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Abstract Weather forecasting is crucial to both the demand and supply sides
of electricity systems. Temperature has a great effect on the demand side.
Moreover, solar and wind are very promising renewable energy sources and are,
thus, important on the supply side. In this paper, a large vector autoregression
(VAR) model is built to forecast three important weather variables for 61 cities
around the United States. The three variables at all locations are modeled as
response variables. Lag terms are used to capture the relationship between
observations in adjacent periods and daily and annual seasonality are modeled
to consider the correlation between the same periods in adjacent days and
years. We estimate the VAR model with 16 years of hourly historical data and
use two additional years of data for out-of-sample validation. Forecasts of up
to six-hours-ahead are generated with good forecasting performance based on
mean absolute error, root mean square error, relative root mean square error,
and skill scores. Our VAR model gives forecasts with skill scores that are
more than double the skill scores of other forecasting models in the literature.
Our model also provides forecasts that outperform persistence forecasts by
between 6% and 80% in terms of mean absolute error. Our results show that the
proposed time series approach is appropriate for very short-term forecasting
of hourly solar radiation, temperature, and wind speed.
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1 Introduction

Electricity supply and demand are greatly influenced by weather conditions.
Temperature, wind speed, and solar radiation are among the most influential
factors. Temperature has a great effect on energy use by individuals and, thus,
on the demand side of the electricity system. Heating and cooling loads depend
largely on ambient temperature. Wind and solar generation are increasingly
important as renewable energy gains in popularity. Wind power is growing at
a rate of 30% annually, with a worldwide installed capacity of 283 GW at the
end of 2012. The installed capacity of solar photovoltaic (PV) grew by 41% in
2012, reaching 100 GW.

However, the limited predictability of wind speed and solar radiation raises
operational challenges for power systems as the penetrations of these technolo-
gies increase. Accurate very short-term forecasting (i.e., up to 12-hours-ahead)
of the two resources could improve operational efficiency of power systems. Al-
though it is not the focus of this work, longer-term weather forecasting is also
beneficial for power system planning. For example, Maleki et al. [1] employ
Monte Carlo simulation of wind and solar conditions to optimally design a
grid-independent hybrid renewable energy system.

There are many works dealing with weather forecasting, and Widén et

al. [2] provide a comprehensive survey of forecasting techniques in the liter-
ature. Some of these works forecast temperature, frost, or related financial
derivatives. Others forecast solar radiation, cloud motion, or solar production.
Others still forecast wind speed and wind production. Here we review some of
the literature that forecast temperature, solar radiation, or wind speed.

Most works focusing on temperature forecasting analyze financial weather
derivatives as the primary application. Besides atmospheric methods, models
attempting to capture these dynamics can be divided into two categories:
stochastic approaches (Monte Carlo simulation) and time-series models.

There are numerous examples of the stochastic approaches [3–5]. Alaton et

al. [3] suggest a stochastic process that describes the evolution of temperature
for the pricing of weather derivatives. Benth and S̆altytė-Benth [4] model daily
average temperature with a mean-reverting Ornstein-Uhlenbeck process. Tay-
lor and Buizza [5] investigate temperature ensemble predictions and compare
them with time-series models.

There are also examples of time-series models [6, 7]. Campbell and Diebold
[6] forecast daily average temperature using a nonstructural time-series ap-
proach. S̆altytė-Benth et al. [7] propose a stochastic model, which includes
trend, seasonality, and mean reversion. Oetomo and Stevenson [8] review dif-
ferent temperature-forecasting models, including those relying on autoregres-
sive moving average (ARMA) processes and Monte Carlo simulation.

Numerical weather prediction (NWP) models are a popular approach for
solar radiation forecasting, and are used to generate forecasts up to several
days ahead. Most short-term solar-radiation forecasts range from 30 minutes
to six hours ahead and rely on satellite-derived cloud-motion forecasts [9–
12]. Akarslan et al. [13] incorporate temperature, extraterrestrial irradiance,
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and derivatives of these data with a multi-dimensional linear prediction filter
to improve solar forecasts. Alonso-Montesinos and Batlles [14] forecast solar
radiation up to three hours ahead under a variety of atmospheric conditions,
because such conditions have a major influence on solar forecasting. Perez et

al. [15] use sky cover predictions as inputs when forecasting solar radiation.
Heinemann et al. [11] and Remund et al. [16] note that comparing the forecasts
of different methods is useful in providing comparative statistics to validate a
forecasting model.

Wind speeds are typically forecasted several minutes to several days ahead,
with statistical methods being extensively applied. For example, Erdem and
Shi [17] use ARMA-based approaches. Liu et al. [18] propose a novel time-
series technique that is based on the Taylor Kriging model. Other works
combine multiple numerical techniques to produce ensemble wind forecasts
[19–21]. Wang and Xiong [22] develop a hybrid forecasting method based on
an ARMA process, outlier detection, and fuzzy time series to forecast the
daily wind speed in Taiwan. Jiang et al. [21] propose a hybrid approach that
employs a Boosting algorithm to improve the forecasting performance of a tra-
ditional ARMA model. They demonstrate the effectiveness of this technique
using wind-production data from the east coast of Jiangsu Province, China.
There are also some artificial intelligence-based models in the literature—Li
and Shi [23] apply artificial neural networks (ANN) and Hong et al. [24] fore-
cast wind power and wind speed up to one-hour ahead with a multi-layer
feed-forward neural network (MFNN). Maleki et al. [25] take an ANN-based
approach to forecasting solar radiation, wind speed, and temperature in opti-
mizing the operations of a hybrid solar- and wind-powered water-desalination
system. Giebel et al. [26] provide a detailed review of the techniques that are
available for wind-speed forecasting.

In this paper, we use time-series methods to model and generate hourly
temperature, wind-speed, and solar-radiation forecasts at 61 locations in the
United States. The three weather variables at the 61 locations are response
variables in a vector autoregression (VAR) model. In addition to estimating
the model, we also conduct out-of-sample validation to test the quality of
the forecasts that are produced. We compare our forecasting errors to those
that are reported for other techniques in the literature, including persistence
forecasts, showing that our method performs as well or better.

In light of the existing literature on weather forecasting, our work makes
three contributions. First, we employ a VAR model, which allows correlations
between the three different weather variables to be captured. This is important,
because there are likely important correlations between temperature, wind
speed, and solar radiation. Second, the autoregressive structure of the VAR
model allows temporal autocorrelations, which are important, to be captured.
Finally, the structure of the VAR model also allows time-lagged correlations
between different locations to be captured. For instance, weather conditions in
one location at time t may be correlated with weather conditions at another
location at time t′ 6= t. These three features or our proposed VAR model
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leads to its outperforming a number of other forecasting techniques that are
reported in the literature.

The remainder of this paper is organized as follows. In Section 2 we provide
descriptive statistics for the three weather variables. In Section 3 the model
and estimation methods are introduced. For a large model of this form, we try
to find a proper number of residual terms to include to ensure good forecasting
performance while maintaining reasonable model size and degrees of freedom.
Thirty lags for each time series are utilized and each equation is estimated sep-
arately with either ordinary or weighted least squares. In Section 4 we examine
the forecasting performance up to six-hours ahead and provide comparative
statistics with other models. Conclusions and suggestions for future research
are provided in Section 5.

2 Weather Data

We use data from the National Solar Radiation Database (NSRDB), which is
produced by the National Renewable Energy Laboratory, National Climatic
Data Center, and other partners. The NSRDB contains ground-based solar
and meteorological data for 1454 sites around the United States. Nearly all
of the solar data are modeled while meteorological elements, including wind
speed and dry bulb temperature, are observed values. The hourly solar data are
modeled global horizontal irradiance (GHI), which is the sum of modeled direct
and diffuse solar radiation received on a horizontal surface, during the 60-
minute period ending at the timestamp. Much of the data come from a model
developed by State University of New York at Albany that uses Geostationary
Operational Environmental Satellite imagery to estimate solar radiation. The
dry-bulb temperature and wind speed are instantaneous values observed at or
near each hour following meteorological measurement practice. Wind speeds
are measured at 2-m heights. Wilcox [27] provides further details regarding
the NSRDB.

We model hourly wind speed, global solar radiation, and dry bulb temper-
ature at the 61 locations that are shown in Figure 1 in one single VAR model.
The 61 locations are chosen to provide roughly even coverage of the conti-
nental United States. Moreover, locations that are close to population centers
and areas with good solar and wind resource availability are also included in
the dataset. Data covering the years 1990 to 2008 are used, because these
data are complete and do not require any modification. Among the 18 years
of hourly data, 16 years are used for model estimation and two years are used
for out-of-sample model validation.

To get an overall feel for the data, Tables 1 through 3 summarize some sim-
ple descriptive statistics of the wind speed, solar radiation, and temperature
data, respectively, at six locations. Temperature data are reported in degrees
Kelvin in Table 3 and throughout this paper. This is because we use relative
root mean square error, which is not defined for average observations equal to
zero, as a metric for model validation in Section 4.
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Fig. 1: 61 Locations in the United States that are Modeled

Table 1: Descriptive statistics of wind speed data [m/s]

Statistics
Location Maximum Median Mean Std. Dev.

Bismarck, ND 22.70 3.60 4.26 2.77
Las Vegas, NM 28.80 4.30 4.74 2.96
Dallas, TX 19.60 4.10 4.59 2.50
Denver, CO 26.80 3.60 3.85 2.25
Chicago, IL 30.08 4.10 4.38 2.31
New York, NY 23.20 4.60 5.05 2.50

Table 2: Descriptive statistics of global solar radiation data [Wh/m2]

Location Maximum Median Mean Std. Dev.

Bismarck, ND 975.00 6.00 158.92 242.14
Las Vegas, NM 1073.00 10.00 212.45 296.51
Dallas, TX 1047.00 7.00 194.97 279.82
Denver, CO 1036.00 8.00 181.05 262.89
Chicago, IL 998.00 5.00 155.47 237.70
New York, NY 996.00 6.00 160.79 242.82

Figures 2 through 4 show wind speed, temperature, and solar radiation,
respectively, in Las Vegas, NM (not to be confused with the popular gambling
destination) from 2006 to 2008. These figures clearly show seasonal patterns
for the three weather variables.
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Table 3: Descriptive statistics of dry bulb temperature data [K]

Location Minimum Maximum Median Mean Std. Dev.

Bismarck, ND 233.15 317.05 279.85 279.46 13.41
Las Vegas, NM 250.35 309.75 283.45 283.11 9.71
Dallas, TX 259.85 316.45 293.75 292.33 9.56
Denver, CO 247.55 311.15 283.15 283.03 10.70
Chicago, IL 243.75 312.55 283.75 283.44 11.28
New York, NY 253.75 312.55 286.45 286.38 9.77
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Fig. 2: Time Series of Wind Speed in Las Vegas, NM from 2006 to 2008

3 Methodology

A time series approach is proposed in this work to capture the characteristics
of the three weather variables. Our approach consists of three parts that are
integrated with one another into our overall model: (i) a linear trend, (ii) a
seasonal component, which is represented by Fourier series and Chebyshev
polynomials, and (iii) a VAR to model the stochastic component of the time
series. We detail these three components below.
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Fig. 3: Time Series of Global Solar Radiation in Las Vegas, NM from 2006
to 2008

3.1 Trend

To check for the presence of a linear trend, we run a simple linear regression of
the weather data against hourly time. Both the intercept and time parameters
are significant at the 1% level (although the estimated time parameter is small
in magnitude). Hence, a linear trend, though slight, should be included in our
model. We represent this trend component by including a term of the form:

trendt = β0 + β1t

in our model.

3.2 Seasonality

As discussed in Section 2 and illustrated in Figures 2 through 4, there are
strong seasonal variations in all three of the weather variables. Because of the
hourly time step in our data, it is important to model both diurnal and sea-
sonal seasonality. Because the three weather variables exhibit different diurnal
patterns, we use different approaches to represent their diurnal seasonality.
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Fig. 4: Time Series of Dry Bulb Temperature in Las Vegas, NM from 2006
to 2008

For wind and temperature, diurnal seasonality is represented by a Fourier
series of the form:

daySeast =

P
∑

p=1

[

δc,p · cos

(

2πp
d(t)

24

)

+ δs,p · sin

(

2πp
d(t)

24

)]

,

where P is the order of the Fourier series, δc,p and δs,p are coefficients on the
cosine and sine terms, respectively, and:

d(t) = (t mod 24), (1)

converts t to hours of the day. Season-of-the-year seasonality is similarly cap-
tured by a Fourier series of the form:

annSeast =

P̂
∑

p=1

[

δ̂c,p · cos

(

2πp
d̂(t)

365

)

+ δ̂s,p · sin

(

2πp
d̂(t)

365

)]

, (2)

where P̂ is the order of the Fourier series and δ̂c,p and δ̂s,p are coefficients on
the cosine and sine terms, respectively, and:

d̂(t) =

⌈

t

24

⌉

, (3)



Title Suppressed Due to Excessive Length 9

where:

⌈·⌉ ,

is the ceiling operator, which converts t into days of the year.
Fourier series can produce a smooth seasonal pattern with a significant re-

duction in the number of parameters to be estimated as compared to dummy
variables [6]. To find the proper order of the Fourier series, we estimate mod-
els with between first- and fifth-order terms. Examining modeled and observed
seasonality with different-ordered Fourier series shows that a third-order se-
ries is sufficient to capture the seasonality dynamics. We also compare the
forecasting performance of the model with third- and fifth-order Fourier se-
ries, finding them to be similar. This finding further suggests that third-order
terms are sufficient. Thus, we include third-order Fourier series for daily and
season-of-the-year seasonality of wind and temperature.

The season-of-the-year seasonality of solar radiation is given by the same
Fourier series that is shown in (2). Daily seasonality is modeled using second-
order Chebyshev polynomials, as opposed to Fourier series. To define the
Chebyshev polynomials [28] we first convert our independent variable, x, where
we assume x ∈ [a, b], to the normalized variable:

z =
2(x− a)

b− a
− 1.

By definition we have z ∈ [−1, 1]. We then define the Chebyshev polynomials
recursively as:

Tj(z) = 2 · z · Tj−1(z)− Tj−2(z),

where:

T0(z) = 1,

and:

T1(z) = z.

Thus, the second-order Chebyshev polynomial that is used to model diurnal
solar radiation seasonality is given by:

daySeast = α0+α1 ·

[

2(xt − at)

bt − at
− 1

]

+α2 ·

{

2 ·

[

2(xt − at)

bt − at
− 1

]2

− 1

}

. (4)

We use Chebyshev polynomials, as opposed to Fourier series, to model the
diurnal seasonality for a number of reasons. First, we only need to model so-
lar radiation during daytime hours, because there is (by definition) zero solar
radiation at night. Moreover, solar radiation follows a predictable diurnal pat-
tern, insomuch as it peaks in the middle of the day. A second-order Chebyshev
polynomial is better able to produce this shape of a diurnal pattern than a
Fourier series is. This is confirmed by our model estimates, because second-
order Chebyshev polynomials provide much better goodness-of-fit than Fourier
series do.
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Based on these properties of the diurnal pattern, we define:

xt =
d(t)− r

d̂(t)

s
d̂(t) − r

d̂(t)

,

in equation (4), where d(t) and d̂(t) are as defined in equations (1) and (3),

r
d̂(t) and s

d̂(t) are the sunrise and sunset times, respectively, on the day d̂(t),
and at and bt are the minimum and maximum values, respectively, that xt

takes on day d̂(t). Sunrise and sunset times are computed, based on the day of
the year and geographic coordinates of each location modeled, using MATLAB

functions that are developed by the U.S. Geological Survey.1

3.3 VAR Model

VAR is a statistical model that captures the linear interdependencies among
multiple time series. Hence, it is beneficial in modeling temporal and spatial
correlations among wind speed, solar radiation, and temperature in different
locations. Each variable at each location has an equation explaining its evolu-
tion based on time-lagged values of all of the weather variables at all locations.

As a result, a VAR model is able to capture three important types of
autocorrelations in the data. The first is temporal autocorrelation in an in-
dividual weather variable (e.g., the time-t temperature at location n may be
correlated with the time-t′ temperature at the same location, where t′ 6= t).
The second is cross-correlation between individual weather variables (e.g., the
time-t temperature at location n may be correlated with contemporaneous
solar radiation at the same location). The third is temporal autocorrelation
and cross-correlations between locations. For instance, the time-t temperature
at one location may be correlated with contemporaneous or temporally-offset
temperature at another location. Along the same lines, the VAR model can
also capture correlations between variables, locations, and time (e.g., temper-
ature at one location may be correlated with time-lagged solar radiation at
another location). Thus, the VAR is highly flexible in terms of relationships
among the weather data that can be captured.

VAR models assume that all of the response variables are stationary. Thus,
it is important to test our time-series data for stationarity before fitting the
proposed VAR model. Augmented Dickey-Fuller (ADF) tests against trend-
stationary alternatives are applied to 16 years of weather data for several of the
locations modeled. The ADF tests are conducted after removing the seasonal
components that are discussed in Section 3.2. Our results show that the data
are trend-stationary with p-values smaller than 0.01 for all locations. Moreover,
our model includes a linear trend term which is statistically significant, as
discussed in Section 3.1. Inclusion of this term removes any long-term trend
from the response variables (especially temperature). The results of the ADF

1 These functions are publicly available for download from the U.S. Geological Survey web-
site at: http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/index.html.

http://woodshole.er.usgs.gov/operations/sea-mat/air_sea-html/index.html
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tests and the inclusion of the linear trend suggest that stationarity is not
an issue with our data. The ADF tests further favor the trend-stationary
alternative. This suggests that deterministic trends, which are what we model
through the linear and seasonality terms that are discussed in Sections 3.1
and 3.2, are more appropriate than stochastic trends.

Modeling the three weather variables at 61 locations in a single VAR gives
183 response variables in total. Given the large model size, it is important
to determine a suitable number of autoregressive lags and which time-lagged
values to include in the model. To do this, we regard one week’s lag as the
maximum number to be considered. We estimate multiple VAR models with
up to 168 lags using two response variables only. After estimating several
pairs, we find that regardless of the distance between locations, autoregressive
lags of 1 and multiples of 24 are significant for most location pairs. This lag
structure give us the spatial relationship among locations.

Akaike and Bayesian information criteria (AIC and BIC) are further used to
determine the lag structure. AIC and BIC provide estimates of the information
lost when a given model is used to represent the process that generates a given
dataset. Smaller AIC and BIC values indicate a better relative model fit to
the data. Due to the extreme size (and computational burden) of a 61-location
VAR model, AICs and BICs are calculated for single-location VAR models. A
single-location VAR model only has three response variables, as opposed to 183
for a 61-location VAR model. The single-location models are estimated using
two years of hourly weather data. The lag structures that are estimated, which
are listed in Table 4, are VAR(24), VAR(48), VAR(72), VAR(96), VAR(120),
VAR(168), VAR(1–24, 48, 72, 96, 120, 144, 168). Table 4 summarizes AIC and
BIC values of these VAR models using weather data from Los Angeles, CA.

Table 4: AIC and BIC for VAR models for Los Angeles, CA with different lag
structures

Lag Structure
1–24, 48, 72, 96,

1–24 1–48 1–72 1–96 1–120 1–168 120, 144, 168

AIC 291856 290222 289888 289784 289708 289865 290991
BIC 293706 293751 295095 296669 298272 301786 293260

The VAR(1–24, 48, 72, 96, 120, 144, 168) has the lowest BIC, which penal-
izes the number of parameters more strongly than AIC. This result, favoring
the VAR(1–24, 48, 72, 96, 120, 144, 168) structure, is consistent across the
locations that are modeled. Thus, to fully capture the relationship between
observations in adjacent periods, we use a VAR model with lags one through
24 and multiples of 24 up to 168 of the form:

Yt = trendt + daySeast + annSeast +
∑

l∈L

Al · Yt−l + Ut,
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where:
Yt = (y1,t, y2,t, · · · , y183,t)

⊤,

is a 183× 1 vector of hour-t response variables,

L = {1, 2, · · · , 24, 48, 72, 96, 120, 144, 168},

is the set of lags modeled, Al are 183× 183 coefficient matrices for the lagged
response variables, and:

Ut = (u1,t, u2,t, · · · , u183,t)
⊤,

is a 183× 1 vector of residuals. Because our data set covers 16 years of hourly
observations, we have t = 1, 2, . . . , 140256.

3.4 Parameter Estimation

A VAR model of the size that is proposed is difficult to estimate as a whole
system due to computational and memory limitations of computers (the entire
system consists of more than 25 million equations). Because the model is
actually a seemingly unrelated regression system, we solve this problem by
estimating each equation separately. The data that are used for estimation are
hourly observations from 1991 to 2006. The variance/covariance matrix of the
residuals is calculated after the estimation.

For wind and temperature, ordinary least squares is used for parameter
estimation. Weighted least squares is applied for solar radiation. The weights
assigned to night observations are zero whereas weights of one are given to day-
time observations. We do this because the VAR model is only used to forecast
solar radiation during the day—solar radiation is fixed equal to zero during
the night because, by definition, there is no sunlight at night. By applying
these weights, the estimated coefficients are better for forecasting solar radia-
tion during the day because nighttime observations are ignored. As discussed
in Section 3.2, we calculate sunrise and sunset times for each location based
on geographic coordinates and the day of the year.

Figure 5 shows the residuals of the three weather variables in Chicago, IL
and Las Vegas, NM. It is clear that the residuals display heteroskedasticity.
However, Durbin’s alternative test reveals no serial correlation in the residuals.

4 Forecasting and Validation

To validate our model, we generate out-of-sample forecasts and compare the
performance of our VAR model to a number of benchmark competitors. In
doing so, we consider forecasts that are up to six hours ahead and use two
years of out-of-sample data covering the years 2007 and 2008. As noted in
Section 3.2, we fix solar radiation forecasts equal to zero between sunset and
sunrise on each day. We further truncate any negative forecasts equal to zero,
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(a) Chicago, IL Wind
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(b) Las Vegas, NM Wind
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(c) Chicago, IL Solar
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(d) Las Vegas, NM Solar
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(e) Chicago, IL Temperature
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(f) Las Vegas, NM Temperature

Fig. 5: Residuals for Chicago, IL and Las Vegas, NM from 1991 to 2006

because it is physically impossible for these values to be negative. Evaluation of
solar forecasts is restricted to daylight hours, because nighttime solar radiation
is not challenging to forecast.

We use two types of benchmark competitors in this validation. One com-
pares the performance of our VAR model to other forecasting techniques ap-
pearing in the literature. This is a ‘more desirable’ benchmark competitor,
because it allows our model to be directly contrasted with others. However,
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there are two issues with focusing exclusively on direct comparisons to other
models. First, other models may be applied in different regions, where fore-
casting some weather variables may be easier or more difficult. For example,
temperatures may be more stable and easier to forecast in one region com-
pared to another. This could make one model appear better than another,
due solely to the underlying weather conditions where the models are applied.
Second, there may be differences in the weather variables being forecasted.
For instance, our model relies on the NSRDB for wind speeds, which are mea-
sured at a 2-m height. Other works may use wind speeds at greater heights.
Differences in wind speeds and patterns at different heights may also confound
differences when comparing our model performance to other methods that are
reported in the literature.

For these two reasons, we also compare the performance of our VAR model
to persistence-type forecasting methods (cf. Section 4.1 for further discussion).
Comparisons of our VAR model to persistence-type forecasts can partially
control for the effects of regional and weather-variable differences in assessing
the forecasting capability. Moreover, persistence-type methods are commonly
used in assessing forecasting performance [29].

Numerous metrics are used in the literature to evaluate forecast accuracy.
These include mean absolute error (MAE), root mean square error (RMSE),
and relative root mean square error (RMSE%). We use all three of these met-
rics in our validation. To define these metrics, we let Fi and Oi denote forecast
and observed values, respectively, of a given variable in hour i and N the num-
ber of out-of-sample forecasts used. MAE is then defined as:

1

N

N
∑

i=1

|Fi −Oi|,

RMSE is defined as:
√

√

√

√

1

N

N
∑

i=1

(Fi −Oi)2,

and RMSE% is defined as:
√

1
N

N
∑

i=1

(Fi −Oi)2

1
N

N
∑

i=1

Oi

.

In addition to these metrics, it is also common to benchmark one fore-
casting model to another reference model. Such a benchmark provides what
is known as a skill score. The benefit of a skill score is that it can mitigate
some of the issues that are associated with directly comparing the forecasting
performance of our model to performance metrics that are reported in the
literature (i.e., issues associated with the models being applied to different
regions or to different weather variables). A skill score is typically defined in
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terms of a metric used to evaluate forecast accuracy (e.g., MAE, RMSE, and
RMSE%). The metric used is referred to as the score. Let σ represent the score
of the model being benchmarked and σr the score of the reference model (to
which the model being benchmarked is compared). Also define σp as the score
of a perfect model (i.e., one with no forecast error). The skill score is defined
as:

σ − σr

σp − σr

.

The skill score indicates the fractional improvement in the score from using the
benchmarked model relative to the reference model. A perfect forecast would
have a skill score of 1. We use MAE and RMSE as scores and persistence
forecast models (cf. Section 4.1 for further discussion) as the reference forecast
in our analysis. We fix σp = 0 with both the MAE and RMSE scores, reflecting
zero forecast error in the perfect model.

4.1 Persistence Forecasts

We compare two kinds of persistence-type forecasting methods to our VAR
model. The persistence-type methods are also used as reference models in
computing skill scores. The first persistence-type method is the simple persis-
tence model, which we denote the SP model. The SP model relies upon the
weather condition at the current time to forecast future conditions. Letting
Oi denote the hour-i observation, the SP forecast of the hour-(i+∆i) weather
variable generated at hour i is defined as Oi. That is, the SP model assumes
that the weather variable has the same value at hour (i + ∆i) as it does at
hour i. This persistence forecast is applied to all three weather variables for
comparison with the VAR model.

We also use the clearness persistence forecast, which is proposed by Mar-
quez and Coimbra [29], which we denote the CP model, to provide an ad-
ditional benchmark for solar irradiance forecasts that are generated by our
VAR. The CP model relies on extraterrestrial solar radiation and takes the
solar zenith angle as an input. Let θi represent the solar zenith angle at hour
i. We then define hour-i extraterrestrial solar radiation as:

Si = C · cos(θi),

where C = 1367 W/m2 is the solar constant. The CP forecast of the hour-
(i+∆i) solar irradiance is then given by:

Oi ·
Si+∆i

Si

.

We use the hourly mean solar zenith angle that is recorded in the NSRDB to
generate our CP forecasts.
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4.2 Results

Tables 5 through 7 summarize the forecasting performance of our VAR model
in producing wind, solar, and temperature forecasts, respectively, These com-
parisons are made on the basis of the different metrics that are discussed above
(i.e., MAE, RMSE, and RMSE%). The table reports the average (among the
61 locations modeled), minimum, and maximum MAE for the three weather
variables. Average RMSE and RMSE% are reported as well.

Table 5: Average, minimum, and maximum (among 61 locations modeled)
MAE, RMSE, and RMSE% of wind forecasts produced by VAR model

Forecast MAE [m/s] RMSE [m/s] RMSE% [%]
Horizon Mean Min Max Mean Mean

1-Hour Ahead 1.03 0.18 1.39 1.38 37.29
2-Hours Ahead 1.18 0.36 1.69 1.58 42.67
3-Hours Ahead 1.28 0.54 1.91 1.70 46.02
4-Hours Ahead 1.35 0.67 2.06 1.79 48.37
5-Hours Ahead 1.40 0.74 2.17 1.85 50.11
6-Hours Ahead 1.44 0.79 2.27 1.90 51.46

Table 6: Average, minimum, and maximum (among 61 locations modeled)
MAE, RMSE, and RMSE% of solar forecasts produced by VAR model

Forecast MAE [Wh/m2] RMSE [Wh/m2] RMSE% [%]
Horizon Mean Min Max Mean Mean

1-Hour Ahead 65.08 40.69 89.94 100.27 29.19
2-Hours Ahead 79.84 49.12 107.12 117.58 34.23
3-Hours Ahead 88.34 53.52 115.56 127.86 37.22
4-Hours Ahead 93.37 55.99 120.94 134.33 39.10
5-Hours Ahead 96.30 57.17 123.50 138.40 40.29
6-Hours Ahead 97.99 57.75 124.86 140.81 40.99

The values that are reported in Tables 5 through 7 are compared with
results that are reported in the literature for other forecasting techniques in
Section 4.3. As noted before, there are important caveats in directly comparing
forecasting performance of our model to others in the literature.

Tables 8 and 9 summarize the averageMAE and RMSE, respectively, of the
VAR model in producing temperature, solar-radiation, and wind-speed fore-
casts. They also summarize the average MAE and RMSE of the SP model.
The tables show that the VAR outperforms the SP model, by between 6%
and 80%, especially when the forecasting horizon increases. This is also illus-
trated in Figure 6, which shows the average RMSE of the different models as
a function of the forecasting horizon.
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Table 7: Average, minimum, and maximum (among 61 locations modeled)
MAE, RMSE, and RMSE% of temperature forecasts produced by VAR model

Forecast MAE [K] RMSE [K] RMSE% [%]
Horizon Mean Min Max Mean Mean

1-Hour Ahead 0.68 0.31 1.06 0.95 0.33
2-Hours Ahead 0.98 0.63 1.41 1.34 0.47
3-Hours Ahead 1.22 0.87 1.77 1.65 0.58
4-Hours Ahead 1.42 0.98 2.10 1.89 0.66
5-Hours Ahead 1.57 1.05 2.41 2.09 0.73
6-Hours Ahead 1.70 1.10 2.67 2.25 0.79

Table 8: Average (among 61 locations modeled) MAE of VAR and SP models

Forecast Temperature [K] Solar Radiation [Wh/m2] Wind Speed [m/s]
Horizon VAR SP VAR SP VAR SP

1-Hour Ahead 0.68 0.99 65.08 118.39 1.03 1.10
2-Hours Ahead 0.98 1.77 79.84 204.93 1.18 1.36
3-Hours Ahead 1.22 2.50 88.34 287.09 1.28 1.56
4-Hours Ahead 1.42 3.18 93.37 364.19 1.35 1.73
5-Hours Ahead 1.57 3.80 96.30 434.93 1.40 1.88
6-Hours Ahead 1.70 4.36 97.99 498.09 1.44 2.01

Table 9: Average (among 61 locations modeled) RMSE of VAR and
persistence-type models

Forecast Temperature [K] Solar Radiation [Wh/m2] Wind Speed [m/s]
Horizon VAR SP VAR SP CP VAR SP

1-Hour Ahead 0.95 1.40 100.27 152.15 109.07 1.38 1.55
2-Hours Ahead 1.34 2.41 117.58 245.21 144.23 1.58 1.87
3-Hours Ahead 1.65 3.34 127.86 331.84 186.62 1.70 2.13
4-Hours Ahead 1.89 4.18 134.33 408.26 234.80 1.79 2.34
5-Hours Ahead 2.09 4.93 138.40 472.87 284.11 1.85 2.52
6-Hours Ahead 2.25 5.59 140.81 525.10 329.87 1.90 2.67

Tables 10 and 11 report skill scores on the basis of MAE and RMSE, respec-
tively, using the SP model as the reference model. The skill scores obtained for
our VAR model are compared to skill scores that are reported in the literature
in Section 4.4.

4.3 Comparative Studies

Our VAR model provides good forecasting performance compared to other
methods reported in the literature, showing that our model can be used for
providing very short-term forecasts of temperature, wind speed, and solar ra-
diation. The average (across the 61 locations modeled) performance of our
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Fig. 6: Average (Among 61 Locations Modeled) RMSE of Solar Radiation
Forecasts Produced by VAR, CP, and SP Models

Table 10: MAE-based skill scores of VAR model using SP model as reference
model

Forecast Horizon Temperature Solar Radiation Wind Speed

1-Hour Ahead 0.31 0.43 0.06
2-Hours Ahead 0.45 0.61 0.13
3-Hours Ahead 0.51 0.69 0.18
4-Hours Ahead 0.55 0.74 0.22
5-Hours Ahead 0.59 0.78 0.26
6-Hours Ahead 0.61 0.80 0.28

model is comparable to other works. Moreover, our model performs signifi-
cantly better at some locations, as indicated by the minimum values of the
MAE that are reported in Tables 5 through 7. Tables 5 through 7 also sug-
gest that our VAR model provides relatively robust weather forecasts up to
six-hours ahead.

Perez et al. [15] forecast wind speed using a blended ensemble, which con-
sists of the Weather Research and Forecasting Single Column Model and time
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Table 11: RMSE-based skill scores of VAR model using SP model as reference
model

Forecast Horizon Temperature Solar Radiation Wind Speed

1-Hour Ahead 0.32 0.34 0.11
2-Hours Ahead 0.44 0.52 0.16
3-Hours Ahead 0.51 0.61 0.20
4-Hours Ahead 0.55 0.67 0.24
5-Hours Ahead 0.58 0.71 0.27
6-Hours Ahead 0.60 0.73 0.29

series forecasts that are calibrated with Bayesian model averaging. The MAEs
of their hour-ahead wind speed forecasts are between 0.9 m/s and 0.95 m/s
during the day and are between 1.01 m/s and 1.07 m/s overnight. Erdem and
Shi [17] compare four approaches that are based on an ARMA method for
hour-ahead wind forecasting. Their method has MAEs ranging from 0.8 m/s
to 2.3 m/s. Li and Shi [23] present a comparison study on the application of
different ANN in hour-ahead wind-speed forecasting and measure forecasting
performance in terms of MAE and RMSE. The best MAE and RMSE among
the locations that they model are 0.950 m/s and 1.254 m/s, respectively. Chen
et al. [20] produce wind-speed forecasts using a Gaussian process that is ap-
plied to the outputs of an NWP model. Their hour-ahead and five-hours-ahead
forecasts have RMSEs of 1.8 m/s and 2.2 m/s, respectively. Hong et al. [24]
produce hour-ahead wind-speed forecasts using their cascaded MFNN method
with MAEs of 1.12 m/s in the summer, 1.22 m/s in the winter, 1.13 m/s in
the spring, and 1.03 m/s in the autumn.

More short-term solar radiation forecasting is done using cloud motion de-
rived from satellite images [11, 12, 19]. Perez et al. [12] report an increase in
the RMSE% from 25% to 42% as the forecasting horizon goes from hour-ahead
to six-hours-ahead. Traiteur et al. [19] compare their forecasts against single
point ground-truth stations and report RMSEs that vary from 68 Wh/m2

to 120 Wh/m2 for hour-ahead forecasts and 140 Wh/m2 to 200 Wh/m2 to
six-hour-ahead forecasts. Erdem and Shi [17] generate one-, two-, and three-
hours-ahead solar forecasts and report RMSE%s of 23%, 32%, and 38%, re-
spectively. Remund et al. [16] compare short-term global radiation forecasts of
three different models and find that ECMWF (Global Model of the European
Centre for Medium-Range Weather Forecasts) is the best, with an RMSE%
that stays at about 38% for one- to five-hours-ahead forecasting. The RMSEs
of one- to three-hours-ahead forecasts of global radiation that are produced
by Alonso-Montesinos and Batlles [14] are all greater than 100 W/m2, except
for those under clear-sky conditions.

Taylor and Buizza [5] compare point forecasts of daily air temperature
generated by six different models to actual observations. The best MAE of an
hour-ahead forecast that they report is 0.9◦ K, as opposed to an average of
0.68◦ K that is generated by our model. Smith et al. [30] develop an ANNmodel
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to predict air temperature at hourly intervals from one to twelve hours ahead.
Their network is trained using data from sites that are selected to encompass
a broad range of conditions. The MAEs of one- to six-hour-ahead predictions,
averaged from two evaluation datasets, are 0.53◦ K, 0.87◦ K, 1.15◦ K, 1.37◦ K,
1.59◦ K, and 1.77◦ K, which are similar to the forecasting performance of our
VAR model.

4.4 Skill Scores Comparison

As discussed before, direct comparison of MAE or RMSE among different
datasets provides a limited picture of forecasting performance. This is because
forecasting performance is governed, in part, by the local climate conditions
of the region in question. If one is comparing forecasts from different regions,
differences in MAE, RMSE, and other scores may be confounded by the effects
of climate. Moreover, differences in the underlying weather variables being
forecasted can confound forecasting performance. We use skill scores to allow
for a more clear comparison of our VAR model to other forecasting methods
that are reported in literature.

Perez et al. [12] forecast short-term hourly average GHI one to six hours
ahead. Their method uses cloud motion derived from consecutive geostationary
satellite images. They compare the forecasts that are generated by their model
to one year of ground measurements. They also report RMSEs for forecasts
that are generated by their model at seven locations in the United States
and the RMSEs of forecasts that are generated by a CP model. Using these
reported RMSEs, we compute skill scores for their solar forecasts and compare
them to the skill scores of solar forecasts that are generated by our VAR model
across the 61 locations that we model (using a CP model as the reference model
in both cases). Figure 7 compares the RMSE-based skill score of our model
to that proposed by Perez et al. [12] for different forecast horizons. It is clear
that the two models perform similarly up to two hours ahead. However, our
model outperforms that of Perez et al. [12] for longer forecasting horizons.

Marquez et al. [31] predict GHI at temporal horizons of 30, 60, 90, and
120 minutes. They use a hybrid method that combines information from pro-
cessed satellite images with ANN. They apply their forecasting method to
data from two distinct locations in the San Joaquin Valley. The raw data are
captured at 30-second intervals and are then averaged to 30-minute intervals.
Inman et al. [32] summarize the forecast skill of these two ANN-based models
compared to a clear-sky-deviation persistence model. These comparisons are
summarized in Table 12. The input variables for Models 1 and 2 are data from
satellite images and lagged GHI data, respectively. Although Marquez et al.
[31] and Inman et al. [32] examine forecasts at 30-minute intervals, it is never-
theless helpful to compare the performance of their model to our VAR using
the same number of forecasting steps. For our VAR model, the skill scores of
solar forecasts between one and four time steps ahead are 0.08, 0.18, 0.31, and
0.43. The one-time-step-ahead solar forecasts generated by our VAR model
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Fig. 7: RMSE-Based Skill Score of VAR Model and Model Proposed by Perez
et al. [12] for Solar Radiation Forecasting Using CP Model as Reference Model

have a lower skill score than those produced by the model of Marquez et al.
[31]. However, our remaining solar forecasts have higher skill scores than the
corresponding forecasts that are produced by their model.

Table 12: RMSE-based skill scores of solar radiation forecasts produced by
ANN-based models of Marquez et al. [31] using CP model as reference model
reported by Inman et al. [32]

Skill Score
Forecast Horizon Model 1 Model 2

30-Minutes Ahead 0.12 0.16
60-Minutes Ahead 0.14 0.18
90-Minutes Ahead 0.23 0.23
120-Minutes Ahead 0.24 0.30

Abdel-Aal et al. [33] forecast mean hourly wind-speeds at Dhahran, Saudi
Arabia using group method of data handling abductive networks. The over-
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all MAE for one-hour-ahead forecasts produced by their model is 0.85 m/s.
Their method achieves an 8.2% MAE reduction compared to hourly persis-
tence forecasts, giving an MAE-based skill score of 0.08. For six-hour-ahead
forecasts, the MAE of their method is 1.20 m/s. This corresponds to an MAE-
based skill score of 0.15 using a day-to-day persistence model as the reference
model. Abdel-Aal et al. [33] conclude that the relative improvements of their
model compared to persistence forecasts exceed those reported for a number
of machine learning approaches that are discussed in the literature. Table 13
reports the MAE-based skill scores of wind speed forecasts produced by the
method that is proposed by Abdel-Aal et al. [33] and our VAR method, using
a persistence model as the reference model. The tables show that our VAR
model performs similarly for one-hour-ahead forecasts but performs better for
six-hour-ahead forecasts.

Table 13: MAE-based skill scores of wind speed forecasts produced by model
of Abdel-Aal et al. [33] and VAR model using SP model as reference model

Forecast Horizon Abdel-Aal et al. [33] Model VAR Model

1-Hour Ahead 0.08 0.06
6-Hours Ahead 0.15 0.28

Sfetsos [34] compares a number of approaches to forecast mean hourly
wind speed. These approaches include traditional linear ARMA models, the
feed forward and recurrent neural networks, and more exotic approaches, such
as adaptive neuro-fuzzy inference systems and neural logic networks. Sfetsos
[34] identifies a neural logic network that incorporates logic rules as having the
least error (among those surveyed), with an RMSE-based skill score of about
0.05. Our VAR model has an RMSE-based skill score for one-hour-ahead wind
forecasts of 0.11 (cf. Table 11), which is better than the performance of the
neural logic network model. Wang et al. [35] predict wind speed using an ANN-
based method and then adjust the results according to long-term patterns.
Their wind-speed data are sampled every twenty minutes. Compared to an SP
model, the RMSE-based skill scores of their four- and six-hour-ahead forecasts
are 0.16 and 0.13, respectively, which are lower than our VAR model. Fonte et
al. [36] present an ANN-based method to predict average hourly wind speed.
The RMSE-based skill score of one-hour-ahead forecasts for their model is 0.1
using an SP model as the reference model. The comparable skill score for our
VAR model is 0.2.

5 Conclusions

In this paper, we propose a time series VAR model to forecast temperature,
solar radiation, and wind speed at 61 locations around the United States. The
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proposed VAR model structure captures multiple types of temporal and cross-
sectional autocorrelations in and between weather variables and locations. This
is a novelty compared to other forecasting techniques that are in the literature.
The forecasting performance is good for all three weather variables. Given the
influence of the three weather variables on electricity systems, the model is
able to provide proper inputs for electricity-supply and -demand modeling.

The consideration of spatial relationship allows the model to provide cro-
mulent forecasts. The VAR model proposed is also flexible in size. The fore-
casting performance is similar when it is used to forecast the three weather
variables for fewer locations (results for these more limited models are excluded
for sake of brevity). We also show that the VAR model performs similarly to
or better than other methods proposed in the literature, including persistence
forecasts.

Another important contribution of this paper is that it shows that a time
series approach can be used to provide robust short-term solar radiation fore-
casts with good forecasting performance.

This work does suggest several areas of future research. Although the VAR
model proposed provides good forecasts, it may be redundant given its large
size. Each equation has about five thousands parameters to be estimated. Not
every one of these parameters contributes to the overall forecast. Thus, it may
be possible to further customize the model and its autoregressive structure
to better exploit the correlations in the data. There may also be additional
exogenous variables that could be added to the model to embiggen its per-
formance. That being said, the currently proposed model performs as well as
or outperforms other models that are proposed in the literature. The residu-
als also display heteroskedasticity, which weighted or generalized least-squares
techniques may reduce.
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4. F. E. Benth and J. Šaltytė-Benth, “Stochastic Modelling of Temperature
Variations with a View Towards Weather Derivatives,” Applied Mathe-

matical Finance, vol. 12, pp. 53–85, 2005.
5. J. W. Taylor and R. Buizza, “A comparison of temperature density fore-

casts from GARCH and atmospheric models,” Journal of Forecasting,
vol. 23, pp. 337–355, August 2004.

6. S. D. Campbell and F. X. Diebold, “Weather Forecasting for Weather
Derivatives,” Journal of the American Statistical Association, vol. 100,
pp. 6–16, March 2005.
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