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Measuring the Benefits of Delayed Price-Responsive
Demand in Reducing Wind-Uncertainty Costs

Seyed Hossein Madaeni and Ramteen Sioshansi,Senior Member, IEEE

Abstract—Demand response has benefits in mitigating unit
commitment and dispatch costs imposed on power systems by
wind uncertainty and variability. We examine the effect of delays
in consumers responding to price signals on the benefits of
demand response in mitigating wind-uncertainty costs. Using a
case study based on the ERCOT power system, we compare
the cost of operating the system with forecasts of future wind
availability to a best-case scenario with perfect foresight of wind.
We demonstrate that wind uncertainty can impose substantive
costs on the system and that demand response can eliminate more
than 75% of these costs if loads respond to system conditions
immediately. Otherwise, we find that with a 30-minute lag in the
response, nearly 72% of the value of demand response is lost.

Index Terms—Power system economics, wind power genera-
tion, wind forecast errors, real-time pricing, unit commitment

NOMENCLATURE

A. Model Sets and Parameters

T time index set,
I conventional generator index set,

W wind generator index set,
cV
i (·) generatori’s variable cost function,
cNL
i generatori’s no-load cost,
cSU
i generatori’s startup cost,

K−

i generatori’s minimum operating point,
K+

i generatori’s maximum operating point,
R−

i generatori’s rampdown limit,
R+

i generatori’s rampup limit,
ρ̄SP

i generatori’s spinning reserve capacity,
ρ̄NS

i generatori’s non-spinning reserve capacity,
τ−

i generatori’s minimum-down time,
τ+

i generatori’s minimum-up time,
ω̄w,t maximum generation available from wind generatorw in

time periodt,
pt(·) inverse demand function in time periodt,

η̄t total reserve requirement in time periodt, and
ηSP

t spinning reserve requirement (as a fraction of total) in
time periodt.
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B. Model Decision Variables

qi,t energy provided by generatori in time periodt,
ρSP

i,t spinning reserves provided by generatori in time period
t,

ρNS
i,t non-spinning reserves provided by generatori in time

periodt,
ui,t binary variable indicating if generatori is online in time

periodt,
si,t binary variable indicating if generatori is started-up in

time periodt,
hi,t binary variable indicating if generatori is shutdown in

time periodt,
ωw,t energy provided by wind generatorw in time periodt,

and
lt load served in time periodt.

C. Miscellaneous Parameters

Ωw nameplate capacity of wind generatorw,
φw,t maximum generation available from wind generatorw in

time periodt, as a fraction of nameplate capacity,
ǫt wind availability forecast error in time periodt,
νt innovation in forecast error of time periodt,
µ autocorrelation coefficient of wind availability forecast

error,
Dt actual historical demand in time periodt,

pret average retail price of energy in 2005,
σα total annual social welfare in caseα, and
υα total annual wind energy use in caseα.

I. I NTRODUCTION

I NTEREST in the use of renewable electricity has increased
lately. Wind is currently a leading renewable technology,

due to its relative maturity and low cost. Although its marginal
generation cost is near zero, wind can impose ancillary costs
on the power system. Such costs are largely due to the variable
and uncertain nature of real-time wind availability, which
can require greater use of high-cost, fast-responding, flexible
generation. Wind variability can create large ramps in the
net (of wind generation) system load. Wind uncertainty can
increase the need for fast-responding generators to accommo-
date sudden and unanticipated increases or decreases in wind
availability. In extreme cases, the system may not have enough
conventional generating capacity committed and availableto
respond to unanticipated decreases in wind availability. Studies
place the cost of providing these types of services at about
$5/MWh of wind generated [1]–[3].
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Wind variability and uncertainty can also be accommodated
using demand response. Having electricity demand follow
wind output reduces the need for fast-responding generation.
Papavasiliou and Oren [4] study the use of load control,
wherein deferrable loads are directly controlled and scheduled
to follow wind availability. They develop two methodologies
for load scheduling and estimate the value of such a scheme.
Klobasa [5] examines the effects of demand response in a
future German power system with 48 GW of wind, showing
that it reduces wind-uncertainty costs to less thane2/MWh.
Sioshansi [6] studies the Texas (ERCOT) system with 14 GW
of wind and real-time pricing (RTP). He shows that RTP can
eliminate up to 93% of wind-uncertainty costs, depending on
the price-responsiveness of the demand. Dietrichet al. [7]
examine the effect of demand shifting and peak shaving on
wind integration, showing that these programs can reduce
wind-uncertainty costs by up to 30%.

These analyses implicitly assume that demand responds
to real-time signals immediately, without any latency. While
this assumption may be reasonable for some forms of direct
load control, it can be more tenuous for indirect price-based
mechanisms, such as RTP. This is because there may be a lag
between price signals being sent, consumers observing them,
and adjusting their behavior in response. Automated controls
may alleviate such latency, however, since they reduce the
need for consumers to exert real-time control. Such latencycan
reduce the value of RTP in mitigating wind-uncertainty costs,
since its benefit arises from load quickly responding to wind
availability and reducing the need for generators to provide
balancing energy. Thus, a shortcoming of this literature isthat
it does not account for such latency in estimating the benefits
of demand response in mitigating wind-uncertainty costs.

We address this shortcoming by studying the effect of
consumer delays in responding to price signals on the benefits
of RTP in reducing wind-uncertainty costs. This paper has
two main contributions. The first is that we adapt existing
techniques, based on day-ahead unit commitment and real-time
dispatch models, to simulate RTP with a time lag in demand
responding to prices. Second, we use an ERCOT-based case
study [6] to quantify the effects of a time lag on the value
of RTP in reducing wind-uncertainty costs. This is especially
valuable given the interest in using demand response to
accommodate wind in power systems [4]–[8]. We demonstrate
that having a 30-minute lag in the demand response reduces
the value of RTP in mitigating wind-uncertainty costs by up to
63%, compared to an immediate load response. The remainder
of this paper is organized as follows: Sections II and III
describe our modeling approach and case study, respectively,
Section IV summarizes our results, and Section V concludes.

II. M ODELING APPROACH

Our analysis focuses on the impacts of uncertain and
variable wind availability on short-run unit commitment and
dispatch and the resulting costs. This is done by comparing the
cost of operating the system if imperfect wind forecasts are
used when scheduling generators to a counterfactual best-case,
in which wind availability is known with perfect foresight.

Since our interest is in studying wind-uncertainty costs, wind
availability is the only parameter modeled as being uncertain.

System operations are modeled in a rolling fashion one
day at a time. This is done using day-ahead unit commitment
and real-time dispatch models, both of which have 15-minute
timesteps. Both models are formulated as mixed-integer linear
programs inGAMS and solved using the branch and cut algo-
rithm in CPLEX 9.0. The unit commitment model uses a point
forecast of future wind availability. This model determines
unit commitments for each day using a 36-hour optimization
horizon. The additional 12 hours are included to ensure that
sufficient generating capacity remains committed at the endof
each day to serve the following day’s load.

The real-time dispatch model then rolls forward through
each 15-minute time period to determine generator dispatch,
taking present and future wind availability (through the end
of the 36-hour horizon of the day-ahead model) into account.
When determining the time-t dispatch, the real-time model
uses actual time-t wind availability and forecasts of future
wind availability. We assume that these forecasts are less
accurate for time periods that are further in the future. Wind
availability and forecasts are iteratively updated as the real-
time model rolls forward through each 15-minute period. The
real-time model holds the generator commitments fixed based
on the day-ahead solution, but allows fast-start generators and
generators that are off-line but providing non-spinning reserves
to be started up in real-time, as necessary. This rolling process
is repeated 96 times for each day (once for each 15-minute
time period), at which point the model rolls forward to the
next day and the process is repeated starting with the day-
ahead unit commitment model.

Both the day-ahead and real-time models are deterministic.
If it is based on a distribution that accurately characterizes
wind-availability, a stochastic model can provide more robust
commitment and dispatch decisions. These operational deci-
sions can reduce wind-uncertainty costs compared to using a
deterministic model with point forecasts of wind availability
[9]–[11]. Since our analysis uses a deterministic model, it
overestimates wind-uncertainty costs and the benefits of RTP
in mitigating them. Madaeni and Sioshansi [12] study the value
of RTP in reducing wind-uncertainty costs if deterministic
and stochastic models are used. They demonstrate that the
combination of stochastic optimization and RTP reduces wind-
uncertainty costs relative to a case with fixed loads by between
22% and 66%. They further show that if a deterministic model
is used, RTP alone achieves about 94% of the benefits of RTP
and stochastic planning together. Thus, the bias introduced by
our use of a deterministic optimization is relatively small.

A. Day-Ahead Unit Commitment Model Formulation

The day-ahead unit commitment model is formulated as:

max
∑

t∈T

{

∫ lt

0

pt(x)dx (1)

−
∑

i∈I

[cV
i (qi,t) + cNL

i ui,t + cSU
i si,t]

}

,
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s.t. lt =
∑

i∈I

qi,t +
∑

w∈W

ωw,t, ∀ t ∈ T ; (2)

∑

i∈I

(ρSP
i,t + ρNS

i,t ) ≥ η̄t, ∀ t ∈ T ; (3)

∑

i∈I

ρSP
i,t ≥ ηSP

t · η̄t, ∀ t ∈ T ; (4)

η̄t = 0.03 · lt + 0.05 ·
∑

w∈W

ωw,t, ∀ t ∈ T ; (5)

K−

i ui,t ≤ qi,t, ∀ i ∈ I, t ∈ T ; (6)

qi,t + ρSP
i,t ≤ K+

i ui,t, ∀ i ∈ I, t ∈ T ; (7)

qi,t + ρSP
i,t + ρNS

i,t ≤ K+

i , ∀ i ∈ I, t ∈ T ; (8)

0 ≤ ρSP
i,t ≤ ρ̄SP

i ui,t, ∀ i ∈ I, t ∈ T ; (9)

0 ≤ ρNS
i,t ≤ ρ̄NS

i , ∀ i ∈ I, t ∈ T ; (10)

R−

i ≤ qi,t − qi,t−1, ∀ i ∈ I, t ∈ T ; (11)

qi,t − qi,t−1 + ρSP
i,t + ρNS

i,t ≤ R+

i (12)

∀ i ∈ I, t ∈ T ;
t

∑

y=t−τ
+

i

si,y ≤ ui,t, ∀ i ∈ I, t ∈ T ; (13)

t
∑

y=t−τ
−

i

hi,y ≤ 1 − ui,t, ∀ i ∈ I, t ∈ T ; (14)

si,t − hi,t = ui,t − ui,t−1, ∀ i ∈ I, t ∈ T ; (15)

0 ≤ ωw,t ≤ ω̄w,t, ∀ w ∈ W, t ∈ T ; (16)

lt ≥ 0, ∀ t ∈ T ; (17)

ui,t, si,t, hi,t ∈ {0, 1}, ∀ i ∈ I, t ∈ T. (18)

Objective function (1) maximizes social welfare, which is
defined as the difference between the integral (up to the
amount of load served,lt) of the inverse demand function
and total generation costs. In cases without RTP, thelt’s
are held fixed meaning that the integral terms are fixed and
welfare maximization is equivalent to cost minimization. In
cases with RTP the inverse demand function is represented
as a non-increasing step function, implying that the integral
terms are concave piecewise-linear in thelt’s. The variable
generation costs,cV

i (qi,t), are modeled as convex piecewise-
linear functions. These assumptions yield an objective function
that is linear in the decision variables.

Load-balance constraints (2) require demand in each period
to be exactly served by conventional and wind generation.
Constraint sets (3) and (4) ensure that enough non-spinning
and spinning reserves are available and constraint set (5)
defines the reserve requirement. Our model only considers
spinning and non-spinning reserves, ignoring frequency reg-
ulation. This is because the 15-minute timesteps assumed in
our analysis do not capture the temporal resolution implicit
in the deployment of regulation. We use the so-called ‘3 + 5’
rule assumed in the National Renewable Energy Laboratory’s
Western Wind and Solar Integration Study [13]. This is a
heuristic rule, which sets total reserve requirements in each
period equal to 3% of the load plus 5% of scheduled wind
generation. The 5% part of the rule is designed to schedule
reserves in proportion to the amount of wind on which the

system relies, due to wind’s inherent variability. We further
assume that half of these total reserves must be spinning,
meaning thatηSP

t = 0.5.
We only explicitly model upward reserves (i.e., excess

capacity to deal with a generation shortfall, for instance due to
overestimating wind availability). This is because overestima-
tion of wind is typically a greater threat to system stability than
underestimation. Overestimating wind availability requires the
output of conventional generators to increase or loads to
decrease to balance supply and demand. Underestimated wind
can typically be accommodated by curtailing the output of
wind generators, although to the extent that it is technically
feasible, conventional generator output can also be decreased
to accommodate unanticipated wind. In heavily thermal sys-
tems, not providing downward reserves may create difficulties
to offset forecast errors, leading to potential overproduction.
Although we do not explicitly model downward reserves, the
real-time dispatch model allows for the output of conventional
generators to be reduced (relative to the day-ahead commit-
ment solution), to accommodate underestimated wind. Ruizet
al. [14] and Papavasiliouet al. [15] discuss the advantages and
disadvantages of using operating reserves and such heuristic
rules, as opposed to more sophisticated stochastic optimization
models, to accommodate wind uncertainty. One advantage of
stochastic optimization is that reserves can be determined
dynamically, based on the probability distribution of wind
availability. Another is that the mix of generators committed
may be more flexible, allowing for unanticipated wind to be
accommodated by reducing conventional generator output, as
opposed to curtailing wind. Our approach to modeling reserves
is similar to the heuristic rule that Papavasiliouet al. [15]
study.

Constraint sets (6) through (8) ensure that each conven-
tional generator operates between its minimum and maximum
generation points, and that it does not violate its upper-
bound if it must provide additional energy due to reserves
being called in real-time. Constraint sets (9) and (10) bound
ancillary services provided by each generator based on its
rated capability. Constraint sets (11) and (12) enforce each
generator’s ramping limits. Constraint set (12) further ensures
that each generator can feasibly provide reserves without
violating its ramping restriction. Constraint sets (13) and (14)
impose each generator’s minimum up- and down-times when
they are started up and shutdown. Constraint set (15) defines
the startup and shutdown variables in terms of changes in the
online state variables. Constraint set (16) limits each wind
generator’s production based on forecasted wind availability.
Since actual wind used can be less than wind available, this
constraint allows for wind curtailment. Constraint sets (17)
and (18) impose non-negativity and integrality restrictions.

Our model treats demand response as a dispatchable re-
source that the system operator (SO) can use to balance load.
The SO determines the amount of load,lt, to serve in each
period, based on the economic tradeoff between the value of
energy consumption, which is given by the inverse demand
function, and the cost of generation. This implicitly assumes
that consumers truthfully reveal their willingness to pay for
energy and that they adjust their demand based on the socially



4

optimal value of lt determined by the SO. Thus, we do
not tackle the issue of generating market-clearing prices that
ensure that suppliers and consumers have proper incentivesto
provide the socially optimal amount of generation and demand
response. This is a theoretically difficult task, due to the non-
convex nature of unit commitment [16].

B. Real-Time Dispatch Model Formulation

The real-time dispatch model has the same structure as
the day-ahead unit commitment, consisting of objective func-
tion (1) and constraint sets (2) through (18). The commitments
of the generators are fixed based on the solution of the
day-ahead model, with the exception of fast-start generators
and generators that are off-line but providing non-spinning
reserves. These generators can be started up, if needed, in
real-time. Moreover, the values of̄ωw,t in constraint set (16)
are updated to reflect new wind availability forecasts being
available. Specifically, when making time-t dispatch decisions,
actual time-t wind is known and wind availability in subse-
quent hours is modeled using a point forecast. The accuracy
of the forecast of time-s wind is decreasing ins− t, which is
indicative of forecasts further in the future being less accurate.

Although the model optimizes dispatch decisions in all
periods from timet forward, only the time-t dispatch is fixed
based on this model. We hereafter refer to the model used to
determine the time-t dispatch as the ‘time-t dispatch model.’
After solving the time-t dispatch model, we roll forward and
solve the time-(t + 1) dispatch model, with updated wind
availability data, to determine the time-(t + 1) dispatch. This
is repeated 96 times (corresponding to each 15-minute time
period) for each day.

C. Wind Modeling

Actual wind generation available in each time period is
modeled as:

ω̄w,t = Ωw · φw,t, (19)

whereΩw is the assumed nameplate capacity of wind plant
w and φw,t ∈ [0, 1] is the fraction of this capacity available
at time t. The wind forecasts used in the day-ahead unit
commitment and real-time dispatch models are generated by
including a wind forecast error. Thus, the right-hand side of
constraint set (16) for time periods for which forecasts are
used becomes:

Ωw · (φw,t + ǫt). (20)

III. C ASE STUDY AND DATA

A. Data

We examine system operations and costs over a one-year
period using the case study analyzed by Sioshansi [6]. This
is based on the ERCOT system, using load, conventional
generator, and weather data from the year 2005. It also
includes 15 GW of wind, which corresponds to all of the
plants that were planned to be installed by the end of 2011.
We compare cases in which loads are fixed to cases with
price-responsive loads and consider loads responding to prices
immediately or with a 15- or 30-minute lag.

Conventional generation costs are modeled using heat rates
and historical fuel and SO2 permit prices, which are obtained
from Platts Energy and Global Energy Decisions. Conven-
tional generator constraint data are obtained from Global
Energy Decisions. Actual wind availability is modeled using
the Western Wind Resources Dataset (WWRD) for the year
2005 [17]. The WWRD contains modeled historical wind
generation data at 10-minute intervals for a number of sites
across the western United States and is generated by 3TIER as
part of the Western Wind and Solar Integration Study [13]. We
associate the modeled wind plants to locations in the WWRD,
based on geographic distance. The value ofφw,t used in (19)
is given by the associated data in the WWRD. We use linear
interpolation on the 10-minute WWRD data to arrive at 15-
minute wind generation data.

Based on the results of the California ISO’s renewable
integration study [18], we assume that the forecast errors
in (20) have a first-order autocorrelated structure of the form:

ǫt = µ · ǫt−1 + νt. (21)

We fix the value ofµ so the autocorrelation betweenǫt and
ǫt−1 is 0.60. The innovations,νt, are assumed to have a trun-
cated Gaussian distribution with mean zero. The innovations
have a standard deviation of0.15 in the day-ahead unit com-
mitment. Standard deviations of the innovations in the real-
time dispatch model range between0.05 and0.15, depending
on the amount of time into the future wind availability is being
forecasted. Specifically, when modeling the time-t dispatch,
we assume a standard deviation of0.05 for time t+1 and that
the standard deviations of the wind forecast errors increase by
0.02 for every additional 15-minutes into the future, up to a
maximum of0.15.

Wind forecast errors exhibit serial and spatial correlations.
Serial correlation means that the time-(t + 1) error is statis-
tically dependent on recent (e.g., time-t) forecast errors. Put
another way, if wind availability is under- or over-forecast at
time t, it is also likely to be at time(t+1). Spatial correlation
means that contemporaneous errors at two locations are cor-
related. Spatial correlation is typically inversely proportional
to the geographic distance between locations.

Our use of an autocorrelated error structure explicitly cap-
tures serial correlation. We implicitly assume perfect spatial
correlation of1, since the sameǫt value is used for each loca-
tion modeled. This assumption overestimates wind-uncertainty
costs for a given standard deviation of theνt’s, since spatial
correlations are typically lower, especially over a large geo-
graphic area such as the ERCOT system. Explicitly modeling
spatial correlation is difficult in our case, as we do not have
access to historical wind forecast data with which to estimate a
spatial correlation function. Alternatively, one can capture the
effect of spatial correlation by adjusting the standard deviation
of the νt’s. This is because lower spatial correlation reduces
the standard deviation of the error in forecasting total system-
wide wind availability (to intuitively see this, lower spatial
correlation results in errors at individual wind plants that
tend to cancel each other out). Sioshansi [6] and Madaeni
and Sioshansi [12] show that RTP has very similar effects in
reducing wind-uncertainty costs with different forecast error



5

standard deviations, thus RTP should have similar effects if
spatial correlation is explicitly modeled. On the other hand,
better capturing spatial correlation should lead to a lag inthe
demand response having less of an effect on RTP’s benefit in
reducing wind-uncertainty costs. This is because discrepancies
between time-t and -(t + 1) wind forecasts should be smaller,
meaning that demands based on outdated price data provide
greater benefits. Overall, our wind forecast model closely
resembles that which Makarovet al. [19] use.

Modeled loads and demand functions are based on historical
15-minute load data from the year 2005, obtained from the
Public Utility Commission of Texas (PUCT). In cases without
RTP, thelt variables in the day-ahead and real-time models are
fixed based on these historical data. Thus the integral termsin
objective function (1) are fixed and welfare-maximization is
equivalent to cost-minimization. In cases with RTP, we use an
assumed elasticity and calibrate the inverse demand function
in each period so the actual historical load in the period
corresponds to the historical average retail price of electricity
in 2005 [6], [12], [20]–[22]. Thus the time-t demand function
has the property that:

pt(Dt) = pret, (22)

whereDt is the actual historical time-t demand andpret is
the average retail price of electricity in 2005. In calibrating
the demand function we only model own-price elasticities,
assuming cross-price elasticities to be zero. This assumption
typically understates the extent to which loads shift from on-
to off-peak periods with RTP, since cross-price elasticities
between periods can be negative [6], [21], [23]. Such load
shifting is captured to some extent by our model, however.
This is because on-peak loads tend to decrease due to high
real-time prices while relatively low prices have the opposite
effect during off-peak periods. We estimatepret using tariff
filings with the PUCT. Because these retail prices include non
energy-related charges (e.g. charges for distribution and retail
services), we subtract these from the tariff to yield a priceper
MWh of energy consumed. We assume an own-price elasticity
of −0.2, which is consistent with empirical estimates of the
short-term price-responsiveness of electricity demand [24]. We
approximate each demand function as a non-increasing step
function with 100 segments. This assumption means that the
integrals in objective function (1) are concave piecewise-linear
in lt’s.

B. Cases Modeled

We estimate wind-uncertainty costs by modeling six dif-
ferent cases, which are summarized in Table I. These cases
differ in terms of how future wind availability is forecast and
the extent to which loads respond to price signals. The cases
with perfect foresight assume that real-time wind availability
is known day-ahead and represent a best-case scenario in
which there is no wind uncertainty or related cost. These
cases are modeled by solving the day-ahead unit commitment
model only. The real-time dispatch model is not needed, since
the day-ahead model determines a feasible commitment and
dispatch schedule against actual wind availability. The day-
ahead model is still optimized in a rolling fashion to determine

operations for a single day using a 36-hour planning horizon.
The cases with imperfect wind forecasts are optimized as
outlined in Section II, with the day-ahead and real-time models
used in a rolling fashion.

TABLE I
CASESMODELED

Case Wind Availability Modeling Loads
1 Perfect Foresight Fixed
2 Perfect Foresight RTP With Instant Response
3 Imperfect Forecasts Fixed
4 Imperfect Forecasts RTP With Instant Response
5 Imperfect Forecasts RTP With 15-Minute Lag
6 Imperfect Forecasts RTP With 30-Minute Lag

In all of the cases with RTP, we assume loads can fully
react to price signals in the day-ahead unit commitment. This
assumption implies that the SO it willing to make day-ahead
commitment decisions in anticipation of real-time demand
response. Moreover, in cases 2 and 4, in which there is an
instant price response, the time-t dispatch model allows the
current and all future loads,ls with s ≥ t, to be adjusted.
Conversely, in case 5, which assumes a 15-minute lag in the
load response, the value oflt in the time-t dispatch model
is fixed to the value determined by the time-(t − 1) dispatch
model. The model allows loads in subsequent periods,i.e., ls
with s ≥ t + 1, to change in the time-t model, however. This
captures the lag in the load response, since time-t demand
reacts to the wind forecasts in and prices generated by the
time-(t − 1) dispatch, but does not react to updated wind
availability data in and prices generated by the time-t dispatch.
Fig. 1 is a schematic of our rolling model structure when
modeling a 15-minute lag in the demand response. We use
the notational convention that a model ‘determines a variable’
if the value of that variable is fixed based on solving that
model. For instance, the time-1 dispatch model treatsqi,t and
wω,t for t ≥ 1 and lt for t ≥ 2 as variables that can be
adjusted. However, only the values ofqi,1, wω,1, and l2 are
fixed based on the solution of this model. Thus, we say the
time-1 dispatch model determines the values ofqi,1, wω,1, and
l2 only.

Case 6, which assumes a 30-minute lag in the load response,
is modeled analogously. The only difference is that the values
of lt and lt+1 are fixed in the time-t dispatch model, based
on the values found in the time-(t − 1) dispatch model. As
with the 15-minute lag, we allow subsequent loads,i.e., ls
with s ≥ t + 2 to be adjusted in the time-t model. This
method of modeling the lag in the demand response assumes
that consumers adjust their consumption perfectly to historical
prices (i.e., prices generated either 15 or 30 minutes prior).
We assume that when the SO sets prices in real-time, these
are based on its best estimate of future wind conditions.
Thus, we preclude the possibility that an SO may want to
set prices higher than the efficient level to reduce demand and
the probability that it has insufficient capacity to serve the load
in real-time.

C. Measuring Wind-Uncertainty Costs

Wind-uncertainty costs are typically measured as the change
in operating costs between a case in which generation is sched-
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t = 1 t = 2 t = 3 t = 96 t = 144· · · · · ·

∀ i ∈ I, t ∈ {1, . . . , 144}
Step 1: Unit commitment determinesui,t, si,t, hi,t, ρSP

i,t
, andρNS

i,t

Step 2: Time-1 dispatch model holdsl1 fixed from previous dispatch
model, determinesqi,1, wω,1, l2 based on updated wind data

Step 3: Time-2 dispatch model holdsl2 fixed from previous
dispatch model, determinesqi,2, wω,2, l3 based on updated
wind data

Step 97: Time-96 dispatch

previous dispatch model,
model holdsl96 fixed from

based on updated wind data
determinesqi,96, wω,96, l97

Step 98: Roll
forward to next day

.. .

Fig. 1. Schematic of rolling solution technique used with 15-minute demand
response lag.

uled with perfect foresight of wind to one in which forecasts
are used instead [1]–[3], [25]. We follow this approach, except
that social welfare changes are a more appropriate metric. This
is because RTP causes demands to change, affecting consumer
welfare. These consumer welfare changes, which impose real
social costs and benefits, are not captured by generation costs
alone. Changes in total annual social welfare,σα, between the
cases listed in Table I better measure wind-uncertainty costs.
We divide these welfare changes by the total amount of wind
energy used,υα, to arrive at a wind-uncertainty cost per MWh
of wind energy used.

An issue in comparing welfare between cases with and
without RTP is that demand response increases social welfare
and system efficiency, independent of its mitigation of wind-
uncertainty costs. This is because consumers making consump-
tion decisions on the basis of the real-time marginal cost of
energy yields allocative efficiency gains. The social welfare
gain between cases 2 and 1,σ2−σ1, measures these allocative
efficiency gains, which are independent of the interactions
between RTP and wind uncertainty. These welfare gains do
include better accommodation of wind variability, however.
This is because real-time prices are suppressed, increasing
consumption during periods with high wind output, andvice
versa. Welfare differences between case 2 and cases with
wind uncertainty and RTP (cases 4 through 6) measure wind-
uncertainty costs with RTP. Comparing these costs to welfare
differences between cases 1 and 3, which measure wind-
uncertainty costs with fixed loads, measure the benefits of RTP
in reducing wind-uncertainty costs.

IV. RESULTS

Table II summarizes annual wind-uncertainty costs per
MWh of wind energy used. For each case we compute a
net wind-uncertainty cost in $/MWh of wind and the wind-
uncertainty costs averted by RTP (relative to the fixed-load
case) in $/MWh of wind and as a percentage of wind-
uncertainty costs in the fixed-load case. The net wind-
uncertainty cost in the four cases are computed as(σ1 −

σ3)/υ3, (σ2 − σ4)/υ4, (σ2 − σ5)/υ5, and (σ2 − σ6)/υ6,
respectively. The averted wind-uncertainty costs in each of the
three cases with RTP are computed as the difference between
wind-uncertainty costs in the fixed-load and each of the RTP
cases, or as:

(σ1 − σ3) − (σ2 − σα)

υα

, (23)

whereα denotes the RTP case considered. The final column
of the table gives the value in the third column as a percentage
of the wind-uncertainty cost in the fixed-load case. The table
shows that wind can impose significant external costs on the
system, which is keeping with other wind integration analyses
[1]–[3], [6], [25].

TABLE II
WIND-UNCERTAINTY COSTS

Net Cost Averted Cost
Load [$/MWh of Wind] [$/MWh of Wind] [%]
Fixed 6.07
RTP Instant 0.70 4.60 76
RTP 15-Min 2.54 2.87 47
RTP 30-Min 4.17 1.30 21

Table II further shows that while RTP can mitigate wind-
uncertainty costs, this benefit is sensitive to the latency of
the demand response. With a 15-minute lag nearly 38% of
the value of RTP in mitigating wind-uncertainty costs is lost.
This number increases to 72% with a 30-minute lag. Table III
summarizes annual generation costs and the breakdown of
the load between conventional and wind generation with RTP
and imperfect wind forecasts. It shows that increasing the
latency of the demand response affects the system in two ways.
One is that it reduces aggregate energy consumption, which
decreases consumer welfare. The second is that it decreases
wind generation, giving higher costs since more conventional
generation is used. Both of these effects are due to interactions
between the lagged demand response and imperfect wind
forecasts. When real-time wind availability is underestimated,
consumers have limited ability to adjust their consumptionand
use unanticipated wind. Although the real-time dispatch model
allows conventional generator dispatch to be reduced (relative
to the day-ahead solution) to accommodate more wind, techni-
cal constraints limit the extent to which this can be done [21],
[26]. This inability to accommodate all unanticipated windis
exacerbated by our not explicitly modeling downward reserves
in the unit commitment model. Thus, our model assumes that
the SO is agnostic to the use of wind (other than wind having
zero cost in the objective function). Some SOs prioritize wind,
for instance through feed-in tariffs, and may explicitly commit
more flexible units to minimize wind curtailment. Conversely,
when wind availability is overestimated, the lagged demand
response requires greater use of high-cost conventional gener-
ation to cover the generation shortfall.

These interactions between wind and lagged demand re-
sponse are further investigated by examining load and gen-
eration patterns during select periods. Fig. 2 shows the ag-
gregate system load during the evening of 2 October with an
immediate demand response and if the demand response has
a 15-minute lag. The loads in the lagged-response case are
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TABLE III
TOTAL ANNUAL GENERATION COST AND LOAD SERVED WITH RTPAND

IMPERFECTWIND FORECASTS

Cost Generation [TWh]
Case [$ Billion] Total Conventional Wind
Instant Response 11.6 304.3 254.0 50.3
15-Minute Lag 11.9 303.7 254.4 49.3
30-Minute Lag 12.0 303.7 254.9 48.8

greater than those in the immediate-response case. This is due
to wind availability being systematically overestimated during
this evening, and the limited ability of consumers to respond
to real-time wind availability in the lagged case. Although
system demand is higher with the lagged response, wind use in
both cases is equivalent—all of the 17 GWh of wind available
during this three-hour period is used in both cases. Thus, all
of the additional load in the lagged-response case is served
using conventional generation.
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Fig. 2. Aggregate system load from 20:00 to 23:00 on 2 Octoberwith
immediate and lagged demand response.

Fig. 3 shows the breakdown of conventional generation in
the immediate- and lagged-response cases between slow and
fast generators. We classify units that can be started up in the
real-time dispatch model as fast generators and the remaining
as slow. The figure shows more conventional generation in the
lagged-response case, since loads cannot respond to real-time
shortfalls in wind generation below the amount forecasted,as
illustrated in Fig. 2. It also shows greater use of fast units,
which typically have higher operating costs, to serve the wind
shortfall in the lagged-response case. This contributes tothe
greater generation costs compared to having an immediate
demand response.

As a second example, Fig. 4 shows the system load midday
on 1 January in cases in which the load responds to prices
immediately and with a 15-minute lag. Unlike the load profiles
shown in Fig. 2, the lagged-response case results in lower
system loads for most of the periods shown. This is due to
wind availability being underestimated, as shown in Fig. 5,
and the limited ability of consumers to use this excess wind
in real-time. Although the SO ideally wants to maximize
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Fig. 3. Output of slow and fast generators from 20:00 to 23:00on 2 October
with immediate and lagged demand response.

wind use (since it has zero marginal cost), Fig. 5 shows
that about 1 MWh and 3.4 GWh of curtailments occur in
the immediate- and lagged-response cases, respectively. These
curtailments are caused by conventional generator rampingand
minimum load and up-time constraints, and are exacerbated by
the high cost of cycling conventional generators on and off.
For instance, conventional generation cannot drop below about
14 GW during the periods shown in Fig. 4 which have wind
curtailment. The day-ahead wind forecast shown in Fig. 5 also
illustrates the autocorrelated nature of the wind forecasterrors
modeled. Specifically, the overly conservative wind forecast
for 11:15 am persists in the subsequent hours.
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Fig. 4. Aggregate system load from 11:00 to 14:00 on 1 Januarywith
immediate and lagged demand response.

V. CONCLUSIONS

This study analyzes the value of demand response in reduc-
ing wind-uncertainty costs if there is a latency in the response.
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Fig. 5. Wind available and used from 11:00 to 14:00 on 1 January with
immediate and lagged demand response.

We demonstrate that demand response has significant value
in reducing wind-uncertainty costs, although much of this
value is contingent upon loads responding to wind availability
and system conditions immediately. More than 75% of wind-
uncertainty costs are mitigated if loads respond to prices
immediately. Less than a quarter of wind-uncertainty costs
are averted if there is a 30-minute lag in the response. Even
with such latency, however, demand response is a valuable tool
in mitigating many adverse effects of wind. This is because
loads can respond to more accurate wind forecasts that can
become available intraday. Wind and demand response have
other synergies shown in this study and in other analyses.
This includes reducing wind curtailment, due to transmission,
generator, or system operating constraints [21] and delivering
greater emissions benefits [12]. Demand response may also
help system planners with long-run capacity planning. An
issue raised by increasing the penetration of wind is that itmay
leave the system with insufficientinstalled capacity to serve
the load, if real-time wind output and installed conventional
generation capacity are both sufficiently low. Demand response
programs can encourage consumers to efficiently ration their
consumption and shift it away from such periods, improving
asset use and system reliability.

These benefits presuppose that the SO dynamically reopti-
mizes generator dispatch and prices in the rolling fashion that
we assume. Otherwise, the value of demand response may
be significantly less than our estimates suggest if prices are
only set day- and hour-ahead, as is current practice in some
markets. Similarly, the SO must update wind forecasts intraday
to fully exploit the value of demand response. Conversely,
our model assumes that generator commitments are not dy-
namically adjusted in real-time, and that only fast-start units
and those offering non-spinning reserves can be started up
in the real-time dispatch process. This assumption resembles
the approach taken by Tuohyet al. [11] and Sioshansi [6].
If other generators have sufficiently short start-up times that
they could be committed intraday, wind-uncertainty costs may

be lower than our model indicates. Our analysis also assumes
that the SO adjusts its day-ahead commitment in anticipation
of real-time demand response (since we model thelt variables
as being fully flexible in the day-ahead model). If the SO is
not willing to make commitment decisions in such a fashion,
the value of RTP may be significantly reduced. The method
we use to calibrate the inverse demand functions assumes that
all of the load is price-elastic. This is because the literature
estimating demand elasticities computes them relative to the
total load of the study participants. Our model can be easily
adapted to only consider a portion of the demand as being price
responsive. One approach is to adjust the demand elasticity
itself—for instance, if only 50% of the load is price-responsive
and has an elasticity of0.2, then the elasticity of the overall
total load is0.1. Alternatively, one can define a fixed and a
price-responsive load, as Sioshansi and Short [21] do in their
analysis of RTP.

Another assumption of our model is that loads respond to
price signals in a symmetric manner. The value of RTP is
that loads respond to wind resource availability. In practice,
demand may not respond symmetrically, since customers may
respond more to price increases than to decreases. For in-
stance, a consumer may turn off an appliance when electricity
prices are high, but may not necessarily turn one when it
is not needed simply because the price of electricity is low.
While this type of asymmetric demand response may reduce
some of the surplus gains from providing consumers with
additional energy when actual wind availability is greaterthan
forecast, much of the benefits of RTP stem from demand
reductions when wind forecasts are too high. Thus, most
of the benefits estimated here would be captured even with
asymmetric demand response.

Although we focus on an indirect RTP mechanism, the
results are likely applicable to other forms of demand response,
such as direct load control. Such schemes may be preferable to
price-based mechanisms, since there may be less latency and
more predictability in the demand response. Our analysis is
based on the ERCOT system and further analysis is needed to
determine the synergies between demand response and wind
in other systems. Much of the value of demand response stems
from the generation mix in ERCOT. Since ERCOT has a mix
of low-cost slow generators and higher-cost fast generators,
demand response is particularly valuable since it reduces the
use of the flexible generators. Demand response may have less
value in mitigating wind-uncertainty costs in a hydroelectric-
dominated system, such as Scandinavia, due to the abundance
of low-cost flexible generation. Similarly, the recent decrease
in the cost of natural gas in the United States can reduce the
value of demand response. This is because much of the flexible
generation in ERCOT is natural gas-fired, and lower gas prices
reduce the cost of these resources relative to coal-fired plants.
Another area of research is whether these synergies apply to
other variable and uncertain renewables, such as solar. While
demand response should have the same benefit of having loads
follow solar supply more closely, solar and wind generation
patterns are markedly different from one another. Whereas
wind generation peaks overnight in some systems, solar peaks
midday. Further analysis is needed to fully understand the
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interactions between these technologies.
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