature potential from 2004 to 2100 for 1-kg pulses in years 2004 to 

2016.  (A) CO2 and (B) CH4.  Base scenario (based on simulated mean) indicated in green.  Low scenario 

(based on simulated lower 95% confidence interval) indicated in blue.  High scenario (based on simulated 

upper 95% confidence interval) indicated in red. 
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B4.2 Additional results 

The following are additional results, including emissions, temperature impacts, and monetized damages. 

Estimated emissions and the percent attribution of emissions across the supply chain are reasonably 

consistent with other studies.  Table B13 provides cumulative emissions by supply chain segment and 

process and the percent attribution for each segment.  Table B14 includes a comparison between this study, 

and the Alvarez et al. (2018) study and 2015 US GHGI inventory.  The percent attribution of methane 

emissions across segments between this study and the Alvarez et al. (2018) study are similar, with a majority 

of emissions associated with production.  However, the methane loss rates estimated in this study, although 

similar to the US GHGI and the source-based estimates in the Alvarez study, are lower than the site-based 

estimates in the Alvarez study.  This may be attributed to differences in source inclusion, estimation 

methods, regional emission factors, and study scope (i.e., Appalachian basin versus U.S., shale gas versus 

O&G sector).  Although we estimate a declining loss rate over time, this trend is largely a byproduct of 

estimation methods and increasing well productivity (Figure B23). 
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Table B13.  Cumulative emissions and percent attribution for each segment and process across the supply 

chain. Base scenario emission estimates with low and high scenario estimates provided in the parentheses.  

Percent attribution based on base scenario estimates. 

Segment / process 

2004 to 2016 Cumulative Emissions 

CO2 CH4 

Emissions (mmt) % Emissions  (mmt) % 

Preproduction 15.5 (10.2 – 20.6) 2% 0.02 (0.01 - 0.05) 0% 

Well pad preparation 4.17 (3.68 - 4.42) 1% - - 

Drilling 4.79 (3.44 - 6.14) 1% - - 

Hydraulic fracturing 5.65 (2.82 - 8.46) 1% - - 

Well completion 0.88 (0.26 - 1.61) 0% 0.02 (0.01 - 0.05) 0% 

Production 50.0 7% 3.69 (2.10 – 5.73) 63% 

Lease fuel consumption 50.0 7% - - 

Fugitive / vented losses - - 3.69 (2.10 – 5.73) 63% 

Gathering - - 0.91 (0.65 - 1.17) 15% 

Fugitive / vented losses - - 0.91 (0.65 - 1.17) 15% 

Processing 12.2 2% 0.25 (0.22 - 0.27) 4% 

Plant fuel consumption 3.45 1% - - 

Fugitive / vented losses 8.70 1% 0.25 (0.22 – 0.27) 4% 

Transmission and storage 26.0 4% 0.69 (0.55 - 0.89) 12% 

Fuel consumption 26.0 4% - - 

Facility / pipeline fugitive losses - - 0.69 (0.55 - 0.89) 12% 

Distribution - - 0.30 (0.30 - 0.64) 5% 

Fugitive losses - - 0.30 (0.30 - 0.64) 5% 

End use 571 85% - - 

Electricity generation 175 26% - - 

Industrial use 146 22% - - 

Commercial use 96 14% - - 

Residential use 152 23% - - 

Total Supply Chain 675 (669 - 680) 100% 5.87 (3.83 – 8.75) 100% 
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Table B14.  Comparison of 2015 methane emissions, percent emissions, and loss rates across this study, the Alvarez et al. (2008) study72, and the U.S. 

GHGI. 

Segment This work Alvarez et al. (2018) (site-

based)a 

Alvarez et al. (2018) (source-

based)b 

U.S. Greenhouse Gas Inventory 

Appalachian basin U.S. U.S. U.S. 

Emissions 

[CH4 mmt] 

% 

Emissions 

Emissions 

[CH4 mmt] 

% 

Emissions 

Emissions 

[CH4 mmt] 

% Emissions Emissions 

[CH4 mmt] 

% 

Emissions 

Preproduction 0 (0-0.01) 0% 0.09 (0.08-0.12)c 1% 0.09 (0.08-0.12) c 1% 0.10 c 1% 

Production 0.76 (0.43-1.18) 61% 7.2 (5.6-9.1)d 56% 2.8 (2.7-2.9)d 33% 3.10d 40% 

Gathering 0.22 (0.16-0.28) 17% 2.6 (2.4-3.2) 20% 2.6 (2.4-3.2) 31% 2.30 30% 

Processing 0.07 (0.07-0.08) 6% 0.72 (0.65-0.92) 6% 0.72 (0.65-0.92) 9% 0.45 6% 

Transmission and storage 0.14 (0.11-0.18) 11% 1.8 (1.6-2.1) 14% 1.8 (1.6-2.1) 21% 1.30 17% 

Distribution 0.06 (0.06-0.12) 5% 0.44 (0.22-0.95) 3% 0.44 (0.22-0.95) 5% 0.44 6% 

Total supply chain 1.25 (0.82-1.84) 100% 12.85 (10.6-16.4) 100% 8.45 (7.65-10.2) 100% 7.69 100% 

Supply chain loss rate (%) 1.16 (0.76 – 1.71)e 2.3 (2.0 - 2.7)f 1.48 (1.34 – 1.78)g 1.34g 

a Values are bottom-up, site-based estimates derived in Alvarez et al. (2018).  They include emissions across the oil and natural gas supply chain and are not exclusive of 

shale gas. 

b Values are bottom-up, source-based estimates derived in Alvarez et al. (2018).  They include emissions across the oil and natural gas supply chain and are not exclusive of 

shale gas. 

c Includes emissions from both completions and workovers. 

d Includes emissions from routine operations. 

e Loss rate is estimated as a percentage of methane produced.  Assumes state-reported shale production (refer to section B2.2), and time-varying methane content for the 

Northeast (~83-84%).5 

f Reported loss rate, as a function of total methane produced (33 tcf, with average CH4 content of 90 vol%), derived in Alvarez et al. (2018).  The range represents the 

reported 95% confidence interval.  That study also reported a loss rate of 2.9%, as a percentage of total methane delivered (25 tcf/y NG delivered, assuming an average CH4 

content in NG of 95% by volume). 

g Estimated loss rate, as a function of total methane produced (33 tcf, with average CH4 content of 90 vol%), similar to the approach used in Alvarez et al. (2018). 
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Figure B23.  Methane loss rates over time.  Blue, orange, and gray bars represent base, low, and high loss rate estimates, respectively, based on 

emission scenario estimates.  Loss rates assume state-reported production and time-varying CH4 content (~83-84%).  Yellow line represents 

production over time. 
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Table B15.  Cumulative climate change temperature impacts. 

 

 

 

 

 

 

 

 

 

 

Figure B24.  Annual temperature impact from sources within Appalachia indicating contributions from 

each segment of the supply chain.  Dotted black lines depict temperature impact under low and high 

scenarios. 

Time-Integrated Cumulative Temperature Impact from 2004 (Kelvin-years) 

to 2016 0.001 (0-0.001) 

to 2050 0.023 (0.014-0.037) 

to 2100 0.045 (0.029-0.067) 

to 2200 0.082 (0.055-0.116) 

Instantaneous Temperature Impact (Kelvin) 

2016 0.0003 (0.0002-0.0006) 

2050 0.0005 (0.0004-0.0008) 

2100 0.0004 (0.0003-0.0005) 

2200 0.0004 (0.0003-0.0005) 
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Figure B25.  Annual temperature impact from sources within Appalachia indicating contributions from 

each year of natural gas activity.  Dotted black lines depict temperature impact under low and high 

scenarios.
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Figure B26.  Annual temperature impact assuming an additional 10 years of natural gas activity (and 

emissions) at 2016 levels.  Four Intergovernmental Panel on Climate Change (IPCC) Representative 

Climate Pathways (RCP) are modeled.  Annual temperature impact from sources within Pennsylvania, 

Ohio, and West Virginia under baseline scenario assumptions. 

 

Figure B27.  Annual temperature impact assuming an additional 20 years of natural gas activity (and 

emissions) at 2016 levels.  Four IPCC RCP are modeled.  Annual temperature impact from sources within 

Pennsylvania, Ohio, and West Virginia under baseline scenario assumptions.  
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B5 Employment model 

We estimate county-level employment effects from shale gas activity in producing counties from 2004 to 

2016.  We build upon previous studies by expanding the geographic scope to include Pennsylvania, Ohio, 

West Virginia, and New York, as well as, incorporating additional years of data that may facilitate inference 

regarding learning within the industry that induces lower employment effects over time.  In addition, we 

utilize a range of natural gas activity factors, including production, producing wells, and spud wells, that 

allows for the disaggregation of employment effects associated with initial well development and ongoing 

production. 

Section B5.1 includes a brief review of labor market studies related to unconventional natural gas 

development.  Section B5.2 describes the data compiled into a panel dataset and provides an overview of 

the empirical approach used to estimate the marginal employment effects from shale gas activity.  We also 

describe the variable selection process in which we regress employment (and variants of the dependent 

variable) on various population, economic, and natural gas development explanatory variables and 

interaction terms.  We additionally perform cross validation to facilitate comparisons across models, and 

bootstrapping to capture the uncertainty around the employment effects of natural gas activity.  Combining 

results from the fixed effects modeling with natural gas activity, we develop estimates of aggregate 

employment effects over time. 

B5.1 Background 

Several empirical studies demonstrate that natural gas activity may impact local labor demand within the 

natural gas sector, have spillover effects into the non-resource economy, and alter the distribution of 

income, poverty rates, and educational attainment.  A study by Weber (2012), focusing on shale plays in 

Colorado, Texas, and Wyoming that are more mature than the Marcellus and Utica formations, shows that 

the boom in drilling increased total employment in shale boom counties by 12% over an 8-year period.  

Maniloff and Mastromonaco (2015) similarly find that the boom caused a 24% increase in employment in 

boom counties from 2000 to 2010.  On an annual basis, the shale boom is projected to have increased 

employment growth by 1-2% in boom counties across the United States (Fetzer 2014; Weinstein 2014).  

One million dollars in production growth created 2.35 total jobs in the county where production occurred, 

and an additional billion cubic feet of natural gas production created 7.3 to 18.5 total jobs (Brown 2014, 

Weber 2012, Weber 2014).  Within the Marcellus, Komarek (2016) and Wrenn (2015) find the effects on 

overall employment range from a 3-7% increase for boom counties.    Parades (2015) uses a panel-fixed 

effects regression approach to assess employment and income effects in the Marcellus from 2004 to 2011; 

results suggest statistically significant employment effects in the short-run, with each active well generating 

6 to 16 jobs (Parades et al. 2015).   These ex-post empirics of job creation in the Marcellus show that ex-
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ante estimates are greatly overstated.  For example, one projection using IMPLAN, an input-out model, 

projected that the Marcellus industry in Pennsylvania would support more than 44,000 jobs in 2009 and 

200,000 jobs in 2020 103, whereas empirical evidence suggests that about 2000 jobs were created in 2009104. 

Natural gas development may generate spillover effects outside of the resource sector (Corden and Neary 

1982).  For example, drilling a natural gas well may require use of larger amounts of cement, which may 

lead to increased sales for cement companies.  Additional income by natural gas and cement workers can 

have a ripple effect, with more money being spent on locally provided goods and services, leading to more 

jobs in those industries.  It is estimated that each gas-related mining job is associated with 1.4 additional 

nonmining jobs in the county where production occurred, indicating that natural gas development has 

largely neutral effect on resource dependence as measured by employment (Weber 2014).  Weinstein and 

Partridge (2011) find that each mining job from Marcellus development in Pennsylvania likely creates one 

additional job in the economy. 

Growth in employment does not imply that median income will increase or poverty rates will decrease.  

Local labor market evidence linking natural resource booms to poverty and inequality are mixed.  The 

distribution of the gains depends on the skills of local residents and where they fall in the income 

distribution, the extent of integration between local and regional labor markets, and the extent of spillover 

105.  If income changes are equally distributed across the population, inequality would remain unchanged, 

while poverty would decline in a boom and rise in a bust.  A majority of studies show that booms lower the 

poverty rate, at least in the short-run 104.   An analogue to the boom-and-bust cycle of natural gas is coal 

mining in the Appalachian region in which Black et al. (2005) found that the 1970s boom decreased poverty, 

but the 1980s bust reversed this reduction. 

Most studies focus on short-term effects during a boom, with few studies analyzing the long-term effects 

of natural gas production over the boom-and-bust cycle and the potential negative spillovers into industries 

with high long-term growth potential (e.g., manufacturing) (Rodriguez and Sachs 1999, Corden and Neary 

1983).  Parades (2015) find weak evidence of long-term employment effects in the Marcellus, and Weber 

(2012) reports statistically discernible crowding out of manufacturing. 

B5.2 Methods 

B5.2.1 Data 

Employment and Earnings 
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We use the Bureau of Economic Analysis (BEA) Local Area Personal Income and Employment (LAPI) 

datasets, which provide county-level estimates from 2005 to 2015.1  The datasets are mainly derived from 

administrative records data of various federal and state government social insurance programs and tax 

codes.  These data originate from the recipients of the income or from the payer of the income. 

We use total employment estimates, which consist of wage and salary employment and proprietor’s income.  

Wage and salary employment, as defined by the BEA, measures the average annual number of full- and 

part-time jobs in each area by place of work, including all jobs for which wages and salaries are paid.   

We also estimate the share of total earnings from different sectors (i.e., farm, construction, manufacturing, 

retail, and mining), based on total and sector-level earnings. Earnings, as defined by the BEA, consist of 

compensation of employees and proprietors' income. 

Population and Population Density 

We use the BEA estimates of county-level population2, and combining those data with county-level land 

area values from the Census Bureau, we estimate population density.3 

Employment rate 

We estimate the employment rate, which is the number of employed divided by the total labor force.  The 

number employed and total labor force, as reported by the Bureau of Labor Statistics (BLS) Local Area 

Unemployment Statistics4, are based on the Community Population Survey and unemployment insurance 

disaggregated from state-level statistics to the county-level; the processing of this data may not accurately 

reflect the county-level employed and labor force, thus limiting its utility for regression.  The total labor 

force are those persons greater 16 years old, and the number employed are any persons that have worked 

(not necessarily full-time) or are on leave, vacation, illness, etc. during the survey. 

Employment-to-population ratio 

                                                             

 

1 BEA LAPI “Table CA1 Personal Income Summary_Personal Income, Population, Per Capita Personal Income”, “Table CA4 

Personal Income and Employment by Major Component”, and “Table CA5N Personal Income by Major Component and Earnings 

by NAICS Industry” available at <https://www.bea.gov/>. 
2BEA LAPI “Table CA1 Personal Income Summary_Personal Income, Population, Per Capita Personal Income” available at 

<https://www.bea.gov/>. 
3 US Census Bureau “Population, Housing Units, Area, and Density: 2010 - State -- County / County Equivalent  more information 

2010 Census Summary File 1” available at 

<https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk>. 
4BLS Local Area Unemployment Statistics available at <https://www.bls.gov/lau/#cntyaa>. 
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The employment-to-population ratio is the total employment divided by the population (as reported in BEA 

LAPI).  In some instances, the employment-to-population ratio is greater than, demonstrating the limitations 

of the underlying data. 

Shale counties 

We identify shale counties based on United States Geological Service (USGS) designations for Marcellus 

and Utica shale subunits.  If at least 10% of a county’s area is within the footprint of the shale subunits, we 

classify it as a shale county.  Note that several producing shale formations other than the Marcellus and 

Utica exist within the Appalachian basin; however, they are largely within the footprint of the Marcellus 

and Utica formations, thus, we do not identify them separately.   The shale classifier is used to subset the 

panel dataset for model fitting.  Several other empirical studies, including Parades (2015), partition or 

exclude counties which are not within the Marcellus (or respective shale formation). 

Nonmetropolitan counties 

We identify nonmetropolitan counties based on a cross-county comparison of 2010 population estimates, 

whereby we classify counties as metropolitan if they are within the top 10 percentile based on population.  

Of the 272 counties within Pennsylvania, Ohio, West Virginia, and New York, 28 counties are classified 

as metropolitan, two of which produced (including Allegheny County, Pennsylvania, which had 49 

producing wells in 2015, and Stark County, Ohio, which had only 2 producing wells in 2015).  The 

metropolitan classifier is used to subset the panel dataset for model fitting.  Including only nonmetropolitan 

counties creates a more homogenous sample, precluding counties with large cities from excessively 

influencing estimates from a linear model (Weber 2014).  Moreover, nonmetropolitan counties with thin 

labor markets are presumably the population of interest. 

B5.2.2 Modeling specification 

County-level descriptive statistics of the panel data are provided in Table B16.  We begin with a dataset 

consisting of all 272 counties within Pennsylvania, Ohio, West Virginia, and New York, of which 93 

counties produced unconventional natural gas and 195 counties are within (or partially within) the 

Marcellus and/or Utica shale plays.  The full dataset includes 2972 observations over the period 2005 to 

2015, accounting for observations that were removed due to missing data.  Sector-level earnings were 

obscured for some counties in some years, so we exclude these observations.  In addition, Pennsylvania 

production (and resultingly well count) data is unavailable for 2010 due to reporting inconsistencies, further 

reducing the number of observations.  The data subsets of shale, nonmetropolitan, and the intersection of 

shale and nonmetropolitan counties include 2096, 2654, and 2013 observations, respectively.  Unless 

otherwise specified, we use the full dataset to fit the following models. 



 

250 
 

As part of the model selection process, we begin by fitting and comparing five types of models that can be 

used with panel datasets: pooled ordinary least squares (OLS), OLS fixed effects, general least squares 

(GLS) fixed effects, first-difference, and random effects.  Using panel data allows us to control for several 

types of unobserved heterogeneity that could potentially confound the estimated effect of natural gas 

activity.  The first specification measuring the contemporaneous effect of natural gas wells using pooled 

OLS is as follows: 

𝑌𝑐𝑡 = 𝛽𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔𝑊𝑒𝑙𝑙𝑠𝑐𝑡 + 𝑋𝑐𝑡𝜃 + 𝛼 + 𝜀𝑐𝑡       (58) 

Where 𝑌𝑐𝑡 is a measure employment for each county 𝑐 and year 𝑡, and 𝛼 is a constant coefficient, assuming 

no fixed heterogeneity across counties or years.  𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔𝑊𝑒𝑙𝑙𝑠𝑐𝑡 is the number of producing 

unconventional natural gas wells, and 𝛽 can be interpreted as the average change in employment 

attributable to another producing well in the county.  𝑋𝑐𝑡 are labor market and demographic control 

variables, which are as follows: 

𝑋𝑐𝑡 = {𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑡, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑐𝑡 , 𝑟𝑒𝑡𝑎𝑖𝑙𝑠ℎ𝑎𝑟𝑒𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑐𝑡, 

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠ℎ𝑎𝑟𝑒𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑐𝑡, 𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔𝑠ℎ𝑎𝑟𝑒𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑐𝑡, 𝑟𝑒𝑡𝑎𝑖𝑙𝑠ℎ𝑎𝑟𝑒𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑠𝑐𝑡} (59) 

These control variables are similar to those used in Paredes (2015) and Weber (2014).  𝜃 are the coefficients 

associated with the control variables.  𝜀𝑐𝑡 is the random error term given by:  

𝜀𝑐𝑡 = 𝜇𝑐 + 𝜆𝑡 + 𝜀𝑐𝑡          (60) 

where 𝜇𝑐 is the county error component, 𝜆𝑡 is the time error component, and 𝜖𝑐𝑡 is the idiosyncratic error.  

The composition of the error term depends on whether the model incorporates county, time, or both types 

of effects.  To test for the significance of county, year, and two-way effects, we use the Lagrange multiplier 

test for pooled OLS, finding that county effects are significant, but time effects are not.5  We note that, as 

shown in Table B17, the average change in employment from a producing well 𝛽 is not significant. 

We then specify fixed effects models, including alternatively county, year, and two-way effects, as follows: 

𝑌𝑐𝑡 = 𝛽𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔𝑊𝑒𝑙𝑙𝑠𝑐𝑡 + 𝑋𝑐𝑡𝜃 + 𝛼𝑐 + 𝛾𝑡 + 𝜀𝑐𝑡      (61) 

                                                             

 

5 We employ the King/Wu and Breusch/Pagan statistics tests for one- and two-way unbalanced panel data as described in Baltagi 

(2013) and implemented in the plm R package.  The following are the test statistics and p-values for each model form, where the 

null hypothesis is : 
 King/Wu Breusch/Pagan 

 Test Statistic p-value Test Statistic p-value 

Two-way 28.158 < 2.2e-16 16767 < 2.2e-16 

County effects 129.49 < 2.2e-16 16767 < 2.2e-16 

Year effects 0.36832 0.3563 0.13566 0.7126 
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where 𝛼𝑐 are county fixed effects and 𝛾𝑡 are year fixed effects.  The fixed effects model assumes that the 

county error component is correlated with the regressors. Comparing the two-way pooled OLS and fixed 

effects models using, we find (as anticipated) that the fixed effects model provides a better model fit.6  For 

the fixed effects model, we apply OLS to transformed data, which provides consistent estimates of β, but 

not efficient estimates if the error is serially correlated.  We find that the error is serially correlated, based 

on tests for serial correlation.7  To control for serial correlation, the standard errors are corrected by 

clustering following the approach in Arellano (1987).  

We also fit a fixed effects model using generalized least squares.   A comparison of the OLS and GLS fixed 

effects models (accounting for county fixed effects), as provided in Table B19, suggests that the models are 

not substantially different; thus, further models use OLS, which allows for inclusion of additional control 

variables and accounting for both county and year fixed effects. 

We additionally fit a first-difference model, which removes time-invariant individual components by 

lagging the model and subtracting: 

Δ𝑌𝑐𝑡 = 𝛽Δ𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔𝑊𝑒𝑙𝑙𝑠𝑐𝑡 + Δ𝑋𝑐𝑡𝜃 + Δ𝜀𝑐𝑡       (62) 

The first-difference model is efficient and usually preferred if the error is persistent over time because Δ𝜀𝑐𝑡 

will be serially uncorrelated.  A summary of the coefficients, standard errors, and model fit between the 

fixed effects and first-difference models are summarized in Table B17. 

For the proceeding model specifications, we use OLS fixed effects, including county and year fixed effects, 

and controlling for serial correlation by clustering standard errors by county.

                                                             

 

6 We employ the F-test for two-way effects, used for comparing within and pooling models, and implemented in the plm R package.  

The following are the test statistic and p-value, where the null hypothesis is that there are no significant fixed effects: F = 459.54, 

df1 = 268, df2 = 2770, p-value < 2.2e-16 
7 We employ the Breusch-Godfrey/Wooldridge test for serial correlation in panel models as described in Wooldridge (2010) and 

implemented in the plm R package.  The following is the test statistic, where the null hypothesis is there is no serial correlation: 

chisq = 750.25, df = 1, p-value < 2.2e-16 

We employ the Wooldridge's test for serial correlation, which is applicable to fixed effects panels, in particular to short panels with 

small T and large n.  The following is the test statistic, where the null hypothesis is there is no serial correlation: F = 24.78, df1 = 

1, df2 = 2952, p-value = 6.796e-07 
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Table B16.  County-level descriptive statistics for different county subsets over the period 2004 to 2016. 

Variable Units Pennsylvania, Ohio, 

West Virginia, and 

New York counties 

(269) 

Pennsylvania, Ohio, 

West Virginia, and New 

York shale counties 

(193) 

Pennsylvania, Ohio, 

West Virginia, and New 

York nonmetropolitan 

counties (241) 

Pennsylvania, Ohio, 

West Virginia, and New 

York shale and 

nonmetropolitan 

counties (186) 

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev. 

Employment jobs 101,979 244,794 61,785 125,765 42,303 44,139 40,591 43,052 

Income $'000 7,827,151 19,421,640 4,094,918 7,789,432 3,002,160 3,183,225 2,796,412 2,865,572 

Unconventional production Mmcf 7,727 59,887 10,951 71,048 8,599 63,303 11,330 72,455 

Unconventional producing wells wells 15 80 21 95 17 85 22 97 

Unconventional spud wells wells 3 18 5 21 4 19 5 21 

Earnings $'000 5,852,333 22,304,600 2,929,224 6,904,864 1,895,056 2,283,443 1,788,054 2,197,252 

Farm share of earnings $'000 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 

Construction share of earnings $'000 0.07 0.03 0.07 0.04 0.07 0.03 0.07 0.04 

Manufacturing share of earnings $'000 0.16 0.11 0.15 0.10 0.17 0.11 0.16 0.10 

Retail share of earnings $'000 0.07 0.02 0.07 0.02 0.07 0.02 0.07 0.02 

Population persons 176,021 335,726 109,364 180,667 82,419 74,979 78,762 70,167 

Population density persons per mile2 971 5,584 200 330 164 195 148 146 

Employment rate % 93 2 93 2 93 2 93 2 

Employment ratio jobs per person 0.49 0.14 0.48 0.12 0.48 0.11 0.47 0.11 
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Table B17.  Employment effects for pooled OLS, first-differenced, and fixed effects (implemented using OLS). 

 (1) County and year fixed effects (OLS) (2) Pooled OLS (3) First-differenced 

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** 2.28 2.85 0.424  5.66 1.28 0.000 *** 

Population 0.47 0.09 0.000 *** 0.63 0.00 < 2e-16 *** 0.43 0.03 < 2e-16 *** 

Population density 88.91 31.63 0.005 ** -15.01 0.75 < 2e-16 *** 106.73 7.42 < 2e-16 *** 

Farm earnings share 6.88E+03 3.30E+03 0.037 * -1.67E+03 9.98E+03 0.867  -1.26E+03 2.45E+03 0.607  

Construction earnings share 8.08E+03 3.79E+03 0.033 * -1.26E+04 6.48E+03 0.052 . 9.77E+03 2.05E+03 0.000 *** 

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 1.05E+02 2.01E+03 0.958  1.57E+04 1.86E+03 < 2e-16 *** 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -8.76E+04 7.83E+03 < 2e-16 *** -3.13E+04 5.96E+03 0.000 *** 

Number of counties 241    241 241 

Years 2004-2016    2004-2016 2004-2016 

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55    0.97 0.28 

Adjusted R-squared 0.51    0.97 0.28 

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B18.  Fixed effects assuming two-way, county, and time fixed effects. 

 (1) County and year fixed effects (OLS) (4) County fixed effects (OLS)  (5) Year fixed effects (OLS)  

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** 6.08 1.89 0.001 ** -15.76 6.64 0.018 * 

Population 0.47 0.09 0.000 *** 0.46 0.09 0.000 *** 0.42 0.04 < 2e-16 *** 

Population density 88.91 31.63 0.005 ** 92.34 31.69 0.004 ** 21.36 1.19 < 2e-16 *** 

Farm earnings share 6.88E+03 3.30E+03 0.037 * -8.06E+03 3.33E+03 0.016 * -1.13E+05 5.76E+04 0.050 * 

Construction earnings share 8.08E+03 3.79E+03 0.033 * 1.46E+04 4.26E+03 0.001 *** -2.09E+05 4.37E+04 0.000 *** 

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 1.41E+04 3.86E+03 0.000 *** -1.06E+05 2.51E+04 0.000 *** 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -3.73E+04 1.10E+04 0.001 *** -7.26E+05 1.63E+05 0.000 *** 

Number of counties 241 241 241    

Years 2004-2016 2004-2016 2004-2016    

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55 0.54    0.85    

Adjusted R-squared 0.51 0.49 0.83    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B19.  Employment effects for fixed effects implemented using OLS and fixed effects implemented using GLS. 

 (4) County fixed effects (OLS) (6) County fixed effects (GLS) 

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 6.08 1.89 0.001 ** 5.66E+00 1.28 0.000 *** 

Population 0.46 0.09 0.000 *** 4.28E-01 0.03 < 2e-16 *** 

Population density 92.34 31.69 0.004 ** 1.07E+02 7.42E+00 < 2e-16 *** 

Farm earnings share -8.06E+03 3.33E+03 0.016 * -1.26E+03 2446.80 0.607  

Construction earnings share 1.46E+04 4.26E+03 0.001 *** 9.77E+03 2048.70 0.000 *** 

Manufacturing earnings share 1.41E+04 3.86E+03 0.000 *** 1.57E+04 1856.10 < 2e-16 *** 

Retail earnings share -3.73E+04 1.10E+04 0.001 *** -3.13E+04 5963.40 0.000 *** 

Number of counties 241    241    

Years 2004-2016 2004-2016 

Sample Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.54    0.999    

Adjusted R-squared 0.49        

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Data subsets 

We specify fixed effects models of the form described by equation (4) for various subsets of the full panel 

dataset, partitioned based on the classification of counties as nonmetropolitan and/or shale.  Several other 

empirical studies, including Parades (2015), partition or exclude counties which are not within the 

Marcellus (or respective shale formation).  Including only nonmetropolitan counties creates a more 

homogenous sample, precluding counties with large cities from excessively influencing estimates from a 

linear model (Weber 2014).  Moreover, nonmetropolitan counties with thin labor markets are presumably 

the population of interest. 

We find that the effect sizes on the producing well variable are fairly consistent across models, as shown 

in Table B20.  The model fit using the shale county data subset has an overall model fit similar to that for 

model based on the full panel dataset, with a lower standard error for the producing well coefficient.  The 

other models fit using data subsets do not provide as good of a fit as the model based on the full panel 

dataset.          
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Table B20.  Employment effects for different subsets of data. 

 (1) Nonmetropolitan counties (7) All counties (8) Shale counties 

(9) Shale and nonmetropolitan 

counties 

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** 3.52 2.14 0.101  4.75 1.97 0.016 * 5.93 1.83 0.001 ** 

Population 0.47 0.09 0.000 *** 0.47 0.16 0.003 ** 0.87 0.44 0.046 * 0.64 0.17 0.000 *** 

Population density 88.91 31.63 0.005 ** 74.80 21.10 0.000 *** -179.61 232.38 0.440  -43.13 85.39 0.614  

Farm earnings share 6.88E+03 3.30E+03 0.037 * 2.70E+04 9.71E+03 0.005 ** 3.55E+03 4.56E+03 0.436  -1.24E+02 2.96E+03 0.967  

Construction earnings share 8.08E+03 3.79E+03 0.033 * 1.37E+04 6.89E+03 0.047 * 4.34E+03 5.10E+03 0.395  5.28E+03 2.60E+03 0.042 * 

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 9.06E+03 4.78E+03 0.058 . 8.99E+03 3.74E+03 0.016 * 9.38E+03 3.38E+03 0.006 ** 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -3.37E+04 3.19E+04 0.291  -2.37E+04 1.62E+04 0.143  -1.44E+04 8.62E+03 0.096 . 

Number of counties 241    269    193    186    

Years 2004-2016 2004-2016 2004-2016 2004-2016 

Sample Nonmetropolitan counties All counties Shale counties Shale and nonmetropolitan 

counties 

R-squared 0.55    0.76    0.45    0.56    

Adjusted R-squared 0.51    0.73    0.40    0.51    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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B5.2.3 Variable selection 

We specify various fixed effects models with alternative variables, including i) lag and lead variables to 

capture the dynamic effect of natural gas development, ii) natural gas activity variables (i.e., producing 

wells, production, and spud wells), iii) natural gas development and time interactions, and iv) employment-

to-population ratio and employment rate (as alternative dependent variables). 

The following specification includes lag and lead variables to assess the dynamic effect of natural gas 

development: 

𝑌𝑐𝑡 = 𝛽𝑃𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔𝑊𝑒𝑙𝑙𝑐𝑡−𝑖 + 𝑋𝑐𝑡𝜃 + 𝛼𝑐 + 𝛾𝑡 + 𝜀𝑐𝑡       (63) 

Including lag and lead variables allows the estimation of long-run effects which may result from support 

industries entering the area.  Given that unconventional natural gas activity is highly correlated over time, 

including lags and leads of producing wells induces multicollinearity and makes inference more challenging 

(Paredes 2015).  As shown in Table B21.  , variants of the distributed lag model show that the aggregated 

effect of the contemporaneous and lag/lead variables yield a similar effect size as that for the 

contemporaneous specification.  In addition, the lag and lead variables are statistically significant. 

We also fit models for different natural gas activity variables, including producing wells, production, and 

spud wells.  As shown in Table B23, the effects associated with alternatively incorporating a single type of 

activity variable are all positive and significant.  When including only the producing wells variable, we find 

the mean marginal effect size is 5 jobs per producing wells; Paredes (2015) similarly finds that 6.8 to 16.8 

jobs are supported per producing well.  Given that producing wells and production are highly correlated, 

including both terms is redundant.  We find that including both producing and spud wells reveals positive 

and significant effects associated with both variables.  This can be interpreted as a larger employment effect 

associated with well development than that associated with an already producing well. 

Incorporating an interaction term between gas activity and a dummy variable indicating whether a well was 

producing before or after 2012, we find decreasing marginal employment effects from natural gas activity 

over time, with 16 jobs per producing well prior to 2012 and 5 jobs thereafter.  The intuition is that learning 

occurs and the industry becomes more efficient over time, which translates into decreasing marginal 

employment effects from natural gas activity over time.  Table B24 shows the interaction between natural 

gas activity and time. 

Finally, we specify models with alternative dependent variables, including the employment-to-population 

ratio and employment rate.  The purpose of using rate-based dependent variables is because they may have 

a more meaningful interpretation than absolute employment; for example the creation of 100 jobs in a given 

county may or may not be significant, depending on the size of the total labor market.  As previously noted, 
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the underlying data used to develop the employment rate may not accurately reflect annual changes 

disaggregated at the county-level, thus limiting their utility for regression analysis.  We find that the models 

incorporating these alternative dependent variables do not provide a good overall model fit; however, there 

is a positive and significant effect on the producing well variable for the employment-to-population ratio 

model. 
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Table B21.  Employment effects for distributed lag compared to contemporaneous models. 

 (1) No lag (10) 1-year lag  (11) 2-year lag  

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** 19.64 5.45 0.000 *** 11.13 3.58 0.002 ** 

1-year lag producing wells -    -16.68 4.60 0.000 *** -    

2-year lag producing wells -    -    -9.18 3.21 0.004 ** 

Population 0.47 0.09 0.000 *** 0.49 0.15 0.001 *** 0.52 0.15 0.001 *** 

Population density 88.91 31.63 0.005 ** 72.64 70.43 0.302  61.02 76.14 0.423  

Farm earnings share 6.88E+03 3.30E+03 0.037 * 7.91E+03 3.69E+03 0.032 * 8.99E+03 4.07E+03 0.027 * 

Construction earnings share 8.08E+03 3.79E+03 0.033 * 5.86E+03 3.91E+03 0.134  4.87E+03 3.87E+03 0.208  

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 6.76E+03 3.48E+03 0.052 . 5.66E+03 3.78E+03 0.135  

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -3.30E+04 1.44E+04 0.022 * -3.37E+04 1.69E+04 0.046 * 

Number of counties 241 241 241    

Years 2004-2016 2004-2016 2004-2016    

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55 0.50    0.46    

Adjusted R-squared 0.51 0.45 0.39    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B22.  Employment effects for distributed lead compared to contemporaneous models. 

 (1) No lead (12) 1-year lead  (13) 2-year lead  

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** -12.27 4.04 0.002 ** -3.31 2.69 0.220  

1-year lead producing wells -    17.39 5.12 0.001 *** -    

2-year lead producing wells -    -    9.46 3.53 0.007 ** 

Population 0.47 0.09 0.000 *** 0.46 0.16 0.004 ** 0.40 0.18 0.027 * 

Population density 88.91 31.63 0.005 ** 79.58 70.35 0.258  94.17 78.55 0.231  

Farm earnings share 6.88E+03 3.30E+03 0.037 * 7.25E+03 4.17E+03 0.082 . 6.22E+03 5.46E+03 0.255  

Construction earnings share 8.08E+03 3.79E+03 0.033 * 5.11E+03 4.51E+03 0.257  5.83E+03 5.58E+03 0.297  

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 8.61E+03 4.04E+03 0.033 * 9.30E+03 4.97E+03 0.062 . 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -3.18E+04 1.38E+04 0.021 * -3.30E+04 1.61E+04 0.041 * 

Number of counties 241 241 241    

Years 2004-2016 2004-2016 2004-2016    

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55 0.54    0.51    

Adjusted R-squared 0.51 0.49 0.45    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B23.  Employment effects for different natural gas activity variables. 

 (1) Producing wells (14) Spud wells  (15) Production  

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** -    -    

Spud wells -    2.08E+01 6.32 0.001 ** -    

Production -    -    5.01E-03 0.00 0.037 * 

Population 0.47 0.09 0.000 *** 4.63E-01 8.65E-02 0.000 *** 4.66E-01 8.68E-02 0.000 *** 

Population density 88.91 31.63 0.005 ** 8.92E+01 31.51 0.005 ** 8.87E+01 31.63 0.005 ** 

Farm earnings share 6.88E+03 3.30E+03 0.037 * 7.35E+03 3430.70 0.032 * 5.99E+03 3316.30 0.071 . 

Construction earnings share 8.08E+03 3.79E+03 0.033 * 7.61E+03 4.02E+03 0.058 . 9.38E+03 3.81E+03 0.014 * 

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 6.44E+03 3175.00 0.043 * 6.79E+03 3202.30 0.034 * 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -4.02E+04 12326.00 0.001 ** -3.97E+04 12389.00 0.001 ** 

Number of counties 241 241 241    

Years 2004-2016 2004-2016 2004-2016    

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55 0.55    0.55    

Adjusted R-squared 0.51 0.51 0.50    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B23 (continued).  Employment effects for different natural gas activity variables. 

 (1) Producing wells (16) Producing and spud wells 

(17) Producing wells and 

production 

(18) Producing wells, spud wells, 

and production 

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** 4.50 1.59 0.005 ** -8.30E-03 0.00 0.063 * 1.07E+01 3.74 0.004 ** 

Spud wells -    1.64E+01 4.20 0.000 *** -    1.66E+01 3.35 0.000 *** 

Production -    -    1.14E+01 4.70 0.015 * -8.49E-03 0.00 0.017 * 

Population 0.47 0.09 0.000 *** 4.68E-01 8.67E-02 0.000 *** 4.70E-01 8.66E-02 0.000 * 4.69E-01 8.65E-02 0.000 *** 

Population density 88.91 31.63 0.005 ** 8.94E+01 31.58 0.005 ** 8.90E+01 31.61 0.005  8.95E+01 31.56 0.005 ** 

Farm earnings share 6.88E+03 3.30E+03 0.037 * 8.70E+03 3374.10 0.010 ** 7.17E+03 3335.50 0.032  9.01E+03 3389.60 0.008 ** 

Construction earnings share 8.08E+03 3.79E+03 0.033 * 5.75E+03 3.98E+03 0.149  7.58E+03 3.87E+03 0.050  5.21E+03 4.04E+03 0.198  

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 7.52E+03 3280.50 0.022 * 7.28E+03 3226.20 0.024 * 7.54E+03 3264.50 0.021 * 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -3.53E+04 12598.00 0.005 ** -3.80E+04 12516.00 0.002  -3.56E+04 12612.00 0.005 ** 

Number of counties 241    241    241    241    

Years 2004-2016 2004-2016 2004-2016 2004-2016 

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55    0.56    0.56    0.56    

Adjusted R-squared 0.51    0.52    0.52    0.52    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B24.  Employment effects including time and natural gas activity interactions. 

 (1) No interaction 

(19) Interaction between producing wells 

and before 2012 dummy 

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** 5.62 1.91 0.003 ** 

Population 0.47 0.09 0.000 *** 4.69E-01 0.09 0.000 *** 

Population density 88.91 31.63 0.005 ** 8.90E+01 3.16E+01 0.005 ** 

Farm earnings share 6.88E+03 3.30E+03 0.037 * 7.83E+03 3321.50 0.018 * 

Construction earnings share 8.08E+03 3.79E+03 0.033 * 7.49E+03 3709.40 0.043 * 

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 7.21E+03 3228.60 0.026 * 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -3.64E+04 12459.00 0.004 ** 

Producing wells x Before 2012 -    1.08E+01 1.82 0.000 *** 

Number of counties 241    241    

Years 2004-2016 2004-2016 

Sample Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55    0.56    

Adjusted R-squared 0.51    0.51    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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Table B25.  Effects for models with alternative dependent variables. 

 (1) Employment (20) Employment rate  

(21) Employment-to-population 

ratio  

Variables Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  Estimate Std. Error P(>|t|)  

Producing wells 5.36 1.86 0.004 ** -1.55E-03 0.00 0.000 *** 5.79E-05 0.00 0.000 *** 

Population 0.47 0.09 0.000 *** 1.20E-05 8.31E-06 0.148  -2.40E-07 1.85E-07 0.193  

Population density 88.91 31.63 0.005 ** -2.89E-03 0.00 0.124  2.08E-04 0.00 0.000 *** 

Farm earnings share 6.88E+03 3.30E+03 0.037 * -1.13E+01 2.43 0.000 *** -1.50E-01 0.05 0.004 ** 

Construction earnings share 8.08E+03 3.79E+03 0.033 * 7.27E+00 2.31 0.002 ** 1.28E-01 4.73E-02 0.007 ** 

Manufacturing earnings share 7.26E+03 3.24E+03 0.025 * 2.18E+00 2.21 0.324  8.81E-02 0.05 0.058 . 

Retail earnings share -3.77E+04 1.25E+04 0.003 ** -9.50E+00 6.37 0.136  -6.91E-01 0.21 0.001 *** 

Number of counties 241 241 241    

Years 2004-2016 2004-2016 2004-2016    

Sample Nonmetropolitan counties Nonmetropolitan counties Nonmetropolitan counties 

R-squared 0.55 0.04    0.17    

Adjusted R-squared 0.51 -0.05 0.09    

Significance codes:  ***p<0.001, **p<0.01, *p<0.05, .p<0.1 
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B5.2.4 Model checking 

Actual versus predicted employment 

We compare the actual versus predicted employment for some of the models specified in the previous 

sections.  All of the model predictions closely fit the actual employment, as shown in Figure B28. 

Bootstrapping 

To capture the uncertainty around the employment effects of natural gas activity, we estimate confidence 

intervals through bootstrapping.  We use block sampling, where a single draw consists of all observations 

for a county, thereby maintaining the dependence structure between years.  We also resample cases, rather 

than residuals, which does not assume that the shape of regression function or the distribution of the error 

of the original model are correct; resampling cases treats each bootstrap sample as an observation and refits 

the fixed effects model. 
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Figure B28.  Actual versus predicted employment for different model specifications. 
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Figure B29.  Annual employment based on model specifications 1, 14, and 16.  Solid line represents mean.  Shaded region represents 95% 

confidence interval based on robust standard errors clustered by county.  Dashed lines represent bootstrapped 95% confidence interval.  Dotted 

lines represent within model 95% confidence interval. 
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Table C1. Summary of inequality indicators (adapted from Levy et al 2006).17 

  Gini index 
Variance of 

logarithms13 

Squared coefficient 

of variation 
Atkinson index 

Mean log deviation Theil's entropy 

index 14 

Description Measure of dispersion 

scaled by twice the 

value of the mean.  

Measures relative 

difference between 

actual and uniform 

distributions. 

Measure of dispersion of 

the log values. 

Entropy measure.  

Includes sensitivity 

measure, 𝜗, set to 2. 

Entropy measure.  Explicitly 

incorporates normative 

judgments about social 

welfare. 

Entropy measure. Entropy measure.  

Average if the 

reciprocals of 

weightd 

probabilities. 

Formula 1
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where ε = inequality aversion 

(range from 0 to infinity) 

1

𝑛
∑ ln(

𝜇
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1

𝑛
∑ (

𝑥𝑘
𝜇
) ln (

𝑥𝑘
𝜇
)

𝑛

𝑘=1
 

Approach for comparisons Relative to all those 

better off 

Relative to average Relative to average Relative to average Relative to average Relative to average 

Method for aggregation Additive Weighted additive Weighted additive Weighted additive Weighted additive Weighted additive 

Principle of transfers?a,15 Yes No (fails for transfers at 

high levels) 

No (fails for transfers at 

high levels) 

Yes Yes Yes 

Subgroup 

decomposable?b,16 

No (unless subgroups 

strictly ordered) 

No Yes (within-group and 

between-group not 

independent) 

Yes (although not strictly 

additive) 

Yes Yes 

a  Axiom that an indicator must not decrease when income (or other parameter) is transferred from a poorer to a richer person (or from a person worse off to a person better off).  The indicator 

must decrease when income (or other parameter) is transferred from a richer to a poorer person (or from a person better off to a person worse off). 

b  Axiom that an indicator must be subgroup decomposable (or additive separable).  Total inequality can be divided into constituent parts of the distribution. 
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Table C2.  Spatial and temporal equity metrics for air quality impacts.  Based on premature mortality 

estimates.  

Equity Unita 

Gini 

Coefficient 

Atkinson 

Index 

(ε=0.5) 

Maximum 

Absolute 

Difference 

(premature 

mortality) Theil Index 

Coefficient 

of 

Variation 

Squared 

Coefficient 

of 

Variation 

Spatial equity – all grid cells (with mortality >0.1)b 

Grid cell (2010) 0.81 0.56 10 1.73 4.15 17.3 

Grid cell (2016) 0.74 0.46 13 1.33 3.21 10.3 

Grid cell (cumulative) 0.76 0.50 98 1.48 3.55 12.6 

Spatial equity – all counties (with mortality >0.1) c 

County (2010) 0.78 0.52 20 1.51 3.49 12.2 

County (2016) 0.66 0.37 22 0.96 2.33 5.15 

County (cumulative) 0.69 0.40 201 1.12 2.80 7.82 

Spatial equity – counties within Pennsylvania, Ohio, and West Virginiad 

County (2010) 0.60 0.30 20 0.82 2.27 5.15 

County (2016) 0.62 0.32 22 0.83 2.13 4.52 

County (cumulative) 0.77 0.50 201 1.42 3.58 12.9 

Temporal equityc 

Year 0.47 0.29 439 0.45 0.83 0.70 

a We estimate spatial equity between counties or 36 x 36 km grid cells for 2010, 2016, or cumulatively from 2004 to 2016. 

b Based on mortality estimates from APSCA source-receptor RCM and ACS C-R relationship model specification. 

c Based on mortality estimates from AP3 source-receptor RCM and ACS C-R relationship model specification. 

d Based on mean mortality estimates across six model specifications using different RCMs (i.e., AP3, APSCA, InMAP) and C-R 

relationships (i.e., ACS, H6C). 
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Figure C1.  Air quality and equity tradeoff.  Gini coefficients are used as a measure for spatial equity 

between all counties (with mortality >0.1), which are represented by the red line.  Grey bars are annual 

premature mortality estimates.  Based on mortality estimates from APSCA source-receptor RCM and 

ACS C-R relationship model specification. 
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Table C3.  Spatial and temporal equity metrics for employment impacts. 

 

  

  

Equity Unit 

Gini 

Coefficient 

Atkinson 

Index 

(ε=0.5) 

Maximum 

Absolute 

Difference Theil Index 

Coefficient of 

Variation 

Squared 

Coefficient of 

Variation 

Producing counties 

County (2010) 0.89 0.75 7,000 1.08 2.91 10.6 

County (2016) 0.88 0.76 6,000 1.01 3.26 7.57 

County (cumulative) 0.88 0.75 46,000 1.08 2.75 8,48 

Year 0.44 0.24 76,000 0.38 0.77 0.60 

Appalachia counties 

County (2010) 0.72 0.46 7,000 1.01 1.82 3,31 

County (2016) 0.72 0.46 6,000 0.96 1.65 2.72 

County (cumulative) 0.72 0.45 46,000 1.00 1.79 3.20 

Year 0.44 0.24 76,000 0.38 0.77 0.60 
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Figure C2.  Employment and equity tradeoff.  Gini coefficients are used as a measure for equity, which 

are represented by the red line.  Gini coefficients are determined for each year and are estimated across all 

producing counties in a given year.  Gray bars represent mean annual employment estimates. 
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Table C4.  Climate change equity metrics.  Based on global temperature change estimates.  

 

 

 

Figure C3.  Ratio of long- to near-term impacts under varying time horizons for estimating long-term 

impacts. 

Equity Unit 

Gini 

Coefficient 

Atkinson 

Index 

(ε=0.5) 

Maximum 

Absolute 

Difference Theil Index 

Coefficient of 

Variation 

Squared 

Coefficient of 

Variation 

Equity Horizon: 2004 to 2016 

Year 0.72 0.55 0.000 0.93 1.53 2.35 

Equity Horizon: 2004 to 2100 

Year 0.23 0.10 0.001 0.12 0.43 0.19 

Decade 0.21 0.08 0.01 0.12 0.41 0.16 

Generation 0.12 0.01 0.01 0.03 0.24 0.06 

Equity Horizon: 2004 to 2200 

Year 0.17 0.06 0.001 0.08 0.36 0.13 

Decade 0.17 0.05 0.01 0.08 0.35 0.13 

Generation 0.11 0.01 0.01 0.02 0.23 0.05 

Century 0.05 0.003 0.01 0.01 0.10 0.01 
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Figure C4.  Climate change impacts and equity tradeoff.  Point shapes represent equity unity: year 

(circle), decade (triangle), generation (diamond), and century (square).  Point colors represent equity 

horizon: 2004 to 2016 (red), 2004 to 2100 (blue), and 2004 to 2200 (green). 
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Figure C5.  Lorenz curves representing the temporal equity of temperature impacts. The color of the lines 

represents the equity unit: year (dark blue), decade (medium blue), or generation (light blue). An equity 

unit is the period over which impacts are integrated. The type of line represents the equity horizon: dotted 

(2004 to 2016) and solid (2004 to 2100).  The thin grey line is the line of equity. 
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C1.2 Distributive equity with respect to racial and socioeconomic subpopulations 

C1.2.1 Population-weight mortality and mortality rates by race, income, and poverty level 

Table C5.  Summary of parameters, data limitations, and data sources for air quality equity analysis by 

subpopulation. 

Subpopulation Modified parameters Data limitations Data 

sources 

Race 

(white, black or African 

American, Asian or Pacific 

Islander, Native American 

or Alaskan Native) 

Mortality rates by race, year, 

county AND 

Population by race, year, 

county 

59% reporting of mortality rates by 

race, year, county, with other values 

suppressed; to fill in missing data, 

used similar hierarchical approach as 

used in BenMap guidance. 

~17% reporting mortality by age, 

race, county, year:. did not use age 

stratification. 

CDC18 

Income level 

(<$15,000, >$15,000 to 

<$35,000, >$35,000 to 

<$75,000, >$75,000 to 

<$150,000,  >$150,000) 

Population by income, year, 

county 

- US 

Census 

Bureau19 

Poverty level 

(above, below poverty line) 

Population by poverty level, 

age, year, and county 

Poverty level age classes differ from 

mortality rate age classes; directly 

match age classes or use an age-

weighted average. 

US 

Census 

Bureau19 
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Table C6.  Estimated population-weighted mortality for 2010, 2016, and cumulatively from 2009 to 2016 

by race, household income, and poverty level.  Population-weighted estimates based on annual, county-

level premature mortality derived from AP3 and ACS study dose-response.  Estimates in terms of 

premature mortality and values in parentheses are percent attribution.  Note that total premature mortality 

estimates for each subpopulation are not necessarily the same, given differences in population estimates. 

 2010 2016 Cumulative from 

2009 to 2016 

Total 182 (100%) 339 (100%) 2206 (100%) 

Race 

White 157 (86%) 533 (85%) 1948 (86%) 

Black or African American alone 22 (12%) 92 (13%) 286 (13%) 

American Indian and Alaska Native 2 (1%) 6 (1%) 32 (1%) 

Asian or Pacific Islander 1 (0%) 1 (0%) 7 (0%) 

Household income 

<$15,000 24 (13%) 43 (13%) 285 (13%) 

>$15,000 to <$35,000 39 (21%) 69 (20%) 462 (21%) 

>$35,000 to <$75,000 58 (32%) 104 (31%) 686 (31%) 

>$75,000 to <$150,000 45 (25%) 87 (26%) 554 (25%) 

>$150,000 16 (9%) 37 (11%) 219 (10%) 

Poverty level 

Below poverty line 22 (13%) 49 (14%) 304 (14%) 

Above poverty line 149 (87%) 290 (86%) 1868 (86%) 
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C1.2.2 Income distribution and poverty level regression 

Table C7.  Comparison of boom and non-boom counties with respect to changes in poverty level and 

income Gini coefficients from 2005 to 2015. 

Variables  Boom Counties 

(n = 90) 

 
Non-Boom 

Counties 

(n = 168) 

p-valuea 

  Mean SD   Mean SD   

Change in % below poverty level from 2005 to 2015  0.599 2.157 
 
1.683 1.519 0.000 

Log of change in % below poverty level from 2005 to 2015  -0.205 0.080 
 
-0.169 0.071 0.000 

Change in Gini coefficient from 2005 to 2015  -0.091 0.029 
 

-0.080 0.026 0.013 

Log of change in Gini coefficient from 2005 to 2015  -0.205 0.080   -0.169 0.071 0.004 

a This p-value associated with testing if the means are different from each other, where the null hypothesis assumes 

that they are not different. 

 

C1.2.3 Spatial coincidence of natural gas activity and demographic variables 

Table C8.  Demographic comparisons of mean and population-weighted mean populations in producing 

and nonproducing counties in 2010. 

Variable 

Population-Weighted Mean Mean 

T-Test Significance 

Producing 

Counties 

(n=68) 

Nonproducing 

Counties 

(n=204) 

Producing 

Counties 

(n=68) 

Nonproducing 

Counties 

(n=204) 

Population (1000s) 401  851 71  200  4.090 0.000 

Percent black 5.2  13.8  2.3  4.9  4.624 0.000 

Percent nonwhite 8.5  25.7  4.3  9.6  5.996 0.000 

Per capita personal income ($) 39,507  45,860  33,120  37,071  4.185 0.000 

Median household income ($) 44,033  53,245  39,222  47,350  8.147 0.000 

Percent below poverty line 15.2  15.6  17.7  15.2  -4.204 0.000 
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Table C9.  Demographic comparisons of mean and population-weighted mean populations in producing 

and nonproducing counties in 2016. 

Variable 

Population-Weighted Mean Mean 

T-Test Significance 

Producing 

Counties 

(n=91) 

Nonproducing 

Counties 

(n=181) 

Producing 

Counties 

(n=91) 

Nonproducing 

Counties 

(n=181) 

Population (1000s)  329   918   77   215  4.263 0.000 

Percent black  5.5   14.4   2.9   5.1  3.388 0.000 

Percent nonwhite  9.2   28.3   5.5   10.9  5.441 0.000 

Per capita personal income ($)  42,687   54,159   36,710   42,775  5.370 0.000 

Median household income ($)  49,375   61,907   44,461   54,701  8.951 0.000 

Percent below poverty line  14.4   14.3   16.6   13.7  -5.226 0.000 

 

Table C10.  Spatial coincidence of production and demographic variables, using a logistic regression 

approach. 

Variable 

2010 2016 2010 to 2016 

Estimate 

Odds 

Ratio P-value Estimate 

Odds 

Ratio P-value Estimate 

Odds 

Ratio P-value 

Percent nonwhite -0.132 0.876 0.060. -0.046 0.955 0.108 -0.077 0.926 0.000*** 

Log of median 

household income -8.447 0.000 0.009** -8.685 0.000 0.000*** -5.213 0.005 0.000*** 

Percent below 

poverty line -0.026 0.975 0.800 -0.118 0.888 0.100. -0.036 0.964 0.147 

Constant 30.672 2.09E+13 0.022. 35.069 1.70E+15 0.000*** 20.031 5.01E+08 0.000*** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table C11.  Median compensation, chief executive officer (CEO) compensation, and CEO-to-median 

employee compensation ratio for top producing firms in Appalachia.  Based on 2017 Security and 

Exchange Commission Schedule 14A filings.20 

Firm 2015 

production 

(bcf) 

2016 

production 

(bcf) 

CEO 

compensation 

($) 

Median 

employee 

compensationa 

(%) 

CEO-to-

median 

employee 

compensation 

ratio 

Chesapeake Appalachiaa 1,027 983 14,903,906 118,761 125 

EQT Production Company 797 573 8,254,140 102,470 81 

Cabot Oil and Gas Corp. 685 638 12,401,033 75,891 163 

Antero Resources Corp. 683 581 9,925,217 87,186 114 

Southwestern Energy 

Production Co, 

541 538 8,687,476 108,458 
80 

Range Resources Appalachia 

LLCc 

474 415 8,700,000 123,500 
70 

Rice Drilling LLCd 317 214  

Gulfport Energy Corporation 314 235 4,738,156 90,439 52 

CNX Gas Company LLCe 302 217 10,585,778 129,390 82 

Chief Oil and Gas LLCf 284 272    

Talisman Energy USA Inc.g 192 196    

Chevron Appalachia LLCh 177 181    

Anadarko E&P Onshore LLCi 166 148 16,959,896 160,251 106 

Seneca Resources Corp.j 150 133    

XTO Energy, Inc. 146     

Noble Energy Inc. 797 139 11,262,048 127,488 88 

Average   10,641,765 112,383 96 

a Each firm has discretion over how the median employee compensation is determined.  The median compensation is based on salary, 

taxable income, or earnings, and often includes stock incentives, bonuses, retirement benefits, employer matching, and/or overtime. 

b Values are based on filings for Chesapeake Energy, the parent company of Chesapeake Appalachia. 

c Values are based on filings for Range Resources, the parent company of Range Resources Appalachia. 

d Acquired by EQT and did not file as Rice Drilling in 2017. 

e Values are based on filings for CNX Resources, the parent company of CNG Gas Company LLC. 

f Privately held. 

g Acquired by Repsol.  Canadian company. 

h Private subsidiary of Chevron Corp. 

i Values are based on filings of Anadarko, the parent company of Anadarko E&P Onshore LLC. 

j Subsidiary of National Fuel which would not be representative of Seneca. 
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C1.3 Pairwise tradeoffs 

C1.3.1 Air quality and employment tradeoffs 

Table C12.  Dataset descriptions for regression model to derive marginal effect of premature morality on 

job-years.  Descriptions of the mortality estimates and county and year aggregations.  These datasets are 

used both in the air quality and employment elasticity modeling and regressions for determining marginal 

effect of premature mortality on employment. 

Model Mortality estimates County and year aggregation 

1 Receptor-resolved mortality from 

supply chain activity 

Observations (n=101) for each producing county 

aggregated over years 

2 Receptor-resolved mortality from 

upstream activity 

Observations (n=101) for each producing county 

aggregated over years 

3 Source-resolved mortality from supply 

chain activity 

Observations (n=210) for each source county 

aggregated over years 

4 Source-resolved mortality from 

upstream activity 

Observations (n=210) for each source county 

aggregated over years 

5 Mortality from all supply chain activity Observations (n=13) for each year aggregated over 

counties 

6 Mortality from upstream activity Observations (n=13) for each year aggregated over 

counties 

 

Table C13.  Linear model fits for premature mortality and job-years tradeoff.  Linear fits (y = β0+βx+ε) 

for 6 different models (as described in Table C12).  β are in units of job-years per premature mortality. 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

β 

(mean±se) 

17.8 

±28.7 

55.7 

±57.7 

94.1 

±14.2 

352 

±19.8 

157 

±4.68 

826 

±163 

Constant 

(mean±se) 

4453 

±916 

4401 

±901 

677 

±470 

1047 

±290 

2982 

±1274 

2586 

±7939 

Adjusted R2 -0.006 -0.001 0.17 0.60 0.99 0.67 

n 101 101 210 210 13 13 
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Figure C6.  Linear models for premature mortality and job-years tradeoff.  Linear fits for 6 different 

models (as described in Table C12).  Linear models (y = β0+βx+ε) are indicated by black lines and 

within model 95% confidence intervals are indicated by grey shaded regions.  The adjusted R2 and mean 

value of β (in units of job-years per premature mortality) are provided. 
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Figure C7.  Actual versus predicted values for linear models for premature mortality and job-years 

tradeoff.  Linear fits for 6 different models (as described in Table C12).  Dots represent actual and 

predicted job-years, and black line is a line with slope = 1 and intercept = 0 (indicating perfect fit). 
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Figure C8.  Sensitivity of linear models for premature mortality and job-years tradeoff with respect to air 

quality model and concentration-response (C-R) relationship.  These are all linear fits for model 

specification 5 (as described in Table C12).  We assume two different C-R relationships, American 

Cancer Society (ACS) and Harvard Six Cities (H6C), and three different reduced complexity air quality 

models, AP3, APSCA, and InMAP.  Linear models (y = β0+βx+ε) are indicated by black lines and 

within model 95% confidence intervals are indicated by grey shaded regions.  The adjusted R2 and mean 

value of β (in units of job-years per premature mortality) are provided.  
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Figure C9.  Sensitivity of linear models for premature mortality and job-years tradeoff with respect to 

employment estimates.  These are all linear fits for model specification 5 (as described in Table C12).  

We assume mean, upper 95% CI, and lower 95% CI estimates of employment, as reported in Mayfield et 

al. (forthcoming).  Linear models (y = β0+βx+ε) are indicated by black lines and within model 95% 

confidence intervals are indicated by grey shaded regions.  The adjusted R2 and mean value of β (in units 

of job-years per premature mortality) are provided.  
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