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Abstract

This study examines the emissions impacts of adding wind andenergy storage to a market-

based electric power system. Using Texas as a case study, we demonstrate that market power

can greatly effect the emissions benefits of wind, due to mostof the coal-fired generation being

owned by the two dominant firms. Wind tends to have less emissions benefits when genera-

tors exercise market power, since coal-fired generation is withheld from the market and wind

displaces natural gas-fired generators. We also show that storage can have greater negative

emissions impacts in the presence of wind than if only storage is added to the system. This

is due to wind increasing on- and off-peak electricity pricedifferences, which increases the

amount that storage and coal-fired generation are used. We demonstrate that this effect is

exacerbated by market power.

Introduction

Recent years have seen increased interest in renewable electricity in the U.S. and elsewhere. This

interest has been driven by several factors, one of which is the emissions and environmental im-

pact of conventional fossil-fueled generation. Wind has provided the bulk of renewable capacity
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expansion, due to its currently being the lowest-cost technology and the abundance of wind re-

sources. Energy storage is often discussed as an enabling technology that can ease the integration

and improve the economic and technical characteristics of wind (1–13).

Denholmet al. (14) examine the emissions of a wind generator that uses storageto provide

baseload energy. They show that life cycle greenhouse gas emissions from such a baseload wind

system can be less than 20% of a combined-cycle natural gas-fired generator. Denny and O’Malley

(15) estimate the emissions impacts of wind and storage in the Irish system. Their analysis is

based on a perfectly-competitive model, in which the operation of conventional generation is co-

optimized with wind and storage to minimize system costs. They focus on the impact of wind

uncertainty and part-load operation of conventional generators on system emissions. Their results

show that wind will have much greater effects in reducing CO2 emissions as compared to SO2 and

NOx.

One limitation of these analyses is that they neglect interactions between wind, storage, and the

market. Since wind participates in wholesale electricity markets (16), a wind generator may prefer

using storage to maximize energy revenues as opposed to providing baseload energy. Indeed,

storage analyses assume such operations to maximize revenues from charging and discharging

energy, an activity referred to as energy arbitrage (17–21). Adding wind and storage to a system

together can increase this use of storage, since wind tends to suppress energy prices (22–24).

This price suppression is due to wind displacing higher-cost generation. Another factor that can

influence the emissions impacts of wind and storage is the competitiveness of the generation sector.

Generating firms exercise market power by withholding capacity from the market (25, 26). Thus

depending on the ownership of generation and the extent to which different firms have market

power, the actual mix of generators used and the type of generation that wind or storage displace

can vary.

This study examines the emissions effects of wind and storage when accounting for market

price effects on storage use. We consider two cases, one witha perfectly-competitive generation

sector and another in which the two dominant firms exercise market power. We use an optimization
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model to represent the interactions between conventional generators, wind, and storage, which is

used to derive the dispatch of the system over a one-year period (24). The optimized dispatch is

combined with emissions rates estimates to model generatoremissions of CO2, SO2, and NOx with

and without wind and storage.

Methods

Our analysis is based on the Electricity Reliability Council of Texas (ERCOT) system in 2005.

ERCOT had about 2 GW of wind installed in 2005, which are included in the base system. We

compare the base system to systems with up to 10 GW of added wind and up to 10 GW of storage

with up to 20 hours of charging capacity. For purposes of comparison, ERCOT had about 83 GW

of generation capacity installed and a peak load of 60 GW in 2005.

Ownership and Market Structure

ERCOT had about 81 GW of conventional (e.g. thermal and hydroelectric) generation installed in

2005, of which about 16 GW were coal-fired, 60 GW natural gas-fired, and the remaining used

other fuels (27). These assets were divided between 53 firms. Of these, two firms—Luminant

and Texas Genco—owned a large share of about 18% and 14% (on a capacity basis), respectively.

Between them, these two firms owned about 65% of the coal-firedcapacity in the system.

Analyses of the ERCOT market suggest that Luminant and TexasGenco have historically had

a greater tendency to exercise market power than the other firms (28, 29). Thus we model wind and

storage impacts under two market competitiveness cases: the first, which we refer to as the compet-

itive case, assumes that all 53 generating firms behave perfectly competitively; the other, referred

to as the oligopoly case, assumes that Luminant and Texas Genco behave as profit-maximizers

while the remaining 51 firms behave competitively. Further details regarding the breakdown of

generation ownership and the market competitiveness casesconsidered are given in the Supporting

Information.
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Market Operation

In both the competitive and oligopoly cases, we assume that the generating firms submit supply

functions,qi,t(p), to a market operator. The functionqi,t(p) specifies the maximum amount of

energy that firmi is willing to supply in hourt as a function of price. In the competitive case, the

supply functions are the inverse of the firms’ marginal cost functions. In the oligopoly case, Lu-

minant and Texas Genco’s supply functions are found by solving a profit-maximization problem,

while the remaining firms submit supply functions equal to the inverse of their marginal cost func-

tions. The derivation of these supply functions do not take into account dynamics of conventional

generators, such as ramping limits, minimum load constraints, and startup costs. Each firm’s cost

function is estimated based on the heat rates of the generators that it owns and fuel prices. Heat rate

and fuel price data are obtained from Global Energy Decisions and Platts Energy. We use stepped

heat rate functions, which capture differences in a generator’s efficiency as a function of its output.

Modeling Wind and Storage

Letting Dt be the system load andXt net energy sales from wind and storage (30) in hour t, the

market operator sets the hour-t price of energy as:

p∗t (Xt) = min
p

{

p

∣

∣

∣

∣

∣

N

∑
i=1

qi,t(p) = Dt −Xt

}

, (1)

whereN is the number of generating firms. Eq. (1) defines the price such that it induces exactly

enough supply from the conventional generating firms to serve the load net of wind and storage

sales.

The profit of wind and storage over aT-hour time horizon is given by:

T

∑
t=1

p∗t (Xt) ·Xt. (2)

We model the behavior of wind and storage by maximizing this profit, subject to technical con-
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straints on the storage plant and the availability of wind energy. Thus even in the competitive

generation case, we assume the wind and storage choose theirnet sales to maximize profits. This

allows us to capture the emissions impacts of competitiveness of the generation sector, without

differences in the assumed behavior of wind and storage confounding the results. Storage con-

straints include roundtrip efficiency losses of the storagesystem, which we assume to have an

80% roundtrip efficiency, and power and energy capacity limits (20, 24). This profit-maximization

model does not impose any restrictions that only energy fromwind be stored. Thus net wind and

storage sales could be negative, which would imply that energy is purchased from the market and

stored. Further details of this profit-maximization model are given in the Supporting Information.

Estimating Emissions

We model emissions associated with the combustion of fossilfuels in generators only. We therefore

assume that there are no emissions directly associated withstorage use or wind generation. The

amount of energy that generating firmi must supply in hourt is given byqi,t (p∗t (Xt)). Generator

emissions are estimated based on these hourly generation levels using input-based emissions rates,

which give kg of each pollutant released per GJ of fuel burned. This is in contrast to output-

based emissions rates, which give kg of each pollutant released per MWh of electricity generated.

Using input-based emissions rates better accounts for differences in generator heat rates caused by

operating a generator at part-load.

CO2 emissions rates are assumed to be constant for each generator. To account for the impact

of part-load operations on the effectiveness of emissions controls, we assume that the SO2 and

NOx emissions rates of each generator can vary as a function of generating load. We approximate

these emissions rates using a Nadaraya-Watson kernel estimator (31–33). We use separate kernel

estimates for NOx emissions rates during an ozone season, which is from May to September, and

a non-ozone season, which covers the remaining months. Thisassumption reflects the possibility

of more stringent NOx restrictions being in place during the ozone season, since NOx is an ozone

precursor. Such restrictions may result in greater use of emissions controls. The emissions rates are
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estimated using continuous emissions monitoring system (CEMS) data for the year 2005 obtained

from the U.S. Environmental Protection Agency. The CEMS data record GJ of fuel burned and kg

of CO2, SO2, and NOx released by each generator on an hourly basis.

Wind Data

We use modeled wind generation data developed by 3TIER for the National Renewable Energy

Laboratory’s Western Wind and Solar Integration Study (WWSIS) to model wind generation. This

dataset provides wind data for 2005 at sites across Texas. Wemodel the 2 GW of wind capacity

that were installed in Texas in 2005 by associating each actual wind generator to a location in the

WWSIS dataset, based on geographic distance. We assume thatthe additional wind generators that

we model are located at the same sites as actual wind generators that were or are planned to be

installed between 2005 and 2011. We use the location of theseplanned installations to associate

the incremental wind capacity with locations in the WWSIS dataset.

Results

Emissions Impacts of Wind

Coal is a less costly generation fuel than natural gas. Thus in the competitive case, wherein all of

the generators submit cost-based supply functions to the market, coal is used as baseload generation

and natural gas is used for any additional load above the capacity of coal-fired plants. The system is

not dispatched on the basis of cost in the oligopoly case, however, because the two dominant firms

submit supply functions that are above their marginal costs. These above-cost supply functions act

to withhold some of the dominant firms’ generating capacity from the market, forcing the market

operator to use higher-cost generation which increases energy prices and firm profits. Because

the dominant firms own much of the coal-fired generation, thiswithholding causes differences in

the breakdown of the generation load. In the base system, coal constitutes about 46.1% of fossil-
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fueled generation in the competitive case as opposed to 45.8% in an oligopoly. The withholding

of coal-fired generation occurs during low-load periods, inwhich the dominant firms’ natural gas-

fired generators are shutdown. By submitting above-cost bids for their coal-fired generators, the

dominant firms force the market operator to use more (of the dominant or competitive firms’)

natural gas-fired generation, increasing the price of energy. This greater use of coal gives higher

emissions in the competitive case due to the higher emissions rates of coal—CO2, SO2, and NOx

emissions are 235 Mt, 461 kt, and 202 kt, respectively, in thecompetitive case as opposed to

230 Mt, 448 kt, and 171 kt in an oligopoly.

These differences in the dispatch also affect the emissionsreductions when wind is added to the

system. Figure 1 shows annual emissions reductions when wind is added to the base system. The

figure shows that CO2 and NOx reductions are roughly linear in the amount of wind added to the

system and that the emissions reductions are comparable between the competitive and oligopoly

cases. Marginal SO2 reductions are, on the other hand, increasing in the amount of wind added to

the system. Wind also has a greater impact in reducing SO2 emissions in the competitive case.
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(a) Competitive case.
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(b) Oligopoly case.

Figure 1: Total annual reduction in generator emissions of CO2, SO2, and NOx when wind is
added to the system. CO2 reductions are reported in Mt, and SO2 and NOx reduction are reported
in kt. Figure 1a shows emissions reductions in the competitive case and Figure 1b shows emissions
reductions in the oligopoly case.

The differences in SO2 reductions are due to the impact of wind on natural gas- as opposed

to coal-fired generation. Because of capacity withholding in an oligopoly, there are fewer hours,
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compared to the competitive case, in which coal-fired generation is marginal and displaced by

wind. Thus, the first 5.5 GW of wind added to the system have a relatively modest effect with

an average of 111 MWh of coal-fired generation being displaced annually per MW of added wind

capacity. The same 5.5 GW of wind have a much greater impact inthe competitive case, with

896 MWh of coal-fired generation being displaced on average per MW of wind. Additional wind

beyond the first 5.5 GW have a greater impact, however, since at sufficiently high penetrations

coal-fired generation will increasingly be marginal and displaced. Each additional MW of wind

beyond the first 5.5 GW results in annual coal-fired generation reductions of between 145 MWh

and 389 MWh in the oligopoly case. This incremental wind has an even greater impact in the

competitive case, however, with annual coal-fired generation reductions of between 1,097 MWh

and 1,208 MWh per MW of added wind.

Emissions Impacts of Storage

Figure 2 shows annual emissions increases when storage withfour hours of charging capacity is

added to the system and used for arbitrage. The trends are similar for different numbers of charging

hours. In all of the cases CO2 and SO2 emissions increase when storage is added, whereas NOx

emissions decrease in some cases. The emissions increases are due to two effects. One is that more

energy must be generated, due to roundtrip efficiency lossesof storage. The other is that storage is

used to arbitrage price differences between on- and off-peak hours. In the competitive case, much

of this arbitraging is done between coal and natural gas-fired generation. Coal-fired generators

provide between 38% and 50% of the incremental generation when energy is charged into storage,

whereas more than 98% of the generation displaced when storage is discharged is natural gas-

fired. Due to the exercise of market power, coal-fired generation provides less than 5% of the

energy stored in the oligopoly case. In this case, storage islargely arbitraging price differences

between more-efficient combined-cycle and less-efficient simple-cycle natural gas plants. This

difference in the generation used to provide the charging energy explains the significantly higher

SO2 increases in the competitive case.
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Figure 2: Total annual increase in generator emissions of CO2, SO2, and NOx when energy storage
with four hours of charging capacity is added to the base system with no additional wind. CO2
increases are reported in kt, and SO2 and NOx increases are reported in t.

These findings of increased emissions and the sensitivity tothe generating fuels used and dis-

placed when storage is charged and discharged are consistent with other storage analyses. Den-

holm and Holloway (34) examine the emissions impact of compressed-air energy storage (CAES)

in Ohio. They show that since CAES could be charged using coal-fired generation and displace

natural gas-fired generation when discharged, the net emissions of CAES could be greater than a

new coal-fired generator. They also show that CAES could havesignificantly lower emissions if

storage is charged using cleaner generation, such as nuclear, renewable, or new coal that meets

2004 Clean Air Act standards.

Figure 2 also shows that emissions will not necessarily be monotone in the power capacity

of the storage plant. This is because storage will affect theoutput of marginal generators, which

can change their emissions rates. For instance, there is an approximately 1 t reduction in SO2

emissions in the oligopoly case between 5 GW and 5.5 GW of storage. This difference is due to

a 5.5 GW storage plant doing more arbitrage than a 5 GW plant on30 August. This increased

arbitraging results in two of the coal-fired plants shiftingtheir generation between hours with

different emissions rates. This type of emissions fluctuation is likely specific to the 2005 data used

in our case study, and should not be interpreted as a general result that will occur in all years.

Storage has similar effects on NOx and decreases NOx emissions in some cases. This is because
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the shifting of generating loads results in marginal generators having lower emissions rates. These

lower rates yield a NOx reduction, which outweighs the emissions increase caused by greater

generation and the arbitraging effect.

Joint Emissions Impacts of Wind and Storage

Adding wind and storage to a system together increases storage use compared to the storage-only

case. This is because wind suppresses energy prices by displacing high-cost generation from the

market. Since this price effect is associated with wind availability and hourly wind availability can

be highly variable, wind increases hourly price differences and arbitrage opportunities. Our anal-

ysis assumes joint ownership of wind and storage, however the same effects persist in a disjoint-

ownership case and storage use and emissions impacts will largely be the same in the two cases.

This is because wind will have the same price-suppressing impact regardless of storage ownership.

Figure 3 shows, as an example, the operation of 5 GW of storagewith four hours of charging

capacity on a sample day in a system with 10 GW of added wind. Itshows hourly wind generation

and total net sales from wind and storage when storage use is optimized to maximize energy

revenues. Comparing the hourly wind output and net sales profiles shows that storage is used

extensively on this day. About 11 GWh of energy are stored in the morning and afternoon when

wind suppresses energy prices. This energy is later discharged in the late morning and evening

when wind generation is lower and prices are higher. The figure also shows the breakdown of the

change in hourly conventional generation caused by storage. This is shown as the change in natural

gas-fired generation between the wind-only and wind-and-storage cases, as a percentage of the

change in total conventional generation between these two cases. Coal-fired generation provides

roughly a third of the incremental energy when storage is charged on this day in the competitive

case, as opposed to only 13% in an oligopoly. There are also differences in the generation that is

displaced when storage is discharged—roughly 88% of the displaced generation is natural gas-fired

in the competitive case as opposed to 99% in an oligopoly.

These types of differences persist throughout the year and with different wind and storage
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Figure 3: Hourly output of a 10 GW wind plant, net sales from a 5GW storage plant with four
hours of charging capacity, and resulting changes in conventional generation on 15 January. Stor-
age use is assumed to be co-optimized with wind to maximize total profit. Bars show the change
in total natural gas-fired generation between the wind-onlyand wind-and-storage cases, as a per-
centage of the change in total conventional generation between the two cases.

penetrations. Figure 4 shows the marginal effect of charging storage on conventional generation.

The figure shows the change in natural gas-fired generation between wind-only and wind-and-

storage cases during hours of the year in which storage is charged, as a percentage of the total

change in conventional generation during those hours. The shading of the circles and squares is

based on the energy capacity of the added storage—lighter shading indicates more storage. The

figure shows that coal-fired generation tends to provide moreof the incremental generation when

storage is charged in the competitive case, due to it being marginal in more hours. The differences

in the composition of the charging load between the competitive and oligopoly cases decreases

as more wind is added, however. This is because adding more wind in the oligopoly case will

increasingly displace coal-fired generation, making coal the marginal generating fuel in more low-

price hours. There are also small differences in the breakdown of the conventional generation that

is displaced when storage is discharged. Between 84% and 99%of the generation displaced when

storage is discharged is natural gas-fired in the competitive case, whereas this number is always

above 97% in an oligopoly.

Figure 5 shows the effect of these differences in incremental generation when storage is charged

and discharged on the net emissions impact of adding storageand wind to a system together. The
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(a) Competitive case.
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(b) Oligopoly case.

Figure 4: Incremental natural gas-fired generation when storage is charged, as a percentage of
change in total conventional generation when storage is charged. Generation changes shown are
between wind-only and wind-and-storage cases. The shadingof the circles and squares are based
on the energy capacity of the added storage—lighter shadingindicates more storage. Figure 4a
shows generation changes in the competitive case and Figure4b shows generation changes in the
oligopoly case.

figure shows emissions increases between a case with 10 GW of added wind only and a case with

10 GW of wind and storage with four hours of charging capacity. With the exception of NOx in the

oligopoly case, the combination of wind and storage causes all emissions to increase. The figure

shows that the emissions impacts of wind and storage together are highly sensitive to amount of

wind and storage added. For instance, there are greater SO2 increases in the competitive as opposed

to oligopoly case if less than 8 GW of storage is added, whereas these impacts are reversed for

larger amounts of storage. This is because in an oligopoly with less than 5 GW of storage, coal-

fired generation provides about 21% of the incremental energy when storage is charged. As storage

capacity increases, coal’s share of charging energy drops to below 16%. In the competitive case,

however, coal always provides between 25% and 29% of the added load when storage is charged.

Thus as more storage is added to the system, storage is decreasingly arbitraging between coal- and

natural gas-fired generation in an oligopoly, reducing its SO2 impact relative to the competitive

case.

Comparing the range of emissions increases in Figure 2 and Figure 5 shows that the emissions
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Figure 5: Total annual increase in generator emissions of CO2, SO2, and NOx when energy storage
with four hours of charging capacity is added to a system with10 GW of added wind. Emissions
increases are relative to the wind-only case. CO2 increases are reported in kt, and SO2 and NOx

increases are reported in t.

impacts of storage in a system with wind are, in some cases, two orders of magnitude greater

compared to if there is no added wind. This is because wind significantly increases arbitrage

opportunities for storage. For instance, 5 GW of storage with four hours of charging capacity stores

about 321 GWh and 529 GWh of energy in the competitive and oligopoly cases, respectively, if no

wind is added to the system. The same storage plant stores about 3.4 TWh and 3.6 TWh of energy

in the competitive and oligopoly cases, respectively, if 10GW of wind is also added to the system.

Thus the combination of wind and storage yields superadditive emissions impacts relative to the

impacts of introducing the two technologies to the system individually.

We can measure this superadditive effect by defining:

Mu,a, (3)

as the annual emissions of pollutantu under deployment scenarioa, wherea denotes either the

base (a = B), storage-only (a = S), wind-only (a = W), or wind-and-storage (a = WS) case. We

can then measure the superadditive effect of adding wind andstorage together as:

ξu = (Mu,WS−Mu,W)− (Mu,S−Mu,B), (4)
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which is the emissions increase between the wind-and-storage and wind-only cases, less the emis-

sions increase between storage-only and base cases. Thusξu measures the extent to which storage

impacts generator emissions due to the increased arbitrageopportunities created by wind. Figure 6

summarizes the values ofξu with different amounts of storage and 10 GW of wind. The increases

in the competitive case are relatively small compared to theemissions benefits of wind, represent-

ing up to 8% of the emissions savings from introducing wind tothe system. The combination of

wind and storage have much more pronounced effects in the oligopoly case, however. The SO2

increases represent up to 24% of the SO2 reductions from wind, thus the combination of wind and

storage can eliminate close to a quarter of the SO2 savings from wind. On the other hand, wind

and storage together reduce NOx emissions compared to the wind-only case. This is because the

changes in conventional generator loads improves the NOx emissions rates of marginal generators,

yielding a net NOx reduction that outweighs increased emissions due to highergenerating loads.

Discussion

Although storage is discussed as a technology to improve thecharacteristics of wind, these results

show that storage and wind can interact in ways that increasethe emissions impact of storage. Con-

ventional generator ownership, market competitiveness, and the penetration of wind and storage

can substantively change the emissions impacts of these technologies individually and together.

Our analysis assumes up to 10 GW of wind is added to a base system with 2 GW of wind. ERCOT

has close to 10 GW of wind installed today, thus the impacts ofan additional 10 GW on top of

this would be different than our estimates. For example, it is likely that wind would have a greater

impact on SO2 emissions, since the relatively high wind penetrations would result in coal-fired

generation being marginal in significantly more hours.

Although our case study is based on the ERCOT system, our results should be viewed as

illustrative. This is because the ERCOT market is not perfectly competitive, nor do the two domi-

nant firms fully behave as profit-maximizers. Thus the competitive and oligopoly cases should be
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(a) Competitive case CO2.
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(b) Oligopoly case CO2.
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(c) Competitive case SO2.
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(d) Oligopoly case SO2.
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(e) Competitive case NOx.
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(f) Oligopoly case NOx.

Figure 6: Total annual increase in generator emissions of CO2, SO2, and NOx when storage is
added to a system with 10 GW of wind. The figures show the increase between wind-and-storage
and wind-only cases, less the emissions increases between storage-only and base cases. CO2
increases are reported in kt and SO2 and NOx increases are reported in t.
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viewed as providing bounds on the impacts of wind and storage. Some of the emissions fluctu-

ations (e.g. non-smooth and non-monotone emissions impacts of wind andstorage) are possibly

specific to the 2005 data that we base our analysis on, and may not be general results. Never-

theless, the findings regarding shifting of generation between generating fuels and technologies

would likely occur in other systems. This is because marginal generating technologies and emis-

sions rates can differ by time of day and also be sensitive to market competitiveness. For instance,

California has virtually no coal-fired generation. Nevertheless, hourly marginal emissions rates

can vary depending on whether combined- or simple-cycle natural gas-fired generation is marginal

(35).

Our analysis assumes joint ownership of wind and storage, because storage is considerably

more valuable to a wind generator than to a standalone storage operator or conventional generator

(24, 36). As noted before, storage use and emissions impacts would largely be the same with

disjoint ownership of wind and storage. Our joint-ownership assumption should not, however,

be taken to suggest that wind and storage must or should be jointly owned. Our analysis further

assumes that wind and storage are owned by a single profit-maximizing firm. Although wind

ownership was rather concentrated in 2005 (Table S3 in the Supporting Information summarizes

wind ownership), this assumption may overstate the extent to which wind and storage can exercise

market power by adjusting net sales to maximize profits. Relaxing this assumption would not

affect wind generation, since wind is never curtailed in ourmodel. Storage use could increase,

however, since it is profit-maximizing to reduce storage usefrom a competitive level to maintain

higher price differences between on- and off-peak periods (20, 36). Based on our findings, it is

likely that this greater use of storage would yield higher generator emissions.

Our model does not consider operational impacts that wind and storage can have on power

systems. Storage can provide valuable renewable integration services, such as reducing the need

for transmission expansions and wind curtailment (13, 37). These types of interactions between

wind and the power system arise due to dynamics of conventional generators, such as ramping

limits, minimum load constraints, and startup costs, that cannot be accommodated in the model
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that we use. Some of these services can decrease system emissions. For example, wind generation

variability can require inefficient fast-ramping generators, that often have high emissions rates, to

follow wind supply (38). If storage can reduce the variability of wind, this can reduce the need

for such generation and the associated emissions. Storage can also increase the profitability of

a wind generator, which could spur or encourage further windcapacity to enter the market (24).

Since these types of benefits are not directly captured in ourmodel, such gains should be weighed

against the impacts that we estimate here.
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ERCOT Market Structure

Generation assets in the ERCOT market were divided between 53 firms, ranging from large investor-

owned utilities to small industrial cogenerators, in 2005.Table S1 shows the breakdown of the as-

sets among the seven largest generating firms, based on installed generating capacity, as reported in

form 860 data collected by the U.S. Department of Energy’s Energy Information Administration.

The remaining 46 firms each own less than 5% of the generating capacity in the system.

Table S1: Breakdown of generation assets, on a capacity basis, among seven largest generating
firms in 2005. The remaining 46 firms each own less than 5% of thegeneration capacity in the
market.

Generating Firm Generating Capacity (%)

Luminant 18
Texas Genco 14
Coral Energy 7
CPS Energy 7
Exelon Generation 6
Calpine 6
Austin Energy 6

Analyses of the ERCOT market suggest that the two largest firms, Luminant and Texas Genco,

tend to exercise market power whereas the remaining firms behave more competitively (28, 29).

These analyses compare actual historical bids that the firmssubmit into the balancing energy mar-

ket to models of profit-maximizing behavior. Both analyses find that Luminant and Texas Genco’s

bidding behavior in the market is closest to profit-maximizing, insomuch as they tend to submit

bids above cost and they earn profits that are near-optimal. Nevertheless, they find that the be-

havior of these firms is not exactly profit-maximizing. They posit that the threat of regulatory

intervention and market mitigation places some pressure onthem to constrain their bids. The

remaining firms, by contrast, tend to submit highly price-inelastic supply functions compared to

the profit-maximizing benchmark. Both analyses conclude that the amount of revenue that these

smaller firms could earn from profit-maximizing bidding is too small to warrant the associated

costs. Instead, these firms likely competitively contract to sell their energy on a bilateral basis.
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For these reasons, we consider two market competitiveness cases. The first assumes that all

firms behave competitively and submit cost-based bids. The second assumes that only the two

largest firms exercise market power by submitting profit-maximizing bids into the market, while

the remaining firms submit competitive cost-based bids. Given the empirical findings regarding

market behavior, these are likely bounding cases, with the true impacts of wind and storage being

closer to the oligopoly case. Table S2 summarizes the breakdown of generation technologies in

the ERCOT market in 2005 between the dominant firms and the competitive fringe, on a capacity

basis.

Table S2: Breakdown of thermal generation technologies between dominant firms and competitive
fringe, on a capacity basis, in 2005.

Generating Fuel Dominant Firms Competitive Fringe

Nuclear 71 29
Coal 65 35
Natural Gas Combined Cycle 4 96
Natural Gas Steam Turbine 37 63
Natural Gas Combustion Turbine 55 45

Modeling Wind, Storage, and Generator Behavior

We model the interaction between the wind generator, storage plant, and the conventional genera-

tors as a Stackelberg-type equilibrium, in which the wind generator and storage plant are leaders

and the conventional generators are followers. We assume this sequential strategic interaction, as

it allows us to use an SFE to model conventional generator behavior in the oligopoly case (24).

The wind generator and storage plant are assumed to make decisions about how many MWh of

energy to sell in each hour, and the conventional generatorsthen compete by submitting bids to the

market. We assume that the market participants all follow a subgame-perfect Nash equilibrium,

and as such we first analyze the behavior of the conventional generators.
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Conventional Generator Behavior

In both the competitive and oligopoly cases we assume that the conventional generators submit

supply functions of the formqi,t(p) to the market. This function specifies how much energy firmi

is willing to generate in hourt as a function of the price,p. In the competitive case, firms submit

supply functions equal to the inverse of their marginal costfunctions. We compute costs based

on the portfolio of generators that each firm owns, generatorheat rates reported by Global Energy

Decisions, and energy prices reported by Global Energy Decisions and Platts Energy.

In the oligopoly case, we model the behavior of the two largest firms using the SFE model (39).

The SFE model is widely used in modeling conventional electricity markets (40–44) and electricity

markets with renewables (22). This is because the SFE model assumes that firms compete by

submitting supply functions into a spot market, which is quite reminiscent of how actual electricity

markets operate. Most electricity markets have firms submitprice/quantity pairs, which can be

viewed as a discretized supply function (40).

To derive the SFE, we defineci,t(qi,t) as firm i’s cost in hourt as a function of the amount

of energy,qi,t , that it generates in hourt. Let Dt(p)+ εt denote the system load in hourt, where

Dt(p) is a price-elastic demand function andεt is a random demand shock. Because we assume

that all of the firms except the two largest submit competitive supply functions, we defineDt(p)

as the difference between the actual historical system demand and the supply functions of the

competitive firms. The SFE model assumes the random shock to ensure a non-degenerate solution

(39). In the context of an electricity market, such uncertaintyexists because system loads cannot

be perfectly predicted when bids are submitted to the market(28). Finally, letXt denote net sales

from wind and storage in hourt, which the conventional generators are assumed to know due to

the sequential nature of the market interaction.

Firm i determines its optimal hour-t supply function by solving the following profit-maximization
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problem:

max
p

Πi,t(p) = p ·

[

Dt(p)−Xt + εt − ∑
j∈ω(i)

sj ,t(p)

]

−ci

(

Dt(p)−Xt + εt − ∑
j∈ω(i)

sj ,t(p)

)

, (S1)

whereω(i) denotes the set of profit-maximizing generating firms in the market other than firm

i. The first-order necessary condition for each firm’s optimalchoice ofp can be manipulated to

yield the following set of coupled differential equations (there will be one equation for each profit-

maximizing firm):

qi,t(p) = (p−c′i,t(qi,t(p)))

(

−D′
t(p)+ ∑

j∈ω(i)

q′j(p)

)

. (S2)

Eq. (S2) will typically have multiple solutions, however ifthe profit-maximizing generators are

symmetric, then a unique symmetric equilibrium can be foundby solving the following single

differential equation:

qt(p) = (p−c′t(qt(p)))
(

−D′
t(p)+(n̂−1)q′t(p)

)

, (S3)

wheren̂ is the market Herfindahl-Hirschman index and the subscripti has been eliminated due to

symmetry (44).

As shown in Table S1, Luminant and Texas Genco are roughly symmetric in that they own

similar shares of generating capacity in the market. Moreover, the composition of their generator

fleets (i.e. generating technologies and fuels used) is fairly similar. Thus we model these two firms

assuming that they are symmetric and follow the equilibriumsupply functions given by Eq. (S3).

Wind and Storage Optimization Model

Once we determine the supply functions submitted by the generators, we can define the price of

energy in each hour in terms of net energy sales from wind and storage. If we letDt denote the
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actual system demand in hourt, the hour-t energy price is given by:

p∗t (Xt) = min
p

{

p

∣

∣

∣

∣

∣

∑
i

qi,t(p) = Dt −Xt

}

. (S4)

Note that this function is defined in the same manner (although with different supply functions) in

both the competitive and oligopoly cases. We assume that wind and storage are used to maximize

profits, while accounting for the effect ofXt on the price of energy. We formulate the wind and

storage optimization problem by first defining the followingmodel parameters:

κ : storage power capacity,

h: hours of storage,

η: roundtrip efficiency of storage,

ρ : wind production tax credit (PTC), and

w̄t : wind generation available in hourt.

We also define the following model variables:

vt : total energy in storage at the end of hourt,

st: energy stored in hourt,

dt : energy discharged from storage in hourt,

wt : wind generation used in hourt, and

Xt: net energy sales in hourt.
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The model is given by:

max
v,s,d,w,X

∑
t

p∗t (Xt) ·Xt +ρ ·wt (S5)

s.t. vt = vt−1 +st −dt ∀ t (S6)

Xt +st −dt/η = wt ∀ t (S7)

0≤ wt ≤ w̄t ∀ t (S8)

0≤ st ≤ κ ∀ t (S9)

0≤ dt ≤ ηκ ∀ t (S10)

0≤ vt ≤ hκ ∀ t (S11)

Eq. (S5) is the objective function, which maximizes profit from energy sales and the wind

PTC, which we assume to be $30/MWh. Eq. (S6) defines the storage level in each hour in terms

of charging and discharging decisions and the previous hour’s storage level. Eq. (S7) relates net

energy sales in each hour to wind energy used and energy stored and discharged. Eq. (S8) through

Eq. (S11) impose limits on the wind use, charging, discharging, and storage level variables in each

hour, based on the output of the wind generator and technicalcharacteristics of the storage plant.

The model places no restriction that storage only be chargedusing wind energy—thus wind and

storage could be a net buyer of energy if it charges more energy than wind produces in an hour.

This model assumes that the added wind and storage are operated by a single profit-maximizing

firm. While Table S3 shows that wind assets were relatively concentrated in 2005, this assumption

can overstate the extent to which wind and storage can exercise market power by adjusting sales to

maximize profits. Relaxing this assumption would not affectwind generation, since wind is never

curtailed under our single-firm assumption. This is becausethe wind PTC makes wind sufficiently

valuable that it is never beneficial to curtail generation. Storage use could increase, however, since

it is profit-maximizing to reduce storage use from a competitive level to maintain higher price

difference between on- and off-peak periods (20, 36). Based on our findings, especially contrasting
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the emissions effects of storage in the competitive and oligopoly generation cases, it is likely that

this greater use of storage would yield higher generator emissions.

Table S3: Breakdown of wind generation assets, on a capacitybasis, in 2005. The remaining seven
firms each own less than 5% of the wind capacity in the market.

Generating Firm Generating Capacity (%)

FPL Group 33
Babcock and Brown 14
Shell Wind Energy 13
Desert Sky 9
Pecos Wind 9
Trent Wind 8

This optimization framework can also be used to model the wind-only case by settingh = 0.

Similarly, by fixing w̄t = 0 in each hour, this problem can also model the storage-only case. In

order to reduce computational complexity of the model, we use a quadratic approximation of the

market price function,p∗t (Xt), (24). Moreover, we optimize the use of storage 24 hours at a time

using a 48-hour optimization horizon (20). This use of a 48-hour optimization horizon ensures

that energy is kept in storage at the end of each day if it has residual value by being used on the

next day. The model is formulated deterministically, therefore we assume that the wind generator

knows future wind availability.

Alternate Modeling Methods

Our modeling approach assumes that wind, storage, and conventional generators compete in the

market in a sequential manner, with wind and storage being the first-movers. As noted above, we

make this assumption since it allows us to model the behaviorof the conventional generators in

the oligopoly case using an SFE. Absent this assumption, theSFE model would not be valid due

to dynamic interactions between different time periods. This sequential assumption may, however,

overstate the dominance of wind and storage in the market. Thus it may be appropriate to model

the market in the oligopoly case as a simultaneous-move game, for instance by assuming that

generators, wind, and storage all behave as quantity-setting competitors in a Nash-Cournot game.

S7



On the other hand, an SFE model yields a richer strategy space, which is also more reminiscent

of actual electricity markets. Since it better represents the operation of actual electricity markets,

we opt for the SFE-based model. Nevertheless, since the timing of market interactions can impact

market outcomes, contrasting our results with a Cournot-type game would be a useful exercise,

and is an area of future study.
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