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Abstract—Demand response has benefits in mitigating unit B. Model Decision Variables

commitment and dispatch costs imposed on power systems by
wind uncertainty and variability. We examine the effect of delays = Zi:t
in consumers responding to price signals on the benefits off;
demand response in mitigating wind-uncertainty costs. Usig a

case study based on the ERCOT power system, we compargNsS
the cost of operating the system with forecasts of future wid wt
availability to a best-case scenario with perfect foresighof wind.

We demonstrate that wind uncertainty can impose substantie ~ %i:t
costs on the system and that demand response can eliminate reo

than 75% of these costs if loads respond to system conditions s; ;
immediately. Otherwise, we find that with a 30-minute lag in he
response, nearly 72% of the value of demand response is lost. s

Z7

Index Terms—Power system economics, wind power genera-
tion, wind forecast errors, real-time pricing, unit commitment ,,, ,
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energy provided by generatéiin time periodt,
spinning reserves provided by generatdn time period
t,

non-spinning reserves provided by generatdn time
periodt,

binary variable indicating if generatéris online in time
periodt,

binary variable indicating if generataris started-up in
time periodt,

¢+ binary variable indicating if generataris shutdown in

time periodt,

energy provided by wind generatar in time periodt,
and

load served in time period

NOMENCLATURE

A. Model Sets and Parameters

C. Miscellaneous Parameters

Q,, nameplate capacity of wind generatoy
T time index set, $w,+ Maximum generation available from wind generatoin
1 conventional generator index set, time periodt, as a fraction of nameplate capacity,
W wind generator index set, e; wind availability forecast error in time periog
V(-) generator’s variable cost function, v innovation in forecast error of time periad
cNL generatori’s no-load cost, u autocorrelation coefficient of wind availability forecast
¢’V generatori’s startup cost, error,
K, generatori’s minimum operating point, D, actual historical demand in time period
K" generatori’s maximum operating point, p"¢t average retail price of energy in 2005,
R, generator’s rampdown limit, o, total annual social welfare in case and
R generator’s rampup limit, v, total annual wind energy use in case
p?T generatori’s spinning reserve capacity,
AN generatori’s non-spinning reserve capacity, | INTRODUCTION
7, generator’s minimum-down time, ) o )
7" generator’s minimum-up time, I NTEREST in the use of renewable electricity has increased
@, Maximum generation available from wind generatoin lately. Wind is currently a leading renewable technology,
time periodt, due to its relative maturity and low cost. Although its maadi
p(-) inverse demand function in time period generation cost is near zero, wind can impose ancillarysc_ost
7, total reserve requirement in time periodand on the power system. Such costs are largely due to the variabl
nSP spinning reserve requirement (as a fraction of total) iand uncertain nature of real-time wind availability, which

time periodt.

S. H. Madaeni was with the Integrated Systems Engineeringabment,
The Ohio State University, Columbus, OH 43210, USA. He is nath the
Short Term Electric Supply Department, Pacific Gas and EteG@ompany,
San Francisco, CA 94105, USA (e-mail: SHM8@pge.com).

R. Sioshansi is with the Integrated Systems Engineering ai2ep
ment, The Ohio State University, Columbus, OH 43210, USAm@k
sioshansi.1@osu.edu).

The opinions expressed and conclusions reached are sbhledg tof the
authors and do not represent the official position of Pacifis @nd Electric
Company.

can require greater use of high-cost, fast-respondingpftex
generation. Wind variability can create large ramps in the
net (of wind generation) system load. Wind uncertainty can
increase the need for fast-responding generators to acoemm
date sudden and unanticipated increases or decreasesdn win
availability. In extreme cases, the system may not havegmou
conventional generating capacity committed and availéble
respond to unanticipated decreases in wind availabilitydi®s
place the cost of providing these types of services at about
$5/MWh of wind generated [1]-[3].
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Wind variability and uncertainty can also be accommodat&ince our interest is in studying wind-uncertainty costsdwv
using demand response. Having electricity demand folloawvailability is the only parameter modeled as being unaerta
wind output reduces the need for fast-responding generatio System operations are modeled in a rolling fashion one
Papavasiliou and Oren [4] study the use of load contralay at a time. This is done using day-ahead unit commitment
wherein deferrable loads are directly controlled and solegtl and real-time dispatch models, both of which have 15-minute
to follow wind availability. They develop two methodologie timesteps. Both models are formulated as mixed-integeafin
for load scheduling and estimate the value of such a schempeograms inGAMS and solved using the branch and cut algo-
Klobasa [5] examines the effects of demand response inrithm in CPLEX 9.0. The unit commitment model uses a point
future German power system with 48 GW of wind, showinfprecast of future wind availability. This model deternsne
that it reduces wind-uncertainty costs to less tl&IMWh. unit commitments for each day using a 36-hour optimization
Sioshansi [6] studies the Texas (ERCOT) system with 14 GWérizon. The additional 12 hours are included to ensure that
of wind and real-time pricing (RTP). He shows that RTP casufficient generating capacity remains committed at theaénd
eliminate up to 93% of wind-uncertainty costs, depending aach day to serve the following day’s load.
the price-responsiveness of the demand. Dietetlal. [7] The real-time dispatch model then rolls forward through
examine the effect of demand shifting and peak shaving each 15-minute time period to determine generator dispatch
wind integration, showing that these programs can redugking present and future wind availability (through theden
wind-uncertainty costs by up to 30%. of the 36-hour horizon of the day-ahead model) into account.

These analyses implicitly assume that demand respoiien determining the time-dispatch, the real-time model
to real-time signals immediately, without any latency. Whi uses actual time-wind availability and forecasts of future
this assumption may be reasonable for some forms of direghd availability. We assume that these forecasts are less
load control, it can be more tenuous for indirect price-baseaccurate for time periods that are further in the future. dVin
mechanisms, such as RTP. This is because there may be aalagjlability and forecasts are iteratively updated as tha-r
between price signals being sent, consumers observing, théime model rolls forward through each 15-minute period. The
and adjusting their behavior in response. Automated ctintroeal-time model holds the generator commitments fixed based
may alleviate such latency, however, since they reduce the the day-ahead solution, but allows fast-start genes atiod
need for consumers to exert real-time control. Such lateaoy generators that are off-line but providing non-spinninggrees
reduce the value of RTP in mitigating wind-uncertainty spstto be started up in real-time, as necessary. This rollinggss
since its benefit arises from load quickly responding to wing repeated 96 times for each day (once for each 15-minute
availability and reducing the need for generators to previdime period), at which point the model rolls forward to the
balancing energy. Thus, a shortcoming of this literatuddés next day and the process is repeated starting with the day-
it does not account for such latency in estimating the bemefithead unit commitment model.
of demand response in mitigating wind-uncertainty costs. Both the day-ahead and real-time models are deterministic.

We address this shortcoming by studying the effect ¢f it is based on a distribution that accurately characesiz
consumer delays in responding to price signals on the benefiind-availability, a stochastic model can provide moreustb
of RTP in reducing wind-uncertainty costs. This paper ha®smmitment and dispatch decisions. These operationat deci
two main contributions. The first is that we adapt existingions can reduce wind-uncertainty costs compared to using a
techniques, based on day-ahead unit commitment and neal-tideterministic model with point forecasts of wind availétgil
dispatch models, to simulate RTP with a time lag in demarn@]-[11]. Since our analysis uses a deterministic model, it
responding to prices. Second, we use an ERCOT-based oagerestimates wind-uncertainty costs and the benefits & RT
study [6] to quantify the effects of a time lag on the value mitigating them. Madaeni and Sioshansi [12] study theeal
of RTP in reducing wind-uncertainty costs. This is espégcialof RTP in reducing wind-uncertainty costs if deterministic
valuable given the interest in using demand response and stochastic models are used. They demonstrate that the
accommodate wind in power systems [4]-[8]. We demonstratembination of stochastic optimization and RTP reduceslwin
that having a 30-minute lag in the demand response reducesertainty costs relative to a case with fixed loads by betwe
the value of RTP in mitigating wind-uncertainty costs by ap t22% and 66%. They further show that if a deterministic model
63%, compared to an immediate load response. The remaindaised, RTP alone achieves about 94% of the benefits of RTP
of this paper is organized as follows: Sectidnk | lhnd stochastic planning together. Thus, the bias intratibge
describe our modeling approach and case study, respgctivelr use of a deterministic optimization is relatively small
SectionI¥ summarizes our results, and Secfidn V concludes.

A. Day-Ahead Unit Commitment Model Formulation

The day-ahead unit commitment model is formulated as:
Our analysis focuses on the impacts of uncertain and .
vgrlable wind avallablh_ty on short—r_un unit commnment_dan max Z / pe(x)dz Q)
dispatch and the resulting costs. This is done by compahiag t = /o
cost of operating the system if imperfect wind forecasts are
S'L,t]}a

II. MODELING APPROACH

used when scheduling generators to a counterfactual bsst-c _ Z[Cy(qi )+ N+ U
in which wind availability is known with perfect foresight. el ’ '



R Zqi,t + Z Wiyt ViteT; (2) system relies, due to wind’s inherent variability. We fenth

i€l weW assume that half of these total reserves must be spinning,
S+ pNS )z, VteT; (3) meaning that?" = 0.5. .
el ' We only explicity model upward reserves.ef, excess
SP sPp - capacity to deal with a generation shortfall, for instanae tb
> > . teT; 4 f - . S L .
;p%t =M e VieT; ) overestimating wind availability). This is because ovénes-
3

B tion of wind is typically a greater threat to system stapitfian
7t = 0.03-1; +0.05 - Z Wt vteT; (5 underestimation. Overestimating wind availability ragsithe

) weWw output of conventional generators to increase or loads to
K uie < g, Viel,teT; (6) decrease to balance supply and demand. Underestimated wind
it +p§tP < Kjtuiy, Viel teT; (7) can typically be accommodated by curtailing the output of

wind generators, although to the extent that it is techhical

SP NS + ; .
; . N2 < KT, Viel,teT,; 8 . .
Qi+ Pii + P = ! ®) feasible, conventional generator output can also be deedea

K2

SP _ -SP : . . : :

0 <pis <p7 Wit Viel,teT; (9 to accommodate unanticipated wind. In heavily thermal sys-
0<p <p?, Viel,teT; (10) tems, not providing downward reserves may create diffiesilti
Ry < qis — i1, Viel,teT; (11) to offset forecast errors, leading to potential overpraiduc

Although we do not explicity model downward reserves, the

Qi = Qie—1 + 05y + o0y < RE (12) real-time dispatch model allows for the output of convemdio
Viel,teT; generators to be reduced (relative to the day-ahead commit-
t ment solution), to accommodate underestimated wind. Btuiz
Z Siy < Uiy, Viel teT; (13) al.[14] and Papavasilioet al. [15] discuss the advantages and
y=t—r" disadvantages of using operating reserves and such heurist
- rules, as opposed to more sophisticated stochastic ojatiimiz
Z Riy <1 — gy, Viel teT; (14) models, to accommodate wind uncertainty. One advantage of
y—t—r- stochastic optimization is that reserves can be determined

dynamically, based on the probability distribution of wind

Sit = hig = Uip = Ui, vielteT; (15) availability. Another is that the mix of generators comerit

0 < wy,t < Wty VweW,teT; (16) may be more flexible, allowing for unanticipated wind to be
ly >0, VieT; (17) accommodated by reducing conventional generator outgut, a
Uity Sigs hiy € {0,1}, Viel,teT. (18) opposed to curtailing wind. Our approach to modeling reserv

is similar to the heuristic rule that Papavasilieual. [15]

Objective function[ll) maximizes social welfare, which istudy.
defined as the difference between the integral (up to theConstraint sets[16) througll(8) ensure that each conven-
amount of load served,) of the inverse demand functiontional generator operates between its minimum and maximum
and total generation costs. In cases without RTP, lifee generation points, and that it does not violate its upper-
are held fixed meaning that the integral terms are fixed abdund if it must provide additional energy due to reserves
welfare maximization is equivalent to cost minimization. | being called in real-time. Constraint sef$ (9) ahd (10) lboun
cases with RTP the inverse demand function is representattillary services provided by each generator based on its
as a non-increasing step function, implying that the irdaegrrated capability. Constraint set§111) aldl(12) enforceheac
terms are concave piecewise-linear in ths. The variable generator's ramping limits. Constraint sefl(12) furtheswers
generation costs;! (¢;.+), are modeled as convex piecewisethat each generator can feasibly provide reserves without
linear functions. These assumptions yield an objectivetion violating its ramping restriction. Constraint sefiS1(13)l 4f4)
that is linear in the decision variables. impose each generator's minimum up- and down-times when

Load-balance constrainfd (2) require demand in each peribey are started up and shutdown. Constraint[sdt (15) defines
to be exactly served by conventional and wind generatiathe startup and shutdown variables in terms of changes in the
Constraint sets[13) andl(4) ensure that enough non-spinnongine state variables. Constraint sefl(16) limits eachdwin
and spinning reserves are available and constraint [3et ¢&nerator's production based on forecasted wind avaitiabil
defines the reserve requirement. Our model only consid&imce actual wind used can be less than wind available, this
spinning and non-spinning reserves, ignoring frequengy reconstraint allows for wind curtailment. Constraint sdfsl)(1
ulation. This is because the 15-minute timesteps assumedaimd [I8) impose non-negativity and integrality restrictio
our analysis do not capture the temporal resolution implici Our model treats demand response as a dispatchable re-
in the deployment of regulation. We use the so-called 5’ source that the system operator (SO) can use to balance load.
rule assumed in the National Renewable Energy Laboratorfke SO determines the amount of lodd,to serve in each
Western Wind and Solar Integration Study [13]. This is period, based on the economic tradeoff between the value of
heuristic rule, which sets total reserve requirements itheaenergy consumption, which is given by the inverse demand
period equal to 3% of the load plus 5% of scheduled winfdinction, and the cost of generation. This implicitly asgsm
generation. The 5% part of the rule is designed to schedtieat consumers truthfully reveal their willingness to pay f
reserves in proportion to the amount of wind on which thenergy and that they adjust their demand based on the sociall



optimal value ofl; determined by the SO. Thus, we do Conventional generation costs are modeled using heat rates
not tackle the issue of generating market-clearing pribes t and historical fuel and SOpermit prices, which are obtained
ensure that suppliers and consumers have proper incettiveBom Platts Energy and Global Energy Decisions. Conven-
provide the socially optimal amount of generation and dednational generator constraint data are obtained from Global
response. This is a theoretically difficult task, due to tba-n Energy Decisions. Actual wind availability is modeled ugin

convex nature of unit commitment [16]. the Western Wind Resources Dataset (WWRD) for the year
2005 [17]. The WWRD contains modeled historical wind
B. Real-Time Dispatch Model Formulation generation data at 10-minute intervals for a number of sites

The real-time dispatch model has the same structure across the western United States and is generated by 3TIER as

the day-ahead unit commitment, consisting of objective:funpart of the Western Wind and Solar Integration Study [13]. We

tion () and constraint sel(2) throughl(18). The commitmie associate the modeled wind plants to locations in the WWRD,

of the generators are fixed based on the solution of t gsed on geographic distance. The value)of used in [IP)

day-ahead model, with the exception of fast-start generatés given by the associated data in the WWRD. We use linear

! L . Interpolation on the 10-minute WWRD data to arrive at 15-
and generators that are off-line but providing non-spignin_. : ;
inute wind generation data.

reserves. These generators can be started up, if needed? . .
real-time Moreovgr the values af, , in constralijnt setlT16) E'ased on the results of the California 1SO’s renewable
| ' )8 integration study [18], we assume that the forecast errors

are updated to reflect new wind availability forecasts bein :
available. Specifically, when making timetispatch decisions, nq @0) have a first-order autocorrelated structure of thenfo

actual timet wind is known and wind availability in subse- € =61+ V4. (22)
guent hours is modeled using a point forecast. The accur

of the forecast of time-wind is decreasing in — ¢, which is W fix the value ofy, so the autocorrelation betweep and

indicative of forecasts further in the future being lessuaate. =1 'S 0.60. The innovationsy, are assumed to have a trun-
ated Gaussian distribution with mean zero. The innovation

Although the model optimizes dispatch decisions in - . .
periods from time: forward, only the times dispatch is fixed aﬁ"’_‘ve a standard deV|at|_or! Ofl5 in the_day-ah_ead L.m't com-
tment. Standard deviations of the innovations in the-real

based on this model. We hereafter refer to the model used 19 €' ;
determine the time-dispatch as the ‘timeé-dispatch model. time dispatch model range betwee’ and0.15, depending

After solving the timet dispatch model, we roll forward and2" the amount of _ti_me into the future wind availabili_ty IS ingi
solve the time + 1) dispatch model, with updated Windforecasted. Specifically, Wher_1 modellng_the timdispatch,
availability data, to determine the timé-+ 1) dispatch. This we assume a standard deviatior0di5 for time ¢ +1 and that

is repeated 96 times (corresponding to each 15-minute tirg;I 2S]Eandard de\é'g.tt'.o ns IO 1;-t5he \.Nmtd fo.retcatsk;c e:cr(;rs mer«bats
period) for each day. .02 for every additional 15-minutes into the future, up to a

maximum of0.15.
] Wind forecast errors exhibit serial and spatial corretagio
C. Wind Modeling Serial correlation means that the tirfle+ 1) error is statis-
Actual wind generation available in each time period iically dependent on recene.¢., time+) forecast errors. Put
modeled as: another way, if wind availability is under- or over-foretas
.t =y Pt (19) timet, it is also likely to be at timét +1). Spatial correlation

where 2, is the assumed nameplate capacity of wind pIarrrﬁleaigz tgata?g?f;?r?;?giq:ster'r((;);ﬁ a.tntv(\;(r)sg)lcatlron.s a;rle cor-
w and ¢, ; € [0,1] is the fraction of this capacity available - =pall lon 1S typically inv y projoon

at time ¢. The wind forecasts used in the day-ahead untl? the geographic distance between locations. -
Our use of an autocorrelated error structure explicitly-cap

commitment and real-time dispatch models are generated b¥es serial correlation. We implicitly assume perfecttispa

including a wind forecast error. Thus, the right-hand sifle (Su . . .
orrelation ofl, since the same, value is used for each loca-

constraint setFCIl6) for time periods for which forecasts af%n modeled. This assumption overestimates wind-uricsyta
used becomes: : - . ;
Qu - (Pw,t + €1). (20) COSts for a given standard deviation of thés, since spatial
v ' correlations are typically lower, especially over a largmg
graphic area such as the ERCOT system. Explicitly modeling
spatial correlation is difficult in our case, as we do not have
A. Data access to historical wind forecast data with which to edtnaa
We examine system operations and costs over a one-yspatial correlation function. Alternatively, one can eaptthe
period using the case study analyzed by Sioshansi [6]. Tleifect of spatial correlation by adjusting the standardatewn
is based on the ERCOT system, using load, conventiomdlthe v;’s. This is because lower spatial correlation reduces
generator, and weather data from the year 2005. It aldwe standard deviation of the error in forecasting totatesys
includes 15 GW of wind, which corresponds to all of thevide wind availability (to intuitively see this, lower sjat
plants that were planned to be installed by the end of 201chrrelation results in errors at individual wind plants ttha
We compare cases in which loads are fixed to cases wiind to cancel each other out). Sioshansi [6] and Madaeni
price-responsive loads and consider loads respondingdespr and Sioshansi [12] show that RTP has very similar effects in
immediately or with a 15- or 30-minute lag. reducing wind-uncertainty costs with different forecastoe

IIl. CASE STUDY AND DATA



standard deviations, thus RTP should have similar effdctsoiperations for a single day using a 36-hour planning horizon
spatial correlation is explicitly modeled. On the other than The cases with imperfect wind forecasts are optimized as
better capturing spatial correlation should lead to a lathe outlined in Sectiofidl, with the day-ahead and real-time eisd
demand response having less of an effect on RTP’s benefiuged in a rolling fashion.
reducing wind-uncertainty costs. This is because discre@pa

: : TABLE |
between time-and {¢ + 1) wind forecasts should be smaller, CASESMODELED
meaning that demands based on outdated price data provide
greater benefits. Overall, our wind forecast model closely fase Wind Availability Modeling _ Loads

. Perfect Foresight Fixed
resembles that which Makarat al. [19] use. . 2 Perfect Foresight RTP With Instant Response
Modeled loads and demand functions are based on historical 3 Imperfect Forecasts Fixed
15-minute load data from the year 2005, obtained from the ;‘ :mpeieci EOTeCﬁS:S Ei wm |1n5St|\6/l|nt Fteestonse
. . . . mpertect Forecasts | -iViinute Lag
Public Utility Commission of Texas (PUCT). In cases without g Imperfect Forecasts RTP With 30-Minute Lag

RTP, thel, variables in the day-ahead and real-time models are
fixed based on these historical data. Thus the integral tetms |n all of the cases with RTP, we assume loads can fully
objective function[{lL) are fixed and welfare-maximizatisn ireact to price signals in the day-ahead unit commitments Thi
equivalent to cost-minimization. In cases with RTP, we use assumption implies that the SO it willing to make day-ahead
assumed elasticity and calibrate the inverse demand @mctcommitment decisions in anticipation of real-time demand
in each period so the actual historical load in the periaésponse. Moreover, in cases 2 and 4, in which there is an
corresponds to the historical average retail price of gttt instant price response, the timedispatch model allows the
in 2005 [6], [12], [20]-[22]. Thus the timé-demand function current and all future loadd, with s > ¢, to be adjusted.
has the property that: Conversely, in case 5, which assumes a 15-minute lag in the
pe(Dy) = pt, (22) !oaq response, the value Qf in the timeelf dispatch model
is fixed to the value determined by the tinfre— 1) dispatch
where D, is the actual historical time-demand ang™ is  model. The model allows loads in subsequent periads,l,
the average retail price of electricity in 2005. In calimgt \ith s > ¢+ 1, to change in the timé-model, however. This
the demand function we only model own-price elasticitiegaptures the lag in the load response, since tindemand
assuming cross-price elasticities to be zero. This assamptreacts to the wind forecasts in and prices generated by the
typically understates the extent to which loads shift from Otime-(t — 1) dispatch, but does not react to updated wind
to off-peak periods with RTP, since cross-price elas@siti ayajlability data in and prices generated by the tintispatch.
between periods can be negative [6], [21], [23]. Such logtlg [ is a schematic of our rolling model structure when
shifting is captured to some extent by our model, howevghodeling a 15-minute lag in the demand response. We use
This is because on-peak loads tend to decrease due to Righnotational convention that a model ‘determines a véiab
real-time prices while relatively low prices have the opfos jf the value of that variable is fixed based on solving that
effect during off-peak periods. We estimaie’ using tariff model. For instance, the time-1 dispatch model treatsand
filings with the PUCT. Because these retail prices include nQ,, for t > 1 andl, for t > 2 as variables that can be
energy-related charges.§. charges for distribution and retail 3gjysted. However, only the values of1, w,1, andl, are
services), we subtract these from the tariff to yield a ppee fixed based on the solution of this model. Thus, we say the
MWh of energy consumed. We assume an own-price elasticifire-1 dispatch model determines the values;af w,, 1, and
of —0.2, which is consistent with empirical estimates of the, ony. ' '
short-term price-responsiveness of electricity demadil [Be  Case 6, which assumes a 30-minute lag in the load response,
approximate each demand function as a non-increasing s{gpnodeled analogously. The only difference is that the aglu
function with 100 segments. This assumption means that TBﬁlt andl,,, are fixed in the time- dispatch model, based
integrals in objective functioi{1) are concave pieceviisear on the values found in the timg-— 1) dispatch model. As
in l;'s. with the 15-minute lag, we allow subsequent loads,, I
with s > t + 2 to be adjusted in the time-model. This
B. Cases Modeled method of modeling the lag in the demand response assumes
We estimate wind-uncertainty costs by modeling six dithat consumers adjust their consumption perfectly to Hisib
ferent cases, which are summarized in Tdble I. These capeiges (.e., prices generated either 15 or 30 minutes prior).
differ in terms of how future wind availability is forecashé We assume that when the SO sets prices in real-time, these
the extent to which loads respond to price signals. The casge based on its best estimate of future wind conditions.
with perfect foresight assume that real-time wind avaligbi Thus, we preclude the possibility that an SO may want to
is known day-ahead and represent a best-case scenari@etprices higher than the efficient level to reduce demadd an
which there is no wind uncertainty or related cost. Theshe probability that it has insufficient capacity to serve libad
cases are modeled by solving the day-ahead unit commitmanteal-time.
model only. The real-time dispatch model is not neededgesinc
the day-ahead model determines a feasible commitment &ndMeasuring Wind-Uncertainty Costs
dispatch schedule against actual wind availability. Thg-da Wind-uncertainty costs are typically measured as the alang
ahead model is still optimized in a rolling fashion to detaren in operating costs between a case in which generation islsche



t=1 t=2 t=3 ... t=96 ... =144
\ ! . . L 03)/v3, (02 — 04)/v4, (02 — 05)/vs, and (o2 — 06)/vs,

Step 1: Unit commitment determines, . s:.¢, hy.;, pSF, and pS respectively. T_he averted wind-uncertainty cogts in ed¢he
Vielte(l,..., 144} : ' three cases with RTP are computed as the difference between
wind-uncertainty costs in the fixed-load and each of the RTP

Step 2: Time-1 dispatch model holds fixed from previous dispatch

model, determinesg; 1, w1, l2 based on updated wind data cases, or as:
. . . . (01 —03) — (02 — 0a)

Step 3: Time-2 dispatch model holds fixed from previous s (23)

dispatch model, determineg 2, w.,2, [3 based on updated Va

wind data _ wherea denotes the RTP case considered. The final column

’ of the table gives the value in the third column as a percentag

Step 97: Time-96 dispatch of the wind-uncertainty cost in the fixed-load case. Thedabl
model holdslg fixed from shows that wind can impose significant external costs on the

revious dispatch model, L . . . .
getermmesqu 6 We 06, Lor system, which is keeping with other wind integration anesys

based on updated wind data  [1]—[3], [6], [25].

Step 98: Roll TABLE I
forward to next day WIND-UNCERTAINTY COSTS
Fig. 1. Schematic of rolling solution technique used withnfute demand Net Cost Averted Cost
response |ag Load [$/MWh of Wlnd] [$/MWh of Wlnd] [%]
Fixed 6.07
RTP Instant | 0.70 4.60 76
. . . . . RTP 15-Min | 2.54 2.87 47
uled with perfect foresight of wind to one in which forecasts  Rrtp 30-Min | 4.17 1.30 21

are used instead [1]-[3], [25]. We follow this approach,eptc
that social welfare changes are a more appropriate mettis. T Taple[T] further shows that while RTP can mitigate wind-
is because RTP causes demands to change, affecting consyfRgértainty costs, this benefit is sensitive to the latenty o
welfare. These consumer welfare changes, which impose rg&l demand response. With a 15-minute lag nearly 38% of
social costs and benefits, are not captured by generatids c@ge value of RTP in mitigating wind-uncertainty costs istlos
alone. Changes in total annual social welfarg, between the This number increases to 72% with a 30-minute lag. TERle III
cases listed in Tab@ | better measure wind-uncertaint§scosymmarizes annual generation costs and the breakdown of
We divide these welfare changes by the total amount of wife |oad between conventional and wind generation with RTP
energy usedy,, to arrive at a wind-uncertainty cost per MWhanqg imperfect wind forecasts. It shows that increasing the
of wind energy used. ~latency of the demand response affects the system in two.ways
An issue in comparing welfare between cases with aRshe is that it reduces aggregate energy consumption, which
without RTP is that demand response increases social welfgecreases consumer welfare. The second is that it decreases
and system efficiency, independent of its mitigation of windying generation, giving higher costs since more conveation
uncertainty costs. This is because consumers making CqnsURkeneration is used. Both of these effects are due to interect
tion decisions on the basis of the real-time marginal cost gkwyeen the lagged demand response and imperfect wind
energy yields allocative efficiency gains. The social welfaforecasts. When real-time wind availability is underestied,
gain between cases 2 andsh,— o1, measures these allocative;onsumers have limited ability to adjust their consumpéiod
efficiency gains, which are independent of the interactiogge unanticipated wind. Although the real-time dispatchieho
between RTP and wind uncertainty. These welfare gains gows conventional generator dispatch to be reducedtirela
include better accommodation of wind variability, howevegg the day-ahead solution) to accommodate more wind, techni
This is because real-time prices are suppressed, incgeasig) constraints limit the extent to which this can be dong,[21
consumption during periods with high wind output, ande  [26]. This inability to accommodate all unanticipated witsd
versa. Welfare differences between case 2 and cases Wghacerbated by our not explicitly modeling downward ressrv
wind uncertainty and RTP (cases 4 through 6) measure winf-the unit commitment model. Thus, our model assumes that
uncertainty costs with RTP. Comparing these costs to welfahe SO is agnostic to the use of wind (other than wind having
differences between cases 1 and 3, which measure Wingyg cost in the objective function). Some SOs prioritizadyi
uncertainty costs with fixed loads, measure the benefits & Ry, instance through feed-in tariffs, and may explicitlynomit

in reducing wind-uncertainty costs. more flexible units to minimize wind curtailment. Convessel
when wind availability is overestimated, the lagged demand
IV. RESULTS response requires greater use of high-cost conventionarge

Table I summarizes annual wind-uncertainty costs pation to cover the generation shortfall.
MWh of wind energy used. For each case we compute aThese interactions between wind and lagged demand re-
net wind-uncertainty cost in $/MWh of wind and the windsponse are further investigated by examining load and gen-
uncertainty costs averted by RTP (relative to the fixed-loatation patterns during select periods. Hi. 2 shows the ag-
case) in $/MWh of wind and as a percentage of windyregate system load during the evening of 2 October with an
uncertainty costs in the fixed-load case. The net windnmediate demand response and if the demand response has
uncertainty cost in the four cases are computed@as— a 15-minute lag. The loads in the lagged-response case are



TABLE Il 40 — : : : : : : : :
TOTAL ANNUAL GENERATION COST AND LOAD SERVED WITH RTPAND I Siow Generation with Instant Response

IMPERFECTWIND FORECASTS [ ]Fast Generation with Instant Response
[N Slow Generation with 15-Minute Lag
Cost Generation [TWh] [ Fast Generation with 15-Minute Lag
Case ‘ [$ Billion] Total Conventional Wind
Instant Responsg 11.6 304.3 254.0 50.3
15-Minute Lag | 11.9 303.7 254.4 49.3 351 I
30-Minute Lag 12.0 303.7 2549 48.8

Power [GW]

greater than those in the immediate-response case. Thigis
to wind availability being systematically overestimatedidg 30H i
this evening, and the limited ability of consumers to respor
to real-time wind availability in the lagged case. Althoug!
system demand is higher with the lagged response, wind us
both cases is equivalent—all of the 17 GWh of wind availab
during this three-hour period is used in both cases. Thus,

.. . . 20: 20: 21: 21: 22: 22: 23:
of the additional load in the lagged-response case is sen 0:00 0:30 % Tin?g 00 * 00

using conventional generation.

Fig. 3. Output of slow and fast generators from 20:00 to 280@ October

305 : : : with immediate and lagged demand response.
'\ ‘ ==
39 7\\ " \\ ,' \\ Il ]
\‘ e ,' 134 ‘o wind use (since it has zero marginal cost), Hi§j. 5 shows
85- 7 S ! v/ 1 that about 1 MWh and 3.4 GWh of curtailments occur in
vl N ! the immediate- and lagged-response cases, respectivelgeT
81 “/' - | curtailments are caused by conventional generator rangpidg

minimum load and up-time constraints, and are exacerbated b
the high cost of cycling conventional generators on and off.
a7l ] For instance, conventional generation cannot drop belam@ab
14 GW during the periods shown in Fig. 4 which have wind
36.5 _A : curtailment. The day-ahead wind forecast shown in[Hig. 6 als
illustrates the autocorrelated nature of the wind foreeastrs

361 Instant Response \ modeled. Specifically, the overly conservative wind fostca

= — = 15-Minute Lag for 11:15 am persists in the subsequent hours.

37.5F 1

Load [GW]

35250:00 ‘ 20:30 21:00 21;30 22;00 22;30 ‘ 23:00
Time 30 T T T
Instant Response

Fig. 2. Aggregate system load from 20:00 to 23:00 on 2 Octatiéh = = = 15-Minute Lag
immediate and lagged demand response. 291 — T —

Fig.[d shows the breakdown of conventional generation  28( s L7 ' 1
the immediate- and lagged-response cases between slow Y e b ‘\
fast generators. We classify units that can be started ujpein % 271 |‘ 1 \‘ 1
real-time dispatch model as fast generators and the remgaing ' ,’ '
as slow. The figure shows more conventional generation in t3 261 ! 1 \ 1
lagged-response case, since loads cannot respond tameal- “ ,’ “ ,'
shortfalls in wind generation below the amount forecastsd, 25} \ 1 1 1
illustrated in Fig.[R. It also shows greater use of fast unit “ ” N ,'
which typically have higher operating costs, to serve thedwi 24} 1 e A
shortfall in the lagged-response case. This contributebeo ‘V,’ J
greater generation costs compared to having an immedi 3 ‘

11:00 11:30 12:00 12:30 13:00 13:30 14:00

demand response. -
Ime

As a second example, Fig. 4 shows the system load midday
on 1 January in cases in which the load responds to pridés 4. Aggregate system load from 11:00 to 14:00 on 1 Januatly
immediately and with a 15-minute lag. Unlike the load prafile™™mediate and lagged demand response.
shown in Fig.[2, the lagged-response case results in lower
system loads for most of the periods shown. This is due to
wind availability being underestimated, as shown in [Eig. 5, V. CONCLUSIONS
and the limited ability of consumers to use this excess wind This study analyzes the value of demand response in reduc-
in real-time. Although the SO ideally wants to maximizéng wind-uncertainty costs if there is a latency in the rewsen
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be lower than our model indicates. Our analysis also assumes
that the SO adjusts its day-ahead commitment in anticipatio
of real-time demand response (since we model tivariables

as being fully flexible in the day-ahead model). If the SO is
not willing to make commitment decisions in such a fashion,
the value of RTP may be significantly reduced. The method
we use to calibrate the inverse demand functions assumees tha
all of the load is price-elastic. This is because the litgrat
estimating demand elasticities computes them relativén¢o t
total load of the study participants. Our model can be easily
adapted to only consider a portion of the demand as being pric
responsive. One approach is to adjust the demand elasticity
itself—for instance, if only 50% of the load is price-respe

and has an elasticity df.2, then the elasticity of the overall
total load is0.1. Alternatively, one can define a fixed and a
price-responsive load, as Sioshansi and Short [21] do iin the

analysis of RTP.

Another assumption of our model is that loads respond to
price signals in a symmetric manner. The value of RTP is
that loads respond to wind resource availability. In piagti
demand may not respond symmetrically, since customers may
We demonstrate that demand response has significant vak§pond more to price increases than to decreases. For in-
in reducing wind-uncertainty costs, although much of thistance, a consumer may turn off an appliance when elegtricit
value is contingent upon loads responding to wind availgbil prices are high, but may not necessarily turn one when it
and system conditions immediately. More than 75% of wings not needed simply because the price of electricity is low.
uncertainty costs are mitigated if loads respond to pricgghile this type of asymmetric demand response may reduce
immediately. Less than a quarter of wind-uncertainty cos§gme of the surplus gains from providing consumers with
are averted if there is a 30-minute lag in the response. Evgdiditional energy when actual wind availability is greatemn
with such latency, however, demand response is a valuatlle tihrecast, much of the benefits of RTP stem from demand
in mitigating many adverse effects of wind. This is becausgductions when wind forecasts are too high. Thus, most
loads can respond to more accurate wind forecasts that ednhe benefits estimated here would be captured even with
become available intraday. Wind and demand response haggmmetric demand response.
other synergies shown in this study and in other analysesAlthough we focus on an indirect RTP mechanism, the
This includes reducing wind curtailment, due to transmissi results are likely applicable to other forms of demand respo
generator, or system operating constraints [21] and delige such as direct load control. Such schemes may be prefemble t
greater emissions benefits [12]. Demand response may gs$e-based mechanisms, since there may be less latency and
help system planners with long-run capacity planning. Amore predictability in the demand response. Our analysis is
issue raised by increasing the penetration of wind is thag§ based on the ERCOT system and further analysis is needed to
leave the system with insufficiemstalled capacity to serve determine the synergies between demand response and wind
the load, if real-time wind output and installed convendibnin other systems. Much of the value of demand response stems
generation capacity are both sufficiently low. Demand raspo from the generation mix in ERCOT. Since ERCOT has a mix
programs can encourage consumers to efficiently ratiom thef low-cost slow generators and higher-cost fast genesator
consumption and shift it away from such periods, improvingemand response is particularly valuable since it reduves t
asset use and system reliability. use of the flexible generators. Demand response may have less

These benefits presuppose that the SO dynamically reoptdue in mitigating wind-uncertainty costs in a hydroetest
mizes generator dispatch and prices in the rolling fashian t dominated system, such as Scandinavia, due to the abundance
we assume. Otherwise, the value of demand response mo&yow-cost flexible generation. Similarly, the recent dsse
be significantly less than our estimates suggest if prices an the cost of natural gas in the United States can reduce the
only set day- and hour-ahead, as is current practice in soxaue of demand response. This is because much of the flexible
markets. Similarly, the SO must update wind forecastsdlaya generation in ERCOT is natural gas-fired, and lower gas grice
to fully exploit the value of demand response. Converseligduce the cost of these resources relative to coal-firedla
our model assumes that generator commitments are not éyother area of research is whether these synergies apply to
namically adjusted in real-time, and that only fast-staritsi other variable and uncertain renewables, such as solateWhi
and those offering non-spinning reserves can be started dgmand response should have the same benefit of having loads
in the real-time dispatch process. This assumption ressmbollow solar supply more closely, solar and wind generation
the approach taken by Tuolgt al. [11] and Sioshansi [6]. patterns are markedly different from one another. Whereas
If other generators have sufficiently short start-up tintest t wind generation peaks overnight in some systems, solarspeak
they could be committed intraday, wind-uncertainty cosésym midday. Further analysis is needed to fully understand the

Fig. 5.  Wind available and used from 11:00 to 14:00 on 1 Janwath
immediate and lagged demand response.



interactions between these technologies. [21]
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