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Using Demand Response to Improve the Emission
Benefits of Wind

Seyed Hossein Madaeni,Student Member, IEEEand Ramteen Sioshansi,Senior Member, IEEE

Abstract—Although wind generation is emissions- and cost-
free, real-time output can be highly variable and uncertain. This
can require additional conventional generating capacity to be
committed. Since the efficiency of emissions controls can depend
on generator loading, this additional capacity can increase
generator emissions rates. Another method of accommodating
wind is using demand response, which has system loads more
closely follow supply. Using a case study based on the Texas power
system, we examine the emissions and cost impacts of using these
two strategies to accommodate wind. While we find that wind
decreases loading and increases emissions rates of generators, it
has a positive net emissions benefit overall. We also find that
while demand response reduces some of the emissions benefits
of wind, combining wind and demand response provides more
cost-effective emissions abatement than wind alone.

Index Terms—Wind generation, power system emissions, de-
mand response

NOMENCLATURE

A. Optimization Model Sets and Parameters

T : set of hours in optimization horizon
Ξ: set of scenarios in scenario tree
G: set of conventional generators
Ω: set of wind generators
πξ: probability of scenarioξ

cv
g(·): generatorg’s variable cost
cn
g : generatorg’s spinning cost

cs
g: generatorg’s startup cost

K−

g : generatorg’s minimum generation level when it is online
K+

g : generatorg’s maximum generation level when it is online
R−

g : maximum amount generatorg can rampdown generation
in an hour

R+
g : maximum amount generatorg can rampup generation in

an hour
ρ̄sp

g : maximum amount of spinning reserves generatorg can
provide in an hour

ρ̄ns
g : maximum amount of non-spinning reserves generatorg

can provide in an hour
τ−

g : generatorg’s minimum down-time when shutdown
τ+
g : generatorg’s minimum up-time when started up
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w̄t,ω,ξ: maximum generation available from wind generatorω in
hour t under scenarioξ

pt(·): inverse demand function in periodt
ηsp: spinning reserve requirement, as a percent of hourly load
ηns: non-spinning reserve requirement, as a percent of hourly

load

B. Optimization Model Decision Variables

qg,t,ξ: energy produced by generatorg in hour t under scenario
ξ

ρ
sp
g,t,ξ: spinning reserves provided by generatorg in hourt under

scenarioξ
ρns

g,t,ξ: non-spinning reserves provided by generatorg in hour t

under scenarioξ
ug,t: binary variable indicating if generatorg is online in hour

t

sg,t: binary variable indicating if generatorg is started up in
periodt

hg,t: binary variable indicating if generatorg is shutdown in
hour t

wt,ω,ξ: energy produced by wind generatorω in hour t under
scenarioξ

lt,ξ: load served in hourt under scenarioξ

C. Emissions Model Parameters

φg,p(f): emissions rate of pollutantp from generatorg as a
function of the amount of fuel burned,f

N : set of emissions observations in continuous emissions
monitors (CEMs) data

K(·): kernel function
φn

g,p: emissions rate of pollutantp by generatorg in observation
n in CEMs data

fn
g : fuel burned by generatorg in observationn in CEMs data
h: bandwidth of kernel estimator

D. Cost Model Parameters

Wa: annual social welfare when day-ahead unit commitment
decisions are made with wind forecasts with an error
variance ofa

W0: annual social welfare when day-ahead unit commitment
decisions are made with perfect foresight of wind avail-
ability

I. I NTRODUCTION
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RECENT years have seen increased interest in renewable
electricity, such as wind and solar, in the United States

and elsewhere. This interest is driven by several factors,
including concerns surrounding greenhouse gas and other
emissions from fossil-fueled generators. Although wind is
emission-free, its impact on power system emissions depends
on how the variability and uncertainty of real-time wind
generation is accommodated. One approach is to use fast-
responding conventional generators to balance wind genera-
tion. Case studies show that such an approach can increase
system operation costs by up to $5/MWh of wind generation
[1]–[3].

Wind variability and uncertainty can also be accommodated
using demand response (DR). DR allows loads to respond to
wind availability, reducing the need for additional generating
capacity to be committed and redispatched in real-time. Pa-
pavasiliou and Oren [4] study the use of direct load control,
wherein deferrable loads are coupled with and dispatched to
accommodate wind availability. They develop two solution
methodologies for scheduling the loads and use a case study
to demonstrate that such a scheme has energy and capacity
value in the market. Klobasa [5] examines the effects of DR
in a future German power system with 48 GW of wind,
showing that DR can reduce wind balancing costs to less
than e2/MWh. Sioshansi [6] studies the Texas (ERCOT)
system with 14 GW of wind and real-time pricing (RTP). He
shows that RTP can eliminate up to 93% of redispatch costs
associated with wind, depending on the price-responsiveness
of the demand. Dietrichet al. [7] use a unit commitment model
to examine the impacts of demand shifting and peak shaving
on wind integration. They show that these DR programs can
have savings of up to 30%, depending on wind availability.

An unexplored question, which is the focus of this paper,
is the emissions impact of renewables, when accounting for
resource variability and uncertainty and interactions with RTP.
In many power systems natural gas-fired generators are used
for balancing, due to their ramping capabilities and cost
structure. Katzenstein and Apt [8] examine emissions when
a natural gas-fired generator is used to balance wind output.
They demonstrate that when accounting for generator ramping,
emissions can be considerably higher than if the output of the
wind plant is constant. This is largely because the heat rate
of and the efficiency of emissions controls in a generator can
vary depending on whether it is partially loaded. Katzenstein
and Apt estimate that wind achieves about 80% of the CO2

reductions that would be possible without wind variability.
They also demonstrate that NOx emissions are considerably
more sensitive. If the generators providing balancing energy
use steam-injection NOx controls, wind achieves about 30–
50% of the emissions reductions that would be possible
without wind variability. NOx emissions can increase in net,
however, when wind is added if the balancing generators use
dry NOx controls.

In this paper, we extend our previous analysis of wind
and RTP [6], which focuses on operational and cost impacts
only, to study system emissions. We use the same case study,
based on the ERCOT system, to examine how wind and RTP,
individually and together, affect generator CO2, SO2, and NOx

emissions. Our analysis shows that if wind is accommodated
using dispatchable generators only, the net emissions impacts
of wind is considerably more favorable than the work of
Katzenstein and Apt suggests. We also demonstrate that using
RTP to mitigate the impacts of wind uncertainty and variability
increases system emissions relative to having fixed loads.
However, RTP also significantly reduces the costs associated
with wind variability and uncertainty. When accounting for
these two impacts, wind and RTP together deliver much
greater emissions reductions per dollar of additional system
dispatch costs, compared to having wind only. The remainder
of this paper is organized as follows: section II details the
unit commitment and dispatch model, emissions and cost
calculations, and case study underlying our analysis. We also
compare our model, especially simulated emissions in the base
case, to historical data. Section III summarizes our results
while section IV concludes.

II. M ODEL AND CASE STUDY

Our case study is based on the ERCOT power system using
2005 load and conventional generator data. The system had
355 conventional generators in 2005, all of which are modeled.
Load and modeled wind availability data from 2005 are used.
We assume that the system has 14 GW of wind capacity, which
is about 18% of the total installed generating capacity in 2005.
This accounts for all of the wind plants that were planned to be
built by the end of 2011, and we use wind data corresponding
to the locations of these plants.

We model system operations using stochastic day-ahead
unit commitment and real-time dispatch models. The unit
commitment model determines generator commitments day-
ahead, using a scenario tree of wind availability forecasts.
The dispatch model determines the real-time output of the
committed plants. If a suitable wind availability distribution
is used, a stochastic unit commitment can provide operating
cost savings relative to a deterministic model [9]–[11]. This
is because including multiple wind-availability scenarios can
result in more flexible generators, that can more efficiently
react to real-time wind availability, being committed.

We also simulate unit commitment and dispatch in a
counterfactual case in which wind availability is known with
perfect foresight when making commitment decisions day-
ahead. Differences in operating costs between cases in which
the system is committed using wind forecasts and perfect
foresight measure the additional costs imposed on the system
by wind uncertainty, which we hereafter refer to as wind-
uncertainty costs. We also use the simulated commitments
and dispatches in the different cases to estimate generator
emissions of CO2, SO2, and NOx.

A. Unit Commitment and Dispatch Model

Our model optimizes unit commitment and dispatch deci-
sions in a rolling fashion 24 hours at a time. We roll through
each day of the year, first determining unit commitment
decisions (i.e. which generators are on- and off-line in each
hour) day-ahead when wind availability is not known. This is
done using a 48-hour optimization horizon. The additional day
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is included in this model to ensure that sufficient generating
capacity remains committed in hour 24 to serve the following
day’s load [6], [12]. A two-stage scenario tree, a schematicof
which is shown in Fig. 1, is used to represent uncertain wind
output, which is the only stochastic parameter modeled. The
scenario tree structure assumes that unit commitment decisions
are made in stage 1, when wind output during the 48 hours is
unknown. In stage 2, the generation, reserve, and load served
decisions are made with full knowledge of wind output over
the 48 hours. This scenario tree structure is represented inour
model by having the binary generator state variables,ug,t, sg,t,
andhg,t, be scenario-independent (i.e. there is noξ subscript),
whereas the dispatch variables,qg,t,ξ, ρ

sp
g,t,ξ, ρns

g,t,ξ, wt,ω,ξ, and
lt,ξ are scenario-dependent. Because the decision variables
explicitly embed the structure of the scenario tree, no non-
anticipativity constraints are needed in our formulation.The
inclusion of multiple wind-availability scenarios in stage 2 is
meant to ensure that the generators committed can serve the
load under different wind-availability realizations. Ourmodel
and scenario tree structure are similar to those used in the
works of Ruizet al. [13] and Papavasiliouet al. [14].

root node

ξ3

ξ4

ξ2

ξ1

stage 2stage 1
qg,t,ξ, ρ

sp
g,t,ξ, ρ

ns
g,t,ξ,ug,t, sg,t, hg,t

wt,ω,ξ, lt,ξ

Fig. 1. Scenario tree schematic.

Once these commitment decisions are made, the system is
dispatched in real-time based on actual wind output. Generator
commitments are fixed in this dispatch problem based on the
day-ahead solution, except that we allow fast-start generators
that can be started up in less than 15 minutes (e.g. natural
gas-fired combustion turbines) to be started up if necessary.

1) Stochastic Day-Ahead Unit Commitment Model:The
model is given by:

max
∑

ξ∈Ξ

∑

t∈T

πξ ·

{
∫ lt,ξ

0

pt(x)dx −
∑

g∈G

[

cv
g(qg,t,ξ) (1)

+cn
g · ug,t + cs

g · sg,t

]

}

;

s.t. lt,ξ =
∑

ω∈Ω

wt,ω,ξ +
∑

g∈G

qg,t,ξ; ∀ t ∈ T, ξ ∈ Ξ; (2)

∑

g∈G

ρ
sp
g,t,ξ ≥ ηsp · lt,ξ; ∀ t ∈ T, ξ ∈ Ξ; (3)

∑

g∈G

(ρsp
g,t,ξ + ρns

g,t,ξ) ≥ (ηsp + ηns) · lt,ξ; (4)

∀ t ∈ T, ξ ∈ Ξ;

K−

g · ug,t ≤ qg,t,ξ; ∀ g ∈ G, t ∈ T, ξ ∈ Ξ; (5)

qg,t,ξ + ρ
sp
g,t,ξ ≤ K+

g · ug,t; (6)

∀ g ∈ G, t ∈ T, ξ ∈ Ξ;

qg,t,ξ + ρ
sp
g,t,ξ + ρns

g,t,ξ ≤ K+
g ; (7)

∀ g ∈ G, t ∈ T, ξ ∈ Ξ;

0 ≤ ρ
sp
g,t,ξ ≤ ρ̄sp

g · ug,t; ∀ g ∈ G, t ∈ T, ξ ∈ Ξ; (8)

0 ≤ ρns
g,t,ξ ≤ ρ̄ns

g ; ∀ g ∈ G, t ∈ T, ξ ∈ Ξ; (9)

R−

g ≤ qg,t,ξ − qg,t−1,ξ; ∀ g ∈ G, t ∈ T, ξ ∈ Ξ; (10)

qg,t,ξ − qg,t−1,ξ + ρ
sp
g,t,ξ + ρns

g,t,ξ ≤ R+
g ; (11)

∀ g ∈ G, t ∈ T, ξ ∈ Ξ;
t

∑

y=t−τ+
g

sg,y ≤ ug,t; ∀ g ∈ G, t ∈ T ; (12)

t
∑

y=t−τ−

g

hg,y ≤ 1 − ug,t; ∀ g ∈ G, t ∈ T ; (13)

sg,t − hg,t = ug,t − ug,t−1; ∀ g ∈ G, t ∈ T ; (14)

0 ≤ wt,ω,ξ ≤ w̄t,ω,ξ; t ∈ T, ω ∈ Ω, ξ ∈ Ξ; (15)

lt,ξ ≥ 0 t ∈ T, ξ ∈ Ξ; (16)

ug,t, sg,t, hg,t ∈ {0, 1}; ∀ g ∈ G, t ∈ T. (17)

Objective function (1) maximizes social welfare, which
is defined as the difference between the integral (up to the
amount of load served,lt,ξ) of the inverse demand function
and total generation cost. In cases without RTP, the load in
each hour is fixed. Thus, the integral term in the objective
function is fixed, and maximizing social welfare is equivalent
to minimizing generation cost. In cases with RTP, the inverse
demand function is represented as a non-decreasing step func-
tion, implying that the integrals are convex piecewise-linear
functions of thelt,ξ ’s. The variable generation cost functions,
cv
g(qg,t,ξ), are represented as convex piecewise-linear functions

of the qg,t,ξ ’s. These assumptions yield an objective function
that is linear and convex in the decision variables.

Constraint set (2) are hourly load-balance requirements,
which ensure that demand is exactly served in each hour. Con-
straint sets (3) and (4) impose load-based spinning and non-
spinning reserve requirements. Constraint sets (5) through (7)
are generation-limit constraints, which ensure that each gener-
ator operates between its minimum and maximum generation
level. Constraint sets (6) and (7) also force each generator
to remain below its maximum generation level if spinning or
non-spinning reserves are called. Constraint sets (8) and (9)
limit the amount of spinning and non-spinning reserves each
generator can provide and only allow generators to provide
spinning reserves when online. Constraint sets (10) and (11)
impose ramping limits. The ramp-up constraints also restrict
spinning and non-spinning reserves so generators can feasi-
bly provide them if called in real-time. Constraint sets (12)
and (13) enforce the minimum up- and down-times when
generators are started up and shutdown. Constraint set (14)is
a state-transition relation, which defines the generator startup
and shutdown state variables in terms of changes in the online
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state variables. Constraint set (15) restricts wind generation to
be below the maximum amount available. Constraint set (16)
forces the load served to be non-negative and constraint
set (17) imposes integrality restrictions on the binary state
variables.

Our model treats demand response in the cases with RTP
as a dispatchable resource that the system operator can use
to serve the load. This implicitly assumes that consumers
truthfully reveal their willingness to pay for energy and that
they adjust their demand in real-time based on the socially
optimal dispatch of demand response determined by the sys-
tem operator. Thus our modeling approach does not tackle
the issue of generating market-clearing prices that ensurethat
suppliers and consumers have proper incentives to provide the
socially optimal amount of generation and demand response.
This is a theoretically difficult task, due to the non-convex
nature of power system operations and unit commitment [15].
Moreover, we assume that consumers can react to real-time
signals from the system operator immediately, without any
latency. Any delay in the consumer response likely reduces
the wind-related benefits of RTP, since the principal benefitof
RTP is to have demand more closely follow real-time wind
availability.

2) Dispatch Model: The dispatch model is identical to
the unit commitment model, except that the commitments
(i.e. the values ofug,t, sg,t, and hg,t) of all generators that
are not fast-start are fixed based on the solution of the day-
ahead model. Moreover, the scenario tree is not used and
the system is dispatched against actual wind availability.All
of the spinning and non-spinning reserve requirements must
also be maintained in real-time, and cannot be used to serve
wind shortfalls. This is because these contingency reserves
are assumed to be used to accommodate unanticipated load
increases or conventional generator or transmission failures.
The flexible generators committed day-ahead due to the sce-
nario tree are intended to accommodate wind variability. Ruiz
et al. [13] discuss the advantages and disadvantages of relying
on generators committed using a stochastic model, as opposed
to using operating reserves, to accommodate wind and other
system uncertainties.

3) Model Data: Generator constraint and cost data are
obtained from Global Energy Decisions (GED) and Platts
Energy. Hourly system load data are obtained from the Public
Utility Commission of Texas (PUCT). In cases without RTP,
the hourly loads are fixed equal to these historic values. Cases
with RTP are modeled by assuming the price elasticity of
demand and calibrating the inverse demand function in each
hour so the actual historical load in the hour corresponds to
the historical average retail price of electricity [6], [12], [16],
[17]. Thus, the hour-t demand function is calibrated so:

pt(lt) = pret, (18)

where lt is the historical load in hourt and pret is the
historical retail price of electricity. In doing so we only model
own-price elasticities, assuming that cross-price elasticities are
zero. This assumption potentially understates the extent to
which RTP shifts loads from on- to off-peak hours. This load
shifting effect is somewhat captured through modeling only

own-price elasticities, however, since on-peak loads drop(due
to relatively high real-time prices) while off-peak loads rise
(due to lower prices) [12]. We consider cases with elastici-
ties of −0.1 and −0.3, which are consistent with empirical
estimates [18]. Retail electricity price data are obtainedfrom
the United States Department of Energy’s Energy Information
Administration (EIA) and PUCT filings are used to remove
non-energy-related costs from the retail price. Each hourly
inverse demand function is approximated as a step function
with 100 segments. We assume that total reserves, half of
which must be spinning reserves, must amount to at least 9%
of the hourly load.

We use historical mesoscale model data available in the
National Renewable Energy Laboratory’s Western Wind Re-
sources Dataset to represent actual hourly wind availability.1

These data specify what fraction of the installed nameplate
capacity of each wind generator is available in each hour. The
scenario tree is constructed by adding ‘forecast error’ terms to
the actual wind availability fraction in each hour. Following the
assumption used in the California ISO’s renewable integration
study, we assume that the forecast errors have an unbiased
first-order autocorrelated truncated Gaussian distribution [6],
[19]. We assume an autocorrelation coefficient of0.6 and
consider cases in which the forecast error has a variance
of between0.0025 and 0.0225 (or error standard deviations
between 5% and 15%). A higher variance implies less accurate
wind forecasts. We use a scenario tree with four terminal
leaves, as shown in Fig. 1. The scenarios are constructed
by generating 1000 sample paths of the forecast error terms
using Monte Carlo simulation. These 1000 sample paths are
reduced to the four leaves constituting the scenario tree,
with corresponding probabilities, using the forward selection
algorithm in theSCENRED scenario reduction tool available
in GAMS [20].

4) Model Implementation:The day-ahead and real-time
models are formulated usingGAMS and solved using the
branch and cut algorithm inCPLEX with default settings. The
models are solved using a 64-bit 2.7 GHz Pentium Core 2 pro-
cessor with 6 GB of RAM. Each day-ahead unit commitment
problem has about 280,000 variables and 570,000 constraints
and takes an average of 500 s of CPU time to solve.

B. Emissions Modeling

Our analysis only considers emissions directly attributable
to the combustion of fuels by generators. Emissions are
estimated using input-based emission rates, which specifythe
mass of each species emitted per unit of fuel burned. We
prefer input- to output-based rates, which specify emissions
per unit of electricity generated, since they better account
for generator startups and the effect of partial loading on
generator heat rates. We combine the optimized commitment
and dispatch of the generator fleet with heat rates and estimates
of generator startup and spinning fuel use to determine hourly
fuel consumption by each generator.

1These data are publicly available for download from the National Renew-
able Energy Laboratory at http://wind.nrel.gov/Webnrel/.

http://wind.nrel.gov/Web_nrel/


5

Although generator emissions are often estimated using a
constant emissions rate [21], this approach does not capture
the effect of part-load operation on the efficiency of emission
controls. Because wind and RTP can result in load shifting
and partially loading generators (e.g. to provide capacity to
accommodate real-time wind variability), generator emissions
rates can change beyond the impacts of heat rate variation.
As an example, Fig. 2 shows actual NOx emissions rates
for a combined-cycle natural gas-fired unit as a function of
generator loading. These emissions rates are taken from 2005
continuous emissions monitors (CEMs) data reported by the
United States Environmental Protection Agency.2 The figure
shows higher than average emissions rates when the generator
is partially loaded, which is indicative of the fact that some
SO2 and NOx emissions controls are relatively inefficient
when operated in such a manner. The efficiency of these
controls is also sensitive to the technology used (e.g. steam-
injection versus dry NOx controls), thus the emissions rates
vary between the units modeled.
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Fig. 2. Actual NOx emissions rates and non-parametric rate for AES Wolf
Hollow 1a combined-cycle natural gas-fired unit during the ozone season.

To capture these effects, we use a non-parametric Nadaraya-
Watson kernel estimator of SO2 and NOx emissions rates
[22]–[24]. This technique estimates a function,φg,p(f), which
specifies generatorg’s input-based emissions rate of pollutant
p as a function of the amount of fuel burned,f . This function
is estimated as:

φg,p(f) =

∑

n∈N

K
(

f−fn
g

h

)

φn
g,p

∑

n∈N

K
(

f−fn
g

h

) . (19)

The termsφn
g,p and fn

g in (19) represent the actual emis-
sions rate and amount of fuel consumed, as reported in the
CEMs data. The functionK(·) is the kernel or smoothing
function, and we use the standard Gaussian density function.
The bandwidth,h, controls the weight put on neighboring

2These data are publicly available for download from the Environmental
Protection Agency at http://camddataandmaps.epa.gov/gdm/index.cfm.

observations in estimatingφg,p(f). We use an optimal band-
width, h = O

(

|N |−1/4
)

, which ensures that the estimator
is asymptotically consistent. Fig. 2 shows the non-parametric
emissions rate estimate derived using this technique.

We estimate separate SO2 and NOx emissions rates func-
tions for each generator that appears in the CEMs data.
Because CO2 emissions are not controlled, fixed input-based
emissions rates are estimated from the CEMs data. Since NOx

is an ozone precursor, we differentiate NOx emissions rates
between an ozone (May to September) and a non-ozone (the
remaining months) season. This is done by estimating different
φg,p(f) functions for each generator using CEMs data from
the ozone and non-ozone seasons separately. This helps to
capture any seasonal difference in the use of NOx controls,
for instance due to more stringent regulations during the ozone
season. We use fixed CO2, SO2, and NOx emissions rates,
reported by GED, for generators that do not appear in the
CEMs data.

C. Wind-Uncertainty Cost

A standard measure of wind-uncertainty cost is the dif-
ference between the cost of operating the system when im-
perfect wind forecasts are used and a counterfactual case
in which wind availability is known with perfect foresight
[1]–[3]. Because we examine RTP, which allows loads to
adjust, the difference in social surplus (as defined by objective
function (1) of our MIP) is a more appropriate metric [6]. This
is because loads adjustments give consumer surplus changes
that are not captured by differences in generation costs. Using
this approach, the wind-uncertainty cost when forecasts with
an error variance ofa are used is given by:

W0 − Wa. (20)

This measures the cost of wind uncertainty as the decrease
in social welfare caused by using imperfect forecasts when
making commitment decisions day-ahead. The perfect fore-
sight cases are simulated using the same day-ahead unit
commitment model, but without the two-stage scenario tree.
Rather, the commitment and dispatch are optimized assuming
that wind availability is perfectly known. Moreover, these
cases do not require the dispatch model to be solved, since the
day-ahead unit commitment model is solved using the actual
wind availability.

D. Model Validation

In order to validate our model, especially the emissions
calculations, we compare aggregate system generation and
emissions to historical data reported by the EIA. We prefer
EIA data to the CEMs, since the latter does not include
generators smaller than 50 MW. The EIA reports historical
aggregate annual generation, fuel consumption, and emissions
in each state. Although the ERCOT region is wholly contained
within the state of Texas, some regions of the state are in the
western and eastern interconnects. Since ERCOT accounts for
roughly 85% of the load of the state of Texas, we scale the
EIA data by a factor of0.85 to estimate the corresponding
historical data for ERCOT.

http://camddataandmaps.epa.gov/gdm/index.cfm
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Table I compares modeled generation, fuel consumption,
and emissions in the base case in which no additional wind
is added to the system and loads are fixed. It also reports the
scaled EIA data. Comparing the modeled and EIA data shows
that the scaling is roughly correct in capturing total ERCOT
loads, since total modeled and EIA-reported generation differ
by less than 1%. There is, however, a difference in the
breakdown of this generation, with our model resulting in
51% of the load being served by coal-fired generation as
opposed to 47% in the EIA data. The modeled and EIA data
also reveal differences in the efficiencies of the natural gas-
fired generators used. Whereas the modeled natural gas-fired
generators have an average heat rate of about 9.9 GJ/MWh, the
EIA data gives an average heat rate of about 12.7 GJ/MWh.
These heat rate and generation differences could be due to the
breakdown of the generator fleet within ERCOT, as compared
to the rest of the state. If more low-efficiency natural gas-fired
generators tend to be outside of the ERCOT region or more
coal-fired generators are within ERCOT, that could result in
the emissions differences shown. These differences could also
be indicative of the generator fleet outside ERCOT being of
an older vintage. Otherwise, it is possible that our model does
not include detailed transmission and operating constraints
(e.g. reliability must-run requirements). These types of con-
straints can affect which generators are operated in real-time,
yielding a different mix of fuels and generator efficiencies.

TABLE I
MODELED BASE CASE AND EIA-REPORTEDANNUAL GENERATION AND

EMISSIONS

Modeled EIA-Reported
Generation [TWh]

Total 262.93 263.14
Coal 134.77 123.93
Natural Gas 122.82 139.21

Fuel Consumption [PJ]
Total 2,727 3,191
Coal 1,510 1,424
Natural Gas 1,217 1,767

CO2 [Mt]
Total 198.53 220.27
Coal 136.72 131.31
Natural Gas 61.81 88.96

SO2 [kt]
Total 451.16 457.11
Coal 450.75 456.57
Natural Gas 0.41 0.55

NOx [kt]
Total 140.37 195.30
Coal 102.05 107.13
Natural Gas 38.32 88.17

These differences in the efficiencies of the natural gas-fired
plants largely contribute to the differences in the modeledand
EIA-reported emissions. Emissions from the coal-fired plants
are largely consistent between the two data sets, with total
CO2, SO2, and NOx emissions differing by 6%, 1%, and
5%, respectively. Natural gas-fired generator emissions ofCO2

and NOx are considerably higher in the EIA-reported data,
however, reflecting the higher heat rate.

To further verify this, Fig. 3 shows modeled hourly input-
based SO2 and NOx emissions rates for the entire natural
gas-fired generator fleet as a function of fuel consumption. It

also shows hourly input-based emissions rates computed from
the CEMs data. While there are differences in the modeled
and CEMs-reported emissions rates, they are within a similar
range. Some differences in the emissions rates are to be
expected, since ramping constraints and commitment decisions
affect what specific mix of generators is producing energy
and emitting SO2 and NOx during any given hour. Since the
modeled and CEMs-reported emission rates are similar, the
emissions differences are due to the heat rates.
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Fig. 3. Modeled and CEMs-reported hourly average input-based emissions
rates of SO2 and NOx of natural gas-fired generators.

III. R ESULTS

A. Emissions Effects of Wind

Table II summarizes the effect of wind on annual generation
and emissions without RTP. The added wind displaces roughly
43 TWh of conventional generation, about 27% of which
is coal-fired. This yields CO2 reductions of about 13% and
reduces SO2 and NOx emissions by 11–12% relative to the
no-wind case, depending on wind forecast accuracy. This
translates into an average of about 2000 t of CO2, 3.6 t of SO2,
and 1.2 t of NOx being eliminated annually per MW of added
wind. Table II further shows that emissions decrease as the
wind forecasts become less accurate. Less accurate forecasts
force more natural gas-fired generators, which have greater
ramping capabilities than coal-fired generators, to be commit-
ted in order to provide sufficient flexibility to accommodate
wind variability. These natural gas-fired plants displace coal-
fired generators, giving the emissions savings. This results,
however, in natural gas-fired generators increasingly being
operated at part load, causing an increase in their emissions
rates. This is demonstrated in Table III, which shows the
average loading of natural gas-fired generators when they are
online and their output-based emissions rates in the fixed-load
case. A generator’s loading in an hour is defined as the amount
of fuel burned in that hour divided by the amount it would
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burn if operated at maximum load.3 Tables II and III show
that as the wind forecasts become less accurate, more natural
gas-fired generators are committed and operated at a lower
average level in order to provide ramping capacity, increasing
their emissions rates.

Katzenstein and Apt [8] observe this effect and estimate that
cycling and partially loading natural gas-fired plants can result
in net NOx increases when wind is introduced to a system.
Contrasting their findings with ours illustrates two issueswith
their emissions estimation technique, which Millset al. [25]
note. One is that they assume that each wind generator must
have a dedicated conventional generator that follows its output
(i.e. each wind plant requires 100% reserves). This eliminates
the benefits of a (spatially) diversified wind generator portfo-
lio. Wind diversification can reduce the need for conventional
generation to follow the output of individual wind generators,
since the output of individual wind plants tend to be less
correlated with one another. This reduces the variability of the
aggregate wind generation profile. The hourly real-time wind
availability of the individual wind plants that we model have
coefficients of variation4 ranging between0.80 and1.25. The
coefficient of variation of hourly aggregate wind availability
across the ERCOT system is0.76, however. This shows that
diversification of wind reduces the variability of aggregate
wind output and the need for reserve capacity below the
100% that Katzenstein and Apt assume. Indeed, there is a
broad literature focused on estimating reserve requirements
with high wind penetrations [26]–[28], and our stochastic unit
commitment is intended to ensure that sufficient fast-ramping
capacity is available to accommodate wind variability. A sec-
ond limitation is that Katzenstein and Apt do not account for
the effect of wind uncertainty on unit commitment decisions.
As illustrated in Table II, inaccurate wind forecasts result in the
commitment and generation mix shifting toward natural gas-
fired plants. Although these natural gas-fired plants are less
loaded, resulting in higher emissions rates, the fuel switching
benefits more than outweighs this emissions increase.

B. Emission Effects of Wind and RTP

Because real-time prices and electricity demand are cor-
related, RTP affects load profiles by reducing on-peak and
increasing off-peak demands. This effect is more pronounced
if cross-price elasticities are modeled, since on-peak demands
decrease both due to the high on-peak price and the relatively
low price during shoulder and off-peak hours, to which de-
mand can be shifted. Many power systems, including ERCOT,
use a mix of generating fuels (e.g. natural gas and coal), thus
this change in the load pattern can result in dramatic changes
in the generation mix used and resulting system emissions.

Table IV summarizes the effects of wind and RTP on
annual emissions, showing that the effect of RTP depends on
the presence of wind. In the no-wind case, RTP causes the

3Generator loading can also be defined in terms of output. We opt to define
it in terms of fuel burned, since this metric also captures fuel use associated
with generator startups. Nevertheless, these two definitions are closely related
since higher generation requires more fuel.

4The coefficient of variation is defined as the ratio between the standard
deviation and mean of hourly wind availability.

change in diurnal load patterns discussed above but also yields
a reduction in total electricity demand. This is because the
retail price of electricity in 2005 was lower than the average
real-time price. Thus, exposing consumers to real-time prices
results in a greater demand reduction during on-peak periods
than the demand increase during off-peak periods. As such,
introducing RTP without wind yields a net reduction in all
emissions except for SO2. SO2 emissions increase because
the change in the diurnal load pattern results in the share
of coal-fired generation increasing from about 52% of the
load without RTP to 53–54% with RTP (depending on the
demand elasticity). The significantly higher sulfur content of
coal (natural gas- and coal-fired generators in ERCOT release,
on average, about0.0003 and0.2984 kg of SO2, respectively,
per GJ of fuel burned) yields net SO2 emissions despite less
energy being generated.

This effect of RTP is something of an artifact of the data—if
retail and real-time prices are closer to each other, RTP would
likely cause a net increase in all emissions. This is because
overall demand would see a smaller change but be shifted
toward off-peak hours, during which coal-fired generation is
marginal. This exact effect is observed in an analysis of the
emissions impact of RTP in the PJM system [29]. The low
retail prices in 2005 are indicative of the fact that they are
set through regulatory mechanisms and can lag the cost of
generation by several years. Indeed, EIA data show that the
average price of natural gas for the United States’s electricity
generation sector rose by 39% between 2004 and 2005, which
is likely not captured in the 2005 retail electricity rates.We can
partially control for this effect by comparing average output-
based emissions rates. Table V compares average emissions
rates across the entire conventional generator fleet in the fixed-
load and RTP cases. The RTP case assumes a demand elastic-
ity of −0.1—the results are similar but greater in magnitude
with the higher elasticity. The table shows that if RTP is
introduced output-based emissions rates increase relative to
the fixed-load case.

When the 14 GW of wind is added to the system, RTP has
the effect of increasing system emissions. This is because the
added wind suppresses real-time electricity prices and they
are, on average, lower than the retail price in 2005. Thus,
RTP increases total electricity demand. Moreover, RTP has
the same effect of decreasing on-peak and increasing off-peak
demand. Thus, the demand shifts toward hours during which
coal-fired generation is marginal. Introducing RTP when wind
is in the system increases the use of coal-fired generation from
57% of the conventional generation mix to 60%.

C. Cost of Emissions Reductions

Although RTP reduces the emissions benefits of wind, it
also significantly reduces wind-uncertainty costs [6]. This
synergy between wind and RTP is demonstrated in Fig. 4,
which shows hourly actual wind and wind forecasts, as well
as system loads on 18 July. Actual wind availability on this
day varies from 146 MW to 2.6 GW. Moreover, the accuracy
of the wind forecasts vary significantly throughout the day.
The wind scenarios modeled between hours 3 and 14 both
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TABLE II
ANNUAL GENERATION BREAKDOWN AND GENERATOREMISSIONSWITH FIXED LOADS

Wind Forecast
Error Variance Generation [TWh] Total Emissions

Coal Natural Gas CO2 [Mt] SO2 [kt] NOx [kt]

No Wind 134.8 122.8 198.5 451.2 140.4

0.0025 122.9 91.0 172.1 400.7 124.2

0.0100 122.7 91.1 171.9 399.7 124.0

0.0225 122.5 91.4 171.8 398.8 123.8

TABLE III
AVERAGE LOADING AND OUTPUT-BASED EMISSIONSRATES OFNATURAL GAS-FIRED GENERATORSWITH FIXED LOADS

Wind Forecast Average Natural Gas
Error Variance Generator Loading [%] Natural Gas EmissionsRates

CO2 SO2 NOx

[kg/MWh] [g/MWh] [g/MWh]

0.0025 34.1 523.8 3.59 349.5

0.0100 30.2 523.7 3.59 350.3

0.0225 28.1 523.6 3.61 350.6

TABLE IV
ANNUAL GENERATOREMISSIONSWITH RTP

Wind Forecast
Error Variance Demand Elasticity−0.1 Demand Elasticity−0.3

CO2 [Mt] SO2 [kt] NOx [kt] CO2 [Mt] SO2 [kt] NOx [kt]

No Wind 197.0 452.4 138.7 194.3 453.1 135.5

0.0025 173.7 412.7 124.8 176.0 430.1 125.1

0.0100 173.5 412.0 124.7 175.8 429.7 125.0

0.0225 173.3 411.3 124.5 175.7 429.3 124.9

TABLE V
AVERAGE OUTPUT-BASED EMISSIONSRATES OFALL GENERATORSWITH FIXED LOADS AND RTP

Wind Forecast
Error Variance Fixed Loads RTP (Demand Elasticity−0.1)

CO2 SO2 NOx CO2 SO2 NOx

[kg/MWh] [g/MWh] [g/MWh] [kg/MWh] [g/MWh] [g/MWh]

No Wind 770.7 1751.4 544.9 773.1 1775.4 544.3

0.0025 803.2 1870.5 579.6 808.7 1921.5 581.0

0.0100 802.5 1866.1 579.0 808.5 1919.9 581.1

0.0225 802.1 1861.9 578.1 808.2 1918.1 580.6

over- and under-estimate wind availability. From hour 15 to
22, however, all of the wind scenarios overestimate wind, with
hour 22 having extreme overestimates of between 1.2 and
2.8 GW. This results in less generating capacity being available
in the afternoon and the system must commit fast-starting
natural gas-fired plants in real-time to serve the load in the
fixed-demand case. The lower panel of Fig. 4 demonstrates the
benefit of RTP, which is that loads respond to wind availability
through price signals. Between hours 15 and 22, for instance,
an average of about 600 MW of load is curtailed, reducing the
cost of accommodating the unexpectedly low wind generation.

Thus, determining the benefits and synergies between wind
and RTP should account for both these cost and emissions
effects. Table VI summarizes the annual wind-uncertainty cost,
as given by (20), divided by total wind generation. The table
shows that less accurate day-ahead wind forecasts increases
wind-uncertainty costs. It also shows that increasing demand

responsiveness decreases these costs. This is because demand
is better able to respond to unforeseen increases or decreases
in wind availability.

TABLE VI
WIND-UNCERTAINTY COST [$/MWH OF WIND ]

Wind Forecast Demand Elasticity
Error Variance −0.0 −0.1 −0.3

0.0025 1.81 0.25 0.02

0.0100 3.79 0.99 0.02

0.0225 6.11 1.89 0.04

Table VII summarizes the amount of emissions reductions
that wind provides per dollar of wind-uncertainty cost in-
curred. This is defined as the reduction in generator emis-
sions summarized in Tables II and IV, divided by the wind-
uncertainty cost given by (20). Values for the cases with RTP
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Fig. 4. Actual wind, wind forecasts, and electricity demandon 18 July. Wind
forecasts have0.01 error variances and demand elasticity is−0.1 in the RTP
case.

are given as ranges covering the different elasticity values
that we consider—the lower-end of the range corresponds to
an elasticity of−0.1 and the upper-end to an elasticity of
−0.3. These values capture the two effects of RTP and wind
together—increased emissions and reduced wind-uncertainty
costs. The table demonstrates that although RTP reduces the
emissions benefits of wind, the significantly lower wind-
uncertainty cost borne by the system more than compensates
for this. In some cases, RTP gives emissions savings that are
more than two orders of magnitude greater than with fixed
loads, showing that RTP is an effective means of integrating
wind, when considering both the cost and emissions impacts
together.

IV. CONCLUSION

Our analysis demonstrates that RTP is a cost-effective
means of integrating wind into power systems. Although
RTP reduces the emissions benefits of wind, the associated
cost savings more than compensates for these losses and
reduces the wind-uncertainty cost incurred per kg of emissions
averted by wind. While less accurate wind forecasts provide
incremental emissions benefits by tilting the mix of generators
used away from coal, the associated cost increase overwhelms
these benefits, as shown in Table VII. Whereas a dollar of
wind-uncertainty cost averts up to 3 t of CO2 with fixed loads,
the same dollar can avert up to between 23 and 232 t with RTP.

The combination of wind and RTP can also provide some-
thing of a virtuous investment cycle, since lower wind-
uncertainty costs can reduce perceived barriers or limits (both
technical and financial) to the entry of wind in power systems.
Although wind-uncertainty costs are not currently passed
onto wind generators (in most markets in the United States),
they nevertheless represent real costs borne by power system
operators, utilities, and (ultimately) ratepayers. Our analysis
focuses on wind and a topic for further investigation is whether
RTP and other variable renewables, such as solar, would have

similar synergies. While solar presents the same type of inte-
gration challenges, solar generation patterns can be markedly
different from wind. Indeed, solar generation peaks midday
when prices can peak. Thus, solar and RTP may result in
more midday consumption, compared to a fixed-load case, and
less shifting of loads to off-peak periods (compared to having
wind and RTP together). This can yield very different effects
on generation and emissions. Although our analysis focuses
on RTP other forms of DR may provide similar benefits, so
long as they are sufficiently dynamic to react to real-time
wind availability. While our results are based on the ERCOT
system, the general findings that RTP can improve the overall
cost-effectiveness of wind in reducing generation emissions
should be broadly applicable in other power systems. This is
because RTP provides system operators with an additional tool
to mitigate wind uncertainty and variability. This should result
in a cost reduction that outweighs any emissions increases
caused by changes in the diurnal load profile.

Our analysis relies on a relatively small scenario tree in
the stochastic unit commitment. A larger scenario tree may
reduce wind-uncertainty costs. This is because it may better
represent the possible range of wind availabilities, resulting
in a more appropriate generation mix being committed. We
also assume that the system operates in a relatively static
manner, with each day’s commitment fixed based on the
day-ahead forecasts. A more dynamic model, which allows
commitments to be readjusted intraday using updated forecasts
could further reduce wind-uncertainty costs [11]. While such
measures can affect the specific wind-uncertainty cost and
emissions estimates presented here, we expect that our general
findings hold, since RTP has tremendous wind-integration
benefits regardless of how the stochastic planning model is
implemented [30]. Our analysis neglects the effect of trans-
mission constraints. Including such constraints could result
in greater wind curtailment [31], [32], which RTP could
alleviate [12]. This may yield greater emissions benefits from
the combination of wind and RTP, since RTP shifts loads in
transmission-constrained regions to periods with excess wind
that must otherwise be curtailed. What wind curtailment we
observe is due to generator operating constraints, which have
a limited impact at the modest wind penetration modeled. At
higher penetrations these constraints can limit the amountof
wind that the system can accept, which RTP can help mitigate.

An important assumption in evaluating the emissions im-
pacts of RTP without wind is that there are no binding CO2,
SO2, or NOx emissions constraints. In the short-run, a binding
SO2 constraint would require operational measures, such as
emissions dispatch or fuel switching [33]–[36], which would
prevent the change in the fuel mix toward coal. Since we
do not consider such a constraint, the emissions estimates
for the case with RTP and no wind are illustrative of the
effects of RTP if no such restrictions are in place. Our analysis
also neglects the locational impacts of generator emissions,
which can be important. The effect of NOx, especially in
ozone formation, is highly sensitive to location, temperature,
sunlight, and other factors. NOx can also be transported over
regional scales, with associated effects sensitive to dilution,
chemical transformation, and deposition during long-range
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TABLE VII
TOTAL ANNUAL EMISSIONS OFCO2 , SO2 , AND NOx AVERTED BY WIND , PER DOLLAR OF WIND-UNCERTAINTY COST INCURRED

Wind Forecast
Error Variance Fixed Loads RTP

CO2 SO2 NOx CO2 SO2 NOx

[t/$] [kg/$] [kg/$] [t/$] [kg/$] [kg/$]

0.0025 3 6 0 23–232 35–216 1–10

0.0100 2 3 0 6–228 9–215 0–11

0.0225 1 2 0 3–125 5–119 0–6

transport [37]. Our emissions findings are also sensitive to
the cost of natural gas, relative to coal, which was quite
high in 2005. The recent development of shale gas in North
America has significantly reduced this cost difference, andin
some cases made natural gas a less costly generation fuel. If
such ‘cost reversals’ are persistent, then the emissions impacts
of wind and RTP could be significantly different from our
estimates. This is because natural gas-fired generation would
be marginal overnight whereas coal-fired generation would be
increasingly used during on-peak hours only. Thus, the change
in the diurnal load pattern brought on by RTP would not yield
the same emissions increases that we estimate. As such, the
net effect of RTP and wind together would be similar wind-
uncertainty cost savings but greater emissions benefits.
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