
Increasing the Value of Wind with Energy Storage✩

Ramteen Sioshansi

Integrated Systems Engineering Department, The Ohio State University, Columbus, Ohio, United States

Abstract

One economic disincentive to investing in wind generation is that the average market value of wind energy
can be lower than that of other generation technologies. This is driven by the exercise of market power
by other generators and the fact that the ability of these generators to exercise market power is inversely
related to real-time wind availability. We examine the use of energy storage to mitigate this price suppres-
sion by shifting wind generation from periods with low prices to periods with higher prices. We show that
storage can significantly increase the value of wind generation but the currently high capital cost of storage
technologies cannot be justified on the basis of this use. Moreover, we demonstrate that this use of storage
can reduce consumer surplus, the profits of other non-wind generators, and social welfare. We also examine
the sensitivity of these effects to a number of parameters including storage size, storage efficiency, own-
ership structure, and market competitiveness—showing that a more-competitive market can make storage
significantly more valuable to a wind generator.
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1. Introduction

One economic disincentive to investing in wind generation is that the average value of wind energy can
be lower than that of other generating technologies. This is because real-time wind availability can tend
to be negatively correlated with energy prices. This issue is further exacerbated with market power, since
the exercise of market power tends to be increasing in the demand for conventional generation, meaning
that energy prices will be highest when wind output is lowest, and vice versa.1 Green and Vasilakos (2010);
Twomey and Neuhoff (2010) both examine this issue in the UK market using supply function equilibrium
(SFE) and Cournot models, respectively. Green and Vasilakos (2010) show that depending upon the amount
of wind available, the price of energy could be depressed by more than £65/MWh due to this effect that wind
has on the market. Their analysis also shows that wind generators are subject to considerable risk due to
the variability in wind availability with wind revenues varying by up to £50/kW-year. Twomey and Neuhoff
(2010) compare average energy prices of wind and conventional generation, and show an average difference
of more than £20/MWh in some instances.

One way that this price-suppressing effect of wind could be mitigated is by coupling energy storage with
wind generation. A wind generator that has access to energy storage could shift wind generation from periods
with low energy prices to periods with higher prices. Similarly, wind generation could be shifted away from
periods in which high wind availability would suppress energy prices to periods in which higher loads or lower
output mean that wind has less of a price-suppressing effect. It bears mentioning that the coupling of wind
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generation and storage has been studied in other contexts, but that this proposed use of storage to increase
the market value of wind energy has not be studied before. Sørensen (1981); Cavallo (1995); Denholm et al.
(2005); Paatero and Lund (2005); DeCarolis and Keith (2006); Succar et al. (2006); Greenblatt et al. (2007);
Swider (2007); Black and Strbac (2007); Abbey and Joos (2007); Garćıa-González et al. (2008); Arsie et al.
(2009) all examine the value of using energy storage to manage the variable and unpredictable nature of wind
availability in power systems and the broader economics of energy storage and wind. Most of this analysis
has focused on more ‘engineering’ aspects of wind integration such as grid stability, load-balance, and system
security. Some of these analyses have also shown benefits from using energy storage as an alternative to
other dispatchable generators as a means of managing wind uncertainty, variability, and microturbulence.
However other analyses, such as those of DeMeo et al. (2005, 2007), suggest that energy storage may not
be necessary for these purposes until wind penetrations rise to levels higher than those seen in most power
systems today. LCRA (2003); Denholm and Sioshansi (2009) consider the use of storage to increase the
utilization of transmission assets by wind generators. They demonstrate that co-locating a storage device
and wind generator on one side of a transmission line can allow the capacity of the transmission line to be
reduced, since storage can be used to ‘level’ the output of the combined wind generator and storage device.

A downside to this use of storage is that the added flexibility that a wind generator would have in making
generation decisions if it has access to energy storage could afford it added market power, potentially resulting
in welfare losses. Bushnell (2003) demonstrates such a phenomenon with hydroelectric generators that have
some flexibility in determining how much water to use for generation in each period—which is effectively
a form of energy storage. His analysis shows that such generators may find it profitable to allocate more
hydroelectric generation during off-peak hours, in order to reduce generation and keep energy prices higher
during on-peak hours, yielding social welfare losses. Since energy storage would allow a wind generator to
shift generation between periods, there is the potential for similar types of negative welfare impacts.

This paper examines the potential effects and interactions of large-scale wind and energy storage in the
ERCOT (Texas) market. Using a Stackelberg-type SFE model to represent the behavior of generators,
we show that the price of wind energy will tend to be below the average price of energy, and that this
difference grows with the penetration of wind into the market. We demonstrate that a wind generator
having access to energy storage can increase wind profits, but that this use of storage will result in higher
consumer costs, lower conventional generator profits, and net social welfare losses. We also examine the
sensitivity of these impacts of storage to several of our model assumptions such as market competitiveness
and storage efficiency. We also consider the impacts of ownership structure on this value of storage, by
comparing a case in which the wind generator owns and operates the storage to a case in which the storage
is operated by an independent arbitrager, and show that the total value of storage is similar in these two
cases. This raises a question of why we assume joint as opposed to disjoint ownership of storage and wind
in our base case. As will be discussed in section 5.4, our results show that in the disjoint ownership case
energy storage will be more valuable to a wind generator than to an arbitrager, and as such conjecture
that it would be more likely to see a wind generator invest in storage. Moreover, our assumption of joint
ownership follows modeling methodologies used in other analyses of wind and storage, such as the work of
Denholm and Sioshansi (2009). The remainder of this paper is organized as follows: section 2 describes the
model and data used in our analysis, section 3 summarizes the impacts of wind penetration and storage on
wind profits while section 4 discusses the welfare effects of storage use. Section 5 discusses the sensitivity of
our results to some of our modeling assumptions, and section 6 concludes.

It is important to note that our analysis focuses exclusively on the impact that high wind penetrations will
have on suppressing the price and value of wind, and the potential value that energy storage could provide
in mitigating these impacts. Thus, we ignore the impacts that wind uncertainty or variability would have on
power system operations or on scheduling or contracting decisions made by a wind operator. Similarly, our
analysis does not explore the benefits that storage could provide in mitigating these uncertainties. While
energy storage could no doubt play a vital role in these capacities, the focus of our analysis is on the price
effect of wind and our modeling assumptions reflect that. For instance, as is discussed in section 2, we
assume that in cases in which the wind generator has access to energy storage, it has perfect foresight of
future wind availability in making its storage decisions.
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2. Model

Our model assumes that the market consists of three types of generators: the wind generator, a set of
strategic conventional generators, and a competitive fringe of non-strategic conventional generators. More-
over, we consider cases in which the wind generator does and does not have access to energy storage and will
also consider, in section 5, a case in which there is energy storage owned and operated by an arbitrager that
is independent of the wind generator. We model the interactions between and decisions of the wind generator
and conventional generators as a two-stage Stakelberg-type SFE model in which the wind generator is the
leader and the conventional generators are followers. Thus, we assume that the wind generator first makes
hourly decisions regarding its net energy sales in order to maximize its profits. These energy sales decisions
will depend on real-time wind availability, whether it has access to energy storage, and how the market
price will react to the wind generator’s sales. Conventional generators then simultaneously submit supply
functions to the market, which determine how the market price will react to the wind generator’s sales.
The strategic conventional generators are assumed to submit supply functions that maximize their expected
profits, whereas the competitive fringe is assumed to submit supply functions based on marginal generation
costs. Because of the sequential nature of the game we assume that the firms follow a subgame-perfect Nash
equilibrium (SPNE), in which the strategic conventional generators determine profit-maximizing supply
functions given the wind generator’s energy sales and the supply functions of rival conventional generators,
and the wind generator determines profit-maximizing energy sales given the expected SFE that will occur
in the second stage of the game.

We rely on the assumption of a Stackelberg-type interaction between the wind and conventional gener-
ators because it allows us to model the behavior of the conventional generators using an SFE. Absent this
assumption the SFE would not hold, since each conventional generator’s residual demand function would
be dependent on supply decisions made in other periods, as these decisions would influence the storage
charging and discharging decisions. The Stackelberg assumption may, however, overstate the dominance of
the wind generator in the market. Thus it may be appropriate to model the market as a simultaneous-move
game, for instance by assuming the generators all behave as quantity-setting Cournot competitors. On the
other hand, an SFE model yields a much richer strategy space, which is also more reminiscent of actual
electricity markets, into which generators submit supply functions, than a Cournot model. Since it better
represents the strategy space that generators compete in, we have opted for the SFE model. Nevertheless,
since the timing of market interactions can impact theoretical market outcomes, contrasting our results with
a simultaneous Cournot-type game would be a useful exercise, and is an area of future study.

In order to solve for an SPNE we use backward induction and begin by considering the SFE between
the conventional generators.

2.1. Stage 2: Supply Function Equilibrium

In the second stage of the game the conventional generators submit supply functions, which specify the
quantity of energy that they are willing to supply to the market at each given price. Klemperer and Meyer
(1989), who first develop the SFE model, assume firms compete in supply functions because of uncertainty in
the residual demand that they will serve. This demand uncertainty allows the firms to derive supply functions
that give a profit-maximizing price/quantity pair for each possible demand realization. Green and Newbery
(1992) apply the SFE model to the British electricity market and note that the demand uncertainty assump-
tion is equivalent to the fact that generators in spot markets must commit to a fixed supply function for a
period of time during which there are a number of settlements with different and uncertain demand. For
example, Sioshansi and Oren (2007); Hortaçsu and Puller (2008), who empirically validate the SFE model
in the ERCOT market, note that generators submit supply functions that are fixed for an entire hour, during
which the market settles at four 15-minute intervals. Because the exact demand for spot energy in these four
settlement periods is uncertain, this is equivalent to the uncertainty assumption of Klemperer and Meyer
(1989). It is important to note that although electricity demand can be forecast fairly accurately hour-
ahead, there is nonetheless some demand uncertainty and this uncertainty will yield a non-trivial SFE so
long as the demand can take on different values with some non-zero probability (regardless of how small
those probabilities may be). Moreover, because real-time wind availability is also somewhat uncertain, the
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presence of the wind generator and its sales decisions will add to the demand uncertainty that the strategic
firms face since the strategic firms will view wind sales as a shift in their residual demands.

Equilibrium supply functions are obtained from the strategic firms’ profit-maximization problem. Firm
i’s profit maximization is given as:

max
p

πi(p, t) = p ·



D(p, t) −
∑

j 6=i

qj(p)



 − ci



D(p, t) −
∑

j 6=i

qj(p)



 , (1)

where p is the market price, D(p, t) is the market demand function at time t, qj(p) is firm j’s supply function,
and ci(·) is firm i’s cost function. Manipulating the first-order necessary condition (FONC) of equation (1)
gives a set of coupled differential equations characterizing an SFE. Firm i’s FONC becomes:

qi(p) = (p − c′i(qi(p)))



−
∂

∂p
D(p, t) +

∑

j 6=i

d

dp
qj(p)



 . (2)

As discussed by Klemperer and Meyer (1989); Baldick and Hogan (2002); Holmberg (2007, 2009), one of
the difficulties with the SFE model is that there is typically not a unique equilibrium, and asymmetric SFE
can be difficult to compute. Green (2008) shows how to derive a unique equilibrium assuming the strategic
firms are symmetric, in which case differential equation (2) becomes:

qi(p) = (p − c′i(qi(p)))

(

−
∂

∂p
D(p, t) + (n̂ − 1)

d

dp
qi(p)

)

, (3)

where n̂ is the inverse of the industry Herfindahl-Hirschman index (HHI). Because the HHI is computed
empirically based on the market shares of the strategic firms, n̂ is not restricted to take an integer value.

Following Sioshansi (2010a) the conventional generators in ERCOT are modeled using the generator set,
operating costs, and loads from 2005. Based on empirical evidence given by Sioshansi and Oren (2007);
Hortaçsu and Puller (2008) and following Sioshansi (2010b) the market is assumed to have two strategic
generating firms—TXU and Texas Genco—which are roughly symmetric and for which equilibrium supply
functions are derived. The remaining conventional generators are assumed to behave competitively and
offer their generation on the spot market at marginal cost. Therefore these remaining firms constitute the
competitive fringe and their competitive supply functions are used to determine the hourly price-elastic
demand functions as:

D(p, t) = Dt −
∑

k

sk(p, t), (4)

where Dt is the total metered demand in hour t and sk(p, t) is the supply function of the kth firm in the
competitive fringe. These computed demand functions are then used in equations (1) through (3), and it is
important to note that we use only the supply functions of the competitive fringe (as opposed to forward
contracting) to compute the price-elastic demand function. The approximately 2 GW of wind that was
operating in ERCOT in 2005 is included in the generation portfolios of the firms that it was owned by in
2005. As is discussed below, our analysis of the price and profit effects of higher wind penetrations will focus
on up to an additional 10 GW of wind being added to the ERCOT system. Thus, our analysis of the value
of wind and energy storage focuses on the economic performance of this additional wind capacity.

Conventional generators’ costs are computed using engineering estimates, with heat rate and fuel cost
data obtained from Ventyx and Platts. Because fuel costs generally vary on a daily basis, we compute
an SFE for each day in our sample. Nuclear generators and wind generators that existed in 2005 are
assumed to be operated as must-run units by the system operator, and to not be bid strategically by the
generators. Real-time wind availability of wind plants that existed in 2005 is based on hourly modeled
historical mesoscale data for 2005 provided by 3TIER. Each wind generator is associated with the location
in the 3TIER data that is geographically closest and the associated modeled data is used to determine

4



real-time wind availability from that wind plant.2 Hourly metered load data, as reported by ERCOT, is
combined with the marginal cost functions of the competitive fringe and nuclear output to determine the
demand function, D(p, t), as given in equation (4).

2.2. Stage 1: Wind Optimization

In the first stage of the game the wind generator decides how much wind to sell and, in the cases in which
it has access to energy storage, how to operate the storage. We assume that the wind generator anticipates
the SFE that will occur in the second stage of the game and determines its wind sales and storage operations
to maximize profits given how its net wind sales and the SFE will determine the price of energy. Moreover,
because the case in which the wind generator does not have access to energy storage can be likened to the
wind generator having a storage device with zero capacity, this model can, without loss of generality, be
applied in cases with and without energy storage.

The supply functions of the conventional generators from the second stage of the game can be combined
with the actual electricity demand to determine a market price function, which gives the price of energy as
a function of net energy sold by the wind generator. If we let x denote the wind generator’s net energy sales
and si(p) represent conventional generator i’s supply function, then the market price function in hour t is
defined as:

pt(x) = inf

{

p

∣

∣

∣

∣

∣

Dt ≤ x +
∑

i

si(p)

}

. (5)

This market price function can then be combined with real-time wind availability data and characteristics
of the energy storage to model the profit-maximizing co-optimization of the wind and storage. In order to
give the formulation of the model, we first define the following model parameters:

• T : number of hours in planning horizon

• κ: storage power capacity (MW)3

• h: hours of storage4

• η: roundtrip efficiency of storage

• X : wind production tax credit ($/MWh)

• w̄t: wind generation available in hour t

We then define the following decision variables:

• lt: storage level at the end of hour t

• st: energy put into storage in hour t

• dt: energy taken out of the storage in hour t

• wt: wind used in hour t

• σt: net energy sales in hour t

2Alternatively, actual generation data from 2005 could be used for these wind generators. We opt not to use this approach,
however, because actual generation data is censored due to transmission-related wind curtailments, which, as discussed by
LCRA (2003); Sioshansi and Hurlbut (2010), were non-trivial during this period.

3Our model assumes that the storage has the same charging and discharging capacity. Greenblatt et al. (2007) note that
many modern storage devices can easily be designed with different charging and discharging capacities.

4While some authors define ‘hours of storage’ as the number of hours the storage device can be discharged at maximum
capacity, we define it as the number of hours the device can be charged at maximum capacity.
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The formulation of the model is then given as:

max

T
∑

t=1

pt(σt) · σt + X · wt (6)

s.t. lt = lt−1 + st − dt ∀ t = 1, . . . , T (7)

σt + st − dt/η = wt ∀ t = 1, . . . , T (8)

0 ≤ wt ≤ w̄t ∀ t = 1, . . . , T (9)

0 ≤ st ≤ κ ∀ t = 1, . . . , T (10)

0 ≤ dt ≤ ηκ ∀ t = 1, . . . , T (11)

0 ≤ lt ≤ hκ ∀ t = 1, . . . , T (12)

Constraint (7) defines the storage level in each hour as a function of the previous storage level and
charging and discharging decisions made. Constraint (8) defines energy sales in terms of wind use and storage
decisions. Constraint (9) limits wind generation based on actual wind availability, while constraints (10)
through (12) are power and energy capacities on storage.

We assume that the wind generator optimizes the dispatch of storage over the year one day at a time, using
a rolling two-day optimization horizon. As discussed by Sioshansi et al. (2009), the two-day optimization
horizon is used to ensure that the storage is not fully discharged at the end of each day, which would be
optimal behavior if a one-day optimization horizon is used. The starting storage level at the beginning of
each day is fixed based on the ending storage level of the previous day (except that we assume that storage is
empty at the beginning of the first day of the year). Thus stored energy is not ‘lost’ between days. Moreover,
because there is no value in keeping energy in storage at the end of the last day of the year, storage is always
optimally empty at the end of the year. We further assume that the wind generator has perfect foresight of
wind availability and the market price function.

We consider cases in which the wind generator owns up to 10 GW of nameplate wind capacity. We
determine the real-time availability of wind from the hourly historical mesoscale model data provided by
3TIER. We assume that the additional wind generators will be located at the same sites as actual and
planned wind installations in ERCOT between 2005 and 2011, and assume that the incremental capacity
is distributed in proportion to the planned capacities at these sites. These sites are then associated with
the 3TIER data based on geographic distance, and the real-time wind availabilities of the incremental wind
generators are scaled based on the assumed nameplate capacity. It is worth noting that because we assume
the incremental wind capacity at these sites will be scaled in proportion to planned wind installations, we
are not fully capturing potential mitigation of wind resource variability through geographic aggregation.
However, because the focus of our analysis is on the price effect of wind as opposed to wind variability, this
assumption is justified. We also assume that the wind generator will be eligible for the $19/MWh production
tax credit (PTC) for all of the wind that it uses, and that this PTC applies to wind energy that is put into
storage.

Because the equilibrium supply functions given by equation (3) will generally be nonlinear, the market
price function will be nonlinear as well. In order to reduce the complexity of the wind generator’s profit-
maximization problem, we approximate the market price function as a quadratic polynomial by ordinary
least-squares. Figure 1, which shows the actual computed market price function and quadratic approxima-
tion, shows the approximation to be a relatively good fit. The wind generator’s profit-maximization problem
is formulated using AMPL 11.21 and solved using ipopt 3.5.4 (Fourer et al. (2002); Wächter and Biegler
(2006) provide details on the software packages). Because the market price function is assumed to be
quadratic, the profit-maximization problem will be non-convex. As such, we are not guaranteed to have
found a global maximum of the wind generator’s profit-maximization problems and our estimates may un-
derstate the value or effects of energy storage. Thus our results should be viewed as providing a lower-bound
on the value of storage.
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Figure 1: Actual computed market price function and quadratic approximation for hour 1 of 1 January, 2005.

3. Price of Wind and Value of Storage

Table 1 demonstrates the effect of energy prices responding to wind generation by showing the energy-
weighted average price of wind energy and the average load price, for the case in which there is no storage. By
comparison, the average price of wind energy and the average load price are $92.48/MWh and $98.94/MWh,
respectively, if prices are fixed.5 The table shows that in all cases and even with fixed prices, the price of
wind generation tends to be lower than the overall average. With wind-responsive prices, introducing wind
to the system suppresses energy prices—which is shown by a 5.7% decrease in the average load price with
10 GW of added wind. Because the price-suppressing effect of wind is concentrated in hours in which there
is wind available, the effect is more pronounced for wind energy. For example, adding 10 GW of wind
reduces the price of wind by 13.1%. These results are consistent with the findings of Green and Vasilakos
(2010); Twomey and Neuhoff (2010). Figure 2 summarizes the effect that this price-suppression has on the
incremental wind generator’s profits by comparing profits in the fixed- and responsive-price cases. The figure
shows absolute profit losses between these two cases, and relative profit losses as a percentage of the profits
that would be earned with fixed prices. The results show that responsive prices can diminish the value of a
wind generator by close to 11%, translating into an annual loss of more than $350 million.

Table 1: Average price of wind energy and average load price with wind-responsive prices. For comparison, with fixed prices
the average price of wind energy is $92.48/MWh and the average load price is $98.94/MWh.

Wind Capacity (MW) Wind Price ($/MWh) Load Price ($/MWh)
1000 91.41 98.44
2000 90.31 97.92
3000 89.19 97.39
4000 88.03 96.85
5000 86.84 96.30
6000 85.62 95.74
7000 84.36 95.16
8000 83.06 94.57
9000 81.73 93.96
10000 80.37 93.34

Figure 3 shows the annual value to the wind generator of different amounts of energy storage assuming
wind-responsive prices. The value of storage is defined as the increase in the annual profits of the wind

5In order for the fixed- and responsive-price cases to be comparable, the fixed prices are calculated from the market price
function, but assuming that prices do not respond to wind generation (i.e. assuming that prices are fixed at pt(0) in each hour).
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Figure 2: Wind generator’s profit losses from wind-responsive prices. Total profit loss is defined as the difference in profits
between the fixed- and responsive-price cases, relative profit losses gives this difference as a percentage of profits in the fixed-price
case.

generator with storage compared to the no-storage case. This profit increase is due to the ability of energy
storage to shift wind generation to higher-priced periods and partially mitigate the price-suppressing effect
of wind. The figure assumes the wind generator has 10 GW of wind capacity and that the energy storage has
a power capacity between 500 and 10000 MW, between 1 and 20 hours of storage, and a roundtrip efficiency
of 0.8. As Sioshansi et al. (2009) note, depending on the underlying technology, storage devices can range
between the sizes that we consider here. They also note that 0.8 is a reasonable storage efficiency, but is at
the upper end of storage technologies available today (we consider the effect of storage efficiency further in
section 5). The figure also assumes a no-arbitrage restriction, which limits the wind generator to use storage
solely for shifting of wind generation between periods as opposed to for energy arbitrage purposes, on the
use of storage. This restriction is imposed in the wind generator’s profit-maximization problem by adding
the constraint:

st ≤ wt ∀ t = 1, . . . , T. (13)

We impose this constraint because the focus of our analysis is on the use of storage to increase the value
of wind generation and not on the value of arbitrage.6 We do, however, relax this constraint as part of our
sensitivity analysis in section 5 to capture the added value that arbitrage could provide a wind generator.

The figure shows that energy storage can play a noticeable role in increasing the market value of wind
generation and the profitability of a wind generator. The smallest storage size that we consider, 500 MW with
one hour of storage, increases the average selling price of wind by $0.22, which translates into a $3.8 million
increase in annual revenues of the wind generator. The largest storage size, 10 GW with 20 hours of storage,
increases the selling price of wind by $5.16, resulting in a $74.4 million increase in annual revenues. The
figure also shows that the ability of storage to increase the profits of the wind generator reaches a ‘saturation
frontier,’ which is roughly in the shape of a parabola going through storage sizes of 5000 MW with 20 hours
of storage, 6000 MW with 10 hours of storage, and 10000 MW with 6 hours of storage. Although the selling
price of wind and wind profits are increased with amounts of storage above this parabola, the incremental
increases are small compared to the gains from smaller storage sizes.

Figure 4 summarizes the value of 500 MW of storage with eight hours of storage to different-sized wind
generators, assuming the no-arbitrage restriction is still in place. The value of storage is given in both
absolute terms and as a percentage of the profit losses between the fixed- and responsive-price cases. The
fact that storage value is strictly increasing and non-diminishing in the capacity of the wind generator,

6It is important to note that we do not advocate such a use of a storage, since storage has many potential and valuable
applications, as surveyed by Eyer and Corey (2010). Rather, we impose the constraint due to the focus of our analysis. Indeed,
one could argue that even if we included arbitrage in this ‘base case,’ it would understate the value of energy storage, since
storage could be used for ancillary service, capacity, transmission, and many other applications.
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Figure 3: Annual value of storage to a 10 GW wind operator assuming wind-responsive prices and no arbitrage. Storage value
is defined as the increase in the wind generator’s total annual profits when it has access to storage.

despite the modest amount of storage, shows that the wind generator does not ‘saturate’ the ability of
storage to provide value. Rather, the ability to influence market prices through the use of storage becomes
increasingly valuable to a larger wind generator regardless of the relative sizes of storage and the generator.
Moreover, the figure shows that for smaller-sized wind generators, the increase in profits from generation
shifting outweighs the profit loss from wind-responsive prices, which is shown by the greater than 100%
profit increases for small wind generator sizes.
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Figure 4: Value of 500 MW of storage with eight hours of storage assuming wind-responsive prices and no arbitrage. Storage
value is defined as the increase in the wind generator’s total annual profits when it has access to storage. Relative storage value
gives this increase as a percentage of the profit losses shown in figure 2.

One natural question that arises from this analysis, and especially figure 3, is what amount of storage
can be economically justified based on the increase in wind profits or at what cost storage investments can
be justified. This type of analysis would require comparing the capital cost of storage to several year’s
worth of revenue streams, which presents some complications. One is that it has been some time since
utility-scale energy storage has been built in the United States, and there are a wide range of estimates for
the capital cost of storage. Moreover, most cost estimates are site-specific since some storage technologies,
such as pumped hydroelectric storage (PHS), require specific geological conditions. Despite these caveats,
some capital costs estimates, such as those of Deane et al. (2010), do exist. Recent estimates of PHS capital
costs (in 2005 dollars) are in the range of $1355–1806/kW, while the cost of compressed-air energy storage
(CAES) is estimated to be in the $677–903/kW range. It is important to note, however, that CAES is a very
different storage technology from what we have modeled here since CAES is a hybrid technology that uses
natural gas when discharging, and as such incurs a non-trivial variable operating cost (Succar and Williams
(2008) provide a more detailed description of CAES technology). Thus it is not strictly correct to compare
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the storage values we have estimated to the capital cost of CAES—instead we would have to account for
the impact of natural gas costs on the optimized operation and value of CAES, which would likely be lower
than the pure storage technology we have modeled. We nevertheless include CAES in this cost analysis
simply for comparative purposes, since CAES is currently the storage technology with the lowest capital
cost. Moreover, although other storage technologies, such as electrochemical energy storage exist, the capital
cost of these technologies are much higher than those of PHS and CAES, and as such we exclude these from
consideration here.

The second complication with our cost analysis is that it would require making assumptions about several
years worth of energy prices and wind conditions. Rather than making these assumptions about future
conditions, we opt to present a year-1 breakeven cost, assuming an 11% capital charge rate (CCR). This CCR
is meant to capture all of the various financing parameters involved in storage investment and converts the
total capital cost of storage into an annual cost of financing an investment in storage (Denholm and Sioshansi
(2009) further discuss this use of the CCR). Using this CCR, the breakeven cost of energy storage is computed
by dividing the annual values of storage given in figure 3 by 0.11—which amounts to a roughly factor of
nine increase in the annual storage value. Thus, depending upon the size of storage, these breakeven costs
range between $34 million and $676 million. When translated to a per-kW basis, the highest breakeven
cost of storage for a 10 GW wind operator is $317/kW, which is for 500 MW of storage with 20 hours
of storage and is much lower than current energy storage cost estimates—implying such an investment in
storage would not be prudent. It is important to note, however, that because storage can be put to multiple
uses, such as reducing transmission capacity requirements of the wind generator and reducing uncertainty
in wind output, the value of storage and associated breakeven cost can be higher than the value estimates
given in figure 3. Moreover, since we have excluded other market services, such as arbitrage or ancillary
services, the value of storage may be even higher. For instance, Denholm and Sioshansi (2009) show that
it can be economic to use energy storage to reduce transmission requirements for a wind generator. If this
wind generator also faces wind-responsive prices, the value of this energy storage could be higher since the
storage could provide an additional service. On the other hand, multiple uses of storage may ‘compete’ with
each other, resulting in subadditive value. For instance, if storage is being used to level the output of a wind
farm to reduce transmission capacity requirements, this may interfere with the use of storage to reduce the
price-suppression effect.

4. Impact of Wind and Storage on Welfare

Although the price-suppressing effect of wind will reduce the market value of wind and wind profits,
these price changes will also affect conventional generators and consumers. Conventional generators will
generally see their profits reduced due to lower demand for conventional energy (since more wind energy will
be available) and their generation commanding a lower price. Consumers, on the other hand, will generally
see their energy costs decrease. Moreover, because the value of energy storage to a wind operator is that it
increases the market price of wind, this use of storage will negate some of these external welfare effects of
wind.

Figure 5 summarizes the welfare effects that wind-responsive prices have on the three entities affected:
wind generators, conventional generators, and consumers. The welfare change of wind and conventional
generators are defined as the difference between the total annual profits of the two groups with fixed and wind-
responsive prices. Because energy prices are lower with wind-responsive prices, both wind and conventional
generators have annual welfare losses for all wind capacities. The change in consumer welfare is computed
as the difference in the cost of serving consumer loads with fixed and wind-responsive prices, since this
generation cost is passed onto consumers through their electricity tariffs. Because wind-responsive prices
are lower than fixed prices, consumers have an annual welfare gain due to lower total energy costs. The line in
figure 5 shows the total welfare change, which is defined as the sum of welfare changes to the three groups.
The line shows that while most of the welfare changes are wealth transfers from wind and conventional
generators to consumers, there are some net welfare gains of up to $50 million with 10 GW of wind, which
is indicated by the fact that the line is always slightly greater than zero.
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Figure 5: Annual generator and consumer welfare changes between fixed- and responsive-price cases. Wind and conventional
generator welfare changes are defined as the difference in firm profits between the two cases. Consumer welfare change is
defined as the difference in total energy costs between the two cases.

When storage is added to the system, the wind operator will generally use it to increase the value of wind,
which will tend to increase the overall load price. Figure 6 summarizes the welfare effect of adding energy
storage to the market by comparing generators’ profits and consumer costs with 10 GW of wind and storage
to a case with 10 GW of wind and no storage. The figure assumes that prices are wind-responsive, the no-
arbitrage constraint is still imposed, and considers a case with eight hours of storage with power capacities
ranging between 500 MW and 10000 MW. As with figure 5, the changes in the generators’ welfares are
computed as the change in their profits, whereas the change in consumer welfare is computed as the change
in energy costs (between the cases with and without energy storage).
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Figure 6: Annual generator and consumer welfare changes with eight hours of storage with 10 GW of wind, assuming wind-
responsive prices and no arbitrage. Wind and conventional generator welfare changes are defined at the difference in firm
profits between the storage and no-storage cases. Consumer welfare change is defined as the difference in total energy costs
between the two cases.

Figure 6 shows that adding storage to the market has the effect of increasing the wind generator’s
profits (as was also shown in section 3) but decreasing consumer welfare and the profits of conventional
generators. The decrease in consumer welfare should be fairly intuitive—because the wind generator uses
storage to increase the selling price of its wind energy, this will reduce the price-suppressing effect of wind
resulting in higher energy costs and a welfare loss to consumers. The loss of conventional generator surplus
is, however, not as intuitive. Because energy storage will increase the average price of energy, this will
tend to increase conventional generators’ energy revenues, and this is observed in our results. Moreover,

11



because energy storage incurs efficiency losses when wind energy is put through the storage cycle, adding
energy storage will also increase the total volume of sales from conventional generators. However, because
energy storage is used to shift wind generation from lower- to higher-priced hours, this implies that the
increases in conventional generation will be concentrated in hours with lower prices and with a lower energy
price markup over cost (due to the nature of an SFE). Conversely, most of the decreases in conventional
generation will be concentrated in hours with higher prices and a higher energy price markup over cost.
Thus, although the use of energy storage increases the revenues of conventional generators, the associated
increases in generation cause an even larger increase in generation costs, due to the generation increases
being concentrated in hours during which the energy price markup over cost is lower.

To demonstrate this phenomenon more concretely, table 2 compares the energy price and average con-
ventional generation cost with and without 10000 MW of storage with eight hours of storage, assuming
10 GW of wind is in the system. When storage is added to the system, the resulting change in the output
of the combined wind generator/storage operator causes conventional generators to increase their output in
2421 hours of the year and yields a gross generation increase of 5117 GWh from the conventional generators
during these hours (compared to the no-storage case). Similarly, in 2320 hours of the year conventional
generators reduce their output by a total gross amount of about 4094 GWh. Thus, when these increases and
decreases in generation are taken into account, the conventional generators have a net increase in output of
about 1023 GWh, due to the efficiency losses associated with wind energy being put through the storage
cycle. However, the average price of energy during hours in which the output of the conventional generators
decrease is about $95.89/MWh whereas they incur an average cost of about $70.21/MWh. Conversely,
the average energy price during hours in which the output of conventional generators increase is about
$77.26/MWh whereas they incur an average cost of about $59.23/MWh. Thus, the use of storage causes
about 4094 GWh of generation to be shifted from hours with an average profit margin of about $25.68/MWh
to hours with an average profit margin of about $18.03/MWh, yielding the overall welfare loss. Smaller-sized
storage devices will have a similar effect, although the scale of the losses to conventional generators will be
smaller due to the fact that a smaller amount of storage will not allow as much generation and price shifting
to take place.

Table 2: Differences in dispatch, selling price, and average generation cost of conventional generators due to energy storage,
assuming 10 GW of wind, wind-responsive prices, and no arbitrage. Differences given are between no-storage and 10 GW of
storage with eight hours of storage cases.

Conv. Gen. Increase Conv. Gen. Decrease
Number of Hours 2421 2320
Gross Generation Change (GWh) 5117 4094
Average Energy Price ($/MWh) 77.26 95.89
Average Generation Cost ($/MWh) 59.23 70.21
Average Profit Margin ($/MWh) 18.03 25.68

Thus, figure 6 shows that the net welfare effect of adding storage to the system will be to decrease profits
of conventional generators, increase consumers costs, and increase wind profits. Moreover, the line in figure 6
gives the change in total welfare, showing a net social welfare loss when storage is added.

5. Sensitivity of Storage Value to Model Assumptions

Because the value of storage and our results will be dependent on the assumptions underlying our model,
we repeat the analysis to determine their sensitivity to storage efficiency, the competitiveness of the market,
the ability of the wind generator to use storage for arbitrage, and storage ownership structure.

5.1. Storage Efficiency

As Sioshansi et al. (2009) note, the 80%-efficient storage that we have assumed thus far is toward the
upper-end of modern storage devices, with PHS having efficiencies in the range of 65–85% and large battery
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systems having efficiencies of around 65–75%. As such, we consider the effect of storage efficiency on its value
to a wind generator. Figure 7 summarizes the effect of storage efficiency on storage value, by showing the
reduction in storage value between lower- and 80%-efficient storage. The loss in value is given as a percentage
of the value of 80%-efficient storage, and assumes the wind generator has 10 GW of wind capacity and that
there are eight hours of storage—fewer and more hours of storage show very similar results. The figure shows
that storage value is highly sensitive to its efficiency. For instance, reducing the efficiency of a 1000 MW
device by 12.5% from 0.8 to 0.7 reduces the value of storage by 41.8%. This sensitivity to the efficiency of
the device is also observed by Sioshansi et al. (2009) in the context of arbitrage value. They attribute the
sensitivity to the fact that a more inefficient device must charge more hours to discharge a given amount,
and that these additional hours in which it must charge will be more expensive. In our context a related
phenomenon occurs: we still have that a less-efficient device must charge more hours for a given discharge,
but we also have that when the price of energy is suppressed by wind generation the alternative of putting
wind into storage is less attractive, since more energy will be lost due to efficiency losses.
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Figure 7: Loss in value of lower-efficiency storage device as compared to an 80%-efficient device assuming 10 GW of wind, eight
hours of storage, wind-responsive prices, and no arbitrage.

5.2. Market Competitiveness

Another sensitivity we consider is the competitiveness of the market in which the wind generator is
participating. Our analysis thus far has assumed a market with two strategic conventional generators
(because n̂ is computed based on the actual market shares of the two firms, our analysis has used n̂ = 1.97
in equation (3)), which will tend to result in comparably high exercise of market power. The effect of
this market power will be that energy prices will tend to be much higher than marginal cost in periods in
which conventional generating loads are high, which will also tend to be periods in which wind availability
is low. In a more competitive market, by contrast, energy prices will tend to be comparably closer to
marginal cost, even when conventional generating loads are high and will spike only during hours with
extremely high demand peaks. We repeat our analysis for a case in which the market has six symmetric
strategic conventional generators. We derive the cost functions of the strategic generators from the same
cost estimates for TXU and Texas Genco (i.e. we use the same cost function for the strategic generators in
this case as in the duopoly case), but assume that n̂ = 6 in equation (3). We also use the same demand
values and competitive fringe to derive the price-elastic demand functions, D(p, t).

Figure 8 summarizes the effect that this more-competitive market has on the value of wind generation
and storage by showing the average price of wind from a 10 GW generator, assuming wind-responsive prices
and no arbitrage, and with different amounts of energy storage. The more-competitive market tends to
have lower prices overall, because the strategic firms have less opportunity to exercise market power. This
effect will also reduce the overall value of wind generation. For example, without storage the average energy
price for a 10 GW wind generator drops to $58.13/MWh, compared to an average price of $80.37/MWh in
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the duopoly case. On the other hand, the value of storage is significantly higher in the more-competitive
market because there is added value in the wind generator being able to shift its generation to periods with
extremely high loads, which will have higher energy price peaks (although not as high as in the duopoly
case). This is shown by the fact that in the duopoly case 10 GW of storage with 20 hours of storage
only increases the average selling price of wind by about $5.16/MWh, as opposed to an average wind price
increase of $13.18/MWh in the six-firm case. Moreover, comparing figure 8 to 3 shows that in the more
competitive market the value of storage does not plateau (over the range of storage sizes that we consider)
as it does with a duopoly, since the average wind price does not plateau with larger storage sizes.
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Figure 8: Average selling price of generation from a 10 GW wind generator with different amounts of storage assuming
wind-responsive prices, no arbitrage, and six symmetric strategic generating firms in the market.

It is also interesting to note that in this more competitive case, the year-1 breakeven cost of 500 MW
of storage with 20 hours of storage, assuming the same 11% CCR, is $756.74/kW, which is much closer to
the cost estimate of PHS. Moreover, this breakeven cost is within the range of cost estimates for CAES,
although it is again important to stress that our model has assumed a pure storage technology. Thus, a
more complete analysis that considers the hybrid nature of CAES would be needed to determine whether
CAES would be an economic investment for these purposes.

5.3. Energy Arbitrage

The next model sensitivity that we consider is the value of allowing the wind generator to use storage
both for energy arbitrage and to store wind. As discussed above, we impose constraint (13) on the wind
generator’s profit-maximization problem in the base case to ascertain the value to a wind generator of using
storage exclusively for storing wind and reducing the price-suppressing effect of wind. In practice, however,
a wind generator could use storage for arbitrage in addition to storing wind.7 Figure 9 summarizes the
arbitrage value of a storage device owned by a 10 GW wind operator, which is defined as the increase in
profit when constraint (13) is relaxed in the wind operator’s profit-maximization problem. The figure shows
that a wind generator can make use of the storage device for arbitrage, although the value of this arbitrage
is two orders of magnitude smaller than the value of using storage for the shifting of wind generation.
Moreover, the value of arbitrage has a similar plateauing effect to that seen before, in that for a 7 GW
or larger storage device there is no added value from increasing the hours of storage above eight. This
plateauing effect is likely due to the assumption that the dispatch of storage is optimized using a rolling
two-day planning horizon. If storage use is being optimized over a longer period, such as a week or two,
additional hours of storage can allow for more interday arbitrage.

7As implied above, a wind generator may have even more lucrative options available. For instance, Walawalkar et al. (2007)
show that providing regulation services can be more profitable than energy arbitrage.
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Figure 9: Annual arbitrage value of storage to a 10 GW wind generator assuming wind-responsive prices. Arbitrage value
is defined as the increase in profits when the no-arbitrage constraint is relaxed in the wind generator’s profit-maximization
problem.

5.4. Storage Ownership

Another question raised by our analysis of wind and storage is whether the same effects of storage could
be achieved if storage is owned by a separate and independent entity that uses storage solely for arbitrage
purposes. Indeed, one might argue that this model of disjoint ownership would be a better case to consider
than a joint wind and storage operator, since a wind generator may not wish to invest in energy storage.
When storage is owned by a separate entity, the market and the price of energy will dictate the decisions
that the storage operator makes and the interactions between wind and storage. For instance, the energy
price will be suppressed during hours with abundant wind availability, due to the wind generator having
to sell its energy. However, the storage operator would charge its storage during these hours due to the
relatively low price of energy. Conversely, hours with low wind availability will have comparably higher
energy prices and as such the storage operator would discharge storage during such hours. Thus, the price
impacts of wind and profit-maximizing storage operations can help yield a similar outcome to what would
occur with joint ownership of wind and storage.

This situation of disjoint storage ownership can be modeled by assuming that the wind generator and
storage operator simultaneously make their wind generation and storage decisions in stage 1 of the game.
If we define γt to be net energy sales from the storage operator, the wind generator’s profit-maximization
problem is given by:

max
wt

T
∑

t=1

[pt(γt + wt) + X ] · wt (14)

s.t. 0 ≤ wt ≤ w̄t ∀ t = 1, . . . , T (15)

where constraint (15) bounds wind generation in each hour based on real-time wind availability. The storage
operator’s profit-maximization problem is given by:

max
γt,st,dt,lt

T
∑

t=1

pt(γt + wt) · γt (16)

s.t. lt = lt−1 + st − dt ∀ t = 1, . . . , T (17)

γt = dt/η − st ∀ t = 1, . . . , T (18)

0 ≤ st ≤ κ ∀ t = 1, . . . , T (19)

0 ≤ dt ≤ ηκ ∀ t = 1, . . . , T (20)

0 ≤ lt ≤ hκ ∀ t = 1, . . . , T (21)
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where constraint (17) defines the storage level in each hour, constraint (18) relates energy sales to storage
decisions, and constraints (19) through (21) are storage energy and power constraints. In order to find a
Nash equilibrium of the wind generator’s and storage operator’s problems, we can iteratively solve the two
optimization problems until arriving at a set of decision variables such that neither the storage operator nor
wind generator would unilaterally deviate.8

Figure 10 summarizes the effect of joint versus disjoint ownership of wind and storage on the total
profits of the wind generator and storage operator. The figure shows the increase in total profits from joint
ownership (above the sum of profits from disjoint ownership), as a percentage of the sum of profits from
disjoint ownership. The figure shows that while joint ownership results in higher total profits, there are
negligible profit losses from disjoint ownership.
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Figure 10: Increase in profits from joint ownership of storage and 10 GW of wind, as a percentage of the sum of profits from
individual ownership assuming wind-responsive prices and arbitrage.

Figure 11 demonstrates the benefit to the wind generator of joint ownership by comparing the dispatch
of 2 GW of storage with eight hours of storage under the disjoint and joint ownership cases over a sample
one-day period.9 The figure assumes 10 GW of wind are in the system, that storage can be used for arbitrage
in both the joint and disjoint cases, and prices will respond to wind generation and storage use. The figure
shows that in most hours storage is operated quite similarly, but with joint ownership energy sales from
storage are curtailed in some hours (or the storage is charged more than in the disjoint case). Less energy is
discharged from storage during these hours in the joint ownership case because the resulting higher energy
prices are beneficial to the wind generator, which has high wind availability in these hours. For instance,
in hours 2–3, 8–10, and 22–24 some of the available wind energy is put into storage in the joint ownership
case (which is reflected by the fact that the storage device is discharged less) so that the remaining wind
generation is sold at a higher price. Similarly, in hours 14–20 less energy is discharged from the storage
device in the joint ownership case.

The differences in the value and operation of storage under the joint and disjoint ownership cases is
reflective of the fact that an independent storage owner will not generally have the same incentives to use
storage as the wind generator. However since figure 10 shows relatively small total value differences between
the joint and disjoint cases, the value and impacts of storage in the disjoint ownership case will be similar to
the joint ownership case. There are differences, however, in the breakdown of these values and impacts. For
instance, arbitrage value is slightly higher in the disjoint ownership case than the values shown in figure 9,
corresponding to the joint ownership case. These increases in arbitrage value cause some reduction in the
external value of storage to the wind generator, as suggested in figure 11. It is important to note, however,
that in the disjoint ownership case the storage operator’s profits are considerably smaller than the external

8In practice, the wind operator’s profit-maximization problem is trivial because of the $19/MWh PTC. The effect of the
PTC is that the wind generator is willing to sell in every hour, because the energy price is always greater than -$19/MWh.

9The storage size and day are not chosen for any particular reason. Rather, the figure is intended to be illustrative of the
fact that storage use will generally differ between the disjoint and joint ownership cases for all storage sizes.
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Figure 11: Operation of 2000 MW of storage with eight hours of storage and resulting energy prices under disjoint and joint
wind/storage ownership. Figure assumes 10 GW of wind, responsive prices, and arbitrage.

welfare benefit that the storage creates for the wind generator. For instance, the maximum annual value
that a disjoint storage operator can earn from energy arbitrage is $17.4 million with 8 GW of storage and 20
hours of storage (more than 8 GW of storage does not provide any added value). By contrast, the use of this
storage by the independent storage operator increases the annual profit of a wind generator with 10 GW of
wind by close to $28.2 million. Thus, it is apparent that storage is much more valuable to a wind generator
than to a merchant storage operator that is using storage solely for arbitrage purposes. This higher value
of storage to the wind generator also motivates our studying of storage in the context of joint ownership
of wind and storage—since storage is much more valuable to a wind generator, it seems more likely that a
wind generator would invest in storage compared to a merchant operator. It is also interesting to note that
since more than 8 GW of storage provides no incremental value to the independent storage owner, storage
is used inefficiently in the disjoint ownership case from the wind generator’s perspective. This is because
the wind generator would use and derive value from more than 8 GW of storage, whereas the independent
storage operator does not.

6. Conclusions

In this paper we analyze the use of storage as a means to increase the value of wind generation and the
profits of a wind generator. We demonstrate that because of the relationship between wind availability and
the ability of strategic generators to exercise market power, wind energy will tend to be less valuable on
average than the overall value of energy. We also show that as more wind enters the market, the difference
between the overall value of energy and wind energy will grow, and the profitability of wind generators will
decrease. These effects on the value of wind generation can act to deter wind generators from entering the
market.

We show that coupling energy storage with wind generation can increase the selling price of wind and
the profits of a wind generator. This increase in the price of wind benefits wind generators and can help
to further incent investment in wind capacity. We show, however, that when the profits of conventional
generators and consumer costs are taken into consideration, this use of storage reduces social welfare. We
also examine the sensitivity of the value of storage to different model assumptions, showing how storage
value will vary as a function of storage efficiency, market competitiveness, energy arbitrage, and ownership
structure. Table 3 summarizes the effects of these different sensitivities on the value of storage by showing
how the year-1 breakeven cost of 500 MW of energy storage with 20 hours of storage varies as a function
of the sensitivities that we consider, assuming 10 GW of wind are in the system. It shows that energy
arbitrage and disjoint wind/storage ownership10 will tend to have a much smaller effect on the breakeven

10The breakeven cost computed for the disjoint wind/storage ownership case uses the total value of storage to the storage
owner and wind generator. If we only consider the value to the storage owner, the breakeven cost is $111/kW.
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cost than storage efficiency and market competitiveness. We also show that while the joint and disjoint
ownership cases are very similar in terms of total storage and wind profits, a disjoint storage owner would
earn significantly less value from storage than a wind generator would, suggesting that a wind generator
may be more apt to invest in such technologies.

Table 3: Effect of model assumptions on year-1 breakeven cost of 500 MW of energy storage with 20 hours of storage, assuming
10 GW of wind, responsive prices, and an 11% CCR.

Scenario Year-1 Breakeven Cost ($/kW)
Base Case 318
70%-Efficient Storage 175
60%-Efficient Storage 90
50%-Efficient Storage 39
Six Strategic Conventional Generators 757
Energy Arbitrage 318
Disjoint Wind/Storage Ownership 258

Despite all of these benefits, however, we find that investment in storage is not economic on the basis of
increases in the value of storage with current technology costs. The current cost of PHS is at least twice the
cost that can be justified on the basis of a wind generator’s profit increase, and other technologies, such as
electrochemical energy storage, have significantly higher capital costs. As discussed above, if storage is put
to multiple uses by a wind generator, such as reducing transmission capacity requirements, the total value of
these uses may justify investment. Moreover, transmission constraints could significantly increase the price-
related value of storage for a wind operator, if a wind generator often finds its generation curtailed due to
transmission constraints. For example, the PJM market has had many hours in which the locational marginal
price at some buses becomes negative due to the effect of a transmission bottleneck on wind generators.
Because competing wind generators want to ensure they produce energy to receive the $19/MWh PTC,
they often submit negative bids which set the margin when a transmission constraint is binding. In such
an instance, energy storage that is co-located with a wind generator could provide significantly more value
than what we have estimated. Furthermore, storage investment could be economic if one considers other
storage technologies. Heat storage, which we have not considered here, could be used to store energy during
the winter when heating demands can be high. While heat storage is less expensive than other pure storage
technologies, its use would obviously depend on the power system in question having a district heating
scheme, which may not be the case in all systems, and would be limited to times of year during which
there are heating loads. Because of these restrictions on heat storage, we have not explicitly considered the
technology here, although it may prove to be an economic option in some power systems.
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