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Abstract—Although wind generation is emissions- and cosi; ., ¢:

free, real-time output can be highly variable and uncertain This
can require additional conventional generating capacity ® be
committed. Since the efficiency of emissions controls can dend
on generator loading, this additional capacity can increas

generator emissions rates. Another method of accommodatin n":

wind is using demand response, which has system loads more
closely follow supply. Using a case study based on the Texasvper
system, we examine the emissions and cost impacts of using¢e

two strategies to accommodate wind. While we find that wind B.
decreases loading and increases emissions rates of generat it
has a positive net emissions benefit overall. We also find th
while demand response reduces some of the emissions benefits

cost-effective emissions abatement than wind alone.
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NOMENCLATURE Sgt
A. Optimization Model Sets and Parameters b
T set of hours in optimization horizon 9t
E: set of scenarios in scenario tree Wi e
G: set of conventional generators T
2. set of wind generators lie
m¢: probability of scenarig '
o(): generator’'s variable cost c
cy: generatory’s spinning cost
¢yt generatorg’s startup cost Gg.p(f):
K, : generatog’s minimum generation level when it is online
K;: generatog’s maximum generation level when it is online IV:
R, maximum amount generatgrcan rampdown generation
in an hour K():
R} maximum amount generatgrcan rampup generation iRy p-
an hour
pgP: maximum amount of spinning reserves genergtaan fq:
provide in an hour h:
py°: maximum amount of non-spinning reserves generator
can provide in an hour
7, - generatolg’s minimum down-time when shutdown W
7—;: generatorg’s minimum up-time when started up “
S. H.‘Madaeni was with the Integrated Systems Enginee(ir]g;amuent, W
The Ohio State University, Columbus, OH 43210, USA. He is nath the 0-

Short Term Electric Supply Department, Pacific Gas and EteG@ompany,
San Francisco, CA 94105, USA (e-mail: SHM8@pge.com.

R. Sioshansi is with the Integrated Systems Engineering ai2ep
ment, The Ohio State University, Columbus, OH 43210, USAm@k
sioshansi.1@osu.edu).

The opinions expressed and conclusions reached are sbhledg tof the
authors and do not represent the official position of Pacifis @nd Electric
Company.

pe(*):

sp

maximum generation available from wind generatan
hourt under scenarig
inverse demand function in periad

. spinning reserve requirement, as a percent of hourly load

non-spinning reserve requirement, as a percent of hourly
load

Optimization Model Decision Variables

q{mf: energy produced by generatpin hourt¢ under scenario
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of wind, combining wind and demand response provides morég,t.¢- spinning reserves provided by generajon hourt under

scenario

s . - 1 1 1 1
Index Terms—Wind generation, power system emissions, d€g.t.c- NON-SPINNING rESErvVes provided by genergion hour¢

under scenarig
binary variable indicating if generatgris online in hour
t

. binary variable indicating if generatar is started up in

periodt

. binary variable indicating if generatar is shutdown in

hourt

. energy produced by wind generatorin hour ¢ under

scenario

. load served in hout under scenari@

. Emissions Model Parameters

emissions rate of pollutanp from generatorg as a
function of the amount of fuel burned,

set of emissions observations in continuous emissions
monitors (CEMs) data

kernel function

emissions rate of pollutaptby generatoy in observation

n in CEMs data

fuel burned by generatgrin observatiom in CEMs data
bandwidth of kernel estimator

D. Cost Model Parameters

annual social welfare when day-ahead unit commitment
decisions are made with wind forecasts with an error
variance ofa

annual social welfare when day-ahead unit commitment
decisions are made with perfect foresight of wind avail-
ability

I. INTRODUCTION


SHM8@pge.com
sioshansi.1@osu.edu

ECENT years have seen increased interest in renewablaissions. Our analysis shows that if wind is accommodated

electricity, such as wind and solar, in the United Statessing dispatchable generators only, the net emissionsdi®pa
and elsewhere. This interest is driven by several factord, wind is considerably more favorable than the work of
including concerns surrounding greenhouse gas and otKatzenstein and Apt suggests. We also demonstrate thaj usin
emissions from fossil-fueled generators. Although wind IBTP to mitigate the impacts of wind uncertainty and varigpil
emission-free, its impact on power system emissions depeimitreases system emissions relative to having fixed loads.
on how the variability and uncertainty of real-time windHowever, RTP also significantly reduces the costs assaciate
generation is accommodated. One approach is to use fagth wind variability and uncertainty. When accounting for
responding conventional generators to balance wind genedteese two impacts, wind and RTP together deliver much
tion. Case studies show that such an approach can incregiater emissions reductions per dollar of additionalesyst
system operation costs by up to $5/MWh of wind generatiatispatch costs, compared to having wind only. The remainder
[11-[3]- of this paper is organized as follows: sectioh Il details the

Wind variability and uncertainty can also be accommodatemhit commitment and dispatch model, emissions and cost

using demand response (DR). DR allows loads to respondci@lculations, and case study underlying our analysis. \8e al
wind availability, reducing the need for additional gerigrg compare our model, especially simulated emissions in tee ba
capacity to be committed and redispatched in real-time. Rasse, to historical data. Secti@nl Il summarizes our result
pavasiliou and Oren [4] study the use of direct load contrakhile sectiorIY¥ concludes.
wherein deferrable loads are coupled with and dispatched to
accommodate wind availability. They develop two solution II. M ODEL AND CASE STUDY

methodologies for scheduling the loads and use a case StUdbur case study is based on the ERCOT power system using
0 Idemonstrate tl?at %JCQ a scsheme h_as enhergyﬁand C?FI’D%WS load and conventional generator data. The system had
value in the market. Klobasa [5] examines the effects o 555 conventional generators in 2005, all of which are matiele

in a _future German power syst_em with 4_8 GW of WindLoad and modeled wind availability data from 2005 are used.
showing that DR can reduce wind balancing costs to Ief

. : ) e assume that the system has 14 GW of wind capacity, which
than €2/MWh' S'OShanS.' [6] stud|es. the Te?(as (ERCOT; about 18% of the total installed generating capacity 0320
system with 14 GW of wind and real-time pricing (RTP). H

Shis accounts for all of the wind plants that were plannedeo b

shows_ that R.TP can eIiminate_ up to 93% Qf redispatch COHSilt by the end of 2011, and we use wind data corresponding
associated with wind, depending on the price-responssgeng . | ~ations of these plants

ofthe de_mand. I_Dietricht al 7] useaun@t (_:ommitmentmodel_ We model system operations using stochastic day-ahead
to examine the impacts of demand shifting and peak ShaV'UHit commitment and real-time dispatch models. The unit

En wind |lntegra:ct|on. Tg%%/Shé)W th?jt. these D.deroglrla?lsf C@Bmmitment model determines generator commitments day-
ave savings of up to 0, depending on wind avara Ilty'ahead, using a scenario tree of wind availability forecasts

. An unegpl_ored _questlon, which is the focus of this Papefy,q dispatch model determines the real-time output of the
is the emissions impact of renewables, when accounting

L ) . ; f(9(5mmitted plants. If a suitable wind availability distrtimn
resource variability and uncertainty anpl interaction$vAT P. is ysed, a stochastic unit commitment can provide operating
In many power systems natural gas-fired generators are Uz55: savings relative to a deterministic model [9]-[11]isTh

for balancing, due to their ramping capabiliies and co; because including multiple wind-availability scenarican

structure. Katzenstein and Apt [8] examine emissions Wh'l:"é‘sult in more flexible generators, that can more efficiently

a natural gas-fired generator is useql to balance wind OUBHE ¢t to real-time wind availability, being committed.
The_y (jemonstrate that when accounting for generator ragnpin We also simulate unit commitment and dispatch in a

. . o Eounterfactual case in which wind availability is known hwit
wind plant is constant. This is largely because the heat r Srfect foresight when making commitment decisions day-
of and the efficiency of emissions controls in a generator ¢

. o . ) Read. Differences in operating costs between cases irhwhic
vary depending on whether it is partially loaded. Katzenste, he system is committed using wind forecasts and perfect

. . . 0
and Apt estimate that wind ach_|eves _about 894 of t_hQ_(_: oresight measure the additional costs imposed on therayste
reductions that would be possible without wind varlabjlltyon wind uncertainty, which we hereafter refer to as wind-

They also demonstrate that N@missions are Cor]Siderablyuncertainty costs. We also use the simulated commitments

more sensn.lv_e. l.f th?\lgeneratcl)rs proc\j/|d|nrg]]_ balanctl)ng @g‘grand dispatches in the different cases to estimate generator
use steam-injection NOcontrols, wind achieves about _?énissions of CQ, SO,, and NQ..

50% of the emissions reductions that would be possib

without wind variability. NO, emissions can increase in net, ) ) )

however, when wind is added if the balancing generators u8e Unit Commitment and Dispatch Model

dry NO, controls. Our model optimizes unit commitment and dispatch deci-
In this paper, we extend our previous analysis of winsions in a rolling fashion 24 hours at a time. We roll through

and RTP [6], which focuses on operational and cost impaaach day of the year, first determining unit commitment

only, to study system emissions. We use the same case staygisions ie. which generators are on- and off-line in each

based on the ERCOT system, to examine how wind and RT®ur) day-ahead when wind availability is not known. This is

individually and together, affect generator §&0,, and NO. done using a 48-hour optimization horizon. The additioragl d



is included in this model to ensure that sufficient genegatin
capacity remains committed in hour 24 to serve the following
day’s load [6], [12]. A two-stage scenario tree, a schemaitic
which is shown in Fig[1, is used to represent uncertain wind
output, which is the only stochastic parameter modeled. The
scenario tree structure assumes that unit commitmentidesis
are made in stage 1, when wind output during the 48 hours is
unknown. In stage 2, the generation, reserve, and loadGerve
decisions are made with full knowledge of wind output over
the 48 hours. This scenario tree structure is representedrin
model by having the binary generator state variablgs, s, +,
andh, ;, be scenario-independenmi( there is nc subscript),
whereas the dispatch variableg. ¢, py'; ¢r Py ¢+ Wew,e and

ly ¢ are scenario-dependent. Because the decision variables
explicitly embed the structure of the scenario tree, no non-
anticipativity constraints are needed in our formulatidhe
inclusion of multiple wind-availability scenarios in s@@ is
meant to ensure that the generators committed can serve the
load under different wind-availability realizations. Omodel

and scenario tree structure are similar to those used in the
works of Ruizet al. [13] and Papavasilioet al. [14].
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Fig. 1. Scenario tree schematic.

Objective function [[lL) maximizes social welfare, which
is defined as the difference between the integral (up to the
amount of load served, ¢) of the inverse demand function
and total generation cost. In cases without RTP, the load in
each hour is fixed. Thus, the integral term in the objective
function is fixed, and maximizing social welfare is equivdle
to minimizing generation cost. In cases with RTP, the irwers
demand function is represented as a non-decreasing step fun
tion, implying that the integrals are convex piecewisedin
functions of thel; ;'s. The variable generation cost functions,
cg(qq.,¢), are represented as convex piecewise-linear functions

Once these commitment decisions are made, the systen?fidn€ dg...¢’s. These assumptions yield an objective function
dispatched in real-time based on actual wind output. Gererathat is linear and convex in the decision variables.
commitments are fixed in this dispatch problem based on theConstraint set[§2) are hourly load-balance requirements,
day-ahead solution, except that we allow fast-start geoesa which ensure that demand is exactly served in each hour. Con-
that can be started up in less than 15 minuteg. (natural Straint sets[i3) andX4) impose load-based spinning and non-
gas-fired combustion turbines) to be started up if necessargPinning reserve requirements. Constraint ddts (5) thrqdp

1) Stochastic Day-Ahead Unit Commitment Modé&lhe

model is given by:
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are generation-limit constraints, which ensure that eattegy

ator operates between its minimum and maximum generation
level. Constraint setd(6) anfll (7) also force each generator
to remain below its maximum generation level if spinning or
non-spinning reserves are called. Constraint ddts (8) Bnd (
limit the amount of spinning and non-spinning reserves each
generator can provide and only allow generators to provide
spinning reserves when online. Constraint sEi$ (10) Boy (11
impose ramping limits. The ramp-up constraints also retstri
spinning and non-spinning reserves so generators can feasi
bly provide them if called in real-time. Constraint seffiS])(12
and [IB) enforce the minimum up- and down-times when
generators are started up and shutdown. ConstrainfEdets(14)
a state-transition relation, which defines the generatotugi

and shutdown state variables in terms of changes in theenlin



state variables. Constraint sEf15) restricts wind geimerao  own-price elasticities, however, since on-peak loads ¢doe
be below the maximum amount available. Constraint[sdt (1) relatively high real-time prices) while off-peak loadser
forces the load served to be non-negative and constrajdtie to lower prices) [12]. We consider cases with elastici-
set [IT) imposes integrality restrictions on the binanytestaties of —0.1 and —0.3, which are consistent with empirical
variables. estimates [18]. Retail electricity price data are obtaifredh

Our model treats demand response in the cases with Rflé United States Department of Energy’s Energy Infornmatio
as a dispatchable resource that the system operator can Administration (EIA) and PUCT filings are used to remove
to serve the load. This implicitly assumes that consumensn-energy-related costs from the retail price. Each lyourl
truthfully reveal their willingness to pay for energy andath inverse demand function is approximated as a step function
they adjust their demand in real-time based on the socialljth 100 segments. We assume that total reserves, half of
optimal dispatch of demand response determined by the swdich must be spinning reserves, must amount to at least 9%
tem operator. Thus our modeling approach does not tackiethe hourly load.
the issue of generating market-clearing prices that ertbaite  We use historical mesoscale model data available in the
suppliers and consumers have proper incentives to proliEe National Renewable Energy Laboratory’s Western Wind Re-
socially optimal amount of generation and demand responseurces Dataset to represent actual hourly wind avaitgBili
This is a theoretically difficult task, due to the non-conveXhese data specify what fraction of the installed nameplate
nature of power system operations and unit commitment [15hpacity of each wind generator is available in each hous. Th
Moreover, we assume that consumers can react to real-tisgenario tree is constructed by adding ‘forecast erromssto
signals from the system operator immediately, without anjie actual wind availability fraction in each hour. Follmgithe
latency. Any delay in the consumer response likely reducassumption used in the California ISO’s renewable intégmat
the wind-related benefits of RTP, since the principal bewéfit study, we assume that the forecast errors have an unbiased
RTP is to have demand more closely follow real-time winfirst-order autocorrelated truncated Gaussian distaibufé],
availability. [19]. We assume an autocorrelation coefficient(of and

2) Dispatch Model: The dispatch model is identical toconsider cases in which the forecast error has a variance
the unit commitment model, except that the commitmengs between0.0025 and 0.0225 (or error standard deviations
(i.e. the values ofuy ¢, s4+, andh, ) of all generators that between 5% and 15%). A higher variance implies less accurate
are not fast-start are fixed based on the solution of the dayind forecasts. We use a scenario tree with four terminal
ahead model. Moreover, the scenario tree is not used dedves, as shown in Fidd 1. The scenarios are constructed
the system is dispatched against actual wind availab#itly. by generating 1000 sample paths of the forecast error terms
of the spinning and non-spinning reserve requirements musing Monte Carlo simulation. These 1000 sample paths are
also be maintained in real-time, and cannot be used to sergeuced to the four leaves constituting the scenario tree,
wind shortfalls. This is because these contingency reserwgith corresponding probabilities, using the forward sttet
are assumed to be used to accommodate unanticipated laggrithm in theSCENRED scenario reduction tool available
increases or conventional generator or transmissionréslu in GAVS [20].
The flexible generators committed day-ahead due to the sce4) Model Implementation:The day-ahead and real-time
nario tree are intended to accommodate wind variabilityzRumodels are formulated usinAMS and solved using the

etal [13] discuss the advantages and disadvantages of relyiiginch and cut algorithm i@PLEX with default settings. The
on generators committed using a stochastic model, as oppogfdels are solved using a 64-bit 2.7 GHz Pentium Core 2 pro-
to using operating reserves, to accommodate wind and ot@essor with 6 GB of RAM. Each day-ahead unit commitment

system uncertainties. problem has about 280,000 variables and 570,000 constraint
3) Model Data: Generator constraint and cost data argnd takes an average of 500 s of CPU time to solve.

obtained from Global Energy Decisions (GED) and Platts
Energy. Hourly system load data are obtained from the Public
Utility Commission of Texas (PUCT). In cases without RTFB3. Emissions Modeling

the hourly loads are fixed equal to these historic valuese€as o analysis only considers emissions directly attribiatab
with RTP are modeled by assuming the price elasticity @ he combustion of fuels by generators. Emissions are

demand and calibrat_ing t_he invers_e demand function in eaghyimated using input-based emission rates, which spéify
hour so the actual historical load in the hour corresponds {0 << ¢ each species emitted per unit of fuel burned. We
the historical average retail price o_f ele_ctrici_ty [6], [1RL6], prefer input- to output-based rates, which specify emigsio
[17]. Thus, the hour-demand function is calibrated so: per unit of electricity generated, since they better actoun
pe(ly) = p", (18) for generator startups and the. effect of .pa.rtial Ioadin.g on
_ o ) et generator heat rates. We combine the optimized commitment
where [, is the historical load in hour and p™ is the anq dispatch of the generator fleet with heat rates and estma

historical retail price of electricity. In doing so we onlyottel 4 yenerator startup and spinning fuel use to determineljour
own-price elasticities, assuming that cross-price @liéts are f,,e| consumption by each generator.

zero. This assumption potentially understates the extent t
Wh.IC.h RTP Sh'fts loads from on- to off-peak hours. Th's load 11hese data are publicly available for download from the dveti Renew-
shifting effect is somewhat captured through modeling onbple Energy Laboratory at http://wind.nrel.gov/\Weiel].


http://wind.nrel.gov/Web_nrel/

Although generator emissions are often estimated usinglbservations in estimating, ,,(f). We use an optimal band-
constant emissions rate [21], this approach does not aaptwidth, » = O (|N|*1/4), which ensures that the estimator
the effect of part-load operation on the efficiency of enaissi is asymptotically consistent. Fifl 2 shows the non-paremet
controls. Because wind and RTP can result in load shiftirgmissions rate estimate derived using this technique.
and partially loading generatorg.§. to provide capacity to  We estimate separate $@nd NO, emissions rates func-
accommodate real-time wind variability), generator efoiss tions for each generator that appears in the CEMs data.
rates can change beyond the impacts of heat rate variatiBecause C® emissions are not controlled, fixed input-based
As an example, Figld2 shows actual N@missions rates emissions rates are estimated from the CEMs data. Singe NO
for a combined-cycle natural gas-fired unit as a function & an ozone precursor, we differentiate N®missions rates
generator loading. These emissions rates are taken frof 20@tween an ozone (May to September) and a non-ozone (the
continuous emissions monitors (CEMs) data reported by themaining months) season. This is done by estimating difiter
United States Environmental Protection Ageﬂc'yhe figure ¢, ,(f) functions for each generator using CEMs data from
shows higher than average emissions rates when the genertiit® ozone and non-ozone seasons separately. This helps to
is partially loaded, which is indicative of the fact that ssmcapture any seasonal difference in the use of,NOntrols,

SO, and NQ, emissions controls are relatively inefficienfor instance due to more stringent regulations during thanez
when operated in such a manner. The efficiency of theseason. We use fixed GPSO,, and NQ. emissions rates,
controls is also sensitive to the technology used.(steam- reported by GED, for generators that do not appear in the
injection versus dry N@ controls), thus the emissions rateCEMs data.

vary between the units modeled.

C. Wind-Uncertainty Cost

*  Actual CEMs data A standard measure of wind-uncertainty cost is the dif-
i ©  Non-parametric rate estimate ference between the cost of operating the system when im-
perfect wind forecasts are used and a counterfactual case
in which wind availability is known with perfect foresight
1 [1]-[3]. Because we examine RTP, which allows loads to
* adjust, the difference in social surplus (as defined by divgc
ool & _function ) of our MIP) is a more appropriate metric [6]. $hi

o . is because loads adjustments give consumer surplus changes
. that are not captured by differences in generation costsigus
& 1 this approach, the wind-uncertainty cost when forecasts wi
an error variance of, are used is given by:

1 Wy — W,. (20)

‘ ‘ TR ‘ This measures the cost of wind uncertainty as the decrease
500 1000 1500 2000 2500 3000 in social welfare caused by using imperfect forecasts when
Fuel burned [GJ] making commitment decisions day-ahead. The perfect fore-
Fig. 2. Actual NQ. emissions rates and non-parametric rate for AES Woﬁ;Ight Fases are SImUIateq using the same day'ah_ead unit
Hollow 1a combined-cycle natural gas-fired unit during tizere season. ~commitment model, but without the two-stage scenario tree.
Rather, the commitment and dispatch are optimized assuming
To capture these effects, we use a non-parametric Nadaraf@t wind availability is perfectly known. Moreover, these
Watson kernel estimator of SOand NO, emissions rates cases do not require the dispatch model to be solved, siece th
[22]-[24]. This technique estimates a functien,, (f), which day-ahead unit commitment model is solved using the actual
specifies generatay's input-based emissions rate of pollutanwind availability.
p as a function of the amount of fuel burnef, This function

0.12

0.1

0.08

0.04

Input-based emissions rate [kg/GJ]

is estimated as: D. Model Validation
YK (f*f;’) n In order to validate our model, especially the emissions
Son(f) = neN g P (19) calculations, we compare aggregate system generation and
9,p S K (f—f;) ’ emissions to historical data reported by the EIA. We prefer
neEN h EIA data to the CEMSs, since the latter does not include

The terms¢™  and f7 in () represent the actual emis enerators smaller than 50 MW. The EIA reports historical
9,p g9

sions rate and amount of fuel consumed, as reported in ﬁ;%gregr]]at? ?nrj:l?rll genﬁ;ﬁtloghgg#cons_um_ptlo?], Tlmd ejrtu$3| d
CEMs data. The functior’{(-) is the kernel or smoothing n each state. ough the region is wholly containe

function, and we use the standard Gaussian density functi%thln the state of Te?<as, SOme regions of the state are in the
western and eastern interconnects. Since ERCOT accounts fo

The bandwidth,, controls the weight put on nelghljormgroughly 85% of the load of the state of Texas, we scale the

2These data are publicly available for download from the Emrmental E_IA qata by a factor of).85 to estimate the correspondlng
Protection Agency &t http://camddataandmaps.epa.goviodex.cfn) . historical data for ERCOT.


http://camddataandmaps.epa.gov/gdm/index.cfm

Table[l compares modeled generation, fuel consumptiaso shows hourly input-based emissions rates computed fro
and emissions in the base case in which no additional witlte CEMs data. While there are differences in the modeled
is added to the system and loads are fixed. It also reports Hrel CEMs-reported emissions rates, they are within a simila
scaled EIA data. Comparing the modeled and EIA data shovesige. Some differences in the emissions rates are to be
that the scaling is roughly correct in capturing total ERCO@&xpected, since ramping constraints and commitment desisi
loads, since total modeled and EIA-reported generatidierdif affect what specific mix of generators is producing energy
by less than 1%. There is, however, a difference in thend emitting S@ and NO, during any given hour. Since the
breakdown of this generation, with our model resulting imodeled and CEMs-reported emission rates are similar, the
51% of the load being served by coal-fired generation asissions differences are due to the heat rates.
opposed to 47% in the EIA data. The modeled and EIA °
also reveal differences in the efficiencies of the naturat 007 o ModeledSO,
fired generators used. Whereas the modeled natural ga . Modeled NO
generators have an average heat rate of about 9.9 GJ/MW 006/] + CEMsSO, & A
EIA data gives an average heat rate of about 12.7 GJ/N CEMs NO,
These heat rate and generation differences could be due
breakdown of the generator fleet within ERCOT, as comg
to the rest of the state. If more low-efficiency natural gaesd
generators tend to be outside of the ERCOT region or
coal-fired generators are within ERCOT, that could resu
the emissions differences shown. These differences cdsd
be indicative of the generator fleet outside ERCOT bein
an older vintage. Otherwise, it is possible that our modek
not include detailed transmission and operating congs
(e.g. reliability must-run requirements). These types of «
straints can affect which generators are operated in i@a);

yielding a different mix of fuels and generator efficiencie: 0 50 100 150 200 250 300 350 400 450
Total Natural Gas Consumption [TJ]

Fleetwide Emissions Rate [kg/GJ]

TABLE |
MODELED BASE CASE AND EIA-REPORTEDANNUAL GENERATION AND  Fig. 3. Modeled and CEMs-reported hourly average inpuedasmissions
EMISSIONS rates of S@ and NQ; of natural gas-fired generators.

Modeled  EIA-Reported

Generation [TWh]

Total 262.93  263.14
Coal 134.77 123.93
Natural Gas 12282  139.21 . RESULTS
Fuel Consumption [PJ] o )
Total 2,727 3,191 A. Emissions Effects of Wind
Coal 1,510 1,424
C%N?;Aut;a' Gas 1217 1767 Table[ll summarizes the effect of wind on annual generation
Total 19853  220.27 and emissions without RTP. The added wind displaces roughly
Coal 136.72 131.31 43 TWh of conventional generation, about 27% of which
SOZNalft“fa' Gas 61.81 88.96 is coal-fired. This yields CQ reductions of about 13% and
T([)tgl 45116 45711 reduces S and NQ, emissions by 11-12% relative to the
Coal 450.75 456.57 no-wind case, depending on wind forecast accuracy. This
NON*’E‘E:]ra' Gas 0.41 0.55 translates into an average of about 2000 t 0hC®6 t of SQ,
Total 140.37 195.30 ar_ld 1.2 t of NQ being eliminated annl_JaII_y per MW of added
Coal 102.05 107.13 wind. Table[ further shows that emissions decrease as the
Natural Gas 38.32 88.17 wind forecasts become less accurate. Less accurate ftwecas

force more natural gas-fired generators, which have greater

These differences in the efficiencies of the natural gas-fireamping capabilities than coal-fired generators, to be cimm
plants largely contribute to the differences in the modeled ted in order to provide sufficient flexibility to accommodate
ElA-reported emissions. Emissions from the coal-fired fslanwind variability. These natural gas-fired plants displaoalc
are largely consistent between the two data sets, with tofisbd generators, giving the emissions savings. This rgsult
CO,, SO, and NQ. emissions differing by 6%, 1%, andhowever, in natural gas-fired generators increasingly doein
5%, respectively. Natural gas-fired generator emissio®®f operated at part load, causing an increase in their emission
and NQ, are considerably higher in the ElA-reported dataates. This is demonstrated in TalIel lll, which shows the
however, reflecting the higher heat rate. average loading of natural gas-fired generators when they ar

To further verify this, Fig[I38 shows modeled hourly inputenline and their output-based emissions rates in the fizad-|
based S@ and NQ, emissions rates for the entire naturatase. A generator’s loading in an hour is defined as the amount
gas-fired generator fleet as a function of fuel consumption.df fuel burned in that hour divided by the amount it would



burn if operated at maximum lofdTablesD andIl show change in diurnal load patterns discussed above but alitsyie
that as the wind forecasts become less accurate, more hataraeduction in total electricity demand. This is because the
gas-fired generators are committed and operated at a lowetail price of electricity in 2005 was lower than the averag
average level in order to provide ramping capacity, indreps real-time price. Thus, exposing consumers to real-timeegri
their emissions rates. results in a greater demand reduction during on-peak period
Katzenstein and Apt [8] observe this effect and estimate thhan the demand increase during off-peak periods. As such,
cycling and partially loading natural gas-fired plants casuft introducing RTP without wind yields a net reduction in all
in net NO, increases when wind is introduced to a systenemissions except for SO SO, emissions increase because
Contrasting their findings with ours illustrates two isswéth the change in the diurnal load pattern results in the share
their emissions estimation technique, which Miélsal. [25] of coal-fired generation increasing from about 52% of the
note. One is that they assume that each wind generator mosd without RTP to 53-54% with RTP (depending on the
have a dedicated conventional generator that follows itsudu demand elasticity). The significantly higher sulfur cornteh
(i.e. each wind plant requires 100% reserves). This eliminatesal (natural gas- and coal-fired generators in ERCOT rejeas
the benefits of a (spatially) diversified wind generator feert on average, abouwt0003 and0.2984 kg of SO, respectively,
lio. Wind diversification can reduce the need for converdgionper GJ of fuel burned) yields net S@missions despite less
generation to follow the output of individual wind genermato energy being generated.
since the output of individual wind plants tend to be less This effect of RTP is something of an artifact of the data—if
correlated with one another. This reduces the variabifithe retail and real-time prices are closer to each other, RTHdvou
aggregate wind generation profile. The hourly real-timedwinikely cause a net increase in all emissions. This is because
availability of the individual wind plants that we model lgav overall demand would see a smaller change but be shifted
coefficients of variatidhranging between.80 and1.25. The toward off-peak hours, during which coal-fired generatisn i
coefficient of variation of hourly aggregate wind availéil marginal. This exact effect is observed in an analysis of the
across the ERCOT system (s76, however. This shows thatemissions impact of RTP in the PJM system [29]. The low
diversification of wind reduces the variability of aggregjatretail prices in 2005 are indicative of the fact that they are
wind output and the need for reserve capacity below tlet through regulatory mechanisms and can lag the cost of
100% that Katzenstein and Apt assume. Indeed, there igeneration by several years. Indeed, EIA data show that the
broad literature focused on estimating reserve requirésneaverage price of natural gas for the United States’s etifytri
with high wind penetrations [26]-[28], and our stochastiitu generation sector rose by 39% between 2004 and 2005, which
commitment is intended to ensure that sufficient fast-ragpiis likely not captured in the 2005 retail electricity raté¢e can
capacity is available to accommodate wind variability. &-se partially control for this effect by comparing average auttp
ond limitation is that Katzenstein and Apt do not account fdrased emissions rates. Table V compares average emissions
the effect of wind uncertainty on unit commitment decisionsates across the entire conventional generator fleet inxbd-fi
As illustrated in Tabl&]l, inaccurate wind forecasts resuthe load and RTP cases. The RTP case assumes a demand elastic-
commitment and generation mix shifting toward natural gagy of —0.1—the results are similar but greater in magnitude
fired plants. Although these natural gas-fired plants are lesith the higher elasticity. The table shows that if RTP is
loaded, resulting in higher emissions rates, the fuel $wig introduced output-based emissions rates increase ®laiv

benefits more than outweighs this emissions increase. the fixed-load case.
When the 14 GW of wind is added to the system, RTP has
B. Emission Effects of Wind and RTP the effect of increasing system emissions. This is becdwse t

Because real-time prices and electricity demand are cgﬂded wind supprlesses ;eal-tlr:ne ele_<|:tr|c_|ty prlczegogngrrt]he
e, R ffets o2 profie by redng an-eak ff, o7 205 s e el pice 1 2009 T
increasing off-peak demands. This effect is more pronouimct?1 fect of d ety “peak ' di N .
if cross-price elasticities are modeled, since on-peakathel® € same efiect of decreasing on-peak and increasing ar-pe
decrease both due to the high on-peak price and the regativ%?mand' Thus, the demand shifts toward hours during which
coal-fired generation is marginal. Introducing RTP whendwin

low price during shoulder and off-peak hours, to which de-". h em i h ¢ Lfired oo f
mand can be shifted. Many power systems, including ERCdj In the system Increases the Use ot coal-ired genera '

use a mix of generating fuelg.¢. natural gas and coal), thus 7% of the conventional generation mix to 60%.
this change in the load pattern can result in dramatic ctenge
in the generation mix used and resulting system emissionsC. Cost of Emissions Reductions
Table M summarizes the effects of wind and RTP on
n

annual emissions, showing that the effect of RTP depends so significantly reduces wind-uncertainty costs [6]. sThi

_ . 3
the presence of wind. In the no-wind case, RTP causes t?'yenergy between wind and RTP is demonstrated in Hig. 4,

3Generator loading can also be defined in terms of output. Weoagefine  Which shows hourly actual wind and wind forecasts, as well
it in terms of fuel burned, since this metric also captures fise associated as system loads on 18 July. Actual wind availability on this

with generator startups. Nevertheless, these two defisitave closely related day varies from 146 MW to 2.6 GW. Moreover. the accuracy
since higher generation requires more fuel. y ’ ’

4The coefficient of variation is defined as the ratio between standard of the .Wind forec_asts vary significantly throthOUt the day-
deviation and mean of hourly wind availability. The wind scenarios modeled between hours 3 and 14 both

Although RTP reduces the emissions benefits of wind, it



TABLE I
ANNUAL GENERATIONBREAKDOWN AND GENERATOREMISSIONSWITH FIXED LOADS

Wind Forecast

Error Variance Generation [TWh] Total Emissions
Coal Natural Gas CO[Mt] SO3 [kf] NO, [ki]
No Wind 1348 122.8 198.5 451.2 140.4
0.0025 1229 91.0 172.1 400.7 124.2
0.0100 122.7 91.1 171.9 399.7 124.0
0.0225 1225 914 171.8 398.8 123.8
TABLE Il
AVERAGE LOADING AND OUTPUT-BASED EMISSIONSRATES OF NATURAL GAS-FIRED GENERATORSWITH FIXED LOADS
Wind Forecast Average Natural Gas
Error Variance Generator Loading [%] Natural Gas Emissi@ages
COy SO, NO,
[kg/MWh]  [g/MWh]  [g/MWh]
0.0025 34.1 523.8 3.59 349.5
0.0100 30.2 523.7 3.59 350.3
0.0225 28.1 523.6 3.61 350.6
TABLE IV

ANNUAL GENERATOREMISSIONSWITH RTP

Wind Forecast

Error Variance Demand Elasticity-0.1 Demand Elasticity—0.3
COz [Mf]  SOg [kt] NO, [ki] CO; [Mt] SOz [kt] NO; [ki]
No Wind 197.0 452.4 138.7 194.3 453.1 135.5
0.0025 173.7 412.7 124.8 176.0 430.1 125.1
0.0100 173.5 412.0 124.7 175.8 429.7 125.0
0.0225 173.3 411.3 1245 175.7 429.3 124.9
TABLE V

AVERAGE OUTPUT-BASED EMISSIONSRATES OFALL GENERATORSWITH FIXED LOADS AND RTP

Wind Forecast

Error Variance Fixed Loads RTP (Demand Elasticity.1)
CO SO NO, CO SO NO,
[kg/MWh]  [g/MWh]  [g/MWh] [kg/MWh]  [g/MWh]  [g/MWNh]
No Wind 770.7 1751.4 544.9 773.1 1775.4 544.3
0.0025 803.2 1870.5 579.6 808.7 1921.5 581.0
0.0100 802.5 1866.1 579.0 808.5 1919.9 581.1
0.0225 802.1 1861.9 578.1 808.2 1918.1 580.6

over- and under-estimate wind availability. From hour 15 tesponsiveness decreases these costs. This is becauseddema
22, however, all of the wind scenarios overestimate winth wiis better able to respond to unforeseen increases or desreas
hour 22 having extreme overestimates of between 1.2 aindwind availability.

2.8 GW. This results in less generating capacity being alvkal TABLE VI

in the afternoon and the system must commit fast-starting WIND-UNCERTAINTY COST[$/MWH OF WIND]
natural gas-fired plants in real-time to serve the load in the

fixed-demand case. The lower panel of [Elg. 4 demonstrates the Wind Forecast Demand Elasticity
benefit of RTP, which is that loads respond to wind availgpili Eror Variance 0.0 —0.1  —03
through price signals. Between hours 15 and 22, for instance 0.0025 181 025 0.02
an average of about 600 MW of load is curtailed, reducing the 0.0100 379 099 0.02
cost of accommodating the unexpectedly low wind generation 0.0225 6.11 1.89 0.04

Thus, determining the benefits and synergies between wind
and RTP should account for both these cost and emissionable[VTl summarizes the amount of emissions reductions
effects. Tabl€MI summarizes the annual wind-uncertaiost,c that wind provides per dollar of wind-uncertainty cost in-
as given by[(20), divided by total wind generation. The tableurred. This is defined as the reduction in generator emis-
shows that less accurate day-ahead wind forecasts insreasens summarized in Tabl€d Il abdlIV, divided by the wind-
wind-uncertainty costs. It also shows that increasing demauncertainty cost given by {R0). Values for the cases with RTP



Actual —=— Scen. 1 —6S— Scen. 2 Scen.3 ——sScen.4|  gjmijlar synergies. While solar presents the same type ef int
4 gration challenges, solar generation patterns can be lsirke
different from wind. Indeed, solar generation peaks midday
when prices can peak. Thus, solar and RTP may result in
more midday consumption, compared to a fixed-load case, and
less shifting of loads to off-peak periods (compared to ihgwi
wind and RTP together). This can yield very different effect
on generation and emissions. Although our analysis focuses
50 on RTP other forms of DR may provide similar benefits, so

w

Actual/Forecasted
Wind Available [GW]
N

sl 7;‘?‘;"(5‘;‘:&@ o) long as they are sufficiently dynamic to react to real-time
) wind availability. While our results are based on the ERCOT
% 40r . system, the general findings that RTP can improve the overall
§ 35+ 4 cost-effectiveness of wind in reducing generation emissio
a should be broadly applicable in other power systems. This is

w
o
T

because RTP provides system operators with an additioolal to
= 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 _to mitigate wind l_mcertalnty and_varlab|llty. Thls _shoud_ﬂ;ult
Hour in a cost reduction that outweighs any emissions increases

, _ _ . ~ caused by changes in the diurnal load profile.
Fig. 4. Actual wind, wind forecasts, and electricity demamd18 July. Wind 0 lvsi l lativel I io t .
forecasts have.01 error variances and demand elasticity-i§.1 in the RTP ur ana y§|s re. Ies on _a relatively sma Scenano ree in
case. the stochastic unit commitment. A larger scenario tree may

reduce wind-uncertainty costs. This is because it may bette

) ) ) o represent the possible range of wind availabilities, tesyl
are given as ranges covering the different elasticity \&lug, 5 more appropriate generation mix being committed. We

that we consider—the lower-end of the range correspondsgR, assume that the system operates in a relatively static
an elasticity of-0.1 and the upper-end to an elasticity ofanner, with each day’s commitment fixed based on the
—0.3. These values capture the two effects of RTP and wind,,_ahead forecasts. A more dynamic model, which allows
together—increased emissions and reduced wind-uncrtaigymmitments to be readjusted intraday using updated feteca

costs. The table demonstrates that although RTP reduces 8614 further reduce wind-uncertainty costs [11]. Whilelsu

emissions benefits of wind, the significantly lower windmeasures can affect the specific wind-uncertainty cost and

uncertainty cost borne by the system more than compensaigfissions estimates presented here, we expect that ouagiene
for this. In some cases, RTP gives emissions savings that gf@iings hold, since RTP has tremendous wind-integration
more than two orders of magnitude greater than with fixgghefits regardless of how the stochastic planning model is
loads, showing that RTP is an effective means of integratifjg s jemented [30]. Our analysis neglects the effect of trans
wind, when considering both the cost and emissions impagiission constraints. Including such constraints couldiltes
together. in greater wind curtailment [31], [32], which RTP could
alleviate [12]. This may yield greater emissions benefibsnfr
IV.- CONCLUSION the combination of wind and RTP, since RTP shifts loads in
Our analysis demonstrates that RTP is a cost-effectitransmission-constrained regions to periods with excasd w
means of integrating wind into power systems. Althougtihat must otherwise be curtailed. What wind curtailment we
RTP reduces the emissions benefits of wind, the associatdxerve is due to generator operating constraints, whigh ha
cost savings more than compensates for these losses adinited impact at the modest wind penetration modeled. At
reduces the wind-uncertainty cost incurred per kg of emissi higher penetrations these constraints can limit the amofint
averted by wind. While less accurate wind forecasts provigénd that the system can accept, which RTP can help mitigate.
incremental emissions benefits by tilting the mix of germnaat  An important assumption in evaluating the emissions im-
used away from coal, the associated cost increase overshepacts of RTP without wind is that there are no binding-.CO
these benefits, as shown in TabIelVIl. Whereas a dollar 80,, or NO, emissions constraints. In the short-run, a binding
wind-uncertainty cost averts up to 3 t of G@ith fixed loads, SO, constraint would require operational measures, such as
the same dollar can avert up to between 23 and 232 t with REmissions dispatch or fuel switching [33]-[36], which waul
The combination of wind and RTP can also provide somerevent the change in the fuel mix toward coal. Since we
thing of a virtuous investment cycle, since lower winddo not consider such a constraint, the emissions estimates
uncertainty costs can reduce perceived barriers or lirbiigh( for the case with RTP and no wind are illustrative of the
technical and financial) to the entry of wind in power systemsffects of RTP if no such restrictions are in place. Our asialy
Although wind-uncertainty costs are not currently passedso neglects the locational impacts of generator emission
onto wind generators (in most markets in the United Stategjhich can be important. The effect of NQespecially in
they nevertheless represent real costs borne by powemsysteone formation, is highly sensitive to location, temperet
operators, utilities, and (ultimately) ratepayers. Oualgsis sunlight, and other factors. NOcan also be transported over
focuses on wind and a topic for further investigation is ileet regional scales, with associated effects sensitive tatidiiy
RTP and other variable renewables, such as solar, would hatemical transformation, and deposition during long-eang

N
[62)
1
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TABLE VII
TOTAL ANNUAL EMISSIONS OFCO2, SOy, AND NO, AVERTED BY WIND, PER DOLLAR OF WIND-UNCERTAINTY COSTINCURRED

Wind Forecast

Error Variance Fixed Loads RTP
CO; SO NO, CO, SO, NO
[t$] [ko/$]  [ko/$] [t/$] [ka/$] [ka/$]
0.0025 3 6 0 23-232 35-216 1-10
0.0100 2 3 0 6-228 9-215 0-11
0.0225 1 2 0 3-125 5-119 0-6

transport [37]. Our emissions findings are also sensitive ] A. Tuohy, P. Meibom, E. Denny, and M. O’Malley, “Unit canitment
the cost of natural gas, relative to coal, which was quite [of sysiems with significant wind penetrallodPEE Transactions on
high in 2005. The recent development of shale gas in Nor[rﬁ] ystemsol, 2% PP ind '

. L _ . . R. Sioshansi and W. Short, “Evaluating the impacts ai-tene pricing
America has significantly reduced this cost difference, and on the usage of wind generatiolEEE Transactions on Power Systgems

some cases made natural gas a less costly generation fuel. If vol. 24, pp. 516-524, May 2009.
such ‘cost reversals’ are persistent, then the emissiopadta [131 P- A- Ruiz, C. R. Philbrick, E. Zak, K. W. Cheung, and P. $auer,

. L . “Uncertainty management in the unit commitment problenEEE
of wind and RTP could be significantly different from our  transactions on Power Systenvel. 24, pp. 642—651, May 2009.

estimates. This is because natural gas-fired generatiofdwou4] A. Papavasiliou, S. S. Oren, and R. P. O'Neill, “Resergguirements
be marginal overnight whereas coal-fired generation woald b~ for wind power integration: A scenario-based stochastimgmamming

. - . framework,” IEEE Transactions on Power Systgmsl. 26, pp. 2197-
increasingly used during on-peak hours only. Thus, thegdan 5505 November 2011, yee PP

in the diurnal load pattern brought on by RTP would not yielgds] R. P. O'Neill, P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothi and W. R.
the same emissions increases that we estimate. As such, the Stewart, “Efficient market-clearing prices in markets witbnconvexi-

net effect of RTP and wind together would be similar wind- tl'ei"f%’gga” Journal of Operational Reseayslol. 164, pp. 269-285,

uncertainty cost savings but greater emissions benefits.  [16] s. Borenstein, J. B. Bushnell, and C. R. Knittel, “A Cpat-Nash
equilibrium analysis of the New Jersey electricity markblew Jersey
Board of Public Utilities, Appendix A of Review of General Iftic
Utilities Restructuring Petition, Final Report, 1997, Eet Number
EA97060396.

1 S. Borenstein and S. P. Holland, “On the efficiency of petitive
electricity markets with time-invariant retail price§he RAND Journal
of Economicsvol. 36, pp. 469—-493, Autumn 2005.

[18] C. S. King and S. Chatterjee, “Predicting Californiarded response,”

Public Utilities Fortnightly, pp. 27-32, July 2003.
[19] C. Loutan and D. Hawkins, “Integration of renewable a@ses,”
California Independent System Operator, Tech. Rep., Noeer2007.
[20] J. Dupacova, N. Growe-Kuska, and W. Romisch, “Secan reduction
[1] E. A. DeMeo, W. Grant, M. R. Milligan, and M. J. Schuergé&wind in stochastic programmingXMathematical Programmingvol. 95, pp.
plant integration,”IEEE Power and Energy Magazineol. 3, pp. 38-46, 493-511, March 2003.
November-December 2005. [21] “The emissions & generation resource integrated detabfor 2006
[2] J. C. Smith, M. R. Milligan, E. A. DeMeo, and B. Parsons tility wind (egrid2006) technical support document,” Washington, B@;l 2007,
integration and operating impact state of the dEEE Transactions on prepared for the U.S. Environmental Protection Agency,dABiain
Power Systemsvol. 22, pp. 900-908, August 2007. Division.

[3] E. A. DeMeo, G. A. Jordan, C. Kalich, J. King, M. R. Milliga [22] E. A. Nadaraya, “On estimating regressiofifieory of Probability and
C. Murley, B. Oakleaf, and M. J. Schuerger, “Accommodatingd/s Its Applications vol. 9, pp. 141-142, 1964.
natural behavior,]EEE Power and Energy Magazineol. 5, pp. 59-67, 23] G. S. Watson, “Smooth regression analysi§ankhya—The Indian
November-December 2007. Journal of Statistics, Series, Aol. 26, pp. 359-372, 1964.

[4] A. Papavasiliou and S. S. Oren, “Coupling wind genematovith [24] R. Sioshansi and P. Denholm, “Emissions im
2 ] . . , pacts anefiterof plug-
deferrable loads,” inEnergy 2030 Conference Atlanta, GA, USA: in hybrid electric vehicles and vehicle to grid serviceRrivironmental

Institute of Electrical and Electronics Engineers, 17-1&&mber 2008. : 5
[5] M. Klobasa, “Analysis of demand response and wind irgéign in 25] 2(:"3'?'(':5 ?Qndv\zggrn&lo'%ﬁ:' :r? sr?d ]l.\/JI.QQOI\:inCI)Ii E%)(;Lr;ar;yetzgggzair
Germany’s electricity marketfET Renewable Power Generatiorol. 4, A . gan, ’ ey, .
emissions due to wind and solar powerEhvironmental Science and

pp. 5563, January 2010.
[6] R. Sioshansi, “Evaluating the impacts of real-time icon the cost 26 ;echnologyvcg. 43, pp. 6106_6197’ Aau?u”st 2.009' d spirmi
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