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Abstract Wind imposes costs on power systems due to uncertainty aiabildy of
real-time resource availability. Stochastic programnangd demand response are of-
fered as two possible solutions to mitigate these so-calied-uncertainty costs. We
examine the benefits of these two solutions, and show thHaiwdh both will reduce
wind-uncertainty costs, demand response is significantiseraffective. We also ex-
amine the impacts of using demand response and stochasititizgiion together.
We show that most of the value of demand response in redudimd-uncertainty
costs remain if a stochastic optimization is used and treethre subadditive bene-
fits from using the two together.

Keywords Wind power generation unit commitment wind-forecast error
real-time pricing stochastic programming

1 Introduction

The past several years have seen increased interest inaieleesmergy. Much of this
interest is driven by environmental, energy security, aetioconcerns surrounding
fossil fuels and conventional generation technologiess @ihve toward greater use
of renewables has led to increases in installed wind capalie to the maturity and
low cost of wind compared to most other renewable technekodihe integration
of wind into power systems can, however, impose costs amskptehallenges for
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short-run system operations and planning, due to the JVarédu uncertain nature of
real-time wind availability and the limited dispatchatyilof wind.

Wind variability may require more ancillary servicesg; regulation, spinning,
and non-spinning reserves) to be procured or more gengredipacity to be com-
mitted to ensure system stability and reliability2[33,14,23]. If wind resources
are concentrated in a geographical region, bottlenecksappgar in the transmis-
sion network, requiring curtailment of wind generatici[13,30]. Wind can also
require more cycling and real-time redispatching of cotiegral generators. This in-
creases unit commitment, dispatch, and maintenance ddstsover, because real-
time wind availability is uncertain when commitment decrs are made, the set of
generators that are committed may be suboptimal if poorcksts are used when
making operational decisions day- and hour-ahead. Seserdies estimate the im-
pact of these types of challenges with wind integrationyshg that they can impose
significant costs on the order of $5/MWh of wind on the system12,17,32].

Several solutions are offered to mitigate these cost inspaictvind. One is to
use energy storage to reduce variability and uncertainttydmet output of the joint
wind generator and storage devicg![3,9,24,25,10,1,3,20,36]. Although storage
can mitigate costs related to wind and can have ancillargtitsnsuch as reducing
the impacts of transmission constrainig,[L 3], the currently high capital cost of stor-
age makes this an uneconomic solution. Another strategyhistter account for wind
variability and uncertainty when making operational diecis by incorporating the
distribution of wind availability in a stochastic unit contment model f,18,37]. A
third suggestion is to leverage some form of demand resg@®gto make electric-
ity loads more closely follow real-time wind availabilitfhis could take the form of
a direct mechanism, such as load cont#a] [ or an indirect mechanism, which uses
price or other signals to encourage customers to adjustdbaiand. Real-time pric-
ing (RTP), which sets electricity prices dynamically basadhe actual marginal cost
of energy, can both increase wind use and reduce operatioetlmpacts of wind
[29,31]. This is because real-time prices rise, reducing demandng periods in
which wind availability is overestimated and high-cost gextion must be deployed
in real-time andiice versa.

One limitation of existing analyses, however, is that thegmine the value of DR
if the system is operated using a deterministic model. Tapep expands this line of
research by examining the relative benefits of DR (spedy§idall P) and stochastic
optimization in reducing the cost impacts of renewablesd#jzally, wind). We fo-
cus on the effect of wind uncertainty on the scheduling ofveotional generators
and the resulting cost impacts, which we henceforth refastthe ‘wind-uncertainty
cost.’ This is done by comparing cases in which the systenisatthed with un-
certain future wind availability to a counterfactual bease scenario with perfect
foresight of wind. The difference in system operation cbgisveen these cases rep-
resents the added costs imposed by wind uncertainty. We a@wyind-uncertainty
costs in cases with and without RTP and with and without the afsa stochastic
planning model. Our results show that both RTP and stochaptimization reduce
wind-uncertainty costs, although RTP has a much greatezfibewe also find that
most of the benefits of RTP in reducing wind-uncertainty €osinain if a stochastic
optimization model is used. Nevertheless, there are ineneahbenefits to introduc-



The Impacts of Stochastic Programming and Demand Resparidénal Integration 3

ing both stochastic optimization and RTP together, as agghs only RTP. We also
explore the effect of varying the accuracy of the wind fostsaised to schedule
generation. The remainder of the paper is organized asafsileection? describes
the model and data underlying our analysis, secB@ummarizes our results, and
sectiond concludes.

2 Model and Data

Our analysis uses a stochastic unit commitment model with &Td our case study
is based on the Electricity Reliability Council of Texas (EBT) system 19,37].
Since our focus is on the impact of wind variability and unaigity on system costs,
we assume wind availability to be the sole uncertain param&he model is divided
into two main parts—a unit commitment model and a scenage.tThe scenario
tree feeds different possible real-time wind availatg$tio the commitment model,
which optimizes generator commitments and dispatch. Incses with RTP the
price-responsiveness of the load is modeled using a pensits/e inverse demand
function. In the other cases the loads are assumed to be fikedmodel is used
to simulate power system operations over a year with higtdwienetrations. The
models are formulated usirMS and solved wittCPLEX 9.0.

2.1 Unit Commitment and Dispatch Model

The unit commitment and dispatch is optimized using a mixeéeger linear stochas-
tic programming model with recourse. The model assumescibvatentional gen-
erators have a three-part cost structure, consisting ddiber spinning, and startup
costs, and includes standard system and generator cotstiail commitment and
dispatch decisions are modeled at hourly time intervale.mMbdel neglects transmis-
sion constraints. This assumption can overstate the stalnd-uncertainty costs,
since transmission constraints can limit the amount of wlirad can be feasibly used
by the system4,13,30]. To give the model formulation, we first define the follow-
ing indices and parameters:

t: time index,
&: scenario index,
i: conventional generator index,
w: wind generator index,
1. probability of scenarid,
¢t set of scenarios that are indistinguishable fimt hourt,
(): generatof’s variable cost,
ciN: generatoi’s spinning cost,
= . generatoi’s startup cost,
K{": generatoi's minimum operating point when online,
Ki": generatoi’s maximum operating point when online,
R: generatoi’s rampdown limit,
R": generatoi's rampup limit,
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. generatoi’s spinning reserve capacity,
. generatoi’s non-spinning reserve capacity,
~: generatoi’s minimum down-time,
. generatoi’'s minimum up-time,

. generation available from wind generatm hourt under scenarig,
. inverse demand function in hotirand
: spinning reserve requirement as a fraction of total reserv

We also define the following decision variables:

The model is given by:

. generation provided by generatan hourt under scenarig,

. spinning reserves provided by generator hourt under scenarid,

. non-spinning reserves provided by generaiarhourt under scenarig,
. binary variable indicating if unitis online in houtt under scenarig,

. binary variable indicating if uniitis started-up in hourunder scenarig,
. binary variable indicating if unitis shutdown in houtr under scenarig,
: wind generation provided by wind generatoim hourt under scenarid,
. load served in hourunder scenarig, and
. total reserve requirementin houunder scenarig.

s
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Objective function {) maximizes expected social welfare, which is defined as
the difference between the integral (up to the amount of krasled); £) of the in-
verse demand function and total generation costs. In caghsuv RTP, the load
in each hour is fixed. Thus the integral term is fixed and mazimgi expected so-
cial welfare is equivalent to minimizing expected cost. &ses with RTP, the in-
verse demand function is assumed to be a step function, aisdfik integral term
is piecewise-linear i, ;. The variable generation functiorg/(q;; ¢ ), are assumed
to be piecewise-linear ig; ; . These assumptions ensure that the mixed-integer pro-
gram is linear in the decision variables.

Constraints Z) are load-balance restrictions, which ensure that the ddnms
served in each hour by conventional or wind generation. €aimés (3) through 6)
impose the spinning and non-spinning reserve requirem&hts total reserve re-
quirement in each hour is determined using the so-called53ule’ used in the Na-
tional Renewable Laboratory’s (NREL's) Western Wind andeBtntegration Study
[19). This rule sets the total reserve requirement in each fmeaqtial 3% of the sys-
tem load plus 5% of forecasted wind generation, which is isegidy constraint$j.
Note that this rule makes the reserve requirement scedapendent, since loads and
wind generation will generally vary between the scenariosieted, and reserve re-
quirements will be greater in high-wind or -load scenaridss is explicitly captured
in our model since7tTE is indexed by scenario. We further assume that at least half o
the total reserves must be spinning reservesr{sf = 0.5).

Constraints §) through @) ensure that each conventional generator operates be-
tween its minimum and maximum generation point wheneveinenland that it
would not violate the upper-bound on its output if it has toypde additional energy
due to reserves being required in real-time. Constra®)ar(d (L0) enforce each gen-
erator’s ancillary service qualifications. Note that ongngrators with high ramping
capabilities and no minimum up- and down-time restrictiémg. natural gas-fired
combustion turbines) are qualified to provide non-spinm@sgrves. Constraints1)
and (L2) enforce each generator’'s ramping limits. Constraib® énd (L4) impose
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each generator’ minimum up- and down-times when they amtestaip and shut-
down, respectively. Constraint$) define the startup and shutdown state variables
in terms of changes in the online state variables. Conssréif) limit each wind gen-
erator’s production based on wind availability under eam@nario. Constraintsl{)

and (L8) impose non-negativity and integrality restrictions.

Constraints19) through £6) are nonanticipativity restrictions. These constraints
ensure that the solution obtained by the model are implesbdtmeaning that they
do not depend, at timg on information that is not yet available at that time. The
nonanticipativity constraints allow us to formulate ouraebin a compact manner,
without having to explicitly specify the structure of thedarlying scenario treel[,

27.

2.2 Model Data

Our simulations are based on data from the ERCOT power sy$&enmodel all of
the conventional generators that were in the ERCOT systei(5. Nuclear gener-
ators are assumed to be must-run units that always run atmaxicapacity. Costs
of other conventional generators are estimated using bheatind fuel and emission
permit price data obtained from Platts Energy and Globaft@nBecisions. Genera-
tor constraint data are also obtained from these sourcble Taummarizes technical
characteristics of the conventional generators modekskdon fuel type.

Table 1 Number of Units, Total Generating Capacity, and AveragetHRate and Minimum Up- and
Down-Time of Different Generator Types

Generator Number Total Heat Rate  Minimum Up- Minimum Down-
Type (Fuel) of Units Capacity (MW) (GJ/MWh) Time (Hours)  TénfHours)

Coal 28 16081 11289 24 24

Natural Gas 320 59717 10439 8 11

Hydroelectric 20 529 N/A 0 0

Landfill Gas 7 44 10551 0 0

Hourly loads and the inverse demand functions in objectinetion (L) are based
on historical load data from 2005, obtained from the Publidity Commission of
Texas (PUCT). In fixed-load cases, the variables model are fixed based on these
historical data. Thus the integral term in objective fuot{l) is fixed and the ob-
jective is equivalent to expected cost minimization. In tases with RTP, we use
an assumed demand elasticity and calibrate the hourlysevéemand functions so
the actual historical load in the hour corresponds to thtical average retail price
of electricity in 2005 |, 6,31,29. Thus the hout-demand function has the property
that:

pe(l) = p'®, (27)
wherel; is the actual historical load in hotirand p'® is the average retail price of
electricity in 2005. In doing so we only model own-price éigises, assuming cross-
price elasticities to be zero. This assumption can potintiaderstate the extent to
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which loads shift from on- to off-peak periods under RTPgsigross-price elastic-
ities between such hours tend to be slightly negativeq, 31]. This load shifting is
somewhat captured by our model, however, because on-padg tend to decrease
due to high real-time prices while off-peak loads increasedoise of relatively low
prices.

We estimate the 2005 retail price of electricip/®, using tariff filings with the
PUCT. Because these retail prices include non energyecelgiargesgg. charges
for distribution and end-user services), we subtract thiesa the tariff to yield a
price per MWh of energy consumed. We consider cases withwhmeprice elastic-
ity of demand ranging between0.1 and—0.3, which is consistent with empirical
estimates of short-term electricity demand elasticitie$. |

We approximate the hourly inverse demand function as noreasing step func-
tions with 100 segments. Thus the integral term in objediinetion (1) is a con-
cave piecewise-linear function bf; . Figurel shows a representative inverse demand
function, the function calibration condition in equati&Y), and its piecewise-linear
approximation. The hashed region in the figure also dematesthow the integral
term in objective functionl) is computed.

pret_

Fig. 1 Representative inverse demand function and its piecelmisar approximation.

2.3 Wind Model

In order to analyze a high-wind penetration case, we modl@iat plants that are
planned to be installed in ERCOT by the end of 2011. This gi@ldout 14 GW of
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nameplate wind capacity, or 18% of ERCOT's total generatagacity in 2005. We
use mesocale modeled data available in NREL's Western Wesb&ces Dataset
(WWRD)! to model real-time availability of the wind generators. §kiataset in-
cludes hourly output, as a percentage of nameplate capacéynumber of locations
in Texas for the year 2005. The modeled wind generators amcmsed with loca-
tions in the dataset based on geographic distance, and thamaused to determine
the actual modeled energy available in each Rolinus if we leta, represent the
nameplate capacity of wind generatgractual modeled wind availability in hotir
is assumed to equal:

@ut - W, (28)

whereqy; is a value between 0 and 1 taken from the WWRD.

The evolution of wind availability is modeled in the stocti@sinit commitment
using a scenario tree. In each honyour scenario tree has a three-stage structure
[37]. The first stage, which covers the first three hourthfought + 2), is assumed
to be deterministic with wind availability perfectly knowand equal to the actual
modeled wind availability, as defined by equati@®)j. The second stage, which
covers the following three hours ¢ 3 throught + 5), has three possible wind avail-
ability realizations. The last stage, which covers the liemg hours, has six possible
scenarios. Figurgis a schematic showing the assumed structure of the scaregio

Fig. 2 Assumed structure of scenario tree.

1 These data are publicly availabletattp: //wind.nrel.gov/Web_nrel/.
2 We caveat the word ‘actual’ with the word ‘modeled’ to strésat we use modeled data in our analy-
sis. Thus these values may differ from actual weather camgiin 2005.
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Power system operations over the year are modeled one datima¢ aising a
rolling two-day planning horizon. The optimization stastisnoon of each day and
optimizes system operations over a 48-hour horizon, usiegtenario tree structure
shown in figure2. The scenario tree then rolls forward three hours and thesys
is reoptimized over a 45-hour horizon starting from 3 pm. $taating state of the
system {.e. generator commitments and outputs) at 3 pm is fixed basekeosoiu-
tion for noon to 3 pm obtained from the first optimization. Toenario tree is also
updated, reflecting the fact that wind availability betw&gpmm and 6 pm is now de-
terministic and availability between 6 pm and 9 pm has thassible scenarios. This
rolling process is repeated eight times to determine sysigenations over the day,
at which point the process is repeated for the following day the rolling process
restarts by solving the model with a 48-hour optimizationizan). The second day
is included in the optimization horizon to ensure that sidfit generating capacity
remains committed at the end of each day to serve the follpday’s load §1,29].

The scenario tree is generated by assuming that the systeommitted and
dispatched using imperfect wind forecasts. The forecastg@nerated by adding a
forecast errorgy, to the actual modeled wind availability. Thus the foreedsivail-
ability from wind generatow in hourt would be given by(&wt + @u ) - . Following
the California ISO’s renewable integration study, we asstimat the forecast errors
follow an unbiased first-order autocorrelated truncatedab distribution p3].3 We
assume an autocorrelation coefficient 0@ and standard deviations ranging be-
tween 005 and 015, which is consistent with forecast error studieg [* The differ-
ent standard deviations capture the effect of forecasitguaith a higher standard
deviation corresponding to lower-quality forecasts. Mo@&rlo simulation is used
to generate 1000 different sample paths of the forecases1080 sample paths are
reduced to the six scenarios and corresponding probabifitiodeled in the stochas-
tic unit commitment using the forward selection algorithmtlie SCENRED scenario
reduction tool [.5].

In addition to modeling the operation of the system usingstbehastic unit com-
mitment model, we also consider deterministic and perf@esight cases. The de-
terministic case assumes that the system is committed apdtdhed using a single
point forecast of future wind availability. As in the stoslia unit commitment case,
the system is optimized in a rolling fashion. In each hourdnamailability is perfectly
known in the first three hours whereas a single point foreafasind availability is
used in the subsequent hours. This point forecast is getketesing theSCENRED
scenario reduction tool to reduce the 1000 sample pathsisiogle scenario. The
unit commitment model is solved, and the model then rolle/éod three hours (up-
dating the starting state of the system and forecasts) aptingizes for the remain-
ing hours. This proceeds iteratively as in the stochasticammmitment case. The
perfect-foresight case is modeled by optimizing the systgainst actual modeled
wind availability, as defined in equatio&8). This is done one day at a time using a
48-hour optimization horizon.

3 Details of the wind forecast error model are given in appe@of the California 1ISO’s report.
4 Section 2.4 of appendix B of the California ISO’s report disses empirical findings regarding the
autocorrelation of wind forecast errors.
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2.4 Cases

Table 2 summarizes the six different cases that we model, which watgrms of
whether demand is price-responsive or not and how wind tmiogy is handled.
Typically differences in system operation costs betweertifferent cases modeled
are used to measure the wind-uncertainty costl2,17,37]. In our case, however,
social welfare differences are more appropriate measur@s The reason is that
we model cases in which demand responds to prices, whichesailt in consumer
welfare changes that are not reflected by generation colstss, TettingW, denote
total annual social welfare in case differences in\, between the cases modeled
capture the added costs or benefits of wind uncertainty aicd-pesponsive loads.
Letting 0 denote total wind annual generation used in aasee divide these cost
differences byd, to arrive at a wind-uncertainty cost per MWh of wind used. For
instance, the quantity:

W — W

63 )

represents the added costs imposed by wind uncertainty svpeimt forecast of wind
is used to dispatch the system and loads are not price-rsispoB8imilarly:

W5 —Ws
65 ’

represents the cost savings from using stochastic progimgrtomcommit the system
when loads are not price-responsive.

Table 2 Cases Modeled

Case  Optimization Loads
1 Perfect foresight  Fixed
2 Perfect foresight RTP
3 Deterministic Fixed
4 Deterministic RTP

5 Stochastic Fixed
6 Stochastic RTP

An issue raised in comparing social welfare between cagbsand without RTP,
however, is that demand response increases social watidenendent of its effect
on wind-uncertainty costs. This is because if consumeisiveceal-time price sig-
nals and make demand decisions based on these prices, éneaifpcated more
efficiently. Indeed, these efficiency gains are a primargeaahat economists ad-
vocate the introduction of RTP or other DR programs with twaeiant electricity
pricing [4,6]. The difference, — W, measures these allocative efficiency gains
that result from introducing RTP in the absence of wind utaety. Thus the wel-
fare differences between case 2 and cases with wind unagred RTP measure
wind-uncertainty costs with RTR.é. (W, —Wj) /A2 measures wind-uncertainty costs
when loads are price-responsive and a point forecast of isinded to commit the
system, whilgW, — W) / & measures these costs if stochastic programming is used).
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3 Results

Table3 summarizes annual wind-uncertainty costs in the base nageich loads are
fixed and generation is scheduled using a deterministicnpdgrmodel. This quan-
tity is defined agW, —Ws) /&3, which gives the wind-uncertainty cost on a dollar
per MWh of wind produced basis. The table shows that wind dairgy can impose
noticeable costs, which are increasing in the wind foreeastr standard deviation.
This is in keeping with the intuition that greater wind urte@nty will have greater
impacts on the system. These results can also be used t@gstira value of increas-
ing wind forecast accuracg,g. reducing the forecast error standard deviation from
0.15 to Q05 reduces wind-uncertainty costs by more than 84%.

Table3 Annual Wind-Uncertainty Cost ($/MWh of Wind) With Fixed Ldaand Deterministic Program-
ming

Wind Forecast Error ~ Wind Uncertainty
Standard Deviation Cost ($/MWh of Wind)

0.05 060
0.1 195
0.15 394

Tables4 and5 summarize the value of RTP and stochastic programminggcesp
tively, in mitigating wind-uncertainty costs when eachnslividually introduced to
the system. The values in tableare computed a8V, —W5) /33 — (Wo — W)/ O4.
The first term,(W; —Ws) /&3, gives the wind-uncertainty cost with fixed loads and
deterministic programming while the second teife —Wj)/d4, gives the wind-
uncertainty cost with RTP and deterministic programminigug the difference be-
tween the two terms measures the value of RTP in reducing-wircértainty costs.
As expected, RTP can yield significant wind-uncertaintyt ceductions and this ben-
efitis increasing in the price-responsiveness (elasjioftthe demand. This benefit of
RTP is also reduced with less accurate wind forecasts. Btance, RTP eliminates
33-68% of wind-uncertainty costs when the most accurate Warecasts are used,
as opposed to only 20-58% with the least-accurate foreddss/alues in tablg are
similarly computed a8\ —Ws) /03 — (WL — W) / 5. While stochastic programming
also helps reduce wind-uncertainty costs, it gives smatist reductions of 6-7%, as
opposed to the 20—68% reductions with RTP.

Table 4 Value ($/MWh of Wind) of RTP in Reducing Wind-Uncertainty &e With Deterministic Pro-
gramming

Wind Forecast Error Demand Elasticity
Standard Deviaton —-0.1 -02 -0.3
0.05 020 030 041
0.1 070 101 124

0.15 080 176 227
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Table 5 Value ($/MWh of Wind) of Stochastic Programming in ReduciMind-Uncertainty Costs with
Fixed Loads

Wind Forecast Error ~ Value
Standard Deviation ($/MWh of wind)

0.05 004
0.1 012
0.15 025

Another question raised by this analysis is the effect afoihicing stochastic
programming and RTP together on wind-uncertainty costgeSétochastic program-
ming yields more robust commitment decisions, it is surahidat RTP has less of
a cost mitigation impact when introduced on top of stockgstogramming 29.
Tables6 and 7 summarize these interaction effects. Tablshows the sum of the
value of introducing RTP and stochastic programming irdiiaily on reducing wind-
uncertainty costs. The values in this table are the sum ofahees reported in table
and5, or:

(Wl_\NS - VV2—W4> n (Wl—V\é _W1—VV5)
5 Oy (03] (o3

Wi-Ws W W, Wi —Wg
% 04 %

Table7 summarizes the value of introducing RTP and stochasticrproming to-
gether. This value is computed & —\Ws) /33 — (Wo — W) /36, Or as the difference
between wind-uncertainty costs with fixed loads and deta@sti¢ programming,
(W —Ws) /83, and wind-uncertainty costs with RTP and stochastic prognang,
(Wo —Ws) /. The values in tablé are all greater than those in tabie showing
that when RTP is introduced in conjunction with stochastagpamming, the benefit
of the two together will be less than the sum of the values wbducing the two
separately. However, the difference in values betweenthédbles are between 3%
and 12%, indicating that introducing both stochastic paogming and RTP together
provides non-trivial wind-uncertainty cost reductiorfghiese measures can both be
feasibly implemented.

=2

Table 6 Sum of Values of RTP and Stochastic Programming ($/MWh ofdyvim Reducing Wind-
Uncertainty Costs

Wind Forecast Error Demand Elasticity
Standard Deviaton —-0.1 -02 -0.3
0.05 024 033 045
0.1 082 113 136
0.15 105 201 252

This effect of introducing RTP and stochastic programmaoggther can also be
viewed as reducing the incremental benefit of stochastigraraming when a RTP
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Table 7 Value of RTP and Stochastic Programming Together ($/MWh a@fid)vin Reducing Wind-
Uncertainty Costs

Wind Forecast Error Demand Elasticity
Standard Deviation —-0.1 -0.2 -0.3
0.05 023 032 042
0.1 0.75 105 126
0.15 092 186 233

programis in place. Tabkshows the value of stochastic over deterministic program-
ming when RTP is present. The values in the table are com@mstede difference
between the values in tableand4 or as:

<W1—W3 _VVZ—W6> B <W1—W3 _W2—W4> W -W Wo—W
% % % O O %

Comparing table8 and5 shows that when an RTP program is in place, stochastic
programming only achieves 17-50% of the cost savings thatdime realized with
fixed loads. Moreover, the value of stochastic programmiecrebses as the elas-
ticity of demand increases. This shows that more priceenesige loads reduce the
incremental benefits of stochastic optimization in mitiggtvind-uncertainty costs.

Table 8 Value ($/MWh) of Stochastic Programming over Determigigtrogramming in Reducing Wind-
Uncertainty Costs with RTP

Wind Forecast Error Demand Elasticity
Standard Deviaton —-0.1 -02 -0.3
0.05 002 002 o001
0.1 005 004 002
0.15 012 009 006

4 Conclusions

This paper analyzes the relative value of stochastic progriag and DR (specifi-
cally, RTP) in reducing wind-uncertainty costs. We devedogtochastic unit com-
mitment and dispatch model with RTP and a correspondingasicetree to repre-
sent uncertain wind forecasts. Simulations are done foEREOT power system
using conventional generation and load data from 2005 aniglawind penetra-

tion scenario that includes all wind generators that arergd to be installed by the
end of 2011. Our results show that stochastic programmidd=arP mitigate wind-

uncertainty costs, but that RTP yields greater benefits epatpto stochastic pro-
gramming. For instance, with the lowest demand elastidity@1 wind-uncertainty

costs are much lower when introducing RTP than when intrindustochastic pro-
gramming. Stochastic programming, by contrast, only yisdt reductions of less
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than 7% compared to deterministic programming. On the dthad, since electric-
ity markets typically trade billions of dollars worth of exgg annually, a 7% cost
savings is significant in absolute terms. Moreover, sincstrofithe value from intro-
ducing RTP and stochastic programming individually aravéer from introducing
the two together, there is incremental value in using stshgrogramming and
RTP together to reduce wind-uncertainty costs. Our resudts show that RTP re-
tains its value in mitigating wind-uncertainty costs, evkethe system is operated
using a stochastic planning model. Although our measureidwncertainty costs
is a standard metric used to evaluate the cost of integregimgwables in power sys-
tems, other metrics are available. This includes the valigozhastic solution and
expected value of perfect information, which are commordgciin the stochastic
optimization literatureq]. We opt to measure the benefits of stochastic optimization
using wind-uncertainty costs, since it is the standard imesed by power system
engineers.

While RTP has greater value in reducing wind-uncertaingtgdmplementing a
working program requires major communication, meterimgl smart appliance in-
vestments. Thus stochastic programming may be a more ingpieale policy in the
near term. On the other hand, stochastic programming insgreater computational
costs. Our relatively simple stochastic model with a sefkeenario tree takes an av-
erage of 1290 s of CPU time to determine unit commitments fingle day (all of
the computations are done on a 2.7 GHz Pentium Core 2 prageGsnversely, the
deterministic model only takes an average of 340 s to solyste® operators typi-
cally have very limited windows of time within which to deteine day-ahead unit
commitments $5]. Thus implementing stochastic programming may not bertech
cally feasible with today’s computational capabilitiese \db not, however, use any
decomposition schemes in solving our problems—rather Wwe the deterministic
equivalent problem using the nonanticipativity constiisuch schemes may make
larger stochastic unit commitment problems consideraldyentractable. Moreover,
improvements in linear and integer program solvers caméunteduce optimization
times for the stochastic model.

Further refinement of day-ahead, intraday, and real-tirm@rphg models can
yield further cost reductions beyond our estimates hereiristance, our analysis
uses a relatively simple heuristic rule to determine loadtt wind-dependent spin-
ning and non-spinning requirements. More sophisticateldrigues, for instance in-
corporating seasonal and diurnal differences in wind msfimay yield reserve re-
quirements that result in more efficient system operatidhss is an area of active
research, since most system operators with high renewabletiations still rely on
deterministic models to schedule generatio®, 28]. Such refinements could yield
different wind-uncertainty costs than those reported haltbough we expect our
general finding regarding the value of RTP to hold if such nimdee used.

It is important to note that our findings regarding the costdiiés of RTP are
highly dependent on our assumption that price signals \&ilhan immediate impact
on electricity demand. If RTP is coupled with automated dedneontrol technolo-
gies, such as smart thermostats, then such a response ecengédcted. If, however,
the system is left to rely on consumers manually monitorircgmsignals and adjust-
ing electricity demand, it is likely that the response woloddless significant €. the
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demand elasticity would be lower) and slower. In such a d@%€, may have a dra-
matically reduced effect in mitigating wind-uncertaintysts, although this is a topic
that requires further investigation. Our results are aledicated on the assumption
that loads exhibit the same price elasticity across all fofithe day. While empiri-
cal studies demonstrate that demand is price-responsige;gensitivity may differ
between on- and off-peak periods. For instance, shiftiriiyiies overnight can in-
crease off-peak loads, however this effect may be smabertte decrease in on-peak
loads. Further research is needed to understand how tinemvalasticities impact
the benefits of RTP.

Our analysis is concerned solely with the benefits of RTP toahastic optimiza-
tion in mitigating wind-uncertainty costs. Clearly thesasnbe weighed against the
costs of implementing these programs. RTP can require nmajestments in infras-
tructure and consumer education. On the other hand, usitaghastic optimization
model requires relatively small investments in model agd@athm development and
testing. If these costs are accounted for, RTP may be a les®aic means of inte-
grating wind and other renewables into power systems.
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