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Abstract Wind imposes costs on power systems due to uncertainty and variability of
real-time resource availability. Stochastic programmingand demand response are of-
fered as two possible solutions to mitigate these so-calledwind-uncertainty costs. We
examine the benefits of these two solutions, and show that although both will reduce
wind-uncertainty costs, demand response is significantly more effective. We also ex-
amine the impacts of using demand response and stochastic optimization together.
We show that most of the value of demand response in reducing wind-uncertainty
costs remain if a stochastic optimization is used and that there are subadditive bene-
fits from using the two together.

Keywords Wind power generation· unit commitment· wind-forecast error·
real-time pricing· stochastic programming

1 Introduction

The past several years have seen increased interest in renewable energy. Much of this
interest is driven by environmental, energy security, and other concerns surrounding
fossil fuels and conventional generation technologies. This drive toward greater use
of renewables has led to increases in installed wind capacity, due to the maturity and
low cost of wind compared to most other renewable technologies. The integration
of wind into power systems can, however, impose costs and present challenges for
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short-run system operations and planning, due to the variable and uncertain nature of
real-time wind availability and the limited dispatchability of wind.

Wind variability may require more ancillary services (e.g. regulation, spinning,
and non-spinning reserves) to be procured or more generating capacity to be com-
mitted to ensure system stability and reliability [22,33,14,23]. If wind resources
are concentrated in a geographical region, bottlenecks mayappear in the transmis-
sion network, requiring curtailment of wind generation [24,13,30]. Wind can also
require more cycling and real-time redispatching of conventional generators. This in-
creases unit commitment, dispatch, and maintenance costs.Moreover, because real-
time wind availability is uncertain when commitment decisions are made, the set of
generators that are committed may be suboptimal if poor forecasts are used when
making operational decisions day- and hour-ahead. Severalstudies estimate the im-
pact of these types of challenges with wind integration, showing that they can impose
significant costs on the order of $5/MWh of wind on the system [11,12,17,32].

Several solutions are offered to mitigate these cost impacts of wind. One is to
use energy storage to reduce variability and uncertainty inthe net output of the joint
wind generator and storage device [34,8,9,24,25,10,1,3,20,36]. Although storage
can mitigate costs related to wind and can have ancillary benefits, such as reducing
the impacts of transmission constraints [24,13], the currently high capital cost of stor-
age makes this an uneconomic solution. Another strategy is to better account for wind
variability and uncertainty when making operational decisions by incorporating the
distribution of wind availability in a stochastic unit commitment model [7,18,37]. A
third suggestion is to leverage some form of demand response(DR) to make electric-
ity loads more closely follow real-time wind availability.This could take the form of
a direct mechanism, such as load control [26], or an indirect mechanism, which uses
price or other signals to encourage customers to adjust their demand. Real-time pric-
ing (RTP), which sets electricity prices dynamically basedon the actual marginal cost
of energy, can both increase wind use and reduce operationalcost impacts of wind
[29,31]. This is because real-time prices rise, reducing demand, during periods in
which wind availability is overestimated and high-cost generation must be deployed
in real-time andvice versa.

One limitation of existing analyses, however, is that they examine the value of DR
if the system is operated using a deterministic model. This paper expands this line of
research by examining the relative benefits of DR (specifically, RTP) and stochastic
optimization in reducing the cost impacts of renewables (specifically, wind). We fo-
cus on the effect of wind uncertainty on the scheduling of conventional generators
and the resulting cost impacts, which we henceforth refer toas the ‘wind-uncertainty
cost.’ This is done by comparing cases in which the system is dispatched with un-
certain future wind availability to a counterfactual best-case scenario with perfect
foresight of wind. The difference in system operation costsbetween these cases rep-
resents the added costs imposed by wind uncertainty. We compare wind-uncertainty
costs in cases with and without RTP and with and without the use of a stochastic
planning model. Our results show that both RTP and stochastic optimization reduce
wind-uncertainty costs, although RTP has a much greater benefit. We also find that
most of the benefits of RTP in reducing wind-uncertainty costs remain if a stochastic
optimization model is used. Nevertheless, there are incremental benefits to introduc-
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ing both stochastic optimization and RTP together, as opposed to only RTP. We also
explore the effect of varying the accuracy of the wind forecasts used to schedule
generation. The remainder of the paper is organized as follows: section2 describes
the model and data underlying our analysis, section3 summarizes our results, and
section4 concludes.

2 Model and Data

Our analysis uses a stochastic unit commitment model with RTP and our case study
is based on the Electricity Reliability Council of Texas (ERCOT) system [29,37].
Since our focus is on the impact of wind variability and uncertainty on system costs,
we assume wind availability to be the sole uncertain parameter. The model is divided
into two main parts—a unit commitment model and a scenario tree. The scenario
tree feeds different possible real-time wind availabilities to the commitment model,
which optimizes generator commitments and dispatch. In thecases with RTP the
price-responsiveness of the load is modeled using a price-sensitive inverse demand
function. In the other cases the loads are assumed to be fixed.The model is used
to simulate power system operations over a year with high wind penetrations. The
models are formulated usingGAMS and solved withCPLEX 9.0.

2.1 Unit Commitment and Dispatch Model

The unit commitment and dispatch is optimized using a mixed-integer linear stochas-
tic programming model with recourse. The model assumes thatconventional gen-
erators have a three-part cost structure, consisting of variable, spinning, and startup
costs, and includes standard system and generator constraints. All commitment and
dispatch decisions are modeled at hourly time intervals. The model neglects transmis-
sion constraints. This assumption can overstate the scale of wind-uncertainty costs,
since transmission constraints can limit the amount of windthat can be feasibly used
by the system [24,13,30]. To give the model formulation, we first define the follow-
ing indices and parameters:

t: time index,
ξ : scenario index,
i: conventional generator index,

w: wind generator index,
πξ : probability of scenarioξ ,

Ξξ ,t : set of scenarios that are indistinguishable fromξ at hourt,
cv

i (·): generatori’s variable cost,
cN

i : generatori’s spinning cost,
cSU

i : generatori’s startup cost,
K−

i : generatori’s minimum operating point when online,
K+

i : generatori’s maximum operating point when online,
R−

i : generatori’s rampdown limit,
R+

i : generatori’s rampup limit,
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ρ̄ sp
i : generatori’s spinning reserve capacity,

ρ̄ns
i : generatori’s non-spinning reserve capacity,

τ−i : generatori’s minimum down-time,
τ+

i : generatori’s minimum up-time,
ωw,t,ξ : generation available from wind generatorw in hourt under scenarioξ ,
pt(·): inverse demand function in hourt, and
ηsp: spinning reserve requirement as a fraction of total reserve.

We also define the following decision variables:

qi,t,ξ : generation provided by generatori in hourt under scenarioξ ,
ρ sp

i,t,ξ : spinning reserves provided by generatori in hourt under scenarioξ ,

ρns
i,t,ξ : non-spinning reserves provided by generatori in hourt under scenarioξ ,

ui,t,ξ : binary variable indicating if uniti is online in hourt under scenarioξ ,
si,t,ξ : binary variable indicating if uniti is started-up in hourt under scenarioξ ,
hi,t,ξ : binary variable indicating if uniti is shutdown in hourt under scenarioξ ,
gw,t,ξ : wind generation provided by wind generatorw in hourt under scenarioξ ,

lt,ξ : load served in hourt under scenarioξ , and
ηT

t,ξ : total reserve requirement in hourt under scenarioξ .

The model is given by:

max ∑
ξ ,t

πξ

{

∫ lt,ξ

0
pt(x)dx−∑

i

[cv
i (qi,t,ξ )+ cN

i ui,t,ξ + cSU
i si,t,ξ ]

}

, (1)

s.t. lt,ξ = ∑
i

qi,t,ξ +∑
w

gw,t,ξ , ∀ t,ξ ; (2)

∑
i
(ρ sp

i,t,ξ + ρns
i,t,ξ ) ≥ ηT

t,ξ , ∀ t,ξ ; (3)

∑
i

ρ sp
i,t,ξ ≥ ηspηT

t,ξ , ∀ t,ξ ; (4)

ηT
t,ξ = 0.03· lt,ξ +0.05·∑

w
gw,t,ξ , ∀ t,ξ ; (5)

K−
i ui,t,ξ ≤ qi,t,ξ , ∀ i,t,ξ ; (6)

qi,t,ξ + ρ sp
i,t,ξ ≤ K+

i ui,t,ξ , ∀ i,t,ξ ; (7)

qi,t,ξ + ρ sp
i,t,ξ + ρns

i,t,ξ ≤ K+
i , ∀ i,t,ξ ; (8)

0≤ ρ sp
i,t,ξ ≤ ρ̄ sp

i ui,t,ξ , ∀ i,t,ξ ; (9)

0≤ ρns
i,t,ξ ≤ ρ̄ns

i , ∀ i,t,ξ ; (10)

R−
i ≤ qi,t,ξ −qi,t−1,ξ , ∀ i,t,ξ ; (11)

qi,t,ξ −qi,t−1,ξ + ρ sp
i,t,ξ + ρns

i,t,ξ ≤ R+
i , ∀ i,t,ξ ; (12)

t

∑
y=t−τ+

i

si,y,ξ ≤ ui,t,ξ , ∀ i,t,ξ ; (13)

t

∑
y=t−τ−i

hi,y,ξ ≤ 1−ui,t,ξ , ∀ i,t,ξ ; (14)
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si,t,ξ −hi,t,ξ = ui,t,ξ −ui,t−1,ξ , ∀ i,t,ξ ; (15)

0≤ gw,t,ξ ≤ ωw,t,ξ , ∀ w,t,ξ ; (16)

lt,ξ ≥ 0, ∀ t,ξ ; (17)

ui,t,ξ ,si,t,ξ ,hi,t,ξ ∈ {0,1}, ∀ i,t,ξ ; (18)

qi,t,ξ = qi,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (19)

ρ sp
i,t,ξ = ρ sp

i,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (20)

ρns
i,t,ξ = ρns

i,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (21)

ui,t,ξ = ui,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (22)

si,t,ξ = si,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (23)

hi,t,ξ = hi,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (24)

gw,t,ξ = gw,t,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t ; (25)

lt,ξ = lt,ξ ′ , ∀ i,t,ξ ,ξ ′ ∈ Ξξ ,t . (26)

Objective function (1) maximizes expected social welfare, which is defined as
the difference between the integral (up to the amount of loadserved,lt,ξ ) of the in-
verse demand function and total generation costs. In cases without RTP, the load
in each hour is fixed. Thus the integral term is fixed and maximizing expected so-
cial welfare is equivalent to minimizing expected cost. In cases with RTP, the in-
verse demand function is assumed to be a step function, and thus the integral term
is piecewise-linear inlt,ξ . The variable generation functions,cv

i (qi,t,ξ ), are assumed
to be piecewise-linear inqi,t,ξ . These assumptions ensure that the mixed-integer pro-
gram is linear in the decision variables.

Constraints (2) are load-balance restrictions, which ensure that the demand is
served in each hour by conventional or wind generation. Constraints (3) through (5)
impose the spinning and non-spinning reserve requirements. The total reserve re-
quirement in each hour is determined using the so-called ‘3+5 rule’ used in the Na-
tional Renewable Laboratory’s (NREL’s) Western Wind and Solar Integration Study
[19]. This rule sets the total reserve requirement in each hour to equal 3% of the sys-
tem load plus 5% of forecasted wind generation, which is imposed by constraints (5).
Note that this rule makes the reserve requirement scenario-dependent, since loads and
wind generation will generally vary between the scenarios modeled, and reserve re-
quirements will be greater in high-wind or -load scenarios.This is explicitly captured
in our model sinceηT

t,ξ is indexed by scenario. We further assume that at least half of
the total reserves must be spinning reserves (i.e. ηsp = 0.5).

Constraints (6) through (8) ensure that each conventional generator operates be-
tween its minimum and maximum generation point whenever online, and that it
would not violate the upper-bound on its output if it has to provide additional energy
due to reserves being required in real-time. Constraints (9) and (10) enforce each gen-
erator’s ancillary service qualifications. Note that only generators with high ramping
capabilities and no minimum up- and down-time restrictions(e.g. natural gas-fired
combustion turbines) are qualified to provide non-spinningreserves. Constraints (11)
and (12) enforce each generator’s ramping limits. Constraints (13) and (14) impose
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each generator’ minimum up- and down-times when they are started up and shut-
down, respectively. Constraints (15) define the startup and shutdown state variables
in terms of changes in the online state variables. Constraints (16) limit each wind gen-
erator’s production based on wind availability under each scenario. Constraints (17)
and (18) impose non-negativity and integrality restrictions.

Constraints (19) through (26) are nonanticipativity restrictions. These constraints
ensure that the solution obtained by the model are implementable, meaning that they
do not depend, at timet, on information that is not yet available at that time. The
nonanticipativity constraints allow us to formulate our model in a compact manner,
without having to explicitly specify the structure of the underlying scenario tree [16,
27].

2.2 Model Data

Our simulations are based on data from the ERCOT power system. We model all of
the conventional generators that were in the ERCOT system in2005. Nuclear gener-
ators are assumed to be must-run units that always run at maximum capacity. Costs
of other conventional generators are estimated using heat rate and fuel and emission
permit price data obtained from Platts Energy and Global Energy Decisions. Genera-
tor constraint data are also obtained from these sources. Table1 summarizes technical
characteristics of the conventional generators modeled, based on fuel type.

Table 1 Number of Units, Total Generating Capacity, and Average Heat Rate and Minimum Up- and
Down-Time of Different Generator Types

Generator Number Total Heat Rate Minimum Up- Minimum Down-
Type (Fuel) of Units Capacity (MW) (GJ/MWh) Time (Hours) Time (Hours)

Coal 28 16081 11289 24 24
Natural Gas 320 59717 10439 8 11
Hydroelectric 20 529 N/A 0 0
Landfill Gas 7 44 10551 0 0

Hourly loads and the inverse demand functions in objective function (1) are based
on historical load data from 2005, obtained from the Public Utility Commission of
Texas (PUCT). In fixed-load cases, thelt,ξ variables model are fixed based on these
historical data. Thus the integral term in objective function (1) is fixed and the ob-
jective is equivalent to expected cost minimization. In thecases with RTP, we use
an assumed demand elasticity and calibrate the hourly inverse demand functions so
the actual historical load in the hour corresponds to the historical average retail price
of electricity in 2005 [5,6,31,29]. Thus the hour-t demand function has the property
that:

pt(lt) = pret , (27)

wherelt is the actual historical load in hourt and pret is the average retail price of
electricity in 2005. In doing so we only model own-price elasticities, assuming cross-
price elasticities to be zero. This assumption can potentially understate the extent to
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which loads shift from on- to off-peak periods under RTP, since cross-price elastic-
ities between such hours tend to be slightly negative [6,29,31]. This load shifting is
somewhat captured by our model, however, because on-peak loads tend to decrease
due to high real-time prices while off-peak loads increase because of relatively low
prices.

We estimate the 2005 retail price of electricity,pret , using tariff filings with the
PUCT. Because these retail prices include non energy-related charges (e.g. charges
for distribution and end-user services), we subtract thesefrom the tariff to yield a
price per MWh of energy consumed. We consider cases with the own-price elastic-
ity of demand ranging between−0.1 and−0.3, which is consistent with empirical
estimates of short-term electricity demand elasticities [21].

We approximate the hourly inverse demand function as non-increasing step func-
tions with 100 segments. Thus the integral term in objectivefunction (1) is a con-
cave piecewise-linear function oflt,ξ . Figure1 shows a representative inverse demand
function, the function calibration condition in equation (27), and its piecewise-linear
approximation. The hashed region in the figure also demonstrates how the integral
term in objective function (1) is computed.

p

llt,ξ

∫ lt,ξ
0 pt(x)dx

lt

pret

Fig. 1 Representative inverse demand function and its piecewise-linear approximation.

2.3 Wind Model

In order to analyze a high-wind penetration case, we model all wind plants that are
planned to be installed in ERCOT by the end of 2011. This yields about 14 GW of
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nameplate wind capacity, or 18% of ERCOT’s total generatingcapacity in 2005. We
use mesocale modeled data available in NREL’s Western Wind Resources Dataset
(WWRD)1 to model real-time availability of the wind generators. This dataset in-
cludes hourly output, as a percentage of nameplate capacity, at a number of locations
in Texas for the year 2005. The modeled wind generators are associated with loca-
tions in the dataset based on geographic distance, and the data are used to determine
the actual modeled energy available in each hour.2 Thus if we letω̄w represent the
nameplate capacity of wind generatorw, actual modeled wind availability in hourt
is assumed to equal:

φw,t · ω̄w, (28)

whereφw,t is a value between 0 and 1 taken from the WWRD.
The evolution of wind availability is modeled in the stochastic unit commitment

using a scenario tree. In each hour,τ, our scenario tree has a three-stage structure
[37]. The first stage, which covers the first three hours (τ throughτ +2), is assumed
to be deterministic with wind availability perfectly known(and equal to the actual
modeled wind availability, as defined by equation (28)). The second stage, which
covers the following three hours (τ +3 throughτ +5), has three possible wind avail-
ability realizations. The last stage, which covers the remaining hours, has six possible
scenarios. Figure2 is a schematic showing the assumed structure of the scenariotree.

ωw,t

ωw,t,σ5σ5

ωw,t,σ6

σ6

ωw,t,σ3

ωw,t,σ4

σ3

σ4

σ1

ωw,t,σ2

ωw,t,σ1

σ2

σ1,σ2

σ3,σ4

σ5,σ6

t = τ t = τ +3 t = τ +6

Fig. 2 Assumed structure of scenario tree.

1 These data are publicly available athttp://wind.nrel.gov/Web_nrel/ .
2 We caveat the word ‘actual’ with the word ‘modeled’ to stressthat we use modeled data in our analy-

sis. Thus these values may differ from actual weather conditions in 2005.

http://wind.nrel.gov/Web_nrel/
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Power system operations over the year are modeled one day at atime using a
rolling two-day planning horizon. The optimization startsat noon of each day and
optimizes system operations over a 48-hour horizon, using the scenario tree structure
shown in figure2. The scenario tree then rolls forward three hours and the system
is reoptimized over a 45-hour horizon starting from 3 pm. Thestarting state of the
system (i.e. generator commitments and outputs) at 3 pm is fixed based on the solu-
tion for noon to 3 pm obtained from the first optimization. Thescenario tree is also
updated, reflecting the fact that wind availability between3 pm and 6 pm is now de-
terministic and availability between 6 pm and 9 pm has three possible scenarios. This
rolling process is repeated eight times to determine systemoperations over the day,
at which point the process is repeated for the following day (i.e. the rolling process
restarts by solving the model with a 48-hour optimization horizon). The second day
is included in the optimization horizon to ensure that sufficient generating capacity
remains committed at the end of each day to serve the following day’s load [31,29].

The scenario tree is generated by assuming that the system iscommitted and
dispatched using imperfect wind forecasts. The forecasts are generated by adding a
forecast error,εw,t , to the actual modeled wind availability. Thus the forecasted avail-
ability from wind generatorw in hourt would be given by(εw,t +φw,t) ·ω̄w. Following
the California ISO’s renewable integration study, we assume that the forecast errors
follow an unbiased first-order autocorrelated truncated normal distribution [23].3 We
assume an autocorrelation coefficient of 0.60 and standard deviations ranging be-
tween 0.05 and 0.15, which is consistent with forecast error studies [23].4 The differ-
ent standard deviations capture the effect of forecast quality, with a higher standard
deviation corresponding to lower-quality forecasts. Monte Carlo simulation is used
to generate 1000 different sample paths of the forecasts. The 1000 sample paths are
reduced to the six scenarios and corresponding probabilities modeled in the stochas-
tic unit commitment using the forward selection algorithm in theSCENRED scenario
reduction tool [15].

In addition to modeling the operation of the system using thestochastic unit com-
mitment model, we also consider deterministic and perfect-foresight cases. The de-
terministic case assumes that the system is committed and dispatched using a single
point forecast of future wind availability. As in the stochastic unit commitment case,
the system is optimized in a rolling fashion. In each hour wind availability is perfectly
known in the first three hours whereas a single point forecastof wind availability is
used in the subsequent hours. This point forecast is generated using theSCENRED
scenario reduction tool to reduce the 1000 sample paths intoa single scenario. The
unit commitment model is solved, and the model then rolls forward three hours (up-
dating the starting state of the system and forecasts) and reoptimizes for the remain-
ing hours. This proceeds iteratively as in the stochastic unit commitment case. The
perfect-foresight case is modeled by optimizing the systemagainst actual modeled
wind availability, as defined in equation (28). This is done one day at a time using a
48-hour optimization horizon.

3 Details of the wind forecast error model are given in appendix C of the California ISO’s report.
4 Section 2.4 of appendix B of the California ISO’s report discusses empirical findings regarding the

autocorrelation of wind forecast errors.



10 Seyed Hossein Madaeni, Ramteen Sioshansi

2.4 Cases

Table2 summarizes the six different cases that we model, which varyin terms of
whether demand is price-responsive or not and how wind uncertainty is handled.
Typically differences in system operation costs between the different cases modeled
are used to measure the wind-uncertainty cost [11,12,17,32]. In our case, however,
social welfare differences are more appropriate measures [29]. The reason is that
we model cases in which demand responds to prices, which can result in consumer
welfare changes that are not reflected by generation costs. Thus, lettingWα denote
total annual social welfare in caseα, differences inWα between the cases modeled
capture the added costs or benefits of wind uncertainty and price-responsive loads.
Letting δα denote total wind annual generation used in caseα, we divide these cost
differences byδα to arrive at a wind-uncertainty cost per MWh of wind used. For
instance, the quantity:

W1−W3

δ3
,

represents the added costs imposed by wind uncertainty whena point forecast of wind
is used to dispatch the system and loads are not price-responsive. Similarly:

W5−W3

δ5
,

represents the cost savings from using stochastic programming to commit the system
when loads are not price-responsive.

Table 2 Cases Modeled

Case Optimization Loads

1 Perfect foresight Fixed
2 Perfect foresight RTP
3 Deterministic Fixed
4 Deterministic RTP
5 Stochastic Fixed
6 Stochastic RTP

An issue raised in comparing social welfare between cases with and without RTP,
however, is that demand response increases social welfare,independent of its effect
on wind-uncertainty costs. This is because if consumers receive real-time price sig-
nals and make demand decisions based on these prices, energyis allocated more
efficiently. Indeed, these efficiency gains are a primary reason that economists ad-
vocate the introduction of RTP or other DR programs with time-variant electricity
pricing [4,6]. The difference,W2 −W1, measures these allocative efficiency gains
that result from introducing RTP in the absence of wind uncertainty. Thus the wel-
fare differences between case 2 and cases with wind uncertainty and RTP measure
wind-uncertainty costs with RTP (i.e. (W2−W4)/δ4 measures wind-uncertainty costs
when loads are price-responsive and a point forecast of windis used to commit the
system, while(W2−W6)/δ6 measures these costs if stochastic programming is used).
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3 Results

Table3 summarizes annual wind-uncertainty costs in the base case in which loads are
fixed and generation is scheduled using a deterministic planning model. This quan-
tity is defined as(W1 −W3)/δ3, which gives the wind-uncertainty cost on a dollar
per MWh of wind produced basis. The table shows that wind uncertainty can impose
noticeable costs, which are increasing in the wind forecasterror standard deviation.
This is in keeping with the intuition that greater wind uncertainty will have greater
impacts on the system. These results can also be used to estimate the value of increas-
ing wind forecast accuracy,e.g. reducing the forecast error standard deviation from
0.15 to 0.05 reduces wind-uncertainty costs by more than 84%.

Table 3 Annual Wind-Uncertainty Cost ($/MWh of Wind) With Fixed Loads and Deterministic Program-
ming

Wind Forecast Error Wind Uncertainty
Standard Deviation Cost ($/MWh of Wind)

0.05 0.60
0.1 1.95
0.15 3.94

Tables4 and5 summarize the value of RTP and stochastic programming, respec-
tively, in mitigating wind-uncertainty costs when each is individually introduced to
the system. The values in table4 are computed as(W1 −W3)/δ3 − (W2 −W4)/δ4.
The first term,(W1 −W3)/δ3, gives the wind-uncertainty cost with fixed loads and
deterministic programming while the second term,(W2 −W4)/δ4, gives the wind-
uncertainty cost with RTP and deterministic programming. Thus the difference be-
tween the two terms measures the value of RTP in reducing wind-uncertainty costs.
As expected, RTP can yield significant wind-uncertainty cost reductions and this ben-
efit is increasing in the price-responsiveness (elasticity) of the demand. This benefit of
RTP is also reduced with less accurate wind forecasts. For instance, RTP eliminates
33–68% of wind-uncertainty costs when the most accurate wind forecasts are used,
as opposed to only 20–58% with the least-accurate forecasts. The values in table5 are
similarly computed as(W1−W3)/δ3− (W1−W5)/δ5. While stochastic programming
also helps reduce wind-uncertainty costs, it gives smallercost reductions of 6–7%, as
opposed to the 20–68% reductions with RTP.

Table 4 Value ($/MWh of Wind) of RTP in Reducing Wind-Uncertainty Costs With Deterministic Pro-
gramming

Wind Forecast Error Demand Elasticity
Standard Deviation −0.1 −0.2 −0.3

0.05 0.20 0.30 0.41
0.1 0.70 1.01 1.24
0.15 0.80 1.76 2.27
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Table 5 Value ($/MWh of Wind) of Stochastic Programming in ReducingWind-Uncertainty Costs with
Fixed Loads

Wind Forecast Error Value
Standard Deviation ($/MWh of wind)

0.05 0.04
0.1 0.12
0.15 0.25

Another question raised by this analysis is the effect of introducing stochastic
programming and RTP together on wind-uncertainty costs. Since stochastic program-
ming yields more robust commitment decisions, it is surmised that RTP has less of
a cost mitigation impact when introduced on top of stochastic programming [29].
Tables6 and7 summarize these interaction effects. Table6 shows the sum of the
value of introducing RTP and stochastic programming individually on reducing wind-
uncertainty costs. The values in this table are the sum of thevalues reported in table4
and5, or:

(

W1−W3

δ3
−

W2−W4

δ4

)

+

(

W1−W3

δ3
−

W1−W5

δ5

)

= 2 ·
W1−W3

δ3
−

W2−W4

δ4
−

W1−W5

δ5
.

Table7 summarizes the value of introducing RTP and stochastic programming to-
gether. This value is computed as(W1−W3)/δ3− (W2−W6)/δ6, or as the difference
between wind-uncertainty costs with fixed loads and deterministic programming,
(W1 −W3)/δ3, and wind-uncertainty costs with RTP and stochastic programming,
(W2 −W6)/δ6. The values in table6 are all greater than those in table7, showing
that when RTP is introduced in conjunction with stochastic programming, the benefit
of the two together will be less than the sum of the values of introducing the two
separately. However, the difference in values between the two tables are between 3%
and 12%, indicating that introducing both stochastic programming and RTP together
provides non-trivial wind-uncertainty cost reductions, if these measures can both be
feasibly implemented.

Table 6 Sum of Values of RTP and Stochastic Programming ($/MWh of wind) in Reducing Wind-
Uncertainty Costs

Wind Forecast Error Demand Elasticity
Standard Deviation −0.1 −0.2 −0.3

0.05 0.24 0.33 0.45
0.1 0.82 1.13 1.36
0.15 1.05 2.01 2.52

This effect of introducing RTP and stochastic programming together can also be
viewed as reducing the incremental benefit of stochastic programming when a RTP
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Table 7 Value of RTP and Stochastic Programming Together ($/MWh of Wind) in Reducing Wind-
Uncertainty Costs

Wind Forecast Error Demand Elasticity
Standard Deviation −0.1 −0.2 −0.3

0.05 0.23 0.32 0.42
0.1 0.75 1.05 1.26
0.15 0.92 1.86 2.33

program is in place. Table8 shows the value of stochastic over deterministic program-
ming when RTP is present. The values in the table are computedas the difference
between the values in table7 and4 or as:

(

W1−W3

δ3
−

W2−W6

δ6

)

−

(

W1−W3

δ3
−

W2−W4

δ4

)

=
W2−W4

δ4
−

W2−W6

δ6
.

Comparing tables8 and5 shows that when an RTP program is in place, stochastic
programming only achieves 17–50% of the cost savings that would be realized with
fixed loads. Moreover, the value of stochastic programming decreases as the elas-
ticity of demand increases. This shows that more price-responsive loads reduce the
incremental benefits of stochastic optimization in mitigating wind-uncertainty costs.

Table 8 Value ($/MWh) of Stochastic Programming over Deterministic Programming in Reducing Wind-
Uncertainty Costs with RTP

Wind Forecast Error Demand Elasticity
Standard Deviation −0.1 −0.2 −0.3

0.05 0.02 0.02 0.01
0.1 0.05 0.04 0.02
0.15 0.12 0.09 0.06

4 Conclusions

This paper analyzes the relative value of stochastic programming and DR (specifi-
cally, RTP) in reducing wind-uncertainty costs. We developa stochastic unit com-
mitment and dispatch model with RTP and a corresponding scenario tree to repre-
sent uncertain wind forecasts. Simulations are done for theERCOT power system
using conventional generation and load data from 2005 and a high wind penetra-
tion scenario that includes all wind generators that are planned to be installed by the
end of 2011. Our results show that stochastic programming and RTP mitigate wind-
uncertainty costs, but that RTP yields greater benefits compared to stochastic pro-
gramming. For instance, with the lowest demand elasticity of −0.1 wind-uncertainty
costs are much lower when introducing RTP than when introducing stochastic pro-
gramming. Stochastic programming, by contrast, only yieldcost reductions of less
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than 7% compared to deterministic programming. On the otherhand, since electric-
ity markets typically trade billions of dollars worth of energy annually, a 7% cost
savings is significant in absolute terms. Moreover, since most of the value from intro-
ducing RTP and stochastic programming individually are derived from introducing
the two together, there is incremental value in using stochastic programming and
RTP together to reduce wind-uncertainty costs. Our resultsalso show that RTP re-
tains its value in mitigating wind-uncertainty costs, evenif the system is operated
using a stochastic planning model. Although our measure of wind-uncertainty costs
is a standard metric used to evaluate the cost of integratingrenewables in power sys-
tems, other metrics are available. This includes the value of stochastic solution and
expected value of perfect information, which are commonly used in the stochastic
optimization literature [2]. We opt to measure the benefits of stochastic optimization
using wind-uncertainty costs, since it is the standard metric used by power system
engineers.

While RTP has greater value in reducing wind-uncertainty costs, implementing a
working program requires major communication, metering, and smart appliance in-
vestments. Thus stochastic programming may be a more implementable policy in the
near term. On the other hand, stochastic programming imposes greater computational
costs. Our relatively simple stochastic model with a six-leaf scenario tree takes an av-
erage of 1290 s of CPU time to determine unit commitments for asingle day (all of
the computations are done on a 2.7 GHz Pentium Core 2 processor). Conversely, the
deterministic model only takes an average of 340 s to solve. System operators typi-
cally have very limited windows of time within which to determine day-ahead unit
commitments [35]. Thus implementing stochastic programming may not be techni-
cally feasible with today’s computational capabilities. We do not, however, use any
decomposition schemes in solving our problems—rather we solve the deterministic
equivalent problem using the nonanticipativity constraints. Such schemes may make
larger stochastic unit commitment problems considerably more tractable. Moreover,
improvements in linear and integer program solvers can further reduce optimization
times for the stochastic model.

Further refinement of day-ahead, intraday, and real-time planning models can
yield further cost reductions beyond our estimates here. For instance, our analysis
uses a relatively simple heuristic rule to determine load- and wind-dependent spin-
ning and non-spinning requirements. More sophisticated techniques, for instance in-
corporating seasonal and diurnal differences in wind profiles, may yield reserve re-
quirements that result in more efficient system operations.This is an area of active
research, since most system operators with high renewable penetrations still rely on
deterministic models to schedule generation [14,28]. Such refinements could yield
different wind-uncertainty costs than those reported here, although we expect our
general finding regarding the value of RTP to hold if such models are used.

It is important to note that our findings regarding the cost benefits of RTP are
highly dependent on our assumption that price signals will have an immediate impact
on electricity demand. If RTP is coupled with automated demand control technolo-
gies, such as smart thermostats, then such a response could be expected. If, however,
the system is left to rely on consumers manually monitoring price signals and adjust-
ing electricity demand, it is likely that the response wouldbe less significant (i.e. the
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demand elasticity would be lower) and slower. In such a case,RTP may have a dra-
matically reduced effect in mitigating wind-uncertainty costs, although this is a topic
that requires further investigation. Our results are also predicated on the assumption
that loads exhibit the same price elasticity across all hours of the day. While empiri-
cal studies demonstrate that demand is price-responsive, price-sensitivity may differ
between on- and off-peak periods. For instance, shifting activities overnight can in-
crease off-peak loads, however this effect may be smaller than the decrease in on-peak
loads. Further research is needed to understand how time-variant elasticities impact
the benefits of RTP.

Our analysis is concerned solely with the benefits of RTP and stochastic optimiza-
tion in mitigating wind-uncertainty costs. Clearly these must be weighed against the
costs of implementing these programs. RTP can require majorinvestments in infras-
tructure and consumer education. On the other hand, using a stochastic optimization
model requires relatively small investments in model and algorithm development and
testing. If these costs are accounted for, RTP may be a less economic means of inte-
grating wind and other renewables into power systems.
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