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Abstract 
Energy storage can enable low-carbon power and resilient power systems. However, market 

design is critical if a transition to renewables and storage is to result in low costs for customers. 

Pivotal suppliers with energy storage resources (ESRs) can achieve supernormal profits when 

allowed to fully participate and set clearing prices in wholesale electricity markets. Additional 

strategic profit from offers inconsistent with marginal costs can hurt competition and increase 

customer payments, hindering ongoing transitions to high shares of low marginal cost renewable 

generation and ESRs in electricity markets. We classify three strategies identified by our bi-level 

model for achieving additional strategic profits: (1) increased ESR discharge bids, (2) decreased 

ESR charge bids, and (3) cross-product manipulation to benefit other resources owned by the 

pivotal ESR supplier. We examine cases on a 25-bus test system with 67% average renewable 

energy generation where the ESR is commonly pivotal due to congestion. We observe under 

some circumstances the ESR owner can increase its energy market profits from $10-20/MWh 

discharged when competitive to $40-250/MWh discharged when strategic. Most increased profit 

comes from cross-product manipulation aimed at increasing prices to benefit a large co-located 

or hybridized zero marginal cost wind generator owned by the same entity. Marginal cost-based 

offer caps commonly applied to other resources could be extended to include ESRs’ 

intertemporal opportunity costs limit, but these caps do not fully mitigate manipulative cross-

product strategies. Relative inframarginal ESR offers over co-optimized time intervals with 

energy limits can be used to manipulate clearing quantities and prices and should be closely 

monitored when ESRs are pivotal suppliers. Requiring inframarginal offer uniformity over co-

optimized time intervals shows promise as a policy remedy. 
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Abbreviations and acronyms 

CAISO California Independent System Operator 

CC Combined Cycle 

CT Combustion Turbine 

DA Day-Ahead 

DCOPF Direct Current Optimal Power Flow 

EPEC Equilibrium Program with Equilibrium Constraints 

ERCOT Electricity Reliability Council of Texas 

ESR Energy Storage Resource 

FERC Federal Energy Regulatory Commission 

IMM Independent Market Monitor 

KKT Karush-Kuhn-Tucker 

MILP Mixed Integer Linear Program 

MPEC Mathematical Program with Equilibrium Constraints 

NREL National Renewable Energy Laboratory 

NYISO New York Independent System Operator 

RT Real-Time 

RTPV Rooftop Photovoltaic 

RTS-GMLC Reliability Test System – Grid Modernization Lab Consortium 

PHS Pumped Hydroelectric Storage 

SPP Southwest Power Pool 

VRE Variable Renewable Energy 

 

1. Introduction 

Mid-century decarbonization pathways commonly increase the quantity and share of final 

energy demand supplied by electricity (Williams et al 2012, 2021). A highly decarbonized and 

expanded electricity sector requires rapid transition from current generation mixes, with most 

pathways relying heavily on declining costs of variable renewable energy (VRE) technologies 

(Bistline and Young 2019) and energy storage technologies (Kittner et al 2017) that enable better 

instantaneous matching of supply and demand (Mileva et al 2016). While standard electricity 

market designs are theoretically consistent with this transition (Hogan 2010), a key question is 

what reforms to existing electricity market designs are complementary with high penetrations of 

variable, low emission, and low marginal cost resources (Ela et al 2014, Joskow 2019, Spees et 

al 2019, Batlle et al 2021).  
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Consistent with integrating higher quantities of variable renewables in the electricity 

sector, standalone, stationary energy storage resources (ESRs) and ESRs sharing an 

interconnection with another generator (“hybrids”) (CAISO 2019) make up an increasingly large 

portion of interconnection queues in competitive North American wholesale electricity markets 

and are expected to increase in coming years (Gorman et al 2020). ESRs and hybrids are energy-

limited and shift load and generation in time rather than generating electricity. These differences, 

combined with low variable operating costs for lithium-ion technologies likely to dominate near-

term ESR deployment (Beuse et al 2020), mean marginal cost based competitive ESR and hybrid 

bids generally reflect the intertemporal opportunity costs of ESR usage (He et al 2018). Existing 

North American competitive electricity markets have experience with a limited number of 

pumped hydroelectric storage (PHS) units sharing these general operational characteristics (Ela 

et al 2013). However, ESRs and hybrids are forecast to be more numerous, modular in sizing and 

deployment, and more readily dispatchable than PHS in coming years, enabling different use 

cases than PHS (Denholm et al 2021) and requiring modifications to existing rules to enable 

their full participation in competitive electricity markets (FERC 2018). 

We contribute to this discussion by identifying profit-maximizing bidding strategies for 

ESR- or hybrid-owning entities in a realistic multi-node, two-settlement electricity market with 

high penetration of variable, renewable, low marginal cost resources. Methods for identifying 

bidding strategies are essential to maintaining competitive electricity markets and delivering 

customers low-cost, reliable electricity service with high shares of VRE and ESRs. 

We develop a bi-level model with a profit-maximizing supplier in the upper level and the 

market operator minimizing the as-bid cost of serving load in the lower level. A bi-level model 

allows full participation of resources with the ability to endogenously set locational marginal 

prices (LMPs) in nodal wholesale electricity markets (Ruiz and Conejo 2009), and is commonly 

referred to as a type of “price-maker” model when applied to ESRs (Miletić et al 2020). This 

approach is consistent with previous approaches to modeling ESR market participation with 

ability to set clearing prices (Mohsenian-Rad 2016, Ye et al 2019). The model can be used to 

identify bidding strategies. The major contribution of our research is to extend the policy 

relevance of previous research focused on solving stylized cases of ESRs exercising market 

power as a pivotal supplier (Mohsenian-Rad 2016, Tómasson et al 2020, Ye et al 2019). We do 
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this by classifying three market manipulation strategies on a high VRE nodal test system and 

suggesting directions for monitoring and mitigating these strategies. 

2. Methods 

We develop a bi-level optimization model reformulated as a mixed-integer linear 

program (MILP). This approach can be conceived as finding an equilibrium in a leader-follower 

Stackelberg game applied to electricity markets. In the upper level the leading generation- and 

ESR-owning entity submits bids to maximize the expected joint profits of its portfolio of 

resources. In the lower level the follower market operator minimizes the as-bid cost of serving 

electricity loads, subject to physical constraints on power flow and generator operational 

parameters. To focus on the properties of resource offers in one market we exclude security 

constraints, markets for ancillary services, and demand-side offers other than ESR charging loads 

(model formulation in Appendix A). 

We increase the policy relevance of our cases compared to bi-level models on single-

node test systems by modeling a congested high VRE nodal network, allowing us to observe 

congestion-related cross-product strategies of particular concern in electricity markets (Cardell et 

al 1997, Lo Prete et al 2019). We further extend previous work using bi-level models in 

electricity markets (Nasrolahpour et al 2016, Fang et al 2018, Ye et al 2019) by allowing 

hybridization of ESR and other generators located at the same bus as a single resource in 

bidding.  

2.1 Multiple Settlement Functionality 
 North American wholesale markets commonly have two settlement intervals: a day-ahead 

(DA) forward market co-optimized for the subsequent day at hourly resolution and a higher 

temporal resolution (often five minutes) real-time (RT) market for settling deviations from the 

DA market with more limited look ahead temporal co-optimization. Our cases are commonly run 

DA with perfect foresight, but we include multiple settlement functionality in the model to allow 

sensitivity analysis under uncertainty with DA bids cleared against RT actual load and 

generation with limited bidding recourse (Appendix B). 
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2.2 Offer Constraints and Mitigation 
 In all cases unless otherwise noted generators are assumed to offer all available 

generation at marginal cost (Appendix B). For variable renewable generators with zero fuel cost, 

we additionally assume zero variable O&M and no effect of subsidies (e.g., wind Production Tax 

Credit (Brown 2012)) on marginal cost, so these resources offer at $0/MWh. Because ESR offers 

are largely opportunity cost-based, no constraints are placed on ESR offers in cases without 

ESR-specific offer mitigation constraints. 

 To investigate the efficacy of ESR offer mitigation we develop two approaches. First, we 

mitigate day-ahead offers based on an ex-ante price forecast, disallowing offers from exceeding 

the expected competitive clearing price. We show this approach does little to mitigate the most 

profitable strategic bidding by entities owning both ESRs and generation, which can use relative 

rather than absolute price offers for energy-limited resources. Second, we propose a mitigation 

framework based on uniform bidding for co-optimized temporal intervals. This framework is 

more effective in mitigating cross-product manipulation but requires careful consideration to 

avoid over-mitigation and allow ESRs to capture option value. 

3. Data 

To achieve germane results we implement our model on the National Renewable Energy 

Laboratory (NREL)-modified version of the IEEE RTS-96 test system: the Reliability Test 

System Grid Modernization Lab Consortium (RTS-GMLC) (Barrows et al 2020). The RTS-

GMLC test system updates an older IEEE test system primarily by modernizing the generation 

fleet to include more gas-fired and renewable resources. Renewable and load profiles are based 

on three zonal locations in the United States southwest, though we retain only a single 25-bus 

zone for model cases in this paper (Fig. 1). 
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We modify the RTS-GMLC source data to exclude native ESR and add ESRs with user-

specified capacity, duration, and round-trip efficiency (assumed 85%) at select buses. These 

ESRs may also be hybridized with generators owned by the same entity at the same node. Day-

ahead data are hourly resolution. Real-time data are 5-minute resolution, but are reformatted to 

 
Fig. 1: Modified NREL RTS-GMLC case nodes, transmission lines, generation capacity, and peak 

loads. The three RTS-GMLC zones use geographic data based on Arizona Public Service Company 

(AZPS), Nevada Energy, and the Los Angeles Department of Water and Power (LADWP), though 

they are not intended to represent existing infrastructure. We retain only the displayed 25 buses in 

LADWP for cases to decrease runtime and because LADWP has the highest average (67%) and 

instantaneous renewables penetrations and the most congestion in the model year. RTPV is rooftop 

photovoltaic, CT combustion turbine, CC combined cycle. 
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equivalent hourly average load and renewable generation for the two-settlement model. The 

model is run as a sequence of co-optimized 24-hour resolution days to reduce solution time 

compared to co-optimization of a longer timeframe, and because this mimics DA markets. 

Constraints enforce a single daily cycle for ESR dispatch as a heuristic for degradation in the 

absence of more sophisticated degradation incorporation (He et al 2018). Initial and final ESR 

SOC are constrained to be zero to enforce continuity between days in sequential runs. 

3.1 Summary of 25-bus Case Data 

Fig. 2 shows January DA hourly average load, net load, and generation by resource for 

the reduced 25-bus version of the RTS-GMLC data without ESRs. A comparison to RT data 

used for multiple settlement functionality is included in Appendix B. The test system has high 

renewable generation compared to current United States averages (EIA 2021), but these 

renewable penetrations are commonly met or exceeded in forward looking decarbonization 

pathways (Williams et al 2021). 

 

 
Fig. 2: Hourly day-ahead average load, net load, and generation by type for RTS-GMLC data 

without energy storage in Zone 3 for the modeled month, January. RTPV is rooftop 

photovoltaic, CT is combustion turbine, CC is combined cycle. Oil-fired generators are also 

included but not dispatched during the modeled month. 
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The combination of high quantities of available zero marginal cost renewable generation 

concentrated at a few buses with large wind generators and higher load hours often results in 

transmission congestion. The 175MW line connecting buses 03 and 09 is most often congested 

when large quantities of wind generation are available from the 847MW of installed wind 

capacity at bus 03. Bus 03 is the lowest LMP bus when there is congestion on the line connecting 

buses 03 and 09 (Fig. 3).  

 

4. Results 

 Three ESR bidding strategies increase the profit of a portfolio of resources owned by a 

strategic entity. 

1) Increase discharge offers when pivotal to increase LMP at ESR bus when discharging; 

2) Decrease charge offers when pivotal to decrease LMP at ESR bus when charging; 

3) Increase ESR charge or discharge offers to increase LMP at buses where the strategic 

entity owns other generation.  

Of these strategies the third, a cross-product strategy, is the most profitable when strategic 

ESRs are co-located or hybridized with a large renewable generator at a commonly congested 

bus. It is also the most difficult to mitigate against (Section 4.4). 

 

Fig. 3: Hourly LMPs without ESRs at the two buses in the test system linked by an often-

congested line for the entire modeled month. LMPs for all buses are included in Appendix B. 
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To assess the additional profit associated with strategic ESR bids in a portfolio of resources 

we use two metrics: additional total portfolio profit ∆𝜋𝑝over an applicable time interval and ESR 

incremental per-MWh discharged portfolio profit 
∆𝜋𝑝

𝑀𝑊ℎ
. These metrics are defined: 

∆𝜋𝑝 = 𝜋𝑆𝑆 − 𝜋𝑁𝑆𝑆 (1) 

∆𝜋𝑝

𝑀𝑊ℎ
=

𝜋𝑆𝑆 − 𝜋𝐺

∑ 𝑠𝑑𝑆
 (2) 

  

Where 𝜋𝑆𝑆 is the profit of the strategic entity’s portfolio p of generators with ability to bid its 

ESRs strategically (strategic storage is SS), 𝜋𝑁𝑆𝑆 is the strategic entity’s portfolio profit when it 

does not bid ESRs strategically (non-strategic storage is NSS), and 𝜋𝐺  is the non-ESR generator 

profit in the non-strategic case. 𝑠𝑑 is total discharge over the applicable time interval of the ESR, 

S. 

Assumptions include generators being mitigated to offer at marginal cost, but no offer 

mitigation applied to opportunity costs for ESRs, and the strategic entity has perfect foresight of 

load, renewable generation, and offers by other suppliers. Results in Section 4.1-4.2 using these 

assumptions set an upper bound on strategic profit of ESR bidding decisions for an assumed 

system and strategic ownership parameterization. Section 4.3 investigates relaxing some perfect 

foresight assumptions. Section 4.4 explores monitoring and mitigation frameworks for the most 

profitable perfect foresight strategies. 

4.1 Demonstrating the Three Strategies 
We parameterize two cases to demonstrate the applicability of the three strategies 

assuming perfect foresight of the market clearing problem (Table 1). 

Table 0-1: Demonstration case parameterization. Differences between cases are in bold. 

Case Label Generators 
and Loads 

Storage Sizing Storage 
Location 

Other Owned 
Generators 

Time Period and 
Resolution 

Case A: 
“ESR Only” 

 

All NREL-
RTS 

LADWP 

300MW/900MWh Bus 03 None 
Hourly Day-Ahead, 

January 2020 
Case B: 

“ESR+Wind” 
All NREL-

RTS 
LADWP 

300MW/900MWh Bus 03 Wind 
(847MW), 

bus 03 
Hourly Day-Ahead, 

January 2020 
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In both cases the model is configured and run in two ways: “competitive” and “strategic.” 

Competitive is equivalent to a cost-minimizing linear program under the assumption all 

resources offer at marginal cost. Competitive ESRs are dispatched to minimize production costs. 

Strategic assumes ESRs and other generators owned by the strategic entity1 submit offers to 

maximize the strategic generation-owning entity’s profit knowing the market operator will 

minimize as-bid costs of serving load. Strategic uses the full functionality of our model to find a 

profit-maximizing solution to within a pre-set MILP optimality gap (1% in these cases). 

Differences between the strategic and competitive solution in the profits accrued by the strategic 

entity are quantified as ∆𝜋𝑝. Figures show LMPs only at the bus where the ESR is installed 

unless otherwise noted. 

 

                                                           
1 As applicable in the case per Table 1, though recall generators are constrained to offer at marginal cost. 

Fig. 4: Comparison of strategic and competitive LMPs at the bus (03) with ESR for an illustrative 

subset of modeled January days. In case A the ESR is able to set price and increase profits when 

pivotal through two strategies: increasing its discharge bid and decreasing its charge bid. In case B 

the strategic entity also owns a 847MW wind generator. Bus 03 is congested in many hours 

due to the wind generation and transmission limits, so prices are often below the system 

lambda (blue). Strategies used in case A still appear (though decreasing price for charging 

only makes sense when little wind is available), but the most profitable strategy is a cross-

product strategy to alleviate congestion that results in the greatest increases in clearing price. 
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The total profits accrued in case A and B for the full month by the ESR and wind 

generator are compared in Fig. 5. 

 

4.2 Sensitivity to ESR parameterization and hybridization 
 This section adds sensitivity analysis on how ESR sizing and hybridization affects 

strategic profits. In these sensitivity cases we maintain the perfect foresight assumption, so 

results set an upper bound on portfolio profit from ESR bidding. 

 Fig. 6 shows ESR capacity and duration sensitivity analysis. The only changes to the case 

B parameterization are ESR capacity and duration. Because the cross-product strategy is 

profitable only when wind generation exceeds storage charging load, sensitivities consider ESR 

capacity installations up to 500 MW.2  Per-MWh profits associated with storage ownership 
𝜋𝑁𝑆𝑆

∑ 𝑠𝑑𝑆 

                                                           
2 the wind generator’s capacity factor is 53% in the month; 448 MW average wind generation 

 
Fig. 5: Comparison of case profits for month of January when dispatched competitively vs. 

strategically. In case A the strategic entity only owns the ESR; in case B it also owns the 

wind generator and maximizes the joint profits by modifying ESR bids to increase revenues 

received by the wind generator. Uncertainty bars show the aggregate upper bound optimality 

gap for strategic MILP. Competitive cases are cost-minimizing LPs and have no optimality 

gap. 
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are $10-20/MWh ESR discharge in all competitive cases, while strategic incremental profits 
∆𝜋𝑝

𝑀𝑊ℎ
 

are $40-250/MWh ESR discharge. Increased profits largely result from cross-product 

manipulation that decreases ESR revenues, but increases clearing price and thus wind revenues 

by more. 

 

 Motivated by increasing prominence of wind-ESR and solar-ESR hybrid generators in 

North American interconnection queues (Gorman et al 2020), Fig. 7 compares case B with a 

hybrid made up of the same wind and ESR. The hybrid differs from co-located in two ways: (1) 

it makes a single, unconstrained offer, and (2) the hybrid cannot dispatch more than the rated 

capacity (847MW) of its wind generator as an assumed interconnection limit, whereas the co-

located resources can both dispatch at their full rated capacity. 

 
Fig. 6: Profit sensitivities show in all cases strategic bidding increases joint profits compared 

to the competitive outcome where the ESR is dispatched to minimize production costs. 

Increasing ESR capacity and duration generally exhibit decreasing marginal value (lower 

$/MWh profits) under the perfect foresight assumption. 
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The hybrid achieves more profit than the co-location because of the removal of offer 

constraints on the wind generator, previously offered at its marginal cost of $0/MWh even when 

owned by the strategic entity. The new, larger hybrid generator can exercise additional ability to 

alleviate congestion affecting the LMP at bus 03 and set a higher price. The results illustrate how 

hybridization could be used to enable additional bidding latitude not afforded to a generator or 

ESR if hybridization allows the resource a new classification with fewer bidding restrictions.  

4.3 Incorporating Uncertainty 

 Previous cases were day-ahead, hourly resolution under the assumption the strategic 

entity has perfect foresight of bus-level system loads, price-quantity bids by other generators, 

and knowledge how the market operator will minimize production costs and set prices. This 

section considers whether the strategic entity could achieve some of the perfect information 

profit when uncertainties in available generation and loads are incorporated. When fixing its 

profitable pivotal supply bid quantities in DA prior to realization of actual load and generation in 

 
Fig. 7: Comparison of co-located and hybrid strategic profits with the competitive solution. 

Co-located case is the same as Case B in Section 4.1. 
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RT, the strategic entity can maintain some profit (Fig. 8, Appendix B for detail on strategy under 

uncertainty). 

 

Fig. 8 is only an existence proof for potential market manipulation, and real traders have 

in markets have developed profitable strategies under uncertainty. Market monitoring can still 

benefit from considering the profit maximizing strategy assuming perfect foresight, since tools 

for mitigating the three strategies identified in Section 4.1 will still be applicable under 

uncertainty. 

4.4 Analytical Considerations for ESR Market Monitoring and Offer Mitigation 

 In this section we extend results to a discussion of detection and mitigation of ESR offers 

intended to manipulate market prices.  

 A common tool for mitigating offers in existing wholesale electricity markets are offer 

caps. North American electricity markets generally have both a market-wide offer cap and 

resource level offer mitigation using estimation and verification of marginal costs. Extending 

offer mitigation to ESRs and hybrids often proceeds from this framework, assuming adding 

 
Fig. 8: Strategic profits are reduced under uncertainty. Implemented bidding strategy under 

uncertainty is explained in Appendix B.  
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intertemporal opportunity costs3 to the marginal cost framework will account for the energy-

limits of ESRs. Results in this section suggest an absolute offer cap for ESRs, even assuming an 

agreeable framework for estimation of ex-ante opportunity costs, misses important aspects of the 

ability of ESRs to exercise market power.  

Over co-optimized temporal intervals with market operator incorporation of ESR energy 

limit constraints time-varying relative ESR offers can be used to manipulate market clearing 

prices and quantities, even with a stringent absolute offer cap. The critical mathematical insight 

is the effect of energy-limited ESR offers on clearing prices in all co-optimized time periods 

depends on the relative storage offers in each time period. When pivotal the ESR can make use 

of this fact to change its dispatch, and thus pricing, based on its relative offers, even when its 

absolute offers are constrained to be inframarginal in all time periods. A mathematical derivation 

of this result and parameterized example are in Appendix C. 

 To demonstrate the efficacy of an absolute offer cap the case B parameterization is run 

for a single day (1 January) with DA data. An ex-ante bus 03 LMP-based offer cap is developed 

as the market clearing price from the fully competitive solution. The model is then re-run with an 

additional set of constraints requiring ESR discharge offers to be less than or equal to the ex-ante 

LMP offer cap. This approach is similar to marginal cost-based mitigation for generator offers, 

and more stringent than mitigation using a uniform estimate of daily opportunity costs equivalent 

to the Nth (N=ESR duration) highest price hour, as would be suggested by optimal price-taker 

dispatch of a single daily ESR cycle. Perfect information profits remain well above the 

competitive solution (Fig. 9). 

                                                           
3 Generator bids commonly account for lost opportunity costs (LOC) for co-optimized products in electricity 
markets. For example, a generator required to provide upward reserves for security reasons cannot 
simultaneously clear that capacity in an energy market and, if it would be more profitable to provide 
energy, incurs a LOC, which will then be reflected in its competitive reserve bid to make the generator at 
minimum indifferent between providing upward reserve and energy. This is distinct from intertemporal 
opportunity costs considered for energy-limited resources like ESRs.  
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Notably, the ESR’s ability to maintain strategic profits with inframarginal offers is 

different than for an inframarginal generator offer, which would not affect clearing prices. This 

occurs because energy-limited resources incorporate an additional energy-limit constraint in 

temporally co-optimized dispatch that generators do not, and can make use of this constraint to 

affect clearing prices and quantities based on relative offers (Appendix C). 

 
Fig. 9: ESR and wind owning strategic entity offers for a single day (1 January) at hourly 

resolution (a). In the “offer cap LMP” case offers are constrained to be no greater than the ex-

ante competitive LMP, but are allowed to be negative. Reduced ability of the ESR to set price 

does not eliminate strategic profit (b). 
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That ESRs’ ability to manipulate dispatch and pricing depends on relative offers over 

temporally co-optimized intervals suggests a direction for monitoring and mitigation: focus on 

relative offers. A simple, restrictive mitigation technique could involve requiring a temporally 

uniform ESR offer for all co-optimized time periods. Running an additional case where the ESR 

is constrained to a single offer for charge and discharge over co-optimized intervals on the same 

example day as Fig. 9 produces Fig. 10. 
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The requirement of uniform ESR charge and discharge offers results in the competitive 

solution. This occurs because a uniform offer disallows the ESR modifying the perceived social 

welfare gain of its limited dispatch with different bids in different hours. With a uniform offer, 

the perceived social welfare gain is the difference between the offer and the production costs it 

 
Fig. 10: ESR and wind owning strategic entity offers for a single day (1 January) at hourly 

resolution (a). In the “uniform offer” case offers are constrained to a single value for charge 

and discharge, respectively. The uniform offer LMP is the same as the competitive LMP and 

is overplotted. The uniform offer reduces strategic profits to be equivalent to the competitive 

solution for this day (b). 
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replaces, resulting in discharge replacing generation the highest production cost time periods and 

charge increasing generation the lowest production cost time periods, as in the competitive case. 

Requiring a uniform offer has potential drawbacks of over-mitigation if not properly 

applied, and does not mitigate all strategies for exercising market power in bidding. A pivotal 

ESR could still set price in a time interval or intervals with a uniform bid above marginal cost or 

bid above expected market clearing prices to withhold its capacity. A very high bid could be 

justified by opportunity costs realized beyond the co-optimized time horizon. Limiting the ability 

of ESRs to update a uniform DA offer in shorter time horizon balancing or RT markets also risks 

over mitigation by reducing ESR option value if prices are higher (or lower) than expected. 

However, uniform offers mitigate the modeled optimal strategy of a profit-maximizing strategic 

entity with perfect foresight to increase its portfolio’s profits and suggest a direction for ESR 

market monitoring and design considerations. 

5. Discussion 

 Energy storage resources can facilitate integration of high levels of variable renewable 

energy, and market design must recognize their unique characteristics to prevent storage from 

manipulating high VRE, low marginal cost markets. This work highlights how price-making 

ESRs’ ability to increase load and state of charge limitations enables additional latitude in 

bidding to manipulate dispatch and pricing and suggests ways that market monitors can avoid 

manipulation.  

Modeling on a high VRE test system under perfect foresight suggests the most profitable 

strategy involves cross-product manipulation by bidding an ESR to raise prices and thus 

revenues received by other generators in the strategic entity’s portfolio. ESRs can more 

commonly be pivotal at or near buses with high VRE generation and congestion than system-

wide – exactly where ESRs would be installed to reduce transmission related renewable energy 

curtailments (Denholm and Mai 2019) – suggesting those generation pockets deserve additional 

attention. While we model only energy markets, identified strategies could be extended to 

ancillary service markets providing nearer term profit opportunities for ESR participation 

(Denholm et al 2021, Lee 2017, Xu et al 2018). Hybridization of ESRs with generators 

otherwise constrained to offer at low or zero marginal cost is another potential avenue for 
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manipulating prices upward if bidding rules allow. Hybrid bidding rules are highly policy 

relevant given large quantities of renewable-ESR hybrid generators entering North American 

interconnection queues (Gorman et al 2020). 

 Strategic profits are limited with a deterministic bidding strategy under uncertainty about 

future loads and generation, but may be increased with more targeted or sophisticated strategies. 

Incorporating methods for predicting future market prices under uncertainty (Xu et al 2019) and 

stochastic optimization (Morales 2010) with a bi-level or other price-making model for ESRs 

suggest directions for future research. We assume fixed capacity and perfect information about 

the market operator’s algorithm; both assumptions could be relaxed or extended to incorporate 

aspects of investment decision-making (Fernández-Blanco et al 2017, Nasrolahpour et al 2020) 

and algorithmic differences between forward and real-time markets, such as treatment of 

nonconvexities (Ye et al 2020) and effects of financial products (Jha and Wolak 2019, Lo Prete 

et al 2019). 

 We show ESRs can use their intertemporal energy limit constraint to change pricing and 

dispatch even with exclusively inframarginal offers. If the market operator respects ESRs’ 

energy limits in optimizing its schedule and setting prices over multiple time intervals 

monitoring should look closely at relative inframarginal offers when ESRs are pivotal suppliers. 

We suggest uniform offer requirements as one approach. However, the assumption that market 

operators will respect energy limits through a SOC parameter or penalty is itself not a policy 

guarantee. The Electric Power Research Institute (EPRI) outlines four approaches for ESR 

participation in US wholesale markets under Federal Energy Regulatory Commission Order 841, 

including a self-SOC management option where the market operator considers only whether ESR 

offers are part of least-cost security constrained economic dispatch and ESRs are expected to 

self-update offers to maintain sufficient SOC to meet their schedules (Singhal and Ela 2020). 

EPRI’s modeling shows self-SOC management can have severe reliability implications if ESRs 

cannot meet their dispatch schedule due to SOC infeasibility in real-time (Singhal 2019). 

Weighing reliability and market participation objectives highlights the broader point: 

market design reforms to accommodate the technical characteristics of ESRs must carefully 

consider objectives including competition, reliability, and rapid decarbonization. If updated 

monitoring and mitigation for ESRs and hybrids is not included alongside these objectives, 
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ossified market design can undermine the benefits of competition and hinder rapid 

decarbonization using high shares of low marginal cost VRE and ESRs. 
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A Model Explanation and Formulation 

A.1 Additional Model Explanation 
The full formulation of the model includes ramping and an implementation of linearized unit 

commitment but excludes security constraints. Generally additional security constraints and 

markets make pivotal supplier conditions more common and increase opportunities for strategic 

bidding, while demand side offers reduce supply side market power. Minimizing as-bid cost of 

serving load ignoring ancillary service utility is equivalent to maximizing social welfare 

assuming a uniform value of marginal electricity demand at or above the market clearing price 

cap. By anticipating the market operator’s decisions, the strategic leading entity can submit bids 

to increase profits from its portfolio of assets. 
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Configurable options in running cases allow implementation of offer mitigation 

constraints based on ex-ante price forecasts, similar to an approach proposed by Southwest 

Power Pool’s (SPP) Market Monitoring Unit (SPP 2018). Other configurable options allow 

changes to temporal indexing of ESR offers in the upper level and running the model as a single 

level linear program with fixed cost-based bids to compare results to the fully competitive 

solution for a given parameterized case.  

Configurable options in the model explored in the paper include: 

 Reformulation as a single level linear program for market clearing assuming fixed bids. 

Produces competitive solution when all resources are assumed to offer at marginal cost. 

(all results sections) 

 Hybridization of co-located ESR and generation resources owned by strategic bidder. 

(Section 4.2)  

 Multiple market settlements with reduced bidding and dispatch recourse in real-time. 

(Section 4.3) 

 Offer mitigation constraints including requiring ESR discharge offers not exceed an offer 

cap based on ex-ante expected market clearing prices, or requiring a single, uniform 

discharge or charge ESR offer over co-optimized temporal intervals. (Section 4.4) 

A full formulation of the model follows. 

A.2 Notation 

A.2.1 Sets 

𝐺 generators, indexed by 𝑔 

𝐺𝐶 subset of generators owned by strategic entity, indexed by 𝑔𝑐 

𝐺𝑁𝐶 subset of generators not owned by strategic entity, indexed by 𝑔𝑛𝑐 

𝐺𝑆 linearized segments of generator heat rate curves, indexed by 𝑔𝑠 

𝐺𝑈𝐶 subset of unit commitment generators, indexed by 𝑔𝑢𝑐 

𝐺𝑁𝑈𝐶 subset of non-unit commitment generators, indexed by 𝑔𝑛𝑢𝑐 

𝐿 transmission lines connecting nodes, indexed by 𝑙 
𝑆 Energy storage resources, indexed by 𝑠 

𝑆𝑆 subset of storage owned by strategic entity, indexed by 𝑠𝑠 

𝑁𝑆𝑆 subset of storage not owned by strategic entity, indexed by 𝑛𝑠𝑠 

𝑇 timepoints, indexed by 𝑡 

𝑍 buses in power system, indexed by 𝑧 

A.2.2 Decision Variables 

𝑔𝑑𝑡,𝑔 Generator dispatch [MWh] 
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𝑔𝑑𝑛𝑡,𝑔 Shutdown status of generator with unit commitment [0,1] 

𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 dispatch on generator segment [MWh] 

𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 offer on generator segment for generators with unit commitment [$/MWh] 

𝑔𝑜𝑡,𝑔,𝑔𝑠 offer for generators without unit commitment [$/MWh] 

𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔 Online operating status of generator with unit commitment [0,1] 

𝑔𝑢𝑝𝑡,𝑔 Startup status of generator with unit commitment [0,1] 

𝑛𝑢𝑐𝑔𝑑𝑡,𝑔 non unit commitment generator dispatch [MWh] 

𝑠𝑐𝑡,𝑠 Charging of energy storage resource [MWh] 

𝑠𝑑𝑡,𝑠 Discharging of energy storage resource [MWh] 

𝑠𝑜𝑐𝑡,𝑠 State-of charge (SOC) of energy storage resource [MWh]. SOC is definitionally 

determined by discharge and charge, so SOC-related terms are written as a 

summation of charge and discharge in subsequent equations. 

𝑠𝑜𝑓𝑐𝑡,𝑠 Energy storage resource charge offer [$/MWh] 

𝑠𝑜𝑓𝑑𝑡,𝑠 Energy storage resource discharge offer [$/MWh] 

𝑡𝑥𝑚𝑤ℎ𝑡,𝑙 real power flow on transmission line [MWh] 

𝑣𝑎𝑡,𝑧 Bus voltage angle 

𝛼𝑡,𝑠 Energy storage resource charge lower bound dual variable 

𝛽𝑡,𝑠 Energy storage resource discharge lower bound dual variable 

𝛾𝑡,𝑠 Tight energy storage resource operation constraint dual variable 

𝜈𝑡,𝑠
𝑚𝑎𝑥/𝑚𝑖𝑛

  State of Charge (SOC) constraint dual variable 

χ𝑠  Final SOC dual variable 

𝜉𝑠 Energy storage resource cycle constraint dual variable 

𝜇𝑡,𝑙
𝑚𝑎𝑥/𝑚𝑖𝑛

  transmission flow dual variables 

𝜓𝑡,𝑧
𝑚𝑎𝑥/𝑚𝑖𝑛

 Voltage angle dual variables 

𝜆𝑡,𝑧 Power balance equation dual variable; interpreted as locational marginal price 

(LMP) 

𝜂𝑡,𝑠 SOC balance equation dual variable 

𝜙𝑡,𝑔
𝑚𝑎𝑥/𝑚𝑖𝑛

  generator dispatch dual variables 

𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥/𝑚𝑖𝑛

 generator segment dispatch dual variables 

𝜔𝑡,𝑔
𝑚𝑎𝑥/𝑚𝑖𝑛

 non-unit commitment generator dispatch dual variables 

𝜋𝑡,𝑔 Unit commitment generator operating status change dual variable 

𝜎𝑡,𝑔
𝑢𝑝/𝑑𝑜𝑤𝑛

  Generator ramp up/down dual variables 

A.2.3 Parameters 

𝐶𝐴𝑃𝑡,𝑔  generator capacity [MW] 

𝐶𝐴𝑃𝐴𝑡,𝑔
𝑅𝑇  Real-time available generation capacity of strategic entity [MW] 

𝐶𝐸𝑠  energy storage resource charge efficiency, unitless 

𝐶𝑀𝐴𝑋𝑠  maximum charge rate of energy storage resource [MW] 

𝐶𝑀𝐴𝑋𝑂𝑠 Maximum energy storage resource charge offer with offer mitigation [$/MWh] 

𝐶𝐷𝐴𝑡,𝑠 Day-ahead energy storage resource charge for use in real-time [$/MWh] 

𝐷𝐸𝑠  energy storage resource discharge efficiency, unitless 

𝐷𝑀𝐴𝑋𝑠  maximum discharge rate of energy storage resource [MW] 
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𝐷𝑀𝐴𝑋𝑂𝑠 Maximum energy storage resource discharge offer with offer mitigation 

[$/MWh] 

𝐷𝐷𝐴𝑡,𝑠 Day-ahead energy storage resource discharge for use in real-time [$/MWh] 

𝐺𝑀𝐶𝑔,𝑔𝑠  marginal cost of generation on segment [$/MWh] 

𝐺𝑆𝐿𝑔,𝑔𝑠  fraction of generator capacity on marginal segment 

∆𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠

𝐷𝐴  Observed change in ESR bus clearing price in DA case when strategic vs. 

competitive (used only in RT cases) 

𝐿𝑡,𝑧  gross load at bus [MWh] 

𝑁𝐿𝐶𝑔 No-load costs of committed generator ($/timepoint) 

𝑃𝑀𝐼𝑁𝑔 Minimum online generation of committed unit commitment generator 

𝑅𝐵𝑈𝑆𝑡 label of reference bus 

𝑅𝑅𝑔 Generator ramp rate (MW/timepoint) 

𝑆𝑙 susceptance of transmission line [Siemens] 

𝑆𝐴𝑡,𝑔 fraction of generator capacity scheduled to be available 

𝑆𝐶𝑔 Generator start-up costs [$/start] 

𝑆𝑀𝐴𝑋𝑠  maximum state of charge of energy storage resource [MWh] 

𝑇𝑋𝐹𝐿𝑙  zone or node from which transmission line originates 

𝑇𝑋𝑇𝐿𝑙  zone or node to which transmission line goes 

𝑇𝐹𝐶𝐴𝑃𝑙  capacity of transmission line from zone or bus [MW] 

𝑇𝑇𝐶𝐴𝑃𝑙  capacity of transmission line to zone or bus [MW] 

𝑈𝐸  Cost of unserved energy or offer cap [$/MWh] 

𝑉𝑀𝐴𝑋𝑧  maximum voltage angle of bus (positive) 

𝑉𝑀𝐼𝑁𝑧  minimum voltage angle of bus (negative) 

𝑍𝐿𝑔  Generator zone or bus label (assignment) 

𝑍𝐿𝑆𝑠  Energy storage resource zone or bus label (assignment) 

 

A.3 Model Formulation 

A.3.1 Upper-level Objective Function 

The upper-level objective function maximizes the profit of a single entity’s competitively owned 

generators and ESRs. 

𝑀𝐴𝑋 [∑ 𝑔𝑑𝑡,𝑔 + ∑ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔
𝑇,𝐺𝐶
𝑡,𝑔∈𝐺𝑁𝐶,𝑧==𝑍𝐿𝑔

𝑇,𝐺𝐶
𝑡,𝑔∈𝑔𝑢𝑐,𝑧==𝑍𝐿𝑔

+ ∑ (𝑠𝑑𝑡,𝑠 −𝑇,𝑆𝑆
𝑡,𝑠,𝑧==𝑍𝐿𝑆𝑠

𝑠𝑐𝑡,𝑠)] ∗ 𝜆𝑡,𝑧 − ∑ 𝐺𝑀𝐶𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠
𝑇,𝐺𝐶,𝐺𝑆
𝑡,𝑔∈𝐺𝑈𝐶,𝑔𝑠    

   

(A.1A) 

 

The upper-level objective function can optionally be configured to include no-load and startup 

costs when the model is configured to include tight relaxed unit commitment (TRUC) (Kasina 

2017).           

𝑀𝐴𝑋 [∑ 𝑔𝑑𝑡,𝑔 + ∑ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔
𝑇,𝐺𝐶
𝑡,𝑔∈𝐺𝑁𝐶,𝑧==𝑍𝐿𝑔

𝑇,𝐺𝐶
𝑡,𝑔∈𝑔𝑢𝑐,𝑧==𝑍𝐿𝑔

+ ∑ (𝑠𝑑𝑡,𝑠 −𝑇,𝑆𝑆
𝑡,𝑠,𝑧==𝑍𝐿𝑆𝑠

𝑠𝑐𝑡,𝑠)] ∗ 𝜆𝑡,𝑧 − ∑ 𝐺𝑀𝐶𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠
𝑇,𝐺𝐶,𝐺𝑆
𝑡,𝑔∈𝐺𝑈𝐶,𝑔𝑠 − ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺𝐶
𝑡,𝑔∈𝐺𝑈𝐶 −

∑ 𝑁𝐿𝐶𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔
𝑇,𝐺𝐶
𝑡,𝑔∈𝐺𝑈𝐶    

   

(A.1B) 
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A.3.2 Upper-level Offer Constraints 

Generator offer constraints are either optional constraints implemented to reduce solution time or 

based on common market rules in North American wholesale electricity markets. Implemented 

offer constraints also prevent physical withholding of unit commitment generators, a common 

market rule. 

2 ∗ 𝐺𝑀𝐶𝑔,𝑔𝑠 ≥ 𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 ≥

𝐺𝑀𝐶𝑔,𝑔𝑠  

∀𝑔 ∈ 𝐺𝐶 ∩ 𝐺𝑈𝐶 Generators may offer only up to 

two times their marginal cost 

and must offer at least their 

marginal costs. Helps reduce 

solution time. 

(A.2) 

𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 ≥ 𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠−1  ∀𝑔 ∈ 𝐺𝐶 ∩ 𝐺𝑈𝐶 Each generator segment must 

offer at least the offer on the 

previous segment. Common 

wholesale market rule. 

(A.3) 

𝑈𝐸 ≥ 𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 ∀𝑔 ∈ 𝐺𝐶 ∩ 𝐺𝑈𝐶 Generators may offer only up to 

the market cap, assumed 

$2000/MWh in paper cases. 

Common wholesale market 

rule. 

(A.4) 

0 == 𝑔𝑜𝑡,𝑔 ∀𝑔

∈ 𝐺𝐶 ∩ 𝐺𝑁𝑈𝐶 

Variable renewable generators 

(non-unit commitment) are 

assumed to have zero marginal 

cost and offer. Helps reduce 

solution time and refects low 

marginal cost of VRE. 

(A.5) 

 

A.3.3 Lower-level Objective Function 

The lower-level objective function minimizes the as-bid cost of serving firm load 

∀𝜆 ∈ arg[MIN ∑ 𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 + ∑ 𝑔𝑜𝑡,𝑔 ∗ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔
𝑇,𝐺𝑁𝑈𝐶
𝑡,𝑔

𝑇,𝐺𝑈𝐶,𝐺𝑆
𝑡,𝑔,𝑔𝑠 +

∑ (𝑠𝑜𝑓𝑑𝑡,𝑠 ∗ 𝑠𝑑𝑡,𝑠 − 𝑠𝑜𝑓𝑐𝑡,𝑠 ∗ 𝑠𝑐𝑡,𝑠)𝑇,𝑆𝑆
𝑡,𝑠 ]  

   

(A.6A) 

 

As with the upper level objective, the lower level objective may be optionally 

configured to include TRUC terms. 

 

 

∀𝜆 ∈ arg[MIN ∑ 𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 + ∑ 𝑔𝑜𝑡,𝑔 ∗ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔
𝑇,𝐺𝑁𝑈𝐶
𝑡,𝑔

𝑇,𝐺𝑈𝐶,𝐺𝑆
𝑡,𝑔,𝑔𝑠 +

∑ (𝑠𝑜𝑓𝑑𝑡,𝑠 ∗ 𝑠𝑑𝑡,𝑠 − 𝑠𝑜𝑓𝑐𝑡,𝑠 ∗ 𝑠𝑐𝑡,𝑠)𝑇,𝑆𝑆
𝑡,𝑠 + ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺𝐶
𝑡,𝑔∈𝐺𝑈𝐶 + ∑ 𝑁𝐿𝐶𝑔 ∗𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔]  

   

(A.6B) 
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A.3.4 Lower-level Constraints 

𝐿𝑡,𝑧 == ∑ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠

𝑇,𝐺𝑈𝐶.𝐺𝑆

𝑡,𝑔,𝑔𝑠,𝑧==𝑍𝐿𝑔

+ ∑ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔

𝑇,𝐺𝑁𝑈𝐶

𝑡,𝑔,𝑧==𝑍𝐿𝑔

+ ∑ (𝑠𝑑𝑡,𝑠 − 𝑠𝑐𝑡,𝑠)

𝑇,𝑆

𝑡,𝑠,𝑧==𝑍𝐿𝑆𝑠

+ ∑(𝑡𝑥𝑚𝑤𝑡,𝑙,𝑇𝑋𝑇𝐿𝑙==𝑧 − 𝑡𝑥𝑚𝑤𝑡,𝑙,𝑇𝑋𝐹𝐿𝑙==𝑧)

𝑇,𝐿

𝑡,𝑙

∶  𝜆𝑡,𝑧 

Load-balance 

constraint 
(A.7) 

𝑣𝑎𝑡,𝑧==𝑅𝐵𝑈𝑆𝑡
= 0 

voltage angle at 

reference bus 
(A.8) 

𝐷𝑀𝐴𝑋𝑠 ∗ 𝐶𝑀𝐴𝑋𝑠 ≥ 𝐷𝑀𝐴𝑋𝑠 ∗ 𝑠𝑐𝑡,𝑠 + 𝐶𝑀𝐴𝑋𝑠 ∗ 𝑠𝑑𝑡,𝑠 ∶  𝛾𝑡,𝑠 
Tight storage 

dispatch 
(A.9) 

𝑠𝑐𝑡,𝑠 ≥ 0 ∶  𝛼𝑡,𝑠 ; 𝑠𝑑𝑡,𝑠 ≥ 0 ∶  𝛽𝑡,𝑠 
Non-negative storage 

charge and discharge 
(A.10) 

𝑆𝑀𝐴𝑋𝑠 ≥ ∑ (𝐶𝐸𝑠 ∗ 𝑠𝑐𝑡,𝑠 − 𝐷𝐸𝑠 ∗ 𝑠𝑑𝑡,𝑠) ≥ 0 ∶  𝜈𝑡,𝑠
𝑚𝑎𝑥, 𝜈𝑡,𝑠

𝑚𝑖𝑛

1,…,𝑡

𝑡

 

Sum of storage 

charge and discharge 

in previous 

timepoints stays 

below max SOC 

(A.11) 

𝑆𝑀𝐴𝑋𝑠 ≥ ∑ 𝑠𝑑𝑡,𝑠 ≥ 0

𝑇

𝑡

∶  𝜉𝑠 

Limits storage 

discharge during a 

day to a single cycle 

(A.12) 

∑(𝐶𝐸𝑠 ∗ 𝑠𝑐𝑡,𝑠 − 𝐷𝐸𝑠 ∗ 𝑠𝑑𝑡,𝑠) == 0
𝑇

𝑡

∶  χ𝑠 
Final storage SOC 

balance 
(A.13) 

𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔 ≥ 𝑔𝑑𝑡,𝑔 ≥ 𝑔𝑚𝑖𝑛𝑡,𝑔 ∶ 𝜙𝑡,𝑔
𝑚𝑎𝑥 , 𝜙𝑡,𝑔

𝑚𝑖𝑛  ∀𝑔

∈ 𝐺𝑈𝐶 

Generator dispatch 

limited by maximum 

available capacity 

(A.14) 

𝐶𝐴𝑃𝑡𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝐺𝑆𝐿𝑔,𝑔𝑠 ≥ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 ≥ 0 ∶  𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 , 𝜑𝑡,𝑔,𝑔𝑠

𝑚𝑖𝑛  ∀𝑔

∈ 𝐺𝑈𝐶 

Generator piecewise 

segment dispatch 

limited by maximum 

available capacity 

(A.15) 

𝑔𝑑𝑡,𝑔 == ∑ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠

𝐺𝑆

𝑔𝑠

 ∀𝑔 ∈ 𝐺𝑈𝐶 

Sum of generator 

segment dispatch 

equivalent to total 

generator dispatch 

(A.16) 

𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ≥ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔 ≥ 0 ∶  𝜔𝑡,𝑔
𝑚𝑎𝑥, 𝜔𝑡,𝑔

𝑚𝑖𝑛  ∀𝑔 ∈ 𝐺𝑁𝑈𝐶 

Generator dispatch 

limited by maximum 

available capacity 

(A.17) 
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𝑇𝑇𝐶𝐴𝑃𝑙 ≥ 𝑡𝑥𝑚𝑤ℎ𝑡,𝑙 ≥ 𝑇𝐹𝐶𝐴𝑃𝑙 ∶  𝜇𝑡,𝑙
𝑚𝑎𝑥 , 𝜇𝑡,𝑙

𝑚𝑖𝑛 

Transmission flows 

bounded by maxima 

in positive and 

negative direction 

(A.18) 

𝑉𝑀𝐴𝑋𝑧 ≥ 𝑣𝑎𝑡,𝑧 ≥ 𝑉𝑀𝐼𝑁𝑧 ∶  𝜓𝑡,𝑧
𝑚𝑎𝑥, 𝜓𝑡,𝑧

𝑚𝑖𝑛 Voltage angle limits (A.19) 

𝑡𝑥𝑚𝑤ℎ𝑡,𝑙 == 𝑆𝑙 ∗ (𝑣𝑎𝑡,𝑧==𝑇𝑋𝑇𝐿==𝑧 − 𝑣𝑎𝑡,𝑧==𝑇𝑋𝐹𝐿𝑙
) DCOPF constraint (A.20) 

 
A set of additional optional constraints implement TRUC, associated minimum generation levels 

for online generators, and ramping limits. 

𝑔𝑚𝑖𝑛𝑡,𝑔 == 𝑃𝑀𝐼𝑁𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔 ∀𝑔 ∈ 𝐺𝑈𝐶 Minimum 

generation scales 

with online 

capacity in TRUC 

(A.21) 

𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔 − 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡−1,𝑔 == 𝑔𝑢𝑝𝑡,𝑔 − 𝑔𝑑𝑛𝑡,𝑔 ∶  𝜋𝑡,𝑔 ∀𝑔 ∈ 𝐺𝑈𝐶   Unit commitment 

status changes 

only with startups 

and shutdowns 

(A.22) 

𝑔𝑑𝑡−1,𝑔 − 𝑔𝑚𝑖𝑛𝑡−1,𝑔 +  𝑅𝑅𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔  ≥ 𝑔𝑑𝑡,𝑔 − 𝑔𝑚𝑖𝑛𝑡,𝑔: 𝜎𝑡,𝑔
𝑢𝑝 ∀𝑔

∈ 𝐺𝑈𝐶  

In TRUC upward 

operating status 

changes are 

bound by ramp 

rate 

(A.23) 

𝑔𝑑𝑡,𝑔 − 𝑔𝑚𝑖𝑛𝑡,𝑔 +  𝑅𝑅𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔  

≥ 𝑔𝑑𝑡−1,𝑔 − 𝑔𝑚𝑖𝑛𝑡−1,𝑔 : 𝜎𝑡,𝑔
𝑑𝑜𝑤𝑛 ∀𝑔 ∈ 𝐺𝑈𝐶  

In TRUC 

downward 

operating status 

changes are 

bound by ramp 

rate 

(A.24) 

A.3.5 Optional constraints for implementing offer mitigation and binding day-ahead offers 

The model may be configured to optionally include additional constraints for two 

settlement functionality or offer mitigation, and may also be configured to run as a cost-

minimizing linear program. 

Our approach to implementing offer mitigation requires developing an ex-ante price 

forecast to parametrize and mitigate against maximum offers, similar to an approach suggested 

by SPP’s market monitor (SPP 2018). To achieve this we run a preliminary cost-minimizing 
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dispatch of all resources as a linear program and extract the resulting bus LMPs. Offers are then 

mitigated against this price stream in each timepoint. 

As one way of investigating the effect of uncertainty in loads and other offers when 

submitting strategic offers, we also allow the model to be configured to first optimize a DA run, 

then run a RT case where storage offers or quantities can be fixed to some of their DA values.   

𝐷𝑀𝐴𝑋𝑂𝑡,𝑠 ≥ 𝑠𝑜𝑓𝑑𝑡,𝑠 
Storage discharge offer mitigated to ex-ante 

maximum (set equivalent to LMP in Section 4.4) 
(A.25) 

𝐶𝑀𝐴𝑋𝑂𝑡,𝑠 ≥ 𝑠𝑜𝑓𝑐𝑡,𝑠 Storage charge offer mitigated to ex-ante maximum (A.26) 

𝑠𝑑𝑡,𝑠 == 𝐷𝐷𝐴𝑡,𝑠, (∀𝑡|𝐷𝐷𝐴𝑡,𝑠

> 0, 𝐶𝐴𝑃𝐴𝑡,𝑔
𝑅𝑇

≥ 𝐷𝑀𝐴𝑋𝑠, ∆𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠

𝐷𝐴 > 0) 

Real-time storage discharge is equivalent to DA 

discharge in time periods with pivotal DA dispatch 

and sufficient RT strategic wind generation 
(A.27) 

𝑠𝑐𝑡,𝑠 == 𝐶𝐷𝐴𝑡,𝑠, (∀𝑡|𝐶𝐷𝐴𝑡,𝑠

> 0, 𝐶𝐴𝑃𝐴𝑡,𝑔
𝑅𝑇

≥ 𝐶𝑀𝐴𝑋𝑠, ∆𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠

𝐷𝐴 > 0) 

Real-time storage charge is equivalent to DA charge 

in time periods with pivotal DA dispatch and 

sufficient RT strategic wind generation 
(A.28) 

 

A.3.6 Derivation of KKT conditions and MPEC reformulation 

Since the lower level problem is a linear program, it can be reformulated using its Karush-

Kuhn-Tucker (KKT) conditions as an equivalent Mathematical Program with Equilibrium 

Constraints (MPEC). The four KKT conditions are stationarity, complementary slackness, primal 

feasibility, and dual feasibility. The lower-level LP is primal and dual feasible, so the two tasks 

for MPEC reformulation are to write and the stationarity and complementary conditions of the 

lower-level problem and add them as constraints. Pyomo allows for representation of 

complementarity constraints in the formulation of optimization problems. The lower level 

objective and pre-existing constraints are unchanged. 

A.3.7 Stationarity Conditions 

Stationarity conditions are derived by taking partial derivatives of the problem’s Lagrangian 

function with respect to the decision variables, then constraining the resulting equations to be 

zero to ensure stationarity. These equations are written below. 

𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 − 𝜆𝑡,𝑧==𝑍𝐿𝑔
+ 𝜙𝑡,𝑔

𝑚𝑎𝑥 − 𝜙𝑡,𝑔
𝑚𝑖𝑛 + 𝜑𝑡,𝑔,𝑔𝑠

𝑚𝑎𝑥 − 𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑖𝑛 = 0 ∀𝑔 ∈ 𝐺𝑈𝐶 (A.29) 

𝑆𝐶𝑔 − 𝜋𝑡,𝑔 = 0 ∀𝑔 ∈ 𝐺𝑈𝐶 (A.30) 

𝑁𝐿𝐶𝑔 − 𝑆𝐴𝑡.𝑔 ∗ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝜙𝑡,𝑔
𝑚𝑎𝑥 + 𝑃𝑀𝐼𝑁𝑔 ∗ 𝑆𝐴𝑡.𝑔 ∗ 𝐶𝐴𝑃𝑡,𝑔

∗ 𝜙𝑡,𝑔
𝑚𝑖𝑛 + 𝜋𝑡,𝑔 = 0 4 

∀𝑔 ∈ 𝐺𝑈𝐶 (A.31) 

                                                           
4 This equation is extended to include ramp rate-related terms when TRUC is implemented 
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𝑠𝑜𝑓𝑑𝑡,𝑠 + 𝐶𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 − 𝛽𝑡,𝑠 − 𝐷𝐸𝑠 ∗ 𝜂𝑡,𝑠 + 𝜉𝑠 − 𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠

= 0 

∀𝑠 ∈ 𝑆𝑆 (A.32) 

−𝑠𝑜𝑓𝑐𝑡,𝑠 + 𝐷𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 − 𝛼𝑡,𝑠 + 𝐶𝐸𝑠 ∗ 𝜂𝑡,𝑠 + 𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠
= 0 ∀𝑠 ∈ 𝑆𝑆 (A.33) 

𝐶𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 − 𝛽𝑡,𝑠 + 𝐷𝐸𝑠 ∗ (χ𝑠 − ∑ 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛)

𝑡,…𝑁𝑇

𝑡

+ 𝜉𝑠

− 𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠
= 0 

∀𝑠 ∈ 𝑁𝑆𝑆 (A.34) 

𝐷𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 − 𝛼𝑡,𝑠 − 𝐶𝐸𝑠 ∗ (χ𝑠 − ∑ 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛)

𝑡,…𝑁𝑇

𝑡

+ 𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠
= 0 

∀𝑠 ∈ 𝑁𝑆𝑆 (A.35) 

𝜂𝑡,𝑠 − 𝜂𝑡+1,𝑠 + 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛  = 0 ∀𝑡 ≤ 𝑁𝑡 (A.36) 

𝜂𝑁𝑡,𝑠 + 𝜈𝑁𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑁𝑡,𝑠

𝑚𝑖𝑛 = 0  (A.37) 

𝜇𝑡,𝑙
𝑚𝑎𝑥 − 𝜇𝑡,𝑙

𝑚𝑖𝑛 + 𝜓𝑡,𝑧
𝑚𝑎𝑥 − 𝜓𝑡,𝑧

𝑚𝑖𝑛 = 0   (A.38) 

−𝜆𝑡,𝑧==𝑍𝐿𝑔
+ 𝜔𝑡,𝑔

𝑚𝑎𝑥 − 𝜔𝑡,𝑔
𝑚𝑖𝑛 = 0   (A.39) 

 

A.3.8 Complementarity Constraints 

Complementary slackness conditions take the form 𝑢𝑖 ∗ ℎ𝑖(𝑥) = 0, ∀𝑖. Such an equation is 

nonlinear as both terms contain decision variables. However, it may be rewritten as a 

complementarity constraint 0 ≤ 𝑢𝑖  ⟂ ℎ𝑖(𝑥) ≥ 0, which says either 𝑢𝑖 = 0, or ℎ𝑖(𝑥) = 0, or 

both. These coupled constraints are then each themselves linear. The complementarity 

constraints used in the model are shown below. 

0 ≤ 𝛾𝑡,𝑠 ⟂ 𝐷𝑀𝐴𝑋𝑠 ∗ 𝐶𝑀𝐴𝑋𝑠 − 𝐷𝑀𝐴𝑋𝑠 ∗ 𝑠𝑐𝑡,𝑧 − 𝐶𝑀𝐴𝑋𝑠 ∗ 𝑠𝑑𝑡,𝑧 ≥ 0 (A.40) 

0 ≤ 𝛼𝑡,𝑠 ⟂ 𝑠𝑐𝑡,𝑧 ≥ 0 (A.41) 

0 ≤ 𝛽𝑡,𝑠 ⟂ 𝑠𝑑𝑡,𝑧 ≥ 0 (A.42) 

0 ≤ 𝜈𝑡,𝑠
𝑚𝑎𝑥 ⟂ 𝑆𝑀𝐴𝑋𝑠 − ∑ (𝐶𝐸𝑠 ∗ 𝑠𝑐𝑡,𝑠 − 𝐷𝐸𝑠 ∗ 𝑠𝑑𝑡,𝑠)

1,….,𝑡

𝑡

≥ 0 

(A.43) 

0 ≤ 𝜈𝑡,𝑠
𝑚𝑖𝑛 ⟂ ∑ (𝐶𝐸𝑠 ∗ 𝑠𝑐𝑡,𝑠 − 𝐷𝐸𝑠 ∗ 𝑠𝑑𝑡,𝑠)

1,….,𝑡

𝑡

≥ 0 
(A.44) 

0 ≤ 𝜉𝑠 ⟂ 𝑆𝑀𝐴𝑋𝑠 − ∑ 𝑠𝑑𝑡,𝑠 ≥ 0

𝑇

𝑡

 
(A.45) 

0 ≤ 𝜇𝑡,𝑙
𝑚𝑎𝑥 ⟂ 𝑇𝑇𝐶𝐴𝑃𝑙 − 𝑡𝑥𝑚𝑤𝑡,𝑙 ≥ 0 (A.46) 

0 ≤ 𝜇𝑡,𝑙
𝑚𝑖𝑛 ⟂ 𝑡𝑥𝑚𝑤𝑡,𝑙 − 𝑇𝐹𝐶𝐴𝑃𝑙 ≥ 0 (A.47) 

0 ≤ 𝜓𝑡,𝑧
𝑚𝑎𝑥  ⟂ 𝑉𝑀𝐴𝑋𝑧 − 𝑣𝑎𝑡,𝑧 ≥ 0 (A.48) 

0 ≤ 𝜓𝑡,𝑧
𝑚𝑖𝑛 ⟂ 𝑣𝑎𝑡,𝑧 − 𝑉𝑀𝐼𝑁𝑧 ≥ 0 (A.49) 

0 ≤ 𝜙𝑡,𝑔
𝑚𝑎𝑥  ⟂ 𝑆𝐴𝑡.𝑔 ∗ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔 − 𝑔𝑑𝑡,𝑔 ≥ 0 (A.50) 

0 ≤ 𝜙𝑡,𝑔
𝑚𝑖𝑛 ⟂ 𝑔𝑑𝑡,𝑔 − 𝑔𝑚𝑖𝑛𝑡,𝑔 ≥ 0 (A.51) 
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0 ≤ 𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥  ⟂ 𝑆𝐴𝑡.𝑔 ∗ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝐺𝑆𝐿𝑔,𝑔𝑠 − 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 ≥ 0 (A.52) 

0 ≤ 𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑖𝑛  ⟂ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 ≥ 0 (A.53) 

0 ≤ 𝜎𝑡,𝑔
𝑢𝑝

 ⟂ 𝑔𝑑
𝑡−1,𝑔

− 𝑔𝑚𝑖𝑛
𝑡−1,𝑔

+  𝑅𝑅𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡
𝑡,𝑔

− (𝑔𝑑
𝑡,𝑔

− 𝑔𝑚𝑖𝑛
𝑡,𝑔

) ≥ 0 (A.54) 

0 ≤ 𝜎𝑡,𝑔
𝑑𝑜𝑤𝑛 ⟂ 𝑔𝑑

𝑡,𝑔
− 𝑔𝑚𝑖𝑛

𝑡,𝑔
∗ 𝐻 +  𝑅𝑅𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡

𝑡,𝑔
− (𝑔𝑑

𝑡−1,𝑔
− 𝑔𝑚𝑖𝑛

𝑡−1,𝑔
) ≥ 0 (A.55) 

0 ≤ 𝜔𝑡,𝑔
𝑚𝑎𝑥 ⟂ 𝑆𝐴𝑡.𝑔 ∗ 𝐶𝐴𝑃𝑡,𝑔 − 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔 ≥ 0 (A.56) 

0 ≤ 𝜔𝑡,𝑔
𝑚𝑖𝑛 ⟂ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔 ≥ 0 (A.57) 

 

A.3.9 MILP reformulation using Big-M and Strong Duality 

The objective function of the MPEC is still (A.1B) and remains non-linear because terms such as 

𝜆𝑡,𝑧 ∗ 𝑔𝑑𝑡,𝑔 contain multiple decision variables (in the example, the LMP and generator dispatch 

are both decision variables). The following steps linearize the objective with an equivalent 

formulation by making use of the lower-level objective and complementarity conditions. 

First, strong duality theory holds the objective of the primal problem is equivalent to the 

objective of the corresponding dual problem. The equivalence between the primal and dual 

objectives for the lower level problem (recall the primal objective is eq. (A.6B)) at the optimum 

is 

∑ 𝑔𝑠𝑜𝑡,𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 + ∑ 𝑔𝑜𝑡,𝑔 ∗ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔

𝑇,𝐺𝑁𝑈𝐶

𝑡,𝑔

𝑇,𝐺𝑈𝐶,𝐺𝑆

𝑡,𝑔,𝑔𝑠

+ ∑(𝑠𝑜𝑓𝑑𝑡,𝑠 ∗ 𝑠𝑑𝑡,𝑠 − 𝑠𝑜𝑓𝑐𝑡,𝑠 ∗ 𝑠𝑐𝑡,𝑠)

𝑇,𝑆𝑆

𝑡,𝑠

+ ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

+ ∑ 𝑁𝐿𝐶𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

=  ∑ 𝐷𝑀𝐴𝑋𝑠 ∗ 𝐶𝑀𝐴𝑋𝑠 ∗ (−𝛾𝑡,𝑠)

𝑇,𝑆

𝑡,𝑠

+ ∑ 𝑆𝑀𝐴𝑋𝑠 ∗ (−𝜈𝑡,𝑠)

𝑇,𝑆

𝑡,𝑠

+ ∑ 𝑆𝑀𝐴𝑋𝑠 ∗ (−𝜉𝑡,𝑠)
𝑆

𝑠

+ ∑ 𝑇𝑇𝐶𝐴𝑃𝑡,𝑙 ∗ (−𝜇𝑡,𝑙
𝑚𝑎𝑥)

𝑇,𝐿

𝑡,𝑙

+ ∑ 𝑇𝐹𝐶𝐴𝑃𝑡,𝑙 ∗ 𝜇𝑡,𝑙
𝑚𝑖𝑛

𝑇,𝐿

𝑡,𝑙

+ ∑ 𝑉𝑀𝐴𝑋𝑧 ∗ (−𝜓𝑡,𝑧
𝑚𝑎𝑥)

𝑇,𝑍

𝑡,𝑧

+ ∑ 𝑉𝑀𝐼𝑁𝑧 ∗ 𝜓𝑡,𝑧
𝑚𝑖𝑛

𝑇,𝑍

𝑡,𝑧

+ ∑ 𝐿𝑡,𝑧 ∗ 𝜆𝑡,𝑧

𝑇,𝑍

𝑡,𝑧

+ ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝐺𝑆𝐿𝑔,𝑔𝑠 ∗ (−𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 )

𝑇,𝐺,𝐺𝑆

𝑡,𝑔,𝑔𝑠

+ ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ (−𝜔𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 )

𝑇,𝐺

𝑡,𝑔

 

 

(A.58) 
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Using eq. (A.29), (A.32), and (A.33) to substitute for generator and storage offer-related decision 

variables and reformulate the primal objective in (A.58), as well as (A.5) to set 𝑔𝑜𝑡,𝑔 = 0 ∀𝑔 ∈

𝐺𝐶 ∩ 𝐺𝑁𝑈𝐶, the dual and primal objectives are equivalent to  

∑ (𝜆𝑡,𝑧==𝑍𝐿𝑔 − 𝜙
𝑡,𝑔

𝑚𝑎𝑥
+ 𝜙𝑡,𝑔

𝑚𝑖𝑛  − 𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 + 𝜑𝑡,𝑔,𝑔𝑠

𝑚𝑖𝑛 − 𝜎𝑡,𝑔
𝑢𝑝 + 𝜎𝑡,𝑔

𝑑𝑜𝑤𝑛) ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠

𝑇,𝐺𝑈𝐶,𝐺𝑆

𝑡,𝑔,𝑔𝑠

+ ∑ (𝜆𝑡,𝑧==𝑍𝐿𝑔
− 𝜔𝑡,𝑔

𝑚𝑎𝑥 + 𝜔𝑡,𝑔
𝑚𝑖𝑛) ∗ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔

𝑇,𝐺𝑁𝑈𝐶

𝑡,𝑔

+ ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

+ ∑ 𝑁𝐿𝐶𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

+ ∑ (𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠 − 𝐶𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 + 𝛽𝑡,𝑠 − 𝐷𝐸𝑠 ∗ (χ𝑠 − ∑ 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛)

𝑡,…𝑁𝑇

𝑡

𝑇,𝑆

𝑡,𝑠∈𝑆𝑆

− 𝜉𝑠) ∗ 𝑠𝑑𝑡,𝑠

+ ∑ (−𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠 − 𝐷𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 + 𝛼𝑡,𝑠 + 𝐶𝐸𝑠 ∗ (χ𝑠

𝑇,𝑆

𝑡,𝑠∈𝑆𝑆

− ∑ 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛)

𝑡,…𝑁𝑇

𝑡

) ∗ 𝑠𝑐𝑡,𝑠 

 

(A.59) 

This allows us to set the dual objective from (A.58) equal to (A.59). Then, rearrange by moving 

all linear terms to the left hand (dual objective) side of the equation. 
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∑ 𝐷𝑀𝐴𝑋𝑠 ∗ 𝐶𝑀𝐴𝑋𝑠 ∗ (−𝛾𝑡,𝑠)

𝑇,𝑆

𝑡,𝑠

+ ∑ 𝑆𝑀𝐴𝑋𝑠 ∗ (−𝜈𝑡,𝑠)

𝑇,𝑆

𝑡,𝑠

+ ∑ 𝑆𝑀𝐴𝑋𝑠 ∗ (−𝜉𝑡,𝑠)
𝑆

𝑠

+ ∑ 𝑇𝑇𝐶𝐴𝑃𝑡,𝑙 ∗ (−𝜇𝑡,𝑙
𝑚𝑎𝑥)

𝑇,𝐿

𝑡,𝑙

+ ∑ 𝑇𝐹𝐶𝐴𝑃𝑡,𝑙 ∗ 𝜇𝑡,𝑙
𝑚𝑖𝑛

𝑇,𝐿

𝑡,𝑙

+ ∑ 𝑉𝑀𝐴𝑋𝑧 ∗ (−𝜓𝑡,𝑧
𝑚𝑎𝑥)

𝑇,𝑍

𝑡,𝑧

+ ∑ 𝑉𝑀𝐼𝑁𝑧 ∗ 𝜓𝑡,𝑧
𝑚𝑖𝑛

𝑇,𝑍

𝑡,𝑧

+ ∑ 𝐿𝑡,𝑧 ∗ 𝜆𝑡,𝑧

𝑇,𝑍

𝑡,𝑧

+ ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝐺𝑆𝐿𝑔,𝑔𝑠 ∗ (−𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 )

𝑇,𝐺,𝐺𝑆

𝑡,𝑔,𝑔𝑠

+ ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ (−𝜔𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 )

𝑇,𝐺

𝑡,𝑔

− ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

− ∑ 𝑁𝐿𝐶𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

= ∑ (𝜆𝑡,𝑧==𝑍𝐿𝑔 − 𝜙
𝑡,𝑔

𝑚𝑎𝑥
+ 𝜙𝑡,𝑔

𝑚𝑖𝑛  − 𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 + 𝜑𝑡,𝑔,𝑔𝑠

𝑚𝑖𝑛 − 𝜎𝑡,𝑔
𝑢𝑝 + 𝜎𝑡,𝑔

𝑑𝑜𝑤𝑛)

𝑇,𝐺𝑈𝐶,𝐺𝑆

𝑡,𝑔,𝑔𝑠

∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠 + ∑ (𝜆𝑡,𝑧==𝑍𝐿𝑔 − 𝜔𝑡,𝑔
𝑚𝑎𝑥 + 𝜔𝑡,𝑔

𝑚𝑖𝑛) ∗ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔

𝑇,𝐺𝑁𝑈𝐶

𝑡,𝑔

+ ∑ (𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠 − 𝐶𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 + 𝛽𝑡,𝑠 + 𝐷𝐸𝑠 ∗ (χ𝑠

𝑇,𝑆

𝑡,𝑠∈𝑆𝑆

− ∑ 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛)

𝑡,…𝑁𝑇

𝑡

− 𝜉𝑠) ∗ 𝑠𝑑𝑡,𝑠

+ ∑ (−𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠 − 𝐷𝑀𝐴𝑋𝑠 ∗ 𝛾𝑡,𝑠 + 𝛼𝑡,𝑠 + 𝐶𝐸𝑠 ∗ (χ𝑠

𝑇,𝑆

𝑡,𝑠∈𝑆𝑆

− ∑ 𝜈𝑡,𝑠
𝑚𝑎𝑥 − 𝜈𝑡,𝑠

𝑚𝑖𝑛)

𝑡,…𝑁𝑇

𝑡

) ∗ 𝑠𝑐𝑡,𝑠 

(A.60) 

The relationship between the right hand side of (A.60) and the upper level objective (A.1B) can 

then be more straightfowardly seen after grouping the right hand side LMP-related terms, though 

showing this step is omitted. The remaining task is to substitute for the nonlinear, non-LMP 

related terms on the right hand side (e.g., 𝜙𝑡,𝑔
𝑚𝑖𝑛 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠) using complementarity relationships 

for the decision variables in (A.40)-(A.57), removing terms equal to zero, and cancelling 

resulting non-zero terms with left hand side terms where equivalent. The indexing of the right 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-21-02 www.cmu.edu/electricity 

 

38 
 

hand side across only strategic generators means, generally, strategic terms cancel and non-

strategic generator and storage terms remain in the resulting objective. Finally, the generator 

marginal cost-related term is subtracted from both sides of the equation so the right hand side 

reproduces eq. (A.1B). 

∑ 𝐿𝑡,𝑧 ∗ 𝜆𝑡,𝑧 − ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝐺𝑆𝐿𝑔,𝑔𝑠 ∗ 𝜑𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥

𝑇,𝐺𝑁𝐶,𝐺𝑆

𝑡,𝑔∈𝐺𝑈𝐶,𝑔𝑠

𝑇,𝑍

𝑡,𝑧

− ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ 𝜙𝑡,𝑔
𝑚𝑎𝑥

𝑇,𝐺𝑁𝐶

𝑡,𝑔∈𝐺𝑈𝐶

− ∑ 𝐶𝐴𝑃𝑡,𝑔 ∗ 𝑆𝐴𝑡,𝑔 ∗ (𝜔𝑡,𝑔,𝑔𝑠
𝑚𝑎𝑥 )

𝑇,𝐺𝑁𝐶

𝑡,𝑔∈𝐺𝑁𝑈𝐶

− ∑ 𝐺𝑀𝐶𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠

𝑇,𝐺,𝐺𝑆

𝑡,𝑔∈𝐺𝑈𝐶,𝑔𝑠

− ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺

𝑡,𝑔∈𝐺𝑈𝐶

− ∑ 𝑁𝐿𝐶𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔

𝑇,𝐺

𝑡,𝑔∈𝐺𝑈𝐶

+ ∑ (−𝛾𝑡,𝑠 ∗ 𝐷𝑀𝐴𝑋𝑠 ∗ 𝐶𝑀𝐴𝑋𝑠−𝜈𝑡,𝑠
𝑚𝑎𝑥 ∗ 𝑆𝑀𝐴𝑋𝑠)

𝑇,𝑆

𝑡,𝑠∈𝑁𝑆𝑆

− ∑ (𝜉𝑡 ∗ 𝑆𝑀𝐴𝑋𝑠)

𝑆

𝑠∈𝑁𝑆𝑆

= [ ∑ 𝑔𝑑𝑡,𝑔 + ∑ 𝑛𝑢𝑐𝑔𝑑𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑁𝐶,𝑧==𝑍𝐿𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝑔𝑢𝑐,𝑧==𝑍𝐿𝑔

+ ∑ (𝑠𝑑𝑡,𝑠 − 𝑠𝑐𝑡,𝑠)

𝑇,𝑆𝑆

𝑡,𝑠,𝑧==𝑍𝐿𝑆𝑠

]

∗ 𝜆𝑡,𝑧 − ∑ 𝐺𝑀𝐶𝑔,𝑔𝑠 ∗ 𝑔𝑠𝑑𝑡,𝑔,𝑔𝑠

𝑇,𝐺𝐶,𝐺𝑆

𝑡,𝑔∈𝐺𝑈𝐶,𝑔𝑠

− ∑ 𝑆𝐶𝑔 ∗ 𝑔𝑢𝑝𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

− ∑ 𝑁𝐿𝐶𝑔 ∗ 𝑔𝑜𝑝𝑠𝑡𝑎𝑡𝑡,𝑔

𝑇,𝐺𝐶

𝑡,𝑔∈𝐺𝑈𝐶

 

 

(A.61) 

The result is a linear left hand side of the equation equivalent to the original nonlinear objective. 

The left hand side of eq. (A.61) may now be used as a linear objective for solving the MILP. 

Last, the complementarity constraints must be linearized. This can be done using the so-called 

“Big-M“ method first described by Fortuny-Amat and McCarl (Fortuny-Amat and McCarl 

1981). This approach rewrites a complementarity constraint of the form 0 ≤ 𝑢𝑖  ⟂ ℎ𝑖(𝑥) ≥ 0 as a 

set of two constraints, 0 ≤ 𝑢𝑖 ≤ 𝑀(1 − 𝜈𝑖) and 0 ≤ ℎ𝑖(𝑥) ≤ 𝑀 ∗ 𝜈𝑖, where M is a large enough 
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constant to balance not limiting the feasible space of the problem5 and 𝜈𝑖 is an auxiliary binary 

variable. Note the use of the binary variable linking the constraints means at least one of the two 

constraints must be equivalent to zero, thus satisfying the original complementary slackness 

condition. The rewritten transformations of each complementarity constraint are not included but 

can be provided on request. These transformations are automatically undertaken in the model 

code by use of the big-M implementation in Pyomo’s generalized disjunctive programming 

library. 

The creation of a set of auxiliary binary variables for each constraint reformulation, along with 

the linearization of the objective, means the problem is now a MILP and can be readily solved by 

commercial solvers like CPLEX. 

B Additional Data Description 

B.1 Two-settlement functionality 
We simplify two common aspects of two-settlement markets due to computational and 

data limitations and to better compare DA and RT results in cases incorporating uncertainty. 

First, DA and RT dispatch are commonly optimized using different algorithms; in particular, DA 

includes binary variables for unit commitment while RT is a linear program with fixed unit 

commitment. In the bi-level model the market operator’s problem must be convex, so both 

settlements are cleared with the same lower level problem formulation and exclude or linearize 

(Appendix A) unit commitment. Second, we maintain the same temporal co-optimization across 

the entire day in both DA and RT, while market operators more commonly limit co-optimized 

look ahead to a single five-minute RT interval. Maintaining the same temporal co-optimization 

allows us to better compare the optimality of fixed DA ESR dispatch quantities when settled 

without recourse against RT deviations in load and generation. Because of the additional 

computational burden of co-optimizing 288 five-minute intervals instead of 24 hourly ones we 

reformat five-minute RT VRE generation and load data to hourly average equivalents and clear 

the RT market at hourly resolution. The primary purpose of these simplifications is to make DA 

                                                           
5 If M is too large this can unnecessarily extend the feasible space and increase solution time, so choosing a 
value for M is something of an art; most values are 5000 in our implementation, reflecting upward limits on 
generator offers well in excess of the assumed $2000/MWh bid cap. 
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and RT settlements more comparable for incorporating uncertainty in load, wind, and solar 

generation in sensitivity analysis. 
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B.2 RTS-GMLC Generator Offer Data 
Table B-1: Generator location, capacity, and offer data used in all cases 

BusID Group 
Capacity 

(MW) 
Type Units 

Bid 

Segments 

Bid Capacities 

(MW) 

Marginal Costs 

($/MWh) 

301 U20 20 Oil CT 2 4 8, 4, 4, 4 
$87.26, $87.26, $99.7, 

$105.37 

301 U55 55 Gas CT 2 4 
22, 11, 11, 11 

 

$28.47, $28.47, 

$29.29, $43.74 

302 U20 20 Oil CT 2 4 8, 4, 4, 4 
$87.26, $87.26, $99.7, 

$105.37 

302 U55 55 Gas CT 2 4 22, 11, 11, 11 
$33.79, $33.79, 

$38.38, $38.64 

307 U55 55 Gas CT 2 4 22, 11, 11, 11 
$27.89, $27.89, 

$29.22, $35.47 

313 U355 355 Gas CC 1 4 
170, 61.67, 61.67, 

61.67 

$15.73, $15.73, 

$26.76, $33.75 

315 U12 12 Oil ST 5 4 5, 2.33, 2.33, 2.33 
$75.44, $75.44, 

$100.4, $124.1 

315 U55 55 Gas CT 3 4 22, 11, 11, 11 
$26.4, $26.4, $26.9, 

$31.86 

316 U155 155 Coal 1 4 62, 31, 31, 31 
$21.12, $21.12, 

$21.29, $27.27 

318 U355 355 Gas CC 1 4 
170, 61.67, 61.67, 

61.67 

$26.85, $26.85, 

$27.28, $31.53 

321 U355 355 Gas CC 1 4 
170, 61.67, 61.67, 

61.67 

$22.73, $22.73, 

$25.91, $33.95 

322 U55 55 Gas CT 2 4 22, 11, 11, 11 
$23.33, $23.33, $26.5, 

$27.89 

323 U355 355 Gas CC 2 4 
170, 61.67, 61.67, 

61.67 

$26.43, $26.43, 

$30.28, $31.73 

303 WIND 847 
Solar 

RTPV 
1 1 As available $0 

308 RTPV 100.9 
Solar 

RTPV 
1 1 As available $0 

309 WIND 148.3 Wind 1 1 As available $0 

310 PV 103.3 Solar PV 1 1 As available $0 

312 PV 189.2 Solar PV 1 1 As available $0 

313 PV 93.3 Solar PV 1 1 As available $0 

313 RTPV 806 
Solar 

RTPV 
1 1 As available $0 

314 PV 144.3 Solar PV 1 1 As available $0 

317 WIND 799.1 Wind 1 1 As available $0 

319 PV 188.2 Solar PV 1 1 As available $0 

320 PV 51.6 Solar PV 1 1 As available $0 

320 RTPV 120.2 
Solar 

RTPV 
1 1 As available $0 

322 U50 50 Hydro 1 1 As available $0 

324 PV 152.3 Solar PV 1 1 As available $0 
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While the supply curve will change based on generation availability even when all 

generators offer at marginal cost, and congestion may result in different online generators and 

marginal cost than suggested by intersecting a single supply and demand curve, Fig. B-1 

constructs an average supply curve for the modeled month and compares to average and peak 

demand.  

 

B.3 LMPs for all 25 buses in case without storage 
 

 
Fig. B-1: January supply curve. Variable renewable energy resources displayed at average 

hourly generation for the month. Supply curve ignores congestion and curtailment. 
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B.4 Load and Renewable Generation Day-Ahead Forecast Error Empirical 

Distributions 
The model uses DA RTS-GMLC data to settle the forward market and RT RTS-GMLC 

data to settle the operational balancing market. Changes in dispatch and pricing result from 

deviations in RT data from DA expectations, termed forecast error, for load, solar PV, solar 

rooftop PV (RTPV), and wind resources. As a result, load net of PV and wind, defined as net 

load, shows the summed deviation of all forecast errors and is also included in the empirical 

distribution of forecast errors for the modeled month shown in Fig. B-3. 

Fig. B-2: LMP at all 25 buses. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

0 

 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-21-02 www.cmu.edu/electricity 

 

44 
 

 

B.5 Additional information on Results Section 4.1 Demonstrating the Three 

Strategies 
In case A (ESR only, 

Fig. 4) the strategic entity owns only the 300MW/900MWh ESR. It implements two strategies to 

increase its profit: increasing the applicable LMP at its bus when discharging, and decreasing the 

 

Fig. B-3: Distribution of differences between hourly DA forecast and RT actuals of 

renewable generation by type (solar PV, solar rooftop PV, Wind) and load in MW for the 

Zone 3 RTS-GMLC test system. Net load is load net of VRE (i.e., wind and solar PV, 

including rooftop PV).  
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LMP at its bus when charging. Full results are shown in Table B-2 to break out additional profits 

earned by the strategic entity and its effect on payments for serving firm load compared to the 

competitive case. 

 

Table B-2: Case A (ESR Only) results for month of January. Changes are shown in red to 

indicate increased costs to consumers and in green to indicate increased profit for the strategic 

entity 

A: Category B: 
Competitive  

C: Strategic  D: Change 

1: Load Payments6 ($M) $5.223 $5.259 +0.7% 

2: Storage Charging Cost ($M) -$.048 -$.039 -18.8% 
3: Storage Discharging Revenue 

($M) 
$.355 $.399 +12.4% 

4: Storage Profit ($M) 𝜋𝑝,𝑁𝑆𝑆 = $.306 
𝜋𝑝,𝑆𝑆 =
 $.360 

∆𝜋𝑝 =
$. 056, +17.6% 

5: Storage Profit ($/MWh 
discharged) 

𝜋𝑝,𝑁𝑆𝑆

∑ 𝑠𝑑𝑆 =$9.9 
𝜋𝑝,𝑆𝑆

∑ 𝑠𝑑𝑆=$11.6 
∆𝜋𝑝

𝑀𝑊ℎ
=$1.7, +17.6% 

 

The strategies employed in case A (ESR Only) achieve additional profit when the ESR is 

pivotal: the inclusion of its charging load or discharging generation changes which generator(s) 

is/are7 marginal and set price at bus 03. By adjusting its ESR bid the strategic entity can increase 

or decrease the cost of marginal supply at the cleared quantity of generation. 

Case B extends case A by including the large (847 MW) wind generator at bus 03 in the 

strategic entity’s portfolio (“ESR+Wind”). The strategic objective is to maximize the joint profits 

of the wind and ESR by modifying ESR bids; wind is constrained to offer at no more than its 

$0/MWh marginal cost. There is often congestion on a transmission line interconnecting bus 03 

to the rest of the system (Fig. 3) due to the large amount of zero marginal cost wind generation in 

many hours relative to available transmission capacity. Because of the prevalent congestion, the 

ESR can be used by a strategic entity when pivotal to alleviate congestion and increase price at 

bus 03. When wind generation exceeds additional ESR charging load the ability to increase price 

                                                           
6 Load payments are calculated as the inner product of bus clearing price and bus load 
7 When the system is congested there may be more than one marginal generator; equivalently, how clearing 
prices change depends on where load is added to the system. 
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is a profitable cross-product strategy. Notably, since co-locating of ESRs with VRE is often 

suggested as a welfare-improving strategy due to reduction in curtailment and increased 

deliverability of low-cost and low-emission VRE (Root et al 2017, Denholm and Mai 2019, 

Alanazi and Khodaei 2018) or to take advantage of incentives for ESR charging from VRE like 

the Investment Tax Credit (Gorman et al 2020), Table B-3 shows that at least some of this 

welfare for a given co-located ESR installation8 could be absorbed by strategic bidding. 

Table B-3: Case B (ESR+Wind) profits for month of January. 

A: Category B: 
Competitive 

C: 
Strategic 

D: 
Change 

1: Load Payments ($M) $5.223 $5.369 +2.8% 

2: Storage Profit ($M) $.306 $.040 -86.9% 

3: Storage Profit ($/MWh discharged) $9.9 $1.4 -86.9% 

4: Wind Profit ($M) $0.751 $2.002 +166.6% 

5: Incremental Profit Associated with Storage 
Ownership ($M) 

𝜋𝑝,𝑁𝑆𝑆 =$.306 ∆𝜋𝑝=$1.292 +368.7% 

6: Incremental Profit Associated with Storage 
Ownership ($/MWh discharged) 

𝜋𝑝,𝑁𝑆𝑆

∑ 𝑠𝑑𝑆 =$9.9 𝜋𝑝,𝑆𝑆

∑ 𝑠𝑑𝑆=$46.3 +368.7% 

 

B.6 Additional information on Results Section 4.2 
The sensitivity analysis in Fig. 6 shows that under the perfect foresight assumption 

additional ESR capacity and duration have declining marginal value, as seen in the decreasing 

monthly incremental profit. Increased capacity has more effect than increased duration on total 

profits, suggesting the ability to offer more capacity in a single time period is a larger contributor 

to perfect foresight ESR profits than how often an offered quantity can be accepted and 

dispatched. Profits do not scale linearly with capacity as the quantity offer need to be pivotal and 

change clearing price in a given time period will be system dependent, particularly in the 

presence of congestion. 

Fig. 7 compares hybrid and co-located profits. Hybrid profits are higher because of 

additional assumed ability to submit a higher bid incorporating the wind with the ESR offer as a 

hybrid. Importantly, in practice different bidding rules can be applied to different types of 

                                                           
8 The installation of the ESR may still be welfare improving compared to a no-ESR system even with strategic 
bidding, but we do not investigate investment decision-making. 
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resources. For example, section 4.4.9.3 of the Electricity Reliability Council of Texas’ (ERCOT) 

December 2020 nodal protocols (ERCOT 2020) only allows generators to update energy offer 

curves prior to an operating hour, but specifically provides a carve out for ESRs to update offers 

until any time prior to intra-hourly RT Security Constrained Economic Dispatch (SCED), giving 

ESRs additional offering latitude.9 Market operators and monitors should think carefully about 

whether hybridization allows additional bidding latitude not usually afforded to one of the 

hybridized resources individually. 

B.7 Additional information on Results Section 4.3  
To investigate incorporation of uncertainty the model is configured to run as two 

temporally sequential settlements. The settlements can be conceived as a financial forward 

market where entities submit bids, and real-time operational market where bids are fixed and any 

deviations from the forward market are settled. The setup is similar to two-settlement day-ahead 

and real-time wholesale market settlement periods in North American markets, with the 

additional assumptions that the market operator clears the market using the same algorithm for 

the same temporal resolution at each settlement interval10 and ignoring financial products (e.g., 

virtual bidding).  

Maintaining strategic profits under uncertainty is a delicate balance. If an offer expected 

to change the clearing price does not, the strategic entity makes no additional profit and may lose 

profit compared to market operator dispatch if the ESR is charged or discharged with non-zero 

opportunity cost compared to dispatch in alternative time periods. Because of this reality and fact 

that the congestion alleviation strategy depends on supplying an appropriate quantity of ESR 

charge or discharge to the market to change clearing price and increase wind revenue, we 

implement the following assumptions and strategy: 

1. The strategic entity is assumed to have perfect foresight of the forward DA market 

(equivalently, it could update its forward offers prior to real-time based on full 

knowledge of how changing offers would change the forward market clearing). 

                                                           
9 Nodal Protocol Revision Request 1058 would update language to allow all generators to update energy 
offer curves at any time prior to RT SCED, and is available online at 
http://www.ercot.com/mktrules/issues/NPRR1058#keydocs  
10 Day-ahead markets are commonly cleared for the full day at hourly resolution and incorporate unit 
commitment, while real-time markets are cleared at 5-minute resolution with more limited forward 
temporal co-optimization and assume fixed unit commitment, eliminating binary decision variables. 

http://www.ercot.com/mktrules/issues/NPRR1058#keydocs
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2. The strategic entity has perfect foresight of its own wind generation in RT, but otherwise 

does not update its DA expectation of other loads and generation. 

3. The strategic entity knows which of its DA offers changed prices. It self-dispatches 

exactly that DA optimal quantity in the RT market if it has sufficient wind generation 

(>300 MW ESR installed capacity in modeled case case) to ensure a price-setting offer 

will still increase joint profits. 

4. The market operator dispatches any ESR capacity not self-dispatched to minimize 

production costs, subject to cycling constraints.  

Taken together, this heuristic enables increased focus on pivotal hours under uncertainty, but is 

not an upper bound on strategic profits under uncertainty. A strategic entity with a more accurate 

updated forecast for load and generation in RT than simply maintaining its DA forecast would do 

better in our model.  This strategy is reflected mathematically in the implemented constraints in 

Appendix A reproduced below. 

𝑠𝑑𝑡,𝑠 == 𝐷𝐷𝐴𝑡,𝑠, (∀𝑡|𝐷𝐷𝐴𝑡,𝑠

> 0, 𝐶𝐴𝑃𝐴𝑡,𝑔
𝑅𝑇

≥ 𝐷𝑀𝐴𝑋𝑠, ∆𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠

𝐷𝐴 > 0) 

Real-time storage discharge is equivalent to DA 

discharge in time periods with pivotal DA dispatch 

and sufficient RT strategic wind generation 
(B.1) 

𝑠𝑐𝑡,𝑠 == 𝐶𝐷𝐴𝑡,𝑠, (∀𝑡|𝐶𝐷𝐴𝑡,𝑠

> 0, 𝐶𝐴𝑃𝐴𝑡,𝑔
𝑅𝑇

≥ 𝐶𝑀𝐴𝑋𝑠, ∆𝜆𝑡,𝑧==𝑆𝑍𝐿𝑠

𝐷𝐴 > 0) 

Real-time storage charge is equivalent to DA charge 

in time periods with pivotal DA dispatch and 

sufficient RT strategic wind generation 
(B.2) 

 

Results compare the profit earned by the DA optimized bids fixed in the real-time balancing 

market to the perfect information real-time strategy as well as a fully competitive approach 

where the strategic entity offers at marginal cost. Results comparing these three strategies for 

Section 4.1’s Case B parameterization for the same month of data are shown in Fig. 8. 

C Mathematical exposition on ESR offers 

C.1 Example derivation 
To show ESRs face different constraints relevant to offer mitigation, consider the two 

time period (indexed by 𝑡𝜖{1,2}) dispatch cost minimization problem in eq. (C.1-C.8). The 

market operator’s objective in this problem is to minimize the costs of serving residual demands 

𝐷𝑡 using a generator G and an ESR S. For simplicity assume the ESR enters the two time periods 

fully charged at state of charge SOC and has sufficient capacity to fully discharge in either time 
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period. To reduce constraints in the problem assume non-negative output from G is unbounded 

but comes at constant costs 𝐶1 and 𝐶2 per unit of output in each of the two time periods. 

Generation from G is denoted 𝑔
𝑡
, from S  by 𝑠𝑑𝑡, offers from S are denoted 𝑠𝑑𝑡, and applicable 

dual variables for each constraint follow the colon in eq. (C.3-C.8). The two time period problem 

is formulated: 

min
𝑔1,𝑔2,𝑠𝑑1,𝑠𝑑1

𝐶1𝑔1 +  𝐶2𝑔2 + 𝑆𝑂1𝑠𝑑1 + 𝑆𝑂2𝑠𝑑2  (C.1) 

Such that 𝐷1 = 𝑔1 + 𝑠𝑑1 ∶ 𝜆1 (C.2) 

𝐷2 = 𝑔2 + 𝑠𝑑2 ∶ 𝜆2 (C.3) 

𝑔1 ≥ 0 ∶ 𝜙1 (C.4) 

𝑔2 ≥ 0 ∶ 𝜙2 (C.5) 

𝑠𝑑1 ≥ 0 ∶ 𝛼1 (C.6) 

𝑠𝑑2 ≥ 0 ∶ 𝛼2 (C.7) 

𝑆𝑂𝐶 ≥ 𝑠𝑑1 + 𝑠𝑑2 ∶  𝜂 (C.8) 

Note that eq. (C.8) assumes the market operator will monitor SOC in formulating its 

problem. The monitored SOC assumption may not hold in frameworks allowing self-monitoring 

SOC for ESR and hybrid market participation (Gorman et al 2020). The Lagrangian for the two 

time period problem is: 

𝐿(𝒈, 𝒔𝒅, 𝝀, 𝜶, 𝝓, 𝜂) =  𝐶1𝑔1 + 𝐶2𝑔2 + 𝑆𝑂1𝑠𝑑1 + 𝑆𝑂2𝑠𝑑2 

−𝜆1(𝑔1 + 𝑠𝑑1 − 𝐷1)  − 𝜆2(𝑔2 + 𝑠𝑑2 − 𝐷2) − 𝜙1𝑔1 − 𝜙2𝑔2 

−𝛼1𝑠𝑑1 − 𝛼2𝑠𝑑2 − 𝜂(𝑆𝑂𝐶 − 𝑠𝑑1 − 𝑠𝑑2) 

(C.9) 

At the optimum the Karush-Kuhn-Tucker (KKT) conditions will hold. The KKT 

conditions include stationarity for primal variables in the objective, which are the generator (𝑔
𝑡
) 

and storage dispatch (𝑠𝑑𝑡) in each time period. These stationarity conditions are written 

𝜕𝐿(𝒈, 𝒔𝒅, 𝝀, 𝜶, 𝝓, 𝜂)

𝜕𝑔1
= 𝐶1 − 𝜆1 − 𝜙1 = 0 (C.10) 

𝜕𝐿(𝒈, 𝒔𝒅, 𝝀, 𝜶, 𝝓, 𝜂)

𝜕𝑔2
= 𝐶2 − 𝜆2 − 𝜙2 = 0 (C.11) 

𝜕𝐿(𝒈, 𝒔𝒅, 𝝀, 𝜶, 𝝓, 𝜂)

𝜕𝑠𝑑1
= 𝑆𝑂1 − 𝜆1 − 𝛼1 + 𝜂 = 0 (C.12) 

𝜕𝐿(𝒈, 𝒔𝒅, 𝝀, 𝜶, 𝝓, 𝜂)

𝜕𝑠𝑑2
= 𝑆𝑂2 − 𝜆2 − 𝛼2 + 𝜂 = 0 (C.13) 

The two generator-related stationarity conditions have no shared decision variables, and, 

when combined with the complementary slackness conditions for the inequalities (C.4) and 



Carnegie Mellon Electricity Industry Center Working Paper CEIC-21-02 www.cmu.edu/electricity 

 

50 
 

(C.5), can be used to show G will set a non-zero price 𝐶𝑡 = 𝜆𝑡 in either time period if dispatched. 

However, the same does not hold for the ESR stationarity conditions, which both contain the 

SOC dual variable 𝜂 and can be substituted and rewritten 

𝑆𝑂2 − 𝑆𝑂1 − 𝜆2 + 𝜆1 − 𝛼2 + 𝛼1 = 0 (C.14) 

 

Eq. (C.14) itself provides the critical insight: the effect of ESR offers on clearing prices 

𝜆𝑡 in all time periods is a function of the relative storage offers 𝑆𝑂𝑡 in each time period. When 

pivotal the ESR can make use of this fact to change its dispatch, and thus pricing, based on its 

relative offers, even when its absolute offers are constrained to be inframarginal (𝐶𝑡 > 𝑆𝑂𝑡) in all 

time periods.  

Under the additional assumptions the ESR is a pivotal supplier in each hour individually 

(𝐷𝑡 < 𝑆𝑂𝐶) but not both hours jointly (∑ 𝐷𝑡 > 𝑆𝑂𝐶), we can show the minimum revenues 

𝜋𝐸𝑆𝑅  accrued assuming an inframarginal non-negative ESR offer (𝐶𝑡 > 𝑆𝑂𝑡 ≥ 0) in both hours 

are: 

min 𝜋𝐸𝑆𝑅 = {
(𝑆𝑂𝐶 − 𝐷1)𝐶2, 𝑆𝑂2 − 𝑆𝑂1 > 𝐶2 − 𝐶1  
(𝑆𝑂𝐶 − 𝐷2)𝐶1, 𝑆𝑂2 − 𝑆𝑂1 < 𝐶2 − 𝐶1

 (C.15) 

The proof of this result using the above assumptions and problem defined in Eq. (C.1)-

(C.8) as well as an explanation of the solution(s) when 𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1 is in Appendix C.2. 

An example suffices to show there exists practical relevance. Assume 𝑆𝑂𝐶 = 50, 𝐷1 = 10, 𝐷2 =

45, 𝐶1 = 20, 𝐶2 = 25. Under these conditions if the ESR offers its full quantity 𝑆𝑂𝐶 = 50 to the 

market without a price offer (equivalently, 𝑆𝑂2 = 𝑆𝑂1 = 0), the market operator will minimize 

dispatch costs by using as much of the ESR as feasible in the higher cost time period 2, and use 

the remainder in time period 1, so {𝑠𝑑1
∗, 𝑠𝑑2

∗ , 𝑔1
∗, 𝑔2

∗} = {5, 45, 5,0} and the objective value using 

Eq. (3) is 100. Price is set by G at 20 in time period 1, so ESR revenues are at least 𝜆1
∗ 𝑠𝑑1

∗ = 20 ∗

5 = 100. However, by filling in eq. (C.15) for the assumed parameterization: 

min 𝜋𝐸𝑆𝑅 = {
1000, 𝑆𝑂2 − 𝑆𝑂1 > 5  

100, 𝑆𝑂2 − 𝑆𝑂1 < 5
 (C.16) 

1000 is greater than 100, so the ESR can guarantee a greater minimum profit by offering 

𝑆𝑂2 − 𝑆𝑂1 > 5. Because achieving this profit depends on the relative ESR offers, whether ESR 

offers are capped based on an ex-ante maximum is irrelevant to the profits in eq. (C.16): so long 

as the range of allowable offers exceeds 5 the ESR can guarantee the higher minimum revenue 
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by offering 𝑆𝑂2 − 𝑆𝑂1 > 5. The dispatch assuming this offer is {𝑠𝑑1
∗, 𝑠𝑑2

∗ , 𝑔1
∗, 𝑔2

∗} = {10, 40, 0,5}, 

with the minimum payments for dispatching G now being 5*25=125, greater than the optimal 

value of 100 when the ESR did not make a price offer.11 The difference 𝑆𝑂2 − 𝑆𝑂1 > 5 in the 

offers makes the market operator perceive ESR dispatch is more valuable in time period 1 than 

time period 2, so using as much ESR as feasible under SOC and demand constraints in time 

period 1 minimizes the perceived total dispatch cost objective. Assuming perfect information a 

pivotal ESR supplier can exploit this fact by submitting appropriate temporally differentiated 

offers to change optimal dispatch and pricing.  

 

C.2 Derivation with additional assumptions 
Assume as in Appendix B that a ESR enters a two time period model with full state of 

charge SOC and can be discharge fully in either time period. Assume this state of charge SOC is 

sufficient to serve residual demand 𝐷𝑡 in either time period individually, but not both; 𝑆𝑂𝐶 >

𝐷𝑡 , 𝑆𝑂𝐶 < ∑ 𝐷𝑡. Additionally, assume the ESR must offer its available discharge capability into 

the market at a price less than the offer of the generator G in either time period; 𝑆𝑂𝑡 < 𝐶𝑡. This 

last assumption guarantees the market operator will discharge the ESR within the two time 

period window, so Eq. (C.8) can be rewritten as the equality Eq. (C.1.9) and we have the below 

modifications of the model presented in Section 4.4: 

Assume 𝑆𝑂𝑡 < 𝐶𝑡, 𝑆𝑂𝐶 > 𝐷𝑡 , 𝑆𝑂𝐶 < ∑ 𝐷𝑡 (C.1.1) 

min 𝐶1𝑔1 + 𝐶2𝑔2 + 𝑆𝑂1𝑠𝑑1 + 𝑆𝑂2𝑠𝑑2 (C.1.2) 

S.T. 𝐷1 = 𝑔1 + 𝑠𝑑1 ∶ 𝜆1 (C.1.3) 

𝐷2 = 𝑔2 + 𝑠𝑑2 ∶ 𝜆2 (C.1.4) 

𝑔1 ≥ 0 ∶ 𝜙1 (C.1.5) 

𝑔2 ≥ 0 ∶ 𝜙2 (C.1.6) 

𝑠𝑑1 ≥ 0 ∶ 𝛼2 (C.1.7) 

𝑠𝑑2 ≥ 0 ∶ 𝛼2 (C.1.8) 

𝑆𝑂𝐶 = 𝑠𝑑1 + 𝑠𝑑2 ∶  𝜂 (C.1.9) 

Deriving the KKT conditions for this problem and substituting yields 

𝐶1 − 𝜆1 − 𝜙1 = 0 (C.1.10) 

𝐶2 − 𝜆2 − 𝜙2 = 0 (C.1.11) 

                                                           
11 The value of the objective when 𝑆𝑂2 − 𝑆𝑂1 > 5 will also change based on the change in perceived costs of 
discharging the ESR, but for simplicity assume the actual costs of the ESR do not change, just the offer. Then 
the only change in actual production costs comes from the changing dispatch of the generator. 
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𝑆𝑂2 − 𝑆𝑂1 − 𝜆2 + 𝜆1 − 𝛼2 + 𝛼1 = 0 (C.1.12) 

𝑔1𝜙1 = 0 (C.1.13) 

𝑔2𝜙2 = 0 (C.1.14) 

𝑠𝑑1𝛼1 = 0 (C.1.15) 

𝑠𝑑2𝛼2 = 0 (C.1.16) 

𝑔𝑡, 𝑠𝑑𝑡 , 𝜙𝑡, 𝛼𝑡 ≥ 0 (C.1.17) 

 

Using the assumptions and Eq. (C.1.3-C.1.4) offers only three feasible solutions: either 𝑠𝑑1 = 𝐷1, 𝑠𝑑2 =

𝐷2, or 𝑠𝑑𝑡 < 𝐷𝑡. The ESR cannot fully serve residual demand in both time periods because 

𝑆𝑂𝐶 < ∑ 𝐷𝑡 and must fully discharge per eq. (C.1.9), so no other option remains. We can then 

proceed to solve these three cases (1)-(3) in parallel, below: 

(1) 𝑠𝑑1 = 𝐷1  (2) 𝑠𝑑2 = 𝐷2 (3) 𝑠𝑑𝑡 < 𝐷𝑡  

𝑔1 = 0; 𝑔2 = 𝑆𝑂𝐶 − 𝐷1

> 0 

𝑔1 = 𝑆𝑂𝐶 − 𝐷2 > 0; 𝑔2

= 0 

𝑔1 = 𝑆𝑂𝐶 − 𝐷2 > 0; 𝑔2

= 𝑆𝑂𝐶

− 𝐷1 > 0 

(C.1.18) 

𝜙2 = 0; 𝜆2 = 𝐶2 𝜙1 = 0; 𝜆1 = 𝐶1 
𝜙1 = 0; 𝜆1 = 𝐶1 

𝜙2 = 0; 𝜆2 = 𝐶2 
(C.1.19) 

𝑠𝑑𝑡 > 0; 𝛼𝑡 = 0 𝑠𝑑𝑡 > 0; 𝛼𝑡 = 0 𝑠𝑑𝑡 > 0; 𝛼𝑡 = 0 (C.1.20) 

𝑆𝑂2 − 𝑆𝑂1 + 𝜆1 = 𝐶2 𝑆𝑂2 − 𝑆𝑂1 − 𝜆2 = −𝐶1 𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1 (C.1.21) 

𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1+𝜙1 
𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1

− 𝜙2 
 (C.1.22) 

𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1

+ 𝜙1

≥ 𝐶2 − 𝐶1 

𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1

− 𝜙2

≤ 𝐶2 − 𝐶1 

 (C.1.23) 

(1)𝑆𝑂2 − 𝑆𝑂1 ≥ 𝐶2 − 𝐶1 (2)𝑆𝑂2 − 𝑆𝑂1 ≤ 𝐶2 − 𝐶1 
(3)𝑆𝑂2 − 𝑆𝑂1 = 𝐶2

− 𝐶1 
(C.1.24) 

 

As suggested by case (3) (𝑠𝑑𝑡 < 𝐷𝑡), the cost-minimizing system operator will be indifferent 

between the dispatch solutions when 𝑆𝑂2 − 𝑆𝑂1 = 𝐶2 − 𝐶1, as they will produce equivalent as-

bid total costs. We are thus left with optimal solutions for {𝑠𝑑1
∗, 𝑠𝑑2

∗ , 𝑔1
∗, 𝑔2

∗, 𝜆1
∗ , 𝜆2

∗ } of: 

(1) 𝑆𝑂2 − 𝑆𝑂1 >

𝐶2 − 𝐶1 

(2) 𝑆𝑂2 − 𝑆𝑂1 > 𝐶2 −

𝐶1 

(3) 𝑆𝑂2 − 𝑆𝑂1 =

𝐶2 − 𝐶1 
 

{𝑠𝑑1
∗, 𝑠𝑑2

∗ , 𝑔1
∗, 𝑔2

∗, 𝜆1
∗ , 𝜆2

∗ }  

= {𝐷1, 𝑆𝑂𝐶 − 𝐷1, 0, 𝐷2

− 𝑆𝑂𝐶 + 𝐷1, 𝑆𝑂1, 𝐶2} 

{𝑠𝑑1
∗, 𝑠𝑑2

∗ , 𝑔1
∗, 𝑔2

∗, 𝜆1
∗ , 𝜆2

∗ } =

{𝑆𝑂𝐶 − 𝐷2, 𝐷2, 𝐷1 −

𝑆𝑂𝐶 + 𝐷2, 0, 𝐶1, 𝑆𝑂2}  

{𝑠𝑑1
∗, 𝑠𝑑2

∗ , 𝑔1
∗, 𝑔2

∗, 𝜆1
∗ , 𝜆2

∗ } =

{𝐷1 − 𝑔1
∗, 𝐷2 − 𝑔2

∗, 𝐷1 −

𝑠𝑑1
∗, 𝐷2 − 𝑠𝑑2

∗ , 𝐶1, 𝐶2}   

(C.1.25) 
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The profits accrued by the ESR are the dot product of the clearing price and ESR discharge in 

each time period; 𝜋𝐸𝑆𝑅 = ∑ 𝜆𝑡 𝑠𝑑𝑡. Substituting values for each of the optimal solutions from eq. 

(C.1.25) we have 

(1) 𝑆𝑂2 − 𝑆𝑂1 > 𝐶2 −

𝐶1 

(2) 𝑆𝑂2 − 𝑆𝑂1 > 𝐶2 −

𝐶1 

(3) 𝑆𝑂2 − 𝑆𝑂1 =

𝐶2 − 𝐶1 
 

𝜋𝐸𝑆𝑅 = 𝜆1
∗ 𝑠𝑑1

∗ + 𝜆2
∗ 𝑠𝑑2

∗   𝜋𝐸𝑆𝑅 = 𝜆1
∗ 𝑠𝑑1

∗ + 𝜆2
∗ 𝑠𝑑2

∗   𝜋𝐸𝑆𝑅 = 𝜆1
∗ 𝑠𝑑1

∗ + 𝜆2
∗ 𝑠𝑑2

∗  (C.1.26) 

𝜋𝐸𝑆𝑅 = 𝑆𝑂1𝐷1 + (𝑆𝑂𝐶

− 𝐷1)𝐶2 

𝜋𝐸𝑆𝑅 = (𝑆𝑂𝐶 − 𝐷2)𝐶1

+ 𝑆𝑂2𝐷2 
𝜋𝐸𝑆𝑅 = 𝐶1𝑠𝑑1

∗ + 𝐶2𝑠𝑑2
∗ (C.1.27) 

 

If we further assume for simplicity the ESR offers 𝑆𝑂𝑡 will not be lower than 0 and exclude the 

third case, we get Eq. (C.17): 

min 𝜋𝐸𝑆𝑅 = {
(𝑆𝑂𝐶 − 𝐷1)𝐶2, 𝑆𝑂2 − 𝑆𝑂1 > 𝐶2 − 𝐶1  
(𝑆𝑂𝐶 − 𝐷2)𝐶1, 𝑆𝑂2 − 𝑆𝑂1 < 𝐶2 − 𝐶1

 (C.1.28) 

 


