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Using Interim Recommitment to Reduce the
Operational-Cost Impact of Wind Uncertainty
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Abstract—Using wind-availability forecasts in day-ahead unit
commitment can require expensive real-time operational adjust-
ments. We examine the benefit of conducting interim recom-
mitment between day-ahead unit commitment and real-time
dispatch. Using a simple stylized example and a case study that is
based on ISO New England, we compare system-operation costs
with and without interim recommitment. We find an important
tradeoff—later recommitment provides better wind-availability
forecasts, but the system has less flexibility due to operating
constraints. Of the time windows that we examine, hour-20
recommitment provides the greatest operational-cost reduction.

Index Terms—Power-system operations, power-system eco-
nomics, unit commitment, economic dispatch, wind generation

I. INTRODUCTION

W IND generation increases supply variability and un-

certainty, which requires changing power-system op-

erations to ensure real-time balance between energy supply

and demand [1]. These adjustments give rise to what we term

‘operational wind-integration costs’. The literature assesses

and surveys the impacts of integrating wind generation into

power systems [2]–[5]. Western Wind and Solar Integration

Study (WWSIS) [6]–[8] examines integrating up to 35%

(on an energy basis) wind and solar generation into West-

ern Interconnection. WWSIS examines high renewable-energy

penetrations, their impacts on the fossil-fueled generating fleet,

and dynamic power-system performance.

The literature studies means of mitigating operational wind-

integration costs. One approach uses synergistic technologies,

e.g., demand response [9]–[12], energy storage [13]–[17], or

flexible electric-vehicle charging [18]–[22]. These technolo-

gies increase demand-side flexibility, reducing the need for

supply-side adjustments to maintain energy balance. Financial

instruments [23], [24] are another option to reduce operational

wind-integration costs.

Alternatively, operational wind-integration costs can be re-

duced by modifying power-system operations. Such adjust-

ment can be done using a stochastic, robust, or distributionally

robust approach to modeling unit commitment [25]–[30].

Such approaches account explicitly for uncertain real-time

wind availability in deciding unit commitment and dispatch.
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Another approach is to conduct rolling-horizon optimization,

which allows updated wind-availability information to be

incorporated into operational planning [31]. Tuohy et al. [32]

combine these two concepts, by incorporating rolling-horizon

decision-making into a stochastic-optimization framework.

Operational planning with explicit uncertainty characteri-

zation presents challenges. For one, market operators have

a short time window following gate closure to provide day-

ahead operating schedules and prices to market participants.

The capabilities of optimization software and computational

hardware are considerably greater than those available at the

advent of stochastic unit commitment [26], [28], [29], [33].

Nevertheless, the complexities of market models may make

market operators wary for the foreseeable future of adopting

such models. Another important challenge relates to price for-

mation. Stochastic unit-commitment models produce scenario-

dependent dispatch schedules and prices, which complicate

market settlement [34]. Of importance to a market operator,

stochastic prices are revenue-adequate in expectation only.

Thus, depending upon realized real-time wind availability, the

market operator may suffer a revenue deficit. Stochastic prices

also may raise incentive-compatibility issues.

As such, operational models with explicit uncertainty char-

acterization see limited use today by any market operator. In-

stead, most market operators rely on deterministic models [35],

[36].1 Given these realities, the aim of our work is to explore

the benefits of introducing recommitment between day-ahead

and real-time market operations. As such, our work expands

upon the concept that Tuohy et al. [31] study. However, we

extend the work of Tuohy et al. in a number of key ways. First,

we model and explore the tradeoff between generator flexibil-

ity and forecast quality. Conducting recommitment closer to

the trading day (e.g., during hour 23 as opposed to hour 18)

provides better wind-availability forecasts. However, operating

constraints may limit the ability of some generators to adjust

their operation if the recommitment is conducted closer to real

time. We capture such intertemporal dynamics by developing

a detailed operational model that is solved in a manner that

mimics the time sequence of real-world market operations.

A second distinction of our work is that we apply it to a

comprehensive case study that is based on ISO New England,

over a one-year study horizon. Tuohy et al. [31] examine

system operations over a three-week period. Thus, our work

examines the benefits of recommitment, considering diurnal

and seasonal load and wind-availability patterns.

Our case study shows reduced operational wind-integration

costs with recommitment compared to having only day-ahead

1http://www.caiso.com/Documents/1 CaliforniaISO MarketOverview.pdf
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and real-time market operations. Among the time windows that

we examine, hour-20 recommitment minimizes operational

wind-integration costs, suggesting that hour 20 balances wind-

forecast quality with operational flexibility of the system.

However, this result is specific to our case study.

Our work makes two contributions to the extant literature.

First, we propose a comprehensive approach to modeling

market operations that can be applied to studying the benefits

of introducing recommitment to reduce operational wind-

integration costs. The models that we use are not novel.

The novelty of our work is in implementing these models

in a realistic manner that mimics real-world power-system

operations. As such, our approach can be applied to other

systems with different resource mixes and load and weather

patterns. Second, our case study demonstrates the tradeoff

between forecast quality and generator flexibility. If market

operators intend to introduce recommitment, our modeling

approach and metrics could be employed to optimize the

timing of the processes.

The remainder of this paper is organized as follows. Sec-

tion II provides our model formulation. Section III details the

simulation approach. Section IV provides the data that underlie

and results of an illustrative example. Section V summarizes

data for our comprehensive case study. Sections VI and VII

provide case-study results and conclude, respectively.

II. UNIT-COMMITMENT MODEL

A. Model Nomenclature

1) Sets and Indices: We model system operations at hourly

time steps over the ordered set, T = {tst, tst + 1, . . . , ten}, of

hours in the optimization horizon and define t as the time

index. b is the index for buses, which are in the set, B.

We define sets, I and Ω, of non-wind and wind generators,

respectively, and let i be the generator index. We define I(b)
as the set of generators that are located at bus b. We define a

set, L, of transmission lines and let l be the transmission-line

index. Non-wind generators are modeled as having an ordered

set, K , of start-up types, which correspond to how long the

unit has been offline when it is started, and we let k denote

the start-up-type index.

2) Parameters and Functions: Non-wind generators are

assumed to have a three-part cost structure. cNi is the fixed

no-load cost ($/h) of having non-wind generator i online.

cVi (·) gives the output-dependent cost function ($) of non-wind

generator i. c̄Si,k is the cost ($/start-up) of non-wind generator i
incurring a type-k start-up. For all k ∈ K, k 6= |K|, non-

wind generator i incurs a type-k start-up if it has been offline

between c̄Ti,k and c̄Ti,k+1 − 1 hours when it is started up. If

non-wind generator i has been offline c̄Ti,|K| or more hours

when it is started up, then it incurs a type-|K| start-up. Wind

generators are costless to operate.

Non-wind generator i must produce between K−
i MW and

K+
i MW while it is online and must produce 0 MW while

it is offline. In addition, generator i’s output can decrease by

at most R−
i MW and increase by at most R+

i MW between

one hour and the next. Non-wind generator can provide up to

ρ̄Ni MW and ρ̄Si MW of non-spinning and spinning reserves,

respectively. In addition, non-wind generator must be offline

a minimum of τ−i hours after it is shutdown and must be

online a minimum of τ+i hours after it is started-up. Wind

generator i has a Zi-MW nameplate capacity and ζt,i is its

p.u. hour-t availability factor.

There is Dt,b MW of load at bus b during hour t. η is

the p.u. load-based reserve requirement and ηS is the p.u.

spinning-reserve requirement. Transmission line l has an Fl-

MW flow limit and Γl,b is the p.u. bus-b/transmission-line-l
shift factor. M is an arbitrarily large constant.

3) Variables: We represent the status of non-wind gen-

erators using four sets of binary variables. ut,i equals 1 if

non-wind generator i is online during hour t and equals 0
otherwise. st,i equals 1 if non-wind generator i is started-

up during hour t and equals 0 otherwise. In addition, rt,i,k
equals 1 if non-wind generator i incurs a type-k start-up

during hour t and equals 0 otherwise. ht,i equals 1 if non-

wind generator i is shutdown at time t and equals 0 otherwise.

Two additional sets of binary variables capture the operation

of non-wind generators vis-à-vis the provision of operating

reserves. γt,i equals 1 if non-wind generator i is the largest

hour-t contingency (which prevents it contributing towards

the hour-t reserve requirement) and equals 0 otherwise. µt,i

equals 0 if non-wind generator i cannot provide hour-t non-

spinning reserves due to a minimum-down-time constraint and

equals 1 otherwise.

qt,i gives generator i’s hour-t power output (MW) and

ρNt,i and ρSt,i represent hour-t non-spinning and spinning re-

serves (MW), respectively, that are provided by non-wind

generator i. Wind generators are disallowed from providing

operating reserves. φt,i gives the number of hours that non-

wind generator i is offline as of the beginning of hour t and

mt,i measures the number of hours beyond c̄T
i,|K| that non-

wind generator i is offline as of the beginning of hour t. cSt,i
represents the actual start-up cost ($) that is incurred by non-

wind generator i during hour t.
Each hour’s total reserve requirement is the sum of a p.u.

proportion of the hourly system-wide load and the system’s

largest contingency during the hour. These reserve require-

ments are based on current practice of California Indepen-

dent System Operator, which manages a system with relative

high renewable-energy penetrations. ηvt represents the hour-

t contingency-based reserve requirement (MW). ρ̃Nt and ρ̃St
represent hour-t non-spinning and spinning reserves (MW)

that are curtailed. d̃t,b measures curtailed hour-t load at

bus b (MW). wt,b measures hour-t net power (MW) that is

withdrawn from the transmission network into bus b.

B. Model Formulation

We model system operations using the mixed-integer linear

optimization problem:

min
∑

t∈T

{

∑

i∈I

[

cSt,i + cNi ut,i + cVi (qt,i)
]

(1)

+M ·

(

∑

b∈B

d̃t,b + ρ̃St + ρ̃Nt

)}
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s.t.
∑

i∈I(b)

qt,i + wt,b = Dt,b − d̃t,b; ∀t ∈ T, b ∈ B (2)

∑

b∈B

wt,b = 0; ∀t ∈ T (3)

− Fl ≤
∑

b∈B

Γl,bwt,b ≤ Fl; ∀t ∈ T, l ∈ L (4)

ηvt ≥ qt,i; ∀t ∈ T, i ∈ I (5)

ηvt ≤ qt,i + (1− γt,i)K
+
i ; ∀t ∈ T, i ∈ I (6)

∑

i∈I

γt,i = 1; ∀t ∈ T (7)

ρ̃St + ρ̃Nt +
∑

i∈I

(

ρSt,i + ρNt,i
)

(8)

≥ η
∑

b∈B

Dt,b + ηvt ; ∀t ∈ T

ρ̃St +
∑

i∈I

ρSt,i ≥ ηS ·

(

η
∑

b∈B

Dt,b + ηvt

)

; ∀t ∈ T (9)

0 ≤ qt,i ≤ ζt,iZi; ∀t ∈ T, i ∈ Ω (10)

K−
i ut,i ≤ qt,i; ∀t ∈ T, i ∈ I (11)

qt,i + ρSt,i ≤ K+
i ut,i; ∀t ∈ T, i ∈ I (12)

qt,i + ρSt,i + ρNt,i ≤ K+
i ; ∀t ∈ T, i ∈ I (13)

R−
i ≤ qt,i − qt−1,i; ∀t ∈ T, i ∈ I (14)

qt,i − qt−1,i + ρSt,i + ρNt,i ≤ R+
i ; ∀t ∈ T, i ∈ I (15)

0 ≤ ρSt,i ≤ ρ̄Si ut,i; ∀t ∈ T, i ∈ I (16)

0 ≤ ρNt,i ≤ ρ̄Ni µt,i; ∀t ∈ T, i ∈ I (17)

µt,i ≤ 1 + ut,i +
φt,i − τ−i

τ−i
; (18)

∀t ∈ T, i ∈ I : τ−i 6= 0

ρSt,i ≤ (1− γt,i)ρ̄
S
t,i; ∀t ∈ T, i ∈ I (19)

ρNt,i ≤ (1− γt,i)ρ̄
N
t,i; ∀t ∈ T, i ∈ I (20)

φt,i ≤ 1 + φt−1,i; ∀t ∈ T, i ∈ I (21)

φt,i ≥ 1 + φt−1,i −Mut,i; ∀t ∈ T, i ∈ I (22)

φt,i ≤M · (1− ut,i); ∀t ∈ T, i ∈ I (23)

φt−1,i ≤ mt,i +
∑

k∈K:k<|K|

c̄Ti,krt,i,k; ∀t ∈ T, i ∈ I (24)

mt,i ≤M · (rt,i,|K| − st,i + 1); ∀t ∈ T, i ∈ I (25)
∑

k∈K

rt,i,k = st,i; ∀t ∈ T, i ∈ I (26)

cSt,i =
∑

k∈K

c̄Si,krt,i,k; ∀t ∈ T, i ∈ I (27)

t
∑

y=t−τ
+

i

sy,i ≤ ut,i; ∀t ∈ T, i ∈ I (28)

t
∑

y=t−τ
−

i

hy,i ≤ 1− ut,i; ∀t ∈ T, i ∈ I (29)

st,i − ht,i = ut,i − ut−1,i; ∀t ∈ T, i ∈ I (30)

ht,i, st,i, ut,i, γt,i ∈ {0, 1}; ∀t ∈ T, i ∈ I (31)

rt,i,k ∈ {0, 1}; ∀t ∈ T, i ∈ I (32)

ρ̃St , ρ̃
N
t ≥ 0; ∀t ∈ T (33)

φt,i ≥ 0; ∀t ∈ T, i ∈ I. (34)

Objective function (1) minimizes system-operation costs.

We model non-wind generators as having three-part operating

costs—start-up, no-load, and output-dependent variable costs.

The variable costs, cVi (·), are convex piecewise-linear func-

tions of the qt,i’s, meaning that (1) is linear in the qt,i’s. The

final term in (1) penalizes load and reserve curtailments.
Constraints (2) and (3) ensure bus-level and system-wide

load balance, respectively. Constraints (4) enforce flow limits

on transmission lines.
Constraints (5)–(9) impose spinning- and non-spinning-

reserve requirements. Constraints (5) define the values of the

ηvt ’s. Constraints (6) and (7) determine the generator that is the

largest contingency during each hour, which is ensured by (19)

and (20) not to supply reserves. Constraints (8) ensure that

the total hourly reserve requirements are met. Constraints (9)

ensure that a p.u. portion of the total reserve requirement is

met by spinning reserves.
Constraints (10) ensure that each wind generator produces

between zero and its maximum operating point, which depends

on its hourly capacity factor (i.e., wind conditions). Con-

straints (11)–(13) impose minimum and maximum production

limits on non-wind generators. Constraints (12) and (13)

account for additional power that is provided if reserves are

called. Constraints (14) and (15) enforce ramping limits on

each non-wind generator, accounting for reserves in determin-

ing upward ramping.
Constraints (16)–(20) restrict the provision of reserves.

Constraints (16) and (17) ensure that no generator provides

more reserves than it is capable of providing. ut,i and µt,i are

included on the right-hand sides of (16) and (17), respectively,

to ensure that generators provide spinning reserves only while

they are online and that a generator does not provide non-

spinning reserves if it is unable to start-up due to a minimum-

down-time constraint. Constraints (18) determine the values

of the µt,i’s based on the number of hours that generators are

scheduled to be offline and their minimum down times.
Constraints (21)–(23) define the number of hours that each

non-wind generator is offline. If ut,i = 1, (23) forces φt,i

to equal zero. Otherwise, if ut,i = 0, (22) forces φt,i to

equal φt−1,i+1. Constraints (24)–(27) compute start-up costs.

Constraints (24) and (25) determine the type of start-up that

occurs during a given hour, based on the duration of time

that a given unit has been offline. Constraints (26) ensure that

exactly one start-up type is incurred each time that a unit is

started and (27) computes the corresponding cost.
Constraints (28) and (29) enforce minimum-up-time and

-down-time restrictions, respectively. Constraints (30) define

the values of st,i and ht,i based on intertemporal changes in

ut,i. Constraints (31) and (32) impose integrality restrictions

and (33) and (34) impose non-negativity.

III. MODEL IMPLEMENTATION

A. Overview

We use a rolling-horizon approach to model system oper-

ations one hour at a time. In doing so, we distinguish two
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Fig. 1. Illustration of rolling-horizon modeling approach, assuming hour-12
and -18 unit commitment. The thin and thick lines indicate, respectively, the
optimization horizon of and binding operational decisions that are made by
the operational model that is solved during each hour.

processes. The first, to which we refer as unit commitment,

determines the commitment schedule of non-wind generators

for the following day as well as system operations for the

current hour. The second, to which we refer as economic

dispatch, determines current-hour system operations.
Figure 1 illustrates the sequence of these processes, for

a case with unit commitment taking place during hours 12
and 18 during each day. The top of the figure labels the

sequence of hours between hour 12 of day d and hour 19
of day d+2. The sets of lines below the horizontal time axis

illustrate the optimization that takes place during each hour.

Each thin line represents the model horizon of the optimization

that is conducted during a given hour, whereas the thick lines

represent the binding decisions that are made.
The first set of horizontal lines shows that unit commitment

takes place during hour 12 of day d. This process determines

the real-time operation of the system during hour 12 of day d,

as well as day-(d + 1) unit commitments. These decisions

are illustrated by hours that are covered by the thick lines.

The thin line indicates that these decisions are made using a

48-hour optimization horizon through hour 12 of day d + 2.

These additional hours beyond day d+1 are included to ensure

that sufficient generating capacity is kept online at the end

of day d + 1 to serve the day-(d + 2) load [37]. Including

additional hours is especially important in operational planning

of generators with high start-up costs and long minimum-up,

minimum-down, and advanced-notification times.
Following the unit commitment that is conducted during

hour 12 of day d, the decision-making process rolls forward

sequentially through hours 13–17 of day d, conducting eco-

nomic dispatch. These economic-dispatch processes determine

system operation during each of these hours, using a rolling

48-hour optimization horizon. These economic-dispatch pro-

cesses are followed by unit commitment during hour 18 of

day d, which determines system operation during hour 18 of

day d and can adjust day-(d+ 1) unit-commitment decisions.

These hourly optimization processes continue sequentially to

simulate system operations over the full year.

B. Model Constraints

When modeling unit commitment, we impose the con-

straints:

ut,i ≥ ût,i; ∀t ∈ T, i ∈ I : t < max{t̄, tst + θi} (35)

st,i = ŝt,i; ∀t ∈ T, i ∈ I : t < tst + θi; (36)

where t̄ is the final hour of the current day, θi is non-wind

generator i’s minimum notification time (h), and ŝt,i and

ût,i are values of hour-t start-up and commitment decisions,

respectively, of non-wind generator i that have been fixed

during previous decision-making processes. Constraints (35)

restrict the system operator’s ability to shutdown units that

are committed to be online by a previous unit commitment.

Specifically, a unit that is scheduled to shutdown during the

current day or before its minimum-notification time can be

instructed instead to remain online as opposed to shutting

down. Constraints (36) allow a unit to be started-up during

the current or next day, so long as its minimum-notification

time is respected.

We impose (36) and:

ut,i ≥ ût,i; ∀t ∈ T, i ∈ I; (37)

on economic-dispatch processes. Constraints (37) are stricter

variants of (35)—the only adjustment to unit-commitment

instructions that (37) allow is starting-up units without the

option of shutting-down units.

C. Algorithm

Algorithm 1 provides pseudocode that summarizes the steps

of our rolling-horizon methodology. Line 1 takes as inputs

values of h0
i , q0i , u0

i , φ0
i , χi, ∀i ∈ I , which give the starting

state of each non-wind generator, and ∆, the number of days

that are being simulated. χi is the number of hours that

generator i has been online or offline (depending on whether

it is positive or negative, respectively) as of the beginning of

hour tst. Line 2 initializes the algorithm by setting κ, which

we use to compute total system-operation costs, equal to zero

and fixing t̄. Lines 3–32 are the main iterative loop, which

cycle through the days of the year and hours of each day,

which are indexed by y and h, respectively. Line 5 updates

the starting and ending hours of the optimization horizon of the

next decision-making process. Line 6 updates the starting state

of each non-wind generator, based on the most recent model

solution. Lines 7–13 impose minimum-up-time and -down-

time restrictions, which are carried from the most recent model

solution, on non-wind generators. Line 14 updates actual and

forecasted wind-availability.

The decision-making process that is conducted in Lines 15–

21 depends on whether h is an hour during which unit com-

mitment or economic dispatch is conducted. TU (cf. Line 15)

represents the set of hours during which unit commitment is

conducted. In the former case, the optimization is conducted

including (35)–(36) in the model and commitment decisions

are fixed (cf. Lines 17–18). In the latter case, the optimization

is conducted including (36)–(37) in the model and no com-

mitment decisions are fixed. Line 22 adds the operational cost

that is incurred during hour h of day y to κ. Lines 23–30

update the ending state of each non-wind generator after the

current decision-making process. This information is used in

Lines 6–13 of the following iteration.

ξ∗ in Lines 16 and 20 represents an optimal decision-

variable vector. Optimal decision-variable values are used in
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Algorithm 1 Rolling-Horizon Algorithm

1: input: h0
i , q0i , u0

i , φ0
i , χi, ∀i ∈ I; ∆

2: initialize: κ← 0, t̄← 23
3: for y ← 1 to ∆ do

4: for h← 0 to 23 do

5: tst ← h, ten ← h+ 47
6: htst−1,i ← h0

i , qtst−1,i ← q0i , utst−1,i ← u0
i ,

φtst−1,i ← φ0
i , ∀i ∈ I

7: for i ∈ I do

8: if χi < 0 then

9: fix ut,i = 0, ∀t ∈ T : t < τ−i + χi

10: else if χi > 0 then

11: fix ut,i = 1, ∀t ∈ T : t < τ+i − χi

12: end if

13: end for

14: update ζt,i, ∀t ∈ T, i ∈ Ω
15: if h ∈ TU then

16: ξ∗ ← argmin (1) s.t. (2)–(36)

17: ût,i ← u∗
t,i, ∀t ∈ T, i ∈ I : t > t̄

18: ŝt,i ← s∗t,i, ∀t ∈ T, i ∈ I : t > t̄
19: else

20: ξ∗ ← argmin (1) s.t. (2)–(34), (36)–(37)

21: end if

22: κ← κ+
∑

i∈I

[

cS∗
tst,i

+ cNi u∗
tst,i

+ cVi (q
∗
tst,i

)
]

23: h0
i ← h∗

tst,i
, q0i ← q∗tst,i

, u0
i ← u∗

tst,i
, φ0

i ← φ∗
tst,i

,

∀i ∈ I
24: for i ∈ I do

25: if u∗
tst,i

= 1 then

26: χi ← max{χi + 1, 1}
27: else

28: χi ← min{χi − 1,−1}
29: end if

30: end for

31: end for

32: end for

fixing unit-commitment decisions in Lines 17–18, computing

operational cost in Line 22, and updating the state of non-wind

generators in Lines 23–30.

IV. EXAMPLE

This section presents a stylized two-day example, which

demonstrates the tradeoffs in the timing of conducting recom-

mitment. Table I summarizes data for the eight dispatchable

generators that are modeled in the example. There is an

additional 1000-MW wind plant. Generators 1–4 are relatively

flexible, in that they require no advanced notification to start-

up, can ramp over their full operating range within a single

hour, and have no minimum-up-time requirements. These units

are relatively costly to operate. Generators 5–8 are relatively

inflexible, requiring seven hours of advanced notification time

to start-up, have minimum up-times of two or four hours, and

are able to ramp over one quarter of their operating range

within a single hour. These units are relatively inexpensive to

operate. Constraint parameters that are not listed in Table I

are neglected in the example, as are reserve and transmission-

network constraints.

TABLE I
DISPATCHABLE-GENERATOR DATA FOR EXAMPLE FROM SECTION IV

i θi K
+

i τ
+

i R
+

i cVi cNi c̄Si,1

1 0 100 1 100 1000 1000 10000

2 0 100 1 100 1000 1000 10000

3 0 100 1 100 1000 1000 10000

4 0 100 1 100 1000 1000 10000

5 7 100 4 25 100 100 1000

6 7 100 4 25 100 100 1000

7 7 100 4 25 100 100 1000

8 7 100 2 25 100 100 1000

Fig. 2. Modeled load and actual wind availability during the second day of the
example from Section IV and day-ahead wind-availability forecasts produced
during hours 12, 18, 20, and 23 of the first day.

Figure 2 summarizes the assumed load and actual wind

availability during the second day of the example, as well as

wind-availability forecasts that are produced during hours 12,

18, 20, and 23 of the first day. The forecasts overestimate wind

availability, with the hour-23 forecast being the most accurate.

Table II summarizes optimized generator commitments, as

of hour 12 of the first day, for the first 14 hours of the

second day. Because they are relatively costly, units 1–4 are

not committed and the system relies upon units 5–8 to sup-

plement forecasted wind production. The hour-12 day-ahead

wind-availability forecast, which is used to determine the

commitments that are summarized in Table II, overestimates

wind availability. As such, additional units must be committed,

either day-ahead (if recommitment is conducted) or in real

time.

Table III summarizes the impact of recommitment. The first

row of Table III reports the total number of the first 14 hours

of the second day during which each unit is committed without

recommitment (i.e., the sums of the values that are reported

in Table II). The remaining rows of Table III show that

if the system is recommitted, more generators (especially

relatively low-cost units 5–8) are scheduled to operate during

the second day. These changed commitments arise from the

improved forecasts that are available later during the day (cf.

Fig. 2). Although the hour-23 wind-availability forecast is

the most accurate, hour-23 recommitment results in units 1–4
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TABLE II
GENERATOR COMMITMENTS, AS OF HOUR 12 OF THE FIRST DAY,
DURING FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM

SECTION IV

Hour

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 1 1 1 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 1 1 1 1 1 1 1 1

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 1 1 0 0 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE III
NUMBER OF THE FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM

SECTION IV THAT EACH GENERATOR IS COMMITTED DAY-AHEAD WITH

UNIT COMMITMENT CONDUCTED AT DIFFERENT TIMES

i

Unit-Commitment Hours 1 2 3 4 5 6 7 8

12 0 0 0 0 3 8 0 11

12 and 18 0 0 0 0 5 10 0 14

12 and 20 0 0 0 0 8 10 10 14

12 and 23 1 0 2 4 8 8 8 14

being committed day-ahead. These units must be committed

because units 5–8 cannot be committed during the early hours

of the second day without violating their notification-time

constraints.

Table IV summarizes the total number of the first 14 hours

of the second day that each unit actually is committed, with

different recommitment times. Differences between the values

that are reported in Tables III and IV reflect some units

having to be committed in real time to correct for errors

in wind-availability forecasts. Not conducting a day-ahead

recommitment results in the greatest use of the relatively high-

cost units 1–4 for a total of 19 hours. Conversely, an hour-20
recommitment requires the use of these costly units for only

a total of eight hours. Conducting an hour-23 recommitment

requires the use of the relatively costly units for a total of

12 hours, because some less-costly units cannot be committed

without violating their notification-time constraints.

Table V summarizes the impacts of these different commit-

TABLE IV
ACTUAL NUMBER OF THE FIRST 14 HOURS OF SECOND DAY OF

EXAMPLE FROM SECTION IV THAT EACH GENERATOR IS COMMITTED

WITH UNIT COMMITMENT CONDUCTED AT DIFFERENT TIMES

i

Unit-Commitment Hours 1 2 3 4 5 6 7 8

12 4 3 7 5 14 8 0 14

12 and 18 0 4 10 1 14 10 0 14

12 and 20 4 0 1 3 12 10 10 14

12 and 23 3 1 4 4 12 8 8 14

TABLE V
SCHEDULED AND ACTUAL DISPATCH OF GENERATORS (MWH) OVER THE

FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM SECTION IV WITH

UNIT COMMITMENT CONDUCTED AT DIFFERENT TIMES

Unit-Commitment
Hours Units 1–4 Units 5–8 Wind Generator

12
Scheduled 0 899 9411

Actual 1200 3015 6095

12 and 18
Scheduled 0 1356 8954

Actual 968 3247 6095

12 and 20
Scheduled 0 2746 7564

Actual 372 3843 6095

12 and 23
Scheduled 486 3090 6734

Actual 722 3493 6095

ments on the dispatch of the generating fleet. The first two

rows show that when the hour-12 day-ahead unit commitment

is conducted, 9411 MWh of wind is forecasted to be available

during the first 14 hours of the second day. The remaining

899 MWh of load is scheduled to be served using units 5–8.

However, only 6095 MWh of wind actually is available, mean-

ing that the 3316-MWh deficit must be covered by the balance

of the generating fleet. Units 5–8 are able to increase their

production 2116 MWh relative to their day-ahead schedules.

However, 1200 MWh of load must be covered by units 1–4.

The remaining rows of Table V show that conducting

recommitment later during the day allows more generating

capacity from units 5–8 to be scheduled, because of the

improved wind-availability forecasts. However, in all cases,

some energy is produced in real time by units 1–4, because

there are errors in the wind-availability forecasts that must

be balanced. Moreover, more production from units 1–4 must

be scheduled when conducting an hour-23 recommitment,

because notification-time constraints do not allow changing

the commitments of units 5–8 during the early hours of the

second day.

Table VI summarizes the actual cost of operating the system

during the second day of the example, with different unit-

commitment times. The cost trends follow the results that are

summarized in Tables II–V. Recommitting the system later

in the day is beneficial. Without recommitment, a substantial

portion of wind-supply deficits must be served using units 1–

4. Recommitment allows lower-cost inflexible units to be

committed, once an updated forecast indicates less wind being

available. Although the hour-23 wind-availability forecast is

the most accurate, notification-time constraints limit adjust-

ments to the commitments of units 5–8. This result shows a

tradeoff between forecast accuracy and generator flexibility in

determining when to conduct recommitment.

V. CASE-STUDY DATA AND BENCHMARKING

A. Case-Study Data

Our case study is based on ISO New England, from which

conventional-generator and transmission-network data are ob-

tained directly. Previous works [38]–[41] detail these datasets.

We model a total of 276 non-wind generators, which represent
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TABLE VI
ACTUAL OPERATION COST ($) DURING SECOND DAY OF EXAMPLE FROM

SECTION IV WITH UNIT COMMITMENT CONDUCTED AT DIFFERENT

TIMES

Unit-Commitment Hour Operation Cost

12 249 490

12 and 18 204 140

12 and 20 146 650

12 and 23 193 860

31.44 GW of nameplate capacity. Generators are modeled as

having three start-up types—hot, intermediate, and cold. We

assume that η = 0.07 and ηS = 0.5.

Hourly historical year-2009 load data for the eight load

zones in ISO New England are obtained from a public

repository.2 The system-wide load ranges between 8.90 GW

and 24.73 GW and averages 14.26 GW across the year.

We model cases with two wind penetrations—4.32 GW and

6.48 GW of nameplate capacity, which are 17.0% and 25.5%,

respectively, of peak load. These cases correspond to wind

serving 13.0% and 19.5%, respectively, of annual load (absent

wind curtailment). Wind capacities (i.e., the value of Zi, ∀i ∈
Ω) for the two wind-penetration levels are apportioned to the

eight load zones in proportion to their co-incident peak loads.

Actual hourly wind availability and forecasts of such (i.e.,

the values of ζt,i, ∀t ∈ T, i ∈ Ω) are modeled using data from

Wind Integration National Dataset (WIND) Toolkit [42]–[44].

WIND Toolkit includes modeled actual wind availability and

forecasts of such for wind turbines with 100-m hub heights

at 126 000 sites across the continental U.S. for the years

2007–2013. We use these data for the year 2009 to capture

correlations between load and weather conditions.

We employ a two-step process to model ζt,i, ∀t ∈ T, i ∈
Ω. First, each set of modeled actual and forecasted wind-

availability data are averaged across each of the eight load

zones to determine a zonal-average capacity factor. We do

this by computing the simple average of the capacity factors

that are reported in WIND Toolkit for sites that are in each

of the eight zones. Next, the modeled actual and forecasted

wind-availability data are used to determine the values of

ζt,i, ∀t ∈ T, i ∈ Ω. For a given instance of model (1)–(34),

the values of ζtst,i, ∀i ∈ Ω are set equal to the corresponding

zonal-average modeled actual capacity factor for the hour. For

the remaining hours, t > tst, we use zonal-average forecasted

capacity factors. WIND Toolkit provides 1-, 4-, 6-, and 24-

hour-ahead forecasts of wind availability. We use weighted-

averages of these forecasted capacity factors to set values of

ζt,i, ∀t > tst, i ∈ Ω. For instance, the value of ζtst+4,i, ∀i ∈ Ω
is set equal to the 4-hour-ahead forecasted wind availability for

the corresponding hour, whereas the value of ζtst+7,i, ∀i ∈ Ω
is set equal to the weighted average of the 6- and 24-hour-

ahead forecasted wind availabilities for the corresponding

hour, with weights of 17/18 and 1/18, respectively. Values

of ζt,i, ∀t ≥ tst +24, i ∈ Ω are set equal to the 24-hour-ahead

forecast.

2https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/

TABLE VII
SUM OF SQUARED ERRORS BETWEEN MODELED ACTUAL AND

UNSHIFTED AND SHIFTED FORECASTED WIND AVAILABILITIES AND

TIME SHIFT USED FOR CASE STUDY FROM SECTION VI

Forecast Horizon Sum of Squared Errors Time Shift
(Hours Ahead) Unshifted Shifted (h)

1 330 25 2

4 321 282 2

6 381 379 1

24 405 405 0

One peculiarity of WIND Toolkit, which is summarized

in Table VII, is that the forecasts do not become more

accurate as they are produced closer to real-time. The first

two columns of Table VII show that 1-hour-ahead forecasts

have higher forecast errors than 4-hour-ahead forecasts do.

Following consultation with members of the WIND Toolkit

team at National Renewable Energy Laboratory, we follow

their suggestion and correct the error by time-shifting each set

of wind-availability forecasts to minimize its sum of squared

errors with the modeled actual wind availabilities. The final

two columns of Table VII summarize the optimal time shifts

of the forecasts and the resulting sum of squared errors.

B. Benchmarking and Cases Examined

We focus on the impacts of recommitment on operational

wind-integration costs. Thus, we model wind availability as

the sole source of uncertainty. This uncertainty is reflected by

the values of ζt,i, ∀t ∈ T, i ∈ Ω being updated iteratively

as operational decisions are made (cf. Line 14 of Algo-

rithm 1). We contrast system-operation costs with uncertain

ζt,i, ∀t ∈ T, i ∈ Ω to a perfect-foresight benchmark, in which

Algorithm 1 is used but ζt,i is equal to its modeled actual

value ∀t ∈ T, i ∈ Ω in each unit-commitment and economic-

dispatch model. Comparing costs with and without wind

uncertainty is a standard approach to measuring operational

wind-integration costs [9].
In addition to considering cases with two wind-penetration

levels (4.32 GW and 6.48 GW), we consider cases with base

and low levels of generator flexibility. Base flexibility uses the

values of θi, ∀i ∈ I that are reported in the ISO New England

dataset. Low flexibility uses doubled values of θi, ∀i ∈ I .
We contrast a case in which unit commitment is conducted

during noon of each day to cases in which unit commitment

is conducted during noon and during some combination of

hours 18, 20, and 23, giving seven combinations total.

VI. CASE-STUDY RESULTS

Figure 3 summarizes modeled actual system-wide wind

availability during the first 12 hours of 10 January, 2009
and three different day-ahead wind-availability forecasts. The

figure assumes the base case of 4.32 GW of wind capacity.

Figure 3 shows that the forecasts overestimate wind availabil-

ity for the most part. The forecast that is produced at noon has

the greatest overall errors—overestimating wind availability

during the first hour of 10 January, 2009 by over 400%. The

forecast that is produced during hour 23 is the most accurate.

https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/
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Fig. 3. Modeled actual system-wide wind availability during the first 12 hours
of 10 January, 2009 and corresponding day-ahead forecasts produced during
hours 12, 20, and 23 of 9 January, 2009 assuming 4.32 GW of wind for case
study from Section VI.

TABLE VIII
TOTAL ($ MILLION) AND P.U. ($/MWH) SYSTEM-OPERATION COSTS

DURING 10 JANUARY, 2009 WITH UNIT COMMITMENT CONDUCTED AT

DIFFERENT TIMES ASSUMING 4.32 GW OF WIND AND BASE GENERATOR

FLEXIBILITY FOR CASE STUDY FROM SECTION VI

Unit-Commitment Hours 12 12 and 20 12 and 23

Total Cost 7.06 6.81 6.88

Per-MWh Cost 190 183 185

System operations differ, depending on whether only a noon

day-ahead unit commitment is conducted or recommitment is

conducted also. With only noon day-ahead unit commitment,

assuming base generator flexibility, the energy-supply shortfall

that arises in real time from actual wind production being

lower than the noon forecast is addressed by committing

32 fast-start generators in real time (beginning during hour 0
of 10 January, 2009), which operate for a total of 80 hours

between them. These fast-start units have high operating

costs, which increases operating cost for the day. Table VIII

summarizes the total and per-MWh cost of operating the

system during 10 January, 2009, using only noon day-ahead

unit commitment or noon day-ahead unit commitment that is

followed by either hour-20 or -23 recommitment.

Conducting hour-20 or -23 recommitment reduces the total

number of hours that the 32 fast-start units are operated to 70
and 68 hours, respectively. These fast-start units are replaced

by lower-cost units that require advanced notification to start-

up. Table VIII shows that reduced use of fast-start units results

in up to 4% cost decreases in these cases relative to conducting

only noon day-ahead unit commitment.

We illustrate the high cost of fast-start units by computing:

c̃Vi =
cVi (K

+
i )

K+
i

; ∀i ∈ I;

which is the average output-dependent cost of each unit, if it

TABLE IX
CAPACITY-WEIGHTED AVERAGE OF c̃Vi FOR θi-BASED GROUPINGS OF

GENERATORS ASSUMING BASE GENERATOR FLEXIBILITY FOR CASE

STUDY FROM SECTION VI

θi ≤ 4 5–8 9–12 ≥ 13

Capacity-Weighted Average of c̃Vi 324 91 64 25

TABLE X
COST AND FLEXIBILITY DATA FOR THREE UNITS FROM CASE STUDY

FROM SECTION VI THAT ARE OPERATED DIFFERENTLY BETWEEN

HOUR-20 AND -23 RECOMMITMENT ASSUMING BASE GENERATOR

FLEXIBILITY

i 46 191 256

θi 8 0 2

c̃Vi 52 263 186

operates at its nameplate capacity. Table IX summarizes the

capacity-weighted averages of the values of c̃Vi corresponding

to generators that are grouped based on θi. Relatively flexible

generators, with advanced-notification times of four hours or

less are, on average, up to 13 times as costly to operate, relative

to generators with higher advanced-notification times.

If conducting only a noon day-ahead unit commitment, the

system relies heavily on units with advanced-notification times

of four hours or less to meet the wind-availability deficit.

This reliance stems from the inability to commit lower-cost

units with longer advanced-notification times. Conversely, with

hour-20 recommitment these most expensive units can be

substituted to some extent by lower-cost units that have higher

advanced-notification times.

Figure 3 shows that the wind-availability forecast that is

produced during hour 23 is more accurate than that which

is produced during hour 20. However, hour-20 recommitment

reduces operating cost relative to hour-23 recommitment. This

cost savings stems from the hour-23 recommitment being ‘too

late’ in the sense that although the hour-23 forecast is more

accurate, low-cost units cannot be committed to operate during

the early hours of 10 January, 2009, due to the advanced-

notification times. This finding demonstrates a fundamental

tradeoff in determining when to conduct recommitment—later

unit commitment has access to more accurate wind-availability

forecasts, but a more limited set of generators that can be

committed, given their flexibility constraints.

To illustrate this tradeoff, we focus on the operation during

the first 12 hours of 10 January, 2009 of three units, the

cost and flexibility characteristics of which are summarized

in Table X. The three units display the tradeoff between

flexibility and cost that is summarized in Table IX. With hour-

20 recommitment, generator 46, which is the lowest-cost of

the three, is operated during hours 6–12 and generator 256
is operated during hours 8–12. With hour-23 recommitment,

generator 46 cannot be started-up until hour 8 (due to its

notification-time requirement). Thus, generator 256 must be

operated during hours 6–12 and generator 191 must be oper-

ated during hours 6–7.

Tables XI and XII summarize operational wind-uncertainty
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TABLE XI
OPERATIONAL WIND-INTEGRATION COSTS FOR CASE STUDY FROM

SECTION VI ($/MWH OF WIND PRODUCED)

Wind Penetration Low High Low High
Flexibility Base Base High High

U
n
it

-C
o
m

m
it

m
en

t
H

o
u
rs

12 1.49 3.18 1.49 3.18

12 and 18 1.41 3.05 1.47 3.13

12 and 20 1.33 2.83 1.34 2.89

12 and 23 1.34 3.02 1.39 3.07

12, 18, and 20 1.24 2.69 1.31 2.79

12, 18, and 23 1.31 2.76 1.36 2.93

12, 20, and 23 1.27 2.72 1.33 2.86

12, 18, 20, and 23 1.22 2.62 1.30 2.75

TABLE XII
PERCENTAGE REDUCTION IN OPERATIONAL WIND-INTEGRATION COSTS

RELATIVE TO NOON DAY-AHEAD UNIT COMMITMENT ONLY FOR CASE

STUDY FROM SECTION VI

Wind Penetration Low High Low High
Flexibility Base Base Low Low

U
n
it

-C
o
m

m
it

m
en

t
H

o
u
rs

12 and 18 5 4 1 3

12 and 20 10 11 10 9

12 and 23 10 5 6 3

12, 18, and 20 16 16 12 12

12, 18, and 23 12 13 8 8

12, 20, and 23 15 14 11 11

12, 18, 20, and 23 18 18 13 14

costs for the four different cases that we examine with

different wind-penetration and generator-flexibility levels and

day-ahead unit commitment conducted during different hours.

Table XI reports wind-uncertainty costs that are normalized by

total wind production when using wind-availability forecasts.

Table XII reports the percentage decrease in operational wind-

uncertainty costs relative to conducting a noon day-ahead unit

commitment only. The tables show two results, which our

detailed analysis of 10 January, 2009 suggests.

First, if conducting a single recommitment, an hour-20
recommitment yields the greatest cost reductions. This result

keeps with our finding a tradeoff between forecast accuracy

and generator flexibility. Conducting three recommitments

yields further cost reduction and two recommitments yields

cost reductions in most cases. With low generator flexibility,

hour-20 recommitment yields slightly lower costs compared

to hours-18 or -23 recommitments. This result stems from the

combined impact of relatively (to hour-20) inaccurate hour-

18 wind-availability forecasts and the system having limited

operational flexibility during hour 23.

Tables XI and XII show that increasing wind penetration

or decreasing generator flexibility increases operational wind-

integration costs. Higher wind penetrations mean that fore-

cast errors yield larger absolute supply/demand imbalances.

Increasing the wind penetration by 50% more than doubles op-

erational wind-integration costs. Increasing the penetration of

wind further should lead to further cost escalations. Less flex-

ible dispatchable generators require that the system operator

provides additional notification to commit inflexible low-cost

units. Recommitment gives reduced cost savings with less-

flexible generators, because there are fewer options to com-

mit low-cost generators. With doubled advanced-notification

times, hour-20 recommitment gives the greatest cost savings.

Should the generation fleet become sufficiently inflexible,

hour-18 recommitment may provide a better tradeoff between

forecast accuracy and generator flexibility than hour-20 recom-

mitment does. Algorithm 1 is computationally costly, because

system operations are re-optimized hourly across the full year.

Each model in Lines 16 and 20 of Algorithm 1 has over

720 097 variables and 600 691 constraints, respectively, and

a median solution time of 25.7 s of wall-clock time. Thus, we

do not examine cases with higher advanced-notification times

than the low-flexibility case in which ∀i ∈ I, θi is doubled

relative to the ISO New England data.

VII. CONCLUSIONS

This paper examines the benefits of recommitment in reduc-

ing operational wind-uncertainty costs. To do so, we develop

a detailed operational model that mimics many of the costs

and constraints for which system operators account in their

operational models. Nonetheless, our model is not an exact

replica of that used by any market operator. We develop a

rolling-horizon algorithm to simulate hourly system operations

that consist of unit commitment and economic dispatch. The

key distinction between these processes is the extent to which

the system operator can adjust commitment decisions relative

to previous decisions and which decisions are binding.

We demonstrate our model and draw important conclusions

regarding the use of recommitment with a comprehensive case

study, which is based on ISO New England, and a stylized

example. Both the example and case study demonstrate the

cost impacts of wind uncertainty, which are increasing in

wind penetration and generator inflexibility. We demonstrate

also the benefits of introducing recommitment, which raises

a fundamental tradeoff between forecast accuracy and oper-

ational flexibility. For our example and case study, hour-20
recommitment offers the most cost reductions. Other systems

may benefit from recommitment being conducted at different

times and the methodology that we develop could be used to

examine the tradeoffs therein.

We adopt an hourly timescale for all of our modeling.

Hourly timescales are used in nearly all wholesale electricity

markets for day-ahead and reliability unit commitment. With

few exceptions, sub-hourly timescales are used for economic-

dispatch modeling. We use an hourly timescale for our

economic-dispatch modeling, due to the computational cost

that sub-hourly timescales would entail. Modeling economic

dispatch at sub-hourly timescales could reveal more load and

wind-availability variability (compared to hourly timescales).

However, our fundamental results regarding the tradeoffs in

introducing and the timing of recommitment likely would

continue to hold.

Our model does not allow wind generators to provide

reserves, e.g., if their output is curtailed. An area of future

study could examine the benefits of using curtailed wind

in this manner. Another area of future work would be to

compare the benefits of recommitment to a modeling paradigm
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that represents uncertainty explicitly, e.g., stochastic, robust,

chance-constrained, or distributionally robust optimization. We

do not consider explicit uncertainty representation, because

no wholesale market employs such a model today [35], [36].

Thus, this assumption is keeping with our goal of under-

standing how current deterministic market models could be

improved to accommodate wind uncertainty.
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