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Abstract—We examine the behavior of a strategic firm that
invests-in and operates wind, energy storage, and transmission.
The capacity of the energy storage and transmission are co-
optimized with the firm’s wind-supply and energy-storage offers
into a centrally dispatched electricity market. We employ a bi-
level stochastic optimization model. The upper level determines
the capacities and offering strategies to maximize the firm’s
expected profits. Multiple lower-level problems represent market

clearing under different operating conditions, which capture
uncertainties. The resulting large-scale optimization model is
solved using multi-cut Benders’s decomposition. The model is
applied to a case study that is based on Alberta’s electricity
market.
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NOMENCLATURE

Indices and Sets

d index of demands in set, D

g index of generators in set, G

h index of hours in set, H

ι, i indices of Benders’s-decomposition iterations in

set, I
s index of scenarios in set, S

w index of weeks in set, W

τ index of transmission types in set, T

Parameters and Constants

Cch annualized capital cost of charging power capacity

of energy storage ($/MW-yr)

Cdis annualized capital cost of discharging power capac-

ity of energy storage ($/MW-yr)

CE annualized capital cost of energy-carrying capacity

of energy storage ($/MWh-yr)

C tr
τ annualized capital cost of type-τ transmission line

($/yr)

e0 initial state of energy (SOE) of energy storage at

the beginning of each week (MWh)

Ēch maximum possible charging power capacity of en-

ergy storage (MW)
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Ēdis maximum possible discharging power capacity of

energy storage (MW)

ĒE maximum possible energy-carrying capacity of en-

ergy storage (MWh)

Og,w,h,s scenario-s offer price of generator g during hour h

of week w ($/MWh)

P̄d,w,h,s maximum scenario-s consumption of demand d

during hour h of week w (MW)

P̄g generating capacity of generator g (MW)

Pwind
w,h,s scenario-s wind power available during hour h of

week w (MW)

Ud,w,h bid price of demand d during hour h of week w

($/MWh)

β round-trip efficiency of energy storage (p.u.)

γ required SOE of energy storage at the end of each

week (p.u.)

θτ capacity of type-τ transmission line (MW)

ρmax maximum power-to-energy ratio of the energy stor-

age (h−1)

ρmin minimum power-to-energy ratio of the energy stor-

age (h−1)

φs probability of scenario s occurring

χch cost of operating energy storage in charging mode

($/MWh)

χdis cost of operating energy storage in discharging

mode ($/MWh)

χwind cost of wind production ($/MWh)

Upper-Level Variables

bτ binary variable that equals 1 if type-τ transmission

line is built and equals 0 otherwise

Ech installed charging power capacity of energy storage

(MW)

Edis installed discharging power capacity of energy stor-

age (MW)

EE installed energy capacity of energy storage (MWh)

ew,h,s ending hour-h SOE of energy storage in week w

of scenario s (MWh)

odis
w,h,s scenario-s offer price of discharging energy storage

during hour h of week w ($/MWh)

o
grid,ch
w,h,s scenario-s offer price of charging energy storage

during hour h of week w ($/MWh)

owind
w,h,s scenario-s offer price of wind generator during

hour h of week w ($/MWh)

pch
w,h,s scenario-s curtailed wind production that is stored

during hour h of week w (MW)
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p̄dis
w,h,s scenario-s discharging capacity of energy storage

that is offered during hour h of week w (MW)

p̄
grid,ch
w,h,s scenario-s charging capacity of energy storage that

is offered during hour h of week w (MW)

p̄wind
w,h,s scenario-s quantity of wind generation that is of-

fered during hour h of week w (MW)

Lower-Level Variables

pd,w,h,s scenario-s consumption by demand d during hour h

of week w that clears the market (MW)

pg,w,h,s scenario-s production from generator g during

hour h of week w that clears the market (MW)

pdis
w,h,s scenario-s energy-storage discharging during

hour h of week w that clears the market (MW)

p
grid,ch
w,h,s scenario-s energy-storage charging during hour h

of week w that clears the market (MW)

pwind,clrd
w,h,s scenario-s wind production during hour h of

week w that clears the market (MW)

I. INTRODUCTION

FAVORABLE regulatory policies and technology-cost re-

ductions are giving rise to increased wind-generation

penetrations [1]–[3]. Increased wind penetrations can impose

pecuniary externalities, because wind generation can sup-

press wholesale electricity prices. Moreover, wind’s price-

suppression effect is concentrated during periods of high wind

availability [4]. Coupling energy storage with wind can help to

mitigate this price suppression [5] and can reduce the need for

transmission capacity to deliver wind generation to load [6].

However, energy storage is costly, meaning that investments

must be co-optimized with transmission sizing and how wind

and energy storage are offered into the market to maximize

return on investments [7].
Most works that examine the coupling of wind and energy

storage assume price-taking behavior. Dicarto et al. [8] use

a dynamic-optimization approach to size and dispatch wind-

integrated batteries. Their approach utilizes wind forecasts to

match generation profiles and energy storage better. They show

that high-capacity energy storage allows improved market

performance while complying with the dispatch schedule.

However, they do not investigate strategic behavior on the

part of the hybrid wind/battery firm. Moreover, they do not

examine the benefits of sizing strategically the transmission

interconnector for the hybrid facility. Bludszuweit et al. [9]

develop a probabilistic method to determine the power and

energy capacity of a hybrid system consisting of wind and

energy storage. They assume price-taking behavior by the

firm and focus on the role of energy storage in reducing

wind-forecast errors. Wang et al. [10] develop a model to

optimize the size of batteries that are used to buffer the output

of wind generators. Their model determines the size of a

battery system for a given wind profile, as opposed to taking

more explicit account of stochastic wind-availability profiles.

Yao et al. [11] develop control strategies to size batteries to

improve the dispatchability of wind generators. Their method

uses long-term historical wind data. Li et al. [12] develop a

performance matrix that determines the size of a battery to

optimize the dispatch schedule of a hybrid system consisting

of the battery and wind generators. Their methodology takes

account of battery cost, life, and degradation and long-term

historical wind-condition data. Luo et al. [13] consider errors

in forecasting wind availability to size energy storage. Haessig

et al. [14] account for auto-correlated errors in day-ahead

forecasts of wind availability using a data-fitted auto-regressive

model. Zhang et al. [15] use a unit-commitment model to

determine how to size energy storage that is coupled with

wind. Generation costs and wind curtailment are evaluated

for different energy-storage capacities. Le et al. [16] solve an

optimization problem to determine the size of wind-coupled

energy storage while considering social welfare, voltage sta-

bility and total cost of grid-supplied energy. Brekken et al.

[17] examine the impacts of control schemes on the optimal

sizing of energy storage that is coupled with wind generation.

A gap in these works is that they do not allow energy

storage to behave strategically to influence market price. This

can be contrasted with price-making models, wherein agents

are assumed to behave strategically. There are a few price-

making models in the existing literature that are applied

to the operation and planning of wind and energy storage.

Wogrin et al. [18] investigate strategic generation investment

of conventional generation technology using a bi-level model.

They show that strategic behavior can influence investment

of one technology over another. Bludszuweit et al. [19] use a

probabilistic method to size energy storage that is coupled with

wind generation for a price-making entity. Sioshansi [5], [20]

investigates the interplay of strategic wind and energy storage

in a market environment, but does not consider planning.

Zugno et al. [21] model the participation of a strategic wind

generator in a two-settlement market. However, they do not

propose a framework to optimize investments in energy storage

and transmission for the wind generator. Nasrolahpour et al.

[22] propose a bi-level model to determine the size of stand-

alone energy storage assuming strategic behavior.

To our knowledge there are no works that examine in-

vestment and operation of price-making wind, transmission,

and energy storage in a co-optimized fashion. We fill this

gap by proposing a stochastic bi-level model of such a

problem. Specifically, the lower level represents the clearing of

the electricity market under different scenarios that represent

uncertainties (e.g., wind and load patterns, load growth, or

the offers of rival generators). The upper level represents the

three sets of strategic decisions for the owner of the wind,

transmission, and energy storage. The firm decides how to size

the energy storage that is co-located with its wind generator

and the radial transmission line that connects the wind and

energy storage to the power system. Moreover, the firm decides

how to offer its wind generation and energy storage into the

market (which clears in the lower level). Finally, the firm

decides whether to store any curtailed wind energy. Due to

the potentially large number of scenarios, our model can be

large and computationally intractable. We address this using

multi-cut Benders’s decomposition [23]. Such a decomposition

algorithm is not applied in related works that are in the extant

literature. We apply our model to an example and a case study.

We derive insights regarding the impact of market power and

strategic price-making behavior on investment decisions in



BHATTACHARJEE ET AL.: BENEFITS OF STRATEGICALLY SIZING WIND-INTEGRATED ENERGY STORAGE AND TRANSMISSION 3

energy storage and transmission.

Thus, our work makes three major contributions to the

existing literature. First, we propose a co-optimization frame-

work to determine the size of energy storage that is coupled

with a wind generator and the capacity of the transmission

connector that connects the hybrid wind/energy-storage facility

to the electricity grid. The proposed optimization is carried

out from the perspective of a private investor. One important

contribution of our model is that we take a price-making

perspective, which allows strategic behavior by the private

investor, unlike other works that assume price-taking behavior

[8]–[17], [19]. Second, unlike other works that consider strate-

gic price-making behavior of stand-alone wind generation

or energy storage [5], [18], [20]–[22], we consider strategic

behavior on the part of a hybrid resource that must size energy

storage and a transmission interconnector with the grid. Third,

we take explicit account of uncertainty in our model, unlike

other works that employ deterministic approaches [8]–[17],

[19].

The remainder of this paper is organized as follows. Sec-

tions II and III provide model formulations and our solution

algorithm, respectively. Sections IV and V provide example

and case-study results, respectively. Section VI concludes.

II. MODEL FORMULATION

We model the case of an existing wind generator (i.e., the

capital cost of the generator is sunk) that connects to the

power system using a radial transmission line that must be

built. The firm can build energy storage that is co-located

with the wind plant. After these investments are decided, the

firm determines price/quantity offers for its wind production

and energy storage into a market that is cleared by a market

operator in different time periods and scenarios. The firm

can submit scenario-dependent offers, whereas the investment

decisions are scenario-invariant and made under uncertainty.

The market operator’s problem is the lower-level model that

is embedded within the firm’s optimization. We assume strate-

gic price-making behavior on the part of the firm that is being

modeled. Thus, the market operator’s problem is integrated

as the lower level of the bi-level formulation. This lower-level

model is incorporated so that the impact of the firm’s behavior

on market prices can be captured endogenously, taking into

account load and wind-production data and supply offers and

demand bids from other market participants. In principle, load

and wind-production data and offers and bids can be estimated

in any way. In our case study, we use historical data to calibrate

these. After the market clears in each scenario, the firm has

the option to store curtailed wind energy that does not clear

the market (subject to the capacity of its energy storage), in

addition to energy-storage charging that clears the market.

We proceed in this section by providing the formulation

and optimality conditions of the lower-level market operator’s

problem and the formulation of the wind generator’s problem.

A. Market Operator’s Model

The market operator clears each hour of each scenario

independently. Thus, we assume that the wind generator must

manage the SOE of its energy storage. The market operator’s

model in hour h of week w of scenario s is formulated as:

min
ΩL

w,h,s

∑

g∈G

Og,w,h,spg,w,h,s − o
grid,ch
w,h,sp

grid,ch
w,h,s + odis

w,h,sp
dis
w,h,s

+ owind
w,h,sp

wind,clrd
w,h,s −

∑

d∈D

Ud,w,hpd,w,h,s (1)

s.t. pdis
w,h,s − p

grid,ch
w,h,s + pwind,clrd

w,h,s +
∑

g∈G

pg,w,h,s (2)

=
∑

d∈D

pd,w,h,s; (λw,h,s)

0 ≤ pg,w,h,s ≤ P̄g; ∀g ∈ G (µ1,min
g,w,h,s, µ

1,max
g,w,h,s) (3)

0 ≤ pd,w,h,s ≤ P̄d,w,h,s; ∀d ∈ D (4)

(µ2,min
d,w,h,s, µ

2,max
d,w,h,s)

0 ≤ pwind,clrd
w,h,s ≤ p̄wind

w,h,s; (µ3,min
w,h,s, µ

3,max
w,h,s ) (5)

0 ≤ pdis
w,h,s ≤ p̄

dis
w,h,s; (µ4,min

w,h,s, µ
4,max
w,h,s ) (6)

0 ≤ pgrid,ch
w,h,s ≤ p̄

grid,ch
w,h,s; (µ5,min

w,h,s , µ
5,max
w,h,s ) (7)

−
∑

τ∈T

θτ bτ ≤ p
wind,clrd
w,h,s + pdis

w,h,s − p
grid,ch
w,h,s (8)

≤
∑

τ∈T

θτbτ ; (µ6,min
w,h,s, µ

6,max
w,h,s )

where the Lagrange multiplier that is associated with each

constraint appears in parentheses to its right, we have:

ΩL
w,h,s =

{

pd,w,h,s, ∀d ∈ D; pg,w,h,s, ∀g ∈ G;

pdis
w,h,s; p

grid,ch
w,h,s; p

wind,clrd
w,h,s

}

;

and the Lagrange multiplier set is:

Ξw,h,s =
{

λw,h,s;µ
1,min
g,w,h,s, µ

1,max
g,w,h,s, ∀g ∈ G;µ

2,min
d,w,h,s,

µ
2,max
d,w,h,s, ∀d ∈ D;µ3,min

w,h,s;µ
3,max
w,h,s ;µ

4,min
w,h,s;µ

4,max
w,h,s ;

µ
5,min
w,h,s;µ

5,max
w,h,s ;µ

6,min
w,h,s;µ

6,max
w,h,s

}

.

Objective function (1) maximizes the social welfare that

is engendered by the market. Constraint (2) enforces load

balance, by ensuring that demand and supply are equal exactly.

Constraint sets (3)–(8) enforce capacity constraints on the

dispatch of generators, loads, wind, discharging and charging

of energy storage, and transmission, respectively. The model

captures only the capacity of the radial transmission line

that connects the wind generator to the power system. The

remaining balance of the system is modeled as a market

pool, with no transmission constraints. This dichotomy in the

treatment of transmission constraints is due to the focus of

our work, which is (in part) to examine the tradeoff between

building transmission and energy storage for purposes of wind

integration. Other transmission constraints could be added to

our model, but would not have salient impacts on our analysis.

B. Optimality Conditions of Market Operator’s Model

The market operator’s model is linear and its constraints

satisfy the Slater condition. As such, an optimal solution to the

market operator’s model can be characterized by its necessary
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and sufficient Karush-Kuhn-Tucker (KKT) conditions [24],

[25]. The KKT conditions of the market operator’s model in

hour h of week w of scenario s are (2) and:

Og,w,h,s − λw,h,s + µ
1,max
g,w,h,s − µ

1,min
g,w,h,s = 0; ∀g ∈ G (9)

− Ud,w,h + λw,h,s + µ
2,max
d,w,h,s − µ

2,min
d,w,h,s = 0; ∀d ∈ D (10)

owind
w,h,s − λw,h,s + µ

3,max
w,h,s − µ

3,min
w,h,s + µ

6,max
w,h,s (11)

− µ6,min
w,h,s = 0;

odis
w,h,s − λw,h,s + µ

4,max
w,h,s − µ

4,min
w,h,s + µ

6,max
w,h,s (12)

− µ6,min
w,h,s = 0;

− ogrid,ch
w,h,s + λw,h,s + µ

5,max
w,h,s − µ

5,min
w,h,s − µ

6,max
w,h,s (13)

+ µ
6,min
w,h,s = 0

0 ≤ pg,w,h,s ⊥ µ
1,min
g,w,h,s ≥ 0; ∀g ∈ G (14)

pg,w,h,s ≤ P̄g ⊥ µ
1,max
g,w,h,s ≥ 0; ∀g ∈ G (15)

0 ≤ pd,w,h,s ⊥ µ
2,min
d,w,h,s ≥ 0; ∀d ∈ D (16)

pd,w,h,s ≤ P̄d,w,h,s ⊥ µ
2,max
d,w,h,s ≥ 0; ∀d ∈ D (17)

0 ≤ pwind,clrd
w,h,s ⊥ µ3,min

w,h,s ≥ 0; (18)

pwind,clrd
w,h,s ≤ p̄wind

w,h,s ⊥ µ
3,max
w,h,s ≥ 0; (19)

0 ≤ pdis
w,h,s ⊥ µ

4,min
w,h,s ≥ 0; (20)

pdis
w,h,s ≤ p̄

dis
w,h,s ⊥ µ

4,max
w,h,s ≥ 0; (21)

0 ≤ pgrid,ch
w,h,s ⊥ µ

5,min
w,h,s ≥ 0; (22)

p
grid,ch
w,h,s ≤ p̄

grid,ch
w,h,s ⊥ µ

5,max
w,h,s ≥ 0; (23)

−
∑

τ∈T

θτbτ ≤ p
wind,clrd
w,h,s + pdis

w,h,s − p
grid,ch
w,h,s (24)

⊥ µ6,min
w,h,s ≥ 0;

pwind,clrd
w,h,s + pdis

w,h,s − p
grid,ch
w,h,s ≤

∑

τ∈T

θτ bτ ⊥ µ
6,max
w,h,s ≥ 0. (25)

Conditions (9)–(13) and (14)–(25) are stationarity and

complementary-slackness requirements, respectively.

C. Wind Generator’s Problem

The wind generator’s problem is:

max
ΩU∪ΩL

∑

s∈S,w∈W,h∈H

[(

pwind,clrd
w,h,s + pdis

w,h,s − p
grid,ch
w,h,s

)

λw,h,s

− χwindpwind,clrd
w,h,s −

(

pch
w,h,s + p

grid,ch
w,h,s

)

χch

−χdispdis
w,h,s

]

φs −
∑

τ∈T

C tr
τ bτ − C

EEE − CchEch

− CdisEdis (26)

s.t.
∑

τ∈T

bτ = 1 (27)

bτ ∈ {0, 1}; ∀τ ∈ T (28)

0 ≤ Edis ≤ Ēdis; (29)

0 ≤ Ech ≤ Ēch; (30)

0 ≤ EE ≤ ĒE ; (31)

ρminEE ≤ Ech ≤ ρmaxEE ; (32)

ρminEE ≤ Edis ≤ ρmaxEE ; (33)

0 ≤ p̄dis
w,h,s ≤ E

dis; ∀s ∈ S,w ∈W,h ∈ H (34)

0 ≤ pch
w,h,s + p̄

grid,ch
w,h,s ≤ E

ch; (35)

∀s ∈ S,w ∈W,h ∈ H

0 ≤ p̄wind
w,h,s ≤ P

wind
w,h,s; ∀s ∈ S,w ∈ W,h ∈ H (36)

odis
w,h,s, o

grid,ch
w,h,s, o

wind
w,h,s ≥ 0; (37)

∀s ∈ S,w ∈W,h ∈ H

pch
w,h,s ≤ P

wind
w,h,s − p

wind,clrd
w,h,s ; (38)

∀s ∈ S,w ∈W,h ∈ H

ew,1,s = e0 + β · (pch
w,1,s + p

grid,ch
w,1,s )− p

dis
w,1,s; (39)

∀s ∈ S,w ∈W

ew,h,s = ew,t−1,s + β · (pch
w,h,s + p

grid,ch
w,h,s) (40)

− pdis
w,h,s; ∀s ∈ S,w ∈ W,h ∈ H,h > 1

ew,|H|,s = γe0; ∀s ∈ S,w ∈ W (41)

0 ≤ ew,h,s ≤ E
E ; ∀s ∈ S,w ∈W,h ∈ H (42)

(1)–(8); ∀s ∈ S,w ∈W,h ∈ H (43)

where:

ΩU =
{

b1, . . . , b|T |, E
ch, Edis, EE

}

∪
{

ew,h,s, o
dis
w,h,s,

o
grid,ch
w,h,s , o

wind
w,h,s, p

ch
w,h,s, p̄

dis
w,h,s, p̄

grid,ch
w,h,s, p̄

wind
w,h,s;

∀s ∈ S,w ∈ W,h ∈ H
}

;

and:

ΩL =
⋃

s∈S,w∈W,h∈H

ΩL
w,h,s

Objective function (26) computes the expected annualized

profit of the wind generator. The final four terms in (26) give

the cost of building the radial transmission line and energy

storage. The remaining terms give the expected operating

profit. The Lagrange multiplier, λw,h,s, that is associated

with (2) is used as the market-clearing price for settling energy

transactions between the wind generator and market operator.

The model has four sets of constraints. The first, (27)–

(33), imposes restrictions on the capacity investments. Con-

straints (27) and (28) force the wind generator to select

exactly one type for the radial transmission line. The remainder

of (29)–(33) impose resource and power-to-energy-ratio limits

on the size of the energy storage.

The second set of constraints imposes physical and market-

rule restrictions on the offers. Specifically, (34)–(36) impose

the corresponding component capacities on the amount of

discharging and charging power from the energy storage and

the amount of wind power that are offered into the market.

Constraints (37) require non-negative offer prices.

The third set of constraints imposes physical limits on the

operation of the wind and energy storage. Constraints (38)

limit the amount of additional energy-storage charging (be-

yond the amount that clears in the market) to be no greater

than curtailed wind production. This additional charging is a

‘private transaction’ between the wind generator and its own

energy storage. Thus, the market-clearing price (λw,h,s) does

not accrue to this charging in (26). Constraints (39)–(41) define

the evolution of the SOE of the energy storage over the hours
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of each week and (42) ensure that the SOE does not exceed

the energy-carrying capability of the energy storage.

Finally, (43) embeds the market operator’s problems as

lower-level problems within the wind generator’s optimization.

III. SOLUTION METHOD

We address the computational intractability of bi-level

stochastic mixed-integer optimization problem (26)–(43) in

two ways. First, we replace the lower-level problems in (43)

with their necessary and sufficient KKT conditions, which

yields a single-level stochastic mathematical program with

equilibrium conditions (MPEC). Then, we apply multi-cut

Benders’s decomposition.

A. Conversion From Bi-Level to Single-Level Problem

Because the Slater condition applies to (1)–(8), (43) can be

replaced in the wind generator’s problem with (2), (9)–(25),

∀s ∈ S,w ∈ W,h ∈ H . This yields a single-level stochastic

MPEC [26].

B. Multi-Cut Benders’s Decomposition

We employ multi-cut Benders’s decomposition to solve the

simplified problem that is obtained in Section III-A. In doing

so, we treat the investment decisions (i.e., b1, . . . , b|T |, E
ch,

Edis, and EE) as the complicating variables that are optimized

in the master problem. A set of sub problems, each of which

corresponds to a second-stage scenario, are obtained by fixing

the investment variables and optimizing with respect to the

remaining variables. Each sub problem provides an optimality

cut to add to the master problem (feasibility cuts do not need

to be added, as it is feasible to set the offer quantities and

dispatch of the wind and energy storage to zero for any set of

investments), which gives us multiple cuts per iteration of the

algorithm and speeds convergence [27].

We proceed by providing formulations of the sub and master

problems. Then we discuss some technical issues related to

simplifying the sub problems and separating optimality cuts.

Finally, we provide pseudocode of the solution algorithm.
1) Sub Problems: The scenario-s sub problem is:

max
Ωs

∑

w∈W,h∈H

[(

pwind,clrd
w,h,s + pdis

w,h,s − p
grid,ch
w,h,s

)

λw,h,s (44)

−χwindpwind,clrd
w,h,s −

(

pch
w,h,s + p

grid,ch
w,h,s

)

χch − χdispdis
w,h,s

]

s.t. (2), (9)–(25); ∀w ∈W,h ∈ H (45)

0 ≤ p̄dis
w,h,s ≤ E

dis; ∀w ∈ W,h ∈ H (46)

0 ≤ pch
w,h,s + p̄

grid,ch
w,h,s ≤ E

ch; ∀w ∈W,h ∈ H (47)

0 ≤ p̄wind
w,h,s ≤ P

wind
w,h,s; ∀w ∈W,h ∈ H (48)

odis
w,h,s, o

grid,ch
w,h,s , o

wind
w,h,s ≥ 0; ∀w ∈W,h ∈ H (49)

pch
w,h,s ≤ P

wind
w,h,s − p

wind,clrd
w,h,s ; ∀w ∈ W,h ∈ H (50)

ew,1,s = e0 + β · (pch
w,1,s + p

grid,ch
w,1,s )− p

dis
w,1,s; (51)

∀w ∈ W

ew,h,s = ew,t−1,s + β · (pch
w,h,s + p

grid,ch
w,h,s) (52)

− pdis
w,h,s; ∀w ∈W,h ∈ H,h > 1

ew,|H|,s = γe0; ∀w ∈W (53)

0 ≤ ew,h,s ≤ E
E ; ∀w ∈ W,h ∈ H (54)

bτ = b̃τ ; ∀τ ∈ T (σs,τ ) (55)

Ech = Ẽch; (σch
s ) (56)

Edis = Ẽdis; (σdis
s ) (57)

EE = ẼE ; (σE
s ) (58)

where:

Ωs =
⋃

w∈W,h∈H

Ξw,h,s ∪
{

ew,h,s, o
dis
w,h,s, o

grid,ch
w,h,s, o

wind
w,h,s,

pch
w,h,s, p̄

dis
w,h,s, p̄

grid,ch
w,h,s, p̄

wind
w,h,s, ∀w ∈ W,h ∈ H ;

}

.

Objective function (44) computes the scenario-s operating

profit of the wind generator. Constraints (45) impose the KKT

conditions of the market operator’s scenario-s problems. Con-

straints (46)–(54) impose the wind firm’s scenario-s operating-

stage constraints. Finally, (55)–(58) fix the investment de-

cisions based on values that are obtained from solving the

master problem. The terms with tildes on the right-hand sides

of (55)–(58) denote parameters that hold these fixed values.

Dual variables that are associated with (55)–(58), and which

are used to separate optimality cuts, appear in parentheses to

the right of these constraints.

2) Master Problem: The master problem is formulated as:

max
ΩM

−
∑

τ∈T

C tr
τ bτ − C

EEE − CchEch − CdisEdis (59)

+
∑

s∈S

φsαs

s.t. (27)–(33) (60)

αs ≥ φs ·







∑

w∈W,h∈H

[(

p̃
wind,clrd,(ι)
w,h,s + p̃

dis,(ι)
w,h,s (61)

−p̃
grid,ch,(ι)
w,h,s

)

λ̃
(ι)
w,h,s − χ

windp̃
wind,clrd,(ι)
w,h,s

−
(

p̃
ch,(ι)
w,h,s + p̃

grid,ch,(ι)
w,h,s

)

χch − χdisp̃
dis,(ι)
w,h,s

]

+
∑

τ∈T

(

bτ − b̃
(ι)
τ

)

σ̃(ι)
s,τ +

(

Ech − Ẽch,(ι)
)

σ̃ch,(ι)
s

+
(

Edis − Ẽdis,(ι)
)

σ̃dis,(ι)
s

+
(

EE − ẼE,(ι)
)

σ̃E,(ι)
s







; ∀ι ∈ I

where:

ΩM =
{

b1, . . . , b|T |, E
ch, Edis, EE , α1, . . . , α|S|

}

.

The first four terms in (59) compute the direct cost of the

investment decisions. The final term represents the resultant

operating profit that is estimated in the master problem. More

specifically, αs represents the estimated scenario-s operating

profit. Constraint (60) imposes the constraints in (26)–(43) that

pertain directly to the investments. Finally, (61) are optimality

cuts, which are added at each iteration of the algorithm.

Terms in these constraints with tildes and the superscript, (ι),
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denote fixed parameters that are obtained from solving the

corresponding sub or master problems in iteration ι of the

algorithm. Thus, for instance, p̃
dis,(ι)
w,h,s and ẼE,(ι) denote the

optimized values of pdis
w,h,s and EE that are obtained from

solving the scenario-s sub and master problem, respectively,

in iteration i.

Hereafter, we define M as the master problem and let ωM

denote its decision-variable vector.

3) Linearizing Sub Problems: The sub problems have two

types of non-linearities, which we linearize as follows [28].

a) Complementarity Conditions: Constraints (14)–(25),

which are in (45), are nonlinear, because the condition:

0 ≥ g(x) ⊥ µ ≥ 0,

is equivalent to:

0 ≥ g(x)

0 ≥ µ

g(x) · µ = 0.

We linearize (14)–(25) using the technique that is outlined

by Fortuny-Amat and McCarl [29], which requires the use of

binary variables.

b) Objective Function: Objective function (44) contains

bilinear terms in which λw,h,s multiplies pwind,clrd
w,h,s , pdis

w,h,s, and

p
grid,ch
w,h,s . We can linearize this using the strong-duality equality

of the market operator’s problem, which is:
∑

g∈G

Og,w,h,spg,w,h,s − o
grid,ch
w,h,sp

grid,ch
w,h,s + odis

w,h,sp
dis
w,h,s (62)

+ owind
w,h,sp

wind,clrd
w,h,s −

∑

d∈D

Ud,w,hpd,w,h,s = −
∑

g∈G

P̄gµ
1,max
g,w,h,s

−
∑

d∈D

P̄d,w,h,sµ
2,max
d,w,h,s − p̄

wind
w,h,sµ

3,max
w,h,s − p̄

dis
w,h,sµ

4,max
w,h,s

− p̄grid,ch
w,h,sµ

5,max
w,h,s −

(

µ
6,min
w,h,s + µ

6,max
w,h,s

)

∑

τ∈T

θτbτ .

Multiplying each of (11)–(13) by pwind,clrd
w,h,s , pdis

w,h,s, and p
grid,ch
w,h,s ,

respectively, using complementary-slackness conditions (18)–

(25), and substituting the resulting terms into (62), gives:

∑

w∈W,h∈H

[

∑

d∈D

(

Ud,w,hpd,w,h,s − P̄d,w,h,sµ
2,max
d,w,h,s

)

(63)

−
∑

g∈G

(

Og,w,h,spg,w,h,s + P̄gµ
1,max
g,w,h,s

)

−χwindpwind,clrd
w,h,s −

(

pch
w,h,s + p

grid,ch
w,h,s

)

χch − χdispdis
w,h,s

]

;

as a linearized objective function that is equivalent to (44).

4) Separating Optimality Cuts: We let Ss denote the lin-

earized scenario-s sub problem, which consists of Objec-

tive function (63) and Constraints (45)–(58), where Condi-

tions (14)–(25) in (45) are linearized using binary variables.

We let Ω′
s denote the decision-variable set of Ss and fs its

objective-function value. Ss is a mixed-integer linear optimiza-

tion problem. Due to the presence of binary variables in Ss,

the values of the dual variables, σs,1, . . . , σs,|T |, σ
ch
s , σdis

s , and

σE
s , which are used to separate optimality cuts, can be distorted

[30].

We address this by solving the sub problems and generating

optimality cuts in two steps. In the first step, we solve

Ss to obtain ω∗
s , which denotes an optimal-variable vector.

Next, we solve an auxiliary problem, which we denote as

As. As is identical to Ss, with two differences. First, (45),

which characterize an optimal solution to the market operator’s

problem, are replaced with (2)–(13), ∀w ∈ W,h ∈ H and (62),

which characterize equivalently an optimal solution to the

market operator’s problem. This equivalence is because (2)–

(13), ∀w ∈ W,h ∈ H are primal and dual constraints for

the market operator’s problem, while (62) is its strong-duality

equality. The other difference between As and Ss is that

the values of odis
w,h,s, o

grid,ch
w,h,s , owind

w,h,s, µ
3,max
w,h,s , µ

4,max
w,h,s , µ

5,max
w,h,s ,

∀s ∈ S,w ∈ W,h ∈ H are fixed equal to the corresponding

optimal values that are in ω∗
s . In doing so, (62) is linear. We

let Ψs denote the decision-variable set and ψ∗
s an optimal

decision-variable vector of As.

5) Algorithm Pseudocode: Algorithm 1 provides pseu-

docode of our solution algorithm. Lines 1 and 2 input a

convergence tolerance, ǫ, and initialize the starting set of

optimality cuts to be empty and the iteration counter to one.

The remaining lines are the main iterative loop. In Line 4

the master problem is solved to obtain optimal investments,

which we denote as b∗1, . . . , b
∗
|T |, E

ch,∗, Edis,∗, and EE,∗.

These values are fixed in the sub problems in Line 5.

Algorithm 1 Multi-Cut Benders’s Decomposition

1: input: ǫ

2: initialize: I ← ∅, i← 1
3: repeat

4: ω∗
M ← argmaxΩM

M
5: b̃τ ← b∗τ , ∀τ ∈ T ; Ẽch ← Ech,∗; Ẽdis ← Edis,∗; ẼE ←
EE,∗

6: for s ∈ S do

7: ω∗
s ← argmaxΩ′

s
Ss

8: if αs < fs then

9: ψ∗
s ← argmaxΨs

As

10: p̃
wind,clrd,(i)
w,h,s ← p

wind,clrd,∗
w,h,s , p̃

dis,(i)
w,h,s ← p

dis,∗
w,h,s,

p̃
grid,ch,(i)
w,h,s ← p

grid,ch,∗
w,h,s , λ̃

(i)
w,h,s ← λ∗w,h,s, p̃

wind,clrd,(i)
w,h,s ←

p
wind,clrd,∗
w,h,s , p̃

ch,(i)
w,h,s ← p

ch,∗
w,h,s, p̃

grid,ch,(i)
w,h,s ← p

grid,ch,∗
w,h,s ,

p̃
dis,(i)
w,h,s ← p

dis,∗
w,h,s, ∀s ∈ S,w ∈ W,h ∈ H ; b̃

(i)
τ ← b∗τ ,

σ̃
(i)
s,τ ← σ∗

s,τ , ∀τ ∈ T ; Ẽch,(i) ← Ech,∗, σ̃
ch,(i)
s ← σch,∗

s ,

Ẽdis,(i) ← Edis,∗, σ̃
dis,(i)
s ← σdis,∗

s , ẼE,(i) ← EE,∗,

σ̃
E,(i)
s ← σE,∗

s

11: end if

12: end for

13: I ← I ∪ i
14: i← i+ 1
15: until

∑

s∈S φs · |αs − fs| ≤ ǫ

Lines 6–12 loop through the sub problems and add optimal-

ity cuts, as needed. Specifically, in Line 7 the scenario-s sub

problem is solved. If αs underestimates the true scenario-s

operating profit, which is given by fs, the scenario-s auxiliary
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problem is solved in Lines 8 and 9 to obtain undistorted dual-

variable values. The primal- and dual-variable values that are

obtained from the auxiliary problem are used in Line 10 to add

a new optimality cut. Lines 13 and 14 update the cut set and

iteration counter, respectively. Line 15 gives the termination

criterion, which is that the expected operating profit that is

estimated in the master problem be sufficiently close to the

true operating profit that is given by the sub problems.

IV. EXAMPLE

This section summarizes the results of a simple illustrative

example, which demonstrates the differences in investments,

offers, and operations between our proposed price-making

model and a price-taking wind firm. We assume three hour-

long operating periods with 10-GW, 9-GW, and 8-GW loads

and 150 MW, 0 MW, and 0 MW of wind available, respec-

tively. We relax (32) and (33), thereby removing constraints

on the power-to-energy ratio of energy storage, and assume

energy storage to have a round-trip efficiency of β = 0.85.

We neglect uncertainty. The model is implemented and solved

using GAMS version 24.5 and cplex version 12.6.2 on a

workstation with an Intel Core i7 CPU with eight 3.4-GHz

processing cores and 32 GB of memory.

We contrast the decisions of the wind firm under two be-

havioral assumptions. The first assumes a perfectly competitive

wind firm. In this case, the wind firm offers the full 150 MW

of wind that is available in hour 1 at its assumed marginal

production cost of $0/MWh. Under this behavioral assumption,

all 150 MW of wind that is available in hour 1 is dispatched.

As such, the wind generator builds a 150-MW transmission

interconnector. Moreover, because there is no curtailed wind

and limited opportunity for energy arbitrage (which stems

from our assumption of loads decreasing over the three hours),

the wind generator does not invest in energy storage.

Our second behavioral case assumes that the wind firm

can behave strategically by offering wind and energy storage

at prices that differ from their marginal operating costs. In

this case, the wind firm withholds economically 25 MW of

wind energy during hour 1. This withholding is done by

offering 25 MW of wind at a sufficiently high price that

a conventional generator is dispatched to replace that wind

production, which is curtailed by the market operator. In

doing so, the market price during hour 1 increases by 66.7%

relative to the perfectly competitive case. As a result of this

behavior, the wind generator downsizes the capacity of the

transmission line to 125 MW (saving on its investment cost)

and builds energy storage with 25-MW and 21.25-MWh power

and energy capacities, respectively. This energy storage allows

the wind energy that is curtailed during hour 1 to be stored and

sold during hour 2. This strategic behavior results in 42.7%

higher profits compared to the perfectly competitive case.

We verify the accuracy and performance of the proposed

multi-cut Benders’s algorithm by comparing the results of

the decomposed and undecomposed models. The undecom-

posed model replaces (43) in the wind generator’s problem

with (9)–(25), ∀s ∈ S,w ∈ W,h ∈ H to convert the

bi-level problem into a single-level problem. Moreover, the

linearization techniques that are described in Section III-B3 are

used to convert the nonlinear single-level into a single-level

mixed-integer linear optimization problem. The decomposed

and undecomposed models provide the same solutions. The

undecomposed and decomposed models take 0.3 s and 2.7 s,

respectively, of wall-clock time to solve. This shows that

the decomposition algorithm has too much ‘overhead’ to be

applied effectively to a problem of sufficiently small size.

V. CASE STUDY

This section summarizes the results of a more comprehen-

sive case study, which is based on a 150-MW wind generator

that participates in the electricity market of Alberta, Canada

during the year 2015 (i.e., wind and load data for 2015 are

used). We consider a single-bus model for this case study

because, by legislation, Alberta’s electricity system is meant to

be built to be congestion-free.1 The congestion-free mandate

that is imposed on Alberta’s electricity system is reflected

further in the electricity price being set based on an hourly

system marginal price as opposed to using locational marginal

pricing. The investment cost of the wind generator is assumed

sunk and the wind generator is assumed to have a $0/MWh

marginal operating cost.
We consider two energy-storage technologies: compressed-

air (CAES) and battery (BES) energy storage. CAES is as-

sumed to have investment costs of $1250/kW and $150/kWh,

a 20-year lifetime (which is used to annualize the investment

cost), a power-to-energy-ratio range of 0.05 h−1–0.25 h−1,

and a round-trip efficiency of 0.72 [31]. BES is assumed

to have investment costs of $616/kW and $291/kWh, a 20-

year lifetime, a power-to-energy-ratio range of 0.10 h−1–

4.00 h−1, and a round-trip efficiency of 0.90.2 The values

of Ēch, Ēdis, and ĒE are sufficiently large that there are no

binding constraints on the amount of energy storage that is

built. In selecting these values in this way, the firm is not

restricted in investing in energy storage that is economically

viable.
We assume three transmission-line types: a 69-kV, 138-kV,

or 240-kV line, which correspond to 40-MW, 140-MW, or

400-MW flow limits [32]. The corresponding costs of these

configurations are $0.3 million/km-year, $0.6 million/km-year,

and $1.1 million/km-year.3 Transmission-investment costs are

annualized, which is why they are reported in units of $/km-

year [26].
We consider a base case in which perfectly competitive

and price-making behavior are contrasted with one another,

considering all 8760 hours of 2015 as operating periods, no

uncertainty, and a 1-km transmission line. This base case

is contrasted with four sensitivity cases. The models are

implemented and solved using the same computational setting

that is used for the example that is presented in Section IV.

A. Base-Case Results

With both the perfectly competitive and price-making as-

sumptions, the wind generator does not invest in either energy-

1cf. decision number 22942-D02-2019 of Alberta Utilities Commission.
2https://atb.nrel.gov/
3https://public.tableau.com/profile/transmissioncost

https://atb.nrel.gov/
https://public.tableau.com/profile/transmissioncost
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storage technology. This is due to the high costs of the

technologies relative to the profit increases that they yield.

In the perfectly competitive case the wind generator builds a

400-MW transmission line, which allows it to sell all of its

potential wind production to the market. The transmission line

is downsized to 140 MW under the price-making assumption,

which results in about 0.1% of potential wind production

being curtailed. The strategic behavior that our model captures

increases the net profit of the wind generator by about 3.6%

compared to the perfectly competitive case.

B. Sensitivity Analyses

We summarize the results of four sensitivity cases.

1) Energy-Storage Costs: This sensitivity case considers up

to 70% reductions in the investment costs of the two energy-

storage technologies. CAES is not built in any of these cases.

BES with 24-MW and 72-MWh power and energy capacities

is built in the case in which the investment cost is 70% lower

than baseline and the wind generator behaves as a price-maker.

However, this added energy storage does not result in reduced

transmission capacity and increases the net profit of the wind

generator by 1% relative to the base case. This result shows

that energy storage has limited value to a wind generator in

Alberta with a relatively short transmission connector.

2) Transmission-Connector Length: This sensitivity case

varies the length of the transmission connector that the wind

generator must build up to 30 km. Moreover, we consider base-

case and 70%-reduced energy-storage-investment costs. Even

with a 30-km connector, no energy storage is built with the

baseline energy-storage-investment costs. Table I summarizes

the amount of CAES and transmission capacities that are built

and resultant firm profits in the case in which the investment

cost is 70% lower than baseline and the wind generator

behaves as a price-maker. Table II summarizes the same for

BES. The tables show that the energy-storage and transmission

capacities that are built with connector lengths of up to 25 km

are the same. Firm profit decreases as the connector length

increases, due to its increased cost.

TABLE I
CAES AND TRANSMISSION CAPACITIES BUILT AND PROFIT EARNED IN

TRANSMISSION-CONNECTOR-LENGTH SENSITIVITY CASE IN

SECTION V-B2 WITH REDUCED ENERGY-STORAGE-INVESTMENT COSTS

Connector E
ch

= E
dis

E
E Connector Profit

Length (km) (MW) (MWh) Capacity (MW) ($ million)

1 0 0 140 21.7

5 0 0 140 19.3

10 0 0 140 16.3

15 0 0 140 13.3

20 0 0 140 10.3

25 0 0 140 7.3

30 18 237 40 5.2

BES is built in the low-investment-cost case with all

transmission-connector lengths. However, with transmission-

connectors that are 25-km or shorter the line is not downsized

relative to the high-investment-cost case. This implies that

energy storage is not being used to alleviate the need to build

TABLE II
BES AND TRANSMISSION CAPACITIES BUILT AND PROFIT EARNED IN

TRANSMISSION-CONNECTOR-LENGTH SENSITIVITY CASE IN

SECTION V-B2 WITH REDUCED ENERGY-STORAGE-INVESTMENT COSTS

Connector E
ch = E

dis
E

E Connector Profit
Length (km) (MW) (MWh) Capacity (MW) ($ million)

1 24 72 140 21.9

5 24 72 140 19.5

10 24 72 140 16.5

15 24 72 140 13.5

20 24 72 140 10.5

25 24 72 140 7.5

30 29 202 40 5.5

transmission to deliver wind to load. Rather, energy storage is

being used to increase the price at which wind energy is sold.

The energy-storage units that are built in these low-investment-

cost cases yield a variety of profit changes. With a transmission

connector of 25 km or less, the BES that is built increases

profits by 3% compared to the associated high-investment-

cost case. If the transmission connector is 30 km, BES and

CAES that are built in the low-investment-cost case increase

profits by 16% and 9%, respectively, compared to the high-

investment-cost case.

3) Price Volatility: This sensitivity case examines the

impacts of price volatility. More specifically, we examine

cases in which the difference between on- and off-peak loads

increase, which gives a commensurate increase in energy-

price differences. We measure the volatility of prices by their

variance. Fig. 1 summarizes the amount of energy-storage

and transmission capacities that are built with different price-

volatility levels, as well as the resultant firm profits. Cases

in which price volatility increases by 58% or less (relative

to the baseline volatility level) do not see any energy-storage

investment. Instead, there are increases in firm profit of up to

17% relative to the base case. This profit increase is because

higher price volatility increases revenues that the firm earns

during peak-price periods.

Fig. 1. Energy-storage and transmission capacities built and profit earned in
price-volatility sensitivity case in Section V-B3.

Fig. 1 shows that relatively high price volatility is needed to

justify energy-storage investment. BES investment occurs with
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price volatility that is at least 64.4% higher than baseline. Firm

profit increases between 20% and 63% relative to the baseline

value as a result of BES being built in these cases. A 140-MW

transmission connector is built in all of the cases, except with

a 97%-120% increase in price volatility. In these cases, a 400-

MW transmission connector is built to support the dispatch of

the wind and the larger energy storage.

CAES is built with price volatility of at least 97% above

baseline. This is due to the higher relative cost (accounting for

its operating characteristics) of CAES compared to BES. The

profit increase that is earned in these cases is 35%–51% higher

than base-case profit. With extremely high price volatility, the

capacity of the transmission connector is increased further

from 140 MW to 400 MW. These results, in conjunction with

those that are presented in Section V-B2, indicate that the

energy storage is not being used to alleviate the need for

transmission to deliver wind to load. Rather, energy storage

is being used to arbitrage price differences, which increases

the need for transmission capacity in some cases.

4) Stochasticity: This sensitivity case considers two sets

of 45 second-stage scenarios, which are composed of three

different wind-generation cases, three cases related to load

growth and reductions, and five cases related to offers from

rival generators. The wind-generation levels are assumed to

be independent of the other random variables. Conversely,

generator offers are correlated with loads. We consider one

set of scenarios in which loads can decrease either 0.5%,

1.0%, or 1.5% relative to the base-case levels and in which

rival generators’ offers decrease by either 0.0%, 2.5%, 5.0%,

7.5%, or 10.0% relative to the base case. We consider also

another set of scenarios in which loads and rival generators’

offers increase by these same amounts relative to the base case.

Given the large size of this case study, we capture the year’s

operations with six representative operating weeks (as opposed

to modeling the full year), which are obtained from the full

year’s data using k-means clustering. We set a tolerance of

ǫ = 0.1 in Algorithm 1 and use an optimality gap of 0 when

solving the master, sub, and auxiliary problems in Lines 4, 7,

and 9 of the algorithm.

Energy storage is not built with the first set of scenarios,

in which loads and rival generators’ offers decrease relative

to the base-case levels. Under this set of scenarios, the same

140-MW transmission corridor is built and the wind generator

earns an expected profit of $32.1 million over the representa-

tive year. Table III summarizes the amount of energy storage

that is built with the second set of scenarios, in which loads

and rival generators’ offers increase relative to the base case.

A 140-MW transmission corridor is built in the case of using

CAES. This means that the CAES is being used primarily to

shift wind generation to higher-price periods. If the BES is

built, the capacity of the transmission corridor is increased to

400 MW. This is because the BES is used for energy-arbitrage

purposes that go beyond shifting the sale of wind generation.

C. Computational Efficiency

To verify the computational efficiency of the multi-cut Ben-

ders’s algorithm, we examine computation time and solutions

TABLE III
ENERGY-STORAGE CAPACITIES BUILT AND FIRM PROFITS UNDER

HIGH-LOAD-AND-OFFER SECOND-STAGE SCENARIOS

Energy-Storage

Technology

Energy-Storage Capacity Expected Profit

($ million)Power (MW) Energy (MWh)

CAES 8 30 44.8

BES 48 297 47.9

that are obtained from the decomposed and undecomposed

models. The single-scenario cases that are examined in Sec-

tions V-B1–V-B3 take between 3.6 minutes and 4.7 minutes

of wall-clock time to solve using the decomposed model. This

can be contrasted with solution times of between 1.5 min-

utes and 2.8 minutes for the undecomposed model, which

shows that (as with the example in Section IV) the multi-

cut Benders’s algorithm is not beneficial for small problem

sizes. The stochastic case, with 45 second-stage scenarios

and six representative weeks takes between 50 minutes and

55 minutes of wall-clock time to solve using the decomposed

model. Conversely, the undecomposed model with 45 second-

stage scenarios cannot be solved. This shows the power of the

multi-cut Benders’s algorithm in solving large and complex

instances of our model.

The solutions that are obtained from applying the multi-cut

Benders’s algorithm to our case study have optimality gaps

of less than 0.001%. Moreover, the installed capacities of the

energy storage and transmission connector are less than 1.7%

different between the two sets of solutions. This shows that the

proposed multi-cut Benders’s algorithm provides high-quality

near-optimal solutions.

VI. CONCLUSION

This paper proposes an approach to modeling the behavior

of a strategic wind firm that co-optimizes the size of trans-

mission and co-located energy storage and its offers into a

wholesale market. To this end, we use a stochastic bi-level

model, which is solved efficiently using multi-cut Benders’s

decomposition. Our Alberta-based case study shows that en-

ergy storage has limited value for a profit-maximizing wind

generator. Energy storage can be justified with sufficiently long

transmission corridors, market uncertainty, or price volatility.

Our model neglects some facets of price-making behavior,

which we relegate to future research. This includes equilibrium

analysis with multiple strategic firms [2], [3] and participation

in markets for both energy and ancillary service.
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