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Abstract 

This dissertation explores the connection between the climate and health impacts of emissions, focusing 

primarily on the electric power sector. The combustion of fossil fuels is a critical source of carbon dioxide— 

the principal greenhouse gas driving climate change—and of conventional air pollutants that are detrimental 

to human health. In this work, we explore the connection between these impacts by examining their role in 

shaping public support for emissions reductions, by advancing methods for quantifying the health impacts of 

emissions, and by investigating the benefits of directly linking and co-optimizing for benefits related to these 

two impacts during the design of policies for emissions reductions. 

In Chapter 2, we conduct a U.S.-based discrete choice survey to explore the influence of climate and 

health information on respondents’ support for reducing emissions. We find that, on average, respondents 

value information on the climate and health impacts of emissions, and are willing to pay more for emissions 

reductions that target both health and climate benefits simultaneously than they are for scenarios that address 

only climate or health alone. Respondents also demonstrate that their support for renewable energy sources is 

largely driven by the perceived health and climate benefits those sources would provide. These findings 

highlight the importance of communicating these types of benefits when advancing emissions reductions or 

policies intended to further clean energy. 

We extend this line of questioning in Chapter 3, in which we conduct a similar survey among residents of 

ten Chinese cities. In addition to the survey structure from Chapter 2, we use observed air quality data from 

the locations of the respondents to explore whether air pollution at different time-scales (e.g. hourly, daily, or 

annual averages) shows any relationship with preferences for emissions reductions. As with the U.S.-based 

survey, the average respondent demonstrates a willingness to pay more in electricity bills for cleaner energy 

sources, and in particular sources that are expected to address both health and climate issues. While short-

term air quality levels show no relationship with respondents’ support for emissions cuts, respondents in 

areas of historically worse air quality demonstrate substantially higher willingness to pay for reducing 

emissions to improve human health, suggesting the importance of awareness of long-term pollution trends to 

building support for emissions reductions.  

Having explored how the public interacts with information on the climate and health impacts of 

emissions, Chapter 4 sets out to evaluate the health effects of air pollution in the U.S. We use an integrated 

assessment model with reduced complexity air quality modeling and emissions data from 2008, 2011, and 

2014 to estimate county-level ambient particulate matter concentrations, population exposure, and finally 

health consequences, with a focus on how the location of those consequences relate to the origin of 

emissions. We estimate that total health damages in the U.S. declined from 2008 to 2014, driven largely by the 

closure of point sources like coal power plants. Despite this, some counties incur increasing per capita health 

damages over that time period. Though decreasing slightly over time, a large share of health damages 
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continues to be attributable to pollution originating in a different location from where the damages are 

incurred, implying a sustained need for integrated and transboundary approaches to managing air pollution. 

Finally, Chapter 5 builds on the previous work by examining how estimates of the health impacts of 

emissions might be incorporated into the design of policies intended to address climate change for the electric 

power sector. Using data on the existing fossil fuel fleet and information on the marginal damage of pollution 

from the analysis in Chapter 4, we investigate how changing the location of power plant retirements and 

emissions reductions might achieve the same climate goals while maximizing health benefits. We find that 

using health to inform which plants retire and are replaced by natural gas can increase health benefits by close 

to one-third while incurring relatively incremental mitigation costs. These gains are in addition to the 

substantial health benefits achieved by a climate-only approach and are fairly robust to uncertainty and 

subjective parameter decisions. Policy makers might incorporate these findings by more directly considering 

the health implications of different pathways for achieving climate targets.  

 

Keywords: electric power, emissions, climate change, air pollution, human health impacts,  

 public perceptions, discrete choice surveys 
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Chapter 1 

Introduction 

Although society has long benefited from the use of electricity, concerns over the environmental and health 

implications of the ways we supply that electricity have risen over the past several decades. At the forefront of 

this discussion is the issue of anthropogenic climate change. Fossil fuel combustion for the generation of 

electricity is one of the leading sources of carbon dioxide (CO2), a greenhouse gas that is the primary 

pollutant behind human influence on the climate system. The Intergovernmental Panel on Climate Change 

(IPCC) has found that stabilizing humanity’s contribution to global warming will require dramatic emissions 

reductions—80% or more below current levels—by the end of the century.  

Despite the fact that emissions from electric power have been falling over the past decade, the sector is 

still responsible for almost a third of annual emissions of CO2 in the U.S., second only to transportation [1]. 

In addition to the direct climate benefits of reducing power sector emissions, many advocates for climate 

action have also proposed electrifying other sectors to reduce their emissions. As such, the power sector 

stands to play a pivotal role in enabling the deep decarbonization pathways needed to mitigate our influence 

on the climate. 

Beyond their prominent role in man-made climate change, emissions from electric power use also exert an 

important influence on air quality and human health. Although there are a number of mechanisms by which 

emissions from the burning of fossil fuels can impact human health and the environment, one of the 

foremost areas of concern is the contribution of emissions to fine particulate matter, or particles with 

aerodynamic diameter less than or equal to 2.5 μm (referred to as PM2.5). Epidemiological research has 

established a strong connection between long-term exposure to PM2.5 and an increase in the risk of death, 

primarily via cardiopulmonary mortality [2].  A 2016 study on the state of global air quality found that nearly 

4.1 million deaths annually could be attributed to chronic exposure to ambient PM2.5, making it the fifth 

largest risk factor for mortality globally [3].  

Particulate matter can be directly emitted from the combustion of fossil fuels; however, the dominant 

source of PM2.5 is its formation in the atmosphere from precursor pollutants such as sulfur dioxide (SO2) and 

oxides of nitrogen (NOx). Even while conventional air pollution from power sector emissions has fallen in 

the U.S. over the past few decades—contributing to improvements in overall air quality—as of 2016 exposure 

to PM2.5 was estimated to be responsible for over 100,000 deaths annually [3]. The power sector, which some 

studies indicate is the source of as much as 70% of SO2 emissions, is estimated to be responsible for as much 

as one-fourth of the total PM2.5 health burden [4]. 

Reducing emissions from electric power generation thus stands to provide important benefits in terms of 

both mitigating anthropogenic climate change and decreasing the health burden from poor air quality. 



 2 

Achieving those reductions, however, will likely require public support for accelerating the transition from 

fossil fuels to zero-emissions energy sources. Previous work has found that the public plays a critical role in 

shaping energy policy decisions, whether in pushing for more stringent air quality regulations or opposing the 

development of new energy infrastructure [5]. Such forms of public support might include a willingness by 

electricity consumers or taxpayers to pay a premium for low-emissions electricity, to accept new generation 

facilities and their accompanying transmission lines, or to agree to low-emissions portfolio standards or other 

policy efforts to decrease emissions. More recent work has also found that consumers are increasingly 

concerned with the attributes of the technologies that provide their electricity, and are pushing for energy that 

is “cheap and clean” [6]. 

In recent years, increased attention has been given to the health benefits of climate mitigation efforts, with 

the health-related “co-benefits” of emissions reductions being presented as an additional justification for 

pursuing climate action. Although intuition suggests that an awareness of air quality and health benefits 

should bolster support for reducing emissions to tackle climate change, there have been few systematic 

efforts evaluating how information on health co-benefits affects support for emissions reductions. More 

generally, a better understanding of how individuals evaluate the tradeoffs across the different benefits and 

costs of decisions in electric power is likely to contribute to the design of emissions reduction strategies that 

have broader support and that better reflect the public interest, all while achieving climate and health goals.  

The linkage between climate and health is not only important from the standpoint of public preferences 

and communication; it is also potentially relevant for determining the design of policies to achieve those 

emissions reductions. To date, the majority of policies for emissions reductions have focused separately on 

either climate or health, without integrating analysis of the two objectives during the policy design process.  

Unlike CO2—which is a globally well-mixed pollutant and thus has same the same climate forcing effect 

regardless of the location it is emitted—the effect of air pollutants such as SO2 and NOx on human health 

varies substantially over space. This variation is driven by a number of factors, including atmospheric 

chemistry and meteorology governing the secondary formation of PM2.5 as well as dispersion and population 

exposure. As such, similar reductions in CO2 across two different locations may yield vastly different results 

in terms of co-pollutant reduction and the subsequent air quality and human health benefits. By treating 

health as “co-benefit” that is calculated after policy is developed, policy makers may thus be foregoing 

additional health benefits that might be achieved by co-optimizing across climate and health objectives in the 

policy design process. 

This thesis focuses on the intersection of climate and health for informing decisions in electric power. The 

chapters of the work cluster around two distinct aspects of this decision-making: how climate and health 

information affects electric consumers’ support for emissions reductions, and how the health impacts of 

emissions might be quantified and incorporated into the design of policies for emissions reductions.  
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Chapters 2 and 3 explore how individuals make tradeoffs between the climate and health benefits of 

emissions reductions and additional costs to electricity consumers. In Chapter 2, we employ a randomized 

control trial to probe how providing information on climate and health benefits affects U.S. electricity 

consumers’ stated support and willingness to pay for emissions reductions. In Chapter 3, we expand on this 

framework to explore how observed levels of air quality affect respondents’ willingness to make tradeoffs for 

emissions reductions using a sample of urban Chinese residents. Both of these studies rely on the use of a 

discrete choice survey, a type of stated preference that makes inferences based on respondents’ choices 

amongst different alternatives, with the benefit of being able to elicit respondents’ valuation of tradeoffs 

across the various attributes of those alternatives.  

In the first two chapters, we show that respondents in both the U.S. and China are willing to pay more for 

electricity if that electricity has fewer emissions that contribute to climate and health damages. The results 

from Chapter 2 also indicate that providing information on both climate and health benefits can help spur 

additional support for emissions reductions, suggesting that individuals do indeed value information on 

improvements to both of these categories. In Chapter 3, we find that urban Chinese respondents who live in 

the locations that have historically been the most polluted also exhibit the strongest preferences for reducing 

emissions related to human health, indicating that long-term exposure to poor air quality reinforces awareness 

and concern over emissions, and may also be a motivator for action.  

Having examined how information on climate and health affects public preferences for emissions 

reductions, in Chapter 4 we shift to exploring how to quantify the health burden of emissions. We use the 

AP3 integrated assessment model, which applies reduced complexity air quality modeling to emissions and 

population data to estimate county-level PM2.5 concentrations and exposure for the continental U.S. By 

incorporating estimates of the concentration-response function from epidemiological studies, the model can 

then estimate annual mortality levels from emissions, which can then be monetized based on a valuation of 

mortality risk. In addition, our modeling approach allows us to understand and analyze the flow of emissions 

across localities, and to attribute health damages to such transboundary emissions flows. 

We apply this model to emissions data for 2008, 2011, and 2014, finding that total damages from 

emissions have continued to decrease from 2008 to 2014, driven primarily by reductions in emissions from 

point sources such as coal-fired power plants. Although the extent of health damages caused by emissions 

from locations other than the location of damages has decreased over the period from 2008 to 2014, close to 

one-third of damages are caused by emissions that cross state lines, implying a continued need for interstate 

and federal cooperation in air quality management. 

The ability to estimate the health damages from emissions enables a better understanding of the health 

implications of different emissions reductions aimed at achieving climate targets, and consequently offers the 

opportunity to design policies that co-optimize for benefits to both climate and health. Chapter 5 presents a 

case study on how such a co-optimization might be pursued for specifying emissions reductions from electric 
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power plants. The chapter explores how minimizing health damages affects the locations best suited for 

retiring coal plants. We use a simplified capacity expansion model to meet annual electricity demand by 

replacing retiring plants with natural gas combined cycle facilities, which have lower climate and health 

impact. To make health and climate comparable, we monetize both types of damages using a marginal 

damage: health using the marginal emission damage approach outlined in Chapter 4, and climate using 

estimates for the Social Cost of Carbon.  

The results from Chapter 5 indicate that a climate-only emissions strategy can provide substantial air 

quality and human health benefits under a wide range of parameter and modeling assumptions. Furthermore, 

co-optimizing for climate and health benefits to determine the optimal location of emissions reductions can 

provide additional health benefits above and beyond that of a climate-only strategy at a relatively low 

incremental cost of mitigation. This suggests potential gains to health may be possible if climate policy is 

integrated into traditional emissions and air pollution regulatory frameworks, and that by not considering 

health policy makers both understate the benefits of climate-related emissions reductions and forego potential 

benefits that could be achieved. Furthermore, the counties and states required to make the biggest reductions 

are dependent on the type of optimization pursued, indicating the potential value of interstate cooperation in 

achieving emissions reduction in an optimal, equitable, and politically acceptable way. 

Chapter 6 synthesizes the findings from these four studies, and provides a discussion of the possible 

policy recommendations that ensue. Decisions in the electric power sector are complex; they are made by a 

wide range of institutional actors, including utilities, regulators, consumers, governments, and market 

participants. Climate and health implications are but two of the many outcomes that decision makers must 

consider in determining how to provide a reliable supply of electricity in the future. Nevertheless, this work 

aims to provide insight as to how public preferences for the climate and health consequences of emissions 

might be understood, and how to advance the integration of air quality and health into decision- and policy-

making processes. By advancing the use of climate and health metrics in electric power decisions, it is the aim 

and hope of this project to help further the transition to a sustainable and equitable energy future for all.  
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Chapter 2 

The effect of climate and health information on 
support for emissions reductions 

Motivating questions: How does information on the climate and health aspects of emissions 

reductions affect public support for those reductions? How do U.S. individuals think about tradeoffs 

between the cost of electricity and the climate and health benefits of cutting emissions? 

 

Support for addressing climate change and air pollution will likely depend on the type of information 

provided to the public, as well how the public treats that information. Understanding how respondents value 

the different benefits of emissions reductions—including their implications for climate change and human 

health—can enable policy makers to craft mitigation strategies that are more politically feasible and that better 

reflect public preferences, and to communicate meaningful information about proposed initiatives. 

In this chapter, we report results from a U.S.-based discrete choice survey assessing preferences for 

different combinations of electricity generation portfolios, electricity bills, and emissions reductions. Using a 

randomized control design, we test how participants’ preferences change when information on climate and 

health is explicitly provided to them.  

The analysis indicates that support for climate mitigation increases when those emissions reductions are 

accompanied by improvements to air quality and human health. We estimate that an average respondent 

would accept an increase of 19-27% in their monthly electricity bill if shown information stating that either 

CO2 or SO2 emissions are reduced by 30%; when shown information stating that both pollutants are reduced 

by 30% simultaneously, that willingness-to-pay rises to a 30-40% increase in electricity bills. Respondents’ 

choices in our survey are consistent with an implicit willingness-to-pay of $30-50 per ton of CO2 avoided and 

$27,000-40,000 per ton of SO2 avoided, which are reasonably close the average marginal damages of these 

pollutants.  

Our findings indicate that the type of emissions information provided to the public will affect their 

support for different electricity portfolios, and confirm that communicating both health and climate benefits 

of emissions reductions is indeed likely to garner additional support for policies to reduce emissions. In 

addition, these results provide potential guidance as to how much electricity consumers’ may be willing to 

spend in support of these policies, although more work is need to understand individuals heterogeneity and 

preferences under different contexts. 

The work in this chapter—including the scoping of research questions, survey design, and analysis of the 

results—was performed with advising and guidance from Alex Davis and Inês Azevedo. I was primarily 
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responsible for developing the survey instrument, pilot testing and administering the survey, conducting the 

analysis, and writing the results, also with their input.  

The content of this chapter has been published as the following: B. Sergi, A. Davis, and I. Azevedo, “The 

effect of providing climate and health information on support for alternative electricity portfolios,” Environ. 

Res. Lett., vol. 13, no. 2, 2018. Original data and code for the analysis of this work, as well as a copy of the 

survey, are available online at https://osf.io/chpfg/.  

2.1 Introduction 

Historically, public support has played an important role in shaping electricity sector decisions. Public 

reaction to poor air quality in the U.S. helped push for more stringent emissions regulations in the second 

half of the 20th century, while opposition to proposed low-carbon energy projects such as Cape Wind and the 

Shoreham nuclear power plant helped to stymie those projects [5], [7], [8]. Different forms of public support 

might include paying a premium for low-emissions electricity, accepting new renewable generation and 

accompanying transmission, or supporting low-carbon portfolio standards or other policies to encourage 

cleaner sources of electricity. 

Recent studies have explored public support for different clean energy technologies and policies. For 

example, a 2012 survey evaluated Americans’ support for a clean energy standard, finding a willingness to pay 

of 13% in higher electricity bills for a policy targeting 80% clean energy by 2035 (95% CI: 10-21% increase) 

[9]. Despite the rise in the study of attitudes toward clean energy, however, there has been less attention to 

the attributes or information most valued by individuals when evaluating these alternatives. Konisky and 

Ansolabehere (2014) find that preferences for clean energy technologies are typically based on the perceived 

attributes of these sources, such as lower cost of electricity or reduced environmental harm [6]. Other 

research has also shown that health information can be more salient than bill savings in motivating persistent 

reductions in energy consumption and garnering support for renewable portfolio standards [10], [11], that 

social co-benefits can increase support for climate mitigation [12], and that information on energy saving 

actions can crowd out support for climate change mitigation [13]. 

While studies of public opinion often rely on surveys or other direct elicitation methods, more recent 

work has explored the viability of using choice experiments to evaluate energy preferences. Discrete choice 

surveys consist of providing respondents with a series of hypothetical alternatives—each described by a 

combination of defining characteristics or attributes—and then observing the choices they make between 

those alternatives [14]–[17]. Such choice experiments can be used to replicate real choice scenarios in order to 

encourage respondents to engage with tradeoffs, and can serve as proxy for decision making when it is 

difficult to observe actual choices [18]. Recent energy-related discrete choice surveys have explored the effect 

of labeling on consumers’ preferences for energy efficiency appliances [19], preferences for buying electricity 

https://osf.io/chpfg/
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from renewable sources [20], tradeoffs between electricity bills, reliability, emissions, and energy sector 

employment [21], and the effect of technology labels on support and willingness-to-pay [22], [23].  

In this chapter, we explore how providing information on climate change and health-related air pollution 

affects individuals’ consideration of electricity generation alternatives. We deploy a choice-based survey to 

U.S. citizens (N=822) recruited using Amazon Mechanical Turk. Respondents are asked to compare 

alternatives with different sources of electricity, climate related emissions, emissions of air pollutants that 

affect respiratory health, and changes to electricity bills. Using a randomized control trial with a between-

subjects design, we investigate how varying information on climate and health aspects of emissions reductions 

affects respondents’ implicit support and willingness to pay for alternative energy portfolios.  

2.2 Methods 

Here we explain the design of the survey, the experimental design for the randomized control trial, the 

sampling method used to collect respondents, and the methods used to analyze the results.  

2.2.1 Survey design 

In the discrete choice task of the survey, respondents choose between different alternatives of electricity 

generation portfolios for their state. Each respondent faces 16 two-alternative choice scenarios and are asked 

to indicate which of the two alternatives they would prefer. Each alternative is characterized by a combination 

of up to four possible attributes, described as follows:   

1. The mix of electricity sources—referred to as the “electricity portfolio”—shown as a bar graph 

with the percentage of electricity generation coming from coal, natural gas, nuclear power, or 

renewable sources. Because demand-side energy efficiency interventions offer an important 

mitigation alternative, we also include the use of energy efficiency to offset the need for additional 

generation.  

2. Economic cost to the consumer, conveyed as a percentage change to their “monthly electricity 

bill.”  

3. Annual CO2 emissions relative to current levels in their state, which is described to respondents as 

“climate change related emissions.”  

4. Annual SO2 emissions in their state, and which is described to respondents as “health related air 

pollution.” Both emissions changes are presented with a number line to facilitate understanding. 

The levels for the attributes are shown in Table 2.1. For the electricity portfolios, each level is a 

representative portfolio named for the fuel that is dominant in that portfolio. The current national mix 

portfolio corresponds to the 2014 electricity generation in the United States, in which coal supplied about 
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40% of total generation [24]. To construct the other portfolio levels, we decrease generation from coal and 

increase generation from the alternative sources. See Appendix A.1 for a complete overview of the portfolio 

levels used in the survey.  

The levels used for changes in emissions and electricity bills are based on either proposed or discussed 

policy objectives. For example, the EPA’s Clean Power Plan targeted a national reduction in annual CO2 

emissions of 30% from a 2005 baseline and predicts a range of possible changes to retail electricity prices on 

the order of 3-10% [25], [26]. We also include a level representing deeper emissions cuts of 70% reductions in 

annual emissions, which the IPCC suggests is necessary for stabilizing CO2 levels by the end of the century 

[27]. With four attributes and five possible levels for each attribute, there are 625 unique alternatives and 

195,000 choice combinations.  

Table 2.1 – Attribute levels for the U.S. survey. See Table A.1 in Appendix A.1 details on the portfolio levels. 

 
 

Discrete choice surveys typically include a status quo option as one of the alternatives in the choice set, as 

previous work suggests that including this as an option can improve internal consistency in respondent 

decision making [28]. Because the attributes in our choice experiment are themselves defined relative to a 

baseline level, however, we did not include this status quo in every choice, although some choices do include 

a scenario with all attributes at baseline levels. While a status quo option is important for modeling 

preferences for goods that a consumer can choose not to purchase, we argue that a choice between two 

policy options is a realistic way to consider possible changes to electricity sector policy while minimizing the 

cognitive burden of the task. 

Each respondent in our survey sees a unique, semi-random subset drawn from the full factorial of two-

alternative choice combinations.1 Of the 16 choices that we present respondents, 10 of those choices were 

generated semi-randomly by the software. The remaining six choices are given fixed levels and are used to test 

whether respondents are paying attention to the task and whether their choices are consistent with transitive 

and linear preferences. 

                                                      
1 We use Sawtooth software’s “complete enumeration” algorithm to generate the subset of choices shown in each 
individual, which is intended to maximize the ability estimate main effects of the model by minimizing the number of 
times the same attribute levels appear in the same choice screen. 
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Respondents entering the survey are first provided information on the survey objectives and structure, and 

are asked to sign a consent form to participate. After indicating their state of residence, respondents then see 

a visual guide to the structure of the survey. We also supply information on the attributes provided in the 

task, including on the effects associated with CO2 and SO2 emissions.  

After this introduction, respondents answer a screening question to assess their comprehension of the 

introductory material on the attributes. Respondents proceed with the choice experiment and are faced with 

16 screens that provide 2 alternatives from which to choose. The survey ends with follow-up and 

demographic questions.  

The entire survey was designed and hosted using Sawtooth Software’s Lighthouse Studio software.2 A full, 

printed example of the online survey shown to respondents in group 4 is available online.3 Except for some 

tasks that were fixed to test for comprehension and attention, the levels of the attributes and their 

combinations with other attributes were randomized for each respondent.4 

2.2.2 Experimental protocol 

To test for the relative importance of emissions information to individuals’ preferences, we include a 

between-subjects experimental design in which the number of attributes displayed in the task varies by 

respondent. Between-subjects designs have been used in several previous energy related stated preference 

contexts [19]. Specifically, we have four experimental groups that see alternatives that either include or omit 

the two emissions attributes. The groups are outlined as follows.  

1. Group 1: respondents see only information about the electricity portfolio and the electricity bill. 

2. Group 2: respondents see only information about the electricity portfolio, the electricity bill, and 

CO2 emissions. 

3. Group 3: respondents see only information about the electricity portfolio, the electricity bill, and SO2 

emissions. 

4. Group 4: respondents see information about the electricity portfolio, the electricity bill, CO2 

emissions, and SO2 emissions. 

We administer the survey by randomly assigning respondents to one of the four groups. Respondents are 

assigned to a group automatically by a computerized random number generator and have no ex ante or ex 

post knowledge that there are different experimental conditions. An example choice screen for the Group 4 

experimental condition is provided in Figure 2.1.  

 

                                                      
2 See Sawtooth webpage: https://www.sawtoothsoftware.com/. 
3 See https://osf.io/chpfg/ for a copy of the survey. 
4 Institutional Review Board approval of the survey design can be found in Appendix B.  

https://www.sawtoothsoftware.com/
https://osf.io/chpfg/
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Figure 2.1 – Example choice screen for the U.S. survey. Screen shows what be visible to respondents in Group 
4, in which respondents see information on both CO2 and SO2; other groups see similar screens but the rows for 
CO2 or SO2 omitted.  

 

2.2.3 Survey sample 

Respondents were recruited through Amazon Mechanical Turk (MTurk) (N=822). MTurk provides a 

convenience sample, although previous research has found that MTurk samples are often comparable to 

other internet sampling methods [29], [30]. This sample size was selected based on the minimum size needed 

to produce standard errors to distinguish main effects, based on a statistical power analysis from an initial 

pilot test of 50 individuals. Respondents for the full survey were recruited such that representation from 

different U.S. states would be proportional to that state’s share of the total U.S. population.  

The survey was posted online on MTurk from November 28-29, 2015. Respondents were compensated 

$1.50 for participating in the survey, with an additional $0.50 incentive for those who responded correctly to 

attention checks. The self-reported demographics of our sample are fairly similar to that of the U.S. 
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population, with the exception that our sample had more individuals with higher education levels and who 

self-identified as Democrats. Summary statistics of the entire sample demographics are provided by Table 2.2, 

while additional demographic summary information (including a breakdown of demographics by 

experimental ground) can be found in Appendix A.1.2.  

Table 2.2 – Summary demographic statistics for the China survey. Statistics from MTurk sample (N=822), 
compared to U.S. demographics [31].  

 

2.2.4 Choice modeling and analysis  

We analyze the responses to the discrete choice experiment using a random utility model in which utility U 

for individual i is a function of the attributes in choice j and an unobserved error component (𝜀𝑖𝑗). The error 

component is modeled by random draws from a Type I Extreme Value distribution [32]. We assume an 

additively separable model that is linear in parameters and has the basic form: 

U𝑖𝑗(𝑋) =  𝛽𝐺𝐴𝑆𝑋𝑗
𝐺𝐴𝑆 + 𝛽𝑁𝑈𝐶𝑋𝑗

𝑁𝑈𝐶 + 𝛽𝑅𝐸𝑁𝑋𝑗
𝑅𝐸𝑁 + 𝛽𝐸𝐸𝑋𝑗

𝐸𝐸 + 𝛽𝐶𝑂2,𝑖𝑋𝑗
𝐶𝑂2 + 𝛽𝐶𝑂2,𝑖2(𝑋𝑗

𝐶𝑂2)
2

+ 𝛽𝑆𝑂2,𝑖𝑋𝑗
𝑆𝑂2 + 𝛽𝑆𝑂2,𝑖2(𝑋𝑗

𝑆𝑂2)
2

+ 𝛽𝐵𝐼𝐿𝐿,𝑖𝑋𝑗
𝐵𝐼𝐿𝐿 +  𝜀𝑖𝑗 

(2.1) 

where each 𝛽 represents the modeled coefficient for an attribute variable X, described in Table 2.3. We 

include a semi-quadratic emissions term based on an initial analysis that suggested non-linearity in these 

terms, preserving the sign after squaring the change in emissions. Each model is estimated separately for each 

experimental group, and groups that do not see emissions information are modeled without those regressors.  
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Table 2.3 – Representation of attribute levels in the mixed logit model for the U.S survey. 

 
We use a mixed logit model that allows for heterogeneous preferences across individuals as well as groups 

of observations, correlated errors, and unrestricted substitution patterns [32]. We allow for a distribution of 

coefficients for the emissions terms (i.e. changes in CO2 and SO2), assuming multivariate normal 

distributions. No random effects were estimated in Group 1 (where no emissions were shown).  

Although we can compare the modeled coefficients for each attribute to evaluate individuals’ tradeoff 

preferences, comparing the logit coefficients directly provides little insight into respondents’ behavior. To 

make these coefficients interpretable, we translate them to probabilities that the average respondent supports 

an alternative with a specified attribute combination. These probabilities are derived from the modeled utility 

function using the following relationship: 

𝑃𝑗(𝑋) =   
1

1 + 𝑒−𝑉𝑗(𝑥)
 (2.2) 

where 𝑉𝑗(𝑥) = 𝛽 ∙ 𝑋𝑗
⃗⃗⃗⃗   is the observed utility function, or the population level estimate of U(𝑋) from 

Equation 2.1 above less the unobserved error term 𝜀𝑖𝑗 . These conditional probabilities represent the 

probability that an average respondent will favor an alternative given a specified change in an attribute level, 

with all other attributes held at baseline levels. Thus, the utility function models differences in attribute levels 

between the two alternatives. We compare the estimated probabilities for different combinations of attribute 

levels to assess the relative influence of different attributes. The probability results reported here represent 

results for individuals at the mean of the sample.  

Likewise, we can use the regression results to compute willingness-to-pay (WTP), which represents how 

much an average individual is willing to pay in economic cost for an additional unit of another attribute [33]. 

WTP for a one-unit change in an attribute can be calculated using the ratio of coefficients from the estimated 

mixed logit model: 

𝑊𝑇𝑃𝐴𝑇𝑇𝑅𝐼𝐵𝑈𝑇𝐸 = −
𝛽𝐴𝑇𝑇𝑅𝐼𝐵𝑈𝑇𝐸

𝛽𝐵𝐼𝐿𝐿
    (2.3) 
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WTP for any combination attributes can be found by substituting the attribute levels to the utility function 

in Equation 2.1 and then solving for the level of bill such that utility is zero. At this level of bill increase, the 

respondent is indifferent between the new alternative and the current scenario, so this value represents the 

WTP for that attribute combination. As with the probability results, the WTP values reported are those 

representative of individuals at the mean of the sample. While we refer to this estimate as the “average WTP”, 

it is the WTP of the average respondent and is distinct from the average of WTP values estimated for each 

respondent. We notes also that this calculation assumes that respondents would not reduce their electricity 

demand in response to higher electricity prices; if that were the case, our calculation would underestimate 

respondents’ true WTP. Using respondents’ self-reported average electricity bills and emissions estimates, we 

can also estimate the implicit WTP per ton of pollutant reduced from respondents’ choices (see Appendix 

C.1for details). 

2.3 Results 

2.3.1 Effect of emissions information 

Figure 2.2 shows the probability of support for different electricity generation portfolios relative to the 

current electricity portfolio in the U.S. Coefficient estimates for the mixed logit regression model reflected 

here are presented in Appendix C.1. For illustration purposes, we present scenarios in which the alternatives 

have a 20% higher monthly electricity bill than the baseline along with different combinations of 30% 

reductions relative to the baseline in either CO2, SO2, or both. We choose these levels in part because our 

linear model approximation seems most appropriate within this range, while larger changes to emissions seem 

to exhibit increasing non-linear effects (see Appendix C.3). Overall, our results hold independently of the 

level of emissions and electricity bills changes in the range considered, and results for other levels of monthly 

electricity bills and emissions levels are explored in Appendix C.5. 

The figure shows that without any emissions information (Group 1), the average respondent supports 

paying 20% more for the renewables portfolio, but tends to prefer to keep the current electricity generation 

mix over the nuclear, natural gas, and efficiency portfolios. Respondents that are explicitly provided with 

information on either CO2, SO2, or both (Groups 2-4) place less importance on the portfolio itself and more 

on emission reductions, preferring the current mix to the more expensive alternative if emissions are the 

same.  

When a 30% reduction in either CO2 or SO2 accompanies the alternative portfolio, most respondents still 

prefer renewables but switch to preferring natural gas relative to the current mix. If the alternative reduces 

both emissions simultaneously, the average respondent prefers it regardless of its composition. When shown 

information that displays a 30% reduction in both pollutants, respondents show an even larger increase in 
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support. Average support for renewables increases from 58% in Group 1 with no emissions information to 

77% with a joint reduction in emissions of 30%, an increase of 19 percentage points (95% confidence interval 

(CI): 10-25%).  

While this increase is particularly evident for renewables, the average respondent would support any of the 

portfolios if they provide simultaneous 30% reductions in both pollutants. Although the findings for 30% 

emissions cuts are shown here, this pattern of support holds for other emissions changes as well (see 

Appendix C.5 for results from additional scenarios). 

 

Figure 2.2 – Probability of support of an average U.S. respondent for alternative portfolios with a 20% increase 
in electricity bills. Alternative portfolios presented in each pane, while the baseline portfolio representing the 
2014 U.S. electricity mix. Probabilities above 0.5 suggest the average respondent would prefer the alternative, 
whereas values below 0.5 imply preference for the baseline; error bars represent 95% CI. 

 

Respondents in groups which are only shown one emissions type tend to value reductions in that specific 

pollutant more highly than those who are shown both types of emissions. For example, a renewable 

alternative with a 30% reduction in SO2 emissions elicits support from 66% of respondents in Group 3, but 

that same alternative attracts only 58% of respondents in Group 4, a decrease of about 8% (95% CI: 16% 
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decrease to 4% increase for both CO2 and SO2). This pattern suggests that respondents value each emissions 

attribute more highly when presented individually relative to when it is presented as one of two types of 

emissions.  

One plausible explanation for this is that respondents are conflating the benefits of the two types of 

emissions when only one is shown; for example, respondents seeing SO2 reductions in Group 3 may assume 

that reducing those emissions would also provide climate benefits. This process parallels a similar bias known 

as the embedding effect by which respondents tend to overvalue a good when presented alone if they 

perceive it to be part of a more inclusive set [34]. As Mitchell and Carson (1989) describe, respondents may 

treat one attribute or policy as “symbolic” of another, inadvertently causing them to “assign to the proposed 

policy some of the values they have for related policies” [35].  

Accordingly, respondents seeing SO2 reductions in Group 3 may associate that with additional action on 

climate change, inflating their valuation of those emissions reductions. When both health and climate 

emissions are shown explicitly in Group 4, respondents can more easily separate their values for those two 

benefits across the two types of emissions, causing them to value each attribute less. The value respondents 

assign to emissions reductions thus seems to depend on how explicitly defined the benefits of those 

reductions are, a finding which is also consistent with support theory [36]. 

We can also focus on the tradeoffs respondents are willing to make when given complete information on 

both the emissions of CO2 and SO2. As an example, Figure 2.3 shows the probability that an average 

respondent in Group 4 would choose a renewables portfolio over the current mix given various combinations 

of emissions reductions, assuming either no change in bills (left panel) or an increase of 20% (right panel). 

Results for the other portfolios are given in Appendix C.5.  

Absent any changes in emissions or electricity bills, respondents tend to prefer having a portfolio with 

higher renewables rather than the current portfolio, with respondents choosing the renewable portfolio 62% 

of the time (95% CI: 57% to 66%). If renewables are expected to result in a 20% increase in electricity bills 

relative to the current mix (right panel), the probability of support drops to 35% (95% CI: 31% to 41%) and 

respondents prefer to keep the current electricity generation portfolio. If the renewables option also yields a 

30% reduction in either CO2 or SO2 emissions, however, respondents revert to preferring renewables even 

with increased bills, with support around 57% when reducing CO2 (95% CI: 51-62%) and 58% when 

reducing SO2 (95% CI: 53-64%). This suggests a 30% reduction in emissions of either SO2 or CO2 alone was 

typically not enough to offset the bill increase and regain the same probability of support for renewables 

under the alternative with no increase in cost.  

On the other hand, if 30% reductions in both emissions are achieved simultaneously, the probability of 

support is close to 77% (95% CI: 72% to 81%) even with the 20% increase in monthly electricity bills. Thus, 

if both CO2 and SO2 emissions are reduced, respondents’ choices suggest they overwhelmingly prefer 

renewables even with an increase in electricity bills. For a renewables alternative that is 20% more expensive, 
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the average respondent required a 15% reduction in SO2, an 18% reduction in CO2, or an 8% reduction in 

both to be indifferent between that and the current mix. We also note similar probabilities for 30% 

reductions in CO2 and SO2, suggesting that despite heterogeneous preferences for these two types of 

emissions, the effect of reductions in emissions related to climate change and health effects is relatively similar 

on average. Support levels are also similarly high for the other portfolios if they can be expected to produce 

simultaneous reductions in both pollutants.  

 

 

Figure 2.3 – Group 4 probability of support for the renewables portfolio for various levels of emissions.Panel 
highlights a) when the renewables portfolio with emissions changes costs the same as the current mix, and panel 
b) when that same combination results in a 20% increase in monthly bills. Results are shown when either CO2 
or SO2 are changed as well as when both are changed by equal amounts simultaneously; the positive x-axis 
reflects emissions reductions while negative indicates increased emissions. Probabilities below 0.5 indicate 
preference for the status quo; error bars represent 95% CI of the estimated probabilities.  

 

2.3.2 Willingness-to-pay estimates 

Figure 2.4 illustrates respondents’ implicit WTP for different levels of CO2 and SO2 reductions, independent 

of the electricity portfolio. The results show that the average respondent has a higher total WTP in electricity 

bills for addressing both climate change and air pollution simultaneously. As an example, a typical respondent 

in experimental groups with only one type of emissions (Group 2 or 3) has a WTP around 22-24% more in 

monthly bills for a 30% reduction in annual CO2 or SO2 (95% CI: 19-27%). In the case where both CO2 and 

SO2 are shown (Group 4) and are simultaneously reduced by 30%, the average respondent’s WTP is close to 

34% (95% CI: 29-39%).  
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Interestingly, WTP for a joint reduction of both emissions by 30% in Group 4 is less than the sum of the 

WTP for CO2 in Group 2 (22%) and SO2 in Group 3 (24%). As discussed above, this suggests that even 

when respondents are not provided with information about one of the pollutants, they are still making 

assumptions about changes that are occurring with that omitted pollutant. WTP for changes to SO2 for 

respondents in Group 4 is reduced by 16% relative to its value for respondents in Group 3, while WTP for 

changes to CO2 in Group 4 falls by 30% compared to Group 2. This suggests that respondents without more 

complete information are more likely to presume air quality benefits from reducing CO2 emissions. 

Respondents’ choices also suggest that their WTP for emissions reductions is lower than the amount of 

money they would need to compensate for an increase in emissions of the same magnitude. This finding, 

reflected by the kink in the graph in Figure 2.4, is consistent with the literature on prospect theory relative to 

gains (i.e. emissions reductions) and losses (i.e. increased emissions).  

 

Figure 2.4 – Willingness to pay for changes in CO2, SO2, or both pollutants. Results shown in % increase in 
monthly electricity bills for respondents in experimental Group 4. The x-axis represents the difference between 
emissions of two alternatives; for example, an alternative with a 70% CO2 reduction compared to a baseline with 
30% increase is a difference of -100%.  

 

Using our model’s WTP estimates along with respondents’ self-reported monthly electricity bills, 

emissions of CO2 and SO2 from electricity generation in 2014, and the total number of U.S. households, we 

also calculate the implicit WTP per ton of emissions reduced (see Appendix C.2 for details on the method 

used). On average, respondents in experimental group 4 made choices consistent with an implicit WTP of 

$30-50 per ton CO2 and $27,000-40,000 per ton SO2 avoided in $2015. For comparison, recent estimates of 

the marginal damages caused by each of these pollutants are approximately $40 per ton for CO2 and a 
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national average of close to $38,000 per ton for SO2 [37], [38]. We note that these dollar per ton estimates are 

further removed from the actual metrics which respondents used in the decision task, and that respondents 

may have made different choices if they had been given monetary values instead of percentages. Nevertheless, 

we think these implicit estimates serve as a useful benchmark and a test of how to connect this type of value 

elicitation to the social costs relevant for policy.  

2.3.3 Heterogeneity and consistency checks 

We explore heterogeneity in responses by demographic characteristics such as gender, race, income, 

education, and political party. Although there is substantial heterogeneity in responses, support for emissions 

reductions, and tolerance of bill increases, in general we find that there was little evidence that the 

demographic characteristics were significantly related to these preferences in our sample. One effect that we 

do observe is that respondents who self-identify as Republicans tend to place more importance on lower bills 

and less importance to changes to CO2. The results from our demographic and heterogeneity analyses can be 

found in Appendix C.3.1.  

 A concern when using discrete choice methods is whether respondents are providing responses that 

reflect true preferences, and whether the assumptions of the models used to assess these preferences apply. 

We assess the consistency of individuals’ responses by: (i) including attention checks, (ii) testing for consistent 

responses with transitive preferences, and (iii) evaluating whether respondents have linear preferences. We 

find that 95% of the respondents correctly answer our two attention check tests, while 97% of respondents 

have transitive preferences. Fewer individuals—but still a majority (80%)—demonstrate linear preferences for 

moderate changes in the attributes, although respondents tend to have diminishing sensitivity to larger 

emissions changes. Details on these checks are discussed further in Appendix C.4.1. 

2.4 Discussion and conclusions 

Our results indicate that respondents are generally supportive of electricity generation portfolios that are 

associated with lower emissions, even if these options result in an increase in their electricity bills. This 

willingness to sacrifice monetary benefits for reducing emissions is consistent with other research on altruistic 

behavior in energy decisions [39], [40].  

The results also suggest that the attributes of electricity generation are an important determinant of 

support, a finding consistent with previous work [6]. If alternative energy portfolios will lead to large increases 

in electricity bills without corresponding emissions reductions (perhaps because of intermittency and the use 

of fossil fuel backup), support from the public may be lower than anticipated. However, if proposed new 

energy mixes do yield emissions reductions, communicating those outcomes in terms of both climate and 
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health benefits is likely to increase people’s willingness to support those mixes, even with increased monthly 

electricity bills. In addition, when more benefits of a policy are communicated (i.e. when information on CO2 

emissions is provided in addition to information on SO2 emissions, or vice versa), respondents are 

increasingly willing to pay more for clean energy options.  

Our modeling finds that respondents demonstrate preferences consistent with an implicit WTP of 

approximately $30-50 per ton of CO2 reduced. Previous studies have found similar estimates ranging 

anywhere from $40-1000 per ton; however, variations in survey design, sample populations, and the type of 

benefits being conveyed to respondents may limit direct comparison [21]. Although our estimate is on the 

low end of this range, the accompanying WTP from our study of close to 34% more in electricity bills (95% 

CI: 29-39%) is higher than the 13% (95% CI: 10-21%) estimated for an 80% clean energy standard in the U.S. 

[9]. The direct inclusion of information on the climate and health benefits of emissions reductions in our 

study may be one reason for the higher WTP values, and previous work has found that discussing health and 

environmental benefits can activate an altruistic framing that leads to higher levels of motivation and support 

for energy interventions [39]. Future work is needed to continue to explore individual preferences regarding 

emissions reduction and clean energy interventions, and to understand the different contexts in which those 

preferences are formed. 

Proposed climate mitigation policies have traditionally focused on the importance and benefits of reducing 

CO2 emissions. The U.S. Environmental Protection Agency (EPA) and other entities have in recent years 

worked to emphasize the “co-benefits” of reducing other air pollutants such as SO2. This research suggests 

that this focus is indeed likely to bolster support for climate mitigation efforts. Of course, actual support for 

mitigation policies will depend on how the policy options are presented and framed to people. If the 

proposed policy is a cap-and-trade market or carbon tax, support levels may by quite different. However, we 

note that a carbon tax or cap and trade program would likely result in changes to electricity prices and 

electricity generation portfolios such as the ones we present in our study. Thus, we do think there are 

important insights our research could contribute to evaluating support for these policies. 

Social science research has shown that stated preference and choice experiments may have limitations in 

terms of predicting real choice behavior [40], [41], but in the absence of policy experimentation, they provide 

useful insight to guide policy design. The results from this chapter suggest that there is support for alternative 

electricity generation portfolios and emissions reductions strategies, and that communicating information 

regarding both climate and health benefits is likely to increase public support and willingness to pay for 

efforts to reduce emissions.  
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Chapter 3 

Support for health and climate emissions 
reductions based on pollution exposure 

Motivating questions: How do individuals in China evaluate tradeoffs between higher electricity 

costs and reducing emissions related to climate and health? Do short- or long-term experienced air 

quality levels affect respondents’ willingness to make tradeoffs for emissions reductions? 

 

In Chapter 2, we explored support for emissions reductions from members of the public in the U.S. when 

exposed to information on the climate and health consequences of those emissions. However, reducing 

emissions from the U.S. alone will not be sufficient to achieve meaningful climate mitigation. Here we expand 

our survey approach to China, which by country is currently the largest emitter of CO2 and which has been 

beset by poor air quality, the latter having sparked tremendous national concern about emissions. We adapt 

our survey from the previous chapter to be appropriate for the Chinese context, sampling individuals from 10 

urban areas across different regions of the country.  

Given the current public focus on air pollution in China, we were also interested in understanding whether 

experienced levels of pollution affect respondents’ willingness to make tradeoffs across emissions cuts and 

increased costs. Such an influence might come from experiences with short-term (e.g. air quality when a 

respondent is taking the survey) or long-term (e.g. average air quality over the previous year) air quality issues. 

We interact data on observed air quality metrics in our choice modeling to assess whether they have any 

relation to how respondents preferences for tradeoffs between emissions reductions and electricity costs.  

As with the U.S. survey, we find that reductions targeting both climate change and human health benefits 

have stronger support than those which address only one of the two. Although we find no connection 

between respondent preferences and air quality levels during the time an individual takes the survey, 

respondents in cities with the highest long-term concentrations of particulate matter are willing to pay 30% 

more to clean up the air when compared to individuals living in less polluted cities. This result suggests that 

respondents are relying on long-term air quality trends when evaluating the importance of emissions 

reductions, and may be less affected by day-to-day changes. 

The analysis indicates that the Chinese public values co-optimizing mitigation policy across climate and 

health objectives, and that making available information about long-term air quality may encourage sustained 

support for cleaner energy. Our estimates of willingness-to-pay values may also be informative for policy 

makers when considering the cost different policy options for meeting emissions reduction targets in the 

coming years. 
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The work in the chapter is an extension of the methods from Chapter 2 and was conducted in 

collaboration in Alex Davis, Inês Azevedo, XU Jianhua, and XIA Tian. The scope of the research project was 

developed in collaboration by myself, Alex Davis, and Inês Azevedo, with Alex Davis proposing to 

incorporate observed air quality data in the analysis. All collaborators contributed to design of the survey, 

with myself coding the survey and XIA Tian leading the effort to translate and pilot test the adapted version. 

XIA Tian also coordinated and oversaw administration of the final survey, with funding coming primarily 

from XU Jianhua. Finally, I led the analysis and write-up with input from all collaborators.  

The content of this chapter has been published as follows: B. Sergi, I. Azevedo, T. Xia, A. Davis, and J. 

Xu, “Support for Emissions Reductions Based on Immediate and Long-term Pollution Exposure in China,” 

Ecol. Econ., vol. 158, pp. 26–33, 2019. Original data and code for the analysis of this work, as well as a copy of 

the survey, are available online at https://osf.io/43wvp/.  

3.1 Introduction 

China’s rapid economic development has been fueled by an equally swift increase in energy consumption. 

Thus far, the electricity portion of this rising demand has largely been supplied by coal-fired power plants, 

with coal providing close to 75% of electricity generation in 2014 [42]. As a result, the Chinese power sector 

produces substantial emissions, which in turn have important implications for local and regional air quality as 

well as global climate change.  

The reliance on coal for electricity generation is a contributing factor to China’s high levels of air 

pollution. Recent air quality studies find that the population weighted concentration of PM2.5 in China is 52 

μm/m3, far exceeding the World Health Organization Air Quality Guideline of 10 μm/m3 [43], [44]. These 

studies also estimate that elevated PM2.5 was responsible for 900,000 to 1.2 million deaths in 2013, making it 

the 5th largest risk factor for mortality in China [43], [45]. Although dispersed emitters, such as vehicles and 

home heating, are responsible for most of the PM2.5, coal consumption in China as whole is estimated to be 

responsible for 40% of population-weighted PM2.5, with coal for electric power providing 10% of this 

ambient PM2.5, close behind the contributions from industry (27%), transportation (15%), and biomass 

combustion (15%) [46]. Coal combustion for electric power generation itself is estimated to cause over 86,000 

deaths per year, approximately 10% of all deaths linked to elevated PM2.5 [46]. Most of this impact comes 

from the formation of secondary PM2.5 from SO2 and NOx; depending on the season, secondary PM2.5 

formed from sulfate, nitrate, and ammonium is responsible for as much as 50-60% of total PM2.5 mass [46]–

[48]. Over one quarter of the country’s total SO2 emitted in 2012 came from electricity generation, making 

SO2 from the power sector an important influence on air quality and human health in China [49], [50].  

In addition to concerns over air quality, China’s emissions from electricity generation also pose a 

substantial threat in terms of accelerating climate change. In 2005 China became the largest emitter of CO2 on 

https://osf.io/43wvp/
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an absolute emissions basis, and with 10.4 Gt of CO2 emitted in 2015 it is responsible for approximately 29% 

of global CO2 emissions [51]. As of 2014, coal-fired power plants were responsible for 30% of Chinese CO2 

emissions [42], [49], [52]. Although China has committed to peaking CO2 emissions by 2030 and to increasing 

the use of non-fossil energy sources, the current dominance of coal in the power sector suggests the challenge 

of achieving these goals and of advancing policies for dramatic CO2 reductions.  

Despite the fact that the government has pledged to tackle the problems of climate change and air 

pollution, the Chinese public has become increasingly concerned with the poor air quality and vocal in their 

support of curbing emissions. Recent research has sought to quantify this support through stated preference 

or choice-based surveys instruments, and a range of studies have found that individuals largely have a positive 

WTP for renewable energy or for strategies that reduce emissions [53]–[58]. While these studies have 

explored support for improving air quality, mitigating climate change, or deploying green energy more 

generally, one unaddressed question is how individuals weigh improvements to climate and health in their 

support for emissions reductions, and how they make tradeoffs between these two attributes. Despite the fact 

several “no-regrets” policies that address both climate and health are available in China, a fuller understanding 

of public support for addressing these two impacts may be increasingly important in cases where options for 

tackling both are limited or where the costs and benefits of different strategies may vary widely [59]–[62]. 

Eliciting detailed preferences on climate and health tradeoffs can thus serve as input to more effective policies 

for integrated emissions reductions.  

Although the growing pressure from the Chinese public for clean energy has largely been attributed to 

high levels of pollution, the precise relationship between air quality and support for emissions reductions has 

not been extensively explored and is a promising area of research. While it might be intuitive to expect 

individuals to base their preferences for emissions reductions on long-term air quality trends, research in 

social and behavioral science suggests that individuals often utilize heuristics that tend to overemphasize 

recent or extreme events when expressing beliefs or values [63]. For example, Zaval et al. find that 

respondents who perceived temperature abnormalities on the day of a survey indicated higher levels of belief 

in global warming [64]. Previous work in China has also found that exposure to haze and perceptions of low 

visibility during the course of a survey are related to pro-environmental attitudes and higher WTP for 

improved air quality [58], [65]. If individuals only pay attention to recent air pollution levels, long-term 

support for emissions cuts may be hard to sustain in the face of highly variable levels of public interest. 

However, if individuals pay attention to their long-term exposure to pollution, then support for mitigation 

can be maintained by making those exposure levels easily accessible and comprehensible. 

In this section, we describe results from a discrete choice survey similar to the one presented in Chapter 2 

but conducted in China.  As discussed above, discrete choice surveys consist of providing respondents with a 

series of hypothetical alternatives—each described by a combination of defining characteristics or 

attributes—and then observing the choices they make between those alternatives [14]–[17]. Such choice 
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experiments have been increasingly used to assess preferences in energy and the environment, including some 

focused on China [20], [23], [66]–[71].  

In parallel with the U.S. survey, we explore how respondents make tradeoffs between climate and health 

emissions reductions, electricity bills, and the mix of sources of energy that are used to produce electricity. 

Furthermore, we combined results from the choice experiment of our survey with observed air quality data to 

test how respondents’ valuations of the tradeoffs between climate, health, and cost are related to PM2.5 

concentrations at different time scales. We assess respondents’ valuation of these tradeoffs by implementing 

this survey across 10 Chinese cities (N=1,060). Using our survey results, we evaluate our research questions 

by modeling both individuals’ probability of support and their WTP for different combinations of changes to 

emissions and electricity generation portfolios. 

3.2 Methods 

Here we explain the design of the survey instrument, the sampling method used to collect responses, the 

source of air quality data, and the utility function used to evaluate respondents’ choices.  

3.2.1 Survey design 

The structure of the choice task of the survey is similar to that of the U.S. survey, as outlined in Section 2.2.1 

above. We again present respondents with 16 two-alternative choice scenarios and ask them to indicate in 

each choice which of the two alternatives they would prefer for their provincial government to pursue. As 

before, the four attributes presented are as follows: 1) electricity portfolio; 2) change in monthly electricity 

bill; 3) change in annual CO2 emissions, described as “climate change related emissions”; and 4) change in 

annual SO2 emissions, described as “health related air pollution”.  

An example screenshot of one of these choice scenarios is provided in Figure 3.1 (a comparable choice 

screen in English was presented above in Figure 2.1). We use similar attribute levels as before to facilitate 

comparison across the two studies—see Table 3.1 below—but with modifications to the composition of the 

portfolios to better reflect scenarios that would be appropriate for different Chinese provinces; more 

description of the portfolio levels can be found in Appendix A.2.1. As before, we generate a semi-random 

subset of two-alternative choice combinations using the Sawtooth software algorithm, this time using a design 

that mixes level overlap to better allow for the estimation of interaction terms. 
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Figure 3.1 – Example choice screen for the Chinese survey. 

 

Unlike the survey presented in Chapter 2, for this work we did not include any variation in the number of 

attributes shown to respondents. Accordingly, all respondents in the survey see choices that include all four 

of the attributes in the study. In other words, all respondents in the Chinese survey participated as individuals 

assigned to the Group 4, full information experimental condition from the above survey. We removed the 

randomized control trial with information for this survey in order to be sure to have better ability to estimate 

interaction of preferences with observed air quality, as discussed further below.  

As in the previous survey, respondents face 16 two-alternative choice scenarios in which each alternative 

is generated from a different combination of the levels of the four attributes. In each choice, respondents 

indicate which of the two alternatives they prefer. 10 of the choices are unique to each individual and 

generated semi-randomly by the Sawtooth software, while the remaining six choices are dedicated to choices 

designed specifically to evaluate whether respondents are paying attention to the task and whether their 

choices are consistent with transitive and linear preferences. 
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Table 3.1 – Attribute levels for the Chinese survey. 

 
 

When beginning the survey, respondents are first provided with information on the task, after which they 

are asked to sign a consent form to participate and to indicate the province where they live. To provide 

respondents a sense of consequentiality—which research has shown can improve the external validity of 

choice surveys [17]—they are informed that their responses will be used to guide national energy policy 

recommendations from Peking University’s research team.  

In the following section, respondents are provided a visual mock-up of the discrete choice experiment and 

information on the attributes provided in the task, including on the effects of CO2 and SO2 emissions on 

climate and health. Respondents are then asked to answer two questions about the material they read to test 

their understanding and comprehension, after which they proceed to the discrete choice task. Following the 

16 choices in the tasks, respondents rate the importance of each attribute as a measure of construct validity 

and are asked several follow-up questions. These questions evaluate their understanding of the relationships 

between CO2 and climate and SO2 and health, assess general environmental attitudes and support for 

emissions reductions, and collect basic demographic information.  

3.2.2 Survey sample 

We administered our survey to 1,060 individuals across 10 different cities in China between January and May 

2017, with approximately 100 respondents per city. These 10 cities were chosen to diversify representation 

from different regions of China—coastal, northeast, central, and west—shown in Figure 3.2. Because we 

sample only from urban areas and neglect rural populations, the results from our survey are not generally 

representative of China. Other studies have found that urban Chinese express more concern over air 

pollution and environmental damage, and have larger WTP for emissions reductions relative to rural 

populations [55], [72].  
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Figure 3.2 – Map of cities sampled, with approximately 100 respondents per city. 

 

Respondents were recruited to the survey in-person in public forums, such as parks, malls, and public 

squares. Recruitment and administration of the survey was facilitated by representatives from a professional 

survey company who were trained by the research team. All survey participants were at least 18 years of age. 

The surveys were conducted on a tablet with a survey administrator present. Respondents were compensated 

with a small gift for their participation. The average survey completion time was approximately 15 minutes, 

with 75% of respondents completing the survey in more than 11 minutes.  

Summary demographic statistics by city and for the total sample are presented below. The breakdown of 

respondents by gender and age is relatively comparable across the different sampling cities. The total fraction 

of males in our survey is slightly lower than that of China overall (51% in 2014) while the median age of our 

sample (37 years) is slightly older than that of the country as a whole (approximately 35 years) [73].  

There is more variability in sampling across the cities in terms of educational attainment and annual 

household income. For example, our sample includes high shares of individuals having a college or advanced 

degree in Beijing, Guangzhou, Shanghai, and Urumqi. For income, we report the fraction of respondents with 

household income less than 80,000 RMB; as a reference, the average urban household income in China in 

2015 was approximately 90,000 RMB. In general, we are slightly biased toward high-income individuals—

although this in part driven by the fact that Beijing, Guangzhou, and Shanghai are relatively wealthy cities—

which limits the applicability of our results to Chinese urban residents more broadly. Additional discussion on 

the survey completion time, income levels, and other characteristics of the sample can be found in Appendix 

A.2.2 
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Table 3.2 – Summary demographic statistics for the China survey. Values indicates fraction of respondents that 
are male, median age of respondents (in years), the fraction of respondents with a college degree or higher, and 
the fraction with annual household income ≤ 80,000 RMB. 

 

3.2.3 Air quality data 

Data on air quality levels, including PM2.5 concentration and computed air quality index (AQI) measurements, 

are collected and recorded by the Chinese government. We download this information by scraping the 

Chinese website Tianqihoubao5 which aggregates weather and pollution information [74]. Data available from 

this method is available at a daily level and reported only at the city-level. For short-term air quality day, we 

supplemented the above data by having administrators of the survey record PM2.5 and AQI measurements at 

the time and location that each survey was conducted. 

Figure 3.3 provides a plot of PM2.5 concentration levels over the period of January 2015 to May 2017 for 

the 10 cities considered in the study. The plot highlights some of the seasonal and inter-city variability, as well 

as the tendency to have high peak events, particularly in the winter and spring. We include as a reference the 

U.S. National Ambient Air Quality Standard (NAAQS) 98th percentile limit; the plot highlights many of the 

cities in our sample have air quality far worse than upper limit standard for the U.S.  

                                                      
5 See http://www.tianqihoubao.com/aqi/. 

http://www.tianqihoubao.com/aqi/
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Figure 3.3 – Daily PM2.5 concentrations from January 1, 2015 through May 16, 2017 for 10 cities across China. As 
a reference, the U.S. air quality standard of 35 μm/m3 is shown by a dashed line. This standard represents the 
98th percentile limit for all days, meaning that to be in compliance, a county’s PM2.5 must be below the standard 
98% of the time. Data on daily PM2.5 averages collected from the website Tianqihoubao [74]. 

 

Table 3.3 illustrates the calculated annual mean concentration and peak values for 2015 and 2016 for each 

of the 10 cities in the study. These values are used in the regressions exploring the relationship between 

annual and peak concentrations and preferences for emissions reductions. While some of the variables are 

highly correlated, we do observe some variability amongst the cities; for example, Xi’an moves from being the 

5th most polluted city to the 2nd most between 2015 and 2016. See Appendix A.2.3 for additional analysis on 

the correlation of PM2.5 levels across cities and over time. 

Table 3.3 – Annual mean and peak value statistics for PM2.5 concentration (in μm/m3) in 2015 and 2016.  
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3.2.4 Utility model 

Our analysis of respondents’ choices follows the same form as that described in Section 2.2.4 above. We 

represent respondent preferences using an additively separable, mixed logit random utility model, where the 

utility of a respondent for any given alternative is a function of the attributes of that combination relative to 

the alternative combination. In addition, we assume that there is unobserved component to individual 

choices, which is modeled as a random draw from a Type I Extreme Value distribution [32].  

The utility model used in this analysis is presented below in Equation 3.1, while Table 3.4 provides a full 

description of the modeled variables. The model is similar to that of Chapter 2 (see Equation 2.1 above), but 

with an additional interaction for between the coefficients for emissions, 𝛽𝐶𝑂2 and  𝛽𝑆𝑂2, and measurements 

of observed particulate matter at different time scales, 𝑃𝑀𝑖,𝑡, to estimate the effect of air quality on 

respondents’ preferences. To compare short- and long-term exposure effects, we test various temporal 

specifications of air quality—including PM2.5 concentration for the respondent on the day of the survey, the 

average PM2.5 concentration the month prior to the respondent taking the survey, the average annual 

concentration in 2015 and 2016, and the worst “peak” concentration in the same two years—to evaluate 

whether the interaction is sensitive to different time scales.  

 

U𝑖𝑗(𝑋) =  𝛽𝑅𝐸𝑁𝑋𝑗
𝑅𝐸𝑁 + 𝛽𝑁𝑈𝐶𝑋𝑗

𝑁𝑈𝐶 + 𝛽𝐻𝑌𝐷𝑋𝑗
𝐻𝑌𝐷 + 𝛽𝐵𝐴𝐿𝑋𝑗

𝐵𝐴𝐿 + 𝛽𝐵𝐼𝐿𝐿𝑋𝑗
𝐵𝐼𝐿𝐿 + 

                           𝛽𝐶𝑂2,𝑖𝑋𝑗
𝐶𝑂2 + 𝛽𝐶𝑂22(𝑋𝑗

𝐶𝑂2)
2

+ 𝛽𝑆𝑂2𝑋𝑗
𝑆𝑂2 + 𝛽𝑆𝑂22(𝑋𝑗

𝑆𝑂2)
2

+ 

(𝛽𝑃𝑀, 𝐶𝑂2𝑋𝑗
𝐶𝑂2 + 𝛽𝑃𝑀,𝑆𝑂2𝑋𝑗

𝑆𝑂2) ∗ 𝑃𝑀𝑖,𝑡 +  𝜀𝑖𝑗 

(3.1) 

 

As with the analysis in Chapter 2, we use estimated coefficients from this model primarily to evaluate two 

metrics of interest: 1) probability of support, or the conditional probability that an average respondent will 

prefer a given scenario’s combination of attributes over the status quo; and 2) willingness-to-pay (WTP), a 

measure of individuals’ tradeoff between changes to different attributes and economic cost, measured here in 

terms of change to monthly electricity bills. See Equations 2.2 and 2.3 above for a description of how 

conditional probability and WTP are calculated from the model coefficients. 
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Table 3.4 – Representation of attribute levels in the mixed logit model for the China survey. 

 
 

3.3 Results 

3.3.1 Support for emissions reductions 

Figure 3.5 illustrates the likelihood that an average respondent would support alternative energy portfolios 

that increase different energy sources (renewables, hydro, or nuclear) relative to current baseline, which for 

most provinces is largely coal. The figure shows results for scenarios where the alternative energy portfolios 

are 20% more expensive than the baseline but yield different changes to emissions. Appendix C.1presents the 

corresponding regression coefficient estimates, while Appendix C.5 provides probability of support results 

for alternatives with no changes to electricity bills.  

The figure indicates that with increased bills and no changes to emissions, the average respondent prefers 

to keep the current provincial electricity mix over one that increases renewable, nuclear, hydro or a mix of 

those (referred to as the “balanced” portfolio). This suggests that the average respondent does not prefer to 

pay for these alternatives without their emissions benefits. If the alternative portfolio offers sufficient 

reductions in CO2 or SO2 emissions, however, then respondents prefer the alternative to the baseline even 

with 20% higher bills. For respondents to be indifferent between their current electricity mix and an 

alternative with 20% more expensive electricity bills, the alternative portfolio would need to provide roughly 

16% reductions in CO2 (95% CI: 13-18%), 14% reduction in SO2 (95% CI: 12-16%), or 7% reductions in 

both pollutants simultaneously (95% CI: 6-8%).  
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Figure 3.4 – Probability of support of an average Chinese respondent for various combinations of changes to 
emissions and alternative portfolios. Different portfolios are shown by panel, while emissions reduction are 
shown on the x-axis as percent change from baseline. Results shown for alternative portfolios that include a 20% 
increase in monthly electricity bills. Probabilities are calculated relative to the baseline reference portfolio (i.e. 
the current energy mix of the respondent’s province) with no changes to bills or emissions. Results for alternative 
portfolios with no increased cost are shown in Appendix C.5.2.  

 

Overall, we find that the average respondent is not very sensitive to the type of portfolio (e.g. coal, 

renewables, hydro, or nuclear), instead focusing on the accompanying emissions reductions and cost. The 

importance of attributes over source type is consistent with our findings from Chapter 2 as well as with other 

surveys on energy preferences [6]. An exception to this rule is that respondents tend to be slightly averse to 

the “balanced” portfolio, in which 15% of coal is replaced by an equal share of hydro, nuclear, and 

renewables. While more investigation is needed to understand this preference, one possible explanation for 

this is that respondents may perceive greater risk in pursuing multiple technologies at once. Understanding 

this preference is potentially relevant given China’s current pursuit of an “all of the above” energy strategy. In 

addition, we observe no statistical difference between preferences for reducing health-related air pollution 
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(SO2) relative to emissions that cause climate change (CO2)—the average respondent places comparable 

importance on both types of emissions.  

Another way to explore respondents’ support for different portfolios and emissions cuts is to assess their 

willingness to trade increased costs for gains in those attributes. Figure 3.5 shows the WTP of an average 

respondent for different combinations of reductions to CO2 or SO2, both in terms of percent increase in 

monthly bills and U.S. dollar (USD) equivalent based on respondents’ self-reported electricity bills after 

adjusting for purchasing power parity. The figure highlights how respondents are willing to pay more if both 

pollutants are reduced simultaneously. For example, the estimated WTP for a 30% reduction in CO2 or SO2 

alone is $12-13 USD (95% CI: $9-13), while WTP for reducing both pollutants is approximately $23 USD per 

month (95% CI: $20-25), or approximately 80 Chinese yuan (RMB). These WTP results over the course of a 

year would amount to about 0.7-1.7% of the average national annual household income [75]. As a source of 

comparison, a previous study found Chinese households were willing to pay an average of 40 RMB per 

month for a scenario including 11-20% reductions of CO2 and improvements to air quality and acid rain, 

roughly consistent with our findings for addressing a single pollutant [76].  

We also find that respondents demand more in compensation for emissions increases relative to what they 

would pay for emissions reductions, behavior that is consistent with reference dependent preferences and 

Prospect Theory [77], [78]. For example, our model estimates that respondents would be willing to pay 71% 

more in electricity bills for a 30% reduction in both CO2 and SO2 (95% CI: 64-81%), but would demand 87% 

in lower bills as compensation for an increase of the same amount for both pollutants (95% CI: 78-98%).  
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Figure 3.5 – WTP for reductions in emissions of CO2 and SO2 (negative x-axis indicates emissions increases). 
Results are shown in terms of percentage increase in monthly bills as well as USD equivalent using respondents’ 
self-reported monthly electricity bills (sample average of approximately $30 USD per month after adjusting for 
purchasing power parity). 

 

Another metric that can be useful for policy-makers and individuals interested in pricing externalities is 

the WTP per ton of emissions reduced. Combining our modeled estimates for WTP with respondents’ self-

reported electricity bills, an estimate of the number of households in China, and 2012 estimates of emissions 

of CO2 and SO2 from the power sector, we calculate the implied WTP per ton for a 30% reduction in annual 

emissions [49], [73]. After adjusting for purchasing power parity6, we find that respondents’ choices are 

consistent with a WTP of around $60 per ton of CO2 and $36,000 per ton of SO2 reduced (95% CI of $56-72 

and $32,000-40,000, respectively). For comparison, recent work on the social cost of carbon has estimated 

that climate change damages incurred by China are on the order of $24 per ton CO2 ($4-50, 66% CI) [79]. 

While estimates of the marginal damages of SO2 in China are scarce, other studies have found ranges of 

$8,000-24,000 in Europe and an average value around $35,000 for the U.S. [37], [80]. 

 

3.3.2 Influence of air quality levels on support 

To understand whether observed air quality affects respondents’ preferences, we test the effect of an 

interaction term between actual observed PM2.5 concentration and preferences for CO2 and SO2 changes, 

                                                      
6 We use a purchasing power parity estimate of 3.524 RMB to $1 USD; the nominal exchange rate is approximately 6.73 
RMB to $1 USD.  
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using the various timescales described in the methods section. Results from the mixed logit regression with 

these various interaction coefficients are presented in Appendix C.1.  

We find that the day-of and prior month PM2.5 concentrations have a small and non-significant effect on 

respondents’ preferences for emissions reductions. Although a stronger trend in the daily effect might be 

masked by variability in PM2.5 concentration within a city (which we do not observe), we also test the daily 

model using a more spatially granular AQI measurements recorded at the site of the survey and find similar 

results. However, we do find a strong relationship between the average annual concentration of PM2.5 and 

respondents’ preferences for reductions in SO2, and this relationship seems to be stronger with the 2015 

PM2.5 average than with the 2016 average. There is also an association between larger peak events and 

stronger preferences for CO2 and SO2 reductions, and this effect is also slightly stronger for the 2015 average 

than for 2016. 

Using the model with annual PM2.5 concentration from 2015, Figure 3.6 provides an illustration of how 

the average respondent’s WTP for emissions changes varies based on their PM2.5 exposure. The average 

respondent’s WTP for a 30% reduction in SO2 increases from 30% (95% CI: 25-35%) to 60% (95% CI: 52-

68%) when comparing respondents exposed to the lowest PM2.5 concentration in 2015 (e.g. Guangzhou) with 

those exposed to the highest concentration (e.g. Beijing). While there is little difference in WTP for CO2 

emissions across different pollution levels, the difference in preferences for SO2 is substantial enough to carry 

over to increased levels of support for reductions in both pollutants. 

 

Figure 3.6 – WTP based on interaction between average PM2.5 in 2015 and preferences for emissions reductions. 
WTP (as percentage increase in monthly electricity bill) is estimated for respondents living in the least and most 
polluted cities in our sample, which in 2015 had annual concentrations of 40 and 80 μm/m3, respectively. 
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The link between annual average PM2.5 and support for emissions cuts is primarily driven by four cities—

Beijing, Harbin, Chengdu, and Urumqi—which have the highest pollution levels and where respondents have 

strongest preferences for emissions reductions. This becomes apparent when looking at the distribution on 

individually-estimated coefficients for SO2 in the model, shown in the boxplots of Figure 3.7. In this figure, 

the more negative the coefficient, the stronger the preference for SO2 reductions. Cities are ordered by their 

2015 annual average PM, with Beijing as the worst (79 µg/m3) and Guangzhou as the best (38 µg/m3). The 

plot illustrates that respondents in the four most polluted cities have substantially stronger preferences for 

emissions reductions. Furthermore, we see increased variability in cities like Xi’an and Chongqing, with 

respondents demonstrating a wider range of preferences for SO2 reductions. 

 

Figure 3.7 – Boxplots of individually estimated logit coefficients, grouped by city of respondent.  Cities are 
ordered from most polluted (Beijing) to least polluted (Guangzhou), using 2015 annual average PM levels.  

 

Of the cities in our sample, the four cities with strongest preferences for emissions reductions are also 

locations where the issue of air quality is at the forefront of public discussion. Beijing, Harbin, and Chengdu 

all experienced orange or red alerts for air pollution between December 2016 and March 2017, and a large 

public protest occurred in Chengdu in late 2016. Individuals in these cities were also the most likely to 
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indicate in our survey that they perceived air quality was deteriorating, with over 80% of respondents in 

Harbin and Chengdu saying that pollution was getting worse or much worse in recent years, compared to 

around 20% of respondents in Shanghai, Lanzhou, and Guangzhou, as illustrated in Figure 3.8. Thus, 

respondents may be able to resist certain biases in decision making, such as being overly influenced by recent 

events [63], because of the longevity and salience of the air quality issue in these cities and the subsequent 

importance of the issue in the public discourse. 

 

Figure 3.8 – Respondents’ perceptions of how air pollution has changed in their city in the last five years. Each 
bar indicates the percent of respondents selecting each response; totals may not sum exactly to 100% due to 
rounding.  

  

Because respondents in the same city share the same annual average PM2.5 concentration, our findings on 

the effect of PM2.5 may be confounded by other city-level differences. For example, fixed, city-wide 

differences in income levels across the sample could be correlated with higher annual average PM2.5 

concentrations, thus interfering with our estimates of the interaction. To partially address this issue , we first 

explore whether annual average concentration levels are correlated with other variables of interest across the 

sampled cities. As an illustration, Figure 3.9 plots city-wide annual average PM2.5 concentration for 2015 

against the average per capita income for residents of that city for 34 Chinese cities—the 10 in our sample as 
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well as 24 additional “out-of-sample” cities for which income and pollution data were available. The plot 

suggests variability in PM2.5 concentration across cities with different incomes; a simple linear regression of 

income on annual PM2.5 concentration yields a positive but non-significant coefficient with a r-squared 

estimate of 0.04, indicating the regression fails to capture the bulk of variations in income on the basis of 

pollution levels alone.  

 

Figure 3.9 – Plot of annual PM concentration in 2015 against average per capita income for 34 Chinese cities. 
The 10 cities from our sample are shown in red triangles, while out-of-sample cities are shown in blue circles. 
Dashed line represents estimate from a linear regression of income on annual PM2.5 concentration, which red 
dashed lines indicating the 95% CI. Note that the linear coefficient of this regression is not significant (p-value 
0.23). 

 

To further verify that our model avoids confounding influence at the city-level, we assess a model 

including city-level fixed effects, variables for respondents’ self-reported incomes, and an interaction with 

daily PM2.5 concentrations (which have variability within a city) to parse out whether the air quality effect is 

being driven by other inter-city differences. We find our estimate of the interaction effect between daily PM2.5 

concentrations and the coefficients for emission remain undiminished relative to a model without city-level 

fixed effects or average per-capita income, suggesting that our findings are not masking pure city-level 

heterogeneity or income levels. 



 38 

3.3.3 Heterogeneity and consistency checks 

The results so far describe effects and preferences estimated for the average respondent. We also collected 

demographic information to see if any variations in preferences might be associated with different individual 

characteristics, such as income or education level. In addition to the city-level heterogeneity for emissions 

preferences discussed above, we observe that respondents with higher income and education levels place less 

importance on increases in electricity bills, which in turn gives them higher willingness-to-pay for emissions 

reductions (see Appendix C.3.2 for further discussion). 

We also include in our survey a series of checks to assess whether respondents understand the task and are 

providing internally consistent responses. These include questions to assess whether respondents can 

distinguish between the effects of SO2 and CO2; dominated alternatives designed to evaluate whether 

respondents are paying attention; and a series of choices testing for transitive and linear preferences. 

Respondents performed well on these understanding and consistency checks, suggesting that they understood 

the task, are aware of the distinction between the climate and health effects of the two types of emissions, and 

are making internally consistent choices. Details on these checks are provided in Appendix C.4.2. 

3.4 Discussion and conclusions 

We find that respondents from the 10 Chinese cities we sample have strong preferences for emissions 

reductions, and that support increases dramatically if both climate- and health-related emissions are reduced, 

even if these emissions cuts imply relatively large increases in monthly electricity bills. Respondents do not 

demonstrate strong preferences for different sources of electricity, suggesting that the attributes of electricity 

generation—such as emissions and costs—are more important than the actual mix itself. This result may be 

biased by the fact that we exclusively sample from urban populations, which are largely removed from the 

sources of electricity generation. Nevertheless, this finding is consistent with our results from Chapter 2 and 

with other studies of energy preferences in the U.S. [6] and suggests the need for policies that evaluate energy 

technologies based on their ability to achieve environmental and economic objectives. 

An exception to respondents’ openness to different technologies is that their choices are consistent with a 

weak disutility for scenarios that replace coal with multiple sources of clean energy. While this may reflect on 

people’s skepticism for pursuing an “all-of-the-above” strategy—as opposed to pursuing economies of scale 

with one or two technologies—it may also be indicative of the fact that large changes to one technology in 

the survey are more salient to respondents. Although more research is needed to understand this pattern, it 

highlights the importance of understanding public preferences when developing and advancing the use of 

different technologies to meet the country’s energy transition needs.  
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We observe a relationship between long-term and peak PM2.5 concentrations and preferences for 

emissions reductions, but no strong relationship at daily or monthly timescales. This result suggests that 

respondents are relying on long-term air quality trends when evaluating the importance of emissions 

reductions, and may be less affected by day-to-day changes. The salience of long-term air quality in key cities 

where preferences are strongest suggests that public awareness of and access to consistent information on 

historical air quality may play an important role in developing sustained support for emissions reductions. The 

average respondent in the survey has a WTP around 38-42% more in monthly electricity bills for 30% 

reductions in either CO2 or SO2 (around $12-13 USD), and close to 82% more for simultaneous reductions in 

both emissions ($23 USD). Accounting for the interaction with annual PM2.5 concentration, we find that 

respondents in the most polluted cities are willing to pay 30% more in monthly electricity bills for a 30% 

reduction in SO2 relative to respondents in the least polluted cities.  

Based on these results, respondents do seem to favor strategies that address both air pollution and 

climate-related emissions, such as transitioning away from coal-fired power, over strategies that only address 

air quality, such as installing flue-gas desulfurization. By pursuing interventions that consider both types of 

emissions, China is likely to gain additional public support for its energy transition. However, the extent to 

which poor air quality induces additional support for climate action may be limited, and China’s most 

polluted regions may be able to capture more public support for immediate air pollution interventions even 

while there is support for long-term emissions reductions to address climate change. This variation in 

preferences suggests that in addition to national efforts to transition to a low carbon energy sector—such as 

the creation of CO2 cap and trade systems and funding for carbon-free energy deployment and research—

highly polluted regions may benefit from and more strongly support targeted, immediate air pollution control 

policies relative to long-term strategies. 

Our findings suggest that China stands to benefit in terms of popular support by co-optimizing its 

emissions reductions strategies for both climate and health benefits. Furthermore, communicating both the 

climate and health benefits of emissions reductions is likely to increase support for those policies, particularly 

in areas with a history of poor air quality. Increasing awareness of historical pollution levels by providing 

consistent and reliable data may also help cement further support by increasing the salience of long-term air 

quality trends. Although the applicability of our results to China more broadly is somewhat limited because 

we sample only from urban areas, our results suggest that communication efforts can help build support 

among the Chinese public for strategies to reduce emissions. Future studies might also explore consumers’ 

preferences with regards to interventions targeting emissions in other important sector relevant to air 

pollution in China, such as home heating, transportation, and industrial production, where the tradeoffs that 

individuals are willing to make may be very different on account of socioeconomic, cultural, or other 

contextual factors. 
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3.5 Comparison of U.S. and Chinese surveys 

Chapters 2 and 3 present the findings from two similar studies in the U.S. and China on preferences from 

emissions reductions as they relate to climate and health benefits. There are differences in the survey design 

(e.g. difference in portfolio levels) and sample characteristics (e.g. the U.S. survey was conducted with an 

online sample, while the China sample was administered in person; the U.S. survey includes respondents from 

across the entire country, whereas we sample urban residents of 10 Chinese cities) that limit direct 

comparison. Nevertheless, some high-level discussion of how responses across the two groups differed is 

warranted. 

In both samples, we find that respondents exhibit preferences for reducing emissions, and that they 

demonstrate greater support for emissions reductions that address both climate and health simultaneously. 

Without any change to emissions, respondents in China are relatively indifferent to new renewables; on 

average they support paying 20% more in electricity bills for increased renewables scenarios only 34% of the 

time (95% CI: 31-37%), meaning that 76% prefer the current baseline with no increase to bills. However, if 

that same, more expensive renewables scenarios promises to achieve 30% reductions of both CO2 and SO2, 

respondent support jumps to 87% (95% CI: 85-89%).  

The pattern in the probability of support results for the U.S. survey is remarkably similar. Individuals in 

the Group 4 experimental condition (which saw full information on climate and health emissions) support 

increased renewables scenarios that cost 20% more in electricity bills only 35% of the time (95% CI: 31-41%) 

if there are no changes to emissions, yet that support increases to 77% (95% CI: 72-81%) with a 30% 

reduction in CO2 and SO2. As with the Chinese sample, respondents on average do not support renewables if 

they are more expensive and do not yield benefits to emissions, but overwhelmingly support them if they 

achieve significant emissions reductions. This pattern of support is similar across different portfolios for both 

samples, suggesting that respondents in both samples are concerned with how alternative energy sources can 

emissions output. While other environmental or economic outcomes may also be important to individuals 

(e.g. water use, fuel security, or job creation), it seems clear that respondents are concerned with the attributes 

of different sources of electricity. Furthermore, energy sources that promise emissions reductions at higher 

cost but then fail to deliver are likely to lose public backing in the long run. 

Another metric of comparison across the two samples is the estimate WTP per ton of emissions reduced 

for the two pollutants. Table 3.5 synthesizes our estimates for WTP per ton from the two studies, along with 

approximations for the marginal damage from each of those two pollutants for the two countries. The 

relative levels of support for emissions reductions are comparable across the countries (as a percent increase 

in bills), and the WTP estimates are also comparable after adjusting for purchasing power parity differences 

across the two countries (without adjusting for pricing differences across the two counties, the WTP per ton 

CO2  in China would be between $30-40).  
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Table 3.5 – Comparison of WTP  estimates values from the U.S. and China surveys. Table shows WTP values 
(in USD per ton of emissions reduced) for 30% reductions of each type of emissions from the two surveys, along 
with approximate ranges for the marginal damage of emissions from each type of emissions when available. 

Average WTP or damages ($/ton) U.S.  China 

WTP per ton CO2
 
for a 30% reduction from  

our survey 
30-50 56-72 

Social cost of carbon  
(Ricke et al., 2018) 

48 (1-118)* 24 (4-50)* 

WTP per ton SO2 for a 30% reduction from  
our survey 

27,000-40,000 32,000-40,000 

Average marginal damage of SO2 for electricity 
generation  

(Fann et al., 2012) 
35,000 - 

* Indicates 66% percent confidence interval 
 

A caveat to these WTP comparisons is the fact that our estimates amortize total willingness-to-pay over 

emissions reduced—since China has a far larger population, the total payment for emissions reductions from 

a universal increase in electricity bills will be higher, potentially inflating the per ton WTP values. Differences 

in electricity bill levels and total emissions across the two counties may also limit direct comparison. 

Nevertheless, estimates for both countries are on the same order of magnitude as per ton marginal damage 

metrics.  

Analytically, there is no immediate reason why these number need converge; previous studies have found 

WTP estimates that far exceed the social costs [21], while recent studies suggest damages from climate change 

may be much higher than previous values [79]. One reason why our estimate may be more realistic than larger 

values from previous work is that the discrete choice nature makes clear the nature of tradeoffs to 

respondents, thus potentially enabling them to make choices that more accurately reflect their preferences. 

Our findings should also be considered in the broader context of other estimates for WTP, which can vary 

based on sample population, the time, survey design, and other contextual factors, and more work is needed 

to continue evaluating the stability of respondent preferences across survey design choices. Despite this, our 

results suggest that—under the right context—both the U.S. and Chinese publics may be supportive of 

policies that internalize damages, and that this level of support may be commensurate to estimates of the 

social costs of CO2 and SO2. Policy makers might then use these estimates to inform their development of 

programs to tax these pollutants or to advance other programs intended to reduce emissions.  
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Chapter 4 

Assessing health damages from air pollution in 
the U.S. 

Motivating questions: How can we use reduced complexity air quality models to understand health 

damages from emissions in the U.S.? To what extent have health damages and their attribution 

across political boundaries changed from 2008 to 2014? What characteristics are associated with 

locations that are large exporters or importers of emissions that cause health damages?  

 

Chapters 2 and 3 demonstrate that many individuals in the U.S. and China are willing to support emissions 

reductions if information on both the climate and health benefits of those reductions is clearly 

communicated. Communicating these health benefits, however, requires an understanding of the processes by 

which emissions affect air quality and subsequently impact human health. One challenge to the attribution of 

benefits from reductions to emissions is that concentrations of PM2.5 in any given county can be substantially 

affected by emissions occurring outside that county. Furthermore, because of differences in atmospheric 

conditions or population exposure, the benefits of emissions cuts can vary dramatically depending on the 

location of those reductions. 

An approach to understanding these complexities is to use an integrated assessment model that establishes 

the linkage between emissions, increased PM2.5 concentration, population exposure, the consequences of that 

exposure in terms of health effects, and finally the monetized value of those increased health risks. In this 

chapter, we present results from an analysis using AP3, an integrated assessment model with reduced 

complexity air quality modeling used to assess health damages from emissions in the U.S. at the county level. 

Using emissions data from 2008, 2011, and 2014 as inputs to the AP3 model, we estimate annual health 

damages from PM2.5 for every county in the continental U.S. In addition, we quantify the transboundary flows 

of emissions, and attribute damages either to emissions produced within each county (“self-inflicted”) or else 

originating from a different location (“imported”).  

Analysis of the AP3 model suggests that the monetized health damages from PM2.5 have decreased 

nationally by approximately $200 billion (15%) from 2008 to 2014, equivalent to approximately 24,000 fewer 

premature deaths each year. However, these benefits have not accrued uniformly across counties: 15% of 

U.S. counties experienced an increase in health damages per person from 2008 to 2014, while 30% of 

counties showed an increase between 2011 and 2014. Moreover, although the overall share of caused by 

transboundary emissions damages in each county decreased over the period, the share of imported damages 
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still exceeds 90% of total health damages in a quarter of counties, with disproportionately higher ratios in 

counties with greater shares of poor or minority residents.  

Despite recent trends in emissions reductions, these results suggest that continued federal regulation of 

transboundary pollution could play a critical role in achieving air quality standards in all counties and thus 

reducing the health burden from air pollution. As traditional sources of transboundary emissions, such as coal 

plants and other large point sources, shut down, policy makers may have to adopt new strategies to continue 

to reduce pollution from harder-to-target sectors. The county-level characterization of exported/imported 

damages can serve as a useful signal to decision makers as to what type of emissions interventions may be 

appropriate. Finally, the modeling approach explored in this chapter also provides the tools needed to 

evaluate the health benefits of different emissions reductions, which we explore further in Chapter 5.  

The original concept for the work in this chapter was proposed by Inês Azevedo and Nick Muller, and the 

three of us worked together to scope the project. Nick Muller is the author and developer of the AP3 and its 

previous iterations; for this project, Nick trained me in using and applying the model, and I worked closely 

with him to process the National Emissions Inventory (NEI) data and other inputs for the 2014 analysis, to  

calibrate the model runs for new emissions years, and to adjust the model for the analysis of transboundary 

flows of emissions and their subsequent damages. I led analysis and write-up of the results, with substantial 

input and guidance from Nick, Inês, and Steve Davis. 

4.1 Introduction 

In the U.S., uniform National Ambient Air Quality Standards (NAAQS) are set by the federal Environmental 

Protection Agency (EPA). In turn, states and more granular levels of government are typically charged with 

implementing and, in most cases, enforcing the standards. This administrative structure reflects an axiom of 

environmental policy design: the appropriate authority lies with the level of government whose jurisdiction 

encompasses the geographic reach of the regulated pollutant. However, even as air pollution emissions in the 

U.S. have decreased—for example, sulfur-dioxide emissions fell by roughly 55% between 2008 and 2014 due 

to a combination of market forces and public policies [81]–[83]—the federal role in regulating air pollution 

has been questioned. For example, the EPA has proposed to relax federal emissions standards required by the 

New Source Review Program, and also recently denied petitions by Delaware and Maryland to require 

emissions reductions by upwind states that the petitioners argue are affecting their air quality [84], [85]. 

In this context, transboundary pollution is a critical consideration. It is well known that the geographic 

reach of air pollution may extend well beyond the jurisdiction where the pollution is emitted [86]–[88]. The 

“good neighbor” provision of the Clean Air Act requires states to consider the impact of their emissions on 

the ability of downwind states to meet their obligations to federal standards [89]. There is a substantial 

literature on the contribution of different sectors to health damages [37], [83], [90], the spatial heterogeneity 
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of how such damages are caused [91]–[95], and the implications of specific emissions reductions or policy 

interventions [96]–[101], as well as some explorations of transboundary pollution in specific contexts [102], 

[103] and at the global scale [104], [105]. Despite this, there has been no comprehensive assessment of 

transboundary pollution in the U.S. 

Here we quantify recent trends in transboundary flows of air pollution over the continental U.S., as well as 

the share of health impacts in each county and state related to such transboundary flows and the relationship 

of such impacts to the race and income of county residents. In particular, we focus on annual mean 

concentrations of particulate matter with diameter less than 2.5 µm (PM2.5), which is subject to federal air 

quality standards. As noted in the above chapters, there is strong evidence that chronic exposure to increased 

ambient PM2.5 concentrations is associated with adverse health effects, most significantly premature mortality 

from cardiopulmonary and respiratory illness [2], [106]–[109]. Chronic exposure to elevated PM2.5 

concentrations was estimated to have caused 130,000-200,000 premature deaths in the U.S. in 2005, roughly 

5-7% of all deaths [4], [110], [111]. While PM2.5 can be directly emitted, the majority comes from the 

transformation of precursor pollutants such as sulfur-dioxide in the atmosphere [112]. 

We assess the magnitude and impacts of transboundary pollution in 2008, 2011, and 2014 using an 

integrated assessment model (AP3, an updated version of the APEEP and AP2 models [91], [92]) that 

combines emissions data with reduced complexity air quality modeling to assess particulate matter 

concentrations, population exposure, health effects, and associated economic damages. The model simulates 

atmospheric transport, chemical transformation of precursors, and deposition across all U.S. counties, 

employing a source-receptor matrix based on a modified Gaussian plume model. Although the model has less 

fidelity than more detailed chemical transport models, it performs comparably to more complex models while 

providing the ability to identify the source of emissions causing health damages across the entire continental 

U.S. Specifically, we quantify damages in a county as a result of its own emissions (“self-inflicted”), from 

outside sources (“imports”), as well as the damage caused in other counties by its emissions (“exports”). 

4.2 Methods 

Here we provide an overview of the AP3 integrated assessment model (including the model structure, 

calibration and performance, and marginal damages summaries), the data sources used as inputs to the model, 

and the metrics and analysis conducted on the outputs. We also evaluate the model’s performance relative to 

air quality monitoring data and other air quality models. 
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4.2.1 AP3 model overview 

AP3 is an integrated assessment model developed to estimate monetary damages from emissions in the 

continental United States. It is an updated version of the previously developed APEEP and AP2 models7 

[92], [93]. Previous research has found that mortality accounts for approximately 95% of total monetized 

health damages and is largely driven by changes in annual PM2.5 [83]; accordingly, in this analysis we focus 

only on the mortality effects from increased annual PM2.5 concentration and do not include morbidity or 

other environmental damages. The model uses source-receptor based air quality model to translate emissions 

into ambient concentrations, and then to compute population exposure, health effects, and finally the 

valuation of those effects; each of these steps is described in detail below.  

The AP3 air quality model uses annual emissions of PM2.5 as well as pollutants that are precursors to 

PM2.5, including sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), and volatile organic 

compounds (VOCs) from both anthropogenic and biogenic sources (see Section 4.2.2 for details on 

emissions data). To translate emissions into concentrations, the model simulates atmospheric transport, 

chemical transformation of precursors, and deposition across all U.S. counties through a source-receptor 

matrix framework. In these matrices, the contribution of emissions in a source county (s) to the ambient 

concentration in a receptor county (r) is represented as the (s,r) element. The source-receptor matrices for 

each pollutant are based on a modified Gaussian plume model from the Climatological Regional Dispersion 

Model, and are used for the dispersion of pollutants from the point of emission as well as for the conversion 

of PM2.5 precursors[113]–[115]. The Gaussian plume dispersion model accounts for average wind patterns, 

weather conditions, vertical dispersion, deposition, and distances between source and receptor, with 

meteorological conditions represented by averages from the period from 1995-1999 using National Oceanic 

and Atmospheric Administration’s (NOAA) Integrated Surface Hourly data. The model contains source-

receptor matrices governing the following relationships: PM2.5, NOx → PM2.5; SO₂→ PM2.5; NH₃→ PM2.5; 

and VOCs→ PM2.5.  

For each of the source-receptor matrices, the model distinguishes among emissions released at four 

different effective height categories: ground-level emissions (area sources), point sources under 250 meters, 

point sources between 250 meters and 500 meters, and point sources over 500 meters. Emissions are 

modeled at the county level except for the category of point sources with the tallest effective stack height, 

which are modeled at the plant level. The total mass of annual emissions by location and stack height are then 

combined with the source-receptor matrices to produce predictions of annual mean PM2.5 concentrations.  

                                                      
7 See Appendix D.1 for information on changes from AP2 to AP3, namely the improved estimation of the ammonium-
sulfate-nitrate equilibrium. 
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After translating emissions into concentrations, the next step is to compute exposures using county-level 

population estimates. Exposed are translated to health effects using baseline all-cause mortality rates and 

estimates for the concentration-response function relating PM2.5 concentration and increased mortality. The 

concentration-response relating average annual PM2.5 concentration to mortality is taken from American 

Cancer Society (ACS) reanalysis study by Krewski et al. for adults over 30 years old8 and from Woodruff et al. 

for infants less than 1 year old [108], [109]. These concentration-response functions provide total estimates of 

the health damages incurred over time from a year of exposure to PM2.5. Finally, increased mortality is valued 

using a Value of Statistical Life (VSL) applied uniformly to all age groups [116]. We use the EPA 

recommended VSL of $7.4 million in USD 2006, which is approximately $8.7 million after adjusting for 

inflation using the consumer price index (CPI) to current dollars in 2014. These monetized damage estimates 

are provided by year of the emissions that produce them. 

Figure 4.1 provides a schematic summarizing the structure of the AP3 model. Similarly, Equation 4.1 

summarizes the model formulation, where 𝐷[$] is total monetized damage in the U.S., a indexes by age 

cohort and i indexes by county, 𝐸𝑖 [
𝜇𝑔

𝑚3 𝑝𝑒𝑟𝑠𝑜𝑛⁄ ], is the estimate of exposure by county as a function of 

average annual concentration of PM2.5 𝐶𝑖 [
𝜇𝑔

𝑚3], 𝑃𝑖  [𝑝𝑒𝑟𝑠𝑜𝑛𝑠] is the population, 𝑀𝑖,𝑎 is the baseline mortality 

rate, 𝛽𝑃𝑀,𝑎 [% 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑟𝑎𝑡𝑒 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒
𝜇𝑔

𝑚3⁄ ] is the estimated concentration-response effect, and 𝑉[$] is 

the VSL.  

𝐷 =  ∑ ∑ 𝐸𝑖(𝐶𝑖)𝑃𝑖,𝑎𝑀𝑖,𝑎𝛽𝑃𝑀,𝑎𝑉

𝑎𝜖𝐴𝑖𝜖𝑁

 (4.1) 

 

 

                                                      
8 Because the ACS only included participants over 30 years of age, we do not estimate mortality effects for individuals 
between 1 and 30 years old. In addition, the ACS does not observe significant differences in health risks of individuals 
who are above or below 60 years in age, reporting an estimate for the “all-age” effect; accordingly, we apply the 
concentration-response equally across all age cohorts. Given that the response function is a risk multiplier, however, 
increased mortality still tends to occur for older populations on account of higher baseline mortality rates.  
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Figure 4.1 – Overview of the AP3 model structure. 

 

4.2.2 Data sources 

The AP3 model requires as input data on emissions, population, and mortality rates for each of the years we 

model. Below, we describe each of these data sets and the data cleaning process.  

 

Emissions data 

Data on emissions is taken from the EPA’s National Emissions Inventory (NEI), which is a comprehensive 

accounting of emissions from all sectors [81]. In the range of years in our study, data is available for 2008, 

2011, and 20149. We use NEI data on total annual emissions of SO2, NOx, direct PM2.5, NH3, and 

anthropogenic VOCs from all point, non-point, and mobile sources (including on- and off-road). We also use 

data on biogenic VOCs from the NEI and EPA’s Biogenic Emissions Inventory System (BEIS). Point 

sources are reported by unit or facility, while other non-point and mobile emissions are reported at the county 

level. While facility-level emissions are typically estimated from continuous emissions monitoring, emissions 

from area sources are estimated or modeled by the EPA or reported from state, local, or tribal agencies. As 

such, these emissions estimates may deviate from reality, subsequently resulting in misestimation of air quality 

                                                      
9 At the time of this writing, 2014 corresponds to the most recent NEI, and thus our analysis is limited to using that year 
as the most recent year of observations. 
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and health damages. Despite this limitation, the NEI estimates represents the best existing approximation of 

county-level emissions in the continental U.S.  

We use EPA-assigned, county-specific FIPS codes to select for emissions in counties within the 

continental U.S.; this subset does not include emissions from ocean-based marine transportation or non-point 

emissions from tribal lands. Emissions are allocated to one of the four height categories, with all mobile 

sources, non-point facilities, and biogenic VOCs allocated to ground-level, area sources. We then allocate 

point sources emissions to the three effective height categories for point sources. We first identify emissions 

from sources with effective height greater than 500 meters, using a list of facilities from 2008 and updating 

that list with facilities closures in 2011 and 2014. Since emissions are reported at the plant or facility level, 

sources with multiple stacks have their emissions allocated equally across stacks. Remaining point source 

emissions are allocated across the two remaining effective height categories for point sources. For each 

county, we estimate the percent of sources with effective heights below 250 meters in 2008 and use the 

subsequent estimate of the percent of emissions falling into each of those two height categories to allocate 

emissions for 2011 and 2014.  

Table 4.1 shows total emissions by pollutant species for each of the modeling years, while Figure 4.2 

shows those totals broken down by select groupings based on the EPA’s source classification codes.  

Table 4.1 – Total emissions by year and pollutant (in million tons). Note that VOCs include biogenic and 
anthropogenic sources. 

 NH3 NOX PM2.5 SO2 VOCs 

2008 4.03 17.45 4.28 10.1 51.96 

2011 3.86 14.91 4.04 6.22 53.39 

2014 3.27 12.97 3.68 4.47 50.95 
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Figure 4.2 – Total emissions by year, sector, and pollutant (in million tons). Note the difference in y-axis scales. 

 

Population data 

Population data is provided at the county-level for each year from U.S. Census American Community Survey. 

For 2011 and 2014, we used the 5-year estimates which provide estimates for all counties. Since 5-year 

estimates are not available for 2008, we supplement missing county population data with modeled estimates 

taken from the Centers for Disease Control (CDC). The data is categorized into 19 age groups by five-year 

increments, starting with individuals under 5 years and ending with individuals 85 and older, with infants (< 1 

year) modeled separately. Because the American Community Survey does not identify infant populations, we 

use data on infant population data from the CDC to separate children under 5 into infants and children 1-4 

years of age.  
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Mortality data 

We use mortality data from the CDC National Vital Statistics System Multiple Cause of Death Dataset. The 

data includes all-cause mortality rates by county for each of our 19 age groups. In cases of age groups and 

counties combinations with fewer than 20 mortalities in a year, the CDC does not report mortality data for 

reliability and privacy concerns. In these cases, we estimate urban and rural mortality rates by age group at the 

state or regional level and use that rate as a proxy; this procedure is similar to the imputation method used by 

EPA’s BenMAP [117]. We use the Census’ definition of Metropolitan Statistical Areas for classifying a county 

as rural or urban. This imputation process was used to fill in missing mortality rates for approximately 30% of 

the data. 

4.2.3 Model calibration and performance 

The source and receptor matrices in AP3 govern the relationship between emissions and ambient 

concentrations. To improve the fit of AP3’s predicted PM2.5 levels to monitor readings, we calibrate AP3 

output to match observed concentrations. These calibration coefficients vary slightly year-to-year depending 

on the mix of emissions of different PM precursors. Table 4.2 reports the calibration coefficients for each 

species of PM across the three years modeled.  

Table 4.2 – Calibration coefficients used for primary PM emissions and PM precursors for each of the three years 
modeled.  

 2008 2011 2014 

Primary PM 0.58 0.64 0.66 

Sulfate 1.1 1.2 1.33 

Nitrate 0.52 0.54 0.58 

Ammonium 0.3 0.3 0.31 

Anthropogenic VOCs 0.03 0.03 0.03 

Biogenic VOCs 0.032 0.035 0.028 

 

We also apply an additional, secondary stage calibration to specific counties where the model estimates 

deviate significantly from expected concentrations. Using estimated PM2.5 concentrations from land-use 

regression techniques [118] as a baseline, we identify the 1% of counties with the largest prediction errors (the 

0.5% largest over-predictions and the 0.5% largest under-predictions) and then overlay a county-specific 

adjustment to the calibration coefficient for that county across all modeling years. We use land-use regression 

predictions here since monitor data is not available for most counties. The magnitude of each county-specific 

calibration coefficient is determined as follows. First, we adjust the calibration coefficient for all PM species 

by the percentage deviation of the original AP3 prediction of total PM mass relative to the land-use 

regression estimate. Next, we refine the adjustments of species-level calibrations for each county as needed to 

preserve the original order of marginal damage across pollutants and to be in line with results from 
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neighboring counties. Adjustments are provided equally across all stack heights and across modeling years 

within a single county.  

To assess the performance of the model, we compare predicated PM concentrations from the model with 

monitor data from the U.S. EPA using three performance metrics. Two of these metrics are Mean Fractional 

Error (MFE) and Mean Fractional Bias (MFB), defined by the following: 

 
𝑀𝐹𝐸 =

1

𝑁
∑

|𝐶𝑚,𝑖 − 𝐶𝑜,𝑖|

(
𝐶𝑚,𝑖 + 𝐶𝑜,𝑖

2 )

𝑁

𝑖=1

 (4.2) 

 
𝑀𝐹𝐵 =

1

𝑁
∑

(𝐶𝑚,𝑖 − 𝐶𝑜,𝑖)

(
𝐶𝑚,𝑖 + 𝐶𝑜,𝑖

2
)

𝑁

𝑖=1

 (4.3) 

where Cm,i signifies a model prediction of ambient concentration at county receptor location (j), and Co,i 

represents the observed monitor data reading [83]. We also compute Pearson’s correlation coefficient (Rho). 

Table 4.3 provides an evaluation of the performance metrics for the AP3 results relative to monitor results 

from the EPA. In evaluating air quality models, Boylan and Russell (2006) state that a model is performing 

“close to the best a model can achieve” if the MFE <50% and MFB ± 30%, and that MFE<75% and MFB ± 

60% signifies a level of accuracy acceptable for modeling applications [83], [119]. Based on these metrics, the 

AP3 is performing at top levels for overall PM2.5 concentration and sulfate speciation, with slightly lower 

accuracy rates for nitrate and organic carbon but results still within reasonable levels.  

Table 4.3 – Performance metrics using AP3 predictions and EPA monitor observations. 

Year 
Total PM2.5 Sulfate 

Rho MFE MFB n Rho MFE MFB n 

2008 0.560 0.314 -0.118 584 0.856 0.495 -0.136 314 

2011 0.524 0.313 -0.110 547 0.830 0.483 -0.217 310 

2014 0.558 0.318 -0.129 592 0.850 0.457 -0.216 302 

Year 
Nitrate VOCs 

Rho MFE MFB n Rho MFE MFB n 

2008 0.643 0.502 -0.048 307 0.662 0.359 0.119 154 

2011 0.636 0.498 0.099 306 0.605 0.447 0.313 151 

2014 0.579 0.535 -0.033 299 0.653 0.417 0.268 146 

 

We can also compare the model’s performance to that of more rigorous chemical transport models 

(CTMs). Table 4.4 compares performance metrics for total PM2.5 and precursor species from our AP3 model 

runs with those from two commonly-used CTMs, CMAQ and WRF-Chem. Overall, we note that the site-

levels errors and performance of the model are relatively comparable to performance of full chemical 

transport models used in similar analysis and in support of federal rule-making by the EPA [120]–[123].  
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Table 4.4 – Comparison of performance metrics from two chemical transport models, CMAQ and WRF-Chem, 
with those from AP3 relative to EPA monitor observations for annual average mass.Ranges of values indicate 
ranges based on differences from using different monitoring networks or across modeling years for AP3. 

Species Metric 
CMAQ  

(2001)[121] 
WRF-Chem 
(2005)[122] 

AP3  
(2008-2014) 

Total 
PM2.5 

MFB 12% -1% -11- -13% 

MFE 52% 21% ~ 31% 

Rho 0.47  0.52-0.56 

Sulfate 

MFB -12-1% 36% -21- -13% 

MFE 31-46% 37% 45-49% 

Rho 0.61-0.85  ~ 0.85 

Nitrate 

MFB -40- -6% -110% -3-10% 

MFE 88-110% 110% 50-53% 

Rho 0.18-0.53  0.57-0.64 

VOCs 

MFB -10-30% -29% 12-31% 

MFE 60-73% 47% 36-45% 

Rho 0.11  0.6-0.66 

 

Finally, Figure 4.3 provides scatterplots comparing the model estimates with monitor data for total PM2.5 

(left panel) and predictions to empirical models based on land-use regressions (right panel). The model tends 

to over predict total PM2.5 for locations with poor air quality, a problem common to other air quality models 

[122]. Approximately 60% of counties have AP3 model predications deviate by 25% or less from the satellite-

based empirical estimates, while fewer than 12-14% of counties deviate from their satellite prediction by more 

than 50%. 
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Figure 4.3 – Comparison of AP3 model predictions to outside sources.Scatterplots show total PM2.5 
concentration (in µg/m3) predicated by the model against measurements observed by EPA monitors against 
(left column) and values predicted by empirical models using land-use regressions [118] (right column).  

 

Table 4.5 provides the average over all counties of the marginal damage for each pollutant by stack height for 

each of the three years of analysis. As emissions and pollutant concentrations largely fall from 2008 to 2014, 

the marginal damage of each additional ton of emissions tends to increase for each of the species. This trend 

tends to increase damages, partially “offsetting” welfare gains from lower damages from reduced emissions. 

While using the marginal damages that correspond to the year of analysis more accurately captures the 

appropriate atmospheric conditions, we conduct a damage assessment using constant marginal analysis as part 

of our sensitivity analysis (see Section 4.3.4 below). Density estimates for marginal damages by pollutant and 

stack height are also given in Figure 4.4. 
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Table 4.5 – Summary of the average marginal damage across all counties of an additional ton of pollutant by 
stack height for 2008, 2011, and 2014 model runs. Values are in $2014 per ton and are rounded to three significant 
figures. 
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Figure 4.4 – Density estimates of the log of marginal damages by pollutant (shown in each panel) and the height 
at which emissions occur (shown by color). Results combine marginal damage estimates from the three 
modeling years. 
 

4.2.4 Import and export metrics 

We employ a marginal approach to isolate the flows of damages into and out of specific counties. To do this, 

we first use the model to calculate baseline damages suffered by every county using all emissions (𝐷𝑖), where i 

indexes by county in which the damages occur. Next, we select a single county (county x) and set its 

emissions to zero. We then re-run the model, assessing new annual average PM2.5 concentration values by 
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county (𝐶′𝑖) and the damages occurring in each county (𝐷′𝑖). By comparing these two damage vectors, we can 

assess the following three measurements of flows of damages with relation to each county.  

1. Imported damages (𝐷𝑥
𝐼 ) – damages occurring in county x that occur because of emissions from 

outside county x. 

𝐷𝑥
𝐼 =  𝐷′𝑥 

 = ∑ 𝐸𝑥(𝐶′𝑥)𝑃𝑥,𝑎𝑀𝑥,𝑎𝛽𝑃𝑀,𝑎𝑉

𝑎𝜖𝐴

 
(4.4) 

2. Exported damages (𝐷𝑥
𝐸) – damages occurring in other counties that occur from emissions inside 

county x. 

 

𝐷𝑥
𝐸 =  ∑ 𝐷𝑖

{𝑖𝜖𝑁:𝑖≠𝑥}

− ∑ 𝐷′𝑖

{𝑖𝜖𝑁:𝑖≠𝑥}

 

 = ∑ ∑ 𝐸𝑖(𝐶𝑖)𝑃𝑖,𝑎𝑀𝑖,𝑎𝛽𝑃𝑀,𝑎𝑉

𝑎𝜖𝐴

−  ∑ ∑ 𝐸𝑖(𝐶′𝑖)𝑃𝑖,𝑎𝑀𝑖,𝑎𝛽𝑃𝑀,𝑎𝑉

𝑎𝜖𝐴{𝑖𝜖𝑁:𝑖≠𝑥}{𝑖𝜖𝑁:𝑖≠𝑥}

 

(4.5) 

 

3. Self-inflicted damages (𝐷𝑥
𝑆) – damages occurring within county x as a result of emissions from that 

same county. 

𝐷𝑥
𝑆 =  𝐷𝑥 − 𝐷′𝑥 (4.6) 

By iterating across all counties, we estimate these three metrics for each of the over 3,000 counties in the 

continental U.S. Figure 4.5 provides a schematic illustrating this modeling process. We also use the source-

receptor matrix in this calculation to aggregate these calculations to the state and regional levels. 

 

 

Figure 4.5 – Schematic of modeling process for identifying import, export, and self-inflicted damages by county. 

 

To evaluate the relative share of damage from exported, imported, and locally-produced emissions, we 

look at the ratios for each of these metrics to each other: export/import ratio (𝐷𝑥
𝐸/𝐷𝑥

𝐼 ), self-inflicted/import 
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ratio (𝐷𝑥
𝑆/𝐷𝑥

𝐼 ), and self-inflicted/exports (𝐷𝑥
𝑆/𝐷𝑥

𝐸). These three ratio metrics help to normalize comparisons 

across counties of different size, providing insight into the magnitude of each of the three types of damages 

relative to the other two. The VSL also features in the calculation of both the numerator and the denominator 

of each ratio and therefore cancels, making any conclusion drawn from analysis of the ratios independent 

from the assumption for VSL. While the concentration-response does not analytically reduce from the ratios, 

its effect on the conclusion of the analysis is also balanced by using the ratio calculations. In this chapter we 

focus primarily on analysis of the ratio of exports to imports; information and statistics on the other two 

ratios can be found in Appendix E.4.  

We conduct a regression analysis on the ratios to explore underlying trends and patterns. We treat ratio 

from each county and year as a single observation, thus constructing a panel data set from the three years of 

our analysis (3,109 counties over three years for around 9,300 observations). The specification for the 

regression analysis on the ratios is given by the equation in Figure 4.6 below. Because of the extreme right 

skew of the ratio values as well as the asymptotic bound at zero, we use a natural log transform for each of 

the ratios. We also alternate model specifications, including leaving out the county fixed effects and using 

median income instead of poverty levels. As income and race data is not available from the census for all 

counties, we use 2009 data as proxies for these two variables in 2008 as that is the first year that the American 

Community Survey provides estimates for all counties.  

 

Figure 4.6 – Regression model specification. See Appendix E.1 for coefficients from the regression model.  
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4.2.5 Sensitivity analysis 

To understand the interactions between changes in population, mortality rates, and emissions and how they 

affect damages over time, we conduct a sensitivity analysis where we run each combination of the three 

variables for each of the three years we study. We find that changes in damages are most sensitive to 

emissions levels and changes in mortality rates, and are less driven by population growth over the time-period 

considered. We also conduct sensitivity to changes in marginal damages over the time of the study, finding 

that marginal damages have largely increased from 2008 to 2014, thus raising damages. Finally, we conduct a 

sensitivity analysis on some of the key input assumptions to the model, including the concentration-response 

coefficient, the choice of VSL, and valuation by life-years saved (i.e. employing a VSLY approach). These 

sensitivity analyses are summarized in Section 4.3.4 below.  

4.3 Results 

4.3.1 Health damages over time 

Figure 4.7a shows estimates of annual U.S. health damages from PM2.5 related deaths based on emissions 

levels from 2008, 2011, and 2014; damages for 2008 thus refer to the amount of annual damages attributable 

to 2008-level emissions. Damages are sub-divided into ground-level, “area” sources, which are estimated by 

the EPA and include smaller emitters and mobile sources, and stationary “point” sources, which are typically 

measured and include power plants and industrial facilities, as described in Section 4.2.2 above. These 

damages come from exposure to PM2.5 that is either directly emitted or produced by atmospheric reactions 

from precursor pollutants; these emissions are shown in Figure 4.7b.  

From 2008 to 2014, total annual health damages have fallen both in absolute terms and relative to Gross 

Domestic Product (GDP), even as the average marginal damage from emissions of various pollutants has 

risen over that time period (Figure 4.7c). This increase in marginal damages this is a result of a combination 

of population growth and changes in atmospheric composition. Figure 4.7a presents damages under baseline 

assumptions for VSL and concentration-response function, as well as high and low estimates based on a 

plausible range for those inputs (see Section 4.3.4 for further sensitivity analysis). 

Total annual damages from emissions fell by approximately $200 billion from 2008 to 2014 (a 15% 

decrease), with essentially all of the decline occurring between 2008 and 2011. This decrease in damages 

reflects a transition from 150,000 to 126,000 annual deaths from PM2.5 exposure, or 24,000 fewer deaths 

annually10. Meanwhile, GDP grew in real terms, particularly between 2011 and 2014. Health damages as a 

                                                      
10 Approximately 15,000 of annual deaths emissions are estimated to come from biogenic sources (such as trees, 
vegetation, and soils), with the remainder originating from anthropogenic activities. 
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share of total GDP have fallen from as high as 8% in 2008 to close to 6.5% in 2014 under baseline 

assumptions. Because PM2.5 exposure is a risk multiplier above baseline mortality rates, individuals in older 

age-cohorts—which have high baseline mortality rates—tend to incur the greatest burdens from this 

pollution, with about 60% of chronic PM2.5 exposure fatalities occurring in individuals 70 years or older. 

Accordingly, the majority of the health benefits from reducing emissions accrues to elderly individuals.  

The reduction in annual damages between 2008 and 2014 have largely been driven by falling damages from 

point sources, which have dropped by close to $140 billion from 2008 to 2014, a decrease of 36%. Area 

sources comprise a larger share of total damages, in part because of their low release height and close 

proximity to population centers. Damages from area sources dipped to their lowest levels in 2011 and 

rebounded slightly in 2014.  

 

Figure 4.7 – Annual health damages in the U.S. from PM2.5 (a) from 2008 to 2014, along with changes to emissions 
(b) and marginal damages (c).Health damages fell from 2008 to 2011, and subsequently held constant through 
2014, although the ratio of total damages to annual GDP continued to fall (a). In addition to a baseline estimate, 
a range of damages is shown based on upper and lower assumptions for VSL and concentration-response 
function. The decline in damages is driven largely by falling emissions of PM2.5 and its precursors over that time 
period (b). The fact that damages are steady between 2011 and 2014 even as emissions continue to fall is partly 
attributable to increasing marginal damage from pollution, and (c) illustrates the average marginal damage 
across all counties for medium stack heights. All dollar values shown in $2014.  
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Despite a national trend of reduced health damages, benefits have not accrued uniformly across U.S. 

counties. Figure 4.8 illustrates the change in per capita health damages suffered annually by each county from 

emissions levels in 2008 and 2014 (see Appendix E.2 for maps of other time ranges). In general, counties in 

the Northeast have benefited the most from reductions in damages between 2008 and 2014. However, 15% 

of U.S. counties experienced an increase in health damages per person from 2008 to 2014, while 30% of 

counties showed an increase between 2011 and 2014. These counties are mostly concentrated in the southern 

and central U.S. and in part coinciding with increased area source emissions.  

Although evaluating trends based on two data points (2008 and 2014) should be done with caution, this 

analysis can provide some general insight as to sources of increased damages for different counties. In 

general, hotspots of increased damages seem to be driven by increased emissions from new industrial 

facilities, higher levels of oil and gas extraction, or increased light-duty transportation. In some cases of 

increased pollution from fires and agricultural burning, as in Florida and some Western counties, these 

increases may be driven by changes to EPA’s methods for estimating area source emissions. As an 

illustration, Figure 4.9 provides estimates of the change in damages from select sectors, namely electricity 

generation, transportation (light- and heavy-duty), oil and gas extraction, and industrial emissions. While 

exploring these sectoral changes in depth is beyond the scope of this present study and is recommended for 

future work, these results illustrate some of the potential drivers for the changes depicted in Figure 4.8; for 

example, they underscore the fall in damages from reduced electric power sector emissions and point to oil 

and gas extraction and industrial emissions as potential sources of increased damages.   

 

Figure 4.8 – Change in annual, per capita health damages from 2008 to 2014 by the location of the county 
suffering those health damages (in $2014 per person). 
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Figure 4.9 – Change in annual, per capita health damages by county from 2008 to 2014 (in $2014 per person) by 
emissions from various sectors. Sectors include: (a) Electricity generation, (b) Heavy duty transportation, (c) 
Light duty transportation, (d) Oil and gas extraction and mining, and (e) Industrial boilers. Map represents 
location where health damages are incurred. Note the different scales for each map. 
 

To better understand what is driving some of these county-level changes, we can also contrast per capita 

damages to other changes in the model, such as PM2.5 concentration and mortality rates. Figure 4.9 plots the 

change in annual PM2.5 concentration against changes in per capita damages by county from 2008 to 2014, 

highlighting the change in population-weighted mortality rates in that same period. As we might expect, there 

is a strong correlation between modeled PM2.5 concentrations and damages: counties with decreasing 

concentrations largely show declining per capita damages, and most counties with increasing concentrations 

exhibit increasing damages. However, there a number of counties with decreasing PM2.5 concentrations and 

increasing per capita health damages from 2008 to 2014. Although we estimate that 15% of counties show 

larger per capita damages in 2014, our model only predictes that 5% of counties had increasing PM2.5. One 

possible reason for this is that the concentration-response function is concave, meaning that a linear 
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approximation to this function will be steeper at lower concentrations. Since the damages are based on a 

linear extrapolation (marginal damage multiplied by emissions), this could be biasing our damage estimates 

upwards for counties with decreasing population; when coupled with changes to population, this could affect 

the direction of damages.  

 

Figure 4.10 – Comparison between changes from 2008 to 2014 by county in modeled annual PM2.5 concentrations 
and annual per capita damages. Colors indicate whether the population-weighted mortality rate of the county 
increased or decreased over that same time period.  

 

Although increasing baseline mortality rates is another plausible explanation for increasing damages, many 

of these counties demonstrate decreasing population-weighted average mortality rates over the same time 

period. To further characterize these trends, we calculate changes in per capita damages from 2008 to 2014 

while keeping mortality rates and population constant across the two years. These results are presented in 

Figure 4.11 below. Relative to Figure 4.8, we can see a number of counties where the magnitude of increase in 

per capita damages has declined (e.g. Crooks County, Oregon). However, we also observe higher damages in 

places like North Dakota, where population growth has partially masked changes to health damages from 
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increased oil and gas exploration. In general, the direction of change in damages and the location of pollution 

hotspots seem consistent with those from Figure 4.8, again suggesting that emissions are driving these 

changes.

 

Figure 4.11 – Change in annual, per capita health damages from 2008 to 2014 by the location of the county 
suffering those health damages (in $2014 per person). Map shows results using 2008-level population and 
mortality rates for both years. 

 

The amplification of trends in increased damages on account of factors like increasing mortality rates may 

appear to distract from the “real” effect of changes to emissions. However, it is important to note that 

current epidemiological research has focused on the link between PM2.5 exposure and increase in relative risk 

from baseline[106], [109]. Exposure to air pollution thus serves as a risk multiplier; identifying at risk counties 

by considering their baseline mortality rates may be an important part of addressing the health impact of 

emissions. Finally, although these analyses are suggestive as to the cause of changes to damages at the county 

level, future work should focus on identifying the drivers of these trends for specific localities. 

 

4.3.2 Transboundary damage flows 

Of the total health damages from emissions in the U.S., our modeling indicates that around 70% were related 

to transboundary emissions (i.e. emissions that were produced in a different county than where the damages 
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occurred) in each of the three years modeled. Further, in 2014 around 35% of annual damages occurred in a 

state different from the one that was the source of emissions, down slightly from 38% in 2008.  

Figure 4.12 shows the transboundary flows of air pollution mortality across different regions in the U.S. 

(see Appendix D.2 for a map of these regions). The region where the pollution causing the damage originates 

is listed by row, while the location where the damage is occurring is listed by column. Each cell in the table 

thus indicates the percent of damage occurring in the column region as a result of emissions in the row 

region, while the diagonal indicates self-inflicted damages. Emissions within a region are typically responsible 

for the majority of the total damage incurred; however, there is a relatively high degree of damage transfer 

between regions in the Eastern part of the country. New England is the largest importer, incurring just over 

half of damages from upwind emissions originating in the New York and Mid-Atlantic regions, and even as 

far as the Midwest, the latter which was still responsible in 2014 for more than one in 10 pollution mortalities 

in New England.  

Pollution from the Midwest causes the greatest damage; despite falling since 2008, emissions from the 

region are estimated to be responsible for close to 31,000 deaths annually in 2014, of which approximately 

20% occur in neighboring regions. In general, the share of damages from emissions transported across 

regions fell between 2008 and 2014. In all regions but two, the percentage of mortalities in a region associated 

with emissions from that same region (shown along the diagonal in Figure 4.12), increased from 2008 to 

2014. This trend is driven in part by large declines in exports from the Mid-Atlantic and Midwest. Because 

state level analysis of these transboundary effects is also important for policy-making, a comparable figure 

with results by state is given by Figure E.9 in Appendix E.3.  
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Figure 4.12 – Share of mortality [%] by EPA region from all sources of air pollution in 2008 (a) and 2014 (b). The 
region where the pollution causing the damage originated is listed by row, while the region where the damage 
is occurring is listed by column. The numbers in the matrix indicate the percent of annual deaths in a column 
region that are attributable to row region (with columns summing to 100%). Annual deaths caused by a region 
are summed by row, while annual deaths occurring in a region are summed by column; mortalities are shown 
to 2 significant figures. A comparable plot showing results for 2011 can be found in Appendix E.3.  

 

The average county in 2014 imported close to $260 million in damages annually, down from 

approximately $310 million in 2008. Figure 4.13 highlights the disparities by county in exported, imported, 

and self-inflicted damages from emissions in 2014. The figure plots the share of cumulative damage against 

the cumulative counties when ordered from counties of least to greatest damages. Curves closer to the 

diagonal line suggest greater equality in damages across counties. For exported damages, the top 15% of 

damage-causing counties cause 60% of exported damages, with the highest 1% of counties responsible for 

almost 15% of exported damages in 2014. Imported damages tend to be similarly distributed; the areas with 

greatest absolute imported damages are mostly large population centers, many of which are located in the 

Northeast. Similarly, the biggest producers of self-inflicted damages tend to be large metropolitan areas, with 

Los Angeles county alone accounting for 10% of all self-inflicted damages.   

To further assess inequality in damages from emissions, we compute the Gini coefficient for each type of 

damage (values for 2014 are shown in Figure 4.13), along with 95% CI based on a non-parametric bootstrap. 

The Gini coefficient for exported damages for all U.S. counties decreased from 0.66 (95% CI: 0.64-0.68) in 

2008 to 0.62 (95% CI: 0.6-0.64) in 2014. This implies a slight decrease in the inequality in damages from 

exported emissions and is consistent with the reduction of emissions and damages from large point sources. 

In contrast, the Gini coefficient for imports and self-inflicted damages exhibit no observable change from 

2008 to 2014.  
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Figure 4.13 – Lorenz curves plotting the cumulative share of counties (x-axis) against the cumulative share of 
total exported (a), imported (b), and self-inflicted (c) damages (y-axis) for the entire U.S. Results are shown for 
2014, with counties on the x-axis ordered from smallest to greatest damages and colored by region (see Appendix 
D.2 for a table describing each region). Numbers in the shaded region indicate the Gini coefficient, which 
reflects the ratio of the area under the curve to the total area under the diagonal. In each case, a 
disproportionately small number of counties represent a large share of damages. The Gini coefficient for 
population is close to 0.75, which is more unequal than the distribution of exports but less so than self-inflicted 
damages.  

4.3.3 Trends in the ratio of exported to imported damages 

The map in Figure 4.14 shows the ratio of exported to imported damages for each county. This metric 

may provide useful guidance to policymakers charged with managing transboundary emissions flows. 

Export/import ratios greater than one indicate that an area is a net exporter, while ratios less than one 

indicate a net importer. An export/import ratio of 0.25, for example, implies that a county suffers four deaths 

annually from emissions outside its borders for every death that it causes elsewhere. Figure 4.14 provides a 

map of county-level export/import ratios for both 2008 and 2014 (statistics on these values as well as maps 

of self-inflicted damages relative to imports and exports can be found in Appendix E.4).  

The map illustrates that most net importing counties are located in the Northeast. Large metropolitan 

areas also exhibit low export-to-import ratios. This manifests for two reasons. First, incoming flows of 

pollution cause large damage because of large exposed populations. Second, emissions in these areas tend to 

be dominated by vehicles, stationary non-point sources (restaurants, dry cleaners, etc.), and other emitters 

associated with urban commerce. Large industrial point sources (especially power plants) are often located 

outside of cities because of NAAQS attainment constraints. 

Counties in the Great Plains and Mountain West are relatively sparsely populated, and those counties with 

point sources tend to be heavy exporters relative to imported damages. Select counties along the Mississippi 

and Ohio river valleys also are large exporters, typically reflecting counties with large power plants. Overall, 

we see a decrease in the number of extreme net importers and an increase in the median export/import ratio 
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from 1.28 (95% CI: 1.23-1.33) in 2008 to 1.46 (95% CI: 1.42-1.52) in 2014. As Figure 4.14 illustrates, counties 

showing the biggest upward shift in the export/import ratio are mostly concentrated in Appalachia and the 

Northeast. At first, this pattern may seem counterintuitive given that many large exporters (coal-fired power 

plants) have closed. However, as emissions from coal-fired power plants fall, imported damages fall in many 

downwind counties; reduced emissions from a single point source thus reduces the export/import ratio for 

the source county while increasing export/import ratios for receptor counties. 

 

 

Figure 4.14 – Maps showing the ratio of exported to imported health damages that result from transboundary 
emissions and their subsequent effect on PM2.5 concentrations. Ratios are shown by county for 2008 (a) and 2014 
(b). Ratios < 1 indicate net importers, or counties that import more damages than they export, while ratios > 1 
indicate net exporters.  

 

To better understand factors influencing the export/import ratios, we regress the log of the 

export/import ratios on a collection of covariates as outlined in Figure 4.6. Covariates include sources of 

emissions (such as coal power plants), population, whether a county is urban or rural, and region, year, and 

county fixed effects. We also control for socio-economic and demographic variables such as the non-white 

percentage of population and the percent of the population under the poverty line. We also control for 

attainment status with the NAAQS for PM2.5. 

Figure 4.15 reports the fitted regression coefficients as percentage changes in the export/import ratio. The 

coefficients from the regression can be found in Appendix E.1, along with additional regression analysis. The 

regression analysis demonstrates several intuitive relationships. First, the presence of a coal-fired power plant 

in a county is significantly associated with higher ratio of exported to imported damages. When accounting 

for county fixed effects, having a coal power plant that generated three terawatt-hours (TWh) annually is 

associated with a 75% increase in the ratio of exported to imported damages (95% CI: 70-81%). For 

reference, the largest coal generating county produced 30 TWh of electricity in a year, and 208 unique 

counties produced more than three TWh annually at least once over the period of the study.  
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Figure 4.15 – Estimated relationship between the log of the export/import ratio and various covariates using OLS 
regression. Results are shown for models with and without county fixed effects. 

 

Installation of scrubbers attenuate the relationship between coal and higher export/import ratios, and the 

association falls to 59% for plants with scrubbers (95% CI: 53-65%). In contrast to coal, the presence of three 

TWh of generation from natural gas plants is associated with slightly lower export/import ratios, although the 

confidence intervals suggest this estimate is barely distinguishable from zero. The small negative relationship 

between gas plants and the export/import ratio may also reflect the fact that natural gas plants are weakly 

correlated with higher population levels. As already noted, high population counties tend to be higher 

importers.  

We also explore whether a county’s NAAQS attainment status is correlated with the export/import ratio. 

When including county fixed effects in the model, counties that are in non-attainment are associated with 6% 

higher export/import ratios (95% CI: -1-13%). Counties that are out of compliance with EPA standards thus 

show a slight (but non-significant) tendency to export more emissions and health damages to other counties. 

Imported pollution is still, however, an important factor affecting non-attainment. Our model suggests that 

slightly almost 50% of counties that were in non-attainment in 2014 could be in attainment were it not for 

pollution imported from out-of-state counties, shown in Table 4.6. While this number is down from as high 

as 70% of counties in 2011, it nevertheless indicates the importance of continued interstate cooperation to 

mitigate pollution and achieve air quality standards. 
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Table 4.6 – Breakdown by year of the number of counties in non-attainment and the number that would switch 
to being in attainment if the air pollution attributable to out-of-state emissions were removed.  

Year In non-attainment 
Would be in attainment without 

out-of-state emissions 
Percent (%) 

2008 208 135 65% 

2011 196 138 70% 

2014 77 37 48% 

 
The regression analysis also probes environmental justice and social equity by including: percent of a 

county’s population under the federal poverty line, and percent of the population that does not identify as 

primarily white as a proxy for minority population. Figure 4.15 indicates the predicted percentage change in 

export/import ratio for counties with 10% and 20% population below the poverty and 5 and 20% nonwhite 

population, numbers which approximate the bottom and top quartiles of the data. The results suggest that a 

county with 10% of its population under the poverty line is associated with a 33% lower export/import ratio 

(95% CI: 29-37%), while a county having 20% of its population under the poverty level is associated lowers 

the ratio by 65% (95% CI: 58-73). In 2014, the poorest 20% of counties had median per capita health 

damages of approximately $4,900 per person, while the richest 20% of counties had median damages 30% 

lower, illustrated in Figure 4.16.  

The disparity by race is slightly less pronounced; counties with that are 5% nonwhite have 8% lower 

export/import ratios (95% CI: 7-10%) compared to 33% lower for counties that are 20% nonwhite (95% CI: 

27-39%). Thus, counties with higher poverty levels and higher shares of minority populations tend to be 

associated with lower export/import ratios, suggesting increased imported damages relative to exports. These 

findings are consistent with other research indicating that non-whites and individuals with lower 

socioeconomic status tend to have higher exposure to various components of PM2.5 pollution, thus bearing a 

disproportionate share of the subsequent health burdens [124]–[130].  

It is important to note that one factor behind higher health damages for lower-income population is that 

these groups tend to have higher baseline mortality rates, which amplifies the effect of the concentration-

response function. However, previous work has found that in general, health damages are higher among low 

income groups both because of higher exposure and because they are least able to bear the health effects of 

that exposure [126]. In addition, previous work has found that racial disparities tend to dominate disparities in 

income when it comes to PM2.5 exposure, and that these disparities can be masked in part by using 

geographically coarse grid cells in air quality models [131]. Since we used a county-level approach with median 

income and minority population level estimates, this analysis is likely to underestimate the disparities in PM2.5 

exposure and health effects, particularly by race.  
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Figure 4.16 – Median per capita health damages (i.e. the sum of self-inflicted and imported damages) by year 
for all counties.Counties sorted into quintiles based on median income (panel A) and percent of the county 
population that identifies primarily as non-white (panel B). Error bars represent 95% confidence interval using 
a non-parametric bootstrap when sampling with replacement from counties within each quintile and year 
grouping. 
 

4.3.4 Sensitivity analysis 

This section looks at the sensitivity of the analysis to several different assumptions and inputs, including (1) 

Value of Statistical Life, (2) concentration-response function, (3) changes to marginal damage over time, and 

(4) changes to population and mortality rates over the study period.  

 

1. Value of Statistical Life  

We test the sensitivity of our damage estimates to the choice of VSL by using a lower, alternative VSL of 

approximately $2.8 million in $2000, or $3.3 million in $2014 [132]. In addition, we also compute damages by 

using a Value of Statistical Life Year (VSLY) approach, which provides different valuation depending on the 

number of life-years lost [133]. To calculate a VSLY that is comparable to our baseline, we start by taking an 

individual who is 30 years old and annuitizing our baseline VSL over that individuals remaining years of life—

approximately 40 years based on the CDC average life expectancy—assuming a discount rate of 3%. Our 

baseline VSLY from our VSL estimate is approximately $370,000 per year of life lost, which is at the lower 

end of a range of values provided by a summary study by Aldy and Viscusi [133]. Using the average life 
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expectancy, we then estimate the number of years of life left for an average individual in each of our age 

cohorts. This number can be multiplied by our baseline VSLY as calculated above to estimate the to estimate 

the total valuation of all years of life lost at any given age—essentially, an age-specific VSL value. However, 

this value neglects to consider the probability of mortality from other causes; to account for this, we use our 

baseline, age-specific mortality rates to estimate the cumulative probability of survival from one age cohort to 

another. By multiplying the probability of survival by the value of the cumulative years across all future years, 

we thus arrive at the total valuation of the years of life lost for each specific age cohort in the model.  

A comparison between the total damage estimates from the different VSL estimates are shown in Figure 

4.17 along with the resulting estimates of the damage as a share of GDP. While the estimate of total lives lost 

annually remains unchanged, the monetized damage estimates using the alternative VSL and VSLY approach 

fall by a factor of approximately 2.5 compared to the baseline estimate. 

Figure 4.18 and Figure 4.19 highlight the change in annual, per capita health damages by county when 

using these alternative VSL approaches; while the magnitude of total damages changes, the geographic 

pattern is the same. Results for the transfer of mortalities by region remain unaffected by choice of VSL, and 

the VSL cancels out of export/import ratio, as noted in Section 4.2 above.  

 

 

Figure 4.17 – Comparison of annual health damages in the U.S. estimated from emissions levels in 2008, 2011, 
and 2014 for different VSL approaches. The left group shows results using the EPA recommend VSL, while the 
middle and right groups show results using an alternative VSL and a VSLY approach. Note that the differences 
reflect choices for valuing mortality risk, and that all damages levels imply the same number of lives lost.  
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Figure 4.18 – Change in annual, per capita health damages by county from all emissions sources from 2008 to 
2014 (in $2014 per person). Damages are computed using an alternative VSL specification of $3.3 million. Map 
represents location where health damages are incurred. 

 

 

Figure 4.19 – Change in annual, per capita health damages by county from all emissions sources from 2008 to 
2014 (in $2014 per person). Damages are computed using a VSLY approach, a base year valued close to $370,000 
per year. Map represents location where health damages are incurred.  
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2. Concentration-response 

We test the sensitivity of our results to the magnitude of the concentration-response function coefficient (i.e. 

the effect of an increase in annual ambient PM2.5 concentration on mortality rates) using results from a 

second study on this relationship [107]. Figure 4.20 illustrates how the choice of coefficient between the ACS 

estimates (the baseline for this study) and a high alternative based on the Harvard Six Cities (H6C) study 

affects change in mortality rates. The high coefficient not only predicts higher mortality rates at comparable 

PM2.5 concentrations, but also produces a steeper curve, thus resulting in larger changes to mortality rates for 

a given change to concentration.  

 

Figure 4.20 – Illustration of mortality risk increase uses two concentration-response functions. Low estimate is 
taken from the ACS study [109] while the high estimate is from the H6C study [107]. 

Figure 4.21 provides total damage and mortality estimates using the alternative concentration-response 

function. Total damages and mortalities are a factor of two larger than the baseline estimates. Figure 4.22 

shows the change in annual, per capita health damages by county when using the alternative concentration-

response coefficient. The results highlight greater benefits in the Northeast on account of the stepper 

concentration-response curve and a large reduction in annual PM2.5 concentration between 2008 and 2014 on 

account of the closure of coal power plants. Overall, however, the geographic breakdown of counties with 

improvements or deterioration in health effects remains similar to the results in Figure 2 in the main text.  
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Figure 4.21 – Annual health damages in the U.S. estimated from emissions levels in 2008, 2011, and 2014 when 
using an alternative concentration-response function. Damages are shown in monetized units (billion $) using 
a VSL of approximately $8.7 million in $2014 and are broken down by area sources and point sources. 

 

 

Figure 4.22 – Change in annual, per capita health damages by county from all emissions sources from 2008 to 
2014 when using an alternative concentration-response function (in $2014 per person). Map represents location 
where health damages are incurred. Note that the end points of the scale are expanded relative to the other 
figures presented.  
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3. Results using constant marginal damages 

Marginal damages are increasing over time as emissions fall, partially offsetting the gains in health by 

reductions in emissions over the period from 2008 to 2014. Increases to marginal damages are likely driven by 

two factors: (1) increasing population over the period of analysis means that more individuals are exposed, 

thus increasing damages for every additional contribution to PM2.5 concentrations levels; and (2) as emissions 

and pollution levels fall, the marginal effect of one additional ton of pollution on health increases due to the 

concave nature of the concentration-response function (see Figure 4.20 above). While using marginal 

damages tailored to the year of analysis best reflects the valuation estimates given the atmospheric chemistry 

and emissions of that year, here we illustrate the difference in the results if standardized marginal damages are 

used.   

Figure 4.23 shows the total damage results when using marginal damage estimates from 2008 for all years, 

inflating values to $2014. Relative to Figure 4.7, we see that damages from both area and point sources are 

lower in 2011 and, more dramatically, in 2014. The 14% reduction in area damages in 2014 relative to the 

baseline assumption is likely in part the result of increased area level PM2.5 emissions along with a 23% 

increase in the marginal damage of area level PM2.5 (see Section 4.2.1 for a summary of marginal damages). 

This result illustrates that benefits from massive reductions in point source emissions are offset in part by this 

increase in area level damages. 
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Figure 4.23 – Annual health damages in the U.S. from emissions in 2008, 2011, and 2014 when using different 
marginal damage (MD) values. Left shows results using marginal damages from the year of analysis while right 
shows results using constant MD values from 2008 across all three years. Damages are shown in monetized units 
(billion $) using a VSL of approximately $8.7 million in $2014 and are broken down by area sources and point 
sources. 

Figure 4.24 provides the results for per capita change in damages from 2008 by 2014 by county. Relative 

to Figure 4.8, the magnitude of benefits in areas with improved air quality are higher, while magnitude of 

increased damages in areas with worse air quality is largely reduced. In addition, there are fewer counties 

registering increased, per capita damages between 2008 and 2014 under the assumption of constant marginal 

damages. The pattern of exchange between regions is not substantially affected.    
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Figure 4.24 – Change in per capita health damages (in $2014 per person) by county from all emissions sources 
from 2008 to 2014 when using 2008 marginal damages for both years. Map represents location where health 
damages are incurred. 

 

4. Sensitivity to changes in population and mortality rates 

Figure 4.25 and Figure 4.26 show total damages when using population, mortality rate, and emissions data 

from each of the three years in our analysis (2008, 2011, and 2014) for all damages and for damages from 

point sources only. The results affirm that emissions are the dominant factor causing declining emissions over 

the period of 2008 and 2014. 
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Figure 4.25 – Sensitivity analysis on total damages (in billion $2014) to different combinations of emissions, 
mortality rates, and population from the three years of analysis (2008, 2011, 2014). 
 

 

Figure 4.26 – Sensitivity analysis on damages from point sources (in billion $2014) to different combinations of 
emissions, mortality rates, and population from the three years of analysis (2008, 2011, 2014). 

 

Figure 4.27 and Figure 4.28 illustrate changes to population and mortality rates from 2008 to 2014 by 

county. The maps illustrate that the patterns of change to these variables is distinct from the pattern of 

2008 Emissions 2011 Emissions 2014 Emissions

2008 2011 2014 2008 2011 2014 2008 2011 2014

0

500

1000

1500

Population data year

T
o
ta

l 
d

a
m

a
g
e

s
(b

ill
io

n
 $

2
0

1
4

) Mortality
rates year

2008

2011

2014

2008 Emissions 2011 Emissions 2014 Emissions

2008 2011 2014 2008 2011 2014 2008 2011 2014

0

100

200

300

400

Population data year

T
o
ta

l 
d

a
m

a
g
e

s
(b

ill
io

n
 $

2
0

1
4

) Mortality
rates year

2008

2011

2014



 79 

changes to per capita damages, illustrating that these are not likely to be the driving force behind our results 

except in some select areas.  

 

Figure 4.27 – Percent change in total population by county between 2008 and 2014. 

 

 

Figure 4.28 – Percent change in mortality rate by county between 2008 and 2014, using population-weighted 
averages across age groups. 
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Finally, Figure 4.29 presents change in per capita damages from 2008 to 2014 after when assuming constant 

population (2008 values) across the two years. While some counties exhibit changes, the regional pattern of 

damages is similar to that of Figure 4.8, again suggesting that underlying population change is not the primary 

reason for the observed trend. 

 

Figure 4.29 – Change in per capita health damages (in $2014 per person) by county from all emissions sources 
from 2008 to 2014 when assuming 2008 population levels for both years. Map represents location where health 
damages are incurred. 
 

4.4 Discussion and conclusions 

Falling emissions from point sources over 2008 to 2014 have contributed substantially to the reduction in 

health damages from air pollution, with deaths falling by 24,000 annually. This dramatic decline is largely 

attributable to coal plants, many of which have closed for economic reasons or have begun to operate 

emissions control technology. Much of these reductions have occurred in Northeast and neighboring Rust 

Belt, where SO2 emissions from the power sector—which accounts for around 70% of all SO2 emitted—

declined by 75% and 54% over the period in each of these two regions. In contrast, area sources have proved 

more persistent, declining slightly from 2008 to 2011 and then rebounding in 2014. This may be explained in 

part by increased economic activity toward the end of the Great Recession, as EPA estimates of emissions 

from construction and on-road vehicles are directly tied to economic indicators. In addition, NOx, VOCs, 

and primary PM2.5 from oil and gas production activities rose by 75%, 80% and 180% nationally from 2008 to 
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attenuate health gains from falling point source emissions, particularly in more rural counties where drilling 

often occurs.  

In our modeling, the majority of fatalities—and consequently the majority of the benefits from reducing 

air pollution—are incurred in elderly populations. Alternative valuations focused on the number of years of 

life lost provide lower estimates of total damages but similar spatial and temporal patterns. Although it is 

important to consider these aspects when evaluating different risks and mitigation options, current federal 

policy making in the U.S. has focused on approaches that do not differentiate the value of risk reduction by 

age, and as such this is the focus of our analysis.  

Declining emissions levels have been used by some to advocate for a diminished federal role in regulating 

air quality. Yet our results underscore the continued importance of transboundary flows of pollution and 

policies capable of reducing them. Although the closure of point sources has reduced the amount of damage 

occurring from transboundary emissions, these transfers still represent a substantial share of county-level 

damages. In 2014 imports accounted for over 90% of total annual health damages from PM2.5 in a quarter of 

U.S. counties and at least 80% of damages in 85% of counties, affirming that transboundary emissions are 

indeed the dominant source of health damages in across most of the country.  

Geographic variability in the relationship between damages from exported and imported emissions 

suggest the need for county-specific approaches to reducing air pollution damages. For less-populated 

counties in the central U.S. with high export/import ratios, concentrating on single point sources is likely to 

prove effective. In contrast, urban centers with large self-inflicted damages may benefit from pursuing 

emissions reductions within their own jurisdictions, including often hard-to-tackle, ground-level area sources. 

For major urban centers with large shares of imported damages—such as New York and Philadelphia—

interstate cooperation will be critical, affirming the need for good neighbor policy.  

The regression analysis on the export/import ratios affirms the important role coal power plays in 

exporting emissions across boundaries. Counties with higher damages from imported pollution relative to 

exports tend to have higher levels of poverty and minority populations. Pollution damage is also highly 

regressive, with a strong pattern of rising median income and falling per capita damages. This finding does 

not necessarily contradict environmental justice findings showing that large emitting facilities tend to be 

located near vulnerable populations[134], but rather complements it by suggesting that attention should also 

be focused on understanding what populations are primarily affected by the transport of air pollution. By 

modeling at the county-level—which is relatively coarse—this analysis is likely to underestimate disparity in 

PM2.5 exposure and subsequently health effects, particularly by race; future work should continue to 

investigate these differences using more resolved granularities where possible.   

It is important to note that this analysis cannot explicitly model interdependencies in the trade of 

economic goods and services associated with emissions. For example, a county with a large power plant will 

export air pollution to downwind urban areas, but it may provide power that supports the downwind 
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population. Without a more granular accounting of economic activity and trade, it is difficult to parse out the 

health adjusted flow of goods and services between counties, and future work should explore establishing 

those linkages. Despite this obstacle, however, the concentration of decision-making and representation in 

local, county, and state governments makes this an important unit of analysis. The dichotomy between the 

interdependencies of air pollution damages with local political systems implies the need for more integrated 

emissions planning that connects producers who emit with those that utilize those goods and services. Future 

work may also better account for uncertainty in pollution dispersion by incorporating results from an 

ensemble of air quality models (some of which are explored in Chapter 5).  

Our findings reveal that the transboundary impacts of air pollution in the U.S. are still substantial. 

Although emissions and damages are declining nationwide, we show many cases where counties are suffering 

considerable damages as the result of upwind emissions as well as cases where individual counties are 

imposing large damages on downwind counties. Moreover, we observe disproportionate transboundary 

impacts on politically and economically vulnerable populations. Taken together, these detailed results may 

inform air pollution policy design and help federal regulators identify and target violations of the good 

neighbor provision of the Clean Air Act. Despite recent progress in mitigating the damages of air pollution, 

the magnitude of transboundary pollution suggests that federal involvement in policy design and enforcement 

will remain important.  
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Chapter 5 

Co-optimizing emissions reductions in electric 
power for health and climate benefits  

Motivating questions: How does the location of emissions reductions affect the health benefits 

associated with achieving those reductions? How does co-optimizing for climate and health benefits 

change what locations are most favorable for emissions reductions and improve the health benefits 

achieved relative to a climate-only approach? 

 

In Chapter 4, we explored methods for evaluating the health impacts of U.S. air pollution and quantifying 

how those impacts are transferred across political boundaries. Such an assessment, while informative from an 

epistemological standpoint, is most useful when it can be utilized by policy makers to inform better decisions 

with regards to emission reductions. In this chapter, we demonstrate how some of the methods and 

knowledge gleaned from Chapter 4 might be applied to advance better climate policy. Focusing on the 

electric power sector, we investigate how accounting for the air pollution and health benefits of emissions 

reductions might increase societal benefits and change the dynamics of actions intended to meet climate 

objectives. 

Within the power sector, there is a wide range in the health impacts of existing plants, even among plants 

using similar fuels. Such variations are a product of differences in the deployment of emissions control 

technologies and plant efficiency, atmospheric chemistry and meteorology patterns that affect dispersion, and 

the distribution of population downwind of emissions sources. Although CO2 is a globally well-mixed 

pollutant—making the location of CO2 reductions inconsequential to their impact—heterogeneity in the 

health impact of emissions by plant location imply a potential opportunity to design emission reduction 

pathways so as to maximize the health benefits that occur. Although gains to health have often been 

considered as “co-benefits” to climate action, few policies to date have explicitly incorporated health upfront 

during policy design. 

To evaluate this opportunity, we design a simple capacity expansion model that replaces existing plants 

with new, natural gas combined cycle facilities. We explore which plants are prioritized for retirement to meet 

a 30% CO2 reduction target based on whether the objective is to minimize climate damages alone (“climate-

only”) or a combination of health and climate damages (“health + climate”). The analysis suggests that, 

depending on assumptions related to air quality model and concentration-response function, co-optimizing 

for health and climate benefits enables an additional $8-33 billion annually in monetized health benefits, or 

roughly 900-3,600 additional lives saved each year. These gains are in addition to the $23-73 billion in health 



 84 

benefits that result from only considering climate benefits alone, and come at relatively incremental additional 

cost of mitigation and with positive net societal benefits.  

The additional health benefits arise from shifts in the number of retired plants across different states and 

regions. Although the benefits of a health + climate strategy are greatest in the Eastern U.S., nearly all 

counties are better-off with a health + climate approach relative to a climate-only scenario, and 11 different 

states each gain an additional $500 million benefits annually. Differences in which states replace existing plant 

capacity and which receive the greatest societal benefits implies potential value of inter-county and inter-state 

cooperation to achieve the additional health benefits from a health + climate mitigation strategy in an 

equitable way. 

Although such a co-optimization between health and climate would have important implications for 

evaluating and comparing opportunities for climate mitigation, our analysis indicates the value of considering 

the health implications of different emissions reductions pathways for meeting climate goals. Decision makers 

should thus consider co-optimizing for health benefits in designing and evaluating climate policies, and 

should advance policy structures to encourage cooperation by affected stakeholders to achieve those benefits.  

The idea for this project was first developed in conversation between myself and Inês Azevedo, who 

helped me refine the scenarios and objectives of the study. The two of us also benefitted from discussions 

with Peter Adams, Allen Robinson, and Nick Muller, as well as from feedback from CEDM, CEIC, and 

CACES. I was responsible for development and coding of the optimization model and all of the analysis. 

Julian Marshall and Steve Davis also provided invaluable insight on the interpretation of the results and write-

up of the analysis.  

The content of this chapter is currently a draft working paper. Data and python code for the model are 

open-source and available at https://osf.io/jf35x/.  

5.1 Introduction 

Electric power generation is a leading source of carbon dioxide (CO2), making it an important sector for 

mitigating climate change. At the same time, electricity generated from fossil fuels emits co-pollutants—such 

as sulfur-dioxide (SO2) and nitrogen oxides (NOx)—that degrade air quality. Long-term exposure to fine 

particulate matter (PM2.5) produced from SO2 and NOx emissions is strongly linked to premature death and 

other adverse health consequences [2], [106], [109], and the social cost of the health effects from U.S. power 

sector emissions is estimated at $60-130 billion annually [83], [135]. 

A common framework for understanding the linkage between climate and health when evaluating 

alternatives for emissions reductions is to treat improvements in air quality and health as “co-benefits” that 

offset costs and offer additional incentives to pursue climate mitigation [25], [136], [137]. Various studies have 

explored these co-benefits for electric sector interventions [138]–[140] and the energy sector more broadly 

https://osf.io/jf35x/


 85 

[141]–[144], finding that health co-benefits often offset much of the cost of mitigation or even exceed climate 

benefits altogether [145]–[147].  

Unlike CO2, which is a well-mixed pollutant with global effects, the impacts of power sector emissions 

heterogenous and more localized. The health damages associated with power plants can vary substantially 

based on plant operating characteristics (such as its fuel type, heat rate, and the presence of pollution 

controls), atmospheric conditions that govern secondary PM2.5 formation, meteorology which determines 

dispersion, and proximity to population centers [92], [94], [135], [148], [149]. This variability is highlighted in 

Figure 5.1, which illustrates that the plants causing the largest climate impact are not necessarily the ones with 

the largest health damages. Accordingly, the choice of which power plants are replaced by low-emissions 

alternatives can dramatically shape the health benefits that result from a system-wide emissions reduction 

[96], [98], [99].  

The spatial variability of health benefits associated with power sector emissions reductions suggests an 

opportunity to co-optimize for both climate and health benefits, rather than retroactively calculating health as 

a co-benefit. Such a strategy might lead to changes in the preferred portfolio or locations of alternatives while 

adding to total welfare [150]. Previous work has explored how such a co-optimization might affect policies 

like the Clean Power Plan [151], [152].  

 

Figure 5.1 – Annual social damages related to climate change (a) and health (b) from electric sector emissions 
in 2017, plotted by facility.Emissions taken from the EPA CEMS dataset. Climate damages are monetized using 
a SCC of $40 per ton, and health damages using a VSL of $9 million with the AP3 air quality model and the ACS 
concentration-response function (see Section 5.2 for discussion on these parameters). 

In practice, co-optimization has been limited by the fact that high-fidelity air quality models are 

computationally expensive and difficult to run [153] and by challenges in reconciling uncertainties of climate 

and health damages [154]. However, advancements in reduced complexity air quality models have enabled the 
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estimation of the social benefits of emissions reductions with much lower computational effort [91], [153], 

[155], allowing for greater integration of these benefits during policy design.  

In this chapter, we explore how the optimal locations for emissions reductions from the U.S. power sector 

might change with integrated treatment of climate and health benefits. We use Continuous Emissions 

Monitoring System (CEMS) data from the existing fossil fuel fleet to build a simplified unit retirement model 

that simulates “overnight” changes, meaning that plants are retired and replaced with new facilities 

instantaneously. We use this model to comply with an exogenously specified 30% CO2 reduction target by 

minimizing social costs, which include different combinations of climate and health damages and mitigation 

costs.  

Because we use annual generation and emissions data and do not model hourly operations, we restrict our 

analysis to the replacement of coal by new natural gas (which is dispatchable) and constrain new generation to 

the same county as retiring plants, reducing concerns about the need to simulate new electricity transmission. 

We explore uncertainty in the estimation of both climate and health damages by performing sensitivity 

analysis on key inputs to our modeling, including the choice of air quality model, concentration-response 

function, the social cost of carbon (SCC), and the value of statistical life (VSL).  

5.2 Methods 

In this section we provide an overview of the modeling approach, describe the data sources and modeling 

parameters used, and outline the formulation of the optimization model.  

5.2.1 Overview of modeling approach 

We develop a simplified capacity retirement and expansion model to explore the implication of location when 

integrating climate and health considerations in emissions reductions. Capacity expansion models are typically 

used to explore what generation resources are needed to meet future demand given some set of objectives or 

constraints. These models often have annual time steps and attempt to anticipate planning and build decisions 

by generators to meet future forecasted demand in the medium- to long-term (5-50 years), subject to 

operational constraints, reliability requirements, and or other policy scenarios [156]–[158]. Examples of 

capacity expansion models include the EPA’s Integrated Planning Model, which simulates building and 

retiring generators to meet future annual emissions targets, and the National Renewable Energy Laboratory’s 

(NREL) ReEDS model [159], [160].  

Our modeling does not include unit commitment and economic dispatch (UCED), which models 

generation and power flow at hourly or sub-hourly levels based on grid topology [161]–[163]. While UCED 

models provide more insight into the actual operation of the grid and are sometimes included as part of 
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capacity expansion modeling, these models usually require more granular data and greater computational 

effort. As the goal of this work is to provide a first-order evaluation of how climate and health criteria change 

optimal siting patterns for new generation—rather than to assess whether specific emissions scenarios are 

feasible from a grid operations perspective or how to achieve those scenarios at least cost—we opt for a 

simplified model that only replaces existing generation with new natural gas facilities. We assume these plants 

are dispatchable and can meet the same loads as the thermal units they replace, and we constrain their 

location to the county of the plant they replace to alleviate the need to model electricity transmission 

expansion. Future work may expand on the modeling here to consider how climate and health objectives are 

impacted when using more detailed grid modeling to explore scenarios across a range of mitigation 

technologies, including non-fossil alternatives.   

The model uses a linear optimization to minimize damages related climate damages or both climate and 

health damages, subject to a constraint on total national CO2 emissions. The model allows for emissions 

reductions by substituting existing generation capacity for new capacity from natural gas combined-cycle 

(NGCC) plants. While natural gas is a fossil fuel with limited ability to achieve long-term climate goals, high 

efficiency NGCC plants emit less half as much CO2 and far less SO2 and NOx than coal, resulting in fewer 

health consequences [164]; this approach allows us to explore the importance of location when integrating 

climate and health benefits.  

For simplicity, we focus primarily on three pollutants in this study: CO2 for climate change and SO2 and 

NOx for air quality and human health. CO2 contributes around 80% of U.S. greenhouse gas emissions by 

mass when comparing pollutants with a 100-year global warming potential (GWP) [165], while particulates 

formed from SO2 emissions contribute to roughly 75% of air pollution mortalities from power plants [112]. 

In addition, we account for the climate effects of methane leakage from the use of natural gas, assuming a 3% 

methane leakage rate and converting to CO2 equivalent using a 100-year GWP. Future work might consider 

the role of other pollutants, such as direct PM2.5, volatile organic compounds, and ammonia. To simplify our 

analysis, we assume that all emissions reductions and plant changes would occur instantaneously, and model 

those changes in a single time step of the model.  

The model assumes that any new natural gas capacity is built in the same county as the coal or other 

existing fossil generation that it is replacing. Although this reduces the need for new electricity transmission 

capacity, it does not represent how real siting decisions are likely to be made and ignores whether these 

locations are suitable for siting natural gas plants. We also conduct a sensitivity analysis using estimates of the 

cost to extend the natural gas pipeline network. Although our assumptions on turnover time and siting 

requirements ignores how actual retirement and siting decisions occur, our analysis provides an upper bound 

on the potential health benefits that could be achieved in the long-run under different planning decisions. 

For evaluating health damages, we only value reductions in the risk of premature mortality and exclude 

any benefits from reduced morbidity, improved visibility, or effects on the environment. Previous estimates 
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suggest that, when monetized, mortality accounts for 95% of damages from energy sector air pollution [83], 

making this focus appropriate for this work; however, future policy analysis or research may want to broaden 

the scope to other health or environmental implications.  

To evaluate the potential benefits of explicitly accounting for health benefits in climate mitigation, we 

compare climate and health damages from three scenarios: (1) a scenario representing damages from 2017-

level emissions from the U.S. fossil fuel fleet (baseline), and two compliance scenarios that achieve a 30% 

reduction in CO2 by minimizing the sum of mitigation costs and either (2) climate damages alone (climate-

only), or (3) both health and climate damages (health + climate).  

5.2.2 Data and modeling parameters 

We acquire information on the current power plant fleet from the EPA’s CEMS data, which includes 

emissions and generating data from all fossil fuel units larger than 25 megawatts. In particular, we use from 

CEMS unit-level data on the 2017 emissions of CO2, SO2, and NOx (tons), annual gross load (MWh), fuel and 

unit type, and facility location, which includes coordinates and county-specific FIPS codes. Using annual 

emissions and generation, we calculate average annual emissions rates for each unit.  

Of the approximately 3,300 units in the CEMS data for 2017, around 160 are missing information on 

electric load supplied. For these plants, we estimate the total electric load based on a linear regression of 

generation by CO2 emissions by fuel and unit type (see Appendix F.1). Any remaining units with missing 

emissions or CO2 emissions lower than would be feasible for coal or gas units were left out of the analysis. 

Emissions rates for replacement NGCC capacity are the generation-weighted average emissions rates for all 

combined-cycle units with CEMS data that came online between 2010 and 2017 (rates shown in Table 5.1 

below).  

In order to evaluate the climate and health benefits from emissions reductions in an integrated fashion, we 

need to establish a common metric by which to compare the two. Here we employ a monetized damage 

approach. While monetization of damages is controversial and does not fully account for a range of potential 

impacts from emissions, this step is integral to U.S. federal agency efforts to perform benefit-cost analysis. To 

monetize these damages, we follow standard accounting practices used in economics, employing estimates of 

the marginal damage (in $ per ton) of an additional ton of pollutant and multiplying them by total emissions 

to compute total damages from those emissions. Monetizing benefits from the reduction of risk are a key part 

of federal policy making, yet there are a number of issues to consider with its application, such as how to 

reconcile variations in estimates for the VSL, whether VSL should vary by age or income, and how to 

discount future climate and health benefits [116], [166].  

For climate change, the marginal damage of CO2 does not vary in space, so we use a constant estimate 

costs per additional ton of CO2 emitted. We take our baseline estimate of this quantity—the social cost of 
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carbon, or SCC—from the U.S. government’s interagency working group, which is approximately $40 per ton 

when assuming a three percent discount rate [167]. This SCC estimate represents a monetization from a range 

of climate impacts in the U.S., including changes to net agricultural productivity, property damages from 

increase flood risk, and the value of ecosystem services due to climate change, among others. The SCC also 

includes changes to human health from climate change; because these measures largely refer to impacts 

related to changes to temperature and climate occurring in the future, we distinguish these from the measures 

of human health that focus on premature mortality from traditional air pollutants in the short term. We 

conduct sensitivity analysis of these parameter assumptions on the climate and health benefits achieved in 

each scenario.  

Unlike the SCC, the marginal damage of pollution is spatially heterogeneous; as such, air quality modeling 

is needed to understand the damage of different pollutants by location. We use three different integrated 

assessment models—AP3, EASIUR, and InMAP—to translate emissions into PM2.5 concentration and 

subsequently, health damages [91], [153], [155]. Each of these is an integrated assessment model that uses 

reduced complexity air quality modeling to estimate spatially-resolved, per ton marginal damage in monetary 

units for SO2 and NOx emissions across the continental U.S.  

Although these reduced form models are less precise than full scale chemical transport models for 

assessing air quality impacts, they exhibit comparable performance to more complex models in estimating 

annual average PM2.5 concentrations from emissions while greatly reducing computation time [153] (see 

discussion in Section 4.2.1 above). Furthermore, our use and inter-comparison of three distinct models—each 

of which differs in its methods, strengths, and weaknesses—increases the reliability of our results. These 

models have been used extensively for estimating the impact of marginal emissions interventions; however, 

they may be limited in assessing non-linear chemistry for large changes to emissions, and future work should 

explore the effects of deep emissions reductions using a range of air quality models. 

These models estimate the marginal damage from a ton of emissions by estimating changes to air quality 

and then evaluating exposed population and expected health response. Uncertainty in the relationship 

between PM2.5 exposure and increased health risk is captured by using two concentration-response functions, 

derived from the American Cancer Society (ACS) and Harvard Six Cities (H6C) studies [107], [109]. These 

two studies bound the health risks derived by a number of epidemiological studies. Our baseline analysis 

primarily employs the ACS study result, which is substantially lower than the H6C and thus may provide a 

conservative estimate on health risks. To convert health effects to monetized damages, we use an estimate of 

value of mortality risk reduction, or VSL. The VSL used is based on the EPA recommended value of $7.4 

million in USD $2006 and updated to $9 million in USD $2017. The models provide county-specific marginal 

damages for SO2 and NOx based on emissions levels from 2015.  

Finally, we include a simplified estimate of the cost to reduce emissions by replacing current units with 

NGCC plants or low-emissions technologies. To do this, we take average fuel and variable operating costs, as 
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well as capital expenditures for new capacity, from NREL’s 2018 Annual Technology Baseline (ATB) [168]. 

These parameters, as well as emissions characteristics for new gas facilities, are summarized in Table 5.1. We 

conduct sensitivity analyses that include a tripling of natural gas costs to $10 per mmBtu (the high end of 

range of values from the NREL ATB) as well as estimates of the cost of extending the gas pipeline network 

to supply natural gas to meet demand from new plants, 

Table 5.1 – Summary of cost and other parameters for new natural gas combined cycle plants.Monetary values 
are provided in $2017.  

 
 

To estimate the required plant capacity (in MW) needed to meet reductions in annual generation by coal, 

we divide the annual generation (in MWh) needed by the estimated hours of operation, assuming a capacity 

factor of 56% for new NGCC based on estimates from the NREL ATB. While this approach would not be 

appropriate for variable energy sources whose generation portfolio is time-dependent, it is suitable for a 

dispatchable generation sources like natural gas. We assume that replacement plants are built in with capacity 

increments of 150 MW, based on the median plant size estimate from the EPA NEEDS database. 

After calculating the total number of plants and installed capacity by scenario, we estimate the cost of any 

new capital expenditures plus annual variable costs based on supplied generation, and then subtract variable 

cost savings from existing units that have been replaced. We calculate an annualized capital costs assuming a 

20-year lifetime of new NGCC plants with a 7% discount rate. 

5.2.3 Optimization model formulation 

The objective of our optimization model is to minimize the sum of annual damages from climate and 

health—along with annualized mitigation costs—as shown in the equation below: 

 

(5.1) 
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In this equation, 𝑀𝐷𝑗,𝑝 is the marginal damage from one ton of pollutant p emitted by generating units in 

county j [$ per ton] (where p{SO2, NOx}), 𝐸𝑗,𝑝 is the annual emissions of pollutant p by all generating units 

that are located in county j [tons], SCC is the social cost of carbon [$ per ton CO2], and MC is the annualized 

mitigation cost [$]. Total emissions in a county comprise emissions by existing generating units (indexed by i) 

and emissions from new natural gas units, which are summed by county (indexed by j).  

The parameter 𝑤 in Equation 5.1 represents a weighting parameter (0 or 1) that allows inclusion of health 

damages in the optimization; 𝑤 = 0 thus corresponds to the climate-only scenario and 𝑤 = 0 to the health + 

climate scenario. We run scenarios optimizing for climate and costs (climate-only), health and costs (health-

only), and all three variables combined (health + climate). 

County-level emissions totals are calculated from the product of each unit’s average annual emissions 

rate—𝐸𝑅𝑖,𝑝 for existing units and 𝐸𝑅𝑁𝐺 for new NGCC facilities [tons per MWh]—with that unit’s level of 

annual generation, 𝑥𝑖
𝐺or 𝑥𝑗

𝑁𝐺 [in MWh], both of which serve as decision variables. This formulation is given 

by Equation 5.2, where Q represents the subset of units i that are located in county j. Included in the CO2 

emissions rate for natural gas units (both existing and new) is the amount of CO2-equivalent emissions from 

methane leakage; we assume a leakage rate of 3% with a 100-year GWP, but test sensitivity of the results to 

higher leakage rates and shorter timescale GWP values. 

 

(5.2) 

In seeking to minimize annual damages and costs, the model is also constrained to achieve a specified CO2 

emissions reduction target, where 𝑇𝑝 is the targeted for annual CO2 emissions after reducing by some 

percentage compared to the baseline. Because this analysis does not consider the full set of tradeoffs between 

cost of mitigation and climate benefits for deep decarbonization, we specify that annual CO2 emissions must 

fall with 0.01% of the emissions target, shown in the equation below, so that the model does not “overshoot” 

the CO2 reduction target.  

 

(5.3) 

Although the CO2-equivalent of methane leakage is counted for assessing total climate damages, it is not 

included when assessing whether the model has achieved the CO2 reduction. We run our optimization with a 

CO2 reduction target of 30% below 2017 annual emissions; we select 30% since it represents the approximate 

reduction proposed by the U.S. Clean Power Plan.  

We also constrain the model such that annual generation must be preserved by county for each scenario. 

This constraint is shown in the equation below, where 𝐺𝑗 is the annual generation from fossil units in 2017. 
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(5.4) 

Maintaining constant generation within each county as an initial constraint helps alleviate electricity 

transmission concerns since replacement generation could utilize existing transmission networks, while also 

ensuring that all scenarios are able to supply the same level of net-load (i.e. the amount of load that remains 

after removing renewables and nuclear). Existing generating units are also constrained such that their 

maximum annual output is the amount of generation they provided in 2017. Such a formulation misses the 

potential for increasing generation from units that for some reason may have under-supplied in 2017 (e.g. a 

unit may have been offline for maintenance), which may result in our model overestimating mitigation costs. 

As stated above, the model also does not optimize across alternative energy technologies (such as nuclear or 

renewables) or account for other changes to net load, which might reduce the total fossil generation needed. 

Our model as formulated is a linear problem. More sophisticated capacity expansion models include 

separate decisions for generation levels and binary operating decisions, resulting in a mixed integer linear 

problem (MILP). Such models more accurately model unit level decisions—particularly with regard to 

minimum loads—but are more computationally-expensive to solve. We find in the linear formulation of our 

model, between 48-56% of units making reductions are complete shutdowns, while only 4% of all units 

operate below 30% of their original loads. We also run a version of our model which introduces a MILP 

formulation using minimum plant operating levels and find that it increases mitigation costs but otherwise 

does not affect the spatial patterns of our results; accordingly, we rely on the linear formulation for the bulk 

of our analysis as it facilities conducting sensitivity analysis across the parameters of interest. We do not 

include factors like ramping constraints, which might increase compliance costs for existing units with more 

variable loads, and future work should address additional operating considerations for this type of analysis. 

The model is coded in Python using the PYOMO optimization package and optimized using the Gurobi 

solver, version 8.0.1; additional details on the model formulation and notation can be found in Appendix F.2. 

5.3 Results 

5.3.1 Co-optimization benefits 

Figure 5.2 provides estimates of annual climate and health damages in each scenario (panel a), along with 

annual health benefits from the climate-only and health + climate scenarios (panel b). The results show that, 

even without considering health as a co-objective, achieving a 30% CO2 reduction target using a climate-only 

approach yields large benefits to health relative to the baseline emissions scenario. Health damages fall from a 

range of $34-54 billion in the baseline to $11-20 billion annually in the climate-only scenario when estimated 

using the ACS concentration-response function; benefits are larger with the H6C concentration-response 
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function. When health is considered as a co-objective in the health + climate scenario, health damages fall 

further to $3-5 billion annually. Depending on the choice of air quality model and concentration response 

function, the health benefits of a climate-only strategy range from $23-73 billion annually (2,500-8,000 lives 

saved each year), while the additional health benefits of a health + climate approach are $8-33 billion annually 

(900-3,600 lives saved). Because the location of CO2 emissions does not influence their contribution to 

climate change, the benefits to climate from achieving a 30% CO2 reduction are equivalent across the two 

optimization scenarios, with annual damages falling by $17 million, slightly less than 30% after accounting for 

the effect of increased methane leakage. 

 

Figure 5.2 – Annual damages and health benefits by optimization scenario.Panel (a) shows annual damages (in 
billion $) from baseline fossil fuel fleet emissions in 2017 and after emissions reductions according to two 
optimization scenarios (climate-only and health + climate). Damages are shown for a range of air quality models 
(EASIUR, InMAP, and AP3) and concentration-response function (ACS, H6C), all using a $9 million VSL. 
Dashed lines reflect the corresponding climate damages from each scenario for SCC values of $40. Panel (b) 
summarizes the health benefits (in monetized damages and deaths avoided) from the climate-only and health + 
climate scenarios relative to the baseline for the different air quality models and concentration-response 
functions.  

Figure 5.3. illustrates the social benefits (climate and health) and the total mitigation costs from new 

natural gas facilities for the two compliance scenarios across a range of air quality models using the ACS 

concentration response function. Net benefits range from $24-35 billion annually for the climate-only 

scenario and $31-48 billion for the health + climate scenario. In contrast, accounting only for climate benefits 

would yield net benefits of only $0-2 million. By not including health benefits or only assessing them as “co-

benefits” of climate action, policy makers are thus likely both to understate the societal benefits of reducing 

emissions and to pursue policies are suboptimal from the perspective of climate and human health. 
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Figure 5.3 – Annual benefits and costs (in billion $) of each optimization scenario (C: climate-only, H+C: health 
+ climate) relative to the baseline scenario. Damages are shown for climate using a $40 per ton SCC and for 
health using each of the three air quality models, a $9 million VSL, and the ACS concentration-response function. 
Mitigation costs are the capital and operating costs from new natural gas capacity, annualized assuming a 20 
year useful lifetime and a 7% discount rate. Diamonds indicate annual net benefits (avoided climate and health 
damages less mitigation costs) for each scenario. 

In the health + climate scenario, plants with high health damages are prioritized for reductions, yielding 

additional health benefits relative to the climate-only scenario. This approach means shutting down some 

plants with relatively lower climate impacts but higher health costs; accordingly, the health + climate scenario 

requires more plants to be replaced with new natural gas facilities, increasing the cost of mitigation. However, 

the incremental mitigation costs incurred from a health + climate scenario are small relative to the total costs 

of mitigation, and smaller than the incremental health benefits achieved.  

The climate-only scenarios incurs $16 billion in annual costs, while the health + climate scenario costs an 

additional $2 billion, a 12% increase. This yields an increase in the cost of mitigation, which rises slightly from 

$32 to $35 per ton CO2 avoided. For comparison, the cost of NOx mitigation is approximately $26,000 per 

ton, while the cost of SO2 mitigation is between $14,000-17,000 per ton. Under the climate-only scenario, 

health benefits range from $44-66 per ton of CO2 with the ACS concentration-response function. 

Incorporating health benefits in the optimization in the health + climate scenario raises the range of benefits 

to $60-94 per ton of CO2 avoided. 

It is important to note that these costs to mitigation estimates are highly sensitive to the cost of natural 

gas. If gas prices rise from around $3.2 per mmBtu (baseline) to $10 per mmBtu, annual mitigation costs 

increase from $18 billion to nearly $60 billion, with a cost of mitigation of $110-150 per ton of CO2. Despite 

increased costs, the incremental cost of enacting the health + climate strategy remains a relatively small 
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fraction of total costs under a range of assumptions for the price of gas (see further sensitivity analysis in 

Section 5.3.3 below).  

Annual climate and health benefits are also dependent on the choice of SCC and VSL, respectively. Figure 

5.4 depicts the climate and health benefits of a health + climate scenario relative to the baseline under a range 

of parameter values for SCC and VSL, with uncertainty in the health benefits reflecting different assumptions 

for air quality model and concentration-response function. Although climate benefits range substantially 

based on the assumption for the SCC, the health benefits of the health + climate optimization are robust 

across a range of assumptions, and under most assumptions are larger than the climate benefits of emissions 

reductions.   

 

 

Figure 5.4 – Annual climate and health benefits (in billion $) achieved by the health + climate scenario relative 
to the baseline for different VSL and SCC assumptions.VSL (baseline: $9 million; low: $3 million; high: $18 
million) [116], [132] and SCC (baseline: $40 per ton; low: $6 per ton; high: $100 per ton) [79], [167]. Ranges on 
the health benefits reflect uncertainty based on choice of air quality model and concentration-response function 
(bars reflect value when using the AP3 model with the ACS concentration-response function). These annual 
benefits were derived in an optimization without mitigation costs, and thus reflect the breakeven amount 
decision makers should be willing to spend to achieve the corresponding emissions reductions based on a cost-
benefit analysis. 
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5.3.2 Spatial heterogeneity 

Under the climate-only scenario, the 30% reduction in CO2 is accompanied by 60% reductions in NOx and 

close to 70% reductions in SO2. The health + climate scenario yields additional reductions, with 70% and 

close to 90% decreases in annual NOx and SO2 from the power sector. Depending on the scenario, 

approximately 50-60% coal units are retired and replaced, with another 20% reducing operating levels.  

Figure 5.5 illustrates county-level spatial variation in the health benefits from the different scenarios—

showing damage in the county where they occur—along with the total, annual coal generation from that 

county. Under the baseline, most coal generation is located in the densely-populated Midwest and Mid-

Atlantic, and is co-located with the highest annual damages. The health + climate scenario focuses 

retirements of coal generation in these two regions, accelerating the decline of damages in those areas. 

 

 

Figure 5.5 – Annual generation from coal power plants (in TWh) and corresponding annualized health damages 
(in million $) from each scenario. Baseline shows results based on 2017 CEMS emissions data, while 
optimization results shown represent the climate-only and health + climate scenarios. Annual coal generation 
is shown by county. Health damages are shown by the county in which those damages occur; legend scale is 
based on quintiles of the data. Results are shown for optimization using the AP3 model with the ACS 
concentration-response function. 
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States that receive the greatest additional health benefits from moving from a climate-only to a health + 

climate scenario include Ohio (an additional $2.1 billion in avoided damages), Pennsylvania ($2 billion), and 

New York ($1.2 billion). Overall, 11 states each gain an additional $500 million in avoided damages annually, 

including Kentucky, Texas, North Carolina, Illinois, Virginia, Indiana, and Michigan.  

Although a few Western states with less stringent emissions requirements under a health + climate 

approach experience increased damages relative to a climate-only strategy, these increased damages are 

relatively small (<$30 million) and still represent improvements over the baseline. Similarly, the vast majority 

of counties receive additional benefits from moving to a health + climate approach, with only a few faring 

better in a climate-only scenario, shown in Figure 5.6. 
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Figure 5.6 Annual, per capita  health benefits by county for a climate-only optimization (x-axis) and for a health 
+ climate optimization (y-axis).Circle size indicates county’s 2017 population, while colors reflect each county’s 
region of the country. The vast majority of counties fall above the diagonal line, indicating higher health benefits 
in a health + climate scenario relative to a climate-only optimization. 

The spatial distribution of benefits of the health + climate scenario can be contrasted with the 

corresponding variations in the stringency of emissions reductions by location. Figure 5.7 shows the capacity 

of new, natural gas combined-cycle capacity installed by state for the two optimization scenarios, along with 

the percentage the new gas represents as share of that state’s current existing capacity (based on all fossil and 

non-fossil resources). Two important conclusions from this figure follow. First, the amount of new capacity 

installed changes dramatically across scenarios for select states. Relative to the climate-only optimization, 

states like Ohio, Pennsylvania, Missouri, and West Virginia replace coal with gas at much higher rates under 

the health + climate scenario. In some cases, these replacements are a substantial share of total installed 

capacity, with West Virginia replacing over two-thirds of its fleet.  

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●
●●●●

●●
●●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●● ●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●

●

●

●
●

●●
●

●

●
●

●●

●●
●●

●

●
●●

●

●
●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●
●●●●

●
●

●

●

●●
●●●

●
●●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●●

●

●●●●●

●

●●●
●

●

●
●

●
●●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

● ●●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●●●●
●

●
●●

●

●

●●
●●

●
●●●●●●●●●

●
●●●
●●

●
●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

● ●

●

●
●

●

●

●

● ●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●

●
●●
●

●

●●●
●

● ●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●
●

● ●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●● ●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●
●●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●●●
●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●
●●

●

●

●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●

●

●●
●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●●

●●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●
●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●●

●

●

●
●

●●
●

●
●●

●●

●

●

●
●

●●
●

●●
●

●

●

●●
●●

●
●●

●
●

●

●

●

●
●●●

●

●

●
●●●●

●

●
●

●

●

●●

● ●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●
● ●

●●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●
●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●●

●

●

●●

●●●●●●●●●●●
●

●●●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●
●

●

●

●●
●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●●●●●●●●● ●●●●●●●●●●●●●● ●●●

●
● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●●
●

●

●

●
●●●●

●
●

●

●

●●
●
●

●●●

●

●

●

● ●●
●

●
●

●

●
●

●
●

●

●

●●●

●

●
●

●

●●
●

●

●

● ●
●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

● ●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●●

●
●

●●
●●

●

●●
●

●
●

●●●● ●●
●●●●●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●●●●
●
●●●●
●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

● ●

●

●

●

●●
●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●●●● ●

●

●

●
●

●

●

●●●

●

●
●
●

●

●
●●

●
●

●

● ●

●
●

●

●
●

●
●●

●

●

●

●
●

●
●

● ●

●

0

500

1000

1500

0 250 500 750

Annual per capita health benefits,
climate−only scenario ($ per person)

A
n

n
u

a
l 
p

e
r 

c
a

p
it
a

 h
e

a
lt
h

 b
e
n

e
fi
ts

,
h

e
a

lt
h

 +
 c

lim
a

te
 s

c
e

n
a

ri
o

 (
$

 p
e
r 

p
e

rs
o

n
)

Region

●

●

●

●

●

Midwest

Northeast

Southeast

Southwest

West

Population
(millions)

●

●

●

●
●

0.5

2.5

5.0

7.5

10.0



 99 

Second, while some states with increased fleet replacement gain the most in health benefits (e.g. Ohio, 

Pennsylvania), in other cases the state where retirements occur differs from the state where greatest benefits 

accrue. As an example, although West Virginia replaces ~70% of its installed capacity with new natural gas in 

the health + climate optimization, 40% of the additional benefits are distributed to three downwind states 

(Pennsylvania, New York, and New Jersey), while West Virginia itself only receives 11% of the additional 

health benefits.  

 

 

Figure 5.7 – New natural gas capacity (in GW) installed in both optimization scenarios. Results are shown for 
the top 10 states with the most gas installed in each scenario. Numbers at the top of each bar indicate the share 
(in percent) the new gas capacity represents relative to the total installed capacity of that state (including utility-
scale non-fossil generation); total state-wide installed capacity taken from 2016 EPA eGrid dataset. The results 
indicate that state’s contribution to emissions reduction can vary dramatically depending on the optimization 
criteria used. 

 

Equity and environmental justice are also important to consider when determining the location of optimal 

emissions reductions. A policy that optimizes for total welfare at the expense of specific groups is less 

desirable, particularly if those groups are low-income, racial minorities, elderly, or other at-risk populations, 

which already tend to experience poorer air quality and higher health damages from air pollution [124]–[126], 

[129], [134]. While our analyses compute county-level health damages and are thus somewhat coarse for a 

rigorous environmental justice analysis, we can evaluate how the benefits from the different optimization 

scenarios are distributed across different sub-groups using county-level statistics. As an example, we compare 

median household-level income by county against the median health damages incurred per household for 

each optimization scenario using the AP3 air quality model and ACS concentration-response function.  
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We find that the climate-only scenario has median positive benefits across all income quintiles, but that 

the lowest 60% of households by income have higher benefits ($530-590 in annual health benefits per 

household) relative to the 20% highest-income counties ($330 in health benefits), shown in Figure 5.8. 

Furthermore, moving from a climate-only to a health + climate scenario provides additional benefits, ranging 

from a median benefit of $20-260 annually per household for bottom 60% of counties by income and $170 

per household for the top 20% 

 

Figure 5.8 – Median annual health benefits relative to the baseline for the climate and health + climate scenarios; 
health + climate benefits represent additional benefits over the climate-only optimization.Benefits are shown for 
the population-weighted median county after counties have been divided into quintiles based on median 
household income.  

  

5.3.3 Sensitivity to natural gas assumptions  

In addition to the sensitivity analysis presented above related to air quality model, concentration-response 

function, and choice of VSL and SCC, we also perform two sensitivity analyses regarding the impact of the 

cost of natural gas on the cost of mitigation. Specifically, we explore the impact of a substantially higher cost 

of natural gas ($10 per MMBTU, as compared to our baseline assumption which is close to $3.2 per 

MMBTU) as well as an approach that estimates the levelized cost of natural gas by county based on resource 

availability, existing infrastructure, etc.11  

                                                      
11 Data for this approach was developed by researchers at UT Austin, and is available online at 
http://calculators.energy.utexas.edu/lcoe_map/#/county/tech. These figures were adjusted to correspond to our 
baseline assumptions on capital costs of new NGCC plants, discount rate, and fuel costs. 
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Figure 5.9 shows the total mitigation cost and per-ton cost of mitigation for CO2 under each of the 

assumptions for natural gas. Our total cost estimates are not substantially affected by incorporating the cost 

of natural gas infrastructure by location, but are very sensitive to high gas prices, and gas prices at this level 

eliminate the net benefits under almost all modeling assumptions (Figure 5.10) However, the additional cost 

of climate + health scenarios remains small relative to total cost of mitigation in the climate-only scenario, 

and the magnitude of the health benefits that can be achieved (Figure 5.11) are not dramatically affected. 
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Figure 5.9 – Estimates of annual mitigation costs and per ton cost of CO2 reduction under different assumptions 
the cost of natural gas. Results shown when using the AP3 model with ACS concentration-response function; 
costs under other scenarios are similar. 
 

 

Figure 5.10 – Annual benefits and costs (in billion $) of each optimization scenario (C: climate-only, H+C: health 
+ climate) relative to the baseline scenario when assuming a high price for natural gas.Damages are shown for 
climate using a $40 per ton SCC and for health using each of the three air quality models, a $9 million VSL, and 
the ACS concentration-response function. Mitigation costs are the capital and operating costs from new natural 
gas capacity, annualized assuming a 20 year useful lifetime and a 7% discount rate. Diamonds indicate annual 
net benefits (avoided climate and health damages less mitigation costs) for each scenario.  
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Figure 5.11 – Health benefits (in monetized damages and deaths avoided) from the climate-only and health + 
climate scenarios relative to the baseline.Results are shown for different assumptions of the price of natural gas 
and of air quality model (EASIUR, InMAP, and AP3); values are shown using the ACS concentration-response 
function with baseline VSL of $9 million.  

 

While a high gas cost in itself does not substantially alter the optimal locations for mitigation, we find that 
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retirements in the East Coast and Southeast (shown in Figure 5.12). Although the geographic profile of 

resources shifts and the additional health benefits of a climate + health strategy are reduced, the health 

benefits are still substantial, suggesting persistent benefits of a co-optimization. 
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Figure 5.12 – Annual generation from coal power plants (in TWh) and corresponding annualized health damages 
(in million $) from each scenario.Results are shown for modeling that accounts for the cost of natural gas 
infrastructure using baseline gas prices (see Figure 5.5 for comparison). Higher relative cost of natural gas in 
the Midwest lead to increased reductions in the Southwest and Eastern U.S. relative to the baseline analysis. 
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targeting locations of high health impacts for emissions reductions, and are robust to uncertainty and a range 

of input assumptions. By not explicitly considering health effects when designing climate policy, policy 

makers thus neglect a large benefit of emissions reduction and constrain opportunities for pursuing co-

optimal strategies.  

The additional benefits of strategies that consider health and climate are primarily distributed to counties 

that currently have the worst air quality, mainly in the densely populated Eastern U.S. We show that 

optimizing to include health as an objective creates differentiated responsibility across U.S. states for 

emissions reductions. The variation in responsibility and benefits by jurisdiction illustrates the importance of 

interstate cooperation and potential value of a continued federal role in designing and implementing 

emissions controls. Federal coordination could, for example, create a system by which responsibility for 

emissions reductions varies by impact, with states compensating each other based on their efforts or the air 

quality benefits they receive.  

Likewise, market interventions such as carbon tax might include additional penalties based on co-pollutant 

health damages, encouraging more optimal investments and reductions. Such strategies should, however, also 

consider their distributional impacts and implications for equity. While our analysis suggests that considering 

health could benefit lower-income groups, future analyses and policy designs should include more rigorous 

considerations of equity.  

Our model focuses on the role of location in determining the additional health benefits achievable by a 

health + climate approach. While we concentrate on replacing coal with natural gas to achieve a moderate 

CO2 target, our modeling does evaluate the merits of different technologies or decarbonization pathways, 

which other research has explored [98], [151]. Although we include a climate penalty for methane leakage, we 

do not conduct a full lifecycle assessment of the impacts of switching to natural gas. Achieving the deep 

decarbonization necessary to address climate change will require additional mitigation strategies beyond the 

use of natural gas, and future work should focus on how incorporating health into operational or capacity-

expansion models would affect decisions across a range of low-carbon options. In this work, we focus on 

natural gas as the replacement for coal because it is technologically proven and illustrative of the ability to 

achieve health benefits from emissions reductions, not because we claim it is necessarily optimal relative to 

other technology options.  

Furthermore, dynamic effects may mean that technologies with less optimal health implications today may 

be favored for long-run emissions reductions (e.g. energy storage in grids with high penetrations of fossil 

energy), implying the need to build in a more robust temporal analysis. Nevertheless, our results indicate that 

policies and modeling that explore the different technologies and pathways for emissions reductions may 

benefit from assessing and incorporating location-based health benefits.   

Although integrating health in the consideration of climate mitigation strategies offers the potential for 

additional health benefits, doing so also changes the dynamic of discussions on climate mitigation. Nemet et 
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al. discuss a number of implications of including health in climate policy discussions, including effects on the 

“robustness to discount rates, incentives for international cooperation, and the value of adaptation, forests, 

and climate engineering relative to mitigation” [147]. Just as costs and benefits should not be the only metric 

by which to evaluate policies, including health when comparing two very different interventions may swamp 

other critical objectives and may not be appropriate in all scenarios. Furthermore, the health benefits of 

climate mitigation should be considered relative to traditional air pollution interventions, such as low-NOx 

burners or scrubbers. Nevertheless, understanding the health implications of different emissions reduction 

strategies can help refine and enhance policy design across a range of potential objectives. 

Ultimately, emissions reductions will provide meaningful benefits to society from the perspective of both 

climate change mitigation and improved human health from better air quality. While moving away fossil fuels 

to reduce CO2 emissions will bring wider societal and environmental benefits in the long-term, the design of 

the pathway to those reductions can greatly impact the immediate benefits to human health in the short- and 

medium term, potentially at only comparatively modest cost. Integrating climate and health factors when 

designing and evaluating emissions reduction policies thus offers an opportunity to provide additional 

benefits to society by addressing the two problems in conjunction.  
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Chapter 6 

Conclusions and policy implications 

This dissertation explores three aspects of the interaction between the climate and health implications of 

power sector emissions: how climate and health information affects public support for emissions reductions, 

how to quantify the air quality-related health impacts of emissions, and the potential value of integrating 

climate and health considerations in policy design. Here, we highlight the main findings from each section, 

along with opportunities for informing policy making or advancing future research.  

6.1 Public communication 

Public support will be foundational to enabling an electric sector transition that achieves climate and health 

goals. Such support may come in various forms, such as pressure to enact policies that reduce emissions or 

the willingness to pay a premium to support clean energy sources. In Chapters 2 and 3, we deployed a pair of 

discrete-choice surveys in the U.S. and China to explore how communicating information on the climate and 

health implications of emissions affects individuals’ support for emissions reductions. The conclusions of 

these studies point to several areas of focus for policy makers. 

Convey climate and health benefits. Across both surveys, we found that the public is generally 

supportive of reducing emissions, and on average supports those reductions on both climate and health 

grounds. Furthermore, respondents to our surveys were more supportive of strategies that addressed both 

climate and health simultaneously. This suggests that policy makers should strive to communicate the full 

climate and health benefits of proposed emissions reductions, as awareness of those benefits is indeed likely 

to build greater support. Policy makers may also be able to tap into greater levels of public support for 

climate policies if they design these policies in such a way so as to maximize their benefits to health, an 

approach explored by the analysis in Chapter 5.  

Provide consistent air quality information. In Chapter 3, we find that respondents’ support for 

emissions reductions is higher for respondents who are living in cities with higher levels of long-term air 

pollution. While future work should investigate the mechanisms behind this relationship, it suggests that 

respondents’ long-term awareness of air pollution is an important driver in their support for emissions 

reductions. By making information on air quality and health impacts available in a consistent way over time, 

policy makers may help to build sustained awareness of the issues surrounding fossil fuel combustion and 

bolster support for strategies that try to address the resulting emissions.  

Communicate meaningful impacts. Individuals’ average support for addressing both climate and health 

reflects that they have preferences with regard to both of these dimensions. However, eliciting public support 
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for different emissions pathways requires effort to ensure that the impacts being communicated are 

meaningful to the public. While monetized health benefits may be useful for decision makers who are 

designing optimal health strategies, such numbers are often relatively incomprehensible to members of the 

general public. Properly communicating health and climate impacts will require concerted effort to 

understand public values and to ensure that the metrics being employed have meaning to the stakeholders for 

whom they are designed.    

Explore heterogeneity in preferences. The results in Chapters 2 and 3 focus primarily on analysis of the 

average survey respondent; while such an approach is useful for understanding the broad dynamics of public 

support, it misses the nuances across different sub-populations. As an illustration, a population-level 

willingness-to-pay estimate may be the result of two groups with low and high willingness-to-pay values, 

meaning that neither of the subgroups will be entirely happy with a policy based on the population-level 

estimate. By understanding and accounting for heterogeneity in preferences, policy makers are likely to be 

better equipped in designing optimal policies that are politically tractable across a wide range of stakeholders.   

6.2 Quantifying health damages 

In order to communicate the health effects of emissions reductions or to incorporate them in policy analysis, 

decision makers must first be able to understand and quantify them. Chapter 4 explores using an integrated 

assessment to model to evaluate the health impact of emissions in the U.S. and to explore the transboundary 

nature of emissions’ impact. Although many areas of consideration for policy makers stand out from this 

work, we elaborate on four of them here. 

Sustain efforts to reduce emissions. We find that total health damages from emissions have fallen over 

time, driven largely by the closure of and reduced emissions from point source facilities, such as large coal-

fired power plants. Nevertheless, the benefits of these reductions are spatially heterogenous; while most 

counties experienced declining per capita damages, others have witnessed increasing damages. Policy makers 

should thus continue to advance efforts to reduce emissions and their subsequent health impacts, and strive 

to ensure that areas are not left behind in the process. As damages from point sources have fallen, the 

importance of addressing emissions from dispersed area sources—which are more difficult to tackle—has 

also risen, and decision makers should explore policy options in this domain. Metrics such as the 

export/import ratio may be useful to policy makers when determining what types of emissions sources are 

important to focus on for a given location.   

Continue transboundary cooperation. Declining emissions levels have been used by some to advocate 

for a diminished federal role in regulating air quality. Yet our results underscore the continued importance of 

transboundary flows of pollution and policies capable of reducing them. This work also highlights issues in 

the dichotomy of who is responsible for air pollution and who benefits from reducing emissions. For 
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jurisdictions downwind of major polluters, transboundary cooperation and regulations can help ensure that 

the costs and benefits of air pollution control are distributed in an equitable manner while moving forward 

with emissions reduction strategies.  

Consider implications for marginalized communities. Communities with lower median income levels 

and higher shares of minority populations are more likely to incur higher health damages from air pollution 

and are more likely to be larger importers of air pollution. While emissions reductions are likely to provide 

benefits across a wide range of social and economic classes, policy makers should consider how to design 

strategies that help to reduce inequality in the distribution of health damages. In addition, our analysis is at a 

county-scale, which is relatively coarse for studying environmental justice implications. Future work should 

continue to explore the equity implications of policies for addressing climate change and air pollution at more 

granular geographies. 

Evaluate transboundary impacts holistically. Transboundary emissions flows are one component of 

the many linkages across different jurisdictions, many of which are intertwined. Large point sources may 

pollute downwind areas, but they are also likely to provide economic goods and services to the affected areas. 

Rather than singling out polluting counties or jurisdictions, states and regions should work cooperatively to 

identify the various cost and benefit linkages, and to evaluate how different strategies might affect the various 

stakeholders. Although future work is needed to be able to understand and attribute some of the economic 

linkages that underlie transboundary emissions, a better accounting of these interdependencies offers the 

possibility of more integrated and just approaches to emissions reductions.  

6.3 Integrating health and climate 

Linking health with climate objectives in designing emissions reductions offers an opportunity to improve the 

societal benefits achieved with climate action, and may also help to augment support for such reductions. We 

explore the potential benefits of such a linkage for the power sector in Chapter 5, providing the following 

insights for policy guidance. 

Design climate policy with health in mind. Even without explicitly incorporating health, many 

strategies for reducing CO2 from the power sector will result in large benefits from the perspective of air 

pollution and human health. Failing to account for those benefits is likely to undervalue the benefit of these 

reductions and potentially result in suboptimal decisions. Furthermore, we show that including health in the 

design of such policies can further increase the level of health benefits that can be obtained, and that these 

additional benefits are robust across a range of parameter and modeling assumptions. Decision makers should 

thus consider air quality and health when exploring options for climate action. For example, market 

mechanisms—such as incentives for low-emissions generation, the locational marginal price (LMP) paid to 

existing generations, or a carbon tax—could be tied to the health damages so as to encourage the deployment 
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of lower-impact alternatives. Similarly, regulatory measures such as clean energy targets or emissions 

standards could be informed by the health impact of associated co-pollutants. Such a scheme would yield 

disparity in targets across entities, requiring cooperation to ensure that responsibility for achieving those 

targets is equitably distributed relative to the costs and benefits of implementing them. 

Develop a framework for integrated climate and health assessment. Although integrating climate 

and health offers an opportunity for improving the social outcomes of emissions reductions, there are 

barriers to this integration. Uncertainty in the assessment of both health and climate damages, along with the 

challenges of measuring and valuing the impact of emissions changes, may give decision makers pause. Policy 

roadblocks to advancing climate legislation in the U.S. has resulted in mitigation strategies that minimize 

implementation costs subject to a target (e.g. reduce CO2 by 30% or maintain temperature increase below 

2C), hindering the direct co-optimization of climate and health benefits. Jointly evaluating climate and health 

may also have unexpected consequences when comparing radically different climate mitigation strategies, and 

depending on the objectives, including health may not be appropriate. Policy makers and analysts will need to 

advance frameworks that provide guidance on when to integrate climate and health decision-making, and 

how such integration should occur.       

Explore system dynamics of climate and health. Our work in Chapter 5 is illustrative of the potential 

for linking health and climate, but more work is needed to understand this connection. For the power sector, 

incorporating this linkage into operational models may provide insight into the additional benefits that can be 

realized, and would enable comparisons across different mitigation technologies, such as nuclear, renewables, 

and carbon-capture with sequestration, as well as comparison between climate-focused options and 

conventional air pollution control technologies that specifically target air quality and health. Multi-period 

analysis can also be used to investigate how system dynamics evolve over time; while some strategies may be 

suboptimal for health in the short run (e.g. energy storage in a heavily fossil grid), such alternatives may 

provide better long-run outcomes when considering technological interactions and other limitations that 

evolve over time. 

6.4 Future outlook 

The electric power sector is in transition. Addressing climate change will require deep decarbonization at an 

unprecedented scale, and at present fossil fuel emissions from the power sector remain an important source 

of air pollution and human health impacts. This work explores the tradeoffs and linkages between the two in 

the hope of informing more integrated policy efforts, both in the design of strategies for emissions reductions 

and in the communication of those strategies to the public. 

Decisions in the electric power sector are complex; they are made by a wide range of institutional actors, 

including utilities, regulators, consumers, governments, and market participants. Climate and health 
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implications are but two of the many outcomes that determine how to supply electricity in the future. 

Nevertheless, this work aims to provide insight as to how public preferences for the climate and health 

consequences of emissions might be understood, and how to advance the integration of climate and health 

into decision- and policy-making processes. Further efforts to integrate metrics for climate and health with 

other environmental and socioeconomic criteria may help provide the foundation for more holistic decision-

making that serves to advance a sustainable and equitable energy future with economic prosperity for all.  
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Appendix A 

Details on survey design 

A.1 U.S. survey 

A.1.1 Portfolio levels 

Table A.1 – Table of electricity portfolios used in the discrete choice experiment. Each entry represents the 
percentage of electricity generation coming from each fuel source (or reduction of total generation supplied by 
energy efficiency interventions).  

Means of meeting 

electricity demand 
Portfolio level 

 

“Current 

national mix” 

(baseline) 

“Natural 

gas” 
“Nuclear” “Renewables” 

“Energy 

efficiency” 

Coal 41% 11% 11% 11% 28% 

Natural gas 26% 56% 26% 26% 26% 

Nuclear 20% 20% 50% 20% 20% 

Renewables 12% 12% 12% 42% 12% 

Energy efficiency 1% 1% 1% 1% 14% 

A.1.2 Sample demographics  

Table A.2 – Demographic breakdown by experimental group. 

 

Table A.3 – Overview of responses to all demographic questions for final survey population. The table provides 
count of respondents in each category and the percent of the total sample (N=822). 

Demographic Response Count Percent of sample 

Gender 

Male 421 51% 

Female 397 48% 

Prefer not to answer 4 0.5% 

Other 0 0 

[No response] 0 0 



 123 

Race/ethnicity 

White/Caucasian 643 78% 

Black/African-American 64 8% 

Asian 45 5% 

Hispanic 46 6% 

Other 15 2% 

Prefer not to answer 6 1% 

[No response] 3 0.4% 

Education 

Completed college 370 45% 

Some college 229 28% 

Graduate or professional degree 111 14% 

Completed high school 103 13% 

Prefer not to answer 5 1% 

Did not complete high school 4 0.4% 

[No response] 0 0% 

Household income 

< $20,000 116 14% 

$20,000 - $49,999 327 40% 

$50,000 - $79,999 210 26% 

$80,000 - $109,999 95 12% 

$110,000 - $139,999 27 3% 

$140,000 - $169,999 15 2% 

$170,000 - $200,000 3 0.5% 

> $200,000 6 1% 

Prefer not to answer 23 3% 

[No response] 0 0% 

Community 

Suburban 430 52% 

Urban 221 27% 

Rural 161 20% 

Prefer not to answer 6 1% 

Other 3 0.3% 

[No response] 1 0.2% 

Political party 

Democrat 349 42 

Independent 258 31% 

Republican 143 17% 

None of these 47 6% 

Another party 14 2% 

Prefer not to answer 8 1% 

[No response] 3 0.3% 

Political ideology 

Very liberal 115 14% 

Liberal 278 34% 

Moderate 227 28% 

Conservative 133 16% 

Very conservative 46 6% 

Prefer not to answer 11 1% 

Other 12 1% 

[No response] 0 0% 
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A.2 China survey 

A.2.1 Portfolio levels 

The portfolio attribute consists of five “representative” scenarios which are described by the most prominent 

change to the fuel mix. The baseline level was constructed using 2014 generation data for each province, 

displayed in Figure A.1. The percentage breakdown of generation by source for the nation is also shown for 

comparison. For reference, the total absolute generation in 2014 (in TWh) is provided in Figure A.2. This 

data was collected from the Chinese Statistical Yearbook for electric power generation [42]. Other portfolio 

levels were created by shifting 15% of that province level generation from coal to either renewables, hydro, or 

nuclear. In the balanced increase level, coal is decreased by 15% and renewable, hydro, and nuclear are each 

increased by 5%.  

 

Figure A.1 – Percentage share of generation by source and province for 2014. Data taken from the China Electric 
Power Statistical Yearbook [42]. 
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Figure A.2 – Total 2014 generation by source and province, in TWh. Data taken from the China Electric Power 
Statistical Yearbook [42]. 

 

A.2.2 Sample characteristics  

 

 

Figure A.3 – Plot of survey completions over time by city. The shape of each point indicates whether the 
respondent passed all the attention checks included in the survey.  

 

Figure A.4 provides a histogram of the time it took respondents to complete the survey. 89% of the total 

sample of 1,060 respondents took at least 10 minutes to complete the survey. For the remaining 11%, we 
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were concerned that individuals may have rushed to complete the survey and may not have given legitimate 

answers. Most of these respondents do however pass our attention and consistency checks (see Appendix 

C.4). In addition, we test our standard model after dropping these fast surveys and find that dropping their 

results does not significantly affect the results or the conclusions; accordingly, we conduct the analysis with all 

the survey data.  

 

Figure A.4 – Histogram of time to complete the survey by respondents. 

 

Table 3.2 above provides a summary of the demographics of the sample in our study by city of response, 

including information on the fraction of respondents that are male, the median age (in years), the fraction of 

respondents indicating that they have a college education or greater, and the fraction of respondents with an 

annual household income below 80,000 RMB. A discussion of the breakdown of these demographics by city 

and nationally is included in the main text. As a source of comparison to our results, Table A.4 provides 

statistics on the per capita and per household estimated annual income for each of the cities sampled as 

reported by each city’s statistical yearbook [170]–[179].  

As a source of comparison to our demographic statistics on income, Table A.4 provides statistics on the 

per capita and per household estimated annual income for each of the cities sampled as reported by each 

city’s statistical yearbook [170]–[179].  
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Table A.4 – Annual income data (in RMB) based on reported statistics from official sources. Column 1 provides 
the average annual per capita income for urban residents, while column 2 reports the estimated annual 
household income. Income data taken from provincial level statistical reports [170]–[179].  

 per capita per household 

Beijing  52,900   157,000  

Chengdu  33,500   99,400  

Guangzhou  46,700   139,000  

Harbin  31,000   92,000  

Lanzhou  27,100   80,500  

Shanghai  53,000   157,000  

Urumqi  34,200   102,000  

Xi'an  33,200   98,600  

Yinchuan  28,300   83,900  

Chongqing  27,200   80,900  

Nationwide  31,200   92,600  
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A.2.3 Air quality data  

 

Figure A.5 – Correlation of daily PM2.5 concentration levels in the 10 sample cities between 2015 and 2017. 
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Figure A.6 – Correlation of annual average and peak PM2.5 concentration levels. 
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Appendix C 

Additional survey results 

C.1 Logit regression results 

Table C.1 - Mixed logit coefficient estimates for the U.S. survey. Terms with “SD” are estimates of standard 
deviation for the distribution of random effects for that coefficient. The four portfolio levels (renewables, nuclear, 
hydro, and balanced) are measure in relation to the baseline portfolio, while the bill, CO2, and SO2 are in terms 
of percentage change (where 1 = 100%). 
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Table C.2 - Mixed logit coefficient estimates for the China survey.Terms with the prefix “sd” are estimates of 
standard deviation for the distribution of random effects for that coefficient. The four portfolio levels (renewables, 
nuclear, hydro, and balanced) are measure in relation to the baseline portfolio, while the bill, CO2, and SO2 are 
in terms of percentage change (where 1 = 100%). 
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Table C.3 - Mixed logit coefficient estimates for the China survey when considering an interaction with observed 
air quality. Each model employs a summary of PM2.5 at a different temporal scale: day of the survey, the previous 
month, annual average (2015 and 2016), and peak event (2015 and 2016). The interaction with the monthly average 
data has fewer observations because of missing concentration data. Terms with the prefix “sd” are estimates of 
standard deviation for the distribution of random effects for that coefficient. The four portfolio levels (renewables, 
nuclear, hydro, and balanced) are measure in relation to the baseline portfolio, while the bill, CO2, and SO2 are 
in terms of percentage change (where 1 = 100%). 
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C.2 Implicit WTP results 

In this section, we provide details on our calculation of the implicit WTP per ton of pollutant reduced as 

derived from respondents’ choices.  

C.2.1 U.S. Survey 

For the U.S. survey in Chapter 2, we take the estimated mean WTP values for 30% reductions in CO2 and 

SO2 and multiply by the national average monthly electricity bill to obtain a WTP in terms of monetary units. 

For this value, we use the average monthly electricity bill reported in our survey, which was $124. We note 

here that this value is relatively close to the value of $114 for the U.S. as reported by the Energy Information 

Administration (EIA); a full comparison of average electricity bill values as reported by the EIA and by 

respondents in our survey is provided in Figure C.1. 

Next, we multiply the WTP in dollars by the total number of U.S. households, using 120 million as 

reported in from the U.S. Census in 2014 [31]. This provides a total payment from all households using 

electricity for 30% reduced CO2 or SO2 emissions. Finally, we divide by the total emissions reduced in a 30% 

reduction strategy, taking the 2014 EPA CEMS data as our baseline for national emissions from electric 

power plants.  

This results in WTP in $ per ton emissions reduced, shown in Table C.4 below. Our method provides per 

ton WTP per ton estimates that are on par or substantially lower than previous estimates (see table in Longo 

et. al.[21]), but reasonably in line with current approximations on the marginal social damages from each of 

these pollutants.  
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Figure C.1 – State-level average electricity bills. Figure compares estimates of average bill values reported by 
survey respondents and from the EIA [24]. Point size indicates the number of survey respondents. Note that one 
outlying value of $3000 per month reported by a respondent from Massachusetts was deemed an input error and 
was removed from the analysis. 
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Table C.4 – Implicit WTP in $ per ton of annual emissions reduced. Calculated based on the estimated marginal 
WTP from the model, respondents’ reported electricity bills, and total U.S. annual emissions for each pollutant. 
Range represents interval estimate based on 95% confidence intervals for marginal WTP. For comparison, the 
final row provides estimated marginal social damages for the two pollutants. Numbers rounded to two 
significant figures and converted to $2015.  

 Experimental group CO2 SO2 

CO2 info (Group 2) 
58 

(51-66) 
- 

SO2 info (Group 3) - 
44,000 

(38,000-51,000) 

CO2 & SO2 info  
(Group 4) 

42 
(34-51) 

33,000 
(27,000- 39,000) 

Average social  
damages [37], [167] 

36  38,000 

 

C.2.2 China Survey 

To calculate the WTP per ton of emissions reduced, we first take our WTP estimates for a 30% reduction in 

either CO2 or SO2 from the model coefficients and convert to a monthly bill payment (USD per month), 

after accounting for purchasing power parity. We subsequently estimate the number of Chinese households 

by dividing the total population by the average number of individuals per house (3.1); our result is 

approximately 440 million. Using this estimate, we scale up the monthly household to a total annual payment. 

Next, we estimate the annual tons of emissions reductions associated with a 30% decrease based on 2012 

levels of CO2 SO2 of households. We then divide the total annual payment by the total annual reduction for a 

back-of-the-envelope estimate of the WTP per ton of emissions reduced.  

C.3 Individual heterogeneity and nonlinearity 

C.3.1 U.S. Survey 

To evaluate the appropriateness of our non-linear model, we ran the mixed logit models described above for 

the U.S. survey in Chapter 2 using a generalized additive model with smoothing splines fit to the emissions 

and monthly electricity bill regressors. The plots that follow show the smoothed component functions. The 

vertical lines indicate the range of changes to the regressors considered in our analysis (20% for monthly 

electricity bill and 30% for emissions). The models suggest that the results are relatively linear with some 

fluctuations within the ranges considered. Outside these ranges we observed increased non-linearity, generally 
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characterized by a leveling off that is consistent with diminishing marginal utility from changes in that 

attribute, which we capture with our quadratic emissions terms. 

 

 

Figure C.2 – Nonlinear, additive model component plots for electricity bills. Results shown across three of the 
experimental groups. 
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Figure C.3 – Nonlinear, additive model component plots for emissions. Results shown across three of the 
experimental groups, depending on which group saw emissions information. 

 

Figure C.4 provides the distribution of random effect coefficients estimated in the mixed logit model, 

along with the average effect estimate. The results shows that while a large share of respondents are clustered 

near the estimate for the average respondent, there is substantial hetereogeneity in responses, suggesting value 

in policies that recognize individual-level heterogeneity.  
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Figure C.4 – Probability density functions for the distribution of individually-estimated random effects 
coefficients for CO2 and SO2 for experimental Groups 2, 3, and 4. Dashed lines indicate the baseline mixed logit 
coefficient estimated by the model.  

 

We also explored various models assessing whether preferences varied systemically with any of our 

demographic variables. In general, we did not find many significant and consistent trends across many of our 

demographic variables. Two models we focus on here include variation by income levels and political party, 

presented in Table C.5 and Table C.6. For the income interaction, we find few significant effects; although 

the coefficient for the interaction between income and bill is of the expected sign for most experimental 

groups (with positive indicating that respondents of higher income levels are less sensitive to changes in 
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electricity bills), these findings are not significant. For political party, we find that respondents who identify as 

Republicans tend to place more importance on electricity bills and are less persuaded to support CO2 

reductions. Interestingly, Republicans’ weaker support for climate-related emissions reductions does not 

translate to a similar aversion to health-related emissions.  

Table C.5 – Mixed logit coefficient estimates with interaction on linearized income scale. In this scale, 1 
represents the lowest income level and 8 the highest. Income interacted with preferences for changes in bill or 
emissions. 
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Table C.6 – Mixed logit coefficient estimates with interaction on self-identified political party. Baseline party for 
the model is Democrat. Political party interacted with preferences for changes in bill or emissions. 
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C.3.2 China Survey 

We test for patterns of responses across several types of demographic features, including city of residence, 

income level, and educational attainment. These analyses were conducted by interacting the measured 

demographic variables with the SO2, CO2, and bill attributes. The resulting interaction coefficients provide an 

indication of how respondents’ preferences for emissions reductions change in relation to the demographic 

variable. We consider models looking at variation based on income, education, and province of residence. 

Table C.7 shows the mixed logit regression results with interactions for respondents’ household income 

levels; respondents reported their income levels in nine groups following increments of 30,000 RMB, which 

were linearized here such that 1 represents the lowest income level and 9 the highest. We find no significant 

interaction effects between income and preferences for emissions reductions. We do, however, observe that 

the interaction coefficient between electricity bills and income moves in a direction we might expect—

respondents with higher income levels place less weight on changes to electricity and are less averse to 

increases in bills than low income individuals. Since the bill coefficient is in the denominator of the 

willingness to pay calculation, this change in importance on the bill attribute implies that respondents with 

higher incomes would be willing to pay more for emissions reductions.    
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Table C.7 – Mixed logit regression results showing the relationship between household income levels and 
preferences for changes to CO2, SO2, and monthly electricity bills. Income-specific coefficients are estimated 
using linearized bins of income levels incrementing by 30,000 RMB, with 1 representing the lowest income group. 
Baseline main effects are estimated by CO2, SO2, and bill coefficients.  

 
Table C.8 shows the mixed logit regression results with interactions for respondents’ level of education. 

As with income, we find no evidence of significant interactions between education levels and individuals 

preferences for changes to emissions, although we do find a positive interaction with electricity bills, 

indicating that more highly educated individuals place less importance on the bill attribute.  
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Table C.8 – Mixed logit regression results for the show the relationship between education levels and preferences 
for changes to CO2, SO2, and monthly electricity bills. Education coefficients are estimated using linearized bins 
of education levels, with 1 representing the lowest education level. Baseline main effects are estimated by CO2, 
SO2, and bill coefficients.  
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Table C.9 provides the regression when considering variability in the respondent’s city of residence. These 

city-level preferences are estimated as differences from respondents who took the survey in Beijing.  

Table C.9 – Mixed logit regression results for the show the relationship between the respondent’s city and 
preferences for changes to CO2, SO2, and monthly electricity bills. City-specific coefficients are estimated as 
differences from the baseline, which represents preferences of individuals from Beijing (this baseline is 
estimated by CO2, SO2, and bill coefficients).  
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To reflect the implications of the differences in these coefficients, Figure C.5 plots the estimated 

probability of support for 30% changes in either CO2 or SO2 given the calculated the city-level coefficients 

from the regression presented above Respondents from Beijing, Chengdu, and Urumqi have relatively strong 

preferences for SO2 reductions, and also prefer reductions in SO2 more strongly than CO2. In contrast, 

respondents from Xi’an and Chongqing exhibit the least support for 30% reductions in emissions.  

 

 

Figure C.5 – Illustration of probability of support for 30% emissions reductions for an average respondent from 
each of the sampled cities. 

 

The results we have reported thus far represent values estimated for the “average respondent”; however, 

the mixed logit formulation allows us to estimate heterogeneity in individuals’ preferences for emissions 

reductions. Figure C.6 provides the estimated distributions for the linear and quadratic coefficients on 

reductions in CO2 and SO2. The top rows with the linear coefficient results indicate that while a clear majority 

of respondents are predicted to prefer emissions reductions, there is a wide range in the strength of 

preference for those emissions reductions, with some respondents favoring emissions cuts almost twice as 

strongly as other. The distribution of quadratic emissions terms shows that respondents’ preferences for CO2 

reductions tends to diminish more quickly than for SO2, which has a larger distribution that is shifted to the 

left. An interesting observation is that while this pattern may be indicative of respondents’ larger appetite for 

cleaning the air, it contrary to what is expected given that the marginal value of reductions in SO2 tends to 
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decrease while mitigating climate change will likely require drastic cuts to CO2 (80-90% in the next few 

decades).  

 

Figure C.6 – Distribution of random effects for linear and quadratic coefficients for CO2 and SO2, estimated 
using the assumption of a normal distribution. 

C.4 Consistency checks 

In both surveys, we specified the design of six “fixed” choice tasks of the sixteen choices so as to test for 

consistency in respondents’ choices and to explore the validity of the choice axioms that underpin the models 

we employ. These tasks examined respondents’ focus on the choices (attention), their demonstration of 

consistent and transitive preferences (transitivity), and whether their preferences are indicative of a linear 

model (linearity). We also included some additional questions design to evaluate whether respondents were 

paying attention. The design of these tasks and questions, as well as the results from the analysis of responses 

to these questions, is described in the text that follows. 

C.4.1 U.S. Survey 

 Attention checks 

The attention checks consisted of two separate components. First, after respondents completed reading the 

background material and the tutorial, we asked them to identify the following statements as true or false:  
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 Portfolio question – “Coal, natural gas, renewables, nuclear, and energy efficiency are all electricity 

sources or reductions considered in this survey.” 

 Bill question – “Assuming the amount of electricity you use does not change, higher electricity prices 

would lower your monthly electricity bill.” 

The correct answers to these questions based on the information presented are “true” and “false.” 

Second, we included two choice tasks that were relatively easy to complete. In these two tasks, both 

alternatives shared the same electricity portfolio while one alternative had lower monthly bill and emissions 

values. The attribute levels of those two choices are provided in Table C.10.  

Table C.10 – Attribute levels for the two attention check tasks in the U.S. survey. 

 Choice 1 Choice 2 

 Scenario 1 Scenario 2  Scenario 1 Scenario 2 

Electricity portfolio Current national 
mix 

Current national 
mix 

Renewables Renewables 

Monthly bill  + 10% - 10% - 20% + 20% 

Climate change 
related emissions 

+ 30% - 70% No change + 30%  

Health related air 
pollution 

+ 70% - 30% - 70% No change 

 

Scenario 2 is the expected choice in Choice 1, whereas Scenario 1 is the expected choice in Choice 2. Choice 

1 was the second task shown to respondents, whereas Choice 2 was the last task in the survey. 

Table C.11 shows the percentage of total respondents that provided the expected answers to the two 

upfront questions and choice tasks. Since each choice task includes two alternatives, the baseline level of 

correct answers we would expect even if respondents were just guessing is 50%. However, the table shows 

that a very high proportion (> 94%) of survey respondents in all groups answered the attention tasks 

correctly. While the questions are designed to be very easy to answer, it does suggest that respondents’ 

answers are consistent with them paying attention to the survey. 

Table C.11 – Responses to the attention check questions and choice tasks, separated by experimental group for 
the U.S. survey. Results reflect the percent of respondents answering as expected out of the total in each 
experimental group. 

 

 Transitivity check 

To test whether respondents are answering in a manner consistent with transitive preferences, we designed 

three tasks in which the choices consisted of different combinations of the same three alternatives. The 
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attribute levels of these three alternatives (referred to as scenarios “A”, “B”, and “C”) are presented in Table 

C.12. 

Table C.12 – Attribute levels for the three transitivity check scenarios. 
 

Scenario A Scenario B Scenario C 

Electricity portfolio Current national mix Renewables Natural gas 

Monthly bill  No change  +10% + 20% 

Climate change related emissions No change - 30%  +70% 

Health related air pollution No change - 30% + 70% 

 

We then present respondents with three choice tasks comprised of combinations of these three scenarios: 

 Choice 1 – Scenario A vs. Scenario B 

 Choice 2 – Scenario B vs. Scenario C 

 Choice 3 – Scenario C vs. Scenario A 

With these three choice tasks, there are eight possible combinations of choices that respondents could make, 

and these combinations are listed in Table C.13. Of these eight, only six are consistent with transitive 

preferences. This implies that even if there is no real pattern driving how respondents are making their 

choices, we would still expect their choices to be consistent with transitive preferences approximately 75% of 

the time. Table C.14 provides the results of the analysis by experimental group, and shows that a very high 

proportion  (96-99%) of respondents provided answers that were consistent with transitive preferences.  

Table C.13 – Possible response combinations to the three transitivity choice tasks. The last column indicates the 
preference order implied by each combination. Two combinations are not consistent with transitive preferences.  

Choice 1 Choice 2 Choice 3 Implied order 

A B A A > B > C 

A B C Intransitive 

A C A A > C > B 

A C C C > A > B 

B B A B > A > C 

B B C B > C > A 

B C C C > B > A 

B C A Intransitive 

 

Table C.14 - Percent of respondents (by experimental group) whose answers to three transitivity check choice 
tasks are consistent with transitive preferences. 

 

We also assessed the number of respondents that correspond to each implied order of transitive 

preferences; these results are shown in Table C.15. From the responses, we can infer that respondents 
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generally tend to prefer scenario B (renewables, slightly higher bills, and emissions reductions) over the other 

two scenarios, although a large number of individuals also preferred scenario A (the baseline scenario). 

Table C.15 – Implied order of preferences based on transitivity tasks. The first column outlines the respondents' 
choices to the three tasks, the second column the number of individuals who selected that combination of 
choices, and the third column the implied preference scenario. 

 
 

 Linearity check  

To test whether respondents are responding in a manner consistent with a linear utility function, we designed 

two tasks in which the scenarios were different but the difference between the two options was the same 

between the two options. Table C.16 presents the attribute levels for the two linearity check choice tasks; 

note that while the levels across the two choices are different, the difference between the two options is 

identical. If respondents have linear preferences, we would expect them to choose either a combination of 

AB or BA across the two choices. This means that if respondents were just randomly making choices, we 

would expect responses consistent with linear preferences approximately 50% of the time. 

Table C.17 displays the percentage of respondents whose responses were consistent with linear 

preferences. The results suggest that while most groups had numbers higher than 50%, some groups had 

lower percentages of individuals with linear preferences. This suggests that there may be additional structure 

to the utility function (such as interaction terms) or that respondents may have nonlinear preferences (e.g. 

treating gains and losses differently in accordance with prospect theory), and that this relationship may 

depend on the information provided in the task. We evaluate some of these implications in other sections of 

the text, and we aim to use future analysis of the data and iterations of this work aim to explore these findings 

further.  
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Table C.16 – Attribute levels for the two linearity check tasks.  
 

Choice 1 Choice 2 
 

Scenario A Scenario B Differenc
e 

Scenario A Scenario B Difference 

Electricity 
portfolio 

Current 
national mix 

Renewables - Renewables Current 
national 
mix 

- 

Health related 
air pollution 

No change - 30% +30% No change + 30% - 30% 

Climate change 
related 
emissions 

No change - 30% +30% No change + 30% - 30% 

Monthly bill No change +10% -10% - 10% -20% +10% 

 

Table C.17 - Percentage of respondents with choices consistent with linear preferences by experimental group. 

 

 

 Convergent validity  

To test the legitimacy of our model results, we also included additional questions asking respondents to rate 

the importance of each of the four attributes on a scale of 1-5. Respondents in groups that did not include 

CO2 or SO2 information were still asked to rate those attributes, and were provided with a brief explanation 

of the unseen attributes. Table C.18 below provides the average rating value for each of the four attributes 

across the four experimental groups. 

Table C.18 – Mean importance rating by attribute and experimental group. 

Group 

Portfolio 

rating Bill rating CO2 rating SO2 rating 

1 3.35 4.11 3.66 3.8 

2 2.98 3.94 3.96 3.92 

3 3.01 3.81 3.71 4.17 

4 3.06 3.64 3.88 4.1 

 

The ratings confirm some of our conclusions from the modeling; for example, respondents in groups with 

emissions information tend to rate the portfolio attribute lower, with a mean rating across Groups 2-4 about 

0.3 less than in Group 1 (p-values for Welch two sample t-test < 0.008). In addition, we observe that 

respondents in groups that receive emissions information tend on average to rate that information as more 
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important compared to groups without that information, supporting the idea that it is beneficial to include 

emissions information in communication efforts. 

Interestingly, respondents tended to rate CO2 as less important than SO2 across most groups even 

though their choices reflected a slight preference for CO2 reductions. These differences were only significant 

at the 5% level for Groups 3 (only SO2 information) and 4 (all four attributes).  

We can model an interaction between individuals’ attribute ratings and the CO2 and SO2 levels to see if 

respondents rating those attributes more highly also have higher preferences for emissions reductions based 

on the model results. Table C.19 below provides the coefficients of these interaction terms for each 

randomized group. More negative coefficients indicate a stronger preference for emissions reductions, so 

these results do indeed suggest that respondents’ stated attribute ratings align with their modeled preferences.  

Table C.19 – Interaction estimates for attribute coefficients and stated rating levels Ratings were on a scale of 1-
5, with 5 being “very important”.  

 
While the interaction terms of emissions with their corresponding attribute ratings (e.g. CO2 rating with 

the CO2 coefficient) are negative and significant, cross-pollutant ratings (e.g. SO2 rating with the CO2 

coefficient) are not significant, suggesting that respondents’ implicit preferences from the choices do match 

their stated ratings but do not spillover across pollutants. However, respondents completed the rating task 

after the choice experiment, so their ratings may also have been influenced by the choices they made (i.e. 

respondents may have felt obligated to rate attributes more highlight to validate their own choices).  

We also assess the strength of respondents’ preferences relative to concern expressed over the issues of 

climate change and air pollution, shown in Table C.20. As with the attribute ratings, we find a similarly strong 

and significant relationship between respondents’ perceived severity of climate change and their preference 

for emissions reductions. We do not, however, observe a similar relationship between preferences for SO2 

reductions and the perceived severity of air pollution. Interestingly, respondents in the survey perceived 

climate change to be more severe than air pollution, with a mean rating of 3.72 vs. 3.37 (difference: 0.3444, p-

value of Welch t-test: 1x10-9).  



 155 

Table C.20 – Interaction estimates for attribute coefficients and stated level of concern for climate change and 
air pollution. Ratings are on a scale of 1-5, with 5 being “very serious”. 

 
 

 Emissions knowledge 

We were also worried about whether participants understood the tasks we were asking of them; namely, to 

distinguish between the effects of CO2 and SO2 as pollutants. To address this concern, after respondents 

completed the choice screens, we asked them to answer the following true/false questions: 

 “Carbon dioxide (CO2) is associated with climate change (e.g. higher global temperatures, more 

intense storms, rising sea levels” 

 “Sulfur dioxide (SO2) is associated with health problems (e.g. heart and lung disease, asthma).” 

We find that 94.8% of respondents answered the CO2 question correctly, 93.4% answered the SO2 

questions correctly, and 88.9% answered both correctly, suggesting that respondents were making the 

associations between emissions and the effect that we would expect. In addition, the percentage of correct 

responses for each question is slightly higher in the groups where information on that emissions was shown 

(Groups 2 and 4 for CO2 and Groups 3 and 4 for SO2). This suggests that while most people were already 

familiar with some of the distinctions between CO2 and SO2, the information we communicate in the survey 

on the contribution of these two pollutants to climate change and air pollution was assimilated. 

Table C.21 – Percentage of respondents answering questions on CO2 and SO2 correctly by experimental group. 
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C.4.2 China Survey 

 Attention checks 

The attention checks consisted of two separate components. First, after respondents completed reading the 

background material and the tutorial, we asked them to identify the following statements as true or false:  

 Portfolio question – “Coal, natural gas, renewables, nuclear, and energy efficiency are all electricity 

sources or reductions considered in this survey.” 

 Bill question – “Assuming the amount of electricity you use does not change, higher electricity prices 

would lower your monthly electricity bill.” 

The correct answers to these questions based on the information presented are “true” and “false.” Table 

C.22shows the percentage of total respondents that provided the expected answers to the two upfront 

questions, illustrating that the success rate on both these questions is very high. 

Table C.22 – Correct responses (count and % of the total sample) to the attention check questions. 

Attention check Count correct (% of total) 

Portfolio question 1058 (99.8%) 

Bill question 1054 (99.4%) 

 

Second, we included two choice tasks that were relatively easy to complete. In these two tasks, both 

alternatives shared the same electricity portfolio while one alternative had lower monthly bill and emissions 

values. The attribute levels of those two choices are provided in Table C.23 below.  

Table C.23 – Attribute levels for the two attention check tasks. 

 Task 1 Task 2 

 Scenario 1 Scenario 2 Scenario 1 Scenario 2 

Electricity 
portfolio 

Current 
provincial mix 

Current 
provincial mix 

Renewables Renewables 

Monthly bill  + 10% - 10% - 20% + 20% 

Climate change 
related emissions + 30% - 70% No change + 30%  

Health related air 
pollution + 70% - 30% - 70% No change 

 

Scenario 2 is the expected choice in Task 1, whereas Scenario 1 is the expected choice in Task 2. Task 1 was 

the second task shown to respondents, whereas Task 2 was the last task in the survey. 

Table C.24 presents the rate at which respondents correctly answered each of the two attention check 

questions. Since each choice has two possible responses, the baseline level of correct answers we would 

expect even if respondents were just guessing is 50%. However, the table shows that a very high proportion 

(typically > 90%) of survey respondents in all groups answered both attention tasks correctly. While the 
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questions are designed to be very easy to answer, it does suggest that respondents’ answers are consistent 

with them paying attention to the survey. 

Table C.24 – Percent (%) of respondents by city of residence who answered each attention check choice task 
correctly. 

City of 
respondent 

Check #1 Check #2 Both checks Total 
respondents 

Beijing 98.0% 97.0% 95.0% 110 

Chengdu 100.0% 99.0% 99.0% 103 

Chongqing 99.0% 96.0% 95.0% 100 

Guangzhou 99.0% 99.0% 98.0% 100 

Harbin 100.0% 100.0% 100.0% 106 

Lanzhou 98.0% 89.0% 88.0% 122 

Shanghai 95.0% 98.0% 94.0% 112 

Urumqi 100.0% 99.0% 99.0% 103 

Xi’an 96.0% 95.0% 92.0% 100 

Yinchuan 97.0% 94.0% 92.0% 104 

 

 Transitivity check 

To test whether respondents are responding in a manner consistent with transitive preferences, we designed 

three tasks in which the choices consistent of different combinations of the same three alternatives. The 

attribute levels of these three alternatives (referred to as scenarios “A”, “B”, and “C”) are presented in Table 

C.12. 

Table C.25 – Attribute levels for the three transitivity check scenarios. 
 

Scenario A Scenario B Scenario C 

Electricity portfolio Balanced mix Renewables Current provincial 
mix 

Monthly bill  No change  +10% + 20% 

Climate change related 
emissions 

No change - 30% +70% 

Health related air pollution No change - 30% + 70% 

 

We then present respondents with three choice tasks comprised of combinations of these three scenarios: 

 Task 1 – Scenario A vs. Scenario B 

 Task 2 – Scenario B vs. Scenario C 

 Task 3 – Scenario C vs. Scenario A 

With these three choice tasks, there are eight possible combinations of choices that respondents could make, 

and these combinations are listed in Table C.13. Of these eight, only six are consistent with transitive 

preferences. This implies that even if there is no real pattern driving how respondents are making their 

choices, we would still expect their choices to be consistent with transitive preferences approximately 75% of 
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the time. For our survey, a very high proportion (98.8%) of respondents provided answers that were 

consistent with transitive preferences, with little variation in success rate by location of respondent.  

Table C.26 – Possible response combinations to the three transitivity choice tasks.The last column indicates the 
preference order implied by each combination. The last two combinations are not consistent with transitive 
preferences.  

Choice 1 Choice 2 Choice 3 Implied order 

A B A A > B > C 

A B C Intransitive 

A C A A > C > B 

A C C C > A > B 

B B A B > A > C 

B B C B > C > A 

B C C C > B > A 

B C A Intransitive 

 

We also assessed the number of respondents that correspond to each implied order of transitive 

preferences; these results are shown in Table C.15. From the responses, we can infer that the overwhelming 

majority of respondents tend to prefer scenario B (renewables, slightly higher bills, and emissions reductions) 

over the other two scenarios. 

Table C.27 – Implied order of preferences based on transitivity tasks. The first column outlines the implied order 
of preferences based on the respondents' choices to the three tasks, while the following indicate the county and % 
of respondents. 

Order Count Percent 

A > B > C 106 10.0% 

A > C > B 9 0.8% 

B > A > C 856 80.8% 

B > C > A 49 4.6% 

C > A > B 17 1.6% 

C > B > A 10 0.9% 

Intransitive 13 1.2% 

 

 Linearity check  

To test whether respondents are responding in a manner consistent with a linear utility function, we designed 

two tasks in which the scenarios were different but the difference between the two options was the same 

between the two options. Table C.16 presents the attribute levels for the two linearity check choice tasks; 

note that while the levels across the two choices are different, the difference between the two options is 

identical. If respondents have linear preferences, we would expect them to choose either a combination of 

AB or BA across the two choices. This means that if respondents were just randomly making choices, we 

would expect responses consistent with linear preferences approximately 50% of the time. 



 159 

Table C.28 - Attribute levels for the two linearity check tasks.  
 

Choice 1 Choice 2 
 

Scenario A Scenario B Difference Scenario A Scenario B Difference 

Electricity 
portfolio 

Balance mix Renewables - Renewables Balance mix - 

Health related air 
pollution 

No change - 30% +30% No change + 30% - 30% 

Climate change 
related emissions 

No change - 30% +30% No change + 30% - 30% 

Monthly bill No change +10% -10% - 10% -20% +10% 

 

We found that 84% of respondents answered these questions in a manner consistent with linear 

preferences; this statistic is slightly lower than response success to the other checks but still relatively high. In 

addition, the high proportion of linear responses for 30% changes in emissions suggests our assumption of a 

linear model for changes of this magnitude is not entirely unreasonable. 

 

 Emissions knowledge check 

After presenting respondents with information explaining the different types of emissions and their effects, 

we include a battery of true/false questions intend to assess whether they made the correct association 

between CO2 and climate change and SO2 and human health. These questions were as follows: 

 Carbon dioxide (CO2) is a main cause of climate change, whose effects could include higher global 

temperatures, more intense storms, higher sea levels. 

 Carbon dioxide (CO2) is a main cause of respiratory health problems, including cardiopulmonary 

disease and asthma. 

 Sulfur dioxide (SO2) is a main cause of climate change, whose effects could include higher global 

temperatures, more intense storms, higher sea levels. 

 Sulfur dioxide (SO2) is a main cause of respiratory health problems, including cardiopulmonary 

disease and asthma. 

These questions came after respondents had completed the choice experiment. Based on the information 

provided in the survey, the answers should be “true”, “false”, “false”, “true” (SO2 in fact can cause global 

cooling, but this effect is largely secondary to the role of CO2).  

Table C.29 shows the count and percent of total respondents (N=1,060) who correctly answered each of 

the emissions-related attention checks. Overall, we see a very high percentage of respondents who correctly 

link CO2 with climate and SO2 with health. A slightly lower (but still relatively high) percentage of 

respondents are also able to discern that CO2 does not have immediate respiratory problems or that SO2 is 

not a main driver of climate change. While some respondents do conflate the effects of SO2 and CO2, the 

responses give us confidence that most respondents are distinguishing between climate and health when 
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making their responses. Of the total respondent pool, 98% correctly associated both CO2 with climate change 

and SO2 with negative health effects, while only 5.6% of respondents incorrectly assumed that both CO2 

caused health problems and that SO2 was a leading greenhouse gas. 

 

 Table C.29 – Count of respondents (N=1,060) who answered true or false for each of the emissions-based 
attention checks, as well as the percent of the total sample answering the question as expected. 

 
True False % accurate 

CO2 associated with climate 1054 6 99.4% 

CO2 associated with health 82 978 92.3% 

SO2 associated with climate 83 977 92.2% 

SO2 associated with health 1045 15 98.6% 

 

 Convergent validity 

At the end of the survey, we asked respondents to rate the importance of each of the attributes (portfolio, 

climate, health, and electricity) when making their choices. We then assess whether individually-estimated 

model coefficients for these attributes correlate with these rankings. Table C.30 provides the results of a 

model interacting these preferences ratings with the coefficients for electricity bill, climate related emissions, 

and health related emissions. Each interaction is a negative estimate, indicating that the higher a respondent 

rated an attribute, the more strongly they opposed increases to that attribute.  

As an illustration, the bill interaction could be interpreted as saying that for every additional point of 

importance a respondent assigned the bill attribute, that respondent’s estimated bill coefficient was -0.696; 

such a more negative coefficient would imply greater aversion to increased bills and larger preference for 

reduced bills. This is consistent with the pattern we would expected, suggesting that our modeled coefficients 

are roughly in line with respondents’ own perceived preferences.  

Table C.30 – Convergent validity interaction estimates. 
 

Coefficient  
(Std. Err.) 

Bill attribute -0.696 *** 
(0.144) 

CO2 attribute -0.321*** 
(0.0856) 

SO2 attribute -0.397*** 
(0.0951) 

              *** = p < 0.001 
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C.5 Additional figures and analysis 

C.5.1 U.S. survey 

 

 

Figure C.7 – Probability of support for alternative electricity portfolios with same cost as baseline.Baseline 
portfolio representing the 2014 U.S. electricity mix. See Figure 2.2 for results with the alternative 20% more 
expense relative to baseline. Probabilities above 0.5 suggest the average respondent would prefer the alternative, 
whereas values below 0.5 imply preference for the baseline; error bars represent 95% CI. 
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Figure C.8 – Probability of support for emissions reductions with no change to portfolio. In this figure, both 
options represent the 2014 U.S. electricity mix, but the alternative has different emissions levels and costs. Panel 
a) shows results when the two portfolios have the same cost, while panel b) shows results where the alternative 
results in a 20% increase in monthly electricity bills. Results are shown for each of the four experimental groups. 
Probabilities above 0.5 suggest the average respondent would prefer the alternative, whereas values below 0.5 
imply preference for the baseline; error bars represent 95% CI. 
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Figure C.9 - Probability of support for an average respondent in experimental Group 4 for different combinations 
of reductions to CO2 and SO2. Results are shown for various portfolio combinations that are 20% more expensive 
in monthly electricity bills relative to the baseline coal alternative. 
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Figure C.10 – Group 4 probability of support for emissions changes for the baseline portfolio. Panel a) shows 
results when the portfolios cost the same, while panel b) shows scenarios where the emissions reductions are 
associated with a 20% increase in monthly bills. Results are shown when either CO2 or SO2 are changed as well 
as when both are changed by equal amounts simultaneously; the positive x-axis reflects emissions reductions 
while negative indicates increased emissions. Probabilities below 0.5 indicate preference for the status quo; error 
bars represent 95% CI of the estimated probabilities. See Figure 2.3 for comparison. 

 

 

Figure C.11 – Group 4 probability of support for emissions changes for the natural gas portfolio. Panel a) shows 
results when the portfolios cost the same, while panel b) shows scenarios where the emissions reductions are 
associated with a 20% increase in monthly bills. Results are shown when either CO2 or SO2 are changed as well 
as when both are changed by equal amounts simultaneously; the positive x-axis reflects emissions reductions 
while negative indicates increased emissions. Probabilities below 0.5 indicate preference for the status quo; error 
bars represent 95% CI of the estimated probabilities. See Figure 2.3 for comparison. 

 

0

25

50

75

100

−40 0 40

Percent reduction in annual emissions

P
ro

b
a

b
il

it
y

 o
f 

s
u

p
p

o
rt

a

0

25

50

75

−40 0 40

Percent reduction in annual emissions

b

Both emissions CO2 only SO2 only

0

25

50

75

100

−40 0 40

Percent reduction in annual emissions

P
ro

b
a

b
il

it
y

 o
f 

s
u

p
p

o
rt

a

0

25

50

75

100

−40 0 40

Percent reduction in annual emissions

b

Both emissions CO2 only SO2 only



 165 

 

Figure C.12 – Group 4 probability of support for emissions changes for the nuclear portfolio. Panel a) shows 
results when the portfolios cost the same, while panel b) shows scenarios where the emissions reductions are 
associated with a 20% increase in monthly bills. Results are shown when either CO2 or SO2 are changed as well 
as when both are changed by equal amounts simultaneously; the positive x-axis reflects emissions reductions 
while negative indicates increased emissions. Probabilities below 0.5 indicate preference for the status quo; error 
bars represent 95% CI of the estimated probabilities. See Figure 2.3 for comparison. 

 

 

Figure C.13 – Group 4 probability of support for emissions changes for the high efficiency portfolio. Panel a) 
shows results when the portfolios cost the same, while panel b) shows scenarios where the emissions reductions 
are associated with a 20% increase in monthly bills. Results are shown when either CO2 or SO2 are changed as 
well as when both are changed by equal amounts simultaneously; the positive x-axis reflects emissions 
reductions while negative indicates increased emissions. Probabilities below 0.5 indicate preference for the 
status quo; error bars represent 95% CI of the estimated probabilities. See Figure 2.3 for comparison. 
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The Federal government, through the Environmental Protection Agency, has proposed regulations 

limiting carbon dioxide (CO2) emission from electricity generation in the United States. Pennsylvania12 

and other states can choose how to meet those limits.  

 

How much additional money (if any) would you be willing to pay on your monthly electricity bill to 

support such a policy? Enter a number as a percentage of your current electricity bill. 

 

The policy alluded to here is the Clean Power Plan, which targets reductions slightly below 30% for CO2 

emissions by 2030. This question was given to respondents at the end of the survey after the choice task had 

been completed. 

In column 1 of the table below we present the mean percentage WTP by experimental group from this 

question, with the WTP estimated from our choice model in column 2 for comparison. 

Table C.31 – Comparison of willingness-to-pay results from a direct stated preference question and from the 
choice modeling. WTP is shown in terms of percent increase in electricity bill for an approximate 30% reduction 
in annual CO2 emissions. While all groups were given the direct WTP question, only groups 2, and 4 received 
information on CO2 during the choice task. 

 WTP from direct 
question 

WTP from choice 
modeling 

Group 1 8% - 

Group 2 10% 22% 

Group 3 9% - 

Group 4 12% 16% 

 

While the results from the direct WTP question are not directly comparable with those from the modeling 

exercise for several reasons (e.g. we do not specify by what percentage the policy would reduce CO2), the 

results from our choice modeling provide WTP values that are on a similar order of magnitude as the directly 

stated results. 

C.5.2 China survey 

 

                                                      
12 The state of the respondent is used here.  



 167 

 

Figure C.14 – Probability of support of an average Chinese respondent for various combinations of changes to 
emissions and alternative portfolios. Different portfolios are shown by panel, while emissions reduction are 
shown on the x-axis as percent change from baseline. Results shown for alternative portfolios that cost the same 
as the baseline. Probabilities are calculated relative to the baseline reference portfolio (i.e. the current energy 
mix of the respondent’s province) with no changes to bills or emissions.  
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Appendix D 

Additional details on AP3 

D.1 Updates from previous models 

AP3 is built from the AP2 model, which has been previously used for a number of policy analyses related 

to air pollution in the U.S. [83], [91], [92]. AP2 employs the approach to estimating the ammonium-sulfate-

nitrate equilibrium embodied in the Climatological Regional Dispersion Model (CRDM) [114]. The 

equilibrium computations reflect several aspects of this system. First, ambient ammonium reacts preferentially 

with sulfate. Second, ammonium nitrate is only able to form if there is excess NH4 after reacting with sulfate. 

To translate VOC emissions into secondary organic particulates, AP2 employs the fractional aerosol yield 

coefficients estimated by Grosjean and Seinfeld [180].  

The source-receptor matrix structure of AP3 remains largely unchanged with respect to AP2. In addition 

to adjustments to analyze the source-receptor matrix of damages and to use more recent emissions, 

population, and mortality rate data, the one area in which substantial changes to the model have been made is 

the translation of ambient gaseous nitrate into ammonium nitrate–a constituent of ambient PM2.5. The 

approach taken in AP2, which was derived directly from CRDM, computed the ammonium-nitrate-sulfate 

equilibrium assuming nitrate formation only occurred (computationally) after the formation of ammonium 

sulfate. This method lead to frequent instances in which ammonium nitrate formation did not occur. In a 

review of reduced-complexity air pollution models, the performance of AP2 in predicting PM2.5 formation 

associated with incremental NOx emissions differed significantly from that of other models reviewed [181].  

The approach adopted in AP3 relies on a polynomial fit of monthly predictions produced by the CAMx 

model. Generally, we regress, using ordinary least squares, particulate nitrate (PNO3) on controls for: free 

ammonium (𝐴), total nitrate (𝑇𝑁), temperature (T), and humidity (H). Separate models are fit to each 

calendar month of predicted concentrations produced by CAMx. Several candidate function forms of the 

regression are tested. Each fit is evaluated according to a battery of model performance criteria. We begin 

with the following specification: 

𝑃𝑁𝑂3,𝑖,𝑚 = 𝛽0 + 𝛽1𝐴𝑖,𝑚 + 𝛽2𝑇𝑁𝑖,𝑚 + 𝛼𝑇𝑖,𝑚 + 𝜃𝐻𝑖,𝑚 + 𝛾(𝑇𝑖,𝑚 × 𝐻𝑖,𝑚) 

where: 𝐴𝑖,𝑚 = (𝑃𝑁𝐻3,𝑖,𝑚 + 𝑁𝐻4𝑖,𝑚,) − 𝜌𝑃𝑆𝑂4,𝑖,𝑚 

          𝑇𝑁𝑖,𝑚 = total ambient nitrate in county (i), month (m) 

 𝑇𝑖,𝑚 = temperature in county (i), month (m), linear and quadratic terms in all specifications                           

𝐻𝑖,𝑚 = humidity in county (i), month (m), linear and quadratic terms in all specifications. 
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Table D.1 displays all the model specifications employed in the performance evaluations. Specifications are 

eliminated if they produce negative pollution concentrations and if they display weak correlations with the 

CAMx predictions and monitoring data. 
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Table D.1 – Model specifications employed in the performance evaluations of the updated nitrate module. 

Model Form Free 
Ammonium 

Total 
Nitrate 

Temperature Humidity  

1 Linear X X X X  
 Quadratic   X X  

 Interaction 
 

  Humidity Temperature  

2 Linear X X X X  

 Quadratic   X X  

 Interaction Total 
Nitrate 

Free 
Ammonium 

Humidity Temperature  

3 Linear X X X X  

 Quadratic X X X X  
 Interaction 

 
  Humidity Temperature  

4 Linear X X X X  

 Quadratic X X X X  
 Interaction Total 

Nitrate 
Free 
Ammonium 

Humidity Temperature  

5 Linear   X X  
 Quadratic   X X  

 Interaction   Humidity Temperature  

 Log X X    

6 Linear   X X  
 Quadratic   X X  

 Interaction Total 
Nitrate 

Free 
Ammonium 

Humidity Temperature  

 Log X X    

7 Linear  X X X  

 Quadratic  X X X  

 Interaction Total 
Nitrate 

Free 
Ammonium 

Humidity Temperature  

 Log X     

8 Linear X  X X  
 Quadratic X  X X  

 Interaction Total 
Nitrate 

Free 
Ammonium 

Humidity Temperature  

 Log  X    

9 Linear X  X X  
 Quadratic X  X X  

 Interaction   Humidity Temperature  

 Log  X    

10 Linear X X X X  

 Quadratic   X X  

 Interaction  Temperature Humidity Temperature  
 Log      

11 Linear X X X X  

 Quadratic   X X  
 Interaction 

Log 
 Free 

Ammonium, 
Temperature 

Humidity Temperature  
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D.2 Regions for analysis 

For parts of the transboundary analysis in Chapter 4, we aggregate counties and states into larger regions; 

these regions are based off of the EPA administrative regions, depicted in Figure D.1 and Table D.2 below. 

 

Figure D.1 – Map of EPA administrative regions that were used for Chapter 4. (source: 
https://www.epa.gov/aboutepa/visiting-regional-office).  

Table D.2 – Mapping of EPA regions to text descriptions. Note that PR, VI, HI, and AK are not included in this 
analysis and our omitted from our regions.  

EPA region 
number 

Description in 
text 

Aggregated region 

1 New England Northeast 

2 NY/NJ Northeast 

3 Mid-Atlantic Northeast 

4 Southeast South 

5 Midwest Midwest 

6 South South 

7 Great Plains Midwest 

8 Mountain Mountain 

9 Southwest West 

10 Northwest West 

  

https://www.epa.gov/aboutepa/visiting-regional-office
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Appendix E 

Additional results from AP3 

E.1 Regression results 

This section provides coefficients for the regression models, along with alternative model specifications, plots 

of the regression residuals, and correlation between the model covariates. Based on the model specified in the 

main text with the following exceptions: substitution of alternative ratio metrics (within county/import and 

within county/export), testing of model with and without county fixed effects, and use of median income as 

an alternative to percentage under poverty the poverty line.  
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Table E.1 – OLS regression results for logged export/import ratio.  
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Table E.2 - OLS regression results for logged self-inflicted/export ratio. 
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Table E.3 - OLS regression results for logged self-inflicted/import ratio. 
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Figure E.1 – Plot of jackknife regression residuals for regressions on log of export/import, self-inflicted/import, 
and self-inflicted/export ratios. The top row shows residuals for models with county fixed effects, while the 
second row shows residuals for the models without county fixed effects. Residual distribution should be 
approximately normal. 
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Figure E.2 – Correlation between regression covariates.  
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E.2 Additional damage maps 

 

 

Figure E.3 – Change in annual, per capita health damages by county from all emissions sources from 2008 to 
2011 (panel A) and from 2011 to 2014 (panel B). Results are shown in $2014 per person. Map represents location 
where health damages are incurred. See Figure 4.8 in the main text for damages from 2008 to 2014.  
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Figure E.4 – Change in absolute, annual health damages by county between 2008 and 2014 from all emissions 
sources (in million $2014). Map represents location where health damages are incurred. 

 

 

Figure E.5 – Change in annual health damages by county between 2008 and 2014 from point sources  
(in million $2014). Map represents location where health damages are incurred. 
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Figure E.6 – Change in annual, per capita health damages by county between 2008 and 2014 when using land-
use regression PM2.5 concentration estimates. Map represents location where health damages are incurred. 
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E.3 Additional transfer tables 

 

Figure E.7 – Share of mortality by EPA region from all sources of air pollution in 2011.The numbers in the matrix 
indicate the percent of annual deaths in a region that are attributable to the region in each row (with columns 
summing to 100%). Annual deaths caused by a region are summed by row, while annual deaths incurred by a 
region are summed by column; mortalities are shown to 2 significant figures. Analogous to Figure 4.12 in Section 
4.3.2 above.   
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Figure E.8 – Share of mortality by EPA region from all sources of air pollution in 2008 (A), 2011 (B), and 2014 
(C).Comparable to Figure 4.12 in the main text, but with the numbers in each cell illustrating the absolute 
number of death (in hundreds of deaths) estimated occurring in the region specified by the column and caused 
by the region specified in the row. Row sums indicate total deaths caused by a region, while columns sums 
indicate totals deaths incurred in a region (both in hundreds of deaths). 
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Figure E.9 – Share of mortality by state from all sources of air pollution in 2014.The numbers in the matrix 
indicate the percent of annual deaths in a state that are attributable to the state in each row (with columns 
summing to 100%). Annual deaths caused by a state are summed by row, while annual deaths incurred by a state 
are summed by column; mortalities are shown to 2 significant figures. Shares of damages less than 0.5 between 
any two states are omitted for clarity. 
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E.4 Additional ratio results 

Table E.4 – Summary statistics for county level export, import, and self-inflicted damages, as well as net imports 
(imports – exports). All values are in millions $2014.  

 Exports  Imports  

 2008 2011 2014 2008 2011 2014 

Min. 5.42 4.16 4.7 0.0917 0.0375 0.0846 

1st Qu. 59 64 59.9 38.4 36.3 32.5 

Median 115 122 114 96 90.9 81.3 

Mean 305 267 259 312 271 262 

3rd Qu. 260 255 238 239 216 200 

Max. 11700 7620 8940 25900 20600 20500 

 Self-inflicted Net Imports 

 2008 2011 2014 2008 2011 2014 

Min. 0.0106 0.00468 0.00965 -7600 -6000 -6100 

1st Qu. 3.95 4.38 3.96 -57 -67 -63 

Median 11.4 12.3 11.2 -16 -24 -23 

Mean 106 90.5 94.9 7.5 4.4 2.9 

3rd Qu. 34.9 35.9 33 41 20 16 

Max. 40800 26300 30000 21000 16000 16000 
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Table E.5 – Summary statistics for ratio metrics. 

 Export/Import Self-inflicted/Import 

 2008 2011 2014 2008 2011 2014 

Min. 0.0955 0.0829 0.0847 0.0001 0.0001 0.0001 

1st Qu. 0.727 0.834 0.879 0.0884 0.104 0.106 

Median 1.28 1.42 1.46 0.128 0.144 0.142 

Mean 2.71 2.92 3.01 0.168 0.182 0.183 

3rd Qu. 2.49 2.65 2.75 0.191 0.206 0.202 

Max. 235 709 389 7.86 6.51 6.48 

Pop. weighted mean 1.13 1.12 1.16 0.647 0.599 0.61 

 Self-inflicted /Export 

 2008 2011 2014 

Min. 0.0005 0.0002 0.0004 

1st Qu. 0.0503 0.0513 0.0499 

Median 0.0946 0.0954 0.0937 

Mean 0.181 0.187 0.187 

3rd Qu. 0.169 0.174 0.173 

Max. 12.2 11.4 11.4 

Pop. weighted mean 1.01 1.02 1.05 

 

 

Figure E.10 – Cumulative density functions (CDFs) for each of the three ratios. Each color represents the CDF 
for a different region, while solid lines represent 2008 and dashed lines 2014.  

 

 

 

 

 

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Exports / Imports

Ratio

C
D

F

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Self−inflicted / Imports

Ratio

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Self−inflicted / Exports

Ratio

New England

NY/NJ

Mid−Atlantic

Southeast

Midwest

South

Great Plains

Mountain

Southwest

Northwest

2008 2014



 186 

 

 

 

 

Figure E.11 – Export / import ratio (a), self-inflicted / import ratio (b) and self-inflicted / export ratio (c) by 
county, with column 1 showing values for 2008 and column 2 showing values for 2014.  
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Appendix F 

Climate and health co-optimization 

F.1 Details on CEMS data  

We use 2017 data on the fossil fuel fleet from the EPA’s CEMS dataset.13 Table F.1 and Table F.2 provide 

summaries of some of the relevant parameters for our analysis. 

Table F.1 – Details on CEMS unit-level data, aggregated by primary fuel and unit type.Table provides total 
number of units, total annual generation (in TWh), annual CO2 emissions (million tons), and annual SO2 and 
NOx emissions (thousand tons).  

 
 

                                                      
13 CEMS is available for download from the EPA’s Clean Air Markets Program at https://ampd.epa.gov/ampd/.  

https://ampd.epa.gov/ampd/
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Table F.2 – Number of units with missing values for key parameters in the 2017 CEMS data. 

 
For our analysis, we employ estimates of unit-level, average emission rates take from annual emissions and 

generation totals. This approach can lead to very high or infinite emissions rates for units with implausibly 

low or missing generation data. To correct this, we used a regression on CO2 rates by fuel and unit type to 

impute missing generation data where possible, shown in Figure F.1. Remaining units with missing data or 

implausible emissions rates were dropped from the analysis. 

 

 

Figure F.1 – Relationship between annual CO2 emissions and electricity generation for 2017 CEMS data.Plot 
illustrates roughly linear relationship based on fuel and unit type data used to interpolate generation values for 
missing data.  
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F.2 Model formulation 

The python code implementing the model below is open-source and available at https://osf.io/jf35x/.  

 

 

 

https://osf.io/jf35x/
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