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Abstract	

Electricity	grid	planners	design	the	system	in	order	to	supply	electricity	to	end	users	reliably	and	

affordably.	Climate	change	threatens	both	objectives	through	potentially	compounding	supplyand	

demand-side	climate-induced	impacts.	Uncertainty	surrounds	each	of	these	future	potential	

impacts.	Given	long	planning	horizons,	system	planners	must	weigh	investment	costs	against	

operational	costs	under	this	uncertainty.	Here,	we	developed	a	comprehensive	and	coherent	

integrated	modeling	framework	combining	physically-based	models	with	cost-minimizing	

optimization	models	in	the	power	system.	We	applied	this	modeling	framework	to	analyze	potential	

tradeoffs	in	planning	and	operating	costs	in	the	power	grid	due	to	climate	change	in	the	Southeast	

U.S.	in	2050.	We	find	that	planning	decisions	that	do	not	account	for	climate-induced	impacts	would	

result	in	a	substantial	increase	in	social	costs	associated	with	loss	of	load.	These	social	costs	are	a	

result	of	under-investment	in	new	capacity	and	capacity	deratings	of	thermal	generators	when	we	

included	climate	change	impacts	in	the	operation	stage.	These	results	highlight	the	importance	of	

including	climate	change	effects	in	the	planning	process.	
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1 Introduction	

Power	system	planners	consider	numerous	uncertainties	to	ensure	continued	availability	of	reliable	

and	affordable	electricity.	In	the	coming	decades,	uncertain	climate-induced	risks	to	the	power	sector	

may	become	an	important	consideration	in	the	power	system	planning	process.	According	to	the	

Intergovernmental	Panel	on	Climate	Change	(IPCC),	average	global	temperatures	are	likely	to	rise	1.5◦	C	

above	pre-industrial	levels	by	2052	[30].	Meteorological	variability,	climatic	extremes,	and	droughts	

will	also	likely	increase	[75].	Utilities	have	already	started	discussing	adaptation	strategies	to	address	

potential	climate	impacts	on	their	grids	[11,	62,	29],	which	will	manifest	in	several	ways	[71,	80].	On	

the	demand	side,	warming	temperatures	will	likely	result	in	changes	in	electricity	consumption	used	

for	ambient	heating	and	cooling	[57,	56,	25,	44,	19,	3,	55].	These	changes	could	result	in	increased	total	

consumption	and	peak	electricity	demand.	On	the	supply	side,	changes	in	streamflow	could	affect	

hydropower	generation	[66,	31,	24,	28].	Also,	decreased	water	availability,	and	increased	water	and	air	

temperatures	could	reduce	the	capacity	and	efficiency	of	thermal	units	[33,	34,	7,	76,	63].	Climate	

change	could	also	affect	wind	and	solar	resources,	transmission	assets,	and	other	technologies	essential	

to	a	zero-carbon	system	[6,	10,	40].	Recent	events	in	the	US	and	Europe	have	already	revealed	the	

vulnerabilities	of	the	power	system	to	weather	extremes	[32,	21,	23].	

Given	these	aforementioned	risks,	a	growing	body	of	literature	has	analyzed	how	climate	change	might	

affect	electric	power	systems	[16].	Many	studies	have	focused	on	impacts	to	individual	components	of	

the	power	system,	such	as	electricity	demand	[44,	3,	55]	or	generation	capacity	[34,	7,	76].	However,	

because	such	studies	do	not	take	into	account	the	interconnected	nature	of	the	power	system,	they	do	

not	represent	the	potential	interactions	between	the	different	climate-induced	impacts.	More	recent	

studies	have	used	system-level	operation	models	to	aggregate	impacts	of	climate	change	across	

components	of	the	power	system	[51,	65,	17,	10].	Yet,	these	studies	have	not	typically	integrated	the	

planning	stage	into	their	analysis.	They	either	use	present	configurations	of	the	generator	fleet	or	

exogenous	fleet	configurations	not	directly	linked	to	the	climate-induced	impacts	represented.	

Additionally,	some	of	the	studies	that	have	included	the	planning	stage	into	their	analysis	[52,	59,	45]	

have	not	consistently	integrated	climate-induced	impacts	into	their	modeling	framework,	which	could	

result	in	some	biases	in	their	results.	For	example,	if	a	study	represented	uniform	climate-induced	
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impacts	throughout	the	year,	it	may	miss	how	the	heterogeneous	seasonal	impacts	could	impact	

planning	decisions	[52].	A	consistent	integration	into	system-wide	analyses	is	necessary	to	better	

comprehend	the	systemic	risks	a	power	grid	faces	due	to	climate	change.	An	important	application	is	to	

understand	potential	tradeoffs	between	present	planning	costs	and	future	operation	costs	under	

different	climate	change	scenarios.	These	tradeoffs	are	critical	because	planning	horizons	in	the	power	

sector	can	span	several	decades	–	the	typical	service	life	of	most	energy	assets	–	and	associated	

investments	can	extend	into	the	billions	of	dollars.	

In	this	study,	we	fill	this	gap	and	investigate	several	key	questions	relevant	to	system	planners,	

including	(1)	if	planners	ignore	climate	change,	how	will	their	systems	fare	operationally	when	we	

include	climate	change	impacts;	and	(2)	if	planners	plan	for	climate	change,	what	are	the	excess	costs	if	

we	do	not	include	climate	change	impacts?	We	rely	on	a	comprehensive	and	coherent	integrated	

modeling	framework	to	analyze	climate-induced	tradeoffs	between	planning	and	operation	costs	in	the	

power	grid	under	Representative	Concentration	Pathway	(RCP)	4.5	by	midcentury	(Figure	1b).	We	

simulated	the	different	climate-change	risks	in	a	consistent	way	[63]	by	considering	the	same	ensemble	

of	climate	models,	emission	scenarios,	and	time	horizons.	We	applied	our	method	to	a	case	study	of	the	

SERC	Reliability	corporation	in	the	Southeast	U.S.,	but	the	framework	can	be	used	for	planning	and	

operation	purposes	by	any	electricity	system.	We	used	simulated	climate	inputs	[61,	2]	within	a	chain	

of	different	models	to	simulate	synchronous	climate-induced	impacts	on	hourly	electricity	demand	

[55],	daily	river	flows	and	water	temperatures	[37,	36,	77,	79,	48,	81],	hydropower	potential,	and	

capacity	deratings	for	thermoelectric	power	plants	[38,	12,	82].	We	integrated	these	impacts	into	a	

capacity	expansion	(CE)	model	[54]	to	create	future	generator	fleets,	then	fed	these	impacts	and	fleets	

into	a	unit	commitment	and	economic	dispatch	(UCED)	model	to	simulate	power	system	operations.	By	

controlling	for	whether	planning	and/or	operations	account	for	climate	change,	we	examine	the	trade-

offs	in	planning	and	operations	under	climate	change.	
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Figure	1:	(a)	Map	of	study	area	(b)	Simplified	diagram	of	the	modeling	framework	(a	more	detailed	
diagram	is	available	in	the	SI)	

2 Methods	

We	used	a	two-stage	optimization	modeling	framework	to	quantify	the	potential	tradeoffs	in	planning	

and	operating	power	systems	under	different	scenarios	of	future	climate	impacts.	To	quantify	planning	

costs,	in	the	first	stage	(Planning	stage)	we	determined	generator	fleets	by	2050	using	the	CE	model	

([54])	under	two	climate	change	scenarios:	with	and	without	climate	change	impacts.	Additionally,	we	

simulated	fleet	expansion	under	three	CO2	emission	policies:	no	limits,	50%	reduction,	and	80%	

reduction	(see	Section	1.2	in	SI).	In	the	second	stage	(Grid	operation	stage),	these	generator	fleets	

served	as	input	into	the	UCED	model	under	two	scenarios:	a	scenario	in	which	climate	change	impacts	

in	2050	were	not	included,	and	another	in	which	we	simulated	climate-induced	impacts	under	RCP	4.5	

conditions.	By	taking	all	combinations	of	the	two	pairs	of	scenarios	included	in	the	capacity	expansion	

and	UCED	models,	we	simulated	four	different	scenarios	(Table	1)	for	each	CO2	emission	policy.	

Because	the	purpose	of	this	analysis	is	to	isolate	the	potential	costs	of	climate-induced	risks	on	the	

power	system,	we	did	not	account	for	other	changes	that	may	affect	the	operations	of	the	power	system	

(e.g.,	changes	in	population	or	economic	growth).	
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Table	1:	Scenario	definition	
Scenario	name	 Planning	stage	(2015–2050)	 Grid	operation	stage	(2050)	

1	Ignore	CC/no	CC	effects	 Ignore	climate	change	risks	on	
demand	and	supply	

No	climate	change	impacts	on	
demand	and	supply	

2	Plan	for	CC/CC	effects	 Include	climate	change	risks	on	
demand	and	supply	(RCP	4.5)	

Climate	change	affects	demand	
and	supply	(RCP	4.5)	

3	Plan	for	CC/no	CC	effects	 Include	climate	change	risks	on	
demand	and	supply	(RCP	4.5)	

No	climate	change	impacts	on	
demand	and	supply	

4	Ignore	CC/CC	effects	 Ignore	climate	change	risks	on	
demand	and	supply	

Climate	change	affects	demand	
and	supply	(RCP	4.5)	

	

2.1 Area	of	study	

Our	analysis	focused	on	the	SERC	Reliability	Corporation	(SERC)	(Figure	1a),	one	of	the	North	American	

Electric	Reliability	Corporation	(NERC)	subregions.	SERC	has	a	diverse	generation	portfolio	(that	

includes	fossil-based	power	plants	and	a	significant	contribution	of	hydroelectricity)	and	a	demand	

profile	with	peaks	in	both	summer	and	winter.	According	to	the	National	Climate	Assessment,	SERC	is	

particularly	vulnerable	to	some	of	the	expected	impacts	of	climate	change	[75].	To	better	represent	

spatial	differences	in	SERC,	we	used	the	four	subregions	defined	in	EPA’s	Integrated	Planning	Model	

[73].	

2.2 Climate	Simulations	

To	represent	historical	weather	conditions,	we	used	weather	data	from	the	University	of	Idaho	Gridded	

Surface	Meteorological	Data	(gridMET)	dataset	[1]	for	the	years	1979	–	2015.	This	dataset	combines	

desirable	spatial	attributes	of	gridded	climate	data	from	the	PRISM	dataset	[53,	18]	with	desirable	

temporal	attributes	from	the	regional	reanalysis	dataset	NLDAS-2	[47]	to	derive	a	high-resolution	

(1/24th	degree,	∼4	km)	gridded	dataset	of	daily	surface	meteorological	variables.	We	then	

disaggregated	the	daily	data	to	hourly	values	using	METSIM	(Meteorology	Simulator)	[9].	

To	represent	weather	conditions	under	climate	change	in	2050,	we	used	simulated	projections	of	

weather	variables	from	twenty	different	Global	Circulation	Models	(GCM)	for	the	year	2050	from	the	

Coupled	Model	Intercomparison	Project	5	(CMIP5)	[61],	spatially	downscaled	using	the	Multivariate	
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Adaptive	Constructed	Analogs	(MACA)	method	[2].	In	addition,	we	again	disaggregated	these	daily	

projections	to	hourly	values	using	METSIM.	We	selected	the	output	of	these	climate	models	under	

representative	concentration	pathway	RCP	4.5.	For	more	details	on	the	climate	data	use,	see	the	SI.	

2.3 Electricity	demand	

We	used	an	econometric	model	to	estimate	the	projections	of	SERC’s	electricity	hourly	demand	in	

future	years	under	different	climate	change	scenarios	[55].	To	fit	this	model,	we	used	historical	hourly	

electricity	demand	data	for	the	four	SERC	regions	from	the	Federal	Energy	Regulatory	Commission	

(FERC)	Form	714	[22]	for	the	years	2006–2015.	We	also	used	historical	weather	data	from	the	

gridMET	dataset	[1].	After	defining	the	parameters	of	the	econometric	model,	we	used	the	downscaled	

projections	of	hourly	air	temperature	of	the	twenty	different	GCMs	under	RCP	4.5	described	previously	

to	simulate	future	electricity	demand	under	climate	change.	Additionally,	in	order	to	create	a	

comparable	reference	case	of	historical	demand	(not	including	impacts	of	climate	change),	we	used	this	

model	with	historical	air	temperature	data	(1979	–	2015)	to	backtrack	hourly	electricity	demand.	

For	each	of	the	four	subregions	in	SERC	considered	in	this	study,	we	averaged	hourly	air	temperature	

from	the	two	most	populous	cities.	In	this	analysis,	we	assumed	that	other	factors	that	could	affect	our	

projections	of	demand	(such	as	changes	in	economic	activity	and	population)	remained	constant	at	

their	estimated	2015	levels.	Doing	so	allows	us	to	isolate	the	impacts	of	climate	change	on	electricity	

demand	and,	in	turn,	on	planning	and	operational	trade-offs,	the	goals	of	this	analysis.	We	leave	such	

analyses	to	future	research	and	discuss	the	implications	of	our	assumption	in	the	Discussion.	

2.4 Hydrological	simulations	

To	simulate	regulated	daily	river	flows	and	water	temperatures	in	the	study	region,	we	used	a	

physically-based	modeling	framework.	This	process-based	modeling	approach	consists	of	three	

models.	First,	we	used	a	macroscale,	spatially	distributed	hydrological	model,	the	Variable	Infiltration	

Capacity	(VIC)	model	[37],	to	simulate	runoff.	Second,	the	runoff	was	used	as	an	input	into	a	river	

routing	model,	the	Model	for	Scale	Adaptive	River	Transport	(MOSART)	[36],	dynamically	coupled	to	a	

spatially	distributed	water	management	model	(WM)	[77,	79],	to	simulate	reservoir	storage	and	
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regulated	streamflow.	Third,	surface	meteorological	data	and	simulated	hydrologic	conditions	were	

used	to	simulate	regulated	river	temperatures,	using	a	one-dimensional	stream	temperature	model,	the	

River	Basin	Model	(RBM)	[81],	coupled	with	a	two-layer	reservoir	thermal	stratification	module	[48].	

We	ran	these	models	at	a	grid	resolution	of	1/8	degree	(∼	12	km)	using	the	climate	forcing	data	from	

twenty	different	GCMs	from	CMIP5	[61],	spatially	downscaled	using	the	MACA	method	[2].	We	used	the	

output	from	twenty	GCMs	for	the	year	2050.	

2.5 Thermal	deratings	

To	simulate	weather-induced	deratings	of	thermoelectric	power	plants	in	our	model,	we	first	used	the	

Integrated	Environmental	Control	Model	(IECM)	to	estimate	typical	response	curves	of	thermal	

generators	to	changes	in	weather	variables,	stream	temperatures,	and	stream	flow	[12,	38].	The	IECM	

outputs	plant	performance	characteristics	and	costs	for	different	combinations	of	power	plant	

technologies	and	cooling	systems.	The	estimated	response	curves	modeled	the	effects	of	weather	

variables,	stream	temperatures,	and	stream	flow	on	a	power	plant’s	available	capacity	and	water	

withdrawal.	This	way	we	could	map	local	hourly	weather	and	stream	conditions	simulated	by	the	GCMs	

to	operating	conditions	for	thermoelectric	power	plants.	

For	each	type	of	cooling	system,	the	response	curves	use	the	more	significant	ambient	variables	[38].	

For	once-through	system	the	ambient	variables	are	water	intake	temperature	and	air	temperature.	For	

recirculating	cooling,	the	ambient	variables	are	air	temperature	and	air	humidity.	

For	dry-cooling	systems,	the	weather	variables	are	air	temperature	and	air	pressure.	Additionally,	

response	functions	are	dependent	on	cooling	system	design	characteristics.	For	each	cooling	system,	

we	chose	design	parameters	values	at	the	middle	of	the	range	reported	in	a	previous	study	[38].	

For	existing	thermal	power	plants	with	once-through	cooling,	we	also	modeled	how	the	water	

discharged	from	the	power	plants	affects	stream	temperatures	using	a	mass	balance	equation.	We	used	

this	estimate	to	simulate	the	maximum	available	capacity	from	once-through	power	plants	that	would	

not	cause	water	temperatures	downstream	of	the	power	plant	to	rise	above	a	certain	threshold	value.	

Water	quality	standards	vary	by	state,	but	they	typically	require	surface	water	temperature	to	remain	

under	32◦C	[42].	We	used	this	threshold	value	in	our	study.	Because	water	withdrawal	rates	of	
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recirculating	cooling	are	estimated	as	3%	of	the	ones	from	once-through	[41],	we	assumed	that	

recirculating	cooling	would	not	be	impacted	by	these	constraints.	More	details	about	the	simulation	of	

thermal	deratings	are	available	in	the	SI.	

2.6 Hydropower	generation	

To	simulate	the	potential	effects	of	climate	change	on	the	available	energy	at	hydropower	plants,	we	

combined	historical	data	of	energy	produced	by	the	hydropower	plants	in	the	SERC	region	with	the	

simulations	of	daily	river	flows	from	the	VIC	and	MOSART-WM	models.	We	assumed	that	the	potential	

energy	available	at	each	hydropower	plant	is	proportional	to	the	regulated	stream	flow	simulated	by	

hydrological	models	at	the	plant’s	location	[78].	Within	the	optimization	model,	the	actual	generation	

decision	for	each	hydro	generator	is	limited	by	both	this	potential	and	the	installed	capacity	of	the	

power	plant.	More	details	about	the	simulation	of	hydropower	potentials	are	available	in	the	SI.	

2.7 Wind	and	solar	generation	

We	estimated	inputs	described	thus	far	-	demand,	thermal	deratings,	and	hydropower	generation	from	

the	same	ensemble	of	climate	models.	Forecasting	wind	and	solar	resources	under	climate	change	

remains	a	significant	challenge,	particularly	at	an	hourly	resolution	used	in	our	modeling	framework.	

New	initiatives,	e.g.	High	Resolution	MIP	[27],	are	beginning	to	release	downscaled	wind	and	solar	

resource	data,	but	data	released	thus	far	is	only	for	surface	wind	speeds	at	3-hourly	resolution.	Other	

research	has	used	numerical	weather	prediction	models,	e.g.	the	Weather	Research	and	Forecasting	

model	[40],	to	downscale	wind	and	solar	resources,	but	such	models	are	computationally-intensive	and	

outside	our	scope.	Furthermore,	past	studies	have	disagreed	on	the	direction	of	change	in	solar	and	

wind	resources	[16].	

Given	these	challenges,	we	capture	spatial	and	temporal	variability	in	output	among	wind	and	solar	

farms	using	simulated	wind	and	solar	generation	profiles	from	the	U.S.	National	Renewable	Energy	

Laboratory	(NREL)	[74,	20].	These	wind	and	solar	generation	databases	provide	simulated	generation	

profiles	for	hypothetical	plants	in	the	SERC	area	at	5-minute	increments,	for	2007–2012	and	2006,	

respectively.	We	used	2009	wind	generation	data,	since	the	overall	simulated	capacity	factor	in	this	
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year	was	closer	to	the	average	over	the	complete	data	set.	We	aggregated	generation	data	to	hourly	

increments	by	calculating	the	average	generation	values	for	all	time	steps	in	each	hour.	We	discuss	the	

implications	of	using	historic	wind	and	solar	data	in	the	Discussion.	

Average	capacity	factors	for	hypothetical	individual	wind	and	solar	sites	in	SERC	in	the	NREL	dataset	

ranged	from	17%–55%	and	12%–19%,	respectively	(see	section	1.5	in	SI).	We	assigned	the	generation	

profiles	of	these	individual	sites	to	the	wind	and	solar	power	plants	in	our	existing	generator	fleet	in	

order	of	decreasing	capacity	factor,	assuming	existing	projects	tap	the	greatest	available	resources.	

Finally,	because	we	did	not	account	for	transmission	within	SERC	in	the	power	system	operations	

model,	each	existing	wind	and	solar	unit	varied	only	by	capacity	and	hourly	generation	profile	within	

each	subregion.	To	improve	the	computational	efficiency	of	the	model,	we	thus	combined	wind	and	

solar	units	into	single	equivalent	wind	and	solar	units	by	summing	up	their	capacities	and	hourly	

generation	profiles.	Hourly	generation	profiles	serve	as	the	upper	bounds	on	hourly	generation	from	

the	combined	wind	and	solar	units.	More	details	are	available	in	the	SI.	

2.8 Capacity	expansion	scenarios	

The	fleet	configurations	in	2050	used	in	this	study	were	determined	in	a	separate	study	[54]	using	a	

capacity	expansion	(CE)	model	integrated	in	our	modeling	framework	(see	Figure	1b).	The	CE	model	is	

a	mixed	integer	linear	programming	(MIP)	model	that	chooses	how	to	add	new	capacity	to	the	power	

system	in	order	to	minimize	the	sum	of	annualized	fixed	investment	costs	and	variable	operating	costs	

of	the	final	generator	fleet.	Its	main	decision	variables	are	investment	in	new	power	plants	and	hourly	

generation	of	new	and	existing	power	plants.	The	model	takes	into	account	system-wide	constraints,	

including	matching	hourly	electricity	generation	to	hourly	demand,	and	meeting	planning	reserve	

requirements	(which	was	set	at	14%	above	projected	peak	demand	values	[54]).	The	fleet	

configurations	were	determined	using	the	same	ensemble	of	climate	models	and	emission	scenarios	

used	to	simulate	climate-induced	effects	on	supply	and	demand	used	in	this	study.	In	each	CO2	emission	

scenario	(no	limits,	50%	reduction,	and	80%	reduction),	the	CE	model	optimized	two	configurations	of	

the	generator	fleet	in	2050	in	this	study.	
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The	first	fleet	(Figure	2a)	was	created	with	no	effects	of	climate	change	on	supply	and	demand.	

Electricity	demand	was	simulated	using	historical	climate	data.	Hydro	generation	potentials	were	equal	

to	historical	averages,	and	we	included	no	climate-induced	capacity	deratings	for	thermal	power	plants.	

The	second	fleet	(Figure	2b)	was	created	including	the	effects	of	climate	change	on	supply	and	demand	

under	RCP	4.5	by	2050	described	previously.	Both	configurations	were	created	by	a	capacity	expansion	

model	integrated	within	our	modeling	framework.	This	resulted	in	six	different	fleets	(see	Figure	S3	in	

SI).	A	detailed	description	of	the	capacity	expansion	model	is	available	in	Ralston	Fonseca	et	al.	[54].	

	

	

 (a)	Ignore	CC	 (b)	Plan	for	CC	

Figure	2:	Configurations	of	the	generator	fleet	in	2050	described	in	Ralston	Fonseca	et	al.	[54]	(no	
limits	on	CO2	emissions).	Numbers	in	the	center	of	each	plot	show	the	total	installed	capacity	in	
2050.	The	inner	layer	of	the	pie	chart	shows	the	breakdown	into	the	different	fuel	sources	used	by	
the	power	plants	in	SERC.	The	middle	layer	shows	the	types	of	generating	technologies	–	where	
applicable	–	used	for	each	type	of	fuel	source.	The	outer	layer	presents	the	cooling	technologies	
used	in	the	respective	thermoelectric	generators.	The	codes	“OT”,	“RC”,	and	“DC”	stand	for,	
respectively:	once-through	cooling,	recirculating	cooling,	and	dry	cooling.	

2.9 Unit	commitment	and	Economic	Dispatch	

To	analyze	the	tradeoffs	between	planning	and	operational	costs	under	different	climate	change	

assumptions,	we	used	a	unit	commitment	and	economic	dispatch	(UCED)	model	[15,	17].	The	UCED	

model	is	a	mixed	integer	linear	programming	(MIP)	model	that	optimizes	plant-level	electricity	

generation	in	order	to	minimize	operational	costs	while	meeting	electricity	demand	and	generator-

level	unit	commitment	constraints.	Operational	costs	consist	of	the	sum	of	variable	electricity	
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generation	cost,	start-up	cost,	and	estimated	cost	due	to	loss	of	load.	We	implemented	a	customized	

version	of	this	model	that	included	climate	induced	generation	constraints	in	thermal	and	hydro	

generators	and	impacts	of	climate	change	in	electricity	demand.	A	detailed	formulation	of	the	UCED	

model	is	available	in	the	SI.	

The	UCED	model	ran	sequentially	for	365	daily	simulations	of	hourly	dispatch	to	build	a	full	8760-hour	

simulation	of	the	generation	at	individual	plants	for	a	simulation	year	representing	2050.	In	order	to	

account	for	inter-day	generator	operations,	we	executed	each	daily	iteration	of	the	UCED	model	with	a	

24	hour	optimization	window	plus	a	24-hour	look-ahead	period.	The	solution	of	the	first	24	hour	

period	determines	the	initial	conditions	for	the	following	UCED	iteration.	In	our	grid	operation	

scenarios	under	climate	change,	we	ran	one	full	annual	UCED	dispatch	simulation	for	each	of	the	

twenty	climate	model	outputs	in	our	dataset	for	the	year	2050.	Each	of	the	twenty	climate	simulations	

resulted	in	distinct	time	series	with	8760	values	of	hourly	electricity	demand,	and	365	values	of	daily	

thermal	capacity	deratings	and	hydropower	potential.	This	resulted	in	twenty	different	dispatch	

simulations	in	each	scenario.	This	way,	our	results	represented	the	inherent	uncertainties	in	the	

climate	simulations.	

We	repeated	a	similar	approach	in	the	scenarios	of	grid	operation	without	climate	change	effects.	In	

this	case,	we	simulated	twenty	distinct	time	series	of	hourly	electricity	demand	by	sampling	the	

weather	conditions	of	twenty	unique	years	in	our	historical	dataset	(1979	–	2015)	that	are	meant	to	

represent	meteorological	conditions	in	2050	in	the	absence	of	climate	change.	On	the	supply-side,	we	

assumed	that	hydro	generation	potentials	were	equal	to	historical	averages,	and	thermal	power	plants	

experienced	no	climate-induced	capacity	deratings.	For	more	details,	see	the	SI.	

2.10 Loss	of	load	

To	estimate	potential	impacts	of	climate	change	on	reliability	and	cost,	we	quantified	loss	of	load	(LOL)	

events	using	the	UCED	model.	The	results	from	the	UCED	indicate	any	unserved	electricity	in	the	

supply/demand	equation	(see	section	1.9	in	SI).	



Carnegie	Mellon	Electricity	Industry	Center	Working	Paper	CEIC-21-01	 www.cmu.edu/electricity	

11	

We	quantified	risk	of	LOL	using	the	loss	of	load	probability	(LoLP).	To	compute	the	LoLP	in	our	

simulations,	we	counted	the	number	of	hours	in	each	dispatch	simulation	that	any	type	of	loss	of	load	

event	occurred.	Then	we	divided	this	number	by	the	total	number	of	hours	being	simulated.	

We	quantified	cost	of	these	outages	using	the	value	of	lost	load	(VOLL).	Estimating	values	of	lost	load	is	

an	important	and	ongoing	topic	of	study	in	energy	economics	[50].	Studies	usually	rely	on	one	of	three	

ways	to	estimate	the	value	of	lost	load	[35]:	consumer	surveys	[8,	5,	60,	4];	cost	estimates	from	

previous	supply	outages	[14];	and	estimates	of	macroeconomic	production	functions	[35,	13,	39].	

Previous	studies	have	found	a	wide	range	of	values	of	lost	load	in	different	regions,	from	5,000	$/MWh	

to	45,000	$/MWh	[39].	This	variability	is	due	to	methodological	differences	and	specific	characteristics	

of	the	regions	analyzed.	

The	VOLL	used	in	this	study	was	based	on	values	calculated	for	the	Electric	Reliability	Council	of	Texas	

(ERCOT)	[39].	ERCOT	values	(in	2012	USD)	were	110	$/MWh	for	residential	consumers	and	5,679	

$/MWh	for	Commercial	&	Industrial	(C&I)	consumers.	We	updated	these	values	to	2015	currency	[69]	

and	combined	them	into	a	single	system-wide	value	using	shares	of	electricity	consumption	by	sector	

reported	by	the	US	Energy	Information	Administration	(EIA)	[72].	Then,	we	adapted	this	system-wide	

value	to	the	southeast	U.S.	using	the	ratio	between	GDP	per	capita	in	Texas	and	GDP	per	capita	in	the	

SERC	states	[68,	70].	For	more	details	about	LOL,	LoLP,	and	VOLL,	please	see	the	SI.	

2.11 Normalized	cost	of	energy	

The	normalized	cost	of	energy	is	analogous	to	the	levelized	cost	of	energy	(LCOE),	but	in	this	study	it	is	

used	to	perform	a	consistent	comparison	between	different	the	generator	fleets	under	different	

scenarios.	To	compute	the	normalized	cost	of	energy,	we	summed	up	all	annualized	fixed	and	variable	

costs	and	divided	by	the	total	annual	electricity	consumption	(D2050)	in	each	scenario.	The	set	of	costs	C	

includes	capital	expenditures	(capex)	costs	(annualized	using	a	5%	discount	rate	and	standard	power	

plant	lifetimes),	annual	fixed	operation	and	maintenance	(fixed	O&M)	costs,	annual	variable	O&M	costs,	

fuel	costs,	and	annual	cost	of	loss	of	load.	We	computed	total	cost	of	loss	of	load	(in	$/year)	in	each	

annual	simulation	by	summing	up	all	values	of	unfulfilled	electricity	demand	and	multiplying	it	by	the	
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value	of	lost	load	(3,018	$/MWh).	More	information	about	the	other	parameters	in	this	calculation	is	

available	in	the	SI.	

Normalized	cost	of	energy	[$/MWh] 		= 	
∑ 𝑐𝑜𝑠𝑡	[$/year]𝑐𝑜𝑠𝑡∈C

𝐷"#$#	[MWh/year]
	

We	also	estimated	the	implied	cost	of	avoiding	the	potential	load	loss	in	the	scenario	Ignore	CC/CC	

effects.	To	estimate	this	cost,	we	computed	the	difference	in	annual	investment	and	operating	expenses	

in	the	scenarios	Plan	for	CC/CC	effects	(cost)	and	Ignore	CC/CC	effects	(cost’).	Then	we	divided	this	

monetary	value	by	the	difference	in	loss	of	load	in	scenarios	scenarios	Plan	for	CC/CC	effects	(LoL)	and	

Ignore	CC/CC	effects	(LoL’).	This	value	can	then	be	compared	to	the	value	of	lost	load	(3,018	$/MWh).	

Implied	Cost	[$/MWh] 	=
∑ 𝑐𝑜𝑠𝑡𝑐𝑜𝑠𝑡∈C\LoL −∑ 𝑐𝑜𝑠𝑡′𝑐𝑜𝑠𝑡′∈C\LoL [$/year]

LOL	 − 	LOL′	[MWh/year]
	

3 Results	

Figure	3	compares	the	normalized	cost	of	energy	(in	$/MWh)	of	the	four	scenarios	analyzed.	This	

metric	takes	into	consideration	all	costs	from	different	technologies	and	allows	for	a	consistent	

comparison	across	the	different	scenarios	and	generator	fleets.	To	compute	the	normalized	cost	of	

energy,	we	summed	up	all	annualized	fixed	and	variable	costs	and	divided	by	the	total	electricity	

demand	in	each	scenario.	The	normalized	cost	of	energy	in	each	scenario	consists	of	five	components:	

capital	expenditures	(capex)	costs,	fixed	operation	and	maintenance	(fixed	O&M)	costs,	variable	O&M	

costs,	fuel	costs,	and	total	cost	of	loss	of	load.	To	compute	the	total	cost	of	lost	load,	we	used	a	value	of	

lost	load	(i.e.,	consumer’s	average	willingness	to	pay	to	avoid	electricity	curtailments)	of	3,018	$/MWh	

(in	2015	USD)	(see	Methods).	

Not	planning	for	climate	change	can	result	in	a	substantially	higher	normalized	cost	of	energy	than	

other	scenarios.	In	scenarios	where	the	planning	stage	did	not	account	for	climate-induced	risks,	the	

normalized	cost	of	energy	was	36.8	$/MWh	(Ignore	CC/no	CC	effects)	and	99.3	$/MWh	(Ignore	CC/CC	

effects)	(2015	USD).	In	the	scenarios	where	planning	did	account	for	climate-induced	risks	(Plan	for	
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CC/CC	effects	and	Plan	for	CC/no	CC	effects),	the	normalized	cost	of	energy	was	40	$/MWh.	Planning	for	

climate	change	resulted	in	capex	costs	of	approximately	12.7	$/MWh,	roughly	60%	higher	than	when	

ignoring	climate	change	(8	$/MWh).	However,	planning	for	climate	change	resulted	in	smaller	variable	

costs	because	the	expansion	policy	builds	more	solar	generators.	Since	solar	(and	wind)	have	near-zero	

marginal	operating	costs,	more	solar	generation	reduces	variable	costs.	In	scenarios	Plan	for	CC/no	CC	

effects	and	Plan	for	CC/CC	effects,	variable	costs	(fuel	+	variable	O&M)	are	approximately	19.5	$/MWh.	

In	scenarios	Ignore	CC/no	CC	effects	and	Ignore	CC/CC	effects	variable	costs	are	approximately	20.5	

$/MWh.	The	total	cost	of	lost	load	dominates	the	normalized	cost	of	energy	in	scenario	Ignore	CC/CC	

effects	(Figure	3).	In	this	scenario,	the	total	cost	of	lost	load	accounts	for	64%	of	the	normalized	cost	of	

energy,	which	makes	this	scenario	the	costliest.	

	

	

Figure	3:	Comparison	of	normalized	costs	of	energy	in	2050	in	the	four	scenarios.	The	values	are	
the	average	of	the	simulations	using	data	from	twenty	different	GCMs.	Error	bars	represent	the	
90%	uncertainty	range	of	each	component	over	the	twenty	GCM	simulations.	

Given	the	importance	of	the	total	cost	of	lost	load	in	our	results,	we	further	investigate	the	value	of	lost	

load.	We	performed	additional	analysis	to	contextualize	the	implications	of	the	value	of	loss	of	load	in	

our	scenarios.	Specifically,	we	estimated	the	implied	cost	of	avoiding	the	large	amount	of	load	loss	in	
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the	scenario	Ignore	CC/CC	effects	(see	Methods).	This	way	we	could	compare	it	to	the	estimated	values	

in	the	literature.	According	to	our	results,	the	cost	of	avoiding	the	amount	of	load	loss	in	scenario	

Ignore	CC/CC	effects	would	be	approximately	175	$/MWh	(6%	of	the	value	of	lost	load	used	in	Figure	

3).	This	result	suggests	that	the	cost	(in	$/MWh)	of	planning	for	climate	change	and	thus	avoiding	lost	

load	is	substantially	lower	than	the	values	of	the	willingness	of	consumers	to	pay	to	avoid	a	period	

without	electricity	currently	used	in	the	literature.	

Figure	4	shows	average	total	generation	in	2050	from	the	twenty	UCED	simulations	in	each	scenario.	In	

the	scenarios	that	included	climate	change	effects	in	the	UCED	model,	total	annual	electricity	

consumption	was	approximately	673	TWh,	or	3%	higher	than	in	the	scenarios	that	did	not	account	for	

climate	change	in	the	UCED	model.	Most	of	this	increase	in	consumption	was	concentrated	in	the	

summer,	when	demand	was	16%	higher.	Conversely,	electricity	consumption	in	the	winter	was	

approximately	3%	lower	in	the	scenarios	that	include	climate	impacts	in	the	UCED	model.	

	

	

Figure	4:	Comparison	of	the	generation	by	source	in	each	season	and	scenario.	Generation	values	
are	averages	over	the	twenty	annual	simulations	in	each	scenario.	Error	bars	represent	the	90%	
uncertainty	range	of	the	total	generation	over	the	twenty	GCM	simulations.	
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The	generation	profiles	in	the	summer	are	of	particular	interest.	In	the	summer,	RCP	4.5	meteorological	

conditions	resulted	in	climate-induced	capacity	deratings	of	natural	gas	power	plants.	In	scenario	Plan	

for	CC/CC	effects,	fleet	planning	partly	offset	these	climate-induced	deratings	by	investing	in	more	solar	

power.	Solar	power	plants	in	the	southeast	U.S.	typically	have	higher	power	output	in	summertime	

compared	to	wintertime	(see	section	1.5	in	SI).	By	having	more	solar	energy	available,	the	system	is	

able	to	supply	virtually	all	electricity	demand.	Conversely,	in	scenario	Ignore	CC/CC	effects,	fleet	

planning	did	not	account	for	climate-induced	deratings	of	natural	gas	power	plants.	As	a	result,	the	

cost-minimization	solution	in	the	capacity	expansion	model	relied	on	natural	gas	investments	to	meet	

demand	and	did	not	invest	heavily	in	solar	plants.	When	the	natural	gas	plants	were	not	able	to	operate	

at	full	capacity	during	summertime	under	RCP	4.5	conditions,	there	was	a	steep	increase	in	the	

occurrence	of	loss	of	load	events.	In	scenario	Ignore	CC/CC	effects,	the	system	fails	to	deliver	12	TWh	of	

the	summertime	electricity	demand	(average	of	the	UCED	simulations	for	2050	using	data	from	twenty	

GCMs).	

3.1 Loss	of	load	probability	

Figure	5a	shows	the	distribution	of	loss	of	load	probability	(LoLP)	in	each	of	the	four	scenarios.	LoLP	

quantifies	the	expected	number	of	hours	in	the	year	when	a	loss	of	load	event	of	any	magnitude	

happened	in	our	simulations.	The	scenarios	(Plan	for	CC/no	CC	effects	and	Plan	for	CC/CC	effects)	in	

which	capacity	expansion	accounted	for	climate-induced	changes	in	demand	and	supply	of	electricity	

have	low	LoLPs.	This	aligns	with	negligible	lost	load	observed	in	those	scenarios	(Figure	5a).	In	the	

scenario	Plan	for	CC/no	CC	effects	in	which	we	included	climate	change	impacts	by	2050,	the	system	has	

excess	capacity,	which	results	in	approximately	zero	LoLP.	In	the	scenario	Plan	for	CC/CC	effects,	fleet	

expansion	decisions	were	sufficient	to	cope	with	the	estimated	climate	change	effects	by	2050,	

resulting	in	low	LoLP	(0.27%).	Similarly,	in	the	scenario	where	the	capacity	expansion	model	did	not	

account	for	climate	induced	constraints,	but	climate	change	impacts	were	included	in	the	2050	

operations	stage,	LoLP	is	small	(0.14%).	Unlike	these	other	three	scenarios,	scenario	Ignore	CC/CC	

effects	had	average	LoLP	levels	of	approximately	12%,	corresponding	to	roughly	1,050	hours	in	2050	in	

which	the	system	cannot	meet	the	full	load.	This	high	value	of	LoLP	in	this	last	scenario	is	due	to	two	

interrelated	climate-induced	constraints	that	were	not	considered	in	the	planning	stage:	the	increase	in	
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electricity	demand	related	to	changes	in	climate	conditions,	and	the	potential	reduction	in	thermal	

capacity	in	summertime.	

Figure	5b	compares	the	kernel	densities	of	the	loss	of	load	values	in	the	four	scenarios	simulated.	Areas	

under	each	curve	are	scaled	in	order	to	better	represent	the	different	average	probabilities	in	each	

scenario.	As	expected,	the	density	plot	for	scenario	Plan	for	CC/no	CC	effects	show	virtually	probability	

zero	of	any	loss	of	load	events.	The	density	plots	for	scenarios	Ignore	CC/no	CC	effects	and	Plan	for	

CC/CC	effects	present	similar	distributions	of	loss	of	load	events.	Both	distributions	have	low	

probabilities	of	any	type	of	shortage	event.	The	average	loss	of	load	value	in	these	two	scenarios	is	

approximately	3.8	GW	and	4.5	GW,	respectively.	On	the	other	hand,	Ignore	CC/CC	effects	shows	a	wide	

range	of	possible	values	of	load	loss.	The	average	load	loss	value	is	approximately	14	GW.	However,	

there	is	a	2%	probability	that	simulated	load	losses	in	this	scenario	could	surpass	23	GW	(17%	of	the	

average	peak	demand	value	in	this	scenario).	

	

Figure	5:	(a)	Comparison	of	the	loss	of	load	probability	(LoLP)	in	the	four	scenarios	simulated.	
These	values	represent	the	expected	number	of	hours	in	the	year	when	a	loss	of	load	event	of	any	
magnitude	happened	in	our	simulations.	The	boxplots	in	each	scenario	were	compiled	by	
simulating	8760	hours	in	the	year.	The	range	in	the	boxplots	represents	the	different	values	
compiled	in	the	twenty	different	climate	simulations	in	each	scenario.	(b)	Comparison	of	the	kernel	
densities	of	loss	of	load	(LoL)	in	the	four	scenarios	simulated.	Areas	under	the	four	curves	are	
scaled	in	order	to	represent	the	different	values	of	the	overall	probabilities	of	loss	of	load	in	each	
scenario.	
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3.2 Drivers	of	loss	of	load	

Under-investment	in	capacity	drives	high	values	of	lost	load	in	2050	in	scenario	Ignore	CC/CC	effects.	To	

quantify	the	drivers	of	lost	load,	we	used	the	following	heuristic:	load	losses	are	driven	by	thermal	

deratings	first	and	under-investment	in	capacity	second.	Figure	6a	shows	the	breakdown	of	the	average	

lost	load	(in	GW)	that	result	from	thermal	deratings	and	from	capacity	shortfalls	as	a	result	of	under-

investments	in	capacity.	Capacity	shortfalls	account,	on	average,	for	approximately	70%	of	the	amount	

of	lost	load.	Thermal	deratings	account	for	approximately	30%.	The	error	bars	represent	the	range	of	

variability	of	each	component	over	the	twenty	GCMs	simulated.	

While	under-investment	in	capacity	accounts	for	a	larger	percentage	of	the	lost	load	in	2050	in	scenario	

Ignore	CC/CC	effects,	loss	of	load	events	driven	by	thermal	derating	happen	more	frequently	than	the	

ones	driven	by	capacity	shortfall.	Figure	6b	shows	the	joint	density	plot	of	the	two	components.	The	

horizontal	axis	represents	the	value	of	lost	load	caused	by	thermal	deratings,	while	the	vertical	axis	

shows	the	lost	load	caused	by	capacity	shortfalls	that	result	from	under-investments	in	capacity.	Red	

colors	represent	higher	frequency	events,	while	blue	colors	represent	lower	frequency	events.	The	

marginal	densities	of	each	component	are	also	illustrated	in	the	plot.	This	figure	highlights	that	capacity	

shortfalls	that	result	from	under-investments	in	capacity	are	responsible	for	larger	loss	of	load	events	

that	happen	infrequently.	Thermal	deratings,	on	the	other	hand,	lead	to	smaller	but	more	frequent	loss	

of	load	events.	The	mode	of	the	distributions	is	located	at	a	point	where	thermal	deratings	account	for	

approximately	3	GW	of	lost	load	while	capacity	shortfalls	are	close	to	zero.	Load	losses	driven	by	

thermal	deratings	have	a	maximum	value	of	approximately	7	GW.	Simulated	load	losses	in	scenario	

Ignore	CC/CC	occurs	could	total	over	35	GW	in	some	low	probability	events	(see	Figure	5b).	Figure	6a	

shows	that	these	low	probability	events	would	be	driven	mostly	by	shortages	in	installed	capacity.	
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Figure	6:	Decomposition	of	the	loss	of	load	values	in	scenario	Ignore	CC/CC	occurs.	The	thermal	
derating	component	corresponds	to	loss	of	load	events	that	occurred	because	of	the	deratings	of	
thermal	generators.	The	capacity	shortfall	component	corresponds	to	those	loss	of	loads	caused	by	
the	lack	of	installed	capacity	on	the	system.	(a)	shows	the	average	value	of	these	components.	The	
red	error	bars	represent	the	range	of	values	of	each	component	over	the	twenty	GCMs	simulated.	
(b)	shows	the	two-dimensional	probability	density	function	of	the	two	components.	
	

3.3 Planning	with	CO2	emission	targets	

We	also	performed	fleet	expansion	simulations	imposing	50%	and	80%	reduction	in	CO2	emissions	by	

2050	[54]	(compared	to	2015).	Adding	the	50%	reduction	target	resulted	in	fleets	with	installed	

capacity	2%	(Ignore	CC)	and	3%	(Plan	for	CC)	larger	than	the	fleets	designed	without	this	emissions	

constraint	(see	Figure	S3	in	SI).	This	small	increase	in	installed	capacity	was	a	result	of	additional	

deployments	of	solar	and	wind	in	order	to	meet	the	emissions	target.	Cost	and	reliability	results	with	

this	CO2	emission	constraint	in	each	scenario	were	similar	to	the	ones	presented	in	Figures	3	–	6	(see	

Figure	7,	Table	2,	and	section	2	in	SI).	On	the	other	hand,	the	fleets	designed	with	80%	reduction	in	CO2	

0

5

10

15

Ignore CC/
CC effects

Av
er

ag
e 

Lo
ss

 o
f L

oa
d 

(G
W

)
thermal derating

capacity shortfall

(a)

0

0.007

0.014

0

10

20

30

40

0.0 2.5 5.0 7.5 10.0
Thermal deratings (GW)

C
ap

ac
ity

 s
ho

rtf
al

l (
G

W
)

(b)



Carnegie	Mellon	Electricity	Industry	Center	Working	Paper	CEIC-21-01	 www.cmu.edu/electricity	

19	

emissions	were	substantially	different	[54]	from	the	ones	planned	without	CO2	limits	(see	Figure	S3	in	

SI).	In	the	scenarios	with	80%	reduction,	there	was	a	large	increase	of	renewables	in	the	fleet	to	meet	

the	emission	target.	Resulting	fleets	were	68%	(Ignore	CC)	and	47%	(Plan	for	CC)	larger	than	fleets	

designed	without	emission	constraints.	This	increase	in	installed	capacity	resulted	in	an	increase	in	

capital	expenditure	costs	(see	Figure	7	and	Table	2).	Furthermore,	the	investments	in	renewable	

energy	(at	the	expense	of	natural	gas	investments)	reduced	the	vulnerability	of	the	fleets	to	climate	

change,	so	the	cost	of	lost	load	in	scenario	Ignore	CC/no	CC	effects	is	93%	less	than	for	our	results	

without	CO2	limits	(Figures	3	and	7).	Because	of	greater	capex	and	lower	lost	load	costs,	the	scenarios	

Ignore	CC/CC	effects	and	Plan	for	CC/no	CC	effects	had	similar	costs	(within	1%).	Conversely,	without	a	

CO2	cap,	scenario	Ignore	CC/CC	effects	had	costs	148%	greater	than	scenario	Plan	for	CC/no	CC	effects	

(Figure	3).	

4 Discussion	

Our	paper	demonstrates	that	climate	change	could	significantly	reduce	the	reliability	of	future	power	

systems	if	system	planners	do	not	account	for	climate	change	in	their	planning	processes.	Planning	

agents	usually	use	standard	target	levels	of	reliability	metrics	to	design	the	expansion	of	the	electricity	

grid.	For	example,	an	acceptable	target	level	of	LoLP	is	0.1	days/year	(or	equivalently,	0.03%)	[46].	For	

the	fleets	planned	without	CO2	constraints,	the	results	from	the	sce	narios	Ignore	CC/no	CC	effects,	Plan	

for	CC/CC	effects,	and	Plan	for	CC/no	CC	effects	all	reached	levels	of	LoLP	close	to	this	target.	However,	

scenario	Ignore	CC/CC	occurs	results	in	levels	of	LoLP	of	12%,	which	would	be	an	unacceptable	level	of	

outages.	Outages	in	scenario	Ignore	CC/CC	occurs	were	also	of	longer	duration	(115%	longer	on	

average	than	in	the	first	two	scenarios,	see	section	2	in	SI)	and	of	larger	magnitude	(200%	greater	than	

in	the	first	two	scenarios,	see	Figure	5b).	These	high	levels	of	LoLP	resulted	in	substantial	costs	to	the	

system	(99	$/MWh,	at	least	148%	higher	than	in	the	other	scenarios).	
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Figure	7:	Comparison	of	normalized	costs	of	energy	in	2050	of	the	fleets	planned	with	50%	and	
80%	reductions	in	CO2	emissions	(compared	to	2015).	The	values	are	the	average	of	the	simulations	
using	data	from	twenty	different	GCMs.	Error	bars	represent	the	90%	uncertainty	range	of	the	total	
cost	over	the	twenty	GCM	simulations.	

We	also	found	that	there	are	asymmetric	costs	and	benefits	for	planners	to	incorporate	climate	change.	

Specifically,	we	find	that	the	costs	of	erroneously	ignoring	climate	change	in	planning	(that	is,	ignoring	

climate	change	but	experiencing	its	impacts	later)	can	be	significant	-	an	increase	of	59	$/MWh	

(+147%).	On	the	other	hand,	the	additional	costs	of	erroneously	accounting	for	climate	change	(that	is,	

planning	for	climate	change	but	experiencing	negligible	climate	impacts)	are	relatively	minor	-	on	the	

order	of	3	$/MWh	(+9%).	Furthermore,	we	found	that	the	additional	investment	and	operating	costs	

needed	to	avoid	the	lost	load	that	occurs	in	scenario	Ignore	CC/CC	occurs	would	represent	around	$175	

for	each	MWh	of	unserved	load,	which	is	considerably	lower	than	estimated	values	of	the	willingness	of	

electricity	consumers	to	pay	to	avoid	loss	of	load.	
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Table	2:	Summary	of	results	

CO2	constraint	 Scenario	 Installed	 Normalized	 Annual	 Annual	
	 	 Capacity	 cost	of	Energy	 Demand	 Lost	Load	

	 	 (GW)	 ($/MWh)	 (TWh)	 (TWh)	

No	CO2	 Ignore	CC/no	CC	effects	 150.4	 36.8	 653.9	 0.0	
limits	 Plan	for	CC/CC	effects	 202.2	 40.2	 672.5	 0.1	
	 Plan	for	CC/no	CC	effects	 202.2	 40.0	 653.9	 0.0	

	 Ignore	CC/CC	effects	 150.4	 99.3	 672.5	 14.1	

50%	CO2	 Ignore	CC/no	CC	effects	 153.9	 36.8	 653.9	 0.0	
reduction	 Plan	for	CC/CC	effects	 209.0	 40.3	 672.5	 0.1	
	 Plan	for	CC/no	CC	effects	 209.0	 40.2	 653.9	 0.0	

	 Ignore	CC/CC	effects	 153.9	 93.0	 672.5	 12.7	

80%	CO2	 Ignore	CC/no	CC	effects	 252.9	 40.9	 653.9	 0.0	
reduction	 Plan	for	CC/CC	effects	 297.0	 44.0	 672.5	 0.0	
	 Plan	for	CC/no	CC	effects	 297.0	 44.7	 653.9	 0.0	

	 Ignore	CC/CC	effects	 252.9	 44.9	 672.5	 1.0	

	

Additionally,	we	found	that	fleets	that	achieve	an	80%	reduction	in	CO2	emissions	are	less	vulnerable	to	

these	estimated	impacts	of	climate	change.	Because	the	capacity	model	needs	to	add	more	renewable	

capacity	(wind	and	solar)	to	meet	the	stricter	emission	constraint,	this	results	in	excess	generation	

capacity.	This	surplus	capacity	also	helps	to	reduce	climate-induced	vulnerabilities	even	in	the	

scenarios	where	the	planning	stage	erroneously	did	not	account	for	climate	change	impacts	(Ignore	

CC/CC	occurs).	

There	are	some	caveats	in	our	analysis	that	should	be	taken	into	account	when	interpreting	our	results.	

First,	while	our	expansion	policies	accounted	for	the	uncertainty	in	climate	projections,	they	were	

optimized	assuming	static	scenarios.	In	these	scenarios,	all	investment	decisions	for	the	planning	

horizon	(2015–2050)	are	defined	at	the	beginning	of	the	period,	using	the	information	available	at	this	

time	(e.g.,	the	projections	of	climate-induced	impacts).	In	real	life,	planning	agents	would	adapt	their	

decisions	as	they	start	to	observe	some	of	the	extreme	hazards	simulated	in	scenario	Ignore	CC/CC	

occurs.	Our	results	in	scenario	Ignore	CC/CC	occurs	could	be	interpreted	as	a	“worst-case”	scenario.	To	
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represent	a	more	realistic	investment	dynamics	in	the	capacity	expansion	model,	future	extensions	of	

this	work	could	use	a	different	approach	that	inherently	included	uncertainty	and	the	acquisition	of	

information	during	the	planning	stage	(e.g.,	using	a	real	options	framework	[26]).	

Also,	because	our	objective	was	to	isolate	first	order	impacts	of	climate	change	on	the	power	grid,	we	

assumed	that	future	electricity	demand	would	only	differ	from	present	values	because	of	changes	in	

climate	conditions.	Future	analysis	should	also	integrate	socio-economic	changes	with	climate-induced	

ones.	For	example,	electrification	of	the	transportation	sector	could	increase	total	annual	electricity	

consumption	between	25%	and	71%	by	2050	[43].	Additionally,	demand	for	ambient	cooling	–	the	

main	driver	of	the	increase	in	lost	load	in	our	results	–	will	also	depend	strongly	on	socio-economic	

factors	such	as	its	affordability	[80].	Moreover,	if	population	expands	in	our	study	region	as	expected	

[67],	then	we	could	expect	climate	change	to	cause	a	larger	increase	in	demand,	exacerbating	planning	

and	operational	trade-offs	found	in	our	results.	

We	did	not	include	transmission	constraints,	nor	changes	in	solar	and	wind	generation	because	of	

climate	change.	Transmission	capacity	is	sensitive	to	ambient	air	temperature	and	climate	change	

could	result	in	additional	transmission	restrictions	[58,	6].	Climate	change	could	also	affect	solar	and	

wind	generation	profiles	[16,	17,	40],	which	could	impact	our	results	given	the	substantial	participation	

of	renewables	in	our	future	fleets.	These	climate	impacts	on	renewable	generation	could	be	particularly	

important	for	scenarios	with	stringent	carbon	constraints.	However,	downscaling	future	wind	and	solar	

resources	to	the	hourly	resolution	necessary	for	our	models	is	the	subject	of	significant	ongoing	

research	and	computationally	costly.	Future	work	could	incorporate	these	factors	in	our	modeling	

framework	and	would	be	particularly	important	for	understanding	the	climate-induced	impacts	on	

low-carbon	power	systems.	

In	spite	of	these	modeling	limitations,	the	results	presented	in	this	study	could	inform	planning	agents	

in	the	power	sector	to	come	up	with	adaptation	strategies	to	cope	with	climate	change	risks.	According	

to	our	results,	making	present-day	planning	decisions	that	account	for	climate-induced	effects	would	

be	substantially	less	costly	than	ignoring	these	risks.	When	we	did	not	include	climate-induced	impacts	

in	the	operations	stage	(2050),	the	energy	costs	from	the	fleet	planned	including	these	impacts	were	

9%	higher	than	the	energy	costs	of	the	fleet	planned	ignoring	these	impacts.	Conversely,	when	climate	
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induced	impacts	were	included,	the	energy	costs	from	the	fleet	planned	including	these	impacts	were	

60%	lower	than	those	of	the	fleet	planned	ignoring	climate-induced	impacts.	Other	adaptation	

strategies	not	included	in	our	analysis	framework	would	also	be	important	to	make	the	grid	more	

resilient	to	the	impacts	of	climate	change.	For	example,	in	our	analysis	we	assumed	that	energy	

efficiency	would	remain	constant	at	present	levels.	However,	increasing	efficiency	of	ambient	cooling	

methods	could	also	be	an	important	adaptation	strategy.	Some	of	these	adaptation	strategies	–	such	as	

installing	more	wind	and	solar	power	plants	–	would	also	help	to	mitigate	future	CO2	emissions,	as	we	

found	in	our	80%	CO2	cap	scenario.	This	dual	benefit	of	these	strategies	(adaptation	and	mitigation)	

makes	them	even	more	attractive.	As	planning	agents	look	into	sustainable	pathways	for	the	

decarbonization	of	electricity	generation,	studies	that	integrate	the	different	vulnerabilities	of	the	

power	system	to	climate	change	will	help	decision-makers	mitigate	reliability	and	affordability	

challenges	facing	the	design	of	the	future	power	grid.	
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